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Abstract. We construct the compatible system of l-adic representations associ-
ated to a regular algebraic cuspidal automorphic representation of GLn over a CM
(or totally real) field and check local-global compatibility for the l-adic representa-
tion away from l and a finite number of rational primes above which the CM field
or the automorphic representation ramify. The main innovation is that we impose
no self-duality hypothesis on the automorphic representation.

Introduction

Our main theorem is as follows (see corollary 7.14).

Theorem A. Let p denote a rational prime and let ı : Qp
∼→ C. Suppose that E

is a CM (or totally real) field and that π is a cuspidal automorphic representation
of GLn(AE) such that π∞ has the same infinitesimal character as an irreducible
algebraic representation ρπ of RSEQGLn. Then there is a unique continuous semi-
simple representation

rp,ı(π) : GE −→ GLn(Qp)

such that, if q 6= p is a rational prime above which π is unramified and if v|q is a
prime of E, then rp,ı(π) is unramified at v and

rp,ı(π)|ssWEv
= ı−1recEv(πv| det |(1−n)/2

v ).

Here recEv denotes the local Langlands correspondence for Ev. It may be possible
to extend the local-global compatibility to other primes v. Ila Varma is considering
this question.

The key point is that we make no self-duality assumption on π. In the presence of
such a self-duality assumption (‘polarizability’, see [BLGGT]) the existence of rp,ı(π)
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has been known for some years (see [Sh1] and [CH]). In almost all polarizable cases
rp,ı(π) is realized in the cohomology of a Shimura variety, and in all polarizable cases
rp,ı(π)⊗2 is realized in the cohomology of a Shimura variety (see [Ca]). In contrast,
according to unpublished computations of one of us (M.H.) and of Laurent Clozel,
in the non-polarizable case the representation rp,ı(π) will never occur in the Betti or
etale cohomology of a Shimura variety. Rather we construct it as a p-adic limit of
representations which do occur in such cohomology groups.

We sketch our argument. We may easily reduce to the case of an imaginary CM field
F which contains an imaginary quadratic field in which p splits. For all sufficiently
large integers N , we construct a 2n-dimensional representation Rp(ı

−1(π|| det ||N)∞)
such that for good primes v we have

Rp(ı
−1(π|| det ||N)∞)|ssWFv

∼=
ı−1recFv(πv| det |N+(1−n)/2

v )⊕ ı−1recFv(πv| det |N+(1−n)/2
v )∨,cε1−2n

p ,

as a p-adic limit of (presumably irreducible) p-adic representations associated to
polarizable, regular algebraic cuspidal automorphic representations of GL2n(AF ). It
is then elementary algebra to reconstruct rp,ı(π).

We work on the quasi-split unitary similitude group Gn associated to F 2n. Note
that Gn has a maximal parabolic subgroup P+

n,(n) with Levi component

Ln,(n)
∼= GL1 ×RSFQGLn.

(We will give all these groups integral structures.) We set

Π(N) = Ind
Gn(A∞,p)

P+
n,(n)

(A∞,p)
(1× ı−1(π|| det ||N)∞,p).

Then our strategy is to realize Π(N), for sufficiently large N , in a space of overcon-
vergent p-adic cusp forms for Gn of finite slope. Once we have done this, we can
use an argument of Katz (see [Katz1]) to find congruences modulo arbitrarily high
powers of p to classical (holomorphic) cusp forms on Gn (of other weights). (Alter-
natively it is presumably possible to construct an eigenvariety in this setting, but we
have not carried this out.) One can attach Galois representations to these classical
cusp forms by using the trace formula to lift them to polarizable, regular algebraic,
discrete automorphic representations of GL2n(AF ) (see e.g. [Sh2]) and then applying
the results of [Sh1] and [CH].

We learnt the idea that one might try to realize Π(N) in a space of overconvergent
p-adic cusp forms for Gn (of finite slope) from Chris Skinner. The key problem was
how to achieve such a realization. To sketch our approach we must first establish
some more notation.

To a neat open compact subgroup U of Gn we can associate a Shimura variety
Xn,U/SpecQ. It is a moduli space for abelian n[F : Q]-folds with an isogeny action
of F and certain additional structures. It is not proper. It has a canonical normal
compactification Xmin

n,U and, to certain auxiliary data ∆, one can attach a smooth

compactification Xn,U,∆ which naturally lies over Xmin
n,U and whose boundary is a

simple normal crossings divisor. To a representation ρ of Ln,(n) (over Q) one can
attach a locally free sheaf EU,ρ/Xn,U together with a canonical (locally free) extension
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EU,∆,ρ to Xn,U,∆, whose global sections are holomorphic automorphic forms on Gn ‘of
weight ρ and level U ’. (The space of global sections does not depend on ∆.) The
product of EU,∆,ρ with the ideal sheaf of the boundary of Xn,U,∆, which we denote
E sub
U,∆,ρ, is again locally free and its global sections are holomorphic cusp forms on Gn

‘of weight ρ and level U ’ (and again the space of global sections does not depend on
∆).

To the schemes Xn,U , Xmin
n,U and Xn,U,∆ one can naturally attach dagger spaces X†n,U ,

Xmin,†
n,U and X†n,U,∆ in the sense of [GK]. These are like rigid analytic spaces except

that one consistently works with overconvergent sections. If U is the product of a
neat open compact subgroup of Gn(A∞,p) and a suitable open compact subgroup of
Gn(Qp), then one can define admissible open sub-dagger spaces (‘the ordinary loci’)

Xord,†
n,U ⊂ X†n,U

and

Xord,min,†
n,U ⊂ Xmin,†

n,U

and

Xord,†
n,U,∆ ⊂ X†n,U,∆.

By an overconvergent cusp form of weight ρ and level U one means a section of E sub
U,ρ

over Xord,†
n,U,∆. (Again this definition does not depend on the choice of ∆.)

We write G
(m)
n for the semi-direct product of Gn with the additive group with Q-

points Hom F (Fm, F 2n), and P
(m),+
n,(n) for the pre-image of P+

n,(n) in G
(m)
n . We also write

L
(m)
n,(n) for the semi-direct product of Ln,(n) with the additive group with Q-points

Hom F (Fm, F n), which is naturally a quotient of P
(m),+
n,(n) . (Again we will give these

groups integral structures.) To a neat open compact subgroup U ⊂ G
(m)
n (A∞) with

projection U ′ in Gn(A∞) one can attach a (relatively smooth, projective) Kuga-Sato

variety A
(m)
n,U/Xn,U ′ . For a cofinal set of U it is an abelian scheme isogenous to the

m-fold self product of the universal abelian scheme over Xn,U ′ . To certain auxiliary

data Σ one can attach a smooth compactification A
(m)
n,U,Σ of A

(m)
n,U whose boundary is

a simple normal crossings divisor; which lies over Xmin
n,U ; and which, for suitable Σ

depending on ∆, lies over Xn,U ′,∆. Thus

A
(m)
n,U ↪→ A

(m)
n,U,Σ

↓ ↓
Xn,U ′ ↪→ Xn,U ′,∆

|| ↓
Xn,U ′ ↪→ Xmin

n,U ′ .

We define A
(m),ord,†
n,U and A

(m),ord,†
n,U,Σ to be the pre-image of Xord,min,†

n,U ′ in the dagger spaces

associated to A
(m)
n,U and A

(m)
n,U,Σ.

We will define

H i
c−∂(A

(m),ord

n,U ,Qp)
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to be the hyper-cohomology of the complex on A
(m),ord,†
n,U,Σ which is the tensor product

of the de Rham complex with log poles towards the boundary, A
(m),ord,†
n,U,Σ − A(m),ord,†

n,U ,
and the ideal sheaf defining the boundary. We believe it is a sort of rigid cohomology

of the ordinary locus A
(m),ord

n,U in the special fibre of an integral model of A
(m)
n,U ; more

specifically, cohomology with compact support towards the toroidal boundary, but not
towards the non-ordinary locus, hence our notation. However we have not bothered
to verify that this group only depends on ordinary locus in the special fibre. The
theory of Shimura varieties provides us with sufficiently canonical lifts that this will
not matter to us. Our proof that for N sufficiently large Π(N) occurs in the space

of overconvergent p-adic cusp forms for Gn proceeds by evaluating H i
c−∂(A

(m),ord

n,U ,Qp)
in two ways.

Firstly we use the usual Hodge spectral sequence. The higher direct images from

A
(m)
n,U,Σ to Xn,U ′,∆ of the tensor product of the ideal sheaf of the boundary and the

sheaf of differentials of any degree with log poles along the boundary, is canonically

filtered with graded pieces sheaves of the form E sub
U ′,∆,ρ. Thus H i

c−∂(A
(m),ord

n,U ,Qp) can
be computed in terms of the groups

Hj(Xord,†
n,U,∆, E

sub
U,∆,ρ)

A crucial observation for us is that for j > 0 this group vanishes (see theorem 5.4
and proposition 6.12). This observation seems to have been made independently, at
about the same time, by Andreatta, Iovita and Pilloni (see [AIP1] and [AIP2]). It
seems quite surprising to us. It is false if one replaces E sub

U,∆,ρ with Ecan
U,∆,ρ. Its proof

depends on a number of apparently unrelated facts, including:

• Xord,min,†
n,U is affinoid.

• The stabilizer in GLn(OF ) of a positive definite hermitian n× n matrix over
F is finite.
• Certain line bundles on self products A of the universal abelian scheme over
Xn′,U ′ (for n′ < n) are relatively ample for A/Xn′,U ′ .

This observation implies that H i
c−∂(A

(m),ord

n,U ,Qp) can be computed by a complex whose
terms are spaces of overconvergent cusp forms. Hence it suffices for us to show that,
for N sufficiently large, Π(N) occurs in

H i
c−∂(A

(m),ord

n ,Qp) = lim
→U,Σ

H i
c−∂(A

(m),ord

n,U ,Qp)

for some m and i (depending on N).
To achieve this we use a second spectral sequence which computes the cohomology

group H i
c−∂(A

(m),ord

n,U ,Qp) in terms of the rigid cohomology of A
(m),ord

n,U,Σ and its various
boundary strata. See section 6.5. This is an analogue of the spectral sequence

Ei,j
1 = Hj(Y (i),C)⇒ H i+j

c (Y − ∂Y,C),

where Y is a proper smooth variety over C, where ∂Y is a simple normal crossings di-
visor on Y , and where Y (i) is the disjoint union of the i-fold intersections of irreducible
components of ∂Y . (So Y (0) = Y .) Some of the terms in this spectral sequence seem
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a priori to be hard to control, e.g. H i
rig(A

(m),ord

n,U,Σ ). However employing theorems about
rigid cohomology due to Berthelot and Chiarellotto, we see that the eigenvalues of

Frobenius on H i
c−∂(A

(m),ord

n,U,Σ ,Qp) are all Weil pj-numbers for j ≥ 0. Moreover the

weight 0 part, W0H
i
c−∂(A

(m),ord

n,U ,Qp), equals the cohomology of a complex only in-

volving the rigid cohomology in degree 0 of A
(m),ord

n,U and its various boundary strata.
(See proposition 6.24.) This should have a purely combinatorial description. More

precisely we define a simplicial complex S(∂A
(m),ord

n,U,Σ ) whose vertices correspond to

boundary components of A
(m),ord

n,U,Σ and whose j-faces correspond to j-boundary com-
ponents with non-trivial intersection. For i > 0 we obtain an isomorphism

H i(|S(∂A
(m),ord

n,U,Σ )|,Qp) ∼= W0H
i+1
c−∂(A

(m),ord

n,U ,Qp).

Thus it suffices to show that for N sufficiently large Π(N) occurs in

H i(|S(∂A
(m),ord

n )|,Qp) = lim
→U,Σ

H i(|S(∂A
(m),ord

n,U,Σ )|,Qp)

for some m and some i > 0 (possibly depending on N).

The boundary of A
(m),ord

n,U,Σ comes in pieces indexed by the conjugacy classes of maxi-
mal parabolic subgroups of Gn. We shall be interested in the union of the irreducible
components which are associated to P+

n,(n). These correspond to an open subset

|S(∂A
(m),ord

n,U,Σ )|=n of |S(∂A
(m),ord

n,U,Σ )|. As |S(∂A
(m),ord

n,U,Σ )| is compact, the interior cohomol-
ogy

H i
Int(|S(∂A

(m),ord

n )|=n,Qp) = lim
→U,Σ

H i
Int(|S(∂A

(m),ord

n,U,Σ )|=n,Qp)

is naturally a sub-quotient of H i(|S(∂A
(m),ord

n )|,Qp). (By interior cohomology we
mean the image of the cohomology with compact support in the cohomology. The
interior cohomology of an open subset of an ambient compact Hausdorff space is
naturally a sub-quotient of the cohomology of that ambient space.) Thus it even
suffices to show that for N sufficiently large Π(N) occurs in

H i
Int(|S(∂A

(m),ord

n )|=n,Qp)

for some m and some i > 0 (possibly depending on N).

However the data Σ is a G
(m)
n (Q)-invariant (glued) collection of polyhedral cone

decompositions and S(∂A
(m),ord

n ) is obtained from Σ by replacing 1-cones by vertices,

2-cones by edges etc. The cones corresponding to |S(∂A
(m),ord

n )|=n are a disjoint union
of polyhedral cones in the space of positive definite hermitian forms on F n. From
this one obtains an equality

|S(∂A
(m),ord

n )|=n =
∐

h∈P+
n,(n)

(A∞,p)\Gn(A∞,p)/Up

T
(m)

(n),hUh−1∩P (m),+
n,(n)

(A∞)
,

where
T

(m)
(n),U ′ = L

(m)
n,(n)(Q)\L(m)

n,(n)(A)/U ′(R×>0 × (U(n)[F+:Q]R×>0)),
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with U(n) denoting the usual n× n compact unitary group. We deduce that

H i
Int(|S(∂A

(m),ord

n )|=n,Qp) = Ind
Gn(A∞,p)

P+
n,(n)

(A∞,p)
H i

Int(T
(m)
(n) ,Qp)

Z×p ,

where
H i

Int(T
(m)
(n) ,Qp) = lim

→U ′
H i

Int(T
(m)
(n),U ′ ,Qp)

as U ′ runs over neat open compact subgroups of L
(m)
n,(n)(A

∞). (The Z×p -invariants result

from a restriction on the open compact subgroups ofGn(A∞) that we are considering.)
Thus it suffices to show that for all sufficiently large N , the representation 1 ×
(π|| det ||N)∞,p occurs in H i

Int(T
(m)
(n) ,C) for some i > 0 and some m (possibly depending

on N).

We will write simply T(n),U ′ for T
(0)
(n),U ′ , a locally symmetric space associated to

Ln,(n)
∼= GL1 × RSFQGLn. If ρ is a representation of Ln,(n) over C, then it gives rise

to a locally constant sheaf Lρ,U ′ over T(n),U ′ . We set

H i
Int(T(n),Lρ) = lim

→U ′
H i

Int(T(n),U ′ ,Lρ,U ′),

a smooth Ln,(n)(A∞)-module. The space T
(m)
(n),U ′ is an (S1)nm[F :Q]-bundle over the

locally symmetric space T
(0)
(n),U ′ and if π(m) denotes the fibre map then

Rjπ(m)
∗ C ∼= L∧jHom F (Fm,Fn)∨⊗QC,U ′ ,

where Ln,(n) acts on Hom F (Fm, F n) via projection to RSFQGLn. Moreover the Leray
spectral sequence

Ei,j
2 = H i

Int(T(n),L∧jHom F (Fm,Fn)∨⊗QC)⇒ H i+j
Int (T

(m)
(n) ,C)

degenerates at the second page. (This can be seen by considering the action of
the centre of Ln,(n)(A∞).) Thus it suffices to show that for all sufficiently large
N , we can find non-negative integers j and m and an irreducible constituent ρ of
∧jHom F (Fm, F n)∨ ⊗Q C such that the representation 1 × (π|| det ||N)∞,p occurs in
H i

Int(T(n),Lρ) for some i ∈ Z>0. Clozel [Cl] checked that (for n > 1) this will be
the case as long as 1 × (π|| det ||N)∞ has the same infinitesimal character as some
irreducible constituent of ∧jHom F (Fm, F n)⊗QC, i.e. if ρπ⊗ (NF/Q ◦det)N occurs in
∧jHom F (Fm, F n)⊗QC. From Weyl’s construction of the irreducible representations
of GLn, for large enough N this will indeed be the case for some m and j.

We remark it is essential to work with N sufficiently large. It is not an artifact of
the fact that we are working with Kuga-Sato varieties rather than local systems on
the Shimura variety. We can twist a local system on the Shimura variety by a power
of the multiplier character of Gn. However the restriction of the multiplier factor of
Gn to Ln,(n)

∼= GL1 × RSFQGLn factors through the GL1-factor and does not involve

the RSFQGLn factor.
We learnt from the series of papers [HZ1, HZ2, HZ3] the key observation that

|S(∂A
(m)
n,U,Σ)| has a nice geometric interpretation involving the locally symmetric space

for Ln,(n) and that this could be used to calculate cohomology.
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Although the central argument we have sketched above is not long, this paper has
unfortunately become very long. If we had only wanted to construct rp,ı(π) for all
but finitely many primes p, then the argument would have been significantly shorter
as we could have worked only with Shimura varieties Xn,U which have good integral
models at p. The fact that we want to construct rp,ı(π) for all p adds considerable
technical complications and also requires appeal to the recent work [La4]. (Otherwise
we would only need to appeal to [La1] and [La2].)

Another reason this paper has grown in length is the desire to use a language to
describe toroidal compactifications of mixed Shimura varieties that is different from
the language used in [La1], [La2] and [La4]. We do this because at least one of us
(R.T.) finds this language clearer. In any case it would be necessary to establish
a substantial amount of notation regarding toroidal compactifications of Shimura
varieties, which would require significant space. We hope that the length of the
paper, and the technicalities with which we have to deal, won’t obscure the main line
of the argument. On a first reading the reader might like to start with appendix A,
which summarizes the extensive notation we use, and then turn to sections (5 and)
6 and 7. These sections will provide reference back to the key results from earlier
sections. We have added appendix B to help comparison between the notation of this
paper and the notation of [La1], [La2] and [La4], which we hope will make life easier
for those readers that want to follow up on our many references to these papers.

After we announced these results, but while we were writing up this paper, Scholze
found another proof of theorem A, relying on his theory of perfectoid spaces. His
arguments seem to be in many ways more robust. For instance he can handle torsion
in the cohomology of the locally symmetric varieties associated to GLn over a CM
field. Scholze’s methods have some similarities with ours. Both methods first realize
the Hecke eigenvalues of interest in the cohomology with compact support of the
open Shimura variety by an analysis of the boundary and then show that they also
occur in some space of p-adic cusp forms. We work with the ordinary locus of the
Shimura variety, which for the minimal compactification is affinoid. Scholze works
with the whole Shimura variety, but at infinite level. He (very surprisingly) shows
that at infinite level, as a perfectoid space, (some compactification of) the Shimura
variety has a Hecke invariant affinoid cover.

We would like to thank the referee for their helpful comments. We would also
like to thank Elly Gustafsson and Anthony Pulido for help in compiling the index of
notations.

We are pleased to dedicate this paper to the memory of our friend Robert Coleman,
who was both a personal and professional inspiration. This paper owes a lot to his
ideas. The origin of this paper was the conviction that one should be able to relate
all the cohomology of a Shimura variety to overconvergent p-adic automorphic forms.
The source of this conviction was [Co].
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Notation.

If G →→ H is a surjective group homomorphism and if U is a subgroup of G we will
sometimes use U to also denote the image of U in H.

If f : X → Y and f ′ : Y → Z then we will denote by f ′ ◦ f : X → Z the composite
map f followed by f ′. In this paper we will use both left and right actions. Suppose
that G is a group acting on a set X and that g, h ∈ G. If G acts on X on the left we
will write gh for g ◦ h. If G acts on X on the right we will write hg for g ◦ h.

If f is an automorphism of Hom (X, Y ) we will sometimes use (◦f) to denote the
map

Hom (X, Y ) −→ Hom (X, Y )
h 7−→ h ◦ f.

We will sometimes use / to denote a quotient, and sometimes we will use it to
denote the fact that the object to the left lives ‘over’ the object to the right. Both
these usages are standard and we hope no confusion will arise.

If G is a group (or group scheme) then Z(G) will denote its centre.
We will write Sn for the symmetric group on n letters. We will write U(n) for the

group of n× n complex matrices h with th(ch) = 1n.
If G is an abelian group we will write G[∞] for the torsion subgroup of G, G[∞p]

for the subgroup of elements of order prime to p, and GTF = G/G[∞]. We will write
TG = lim←N G[N ] and T pG = lim←p 6 |N G[N ]. We will also write V G = TG ⊗Z Q
and V pG = T pG⊗Z Q.

If A is a ring, if B is a locally free, finite A-algebra, and if X/SpecB is a quasi-
projective scheme; then we will let RSBAX denote the restriction of scalars (or Weil
restriction) of X from B to A. (See for instance section 7.6 of [BLR].)

By a p-adic formal scheme we mean a formal scheme such that p generates an ideal
of definition.

If X is an A-module and B is an A-algebra, we will sometimes write XB for X⊗AB.
If X is reflexive over A, then we will also use X to denote the additive group scheme
over A defined by

X(B) = X ⊗A B = XB

for all A-algebras B.
If X is a locally free OF -module we will write GL(X/OF ) for the group scheme

over Z defined by

GL(X/OF )(A) = Aut ((X ⊗Z A)/(OF ⊗Z A)).

If Y is a scheme and if G1, G2/Y are group schemes then we will let

Hom(G1, G2)

denote the Zariski sheaf on Y whose sections over an open W are

Hom (G1|W , G2|W ).
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If in addition R is a ring then we will let Hom(G1, G2)R denote the tensor prod-
uct of sheaves Hom(G1, G2) ⊗Z R and we will let Hom (G1, G2)R denote the R-
module of global sections of Hom(G1, G2)R. If Y is noetherian this is the same
as Hom (G1, G2)⊗Z R, but for a general base Y it may differ.

If S is a simplicial complex we will write |S| for the corresponding topological
space.

If F is a field then GF will denote its absolute Galois group. If F is a number field
and F0 ⊂ F is a subfield and S is a finite set of primes of F0, then we will denote by
GS
F the maximal continuous quotient of GF in which all primes of F not lying above

an element of S are unramified.
Suppose that F is a number field and that v is a place of F . If v is finite we will

write $v for a uniformizer in Fv and k(v) for the residue field of v. We will write | |v
for the absolute value on F associated to v and normalized as follows:

• if v is finite then |$v|v = (#k(v))−1;
• if v is real then |x|v = ±x;
• if v is complex then |x|v = cxx.

We write
|| ||F =

∏
v

| |v : A×F −→ R×>0.

We will write D−1
F for the inverse different of OF .

If w ∈ Z and p is a prime number then by a Weil pw-number we mean an element
α ∈ Q which is an integer away from p and such that for each infinite place v of Q
we have |α|v = pw.

Suppose that v is finite and that

r : GFv −→ GLn(Ql)

is a continuous representation, which in the case v|l we assume to be de Rham.
Then we will write WD(r) for the corresponding Weil-Deligne representation of the
Weil group WFv of Fv (see for instance section 1 of [TY]). If π is an irreducible
smooth representation of GLn(Fv) over C we will write recFv(π) for the Weil-Deligne
representation of WFv corresponding to π by the local Langlands conjecture (see for
instance the introduction to [HT]). If πi is an irreducible smooth representation of
GLni(Fv) over C for i = 1, 2 then there is an irreducible smooth representation π1�π2

of GLn1+n2(Fv) over C satisfying

recFv(π1 � π2) = recFv(π1)⊕ recFv(π2).

Suppose that G is a reductive group over Fv and that P is a parabolic subgroup of
G with unipotent radical N and Levi component L. Suppose also that π is a smooth
representation of L(Fv) on a vector space Wπ over a field Ω of characteristic 0. We
will define

Ind
G(Fv)
P (Fv)π

to be the representation of G(Fv) by right translation on the set of locally constant
functions

ϕ : G(Fv) −→ Wπ
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such that
ϕ(hg) = π(h)ϕ(g)

for all h ∈ P (Fv) and g ∈ G(Fv). In the case Ω = C we also define

n-Ind
G(Fv)
P (Fv)π = Ind

G(Fv)
P (Fv)(π ⊗ δ

1/2
P )

where
δP (h)1/2 = | det(ad (h)|LieN)|1/2v .

If G is a linear algebraic group over F then the concept of a neat open compact
subgroup of G(A∞F ) is defined for instance in section 0.6 of [Pi].
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1. Some algebraic groups and automorphic forms.

For the rest of this paper fix the following notation. Let F+ be a totally real field
and F0 an imaginary quadratic field, and set F = F0F

+. Write c for the non-trivial
element of Gal (F/F+). Also choose a rational prime p which splits in F0 and choose
an element δF ∈ OF,(p) with tr F/F+δF = 1 (which is possible as p is unramified in
F/F+).

Fix an isomorphism ı : Qp
∼→ C. Fix a choice of

√
p ∈ Qp by ı

√
p > 0. If v is a

prime of F and π an irreducible admissible representation of GLm(Fv) over Qp define

recFv(π) = ı−1recFv(ıπ)

a Weil-Deligne representation of WFv over Qp.
Let n be a non-negative integer. We will often attach n as a subscript to other

notation, when we need to record the particular choice of n we are working with, but,
at other times when the choice of n is clear, we may drop it from the notation.

1.1. Three algebraic groups.

Write Ψn for the n × n-matrix with 1’s on the anti-diagonal and 0’s elsewhere, and
set

Jn =

(
0 Ψn

−Ψn 0

)
∈ GL2n(Z).

Let
Λn = (D−1

F )n ⊕OnF ,
and define a perfect pairing

〈 , 〉n : Λn × Λn −→ Z
by

〈x, y〉n = tr F/Q(txJn
cy).

We will write Vn for Λn ⊗Q. Let Gn denote the group scheme over Z defined by

Gn(R) = {(g, µ) ∈ Aut ((Λn ⊗Z R)/(OF ⊗Z R))×R× : tgJn
cg = µJn},

for any ring R, and let ν : Gn → GL1 denote the multiplier character which sends
(g, µ) to µ. Then Gn is a quasi-split connected reductive group scheme over Z[1/DF/Q]
(where DF/Q denotes the discriminant of F/Q) and splits over OFnc [1/DF/Q] (where
F nc denotes the normal closure of F/Q). In particular G0 will denote GL1 and
ν : G0 → GL1 is the identity map.

If n > 0 set

Cn = Gm × ker(NF/F+ : RSOFZ Gm −→ RS
OF+

Z Gm).

Then there is a natural map

Gn −→ Cn
(g, µ) 7−→ (µ, µ−n det g).

If n = 0 we set C0 = Gm and let G0 −→ C0 denote the map ν. In either case this
map identifies Cn with Gn/[Gn, Gn].
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We will write Λn,(i) for the submodule of Λn consisting of elements whose last 2n−i
entries are 0, and Vn,(i) for Λn,(i) ⊗ Q. If W is a submodule of Λn we will write W⊥

for its orthogonal complement with respect to 〈 , 〉n. Thus Λ⊥n,(i) is the submodule
of Λn consisting of vectors whose last i entries are 0. Also write

Λ(m)
n = Hom (OmF ,Z)⊕ Λn,

and set V
(m)
n = Λ

(m)
n ⊗ZQ. Throughout this paper there will be various objects indexed

by a superscript (m). In the case m = 0 we will sometimes simply drop it from the

notation. For example Λn = Λ
(0)
n .

Define an additive group scheme Hom (m)
n over Z by

Hom (m)
n (R) = HomOF (OmF ,Λn)⊗Z R.

Then Hom (m)
n has an action of Gn × RSOFZ GLm given by

(g, h)f = g ◦ f ◦ h−1.

Also define a perfect pairing

〈 , 〉(m)
n : Hom (m)

n (R)× Hom (m)
n (R) −→ R

by

〈f, f ′〉(m)
n =

m∑
i=1

〈fei, f ′ei〉n,

where e1, ..., em denotes the standard basis of OmF . We have

〈(g, h)f, f ′〉(m)
n = ν(g)〈f, (g−1, c,th)f ′〉(m)

n .

Moreover Gn(R) is identified with the set of pairs

(g, µ) ∈ GL(HomOF (OmF ,Λn)/OF )(R)×R×

such that g commutes with the action of GLm(OF ⊗Z R) and such that

〈gf, gf ′〉(m)
n = µ〈f, f ′〉(m)

n

for all f, f ′ ∈ HomOF (OmF ,Λn)(R). We set

G(m)
n = Gn n Hom (m)

n .

Then G
(m)
n has an action of RSOFZ GLm by

h(g, f) = (g, (1, h)f).

Moreover G
(m)
n acts on Λ

(m)
n , by letting f ∈ Hom (m)

n act by

f : (h, x) 7−→ (h+ 〈x, f〉n, x)

and g ∈ Gn act by
g : (h, x) 7−→ (h, gx).

Moreover RSOFZ GLm acts on Λ
(m)
n by

γ : (h, x) 7−→ (h ◦ γ−1, x).

We have γ ◦ g = γ(g) ◦ γ.
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If m1 ≥ m2 we embed Om2
F ↪→ Om1

F via

im2,m1 : (x1, ..., xm2) 7−→ (x1, ..., xm2 , 0, ..., 0).

This gives rise to maps

i∗m2,m1
: Hom (m1)

n −→ Hom (m2)
n

and
i∗m2,m1

: G(m1)
n −→ G(m2)

n .

It also gives rise to

i∗m2,m1
: Λ(m1)

n →→ Λ(m2)
n .

Suppose that R is a ring and that X is an OF ⊗ZR-module. We will write HermX

for the R-module of R-bilinear pairings

( , ) : X ×X −→ R

which satisfy

(1) (ax, y) = (x, cay) for all a ∈ OF and x, y ∈ X;
(2) (x, y) = (y, x) for all x, y ∈ X.

If z ∈ HermX we will sometimes denote the corresponding pairing ( , )z. If S is an
R-algebra we have a natural map

HermX ⊗R S −→ HermX⊗RS.

If X = OmF ⊗Z R then we will write

Herm(m)(R) = HermOmF ⊗Z R −→ HermOmF ⊗ZR.

If X → Y then there is a natural map HermY → HermX . In particular if m1 ≥ m2,
then there is a natural map

Herm(m1) −→ Herm(m2)

induced by the map O(m2)
F ↪→ O(m1)

F described in the last paragraph. The group
GL(X/OF ) acts on the left on HermX by

(x, y)hz = (h−1x, h−1y)z.

There is a natural isomorphism

HermX⊕Y ∼= HermX ⊕ Hom R(X ⊗OF⊗R,c⊗1 Y,R)⊕ HermY ,

under which an element (z, f, w) of the right hand side corresponds to

((x, y), (x′, y′))(z,f,w) = (x, x′)z + f(x⊗ y′) + f(x′ ⊗ y) + (y, y′)w.

If X is an OF ⊗Z R-module, there is a natural pairing

(X ⊗OF⊗R,c⊗1 X)× HermX −→ R
(x⊗ y, z) 7−→ (x, y)z.

We further define

sw : (X ⊗OF⊗R,c⊗1 X) −→ (X ⊗OF⊗R,c⊗1 X)
x⊗ y 7−→ y ⊗ x,
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and

S(X) = (X ⊗OF⊗R,c⊗1 X)/(sw − 1).

There is a natural map in the other direction

S(X) −→ X ⊗OF⊗R,c⊗1 X
w 7−→ w + sw(w),

such that the composite S(X) → X ⊗OF⊗R,c⊗1 X → S(X) is multiplication by 2.
Note that if F/F+ is ramified above 2 then S(OmF ) can have 2-torsion, but that
S(OmF,(p)) is torsion free. (Either p > 2 or by assumption F/F+ is not ramified above

2.) There is a perfect duality

S(OmF )TF × Herm(m)(Z) −→ Z.
We will write

e =
m∑
i=1

ei ⊗ ei ∈ OmF ⊗OF ,c OmF ,

where e1, ..., em denotes the standard basis of OmF .

Set N
(m)
n (Z) to be the set of pairs

(f, z) ∈ HomOF (OmF ,Λn)⊕ (
1

2
Herm(m)(Z))

such that

(x, y)z −
1

2
〈fx, fy〉n ∈ Z

for all x, y ∈ OmF . We define a group scheme N
(m)
n /SpecZ by setting N

(m)
n (R) to be

the set of pairs

(f, z) ∈ N (m)
n (Z)⊗Z R

with group law given by

(f, z)(f ′, z′) = (f + f ′, z + z′ +
1

2
(〈f , f ′ 〉n − 〈f ′ , f 〉n)),

where by 〈f , f ′ 〉n − 〈f ′ , f 〉n we mean the hermitian form

(x, y) 7−→ 〈f(x), f ′(y)〉n − 〈f ′(x), f(y)〉n.
Note that (f, z)−1 = (−f,−z). Thus there is an exact sequence

(0) −→ Herm(m) −→ N (m)
n −→ Hom (m)

n −→ (0).

In fact Z(N
(m)
n ) = Herm(m). The commutator in N

(m)
n induces an alternating map

Hom (m)
n (R)× Hom (m)

n (R) −→ Herm(m)(R)

under which (f, f ′) maps to the pairing

(x, y) 7−→ 〈f(x), f ′(y)〉n − 〈f ′(x), f(y)〉n.
If m1 ≥ m2 there is a natural map

N (m1)
n −→ N (m2)

n
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compatible with the previously described maps

Hom (m1)
n → Hom (m2)

n

and
Herm(m1) → Herm(m2).

Note that Gn × RSOFZ GLm acts on N
(m)
n from the left by

(g, h)(f, z) = (g ◦ f ◦ h−1, ν(g)hz).

If 2 is invertible in R we see that

Herm(m)(R) = {g ∈ N (m)
n (R) : (−1m)(g) = g}

and
Hom (m)

n (R) = {g ∈ N (m)
n (R) : (−1m)(g) = g−1}.

Set
G̃(m)
n = Gn nN (m)

n ,

which has an RSOFZ GLm-action via

h(g, u) = (g, h(u)).

If m1 ≥ m2 then we get a natural map G̃
(m1)
n → G̃

(m2)
n . Note that

G(m)
n
∼= G̃(m)

n /Herm(m).

Let Bn denote the subgroup of Gn consisting of elements which preserve the chain
Λn,(n) ⊃ Λn,(n−1) ⊃ ... ⊃ Λn,(1) ⊃ Λn,(0) and let Nn denote the normal subgroup of
Bn consisting of elements with ν = 1, which also act trivially on Λn,(i)/Λn,(i−1) for all
i = 1, ..., n. Let Tn denote the group consisting of the diagonal elements of Gn and
let An denote the image of Gm in Gn via the embedding that sends t onto t12n. Over
Q we see that Tn is a maximal torus in a Borel subgroup Bn of Gn, and that Nn is
the unipotent radical of Bn. Moreover An is a maximal split torus in the centre of
Gn.

If Ω is an algebraically closed field of characteristic 0 then set

X∗(Tn,/Ω) = Hom (Tn × Spec Ω,Gm × Spec Ω).

Also let Φn ⊂ X∗(Tn,/Ω) denote the set of roots of Tn on LieGn; let Φ+
n ⊂ Φn denote

the set of positive roots with respect to Bn and let ∆n ⊂ Φ+
n denote the set of

simple positive roots. We will write %n for half the sum of the elements of Φ+
n . If

R ⊂ R is a subring then X∗(Tn,/Ω)+
R will denote the subset of X∗(Tn,/Ω)R consisting of

elements which pair non-negatively with the coroot α̌ ∈ X∗(Tn,/Ω) corresponding to
each α ∈ ∆n. We will write simply X∗(Tn,/Ω)+ for X∗(Tn,/Ω)+

Z . If λ ∈ X∗(Tn,/Ω)+ we
will let ρn,λ (or simply ρλ) denote the irreducible representation of Gn with highest
weight λ. When ρλ is used as a subscript we will sometimes replace it by just λ.

There is a natural identification

Gn × Spec Ω ∼=
{

(µ, gτ ) ∈ Gm ×GLHom (F,Ω)
2n : gτc = µJn

tg−1
τ Jn ∀τ

}
.

This gives rise to the further identification

Tn × Spec Ω ∼=
{

(t0, (tτ,i)) ∈ Gm × (G2n
m )Hom (F,Ω) : tτ,itτc,2n+1−i = t0 ∀τ, i

}
.
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We will use this to identify X∗(Tn,/Ω) with a quotient of

X∗(Gm × (G2n
m )Hom (F,Ω)) ∼= Z⊕ (Z2n)Hom (F,Ω).

Under this identification X∗(Tn,/Ω)+ is identified to the image of the set of

(a0, (aτ,i)) ∈ Z⊕ (Z2n)Hom (F,Ω)

with
aτ,1 ≥ aτ,2 ≥ ... ≥ aτ,2n

for all τ .
If R is a subring of R and H an algebraic subgroup of G̃

(m)
n we will write H(R)+ for

the subgroup of H(R) consisting of elements with positive multiplier. Thus Gn(R)+

(resp. G
(m)
n (R)+, resp. G̃

(m)
n (R)+) is the connected component of the identity in

Gn(R) (resp. G
(m)
n (R), resp. G̃

(m)
n (R)).

Let
Un,∞ = (U(n)2)Hom (F+,R) o {1, j}

with j2 = 1 and j(Aτ , Bτ )j = (Bτ , Aτ ). Embed Un,∞ in Gn(R) by sending (Aτ , Bτ ) ∈
(U(n)2)Hom (F+,R) to(

1,

((
(Aτ +Bτ )/2 (Aτ −Bτ )Ψn/2i

Ψn(Bτ − Aτ )/2i Ψn(Aτ +Bτ )Ψn/2

))
τ

)
∈ Gn(R) ⊂ R× ×

∏
τ∈Hom (F+,R) GL2n(F ⊗F+,τ R),

and sending j to (
−1,

((
−1n 0

0 1n

))
τ

)
.

(This map depends on identifications F ⊗F+,τ R ∼= C, but the image of the map does
not, and this image is all that will concern us.) Then Un,∞ is a maximal compact

subgroup of Gn(R) (and even of G̃
(m)
n (R)). If L ⊃ Tn×SpecR is a Levi component of a

parabolic subgroup P ⊃ Bn×SpecR then Un,∞∩L(R) is a maximal compact subgroup
of L(R). The connected component of the identity of Un,∞ is U0

n,∞ = Un,∞∩Gn(R)+.
We will write pn for the set of elements of LieGn(R) of the form(

0,

((
Aτ BτΨn

ΨnBτ ΨnAτΨn

))
τ∈Hom (F+,R)

)
,

where c,tAτ = Aτ and c,tBτ = Bτ for all τ . Then

LieGn(R) = pn ⊕ Lie (Un,∞An(R)).

We give the real vector space pn a complex structure by letting i act by

i0 : (Aτ , Bτ )τ∈Hom (F+,R) 7−→ (Bτ ,−Aτ )τ∈Hom (F+,R).

We decompose
pn ⊗R C = p+

n ⊕ p−n
by setting

p±n = (pn ⊗R C)i0⊗1=±1⊗i.
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We also set

qn = p−n ⊕ Lie (Un,∞An(R))⊗R C.
It is a parabolic sub-algebra of (LieGn(R))⊗R C with unipotent radical p−n and Levi
component Lie (Un,∞An(R)) ⊗R C. We will write Qn for the parabolic subgroup of
Gn ×Q C with Lie algebra qn. Note that

Qn(C) ∩Gn(R) = U0
n,∞An(R)0.

Let H+
n (resp. H±n ) denote the set of I in Gn(R) with multiplier 1 such that

I2 = −12n and such that the symmetric bilinear form 〈I , 〉n on Λn ⊗Z R is positive
definite (respectively positive or negative definite). Then Gn(R) (resp. Gn(R)+)
acts transitively on H±n (resp. H+

n ) by conjugation. Moreover Jn ∈ H+
n has stabilizer

U0
n,∞An(R)0 and so we get an identification of H±n (resp. H+

n ) with Gn(R)/U0
n,∞An(R)0

(resp. Gn(R)+/U0
n,∞An(R)0). The natural map

H±n = Gn(R)/U0
n,∞An(R)0 ↪→ Gn(C)/Qn(C)

is an open embedding and gives H±n the structure of a complex manifold. The action
of Gn(R) is holomorphic and the complex structure induced on the tangent space
TJnH

±
n
∼= pn is the complex structure described in the previous paragraph.

If ρ is a finite dimensional algebraic representation of Qn on a C-vector space Wρ,
then there is a holomorphic vector bundle Eρ/H

±
n together with a holomorphic action

of Gn(R), defined as the pull-back to H± of (Gn(C)×Wρ)/Qn(C), where

• h ∈ Qn(C) sends (g, w) to (gh, h−1w),
• and where h ∈ Gn(R) sends [(g, w)] to [(hg, w)].

If N2 ≥ N1 ≥ 0 are integers we will write Up(N1, N2)n for the subgroup of Gn(Zp)
consisting of elements whose reduction modulo pN2 preserves

Λn,(n) ⊗Z (Z/pN2Z) ⊂ Λn ⊗Z (Z/pN2Z)

and acts trivially on Λn/(Λn,(n) + pN1Λn). If N2 ≥ N1 ≥ N ′1 ≥ 0 then Up(N1, N2)n is
a normal subgroup of Up(N

′
1, N2)n and

Up(N
′
1, N2)n/Up(N1, N2)n ∼= ker(GLn(OF/pN1)→ GLn(OF/pN

′
1)).

We will also set

Up(N1, N2)
(m)
n = Up(N1, N2)n n HomOF,p(OmF,p,Λn,(n) + pN1Λn)

⊂ G
(m)
n (Zp)

and set Ũp(N1, N2)
(m)
n to be the pre-image of Up(N1, N2)

(m)
n in G̃

(m)
n (Zp). Pictorially

we can think of Up(N1, N2)n as(
µ1n mod pN1 ∗
0 mod pN2 1n mod pN1

)
and of Up(N1, N2)

(m)
n as(

µ1n mod pN1 ∗
0 mod pN2 1n mod pN1

)(
∗

0 mod pN1

)
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If Up is an open compact subgroup of Gn(A∞,p) (resp. of G
(m)
n (A∞,p), resp. of

G̃
(m)
n (A∞,p)) we will set Up(N1, N2) to be Up×Up(N1, N2)n (resp. Up×Up(N1, N2)

(m)
n ,

resp. Up × Ũp(N1, N2)
(m)
n ), a compact open subgroup of Gn(A∞) (resp. G

(m)
n (A∞),

resp. G̃
(m)
n (A∞)).
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1.2. Maximal parabolic subgroups.

We will write P+
n,(i) (resp. P

(m),+
n,(i) , resp. P̃

(m),+
n,(i) ) for the subgroup of Gn (resp. G

(m)
n ,

resp. G̃
(m)
n ) consisting of elements which (after projection to Gn) take Λn,(i) to itself.

We will also write N+
n,(i) (resp. N

(m),+
n,(i) , resp. Ñ

(m),+
n,(i) ) for the subgroups of P+

n,(i)

(resp. P
(m),+
n,(i) , resp. P̃

(m),+
n,(i) ) consisting of elements which act trivially on Λn,(i) and

Λ⊥n,(i)/Λn,(i) and Λn/Λ
⊥
n,(i). Over Q the groups P+

n,(i) (resp. P
(m),+
n,(i) , resp. P̃

(m),+
n,(i) ) are

maximal parabolic subgroups of Gn (resp. G
(m)
n , resp. G̃

(m)
n ) containing the pre-image

of Bn. The groups N+
n,(i) (resp. N

(m),+
n,(i) , resp. Ñ

(m),+
n,(i) ) are their unipotent radicals.

In some instances it will be useful to replace these groups by their ‘hermitian part’.
We will write Pn,(i) for the normal subgroup of P+

n,(i) consisting of elements which act

trivially on Λn/Λ
⊥
n,(i). We will also write P

(m)
n,(i) for the normal subgroup

Pn,(i) n HomOF (OmF ,Λ⊥n,(i))

of P
(m),+
n,(i) , and P̃

(m)
n,(i) for the pre-image of P

(m)
n,(i) in P̃

(m),+
n,(i) . We will let

Nn,(i) = N+
n,(i)

and

N
(m)
n,(i) = N

(m),+
n,(i) ∩ P

(m)
n,(i)

and

Ñ
(m)
n,(i) = Ñ

(m),+
n,(i) ∩ P̃

(m)
n,(i).

Over Q these are the unipotent radicals of Pn,(i) (resp. P
(m)
n,(i), resp. P̃

(m)
n,(i)).

Pictorially one can think of P+
n,(i) and Pn,(i) as matrices of the following shapes ∗ ∗ ∗0 ∗ ∗

0 0 ∗


and  ν(g)1i ∗ ∗

0 g ∗
0 0 1i


respectively. If we picture an element of G

(m)
n as a pair of matrices  
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(the first 2n × 2n and the second 2n ×m) then we can picture P
(m),+
n,(i) and P

(m)
n,(i) as

consisting of matrices of the shape ∗ ∗ ∗0 ∗ ∗
0 0 ∗

 ∗∗
∗


and  ν(g)1i ∗ ∗

0 g ∗
0 0 1i

 ∗∗
0


respectively.

We have an isomorphism

Pn,(i) ∼= G̃
(i)
n−i.

To describe it let Λ′n,(i) denote the subspace of Λn consisting of vectors with their first
2n− i entries 0, so that

Λ′n,(i)
∼= OiF

and
Λn−i ∼= Λ⊥n,(i) ∩ (Λ′n,(i))

⊥ ∼−→ Λ⊥n,(i)/Λn,(i).

We define
Gn−i ↪→ Pn,(i)

by letting g ∈ Gn−i act as ν(g) on Λn,(i), as g on Λn−i ∼= Λ⊥n,(i) ∩ (Λ′n,(i))
⊥ and as 1 on

Λ′n,(i), i.e.

g 7−→

 ν(g)1i 0 0
0 g 0
0 0 1i

 ∈ Pn,(i).
We define

Nn,(i) −→ Hom
(i)
n−i

by sending h to the map

OiF ∼= Λ′n,(i)
h−12n−→ Λ⊥n,(i) →→ Λn−i.

We also define
Z(Nn,(i))

∼−→ HermΛ′
n,(i)

∼= Herm(i)

by sending z to the pairing

(x, y)z = 〈(z − 12n)x, y〉n
on Λ′n,(i). In the other direction (f, z) ∈ N (i)

n−i is mapped to 1i Ψi
c,tf Jn−i Ψi

t(z − 1
2
tf Jn−i

cf)
0 12(n−i) f
0 0 1i

 ∈ Nn,(i),

where we think of f ∈M2(n−i)×i(F ) with first n− i rows in (D−1
F )i and second (n− i)

rows in OiF , and we think of z ∈Mi×i(F )t=c.
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We also have isomorphisms

P
(m)
n,(i)
∼= G̃

(i+m)
n−i /Herm(m)

and
P̃

(m)
n,(i)
∼= G̃

(i+m)
n−i .

We will describe the second of these isomorphisms. Suppose f ∈ Hom
(i)
n−i and g ∈

Hom
(m)
n−i. Also suppose that z ∈ 1

2
Herm(i) and w ∈ 1

2
Herm(m) and

u ∈ 1

2
Hom (OiF ⊗OF ,c OmF ,Z),

so that
((f, g), (z, u, w)) ∈ N (i+m)

n−i .

Let h(f, z) denote the element of Pn,(i) corresponding to (f, z) ∈ Nn,(i). Think of g
as a map

g : OmF −→ Λn−i ∼= Λ⊥n,(i) ∩ (Λ′n,(i))
⊥ ⊂ Λn.

Define j(f, g, u) ∈ Hom (OmF ,Λn,(i)) by

〈y, j(f, g, u)(x)〉n = 1/2〈f(y), g(x)〉n−i − u(y ⊗ x)

for all x ∈ OmF and y ∈ Λ′n,(i)
∼= OiF . Then

((f, g), (z, u, w)) 7−→ h(f, z)(g + j(f, g, u), w) ∈ Nn,(i) n Ñ (m)
n .

Note that
Z(Ñ

(m)
n,(i))

∼= Herm(i+m)

and that
Z(N

(m)
n,(i))

∼= Herm(i+m)/Herm(m).

Write Ln,(i),lin for the subgroup of P+
n,(i) consisting of elements with ν = 1 which

preserve Λ′n,(i) ⊂ Λn and act trivially on Λ⊥n,(i)/Λn,(i). We set N(L
(m)
n,(i),lin) to be the

additive group scheme over Z associated to

HomOF (OmF ,Λ′n,(i)),

and write L
(m)
n,(i),lin for

Ln,(i),lin nN(L
(m)
n,(i),lin) ⊂ P

(m),+
n,(i)

and L̃
(m)
n,(i),lin for

Ln,(i),lin nN(L
(m)
n,(i),lin) ⊂ P̃

(m),+
n,(i) .

Note that
P+
n,(i) = Ln,(i),lin n Pn,(i)

and
P

(m),+
n,(i) = L

(m)
n,(i),lin n P

(m)
n,(i)

and
P̃

(m),+
n,(i) = L̃

(m)
n,(i),lin n P̃

(m)
n,(i).
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Also note that
Ln,(i),lin ∼= RSOFZ GLi

via its action on Λ′n,(i)
∼= OiF , and that

L̃
(m)
n,(i),lin

∼−→ L
(m)
n,(i),lin

∼= (RSOFZ GLi) n HomOF (OmF ,OiF ).

Pictorially we can think of Ln,(i),lin as consisting of matrices of the form Ψi
c,th−1 Ψn 0 0

0 12(n−i) 0
0 0 h


and L

(m)
n,(i),lin as consisting of matrices of the form Ψi

c,th−1 Ψn 0 0
0 12(n−i) 0
0 0 h

 0
0
∗

 .

We let Ln,(i),herm denote the subgroup of Pn,(i) consisting of elements which preserve
Λ′n,(i). Thus

Ln,(i),herm
∼= Gn−i.

In particular

ν : Ln,(n),herm
∼−→ Gm.

Pictorially we can think of Ln,(i),herm as consisting of matrices of the form ν(g)1i 0 0
0 g 0
0 0 1i

 .

Over Q it is a Levi component for Pn,(i) and P
(m)
n,(i) and P̃

(m)
n,(i), so in particular

Pn,(i) = Ln,(i),herm nNn,(i)

and
P

(m)
n,(i) = Ln,(i),herm nN

(m)
n,(i)

and
P̃

(m)
n,(i) = Ln,(i),herm n Ñ

(m)
n,(i).

We also set
Ln,(i) = Ln,(i),herm × Ln,(i),lin

and
L

(m)
n,(i) = Ln,(i),herm × L(m)

n,(i),lin

and
L̃

(m)
n,(i) = Ln,(i),herm × L̃(m)

n,(i),lin.

Over Q we see that Ln,(i) is a Levi component for each of P+
n,(i) and P

(m),+
n,(i) and P̃

(m),+
n,(i) .

Moreover
P+
n,(i) = Ln,(i) nNn,(i)
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and
P

(m),+
n,(i) = L

(m)
n,(i) nN

(m)
n,(i)

and
P̃

(m),+
n,(i) = L̃

(m)
n,(i) n Ñ

(m)
n,(i).

We will occasionally write P
(m),−
n,(i) (resp. L−n,(i),herm) for the kernel of the map

P
(m)
n,(i) → Cn−i (resp. Ln,(i),herm → Cn−i).

We will write Rn,(n),(i) for the subgroup of Ln,(n) mapping Λn,(i) to itself. We
will write N(Rn,(n),(i)) for the subgroup of Rn,(n),(i) which acts trivially on Λn,(i) and
Λ⊥n,(i)/Λn,(i) and Λn/Λ

⊥
n,(i).

We will also write R
(m)
n,(n) for the semi-direct product

Ln,(n) n HomOF (OmF ,Λn,(n)).

If m′ ≤ m we will fix Zm →→ Zm−m′ to be projection onto the last m−m′ coordinates
and define Qm,(m′) for the subgroup of GLm consisting of elements preserving the
kernel of this map. We also define Q′m,(m′) to be the subgroup of Qm,(m′) consisting

of elements which induce 1Zm−m′ on Zm−m′ . Thus there is an exact sequence

(0) −→ Hom (Zm−m′ ,Zm′) −→ Q′m,(m′) −→ GLm′ −→ {1}.
Moreover

L̃
(m)
n,(i),lin

∼= L
(m)
n,(i),lin

∼= RSOFZ Q′m+i,(i).

We will also write An,(i),lin (resp. An,(i),herm) for the image of the map from Gm to
Ln,(i),lin (resp. Ln,(i),herm) sending t to t1i (resp. (t2, t12(n−i))). Moreover write An,(i)
for An,(i),lin × An,(i),herm. Over Q the group An,(i) (resp. An,(i),lin, resp. An,(i),herm) is
the maximal split torus in the centre of Ln,(i) (resp. Ln,(i),lin, resp. Ln,(i),herm).

Again suppose that Ω is an algebraically closed field of characteristic 0. Let Φ(n) ⊂
Φn denote the set of roots of Tn on LieLn,(n), and set Φ+

(n) = Φ+
n ∩ Φ(n) and ∆(n) =

∆n ∩ Φ(n). We will write %n,(n) for half the sum of the elements of Φ+
(n). If R ⊂ R

then X∗(Tn,/Ω)+
(n),R will denote the subset of X∗(Tn,/Ω)R consisting of elements which

pair non-negatively with the coroot α̌ ∈ X∗(Tn,/Ω) corresponding to each α ∈ ∆(n).
We write X∗(Tn,/Ω)+

(n) for X∗(Tn,/Ω)+
(n),Z. If λ ∈ X∗(Tn,/Ω)+

(n) we will let ρ(n),λ denote

the irreducible representation of Ln,(n) with highest weight λ. When ρ(n),λ is used as
a subscript we will sometimes replace it by just (n), λ.

Note that LiePn,(n)(C) and qn are conjugate under Gn(C) and hence we obtain an
identification (‘Cayley transform’) of (LieUn,∞An(R))⊗RC and LieLn,(n)(C), which is
well defined up to conjugation by Ln,(n)(C). Similarly Qn and Pn,(n)(C) are conjugate
in Gn ×Q C. Thus Ln,(n)(C) can be identified with Qn modulo its unipotent radical,
canonically up to Ln,(n)(C)-conjugation. Thus if ρ is a finite dimensional algebraic
representation of Ln,(n) over C, we can associate to it a representation of Qn and of
qn, and hence a holomorphic vector bundle Eρ/H

±
n with Gn(R)-action.

The isomorphism Ln,(n)
∼= GL1 × RSOFZ GLn gives rise to a natural identification

Ln,(n) × Spec Ω ∼= GL1 ×GLHom (F,Ω)
n ,
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and hence to identifications

Tn × Spec Ω ∼= GL1 × (GLn1 )Hom (F,Ω)

and
X∗(Tn,/Ω) ∼= Z⊕ (Zn)Hom (F,Ω).

Under this identification X∗(Tn,/Ω)+
(n) is identified to the set of

(b0, (bτ,i)) ∈ Z⊕ (Zn)Hom (F,Ω)

with
bτ,1 ≥ bτ,2 ≥ ... ≥ bτ,n

for all τ .
To compare this parametrization of X∗(Tn,/Ω) with the one introduced in section

1.1 note that the map

GL1 ×GLHom (F,Ω)
n ↪→

{
(µ, gτ ) ∈ Gm ×GLHom (F,Ω)

2n : gτc = µJn
tg−1
τ Jn ∀τ

}
coming from Ln,(n) ↪→ Gn sends

(µ, (gτ )τ∈Hom (F,Ω)) 7−→

(
µ,

((
µΨn

tg−1
τc Ψn 0

0 gτ

))
τ∈Hom (F,Ω)

)
.

Thus the map

Z⊕ (Z2n)Hom (F,Ω) →→ X∗(Tn,/Ω) ∼= Z⊕ (Zn)Hom (F,Ω)

sends

(a0, (aτ,i)τ∈Hom (F,Ω); i=1,...,2n) 7−→

(
a0 +

∑
τ

n∑
j=1

aτ,j, (aτ,n+i − aτc,n+1−i)τ,i

)
.

A section is provided by the map

(b0, (bτ,i)) 7−→ (b0, (0, ..., 0, bτ,1, ..., bτ,n)τ ).

In particular we see that X∗(Tn,/Ω)+ ⊂ X∗(Tn,/Ω)+
(n) is identified with the set of

(b0, (bτ,i)) ∈ Z⊕ (Zn)Hom (F,Ω)

with
bτ,1 ≥ bτ,2 ≥ ... ≥ bτ,n

and
bτ,1 + bτc,1 ≤ 0

for all τ .
Note that

2(%n − %n,(n)) = (n2[F+ : Q], (−n)τ,i).

We write Std for the representation of Ln,(n) on Λn/Λn,(n) over Z, and if τ : F ↪→ Q
we write Stdτ for the representation of Ln,(n) on (Λn/Λn,(n)) ⊗OF ,τ OQ. If Ω is an
algebraically closed field of characteristic 0 and if τ : F ↪→ Ω we will sometimes write
Stdτ for the representation of Ln,(n) on (Λn/Λn,(n)) ⊗OF ,τ Ω. We hope that context
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will make clear the distinction between these two slightly different meaning of Stdτ .
We also let KS denote the representation

S(Std∨)⊗ ν
of Ln,(n) over Z. (See section 1.1.) Note that over Q the representation Std∨τ is
irreducible and in our normalizations has highest weight (0, bτ ′) where

bτ = (0, ..., 0,−1)

but bτ ′ = 0 for τ ′ 6= τ . Similarly the representation ∧n[F :Q]Std∨ is irreducible with
highest weight

(0, (−1, ...,−1)τ ).

Finally KS is the direct sum of the [F+ : Q] irreducible representations indexed by
τ ∈ Hom (F+,Q) with highest weights (1, bτ ′), where

bτ ′ = (0, ..., 0,−1)

if τ ′ extends τ , and bτ ′ = 0 otherwise.
We will let ςp ∈ Ln,(n),herm(Qp) ∼= Q×p denote the unique element with multiplier

p−1.
Set

Up(N)n,(i) = ker(Ln,(i),lin(Zp)→ Ln,(i),lin(Z/pNZ))

and
Up(N)

(m)
n,(i) = ker(L

(m)
n,(i),lin(Zp)→ L

(m)
n,(i),lin(Z/pNZ)).

Also set
Up(N1, N2)

(m)
n,(i) = Up(N1, N2)n−i × Up(N1)

(m)
n,(i) ⊂ L

(m)
n,(i)(Zp)

and
Ũp(N1, N2)

(m),+
n,(i) = Up(N1)

(m)
n,(i) n Ũp(N1, N2)

(m+i)
n−i ⊂ P̃

(m),+
n,(i) (Zp)

and
Up(N1, N2)

(m),+
n,(i) = Ũp(N1, N2)

(m),+
n,(i) /HermOmF,p ⊂ P

(m),+
n,(i) (Zp).

Let Up be an open compact subgroup of Ln,(i)(A∞,p) (resp. L
(m)
n,(i),lin(A∞,p), resp.

L
(m)
n,(i)(A

∞,p), resp. (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞,p), resp. P
(m),+
n,(i) (A∞,p), resp. P̃

(m),+
n,(i) (A∞,p)).

Then set
Up(N1, N2) = Up × Up(N1, N2)n,(i) ⊂ Ln,(i)(A∞)

(resp.
Up(N) = Up × Up(N)n,(i),

resp.

Up(N1, N2) = Up × Up(N1, N2)
(m)
n,(i) ⊂ L

(m)
n,(i)(A

∞),

resp.

Up(N1, N2) = Up × (Up(N1, N2)
(m),+
n,(i) /Z(N

(m)
n,(i))(Zp)) ⊂ P

(m),+
n,(i) /Z(N

(m)
n,(i))(A

∞),

resp.

Up(N1, N2) = Up × Up(N1, N2)
(m),+
n,(i) ⊂ P

(m),+
n,(i) (A∞),
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resp.

Up(N1, N2) = Up × Ũp(N1, N2)
(m),+
n,(i) ⊂ P̃

(m),+
n,(i) (A∞)).

In the case i = n these groups do not depend on N2, so we will write simply Up(N1).

For the study of the ordinary locus we will need a variant of Gn(A∞) and G
(m)
n (A∞)

and G̃
(m)
n (A∞). More specifically define a semigroup

G̃(m)
n (A∞)ord = G̃(m)

n (A∞,p)× (ς
Z≥0
p P̃

(m),+
n,(n) (Zp)).

Its maximal sub-semigroup that is also a group is

G̃(m)
n (A∞)ord,× = G̃(m)

n (A∞,p)× P̃ (m),+
n,(n) (Zp).

If H is an algebraic subgroup of G̃
(m)
n (over SpecQ) we set

H(A∞)ord = H(A∞) ∩ G̃(m)
n (A∞)ord.

Its maximal sub-semigroup that is also a group is

H(A∞)ord,× = H(A∞) ∩ G̃(m)
n (A∞)ord,×.

Thus
Gn(A∞)ord,× = Gn(A∞,p)× P+

n,(n)(Zp)
and

G(m)
n (A∞)ord,× = G(m)

n (A∞,p)× P (m),+
n,(n) (Zp).

If Up is an open compact subgroup of H(A∞,p), we set

Up(N) = H(A∞)ord,× ∩ (Up × Ũp(N,N ′)(m),+
n,(n) )

for any N ′ ≥ N . The group does not depend on the choice of N ′.
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1.3. Base change.

We will write BGLm for the subgroup of upper triangular elements of GLm and TGLm
for the subgroup of diagonal elements of BGLm .

We will also let G1
n denote the group scheme over OF+ defined by

G1
n(R) = {g ∈ Aut ((Λn ⊗OF+ R)/(OF ⊗OF+ R)) : tgJn

cg = Jn}.
Thus

ker ν ∼= RS
OF+

Z G1
n.

We will write B1
n for the subgroup of G1

n consisting of upper triangular matrices
and T 1

n for the subgroup of B1
n consisting of diagonal matrices. There is a natural

projection B1
n →→ T 1

n obtained by setting the off diagonal entries of an element of B1
n

to 0.
Suppose that q is a rational prime. Let u1, ..., ur denote the primes of F+ above q

which split ui = wi
cwi in F and let v1, ..., vs denote the primes of F+ above q which

do not split in F . Then

Gn(Qq) ∼=
r∏
i=1

GL2n(Fwi)×H

where

H =

{
(µ, gi) ∈ Q×q ×

s∏
i=1

GL2n(Fvi) : tgiJn
cgi = µJn ∀i

}
⊃

s∏
i=1

G1
n(F+

vi
).

If Π is an irreducible smooth representation of Gn(Qq) then

Π =

(
r⊗
i=1

Πwi

)
⊗ ΠH .

We define BC (Π)wi = Πwi and BC (Π)cwi = Π∨,cwi . Note that this does not de-
pend on the choice of primes wi|ui. We will say that Π is unramified at wi if

BC (Π)
GL2n(OF,wi )
wi 6= (0). We will say that Π is unramified at vi if vi is unramified in

F and

ΠG1
n(OF+,vi

) 6= (0).

We will say that Π is unramified at q if Π is unramified at all primes above q and
either q splits in F0 or q is unramified in F .

Suppose that Π is unramified at vi. Then there is a character χ of the quotient

T 1
n(F+

vi
)/T 1

n(OF+,vi) such that Π|G1
n(F+

vi
) and n-Ind

G1
n(F+

vi
)

B1
n(F+

vi
)
χ share an irreducible sub-

quotient with a G1
n(OF+,vi)-fixed vector. Moreover this character χ is unique modulo

the action of the normalizer NG1
n(F+

vi
)(T

1
n(F+

vi
))/T 1

n(F+
vi

). (If π and π′ are two irre-

ducible subquotients of ΠH |G1
n(F+

vi
) then we must have π′ ∼= πς

−1
vi where

ςvi =

(
$−1
vi

1n 0
0 1n

)
∈ GL2n(Fvi).
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However (
n-Ind

G1
n(F+

vi
)

B1
n(F+

vi
)
χ
)ς−1

v ∼= n-Ind
G1
n(F+

vi
)

B1
n(F+

vi
)
χ.

)
Let

N : TGL2n(Fvi) −→ T 1
n(F+

vi
)

diag(t1, ..., t2n) 7−→ diag(t1/
ct2n, ..., t2n/

ct1).

Then we define BC (Π)vi to be the unique subquotient of

n-Ind
GL2n(Fvi )

BGL2n
(Fvi )

(χ ◦N)

with a GL2n(OF,vi)-fixed vector. The next lemma is easy to prove.

Lemma 1.1. Suppose that ψ ⊗ π is an irreducible smooth representation of

Ln,(n)(Qq) ∼= Ln,(n),herm(Qq)× Ln,(n),lin(Qq) = Q×q ×GLn(Fq).

(1) If v is unramified over F+ and πv is unramified then n-Ind
Gn(Qq)
Pn,(n)(Qq)

(ψ⊗π) has

a subquotient Π which is unramified at v. Moreover BC (Π)v is the unramified

irreducible subquotient of n-Ind
GL2n(Fv)
Q2n,(n)(Fv)(π

∨,c
v ⊗ πv).

(2) If v is split over F+ and Π is an irreducible sub-quotient of the normalized

induction n-Ind
Gn(Qq)
Pn,(n)(Qq)

(ψ⊗π), then BC (Π)v is an irreducible subquotient of

n-Ind
GL2n(Fv)
Q2n,(n)(Fv)((πcv)

∨,c ⊗ πv).

Note that in both cases BC (Πv) does not depend on ψ.

In this paragraph let K be a number field, m ∈ Z>0, and write UK,∞ for a maximal
compact subgroup of GLm(K∞). We shall (slightly abusively) refer to an admissible

Gn(A∞)× ((LieGn(R))C, Un,∞)

(resp.

Ln,(i)(A∞)× ((LieLn,(i)(R))C, Un,∞ ∩ Ln,(i)(R)),

resp.

GLm(A∞K )× ((LieGLm(K∞))C, UK,∞))

module as an admissible Gn(A)-module (resp. Ln,(i)(A)-module, resp. GLm(AK)-
module). By a square-integrable automorphic representation ofGn(A) (resp. Ln,(i)(A),
resp. GLm(AK)) we shall mean the twist by a character of an irreducible ad-
missible Gn(A)-module (resp. Ln,(i)(A)-module, resp. GLm(AK)-module) that oc-
curs discretely in the space of square integrable automorphic forms on the dou-
ble coset space Gn(Q)\Gn(A)/An(R)0 (respectively Ln,(i)(Q)\Ln,(i)(A)/An,(i)(R)0 or
GLm(K)\GLm(AK)/R×>0). By a cuspidal automorphic representation of Gn(A) (resp.
Ln,(i)(A), resp. GLm(AK)) we shall mean an irreducible admissible Gn(A)-sub-
module (resp. Ln,(i)(A)-sub-module, resp. GLm(AK)-sub-module) of the space of
cuspidal automorphic forms on Gn(A) (resp. Ln,(i)(A), resp. GLm(AK)).
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Proposition 1.2. Suppose that Π is a square integrable automorphic representation
of Gn(A) and that Π∞ is cohomological. Then there is an expression

2n = m1n1 + ...+mrnr

with mi, ni ∈ Z>0 and cuspidal automorphic representations Π̃i of GLmi(AF ) such
that

• Π̃∨i
∼= Π̃c

i ;

• Π̃i|| det ||(mi+ni−1)/2 is cohomological;
• if v is a prime of F above a rational prime q such that

– either q splits in F0,
– or F and Π are unramified above q,

then
BC (Πq)v = �r

i=1 �
ni−1
j=0 Π̃i,v| det |(ni−1)/2−j

v .

Proof: This follows from the main theorem of [Sh2] and the classification of square
integrable automorphic representations of GLm(AF ) in [MW]. (Here we are using
our assumption that F contains an imaginary quadratic field.) �

Corollary 1.3. Keep the assumptions of the proposition. Then there is a continuous,
semi-simple, algebraic (i.e. unramified almost everywhere and de Rham above p)
representation

rp,ı(Π) : GF −→ GL2n(Qp)

with the following property: If v is a prime of F above a rational prime q 6= p such
that

• either q splits in F0,
• or F and Π are unramified above q,

then
ıWD(rp,ı(Π)|GFv )ss ∼= recFv(BC (Πq)v| det |(1−2n)/2

v ).

Proof: Combine the proposition with for instance theorem 1.2 of [BLGHT] and
theorem A of [BLGGT2]. (These results are due to many people and we simply
choose these particular references for convenience.) �
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1.4. Spaces of hermitian forms.

If R ⊂ R then we will denote by Herm>0
X (resp. Herm≥0

X ) the set of pairings ( , ) in
HermX such that

(x, x) > 0

(resp. ≥ 0) for all x ∈ X −{0}. We will denote by S(Fm)>0 (resp. S(Fm)≥0) the set
of elements a ∈ S(Fm) such that for each τ : F ↪→ C the image of a under the map

S(Fm) −→ Mm(F )t=c

x⊗ y 7−→ x c,ty + y c,tx

is positive definite (resp. positive semi-definite), i.e. all the roots of its characteristic
polynomial are strictly positive (resp. non-negative) real numbers. Then S(Fm)>0 is
the set of elements of S(Fm) whose pairing with every non-zero element of Herm≥0

Fm

is strictly positive; and Herm>0
Fm is the set of elements of HermFm whose pairing with

every non-zero element of S(Fm)≥0 is strictly positive. We will also write

S(OmF,(p))>0 = S(OmF,(p)) ∩ S(Fm)>0.

We will next turn to the study of certain spaces which play a key role in the
definition of the auxiliary data controlling toroidal compactifications.

Suppose that W ⊂ Vn is an isotropic F -direct summand. We set

C(m)(W ) = (HermVn/W⊥ ⊕ Hom F (Fm,W ))⊗Q R.
If m = 0 we will drop it from the notation. Note that we have a natural identification

C(m)(Vn,(i)) ∼= Z(N
(m)
n,(i))(R).

There is also a natural map

C(m)(W ) −→ C(W ).

Note that if f ∈ Hom F (Fm,W ) we can define f ′ ∈ Hom (Fm ⊗F,c (Vn/W
⊥),Q) by

f ′(x⊗ y) = 〈f(x), y〉n.
This establishes an isomorphism

Hom F (Fm,W )
∼−→ Hom (Fm ⊗F,c (Vn/W

⊥),Q)

and hence an isomorphism

C(m)(W )
∼−→ (HermVn/W⊥⊕Fm/HermFm)⊗Q R.

Thus
C(m)(Vn,(i)) ∼= Z(N

(m)
n,(i))(R).

If g ∈ Gn(Q) we define

g : C(m)(W ) −→ C(m)(gW )
(z, f) 7−→ (gz, g ◦ f),

where
(x, y)gz = |ν(g)|(g−1x, g−1y)z.
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We extend this to an action of G
(m)
n (Q) as follows: If g ∈ Hom F (Fm, Vn) then we set

g(z, f) = (z, f − θz ◦ g)

where θz : Vn → W satisfies

(x mod W⊥, y mod W⊥)z = 〈θz(x), y〉n
for all x, y ∈ Vn. If W ′ ⊂ W there is a natural embedding

C(m)(W ′) ↪→ C(m)(W ).

We will write C>0(W ) = Herm>0
Vn/W⊥⊗QR and C≥0(W ) = Herm≥0

Vn/W⊥⊗QR
. We will

also write C(m),>0(W ) (resp. C(m),≥0(W )) for the pre-image of C>0(W ) (resp. C≥0(W ))
in C(m)(W ). Moreover we will set

C(m),�0(W ) =
⋃

W ′⊂W

C(m),>0(W ′),

and C�0(W ) = C(0),�0(W ). Thus

C(m),>0(W ) ⊂ C(m),�0(W ) ⊂ C(m),≥0(W ).

Note that the natural map C(m)(W )→→ C(W ) gives rise to a surjection

C(m),�0(W )→→ C�0(W )

and that the pre-image of a point in C>0(W ′) is Hom F (Fm,W ′) (and in particular the
pre-image of (0) is (0)). Also note that if W ′ ⊂ W then there is a closed embedding

C(m),�0(W ′) ↪→ C(m),�0(W ).

Finally note that the action of G
(m)
n (Q) takes C(m),�0(W ) (resp. C(m),>0(W ), resp.

C(m),≥0(W )) to C(m),�0(gW ) (resp. C(m),>0(gW ), resp. C(m),≥0(gW )).

Note that L
(m)
n,(i)(R) acts on

π0(Ln,(i),herm(R))× C(m)(Vn,(i))

and preserves
π0(Ln,(i),herm(R))× C(m),>0(Vn,(i)).

Moreover L
(m)
n,(i)(Q) preserves

π0(Ln,(i),herm(R))× C(m),�0(Vn,(i)).

In fact L
(m)
n,(i)(R) acts transitively on π0(Ln,(i),herm(R))×C(m),>0(Vn,(i)). For this para-

graph let ( , )0 ∈ C>0(Vn,(i)) denote the pairing on (Vn/V
⊥
n,(i) ⊗Q R)2 induced by

〈Jn , 〉n. Then the stabilizer of 1× (( , )0, 0) in L
(m)
n,(i)(R) is

Ln,(i),herm(R)ν=1(Un,∞ ∩ L(m)
n,(i),lin(R))An(R)0.

Thus we get an L
(m)
n,(i)(R)-equivariant identification

π0(Ln,(i),herm(R))× C(m),>0(Vn,(i))/R×>0
∼=

L
(m)
n,(i)(R)/Ln,(i),herm(R)+(Un,∞ ∩ L(m)

n,(i),lin(R))0An,(i)(R)0.
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We define C(m) to be the topological space(⋃
W

C(m),�0(W )

)
/ ∼,

where ∼ is the equivalence relation generated by the identification of C(m),�0(W ′)
with its image in C(m),�0(W ) whenever W ′ ⊂ W . (This is sometimes referred to as
the ‘conical complex’.) Thus as a set

C(m) =
∐
W

C(m),>0(W ).

We will let C
(m)
=i denote ∐

dimF W=i

C(m),>0(W ).

Note that C
(m)
=n is a dense open subset of C(m). If m = 0 we drop it from the notation.

The space C(m) has a natural, continuous, left action of G
(m)
n (Q) × R×>0. (The

second factor acts on each C(m),�0(W ) by scalar multiplication.)
We have homeomorphisms

G
(m)
n (Q)\(G(m)

n (A∞)/U × π0(Gn(R))× C
(m)
=i /R

×
>0)

∼= P
(m),+
n,(i) (Q)\

(
G

(m)
n (A∞)/U × π0(Gn(R))× (C(m),>0(Vn,(i))/R×>0)

)
∼=

∐
h∈P (m),+

n,(i)
(A∞)\G(m)

n (A∞)/U
L

(m)
n,(i)(Q)\L(m)

n,(i)(A)/

(hUh−1 ∩ P (m),+
n,(i) (A∞))Ln,(i),herm(R)+(L

(m)
n,(i),lin(R) ∩ U0

n,∞)An,(i)(R)0.

(Use the fact, strong approximation for unipotent groups, that

N
(m),+
n,(i) (A∞) = V +N

(m),+
n,(i) (Q)

for any open compact subgroup V of N
(m),+
n,(i) (A∞).) If g ∈ G(m)

n (A∞) and if g−1Ug ⊂
U ′ then the right translation map

g : G
(m)
n (Q)\(G(m)

n (A∞)/U × π0(Gn(R))× C
(m)
=i /R

×
>0) −→

G
(m)
n (Q)\(G(m)

n (A∞)/U ′ × π0(Gn(R))× C
(m)
=i /R

×
>0)

corresponds to the coproduct of the right translation maps

g′ : L
(m)
n,(i)(Q)\L(m)

n,(i)(A)/

(hUh−1 ∩ P (m),+
n,(i) (A∞))Ln,(i),herm(R)+(L

(m)
n,(i),lin(R) ∩ U0

n,∞)An,(i)(R)0

−→
L

(m)
n,(i)(Q)\L(m)

n,(i)(A)/

(h′U ′(h′)−1 ∩ P (m),+
n,(i) (A∞))Ln,(i),herm(R)+(L

(m)
n,(i),lin(R) ∩ U0

n,∞)An,(i)(R)0

where hg = g′h′u′ with g′ ∈ P (m),+
n,(i) (A∞) and u′ ∈ U ′.

When considering compactifications of just the ordinary locus we will need a variant
of the above discussion.
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We set
(G(m)

n (A∞)× π0(Gn(R))× C(m))ord

to be the subset of G
(m)
n (A∞)×π0(Gn(R))×C(m) consisting of elements (g, δ, x) such

that for some W we have
x ∈ C(m),�0(W )

and
W ⊗Q Qp = gp(Vn,(n) ⊗Q Qp).

It has a left action of G
(m)
n (Q) and a right action of G

(m)
n (A∞)ord × R×>0. We define

(G(m)
n (A∞)× π0(Gn(R))× C

(m)
=i )ord

similarly. We also set

G(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C(m))ord

(resp.

G(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord)

to be the image of (G
(m)
n (A∞)× π0(Gn(R))× C(m))ord in

G(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C(m))

(resp.

G(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )).

Then as a set

G
(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C(m))ord =∐
iG

(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord.

In the case i = n we have a simpler description of

G(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord.

Lemma 1.4.

G
(m)
n (Q)\(G(m)

n (A∞)× π0(Gn(R))× C
(m)
=n )ord/Up(N1)

∼−→
G

(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=n )ord.

Proof: There is a natural surjection. We must check that it is also injective. The
right hand side equals

P
(m),+
n,(n) (Q)\(G(m)

n (A∞,p)/Up × (P
(m),+
n,(n) (Qp)Up(N1, N2)

(m)
n )/Up(N1, N2)

(m)
n ×

π0(Gn(R))× C(m),>0(Vn,(n))) ∼=
P

(m),+
n,(n) (Q)\(G(m)

n (A∞)ord/Up(N1)× π0(Gn(R))× C(m),>0(Vn,(n))),

which is clearly isomorphic to the left hand side. �

There does not seem to be such a simple description of

G(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord

for i 6= n. However the interested reader can see the end of this section for a partial
result, with a very unpleasant proof.
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We set

T
(m),ord
Up(N1),=n = G(m)

n (Q)\(G(m)
n (A∞)/Up(N1, N2)× π0(Gn(R))× C(m)

=n )ord/R×>0.

If U is a neat open compact subgroup of L
(m)
n,(i)(A

∞), set

T
(m)
(i),U = L

(m)
n,(i)(Q)\L(m)

n,(i)(A)/ULn,(i),herm(R)0(L
(m)
n,(i),lin(R) ∩ U0

n,∞)An,(n)(R)0.

Corollary 1.5.

T
(m),ord
Up(N1),=n

∼=
∐

h∈P (m),+
n,(n)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1)

T
(m)

(n),(hUph−1∩P (m),+
n,(n)

(A∞,p))Z×p Up(N1)
(m)
n,(n)

.

If Y is a locally compact, Hausdorff topological space then we write H i
Int(Y,C) for

the image of
H i
c(Y,C) −→ H i(Y,C).

We define
H i

Int(T
(m),ord
=n ,Qp) = lim

→Up,N
H i

Int(T
(m),ord
Up(N),=n,Qp)

a smooth G
(m)
n (A∞)ord-module, and

H i
Int(T

(m)
(n) ,Qp) = lim

→U
H i

Int(T
(m)
(n),U ,Qp)

a smooth L
(m)
n,(n)(A

∞)-module. Note that

H i
Int(T

(m)
(n) ,Qp)

Z×p = lim
→Up,N

H i
Int(T

(m)

(n),UpUp(N)
(m)
n,(n)

Z×p
,Qp)

as N runs over positive integers and Up runs over neat open compact subgroups of

L
(m)
n,(n)(A

∞,p). With these definitions we have the following corollary.

Corollary 1.6. There is a G
(m)
n (A∞)ord-equivariant isomorphism

Ind
G

(m)
n (A∞,p)

P
(m),+
n,(n)

(A∞,p)
H i

Int(T
(m)
(n) ,Qp)

Z×p ∼= H i
Int(T

(m),ord
=n ,Qp).

Interior cohomology has the following property which will be key for us.

Lemma 1.7. Suppose that G is a locally compact, totally disconnected topological
group. Suppose that for any sufficiently small open compact subgroup U ⊂ G we are
given a compact Hausdorff space ZU and an open subset YU ⊂ ZU . Suppose moreover
that whenever U , U ′ are sufficiently small open compact subgroups of G and g ∈ G
with g−1Ug ⊂ U ′, then there is a proper continuous map

g : ZU −→ ZU ′

with gYU ⊂ YU ′. Also suppose that g ◦ h = hg whenever these maps are all defined
and that if g ∈ U then the map g : ZU → ZU is the identity.

If Ω is a field, set
H i(Z,Ω) = lim

→U
H i(ZU ,Ω)
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and
H i

Int(Y,Ω) = lim
→U

H i
Int(YU ,Ω).

These are both smooth G-modules. Moreover H i
Int(Y,Ω) is a sub-quotient of H i(Z,Ω)

as G-modules.

Proof: Note that the diagram

H i
c(YU ,Ω) −→ H i(YU ,Ω)

↓ ↑
H i
c(ZU ,Ω) = H i(ZU ,Ω)

is commutative. Set

A = lim
→U

Im
(
H i
c(YU ,Ω) −→ H i

c(ZU ,Ω) = H i(ZU ,Ω)
)

and
B = lim

→U
Im
(
ker
(
H i
c(YU ,Ω) −→ H i(YU ,Ω)

)
−→ H i(ZU ,Ω)

)
.

Then
B ⊂ A ⊂ H i(Z,Ω)

are G-invariant subspaces with

A/B
∼−→ H i

Int(Y,Ω).

�

We finish this section with our promised generalization of lemma 1.4. This gener-
alization is not needed for the proofs of the main results of this paper, but we include
it for completeness sake. The reader may wish to skip the proof.

Lemma 1.8. There is a natural homeomorphism

G
(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord

∼=
∐

h∈P (m),+
n,(i)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1)

L
(m)
n,(i)(Q)\L(m)

n,(i)(A)/

((hUp(N1)h−1∩P (m),+
n,(i) (A∞)ord,×)L−n,(i),herm(Zp)Ln,(i),herm(R)0(L

(m)
n,(i),lin(R)∩U0

n,∞))

where Up(N1) ⊂ G
(m)
n (A∞)ord,×.

In particular

G(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord

and
G(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C(m))ord

are independent of N2 ≥ N1.

Proof: Firstly we have that

G
(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord

∼= P
(m),+
n,(i) (Q)\(G(m)

n (A∞,p)/Up×
(P

(m),+
n,(i) (Q)P

(m),+
n,(n) (Qp)Up(N1, N2)

(m)
n )/Up(N1, N2)

(m)
n ×

π0(Gn(R))× C(m),>0(Vn,(i))).
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We can replace the second P
(m),+
n,(i) (Q) by P

(m),+
n,(i) (Qp), and then, using in particular

the Iwasawa decomposition for Ln,(n)(Qp), replace P
(m),+
n,(n) (Qp) by P

(m),+
n,(n) (Zp). Next

we can replace P
(m),+
n,(i) (Qp) by P

(m),+
n,(i) (Zp) as long as we also replace P

(m),+
n,(i) (Q) by

P
(m),+
n,(i) (Z(p)). This gives

G
(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord

∼= P
(m),+
n,(i) (Z(p))\(G(m)

n (A∞,p)/Up×
(P

(m),+
n,(i) (Zp)P (m),+

n,(n) (Zp)Up(N1, N2)
(m)
n )/Up(N1, N2)

(m)
n ×

π0(Gn(R))× C(m),>0(Vn,(i))).

Note that

P+
n−i,(n−i)(Zp)→→ Cn−i(Zp).

[This follows from the fact that primes above p of F+ are unramified in F , which
implies that

ker(NF/F+ : O×F,p → O
×
F+,p) = {cxx−1 : x ∈ O×F,p}.]

Thus

L−n,(i),herm(Zp)P+
n−i,(n−i)(Zp) = Ln,(i),herm(Zp)

and

P
(m),+
n,(i) (Zp)P (m),+

n,(n) (Zp) = P
(m),−
n,(i) (Zp)P (m),+

n,(n) (Zp).

Moreover, by strong approximation, P
(m),−
n,(i) (Z(p)) (resp. L−n,(i),herm(Z(p))) is dense in

P
(m),−
n,(i) (A∞,p × Zp) (resp. L−n,(i),herm(A∞,p × Zp)). Thus

G
(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord

∼= P
(m),+
n,(i) (Z(p))\(G(m)

n (A∞,p)/Up×
(P

(m),−
n,(i) (Zp)P (m),+

n,(n) (Zp)Up(N1, N2)
(m)
n )/Up(N1, N2)

(m)
n ×

π0(Gn(R))× C(m),>0(Vn,(i)))
∼= L

(m)
n,(i)(Z(p))\((P (m),−

n,(i) (A∞,p)\G(m)
n (A∞,p)/Up)×

(P
(m),−
n,(i) (Zp)\(P (m),−

n,(i) (Zp)P (m),+
n,(n) (Zp)Up(N1, N2)

(m)
n )/Up(N1, N2)

(m)
n )×

π0(Gn(R))× C(m),>0(Vn,(i))).

Next we claim that the natural map

(P
(m),−
n,(i) ∩ P

(m),+
n,(n) )(Zp)\P (m),+

n,(n) (Zp)/(Up(N1)
(m)
n,(n)Z

×
p N

(m)
n,(n)(Zp))

−→ P
(m),−
n,(i) (Zp)\(P (m),−

n,(i) (Zp)P (m),+
n,(n) (Zp)Up(N1, N2)

(m)
n )/Up(N1, N2)

(m)
n

is an isomorphism. It suffices to check this modulo pN2 , where the map becomes

(P
(m),−
n,(i) ∩ P

(m),+
n,(n) )(Z/pN2Z)\P (m),+

n,(n) (Z/pN2Z)/(Up(N1)
(m)
n,(n)Z

×
p N

(m)
n,(n)(Zp)) −→

P
(m),−
n,(i) (Z/pN2Z)\(P (m),−

n,(i) (Z/pN2Z)P
(m),+
n,(n) (Z/pN2Z)/(Up(N1)

(m)
n,(n)Z

×
p N

(m)
n,(n)(Zp)),
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which is clearly an isomorphism. Thus we have

G
(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord

∼= L
(m)
n,(i)(Z(p))\((P (m),−

n,(i) (A∞,p)\G(m)
n (A∞,p)/Up)×

((P
(m),−
n,(i) ∩ P

(m),+
n,(n) )(Zp)\P (m),+

n,(n) (Zp)/(Up(N1)
(m)
n,(n)Z

×
p N

(m)
n,(n)(Zp)))×

π0(Gn(R))× C(m),>0(Vn,(i))),

where γ ∈ L
(m)
n,(i)(Z(p)) acts on (P

(m),−
n,(i) ∩ P

(m),+
n,(n) )(Zp)\P (m),+

n,(n) (Zp) via an element of

P+
n−i,(n−i)(Zp)× Ln,(i),lin(Zp) with the same image in Cn−i(Zp)× Ln,(i),lin(Zp).
Note that

P
(m),−
n,(i) (A∞,p)\G(m)

n (A∞,p)/Up =
∐

h∈P (m),+
n,(i)

(A∞,p)\G(m)
n (A∞,p)/Up

L
(m),−
n,(i),herm(A∞,p)\L(m)

n,(i)(A
∞,p)/(hUph−1 ∩ P (m),+

n,(i) (A∞,p)).

Also note that, if we set Up = (Up(N1)
(m)
n,(n)Z

×
p N

(m)
n,(n)(Zp)), then

(P
(m),−
n,(i) ∩ P

(m),+
n,(n) )(Zp)\P (m),+

n,(n) (Zp)/Up =
∐

h∈(P
(m),+
n,(i)

∩P (m),+
n,(n)

)(Zp)\P (m),+
n,(n)

(Zp)/Up

(L
(m)
n,(i),lin(Zp)× Im (Pn−i,(n−i)(Zp)→ Cn−i(Zp)))/(hUph−1 ∩ P (m),+

n,(i) (Zp)).

However as the primes above p split in F+ split in F we see that

Im (Pn−i,(n−i)(Zp)→ Cn−i(Zp)) = Ln,(i),herm(Zp)/L−n,(i),herm(Zp),

and so

(P
(m),−
n,(i) ∩ P

(m),+
n,(n) )(Zp)\P (m),+

n,(n) (Zp)/Up =
∐

h∈(P
(m),+
n,(i)

∩P (m),+
n,(n)

)(Zp)\P (m),+
n,(n)

(Zp)/Up

L
(m)
n,(i)(Zp)/L

−
n,(i),herm(Zp)(hUph−1 ∩ P (m),+

n,(i) (Zp)).

Thus we see that

G
(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord

∼=
∐

h∈P (m),+
n,(i)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1)

L
(m)
n,(i)(Z(p))\(

L
(m)
n,(i)(A

∞,p × Zp)/L−n,(i),herm(A∞,p × Zp)(hUp(N1)h−1 ∩ P (m),+
n,(i) (A∞)ord,×)

×π0(G
(m)
n (R))× C(m),>0(Vn,(i))

)
.

As L−n,(i),herm(Z(p)) acts trivially on

(L
(m)
n,(i)(Zp)/L

−
n,(i),herm(Zp))× π0(G(m)

n (R))× C(m),>0(Vn,(i))
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and is dense in L−n,(i),herm(A∞,p), we further see that

G
(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord

∼=
∐

h∈P (m),+
n,(i)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1)

L
(m)
n,(i)(Z(p))\(

L
(m)
n,(i)(A

∞,p × Zp)/L−n,(i),herm(Zp)(hUp(N1)h−1 ∩ P (m),+
n,(i) (A∞)ord,×)

×π0(G
(m)
n (R))× C(m),>0(Vn,(i))

)
∼=

∐
h∈P (m),+

n,(i)
(A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1)
L

(m)
n,(i)(Z(p))\L(m)

n,(i)(A
p × Zp)/(

(hUp(N1)h−1 ∩ P (m),+
n,(i) (A∞)ord,×)L−n,(i),herm(Zp)Ln,(i),herm(R)0

(L
(m)
n,(i),lin(R) ∩ U0

n,∞)
)
,

∼=
∐

h∈P (m),+
n,(i)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1)

L
(m)
n,(i)(Q)\L(m)

n,(i)(A)/

((hUp(N1)h−1∩P (m),+
n,(i) (A∞)ord,×)L−n,(i),herm(Zp)Ln,(i),herm(R)0(L

(m)
n,(i),lin(R)∩U0

n,∞)),

as desired. �

Abusing notation slightly, we will write

G(m)
n (Q)\(G(m)

n (A∞)/Up(N1)× π0(Gn(R))× C
(m)
=i )ord

for
G(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C
(m)
=i )ord,

and
G(m)
n (Q)\(G(m)

n (A∞)/Up(N1)× π0(Gn(R))× C(m))ord

for
G(m)
n (Q)\(G(m)

n (A∞)/Up(N1, N2)× π0(Gn(R))× C(m))ord.
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1.5. Locally symmetric spaces.

In this section we will calculate H i
Int(T

(m)
(n) ,Qp) in terms of automorphic forms on

Ln,(n)(A). Our main result will be the following, which will be an immediate conse-
quence of corollary 1.12 and lemma 1.13 below.

Corollary 1.9. Suppose that n > 1 and that ρ is an irreducible algebraic represen-
tation of Ln,(n),lin on a finite dimensional C-vector space. Suppose also that π is a
cuspidal automorphic representation of Ln,(n),lin(A) such that π∞ has the same infin-
itesimal character as ρ∨ and that ψ is a continuous character of Q×\A×/R×>0. Then
for all sufficiently large integers N there are integers m(N) ∈ Z≥0 and i(N) ∈ Z>0,
and an Ln,(n)(A∞)-equivariant embedding

(π∞|| det ||N)× ψ∞ ↪→ H
i(N)
Int (T

(m(N))
(n) ,C).

If m = 0 we will write T(n) for T
(0)
(n). Let Ω denote an algebraically closed field of

characteristic 0. If ρ is a finite dimensional algebraic representation of Ln,(n) on a
Ω-vector space Wρ then we define a locally constant sheaf Lρ,U/T(n),U as

Ln,(n)(Q)\
(
Wρ × Ln,(n)(A)/U(Ln,(n)(R) ∩ U0

n,∞)An,(n)(R)0
)

↓
Ln,(n)(Q)\Ln,(n)(A)/U(Ln,(n)(R) ∩ U0

n,∞)An,(n)(R)0.

The system of sheaves Lρ,U has a right action of Ln,(n)(A∞). We define

H i
Int(T(n),Lρ) = lim

→U
H i

Int(T(n),U ,Lρ,U),

smooth Ln,(n)(A∞)-module. Note that if ρ has a central character χρ then,

α ∈ Z(Ln,(n))(Q)+ ⊂ Ln,(n)(A∞)

acts on H i
Int(T(n),Lρ) via χρ(α)−1. (Use the fact that Z(Ln,(n))(Q)+ ⊂ (Ln,(n)(R) ∩

U0
n,∞)An,(n)(R)0.)

The natural map L
(m)
n,(n) → Ln,(n) gives rise to continuous maps

π(m) : T
(m)
(n),U −→ T(n),U

compatible with the action of L
(m)
n,(n)(A

∞).

Lemma 1.10. (1) The maps π(m) are real-torus bundles (i.e. (S1)r-bundles for
some r), and in particular are proper maps.

(2) There are L
(m)
n,(n)(A

∞)-equivariant identifications

Riπ(m)
∗ Ω ∼= L∧i(⊕τ :F↪→Ω Std⊕mτ )

∨ .

In particular the action of L
(m)
n,(n)(A

∞) on the relative cohomology sheaf Riπ
(m)
∗ Ω

factors through Ln,(n)(A∞).



42 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

Proof: Recall that

N(L
(m)
n,(n),lin) = ker(L

(m)
n,(n) → Ln,(n)).

Suppose that U is a neat open compact subgroup of L
(m)
n,(n)(A

∞) with image U ′ in

Ln,(n)(A∞). Then Ln,(n)(Q)× U ′ acts freely on

Ln,(n)(A)/(Ln,(n)(R) ∩ U0
n,∞)An,(n)(R)0.

Thus it suffices to prove that the map π̃(m)

N(L
(m)
n,(n),lin)(Q)\L(m)

n,(n)(A)/(U ∩N(L
(m)
n,(n),lin)(A∞))(Ln,(n)(R) ∩ U0

n,∞)An,(n)(R)0

↓
Ln,(n)(A)/(Ln,(n)(R) ∩ U0

n,∞)An,(n)(R)0

is a real torus bundle and that there are Ln,(n)(Q) × L(m)
n,(n)(A

∞)-equivariant isomor-

phisms
Riπ̃(m)

∗ Ω ∼= L∧i(⊕τ Std⊕mτ )
∨ .

Using the identification of spaces (but not of groups) that comes from the group
product

L
(m)
n,(n)(A) = N(L

(m)
n,(n),lin)(A)× Ln,(n)(A),

we see that π̃(m) can be identified with the map(
N(L

(m)
n,(n),lin)(Q)\N(L

(m)
n,(n),lin)(A)/(U ∩N(L

(m)
n,(n),lin)(A∞))

)
×
(
Ln,(n)(A)/(Ln,(n)(R) ∩ U0

n,∞)An,(n)(R)0
)

↓
Ln,(n)(A)/(Ln,(n)(R) ∩ U0

n,∞)An,(n)(R)0,

or, using the equality N(L
(m)
n,(n),lin)(A∞) = N(L

(m)
n,(n),lin)(Q)(U∩N(L

(m)
n,(n),lin)(A∞)), even

with(
(N(L

(m)
n,(n),lin)(Q)∩U)\N(L

(m)
n,(n),lin)(R)

)
×
(
Ln,(n)(A)/(Ln,(n)(R)∩ U0

n,∞)An,(n)(R)0
)

↓
Ln,(n)(A)/(Ln,(n)(R) ∩ U0

n,∞)An,(n)(R)0,

The right L
(m)
n,(n)(A

∞)-action is by right translation on the second factor. The left

action of Ln,(n)(Q) is via conjugation on the first factor and left translation on the
second.

The first part of the lemma follows, and we see that

Riπ̃(m)
∗ Ω

is Ln,(n)(Q)× L(m)
n,(n)(A

∞)-equivariantly identified with the locally constant sheaf(
∧iN(L

(m)
n,(n),lin)(Ω)∨

)
×
(
Ln,(n)(A)/(Ln,(n)(R) ∩U0

n,∞)An,(n)(R)0
)

↓
Ln,(n)(A)/(Ln,(n)(R) ∩ U0

n,∞)An,(n)(R)0.

The lemma follows. �
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Lemma 1.11. There is an L
(m)
n,(n)(A

∞)-equivariant isomorphism

Hk
Int(T

(m)
(n) ,Ω) ∼=

⊕
i+j=k

H i
Int(T(n),L∧j(⊕τ Std⊕mτ )∨).

Proof: There is an L
(m)
n,(n)(A

∞)-equivariant spectral sequence

Ei,j
2 = H i(T(n),L∧j(⊕τ Std⊕mτ )∨)⇒ H i+j(T

(m)
(n) ,Ω).

If α ∈ Q×>0 ⊂ Z(Ln,(n),lin)(A∞), then α acts on Ei,j
2 via αj. We deduce that all the

differentials (on the second and any later page) vanish, and so the spectral sequence

degenerates on the second page. Moreover the α 7→ αj eigenspace in H i+j(T
(m)
(n) ,Ω) is

naturally identified with H i(T(n),L∧j(⊕τ Std⊕mτ )∨). (This standard argument is some-

times referred to as ‘Lieberman’s trick’.)

As the maps π(m) are proper, there is also an L
(m)
n,(n)(A

∞)-equivariant spectral se-
quence

Ei,j
c,2 = H i

c(T(n),L∧j(⊕τ Std⊕mτ )∨)⇒ H i+j
c (T

(m)
(n) ,Ω)

and α ∈ Q×>0 ⊂ Z(Ln,(n),lin)(A∞) acts on Ei,j
c,2 via αj. Again we see that the spec-

tral sequence degenerates on the second page, and that the α 7→ αj eigenspace in

H i+j
c (T

(m)
(n) ,Ω) is naturally identified with H i

c(T(n),L∧j(⊕τ Std⊕mτ )∨).

The lemma follows. �

Corollary 1.12. Suppose that ρ is an irreducible representation of Ln,(n),lin over Ω,
which we extend to a representation of Ln,(n) by letting it be trivial on Ln,(n),herm.
Let d = NF/Q ◦ det : Ln,(n),lin → Gm. Then for all N sufficiently large there are
j(N), m(N) ∈ Z≥0 such that, for all i,

H i
Int(T(n),Lρ⊗d−N )

is an Ln,(n)(A∞)-direct summand of

H
i+j(N)
Int (T

(m(N))
(n) ,Ω).

Proof: It follows from Weyl’s construction of the irreducible representations of GLn
that, for N sufficiently large, ρ⊗ d−N is a direct summand of⊗

τ

(Std∨τ )⊗mτ (N)

for certain non-negative integers mτ (N). Hence for N sufficiently large and m(N) =
max{mτ (N)} the representation ρ⊗ d−N is also a direct summand of

∧
∑
τ mτ (N)(

⊕
τ

Std⊕m(N)
τ )∨.

�

Lemma 1.13. Suppose that ρ is an irreducible algebraic representation of Ln,(n) on
a finite dimensional C-vector space.
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(1) Then⊕
Π

Π∞ ⊗H i(LieLn,(n), (Ln,(n)(R) ∩ U0
n,∞)An,(n)(R)0,Π∞ ⊗ ρ) ↪→ H i

Int(T(n),Lρ),

where Π runs over cuspidal automorphic representations of Ln,(n)(A).
(2) If n > 1 and if Π is a cuspidal automorphic representation of Ln,(n)(A) such

that Π∞ has the same infinitesimal character as ρ∨, then

H i(LieLn,(n), (Ln,(n)(R) ∩ U0
n,∞)An,(n)(R)0,Π∞ ⊗ ρ) 6= (0)

for some i > 0.

Proof: The first part results from [Bo], more precisely from combining theorem 5.2,
the discussion in section 5.4 and corollary 5.5 of that paper. The second part results
from [Cl], see the proof of theorem 3.13, and in particular lemma 3.14, of that paper.
�

We are now in a position to deduce corollary 1.9, which we stated at the start of
this section.
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2. Tori, torsors and torus embeddings.

The main aim of this section is to recall some basic facts about relative torus em-
beddings of tori torsors, which will provide local models for the boundary of toroidal
compactifications of Shimura and Kuga-Sato varieties. Much of this material is in
some sense standard, but we need to work with infinite cone decompositions, which
are not treated in much of the literature. It will also be convenient to use a notation
which emphasizes the boundary of the torus embedding and the completion of the
torus embedding along the boundary. These seem to be more naturally parameterised
by certain partial fans rather than fans. In section 2.4 we compute certain cohomol-
ogy groups. For finite fans (or partial fans) such results are fairly standard, but we
found it quite tricky to formulate and prove the results we need in the presence of
infinitely many cones. Maybe this is just our incompetence.

Throughout this section let R0 denote an irreducible noetherian ring (i.e. a noe-
therian ring with a unique minimal prime ideal). In the applications of this section
elsewhere in this paper it will be either Q or Z(p) or Z/prZ for some r. We will
consider R0 endowed with the discrete topology so that Spf R0

∼= SpecR0.

2.1. Tori and torsors.

If S/Y is a torus (i.e. a group scheme etale locally on Y isomorphic to GN
m for some

N) then we can define its sheaf of characters X∗(S) = Hom (S,Gm) and its sheaf
of cocharacters X∗(S) = Hom (Gm, S). These are locally constant sheaves of free Z-
modules in the etale topology on Y . They are naturally Z-dual to each other. More
generally if S1/Y and S2/Y are two tori then Hom (S1, S2) is a locally constant sheaf
of free Z-modules in the etale topology on Y . In fact

Hom (S1, S2) = Hom (X∗(S1), X∗(S2)) = Hom (X∗(S2), X∗(S1)).

By a quasi-isogeny (resp. isogeny) from S1 to S2 we shall mean a global section of
the sheaf Hom (S1, S2)Q (resp. Hom (S1, S2)) with an inverse in Hom (S2, S1)Q. We
will write [S]isog for the category whose objects are tori over Y quasi-isogenous to S
and whose morphisms are isogenies. The sheaves X∗(S)Q and X∗(S)Q only depend
on the quasi-isogeny class of S so we will write X∗([S]isog)Q and X∗([S]isog)Q.

If y is a geometric point of Y then we define

TSy = lim←−
N

S[N ](k(y))

and

T pSy = lim←−
p6 |N

S[N ](k(y))

with the transition map from MN to N being multiplication by M . (The Tate
modules of S.) Also define

V Sy = TSy ⊗Z Q
and

V pSy = T pSy ⊗Z Q.
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If Y is a scheme over SpecQ then

TSy ∼= X∗(S)y ⊗Z Ẑ(1).

If Y is a scheme over SpecZ(p) then

T pSy ∼= X∗(S)y ⊗Z Ẑp(1).

Now suppose that S is split, i.e. isomorphic to GN
m for some N . By an S-torsor T/Y

we mean a scheme T/Y with an action of S, which locally in the Zariski topology
on Y is isomorphic to S. By a rigidification of T along e : Y ′ → Y we mean an
isomorphism of S-torsors e∗T ∼= S over Y ′. If U is a connected open subset of Y then

T |U = Spec
⊕

χ∈X∗(S)(U)

LT (χ),

where LT (χ) is a line bundle on U . If Z is any open subset of Y and if χ ∈ X∗(S)(Z)
then there is a unique line bundle LT (χ) on Z whose restriction to any connected
open subset U ⊂ Z is LT (χ|U). Multiplication gives isomorphisms

LT (χ1)⊗ LT (χ2)
∼−→ LT (χ1 + χ2).

The map
T 7−→ L∨T,1

gives a bijection between isomorphism classes of Gm-torsors and isomorphism classes
of line bundles on Y . The inverse map sends L to

Spec
⊕
N∈Z

L∨,⊗N .

If α : S → S ′ is a morphism of split tori and if T/Y is an S-torsor we can form a
pushout α∗T , an S ′ torsor on Y defined as the quotient

(S ′ ×Y T )/S

where S acts by
s : (s′, t) 7−→ (s′s, s−1t).

There is a natural map T → α∗T compatible with α : S → S ′. If α is an isogeny
then

α∗T = (kerα)\T.
If T1 and T2 are S-torsors over Y we define

(T1 ⊗S T2)/Y

to be the S-torsor
(T1 ×Y T2)/S

where S acts by
s : (t1, t2) 7−→ (st1, s

−1t2).

If T is an S-torsor on Y we define an S-torsor T∨/Y by taking T∨ = T as schemes
but defining an S action . on T∨ by

s.t = s−1t,
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i.e. T∨ = [−1]S,∗T . Then
T∨ ⊗S T ∼= S

via the map that sends (t1, t2) to the unique section s of S with st1 = t2.
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2.2. Log structures.

We will call a formal scheme

X −→ Spf R0

suitable if it has a cover by affine opens Ui = Spf (Ai)
∧
Ii

, where Ai is a finitely generated
R0-algebra and Ii is an ideal of Ai whose inverse image in R0 is (0).

By a log structure on a scheme X (resp. formal scheme X) we mean a sheaf of
monoids M on X (resp. X) together with a morphism

α :M−→ (OX ,×)

(resp.

α :M−→ (OX,×))

such that the induced map

α−1O×X −→ O
×
X

(resp.

α−1O×X −→ O
×
X )

is an isomorphism. We will refer to a scheme (resp. formal scheme) endowed with
a log structure as a log scheme (resp. log formal scheme). By a morphism of log
schemes (resp. morphism of log formal schemes)

(φ, ψ) : (X,M, α) −→ (Y,N , β)

(resp.

(φ, ψ) : (X,M, α) −→ (Y,N , β) )

we shall mean a morphism φ : X → Y (resp. φ : X→ Y) and a map

ψ : φ−1N −→M

such that φ∗ ◦ φ−1(β) = α ◦ ψ. We will consider R0 endowed with the trivial
log structure (O×SpecR0

, 1) (resp. (O×Spf R0
, 1)). We will call a log formal scheme

(X,M, α)/Spf R0 suitable if X/Spf R0 is suitable and if, locally in the Zariski topol-
ogy,M/α−1O×X is finitely generated. (In the case of schemes these definitions are well
known: See for example [Kato]. We have not attempted to optimize the definition
in the case of formal schemes. We are simply making a definition which works for
the limited purposes of this article. The reader might like to compare our definitions
with those in [Berk].)

If D is a closed subscheme of X we define a log structure M(D) on X by setting

M(D)(U) = OX(U) ∩ OX(U −D)×.

If X/SpecR0 is a scheme of finite type and if Z ⊂ X is a closed sub-scheme which
is flat over SpecR0, then the formal completion X∧Z is a suitable formal scheme. Let
i∧ denote the map of ringed spaces X∧Z → X. If (M, α) is a log structure on X, then
we get a map

(i∧)−1(α) : (i∧)−1M−→ OX∧Z .
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It induces a log structure (M∧, α∧) on X∧Z , where M∧ denotes the push out

((i∧)−1(α))−1O×X∧Z ↪→ (i∧)−1M
↓ ↓

O×X∧Z −→ M∧.

If

(φ, ψ) : (X,M, α) −→ (Y,N , β)

is a morphism of schemes with log structures over SpecR0 then there is a right exact
sequence

φ∗Ω1
Y (logN ) −→ Ω1

X(logM) −→ Ω1
X/Y (logM/N ) −→ (0)

of sheaves of log differentials. If the map (φ, ψ) is log smooth then this sequence
is also left exact and the sheaf Ω1

X/Y (logM/N ) is locally free. (See for example

[Kato].) As usual, we write Ωi
X(logM) = ∧iΩ1

X(logM) and Ωi
X/Y (logM/N ) =

∧iΩ1
X/Y (logM/N ).

By a coherent sheaf of differentials on a formal scheme X/Spf R0 we will mean a
coherent sheaf Ω/X together with a differential d : OX → Ω which vanishes on R0.
By a coherent sheaf of log differentials on a log formal scheme (X,M, α)/Spf R0 we
shall mean a coherent sheaf Ω/X together with a differential, which vanishes on R0,

d : OX −→ Ω,

and a homomorphism

dlog :M−→ Ω

such that

α(m)dlogm = d(α(m)).

By a universal coherent sheaf of differentials (resp. universal coherent sheaf of log
differentials) we shall mean a coherent sheaf of differentials (Ω, d) (resp. a coherent
sheaf of log differentials (Ω, d, dlog )) such that for any other coherent sheaf of dif-
ferentials (Ω′, d′) (resp. a coherent sheaf of log differentials (Ω′, d′, dlog ′)) there is a
unique map f : Ω→ Ω′ such that f ◦ d = d′ (resp. f ◦ d = d′ and f ◦ dlog = dlog ′).

Note that if a universal coherent sheaf of differentials (resp. universal coherent
sheaf of log differentials) exists, it is unique up to unique isomorphism.

Lemma 2.1. Suppose that R0 is a discrete, noetherian topological ring.

(1) A universal sheaf of coherent differentials Ω1
X/Spf R0

exists for any suitable

formal scheme X/Spf R0.
(2) If X/SpecR0 is a scheme of finite type and if Z ⊂ X is flat over R0 then

Ω1
X∧Z/Spf R0

∼= (Ω1
X/SpecR0

)∧.

(3) A universal sheaf of coherent log differentials Ω1
X/Spf R0

(logM) exists for any

suitable log formal scheme (X,M, α)/Spf R0.
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(4) Suppose that X/SpecR0 is a scheme of finite type, that Z ⊂ X is flat over R0

and that (M, α) is a log structure on X such that Zariski locally M/α−1O×X
is finitely generated. Then

Ω1
X∧Z/Spf R0

(logM∧) ∼= (Ω1
X/SpecR0

(logM))∧.

Proof: Consider the first part. Suppose that U = Spf A∧I is an affine open in X,
where A is a finitely generated R0-algebra and I is an ideal of A with inverse image
(0) in R0. Then there exists a universal finite module of differentials Ω1

U for U, namely
the coherent sheaf of OU-modules associated to (Ω1

A/R0
)∧I . (See sections 11.5 and 12.6

of [Ku].) We must show that if U′ ⊂ U is open then Ω1
U|U′ is a universal finite module

of differentials for U′. For then uniqueness will allow us to glue the coherent sheaves
Ω1

U to form Ω1
X.

So suppose that (Ω′, d′) is a finite module of differentials for U′. We must show
that there is a unique map of OU′-modules

f : Ω1
U|U′ −→ Ω′

such that d′ = f ◦ d. We may cover U′ by affine opens of the form Spf (Ag)
∧
I and it

will suffice to find, for each g, a unique

fg : Ω1
U|Spf (Ag)∧I

−→ Ω′|Spf (Ag)
∧
I

with d′ = fg ◦d. Thus we may assume that U′ = Spf (Ag)
∧
I . But in this case we know

Ω1
U′ exists, and is the coherent sheaf associated to

(Ω1
Ag/R0

)∧I
∼= (Ω1

A/R0
⊗A Ag)∧I .

On the other hand Ω1
U|U′ is the coherent sheaf associated to

(Ω1
A/R0

)∧I ⊗A∧I (Ag)
∧
I .

Thus

Ω1
U′

∼−→ Ω1
U|U′

and the first part follows. The second part also follows from the proof of the first
part.

For the third part, because of uniqueness, it suffices to work locally. Thus we may
assume that there are finitely many sections m1, ...,mr ∈M(X), which together with
α−1O×X generate M. Then we define Ω1

(X,M,α) to be the cokernel of the map

O⊕rX −→ Ω1
X ⊕O⊕rX

(fi)i 7−→ (−
∑

i fidα(mi), (fiα(mi))i).

It is elementary to check that this has the desired universal property. The fourth
part is also elementary to check. �

If

(φ, ψ) : (X,M, α) −→ (Y,N , β)

is a map of suitable log formal schemes over Spf R0 then we set

Ω1
X/Y(logM/N ) = Ω1

X/Spf R0
(logM)/φ∗Ω1

Y/Spf R0
(logN ).
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We also set
Ωi

X/Spf R0
= ∧iΩ1

X/Spf R0

and
Ωi

X/Spf R0
(logM) = ∧iΩ1

X/Spf R0
(logM)

and
Ωi

X/Y(logM/N ) = ∧iΩ1
X/Y(logM/N ).

Corollary 2.2. Suppose that R0 is a discrete, noetherian topological ring; that

(X,M, α)→ (Y,N , β)

is a map of log schemes over SpecR0; and that Z ⊂ X and W ⊂ Y are closed sub-
schemes flat over SpecR0 which map to each other under X → Y . Suppose moreover
that X and Y have finite type over SpecR0 and that M/α−1O×X and N /β−1O×Y are
locally (in the Zariski topology) finitely generated. Then

Ω1
(X∧Z ,M∧,α∧)/(Y ∧W ,N∧,β∧)

∼= (Ω1
X/Y (logM/N ))∧Z .

Proof: This follows from the lemma and from the exactness of completion. �

If Y is a scheme we will let

AffnY = SpecOY [T1, ..., Tn]

denote affine n-space over Y and

CoordnY = SpecOY [T1, ..., Tn]/(T1...Tn) ⊂ AffnY

denote the union of the coordinate hyperplanes in AffnY . Now suppose that X → Y
is a smooth map of schemes of relative dimension n. By a simple normal crossings
divisor in X relative to Y we shall mean a closed subscheme D ⊂ X such that X has
an affine Zariski-open cover {Ui} such that each Ui admits an etale map fi : Ui → AffnY
so that D|Ui is the (scheme-theoretic) preimage of CoordnY . In the case that Y is just
the spectrum of a field we will refer simply to a simple normal crossings divisor in
X.

Suppose that Y is locally noetherian and separated, and that the connected com-
ponents of Y are irreducible. If S is a finite set of irreducible components of D we
will set

DS =
⋂
E∈S

E.

It is smooth over Y . We will also set

D(s) =
∐

#S=s

DS.

If E is an irreducible component of D(s) then the set S(E) of irreducible components
of D containing E has cardinality s. If ≥ is a total order on the set of irreducible
components of D, we can define a delta set S(D,≥), or simply S(D), as follows. (For
the definition of ‘delta set’, see for instance [Fr]. We can, if we prefer to be more
abstract, replace S(D,≥) by the associated simplicial set.) The n cells consist of
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all irreducible components of D(n+1). If E is such an irreducible component and if
i ∈ {0, ..., n} then the image of E under the face map di is the unique irreducible
component of ⋂

F∈S(E)i

F

which contains E. Here S(E)i equals S(E) with its (i+1)th smallest element removed.
The topological realization |S(D,≥)| does not depend on the total order ≥, so we
will often write |S(D)|.

We record a general observation about log de Rham complexes and divisors with
simple normal crossings, which is probably well known. We include a proof because
it is of crucial importance for our argument.

Lemma 2.3. Suppose that Y is a smooth scheme of finite type over a field k and that
Z ⊂ Y is a divisor with simple normal crossings. Let Z1, ..., Zm denote the distinct
irreducible components of Z and set

ZS =
⋂
j∈S

Zj ⊂ Y

(in particular Z∅ = Y ), and

Z(s) =
∐

#S=s

ZS.

Let iS (resp. i(s)) denote the natural maps ZS → Y (resp. Z(s) → Y ). Also let IZ
denote the ideal of definition of Z.

There is a double complex
i(s)∗ Ωr

Z(s)

with maps
d : i(s)∗ Ωr

Z(s) −→ i(s)∗ Ωr+1
Z(s)

and
i(s)∗ Ωr

Z(s) −→ i(s+1)
∗ Ωr

Z(s+1)

being the sum of the maps
iS,∗Ω

r
ZS
−→ iS′,∗Ω

r
ZS′
,

which are

• 0 if S 6⊂ S ′,
• and (−1)#{i∈S: i<j} times the natural pull-back if S ∪ {j} = S ′.

The natural inclusions

Ωr
Y (logM(Z))⊗ IZ −→ Ωr

Y

give rise to a map of complexes

Ω•Y (logM(Z))⊗ IZ −→ Ω•Y = i(0)
∗ Ω•Z(0) .

For fixed r the simple complexes

(0) −→ Ωr
Y (logM(Z))⊗ IZ −→ i(0)

∗ Ωr
Z(0) −→ i(1)

∗ Ωr
Z(1) −→ ...

are exact.
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Proof: Only the last assertion is not immediate. So consider the last assertion. We
can work Zariski locally, so we may assume that the complex is pulled back from
the corresponding complex for the case Y = Spec k[X1, ..., Xd] and Z is given by
X1X2...Xm = 0. In this case we take Zj to be the scheme Xj = 0, for j = 1, ...,m.
In this case

Ωr
Y (logM(Z))⊗ IZ =

⊕
T

k[X1, ..., Xd]

(
m∏

j=1, j 6∈T

Xj

)∧
j∈T

dXj

where T runs over r element subsets of {1, ..., d}. On the other hand

iS,∗Ω
r
ZS

=
⊕
T

k[X1, ..., Xd]/(Xj)j∈S
∧
j∈T

dXj

where T runs over r element subsets of {1, ..., d} − S. Thus it suffices to show that,
for each subset T ⊂ {1, ..., d} the sequence

(0) −→
(∏m

j=1, j 6∈T Xj

)
k[X1, ..., Xd] −→ k[X1, ..., Xd] −→ ...

... −→
⊕

#S=s, S∩T=∅ k[X1, ..., Xd]/(Xj)j∈S −→ ...

is exact, where S ⊂ {1, ...,m}. The sequence for T ⊂ {1, ..., d} is obtained from the
sequence for ∅ ⊂ {1, ...,m} − T by tensoring over k with k[Xj]j∈T∪{m+1,...,d}, and so
we only need treat the case m = d and T = ∅.

If µ is a monomial in the variables X1, ..., Xm, let R(µ) denote the subset of
{1, ...,m} consisting of the indices j for which Xj does not occur in µ. Then our
complex is the direct sum over µ of the complexes

(0) −→ Aµ −→ k −→ ... −→
⊕

S⊂R(µ), #S=s

k −→ ...

where Aµ = k if R(µ) = ∅ and = (0) otherwise. So it suffices to prove this latter
complex exact for all µ. If R(µ) = ∅ then it becomes

(0) −→ k −→ k −→ (0) −→ (0) −→ ...,

which is clearly exact. If R(µ) 6= ∅, our complex becomes

(0) −→ k −→
⊕

S⊂R(µ), #S=1

k −→ ... −→
⊕

S⊂R(µ), #S=s

k −→ ....

If we suppress the first k, this is the complex that computes the simplicial cohomology
with k-coefficients of the simplex with #R(µ) vertices. Thus it is exact everywhere
except

⊕
S⊂R(µ), #S=1 k and the kernel of⊕

S⊂R(µ), #S=1

k −→
⊕

S⊂R(µ), #S=2

k

is just k. The desired exactness follows. �
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2.3. Torus embeddings.

We will now discuss relative torus embeddings, crucially in the context of infinite
fans.

If W is a real vector space with dual W∨ and if A ⊂ W is a subspace we set

A∨ = {χ ∈ W∨ : χ(A) ⊂ R≥0}

and

A∨,0 = {χ ∈ W∨ : χ(A− {0}) ⊂ R>0}
and

A⊥ = {χ ∈ W∨ : χ(A) = {0}}.

We will suppose that Y/SpecR0 is flat and locally of finite type. To simplify the
notation, for now we will restrict to the case of a split torus S/Y with Y connected.
We will record the (trivial) generalization to the case of a disconnected base below.
Thus we can think of X∗(S) and X∗(S) as abelian groups, rather than as locally
constant sheaves on Y , i.e. we replace the sheaf by its global sections over Y . We
will let T/Y denote an S-torsor.

By a rational polyhedral cone σ ⊂ X∗(S)R we mean a non-empty subset consisting
of all R≥0-linear combinations of a finite set of elements of X∗(S), but which contains
no complete line through 0. (We include the case σ = {0}. The notion we define here
is sometimes called a ‘non-degenerate rational polyhedral cone’.) By the interior σ0

of σ we shall mean the complement in σ of all its proper faces. (We consider σ as
a face of σ, but not a proper face.) We call σ smooth if it consists of all R≥0-linear
combinations of a subset of a Z-basis of X∗(S). Note that any face of a smooth cone
is smooth. Moreover we set

Tσ = Spec
⊕

χ∈X∗(S)∩σ∨
LT (χ).

Then Tσ is a scheme over Y with an action of S and there is a natural S-equivariant
dense open embedding T ↪→ Tσ. If σ′ ⊂ σ there is a natural map Tσ′ → Tσ compatible
with the embeddings of T . If f : Y ′ → Y then Tσ/Y pulls back under f to (f ∗T )σ/Y

′

compatibly with the maps Tσ′ ↪→ Tσ for σ′ ⊂ σ.
Suppose that Σ0 is a set of faces of σ such that

• {0} 6∈ Σ0,
• and, if τ ′ ⊃ τ ∈ Σ0, then τ ′ ∈ Σ0.

In this case define

|Σ0|0 = σ −
⋃
τ 6∈Σ0

τ.

Thus

|Σ0|0,∨,0 ∩ σ∨ = σ∨ −
⋃
τ∈Σ0

τ⊥.
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Then we define ∂Σ0Tσ ⊂ Tσ to be the closed sub-scheme defined by the sheaf of ideals⊕
χ∈X∗(S)∩|Σ0|0,∨,0∩σ∨

LT (χ) ⊂
⊕

χ∈X∗(S)∩σ∨
LT (χ).

If Σ0 contains all the faces of σ other than {0} we will write ∂Tσ for ∂Σ0Tσ. Note
that ∂∅Tσ = ∅. If σ′ is a face of σ then under the open embedding

Tσ′ ↪→ Tσ

∂Σ0Tσ pulls back to ∂{τ∈Σ0: τ⊂σ′}Tσ′ .
By a fan in X∗(S)R we shall mean a non-empty collection Σ of rational polyhedral

cones σ ⊂ X∗(S)R which satisfy

• if σ ∈ Σ, so is each face of σ,
• if σ, σ′ ∈ Σ then σ ∩ σ′ is a face of σ and of σ′.

Note that unless otherwise stated we will not assume that Σ is finite. We call Σ
smooth if each σ ∈ Σ is smooth. We will call Σ full if every element of Σ is contained
in an element of Σ with the same dimension as X∗(S)R. Define

|Σ| =
⋃
σ∈Σ

σ.

We call Σ′ a refinement of Σ if each σ′ ∈ Σ′ is a subset of some element of Σ and
each element σ ∈ Σ is a finite union of elements of Σ′.

Lemma 2.4. (1) If Σ is a fan and Σ′ ⊂ Σ is a finite cardinality sub-fan then

there is a refinement Σ̃ of Σ with the following properties:

• any element of Σ which is smooth also lies in Σ̃;

• any element of Σ̃ contained in an element of Σ′ is smooth;

• and if σ′ ∈ Σ− Σ̃ then σ′ has a non-smooth face lying in Σ′.
(2) Any fan Σ has a smooth refinement Σ′ such that every smooth cone σ ∈ Σ

also lies in Σ′.

Proof: The first part is proved just as for finite fans by making a finite series of
elementary subdivisions by 1 cones that lie in some element σ′ ∈ Σ′ but not in any
of its smooth faces. See for instance section 2.6 of [Fu].

For the second part, consider the set S of pairs (Σ̃,∆) where Σ̃ is a refinement of
Σ and ∆ is a sub-fan of Σ such that

• every smooth element of Σ lies in Σ̃;

• and if σ ∈ Σ̃ is contained in an element of ∆ then σ is smooth.

It suffices to show that S contains an element (Σ̃,∆) with ∆ = Σ.

If (Σ̃,∆) ∈ S and σ ∈ Σ we define Σ̃(σ) to be the set of elements of Σ̃ contained

in σ. We define a partial order on S by decreeing that (Σ̃,∆) ≥ (Σ̃′,∆′) if and only
if the following conditions are satisfied:

• Σ̃ refines Σ̃′;
• ∆ ⊃ ∆′;
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• Σ̃′(σ) = Σ̃(σ) unless σ has a face that is contained in an element of ∆ but in
no element of ∆′.

Suppose that S ′ ⊂ S is totally ordered. Set

∆ =
⋃

(Σ̃′,∆′)∈S′

∆′,

and let Σ̃ denote the set of cones σ′ which lie in Σ̃′ for all sufficiently large elements

of (Σ̃′,∆′) ∈ S ′. If σ ∈ Σ then we can choose (Σ̃′,∆′) ∈ S ′ so that the number of

faces of σ in ∆′ is maximal. If (Σ̃′,∆′) ≤ (Σ̃′′,∆′′) ∈ S ′ then Σ̃′(σ) = Σ̃′′(σ). Thus

Σ̃(σ) = Σ̃′(σ). We conclude that Σ̃ is a refinement of Σ. Thus (Σ̃,∆) ∈ S and it is
an upper bound for S ′.

By Zorn’s lemma S has a maximal element (Σ̃,∆). We will show that ∆ = Σ,
which will complete the proof of the lemma. Suppose not. Choose σ ∈ Σ −∆. Set

∆′ to be the union of ∆ and the faces of σ. Let Σ̃′ be a refinement of Σ̃ such that

• any element of Σ̃ which is smooth also lies in Σ̃′;

• any element of Σ̃′ contained in σ is smooth;

• and if σ′ ∈ Σ̃− Σ̃′ then σ′ has a non-smooth face contained in σ.

Then (Σ̃′,∆′) ∈ S and (Σ̃′,∆′) > (Σ̃,∆), a contradiction. �

To a fan Σ one can attach a connected scheme TΣ that is separated, locally (on
TΣ) of finite type and flat over Y of relative dimension dimRX∗(S)R, together with
an action of S and an S-equivariant dense open embedding T ↪→ TΣ over Y . The
scheme TΣ has an open cover by the Tσ for σ ∈ Σ such that Tσ′ ⊂ Tσ if and only
if σ′ ⊂ σ. We write OTΣ

for the structure sheaf of TΣ. If Σ is smooth then TΣ/Y
is smooth. If Σ is finite and |Σ| = X∗(S)R, then TΣ/Y is proper. If Σ′ ⊂ Σ then
TΣ′ can be identified with an open sub-scheme of TΣ. If Σ′ refines Σ then there is an
S-equivariant proper map

TΣ′ → TΣ

which restricts to the identity on T : its restriction to Tσ′ equals the map

Tσ′ −→ Tσ ↪→ TΣ

where σ′ ⊂ σ ∈ Σ.
By boundary data for Σ we shall mean a proper subset Σ0 ⊂ Σ such that Σ−Σ0 is

a fan. (Note that Σ0 may not be closed under taking faces.) If Σ0 is boundary data
we define ∂Σ0TΣ to be the closed subscheme of TΣ with

(∂Σ0TΣ) ∩ Tσ = ∂{τ∈Σ0: τ⊂σ}Tσ.

Note that

∂Σ0TΣ ⊂
⋃
σ∈Σ0

Tσ.

Thus ∂Σ0TΣ has an open cover by the sets

(∂Σ0TΣ)σ = Tσ ∩ ∂Σ0TΣ
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as σ runs over Σ0. We write I∂Σ0
TΣ

for the ideal sheaf in OTΣ
defining ∂Σ0TΣ. If

Σ0 ⊂ Σ′ ⊂ Σ then

∂Σ0TΣ′
∼−→ ∂Σ0TΣ.

Note that I∂Σ0
TΣ
|Tσ corresponds to the ideal⊕

χ∈XΣ0,σ,1

LT (χ)

of ⊕
χ∈X∗(S)∩σ∨

LT (χ),

where

XΣ0,σ,1 = X∗(S) ∩ σ∨ −
⋃

τ∈Σ0,τ⊂σ

τ⊥

and τ⊥ denotes the annihilator of τ in X∗(S)R. If we let XΣ0,σ,m denote the set of
sums of m elements of XΣ0,σ,1, then Im∂Σ0

TΣ
|Tσ corresponds to the ideal⊕

χ∈XΣ0,σ,m

LT (χ).

If σ 6∈ Σ0 then

XΣ0,σ,m = X∗(S) ∩ σ∨

for all m. If on the other hand σ ∈ Σ0 then⋂
m

XΣ0,σ,m = ∅.

(For if χ ∈ σ0 ∩X∗(S) then χ ≥ m on XΣ0,σ,m.)
In the special case Σ0 = Σ−{{0}} we will write ∂TΣ for ∂Σ0TΣ and I∂TΣ

for I∂Σ0
TΣ

.
Then

T = TΣ − ∂TΣ.

We will write MΣ → OTΣ
for the log structure corresponding to the closed embed-

ding ∂TΣ ↪→ TΣ. We will write Ω1
TΣ/SpecR0

(log∞) for the log differentials previously

denoted Ω1
TΣ/SpecR0

(logMΣ).
If Σ is smooth then ∂TΣ is a simple normal crossings divisor on TΣ relative to Y .
If Σ0 is boundary data for Σ we will set

|Σ0| = {0} ∪
⋃
σ∈Σ0

σ.

and

|Σ0|0 = |Σ0| −
⋃

σ∈Σ−Σ0

σ.

We will call Σ0

• open if |Σ0|0 is open in X∗(S)R;
• finite if it has finite cardinality;
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• locally finite if for every rational polyhedral cone τ ⊂ |Σ0| (not necessarily in
Σ0) the intersection τ ∩ |Σ0|0 meets only finitely many elements of Σ0. (We
remark that although this condition may be intuitive in the case |Σ0|0 = |Σ0|,
in other cases it may be less so.)

Let Σ continue to denote a fan and Σ0 boundary data for Σ. If σ ∈ Σ we write

Σ(σ) = {τ ∈ Σ : τ ⊃ σ}.
If σ 6= {0}, then this is an example of boundary data for Σ. If σ ∈ Σ0 then

Σ(σ) = {τ ∈ Σ0 : τ ⊃ σ}
and we will sometimes denote it Σ0(σ). If Σ0 is locally finite then Σ0(σ) is finite for
all σ ∈ Σ0. If {0} 6= σ ∈ Σ we write

∂σTΣ = ∂Σ(σ)TΣ

and
∂0
σTΣ = ∂σTΣ −

⋃
σ′)σ

∂σ′TΣ

Sometimes we also write
∂0
{0}TΣ = T.

If Σ0 is locally finite then the ∂σTΣ for σ ∈ Σ0 form a locally finite closed cover of
∂Σ0TΣ. Set theoretically we have

∂σTΣ =
∐

σ′∈Σ(σ)

∂0
σ′TΣ

and
(∂Σ0TΣ)σ =

∐
σ′∈Σ0
σ′⊂σ

∂0
σ′TΣ

and
Tσ =

∐
σ′⊂σ

∂0
σ′TΣ

and
∂Σ0TΣ =

∐
σ′∈Σ0

∂0
σ′TΣ.

If dim σ = 1 then ∂0
σTΣ = ∂Tσ.

Keep the notation of the previous paragraph. We define S(σ) to be the split torus
with co-character group X∗(S) divided by the subgroup generated by σ∩X∗(S), and
T (σ) to be the push-out of T to S(σ). We also define Σ(σ) to be the set of images
in X∗(S(σ))R of elements of Σ(σ). It is a fan for X∗(S)R/〈σ〉R. [The main point to
check is that if τ, τ ′ ∈ Σ(σ) then (τ ∩ τ ′) + 〈σ〉R = (τ + 〈σ〉R)∩ (τ ′ + 〈σ〉R). To verify
this suppose that x ∈ τ and y ∈ τ ′ with x − y ∈ 〈σ〉R. Then x − y = z − w with
z, w ∈ σ. Thus x+w = y + z ∈ τ ∩ τ ′ and x+ 〈σ〉R = (x+w) + 〈σ〉R.] If σ ∈ Σ0 we
will sometimes write Σ0(σ) for Σ(σ), as it depends only on Σ0 and not on Σ. Then

∂0
σTΣ
∼= T (σ) ⊂ T (σ)Σ(σ)

∼= ∂σTΣ.
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Thus ∂σTΣ is separated, locally (on the source) of finite type and flat over Y . The
closed subscheme ∂σTΣ has codimension in TΣ equal to the dimension of σ. If Σ(σ)
is smooth then ∂σTΣ is smooth over Y .

If Σ(σ) is open then ∂σTΣ satisfies the valuative criterion of properness over Y .
If in addition Σ(σ) is finite then ∂σTΣ is proper over Y . If Σ0 is open, then ∂Σ0TΣ

satisfies the valuative criterion of properness over Y . If in addition Σ0 is finite then
∂Σ0TΣ is proper over Y .

The schemes ∂σ1TΣ, ..., ∂σsTΣ intersect if and only if σ1, ..., σs are all contained in
some σ ∈ Σ. In this case the intersection equals ∂σTΣ for the smallest such σ. We set

∂iTΣ =
∐

dimσ=i

∂σTΣ.

If Y is irreducible then TΣ and each ∂σTΣ is irreducible. Moreover the irreducible
components of ∂TΣ are the ∂σTΣ as σ runs over one dimensional elements of Σ. If
Σ is smooth then we see that S(∂TΣ) is the delta set with cells in bijection with the
elements of Σ− {{0}} and with the same ‘face relations’. In particular it is in fact a
simplicial complex and

|S(∂TΣ)| = (|Σ| − {0})/R×>0.

We say that (Σ′,Σ′0) refines (Σ,Σ0) if Σ′ refines Σ and Σ′−Σ′0 is the set of elements
of Σ′ contained in some element of Σ − Σ0. In this case ∂Σ′0

TΣ′ maps to ∂Σ0TΣ, and
in fact set theoretically ∂Σ′0

TΣ′ is the pre-image of ∂Σ0TΣ in TΣ′ .
If Σ is a fan, then by line bundle data for Σ we mean a continuous function ψ :
|Σ| → R, such that for each cone σ ∈ Σ, the restriction ψ|σ equals some ψσ ∈ X∗(S).
To ψ we can attach a line bundle Lψ on TΣ: On Tσ (with σ ∈ Σ) it corresponds to
the

⊕
χ∈σ∨∩X∗(S) LT (χ)-module ⊕

χ∈X∗(S)
χ−ψ≥0 on σ

LT (χ).

Note that there are natural isomorphisms

Lψ ⊗ Lψ′ ∼= Lψ+ψ′ ,

and that

L⊗−1
ψ
∼= L−ψ.

We have the following examples of line bundle data.

(1) OTΣ
is the line bundle associated to ψ ≡ 0.

(2) If Σ is smooth then I∂TΣ
is the line bundle associated to the unique such

function ψΣ which for every one dimensional cone σ ∈ Σ satisfies

ψΣ(X∗(S) ∩ σ) = Z≥0.

Suppose that α : S →→ S ′ is a surjective map of split tori over Y . Then X∗(α) :
X∗(S ′) ↪→ X∗(S) and X∗(α) : X∗(S) → X∗(S

′), the latter with finite cokernel. We
call fans Σ for X∗(S) and Σ′ for X∗(S

′) compatible if for all σ ∈ Σ the image X∗(α)σ
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is contained in some element of Σ′. In this case the map α : T → α∗T extends to an
S-equivariant map

α : TΣ −→ (α∗T )Σ′ .

We will write
Ω1
TΣ/(α∗T )Σ′

(log∞) = Ω1
TΣ/(α∗T )Σ′

(logMΣ/MΣ′).

If for all σ′ ∈ Σ′ the pre-image X∗(α)−1(σ′) is a finite union of elements of Σ, then
α : TΣ → (α∗T )Σ′ is proper.

If α is an isogeny, if Σ and Σ′ are compatible, and if every element of Σ′ is a finite
union of elements of Σ, then we call Σ a quasi-refinement of Σ′. In that case the map
α : TΣ → (α∗T )Σ′ is proper.

Lemma 2.5. If α is surjective and #cokerX∗(α) is invertible on Y then

α : (TΣ,MΣ)→ ((α∗T )Σ′ ,MΣ′)

is log smooth, and there is a natural isomorphism

(X∗(S)/X∗(α)X∗(S ′))⊗Z OTΣ

∼−→ Ω1
TΣ/(α∗T )Σ′

(log∞).

Proof: We can work Zariski locally on TΣ. Thus we may replace TΣ by Tσ and
(α∗T )Σ′ by (α∗T )σ′ for cones σ and σ′ with X∗(α)σ ⊂ σ′. We may also replace Y by
an affine open subset U such that T |U is trivial, i.e. each LT (χ) ∼= OY compatibly

with LT (χ) ⊗ LT (χ′)
∼→ LT (χ + χ′). Then the log structure on Tσ has a chart

Z[σ∨ ∩X∗(S)]→ OTσ sending χ to

1 ∈ OY (Y ) ∼= LT (χ).

Similarly the log structure on (α∗T )σ′ has a chart Z[(σ′)∨∩X∗(S ′)]→ O(α∗T )σ′
sending

χ to
1 ∈ OY (Y ) ∼= Lα∗T (χ).

The lemma follows because

X∗(α) : X∗(S ′) −→ X∗(S)

is injective and the torsion subgroup of the cokernel is finite with order invertible on
Y . �

We will call pairs (Σ,Σ0) and (Σ′,Σ′0) of fans and boundary data for S and S ′,
respectively, compatible if Σ and Σ′ are compatible and if no cone of Σ0 maps into
any cone of Σ′ − Σ′0. In this case

∂Σ0TΣ −→ ∂Σ′0
(α∗T )Σ′ .

We will call them strictly compatible if they are compatible and Σ− Σ0 is the set of
cones in Σ mapping into some element of Σ′ − Σ′0.

Lemma 2.6. Suppose that α : S →→ S ′ is a surjective map of split tori, that T/Y is
an S-torsor, and that (Σ,Σ0) and (Σ′,Σ′0) are strictly compatible fans with boundary
data for S and S ′ respectively. Then locally on TΣ there is a strictly positive integer
m such that

α∗I∂Σ′0
(α∗T )Σ′

⊃ Im∂Σ0
TΣ
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and
I∂Σ0

TΣ
⊃ α∗I∂Σ′0

(α∗T )Σ′
.

Proof: We may work locally on Y and so we may suppose that Y = SpecA is affine
and that each LT (χ) is trivial. It also suffices to check the lemma locally on TΣ.
Thus we may suppose that Σ consists of a cone σ and all its faces. Let σ′ denote the
smallest element of Σ′ containing the image of σ. Then we may further suppose that
Σ′ consists of σ′ and all its faces. We may further suppose that σ ∈ Σ0 and σ′ ∈ Σ′0,
else there is nothing to prove.

Then
TΣ = Spec

⊕
χ∈X∗(S)∩σ∨

LT (χ)

and ∂Σ0TΣ is defined by ⊕
χ∈X∗(S)∩|Σ0|0,∨,0

LT (χ).

Moreover TΣ ×(α∗T )Σ′
∂Σ′0

(α∗T )Σ′ is defined by⊕
χ1∈X∗(S′)∩|Σ′0|0,∨,0

χ2∈X∗(S)∩σ∨

LT (X∗(α)χ1 + χ2).

Thus it suffices to show that for some positive integer m we have

X∗(S) ∩ |Σ0|0,∨,0 ⊃ X∗(α)(X∗(S ′) ∩ |Σ′0|0,∨,0) + (X∗(S) ∩ σ∨)
⊃ m(X∗(S) ∩ |Σ0|0,∨,0).

This is equivalent to
|Σ0|0,∨,0 = X∗(α)|Σ′0|0,∨,0 + σ∨.

Suppose that χ1 ∈ |Σ′0|0,∨,0 and χ2 ∈ σ∨. Then

X∗(α)(χ1)(σ − |Σ− Σ0|) = χ1(X∗(α)(σ − |Σ− Σ0|)) ⊂ χ1(σ′ − |Σ′ − Σ′0|) ⊂ R>0

and so
(X∗(α)(χ1) + χ2)(σ − |Σ− Σ0|) ⊂ R>0.

Thus
|Σ0|0,∨,0 ⊃ X∗(α)|Σ′0|0,∨,0 + σ∨.

Conversely suppose that χ ∈ |Σ0|0,∨,0. Let τ denote the face of σ, where χ = 0.
Then τ ∈ Σ − Σ0. Let τ ′ denote the smallest face of σ′ containing X∗(α)τ . Then
τ ′ ∈ Σ′ − Σ′0. We can find χ1 ∈ |Σ′0|0,∨,0 with χ1(τ ′) = {0}. Note that if a ∈ σ and
χ(a) = 0 then (X∗(α)(χ1))(a) = 0. Thus we can find ε > 0 such that

χ−X∗(α)(εχ1) ∈ σ∨.
It follows that

|Σ0|0,∨,0 ⊂ X∗(α)|Σ′0|0,∨,0 + σ∨.

The lemma follows. �

Suppose that (Σ,Σ0) and (Σ′,Σ′0) are strictly compatible. We will say that

• Σ0 is open over Σ′0 if |Σ0|0 is open in X∗(α)−1|Σ′0|0;
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• and that Σ0 is finite over Σ′0 if only finitely many elements of Σ0 map into
any element of Σ′0.

If α is an isogeny, if Σ is a quasi-refinement of Σ′, and if (Σ,Σ0) and (Σ′,Σ′0) are
strictly compatible, then we call (Σ,Σ0) a quasi-refinement of (Σ′,Σ′0). In this case
Σ0 is open and finite over Σ′0.

Lemma 2.7. Suppose that α : S →→ S ′ is a surjective map of split tori, that T/Y is
an S-torsor, and that (Σ,Σ0) and (Σ′,Σ′0) are strictly compatible fans with boundary
data for S and S ′ respectively. If Σ0 is locally finite and Σ0 is open over Σ′0 then

∂Σ0TΣ −→ ∂Σ′0
(α∗T )Σ′

satisfies the valuative criterion of properness. If in addition Σ0 is finite over Σ′0 then
this morphism is proper.

Proof: It suffices to show that if σ ∈ Σ0 and if σ′ is the smallest element of Σ′0
containing X∗(α)σ, then

∂σTΣ −→ ∂σ′(α∗T )Σ′

satisfies the valuative criterion of properness. However this is the map of toric varieties

T (σ)Σ0(σ) −→ (α∗T )(σ′)Σ
′
0(σ′).

As Σ0(σ) is finite, it suffices to check that⋃
τ ′⊃σ′
τ ′∈Σ′0

X∗(α)−1((τ ′)0 + 〈σ′〉R) =
⋃
τ⊃σ
τ∈Σ0

(τ 0 + 〈σ〉R).

Choose a point P ∈ σ0 such that

X∗(α)P ∈ (X∗(α)σ)0 ⊂ (σ′)0.

Then

〈σ′〉R = σ′ + RX∗(α)(P ).

[To see this choose non-zero vectors vi in each one dimensional face of σ′. Then we
can write X∗(α)(P ) =

∑
i µivi with each µi > 0. If λi ∈ R, then for λ sufficiently

large λi + λµi ∈ R>0 for all i, and so∑
i

λivi =
∑
i

(λi + λµi)vi − λX∗(α)(P ) ∈ σ′ + RX∗(α)(P ).]

Thus

〈σ′〉R = σ′ +X∗(α)〈σ〉R.
Hence for all τ ′ ∈ Σ′0 with τ ′ ⊃ σ′, we have

(τ ′)0 + 〈σ′〉R = (τ ′)0 +X∗(α)〈σ〉R
and so

X∗(α)−1((τ ′)0 + 〈σ′〉R) = 〈σ〉R +X∗(α)−1(τ ′)0.
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We deduce that it suffices to check that

〈σ〉R +
⋃
τ ′⊃σ′
τ ′∈Σ′0

X∗(α)−1(τ ′)0 = 〈σ〉R +
⋃
τ⊃σ
τ∈Σ0

τ 0.

The left hand side certainly contains the right hand side, so it suffices to prove that
for all τ ′ ∈ Σ′0 with τ ′ ⊃ X∗(α)σ we have

〈σ〉R +X∗(α)−1τ ′ ⊂ 〈σ〉R +
⋃
τ⊃σ
τ∈Σ0

τ 0.

Let π denote the map

π : X∗(S)R →→ X∗(S)R/〈σ〉R.

Because X∗(α)−1τ ′ and
⋃

τ⊃σ
τ∈Σ0

τ 0 are invariant under the action of R×>0 it suffices to

find an open set U ⊂ X∗(S)R containing P such that

(πU) ∩ πX∗(α)−1τ ′ ⊂ π
⋃
τ⊃σ
τ∈Σ0

τ 0,

or equivalently such that

U ∩ (〈σ〉R +X∗(α)−1τ ′) ⊂ 〈σ〉R +
⋃
τ⊃σ
τ∈Σ0

τ 0.

Thus it suffices to find an open set U ⊂ X∗(S)R containing P such that

(1) U ∩X∗(α)−1|Σ′0|0 ⊂
⋃

τ⊃σ
τ∈Σ0

τ 0;

(2) U ∩X∗(α)−1τ ′ ⊂ X∗(α)−1|Σ′0|0;
(3) and for all open U ′ ⊂ U containing P we have U ′ ∩ (〈σ〉R + X∗(α)−1τ ′) =

U ′ ∩X∗(α)−1τ ′.

Moreover in order to find such a U 3 P it suffices to find one satisfying each property
independently and take their intersection.

One can find an open set U 3 P satisfying the first property because⋃
τ⊃σ
τ∈Σ0

τ 0 ⊂ |Σ0|0 ⊂ X∗(α)−1|Σ′0|0

are both open inclusions.
To find U 3 P satisfying the second condition we just need to avoid the faces of

X∗(α)−1τ ′ which do not contain P .
It remains to check that we can find an open U 3 P satisfying the last condition.

Suppose that X∗(α)−1τ ′ is defined by inequalities χi ≥ 0 for i = 1, ..., r with χi ∈
X∗(S)R. Suppose that χi = 0 on σ for i = 1, ..., s, but that χi(P ) > 0 for i =
s+ 1, ..., r. It suffices to choose U so that χi > 0 on U for i = s+ 1, ..., r. For then if
x ∈ X∗(α)−1τ ′ and y ∈ 〈σ〉R with x+ y ∈ U we see that

χi(x+ y) = χi(x) ≥ 0
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for i = 1, ..., s, while χi(x+ y) > 0 for i = s+ 1, ..., r. Thus for U ′ ⊂ U we have

U ′ ∩ (〈σ〉R +X∗(α)−1τ ′) = U ′ ∩X∗(α)−1τ ′,

as desired. �

By a partial fan we will mean a collection Σ0 of rational polyhedral cones satisfying

• (0) 6∈ Σ0;
• if σ1, σ2 ∈ Σ0, then σ1 ∩ σ2 is a face of σ1 and of σ2;
• if σ1, σ2 ∈ Σ0, and if σ ⊃ σ2 is a face of σ1, then σ ∈ Σ0.

(Again note that Σ0 may not be closed under taking faces.) In this case we will let

Σ̃0 denote the set of faces of elements of Σ0 together with {0}. Then Σ̃0 and Σ̃0−Σ0

are fans, and Σ0 is boundary data for Σ̃0. [To see this suppose that τi is a face of
σi ∈ Σ0 for i = 1, 2. Then σ1 ∩ σ2 is a face of σ1 and so τ1 ∩ σ2 = τ1 ∩ (σ1 ∩ σ2) is a
face of σ1 ∩ σ2 and hence of σ2. Thus τ1 ∩ τ2 = τ2 ∩ (τ1 ∩ σ2) is a face of τ2.] If Σ is a

fan and Σ0 is boundary data for Σ, then Σ0 is a partial fan, and Σ ⊃ Σ̃0. Thus

∂Σ0TΣ
∼= ∂Σ0TΣ̃0

.

If Σ0 and Σ′0 are partial fans we will say that Σ0 refines Σ′0 if every element of Σ0 is
contained in an element of Σ′0 and if every element of Σ′0 is a finite union of elements

of Σ0. In this case Σ̃0 also refines Σ̃′0.
If Σ0 is a partial fan we will set

|Σ0| = {0} ∪
⋃
σ∈Σ0

σ = |Σ̃0|.

and
|Σ0|0 = |Σ0| −

⋃
σ∈Σ̃0−Σ0

σ.

We will call Σ0

• smooth if each σ ∈ Σ0 is smooth;
• full if every element of Σ0 which is not a face of any other element of Σ0, has

the same dimension as S;
• open if |Σ0|0 is open in X∗(S)R;
• finite if it has finite cardinality;
• locally finite if for every rational polyhedral cone τ ⊂ |Σ0| (not necessarily in

Σ0) the intersection τ ∩ |Σ0|0 meets only finitely many elements of Σ0.

If Σ0 is smooth, so is Σ̃0.

Suppose that Σ0 is a partial fan. If Σ ⊃ Σ̃0 is a fan then the natural maps

∂Σ0TΣ̃0
−→ ∂Σ0TΣ

and
(TΣ̃0

)∧∂Σ0
T −→ (TΣ)∧∂Σ0

T

are isomorphisms, and we will denote these schemes/formal schemes ∂Σ0T and T∧Σ0

respectively. Moreover the log structures induced on T∧Σ0
by MΣ̃0

and by MΣ are
the same and we will denote them M∧

Σ0
. If Σ′0 ⊂ Σ0 is also a partial fan, then T∧Σ′0
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can be identified with the completion of T∧Σ0
along ∂Σ′0

T , and M∧
Σ0

induces M∧
Σ′0

. If

σ ∈ Σ̃0 then we will let

(T∧Σ0
)σ

denote the restriction of T∧Σ0
to the topological space (∂Σ0TΣ̃0

)σ. Thus the (T∧Σ0
)σ for

σ ∈ Σ0 form an affine open cover of T∧Σ0
. We have

(T∧Σ0
){0} = ∅

and

(T∧Σ0
)σ1 ∩ (T∧Σ0

)σ2 = (T∧Σ0
)σ1∩σ2 .

If Σ′0 refines Σ0 then there is an induced map

T∧Σ′0 −→ T∧Σ0
.

Continue to suppose that Σ0 is a partial fan. We will call Σ1 ⊂ Σ0 boundary data
if, whenever σ ∈ Σ0 contains σ′ ∈ Σ1, then σ ∈ Σ1. In this case Σ1 is a partial fan
and T∧Σ1

is canonically identified with the completion of T∧Σ0
along ∂Σ1TΣ̃0

.
We will also use the following notation.

• OT∧Σ0
will denote the structure sheaf of T∧Σ0

.

• IT∧Σ0
will denote the completion of I∂Σ0

T
Σ̃0

, an ideal of definition for T∧Σ0
.

• I∧∂,Σ0
will denote the completion of I∂T

Σ̃0
. Thus IT∧Σ0

⊃ I∧∂,Σ0
.

• Ω1
T∧Σ0

/Spf R0
(log∞) will denote Ω1

T∧Σ0
/Spf R0

(logM∧
Σ), which is isomorphic to the

completion of Ω1
T

Σ̃0
/SpecR0

(log∞).

For σ ∈ Σ̃0 recall that Im∂Σ0
T

Σ̃0

|Tσ corresponds to the ideal⊕
χ∈XΣ0,σ,m

LT (χ)

of ⊕
χ∈σ∨∩X∗(S)

LT (χ).

Also recall that if σ 6∈ Σ0 then

XΣ0,σ,m = σ∨ ∩X∗(S)

for all m, while if σ ∈ Σ0 then ⋂
m

XΣ0,σ,m = ∅.

By line bundle data for Σ0 we mean a continuous function ψ : |Σ0| → R, such that

for each cone σ ∈ Σ̃0, the restriction ψ|σ equals some ψσ ∈ X∗(S). This is the same

as line bundle data for the fan Σ̃0, and we will write L∧ψ for the line bundle on T∧Σ0
,

which is the completion of Lψ/TΣ̃0
. Note that

L∧ψ ⊗ L∧ψ′ = L∧ψ+ψ′ ,
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and that

(L∧ψ)⊗−1 = L∧−ψ.
We have the following examples of line bundle data.

(1) OT∧Σ0
is the line bundle associated to ψ ≡ 0.

(2) If Σ0 is smooth then I∧∂,Σ0
is the line bundle associated to the unique such

function ψΣ̃0
which for every one dimensional cone σ ∈ Σ̃0 satisfies

ψΣ̃0
(X∗(S) ∩ σ) = Z≥0.

Suppose that α : S →→ S ′ is a surjective map of tori, and that Σ0 (resp. Σ′0) is a
partial fan for S (resp. S ′). We call Σ0 and Σ′0 compatible if for every σ ∈ Σ0 the

image X∗(α)σ is contained in some element of Σ′0 but in no element of Σ̃′0 − Σ′0. In

this case (Σ̃0,Σ0) and (Σ̃′0,Σ
′
0) are compatible, and there is a natural morphism

α : (T∧Σ0
,M∧

Σ0
) −→ ((α∗T )∧Σ′0 ,M

∧
Σ′0

).

We will write

Ω1
T∧Σ0

/(α∗T )∧
Σ′0

(log∞) = Ω1
T∧Σ0

/(α∗T )∧
Σ′0

(logM∧
Σ0
/M∧

Σ′0
).

The following lemma follows immediately from lemma 2.5.

Lemma 2.8. If α is surjective and #cokerX∗(α) is invertible on Y then there is a
natural isomorphism

(X∗(S)/X∗(α)X∗(S ′))⊗Z OT∧Σ0

∼−→ Ω1
T∧Σ0

/(α∗T )∧
Σ′0

(log∞).

We will call Σ0 and Σ′0 strictly compatible if they are compatible and if an element

of Σ̃0 lies in Σ0 if and only if it maps to no element of Σ̃′0 −Σ′0. In this case (Σ̃0,Σ0)

and (Σ̃′0,Σ
′
0) are strictly compatible. We will say that

• Σ0 is open over Σ′0 if |Σ0|0 is open in X∗(α)−1|Σ′0|0;
• and that Σ0 is finite over Σ′0 if only finitely many elements of Σ0 map into

any element of Σ′0.

If α is an isogeny, if Σ0 and Σ′0 are strictly compatible, and if every element of Σ′0 is a
finite union of elements of Σ0, then we call Σ0 a quasi-refinement of Σ′0. In this case
Σ0 is open and finite over Σ′0. The next lemma follows immediately from lemmas 2.6
and 2.7.

Lemma 2.9. Suppose that Σ′0 and Σ0 are strictly compatible.

(1) T∧Σ0
is the formal completion of TΣ̃0

along ∂Σ′0
(α∗T ), and T∧Σ0

is locally (on the
source) topologically of finite type over (α∗T )∧Σ′0

.

(2) If Σ0 is locally finite and if it is open and finite over Σ′0 then T∧Σ0
is proper

over (α∗T )∧Σ′0
.

Corollary 2.10. If α is an isogeny, if Σ0 is locally finite, and if Σ0 is a quasi-
refinement of Σ′0 then T∧Σ0

is proper over (α∗T )∧Σ′0
.



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 67

If Σ0 and Σ′0 are compatible partial fans and if Σ′1 ⊂ Σ′0 is boundary data then
Σ0(Σ′1) will denote the set of elements σ ∈ Σ0 such that X∗(α)σ is contained in no
element of Σ′0 − Σ′1. It is boundary data for Σ0. Moreover the formal completion of
T∧Σ0

along the reduced sub-scheme of (α∗T )∧Σ′1
is canonically identified with T∧Σ0(Σ′1).

If Σ′1 = {σ′} is a singleton we will write Σ0(σ′) for Σ0({σ′}).
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2.4. Cohomology of line bundles.

In this section we will compute the cohomology of line bundles on formal comple-
tions of torus embeddings. We will work throughout over a base scheme Y which is
connected, separated, and flat and locally of finite type over SpecR0.

We start with some definitions. We continue to assume that S/Y is a split torus,
that T/Y is an S-torsor, that Σ0 is a partial fan and that ψ is line bundle data for

Σ0. If σ ∈ Σ̃0 then we set

XΣ0,ψ,σ,0 = {χ ∈ X∗(S) ∩ σ∨ : χ ≥ ψ on σ}.
For m > 0 we define XΣ0,ψ,σ,m to be the set of sums of an element of XΣ0,ψ,σ,0 and an
element of XΣ0,σ,m. If σ 6∈ Σ0 then

XΣ0,ψ,σ,m = XΣ0,ψ,σ,0

for all m, while if σ ∈ Σ0 ⋂
m

XΣ0,ψ,σ,m = ∅.

Further suppose that χ ∈ X∗(S).

• Set Yψ(χ) = {x ∈ X∗(S)R : (ψ − χ)(x) > 0}.
• If U ⊂ Y is open let Hj

Σ0,ψ,m
(χ)(U) denote the jth cohomology of the Cech

complex with ith term ∏
(σ0,...,σi)∈Σi+1

0
χ∈XΣ0,ψ,σ0∩...∩σi,0
χ 6∈XΣ0,ψ,σ0∩...∩σi,m

LT (χ)(U).

Note the examples:

(1) Y0(χ) ∩ |Σ0|0 = ∅ if and only if χ ∈ |Σ0|∨.
(2) Yψ

Σ̃0
(χ) ∩ |Σ0|0 = ∅ if and only if χ ∈ |Σ0|∨,0.

Also note that if Σ0 is finite then, for m large enough, Hj
Σ0,ψ,m

(χ)(U) does not depend

on m. We will denote it simply Hj
Σ0,ψ

(χ)(U). It equals the cohomology of the Cech
complex ∏

(σ0,...,σi)∈Σi+1
0

σ0∩...∩σi∈Σ0

LT (χ)(U).

Lemma 2.11. If U is connected then

H i
Σ0,ψ

(χ)(U) = H i
|Σ0|0−Yψ(χ)(|Σ0|0,LT (χ)(U)).

Proof: Write M for LT (χ)(U). We follow the argument of section 3.5 of [Fu]. As
σ0 ∩ ... ∩ σi ∩ |Σ0|0 and σ0 ∩ ... ∩ σi ∩ |Σ0|0 ∩ Yψ(χ) are convex, we see that

Hj
(σ0∩...∩σi∩|Σ0|0)−Yψ(χ)(σ0 ∩ ... ∩ σi ∩ |Σ0|0,M)

=

{
M if j = 0 and (σ0 ∩ ... ∩ σi ∩ |Σ0|0) ∩ Yψ(χ) = ∅
(0) otherwise.
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(See the first paragraph of section 3.5 of [Fu].) Thus the ith term of our Cech complex
becomes ∏

(σ0,...,σi)∈Σi+1
0

H0
(σ0∩...∩σi∩|Σ0|0)−Yψ(χ)(σ0 ∩ ... ∩ σi ∩ |Σ0|0,M).

Thus it suffices to show that the Cech complex with ith term∏
(σ0,...,σi)∈Σi+1

0

H0
(σ0∩...∩σi∩|Σ0|0)−Yψ(χ)(σ0 ∩ ... ∩ σi ∩ |Σ0|0,M)

computes

H i
|Σ0|0−Yψ(χ)(|Σ0|0,M).

To this end choose an injective resolution

M −→ I0 −→ I1 −→ ...

as sheaves of abelian groups on |Σ0|0, and consider the double complex∏
(σ0,...,σi)∈Σi+1

0

H0
(σ0∩...∩σi∩|Σ0|0)−Yψ(χ)(σ0 ∩ ... ∩ σi ∩ |Σ0|0, Ij).

We compute the cohomology of the corresponding total complex in two ways. Firstly
the jth cohomology of the complex

H0
(σ0∩...∩σi∩|Σ0|0)−Yψ(χ)(σ0 ∩ ... ∩ σi ∩ |Σ0|0, I0)

↓
H0

(σ0∩...∩σi∩|Σ0|0)−Yψ(χ)(σ0 ∩ ... ∩ σi ∩ |Σ0|0, I1)

↓
...

equals

Hj
(σ0∩...∩σi∩|Σ0|0)−Yψ(χ)(σ0 ∩ ... ∩ σi ∩ |Σ0|0,M).

(See theorem 4.1, proposition 5.3 and theorem 5.5 of chapter II of [Br].) This vanishes
for j > 0, and so the cohomology of our total complex is the same as the cohomology
of the Cech complex with ith term∏

(σ0,...,σi)∈Σi+1
0

H0
(σ0∩...∩σi∩|Σ0|0)−Yψ(χ)(σ0 ∩ ... ∩ σi ∩ |Σ0|0,M).

Thus it suffices to identify the cohomology of our double complex with

H i
|Σ0|0−Yψ(χ)(|Σ0|0,M).

For this it suffices to show that

(0) −→ H0
|Σ0|0−Yψ(χ)(|Σ0|0, Ij) −→

∏
σ0∈Σ0

H0
σ0∩|Σ0|0−Yψ(χ)(σ0 ∩ |Σ0|0, Ij)

−→
∏

(σ0,σ1)∈Σ2
0
H0

(σ0∩σ1∩|Σ0|0)−Yψ(χ)(σ0 ∩ σ1 ∩ |Σ0|0, Ij) −→ ...
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is exact for all j. Let Ĩj denote the sheaf of discontinuous sections of Ij, i.e. Ĩj(V )
denotes the set of functions which assign to each point of x ∈ V an element of the

stalk Ijx of Ij at x. Then Ij is a direct summand of Ĩj so it suffices to show that

(0) −→ H0
|Σ0|0−Yψ(χ)(|Σ0|0, Ĩj) −→

∏
σ0∈Σ0

H0
σ0∩|Σ0|0−Yψ(χ)(σ0 ∩ |Σ0|0, Ĩj)

−→
∏

(σ0,σ1)∈Σ2
0
H0

(σ0∩σ1∩|Σ0|0)−Yψ(χ)(σ0 ∩ σ1 ∩ |Σ0|0, Ĩj) −→ ...

is exact for all j. However Ĩj is the direct product over x in |Σ0|0 of the sky-scraper

Ijx sheaf at x with stalk Ijx. Thus it suffices to show that

(0) −→ H0
|Σ0|0−Yψ(χ)(|Σ0|0, I

j

x) −→
∏

σ0∈Σ0
H0
σ0∩|Σ0|0−Yψ(χ)(σ0 ∩ |Σ0|0, I

j

x)

−→
∏

(σ0,σ1)∈Σ2
0
H0

(σ0∩σ1∩|Σ0|0)−Yψ(χ)(σ0 ∩ σ1 ∩ |Σ0|0, I
j

x) −→ ...

is exact for all x ∈ |Σ0|0 and for all j. If x ∈ Yψ(χ) ∩ |Σ0|0 all the terms in this
sequence are 0, so the sequence is certainly exact. If x ∈ |Σ0|0−Yψ(χ), this sequence
equals

(0) −→ Ijx −→
∏
σ0∈Σ0
x∈σ

Ijx −→
∏

(σ0,σ1)∈Σ2
0

x∈(σ0∩σ1)

Ijx −→ ...

A standard argument shows that this is indeed exact: Choose σ ∈ Σ0 with x ∈ σ.
Suppose

(a(σ0, ..., σi)) ∈ ker

 ∏
(σ0,...,σi)∈Σi+1

0
x∈σ0∩...∩σi

Ijx −→
∏

(σ0,...,σi+1)∈Σi+2
0

x∈σ0∩...∩σi+1

Ijx

 .

Define
(a′(σ0, ..., σi−1)) ∈

∏
(σ0,...,σi−1)∈Σi0
x∈σ0∩...∩σi−1

Ijx

by
a′(σ0, ..., σi−1) = a(σ0, ..., σi−1, σ).

If ∂a′ denotes the image of a′ in ∏
(σ0,...,σi)∈Σi+1

0
x∈σ0∩...∩σi

Ijx

then

(∂a′)(σ0, ..., σi) =
i∑

k=0

(−1)ka(σ0, ..., σ̂k, ..., σi, σ) = (−1)ia(σ0, ..., σi),

i.e. a = (−1)i∂a′. �

In general we will let H i
|Σ0|0−Yψ(χ)(|Σ0|0,LT (χ)) denote the sheaf of OY -modules on

Y associated to the pre-sheaf

U 7−→ H i
|Σ0|0−Yψ(χ)(|Σ0|0,LT (χ)(U)).
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Lemma 2.12. Let Y be a connected, separated scheme which is flat and locally of
finite type over an irreducible noetherian ring R0, let S/Y be a split torus, let T/Y
be an S-torsor, let Σ0 be a partial fan for S, let ψ be line bundle data for Σ0, and let
π∧Σ0

denote the map T∧Σ0
→ Y . Suppose that Σ0 is finite, non-empty and open. Then

Riπ∧Σ0,∗L
∧
ψ =

∏
χ∈X∗(S)

H i
|Σ0|0−Yψ(χ)(|Σ0|0,LT (χ)).

(Note that Riπ∧Σ0,∗L
∧
ψ may not be quasi-coherent on Y . Infinite products of quasi-

coherent sheaves may not be quasi-coherent.)

Proof: The left hand side is the sheaf associated to the pre-sheaf

U 7−→ H i(T∧Σ0
|U ,L∧ψ)

and the right hand side is the sheaf associated to the pre sheaf

U 7−→
∏

χ∈X∗(S)(U)

H i
|Σ0|0−Yψ(χ)(|Σ0|0,LT (χ)(U)).

Thus it suffices to establish isomorphisms

H i(T∧Σ0
|U ,L∧ψ) ∼=

∏
χ∈X∗(S)(U)

H i
|Σ0|0−Yψ(χ)(|Σ0|0,LT (χ)(U)),

compatibly with restriction, for U = SpecA, with A noetherian and SpecA con-
nected.

Write ∂Σ0,mTΣ̃0
for the closed subscheme of TΣ̃0

defined by Im∂Σ0
T

Σ̃0

. It has the same

underlying topological space as ∂Σ0TΣ̃0
. We will first compute

H i(∂Σ0,mTΣ̃0
|U ,Lψ/Im∂Σ0

T
Σ̃0

Lψ),

using the affine cover of ∂Σ0,mTΣ̃0
by the open sets Tσ for σ ∈ Σ0. This gives rise to

a Cech complex with terms∏
(σ0,...,σi)∈Σi+1

0

⊕
χ∈X∗(S)

χ∈XΣ0,ψ,σ0∩...∩σi,0
χ 6∈XΣ0,ψ,σ0∩...∩σi,m

LT (χ)(U).

As Σ0 is finite, we see that

H i(∂Σ0,mTΣ̃0
|U ,Lψ/Im∂Σ0

T
Σ̃0

Lψ) =
⊕

χ∈X∗(S)

H i
Σ0,ψ,m

(χ)(U).

Because A is noetherian, because ∂Σ0,mTΣ̃0
is proper over SpecA and because

Lψ/Im∂Σ0
T

Σ̃0

Lψ is a coherent sheaf on ∂Σ0,mTΣ̃0
, we see that the cohomology group

H i(∂Σ0,mTΣ̃0
|U ,Lψ/Im∂Σ0

T
Σ̃0

Lψ) is a finitely generated A-module, and hence, for fixed

m and i, we see that the groups H i
Σ0,ψ,m

(χ)(U) = (0) for all but finitely many χ. In
particular

H i(∂Σ0,mTΣ̃0
|U ,Lψ/Im∂Σ0

T
Σ̃0

Lψ) =
∏

χ∈X∗(S)

H i
Σ0,ψ,m

(χ)(U).
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Moreover, combining this observation with the fact that {H i
Σ0,ψ,m

(χ)(U)} satisfies
the Mittag-Leffler condition, we see that the system

{H i(∂Σ0,mTΣ̃0
|U ,Lψ/Im∂Σ0

T
Σ̃0

Lψ)}

satisfies the Mittag-Leffler condition. Hence from proposition 0.13.3.1 of [EGA3] we
see that

H i(T∧Σ0
|U ,L∧ψ) ∼= lim←mH

i(∂Σ0,mTΣ̃0
|U ,Lψ/Im∂Σ0

T
Σ̃0

Lψ)
∼=

∏
χ∈X∗(S) lim←mH

i
Σ0,ψ,m

(χ)(U),

and the present lemma follows from lemma 2.11. �

Lemma 2.13. Let Y be a connected, separated scheme which is flat and locally of
finite type over an irreducible noetherian ring R0, S/Y be a split torus, let T/Y be
an S-torsor, let Σ∞ be a partial fan for S, let

Σ1 ⊂ Σ2 ⊂ ...

be a nested sequence of partial fans with Σ∞ =
⋃
i Σi and let ψ be line bundle data

for Σ∞. For i = 1, 2, 3, ...,∞ let π∧Σi denote the map T∧Σi → Y .
Suppose that for i ∈ Z>0 the partial fan Σi is finite, non-empty and open. Suppose

also that for all i ∈ Z≥0 and all connected, noetherian, affine open sets U ⊂ Y , the
inverse system

{H i
|Σj |0−Yψ(χ)(|Σj|0,OY (U))}j

satisfies the Mittag-Leffler condition. Then

Riπ∧Σ∞,∗L
∧
ψ
∼=

∏
χ∈X∗(S)

lim
←j

H i
|Σj |0−Yψ(χ)(|Σj|0,LT (χ)).

Proof: The left hand side is the sheaf associated to the pre-sheaf

U 7−→ H i(T∧Σ∞|U ,L
∧
ψ)

and the right hand side is the sheaf associated to the pre-sheaf

U 7−→
∏

χ∈X∗(S)

lim
←j

H i
|Σj |0−Yψ(χ)(|Σj|0,OY (U))⊗ LT (χ)(U).

Thus it suffices to establish isomorphisms

H i(T∧Σ∞|U ,L
∧
ψ) ∼=

∏
χ∈X∗(S)(Y )

lim
←j

H i
|Σj |0−Yψ(χ)(|Σj|0,OY (U))⊗ LT (χ)(U),

compatibly with restriction, for U = SpecA, with A noetherian and SpecA con-
nected.

We can compute H i(T∧Σ∞|U ,L
∧
ψ) as the cohomology of the Cech complex with ith

term ∏
(σ0,...,σi)∈Σi+1

∞

L∧ψ((T∧Σ∞)(σ0∩...∩σi)|U),
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and we can compute H i(T∧Σj |U ,L
∧
ψ) as the cohomology of the Cech complex with ith

term ∏
(σ0,...,σi)∈Σi+1

j

L∧ψ((T∧Σj)(σ0∩...∩σi)|U).

Note that as soon as the faces of σ in Σj equals the faces of σ in Σ∞ then (T∧Σ∞)σ =
(T∧Σj)σ. Thus

lim
←j

∏
(σ0,...,σi)∈Σi+1

j

L∧ψ((T∧Σj)(σ0∩...∩σi)|U) ∼=
∏

(σ0,...,σi)∈Σi+1
∞

L∧ψ((T∧Σ∞)(σ0∩...∩σi)|U),

and 
∏

(σ0,...,σi)∈Σi+1
j

L∧ψ((T∧Σj)(σ0∩...∩σi)(U))


satisfies the Mittag-Leffler condition (with j varying but i fixed).

From theorem 3.5.8 of [W] we see that there is a short exact sequence

(0) −→ lim
←j

1H i−1(T∧Σj |U ,L
∧
ψ) −→ H i(T∧Σ∞|U ,L

∧
ψ) −→ lim

←j
H i(T∧Σj |U ,L

∧
ψ) −→ (0).

Applying lemma 2.12 and the fact that lim← and lim←
1 in the category of abelian

groups commute with arbitrary products, the present lemma follows. (It follows easily
from definition 3.5.1 of [W] and the exactness of infinite products in the category of
abelian groups that lim← and lim←

1 commute with arbitrary products in the category
of abelian groups.) �

We now turn to two specific line bundles: OT∧Σ0
and, in the case that Σ0 is smooth,

I∧∂,Σ0
.

Lemma 2.14. Let Y be a connected, separated scheme which is flat and locally of
finite type over an irreducible noetherian ring R0, let S/Y be a split torus, let T/Y
be an S-torsor, let Σ0 be a partial fan for S, and let π∧Σ0

denote the map T∧Σ0
→ Y .

Suppose that Σ0 is non-empty, finite and open and that |Σ0|0 is convex.

(1) Then

Riπ∧Σ0,∗OT∧Σ0
=

{ ∏
χ∈|Σ0|∨ L(χ) if i = 0

(0) otherwise.

(2) If in addition Σ0 is smooth then

Riπ∧Σ0,∗I
∧
∂,Σ0

=

{ ∏
χ∈|Σ0|∨,0 L(χ) if i = 0

(0) otherwise.

Proof: The first part follows from lemma 2.12 because Y0(χ) ∩ |Σ0|0 is empty if
χ ∈ |Σ0|∨ and otherwise, being the intersection of two convex sets, it is convex.

For the second part we have that Yψ
Σ̃0

(χ) ∩ |Σ0|0 = ∅ if and only if χ ∈ |Σ0|∨,0.

Thus it suffices to show that each Yψ
Σ̃0

(χ) ∩ |Σ0|0 is empty or contractible.
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To this end, consider the sets

Y ′(χ) =
⋃
σ∈Σ0

χ≤0 on σ

σ

and

Y ′′(χ) =
⋃
σ∈Σ0

χ 6>0 on σ−{0}

σ.

If χ > 0 on σ − {0} then χ ≥ ψΣ̃0
on σ so that σ ∩ Yψ

Σ̃0
(χ) = ∅. Thus

Y ′′(χ) ⊃ Yψ
Σ̃0

(χ) ∩ |Σ0|0 ⊃ Y ′(χ) ∩ |Σ0|0

and

Y ′′(χ) ⊃ {x ∈ |Σ0|0 : χ(x) ≤ 0} ⊃ Y ′(χ) ∩ |Σ0|0.
We will describe a deformation retraction

H : Y ′′(χ)× [0, 1] −→ Y ′′(χ)

from Y ′′(χ) to Y ′(χ), which restricts to deformation retractions

(Yψ
Σ̃0

(χ) ∩ |Σ0|0)× [0, 1] −→ Yψ
Σ̃0
∩ |Σ0|0(χ)

from Yψ
Σ̃0

(χ) ∩ |Σ0|0 to Y ′(χ) ∩ |Σ0|0, and

{x ∈ |Σ0|0 : χ(x) ≤ 0} × [0, 1] −→ {x ∈ |Σ0|0 : χ(x) ≤ 0}
from {x ∈ |Σ0|0 : χ(x) ≤ 0} to Y ′(χ) ∩ |Σ0|0. (Recall that in particular H|Y ′(χ)×[0,1]

is just projection to the first factor.) As {x ∈ |Σ0|0 : χ(x) ≤ 0} is empty or convex,
it would follow that Yψ

Σ̃0
(χ) ∩ |Σ0|0 is empty or contractible and the second part of

the corollary would follow.

To define H it suffices to define, for each σ ∈ Σ̃0 with σ ⊂ Y ′′(χ), a deformation
retraction

Hσ : σ × [0, 1] −→ σ

from σ to σ ∩ Y ′(χ) with the following properties:

• If σ′ ⊂ σ then Hσ|σ′×[0,1] = Hσ′ .
• Hσ|(σ∩Yψ

Σ̃0
(χ)∩|Σ0|0)×[0,1] is a deformation retraction from σ∩Yψ

Σ̃0
(χ)∩ |Σ0|0 to

σ ∩ Y ′(χ) ∩ |Σ0|0.
• Hσ|(σ∩{x∈|Σ0|0: χ(x)≤0})×[0,1] is a deformation retraction from σ ∩ {x ∈ |Σ0|0 :
χ(x) ≤ 0} to σ ∩ Y ′(χ) ∩ |Σ0|0.

To define Hσ, let v1, ..., vr, w1, ..., ws denote the shortest non-zero vectors in X∗(S)
on each of the one dimensional faces of σ (so that r + s = dimσ), with the notation
chosen such that χ(vi) ≤ 0 for all i and χ(wj) > 0 for all j. Note that 1− χ(vi) > 0
for all i and 1− χ(wj) ≤ 0 for all j. We set

Hσ(
∑
i

aivi +
∑
j

biwj, t) =
∑
i

aivi + (1− t)
∑
j

biwj.
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Because

σ ∩ Yψ
Σ̃0

(χ) ∩ |Σ0|0 = {
∑

i aivi +
∑

j bjwj : ai, bj ∈ R≥0 and∑
i ai(1− χ(vi)) +

∑
j bj(1− χ(wj)) > 0} ∩ |Σ0|0

and

σ ∩ {x ∈ |Σ0|0 : χ(x) ≤ 0} =
{
∑

i aivi +
∑

j bjwj : ai, bj ∈ R≥0 and
∑

i aiχ(vi) +
∑

j bjχ(wj) ≤ 0} ∩ |Σ0|0

are convex sets, and because

σ ∩ Y ′(χ) = {
∑
i

aivi : ai ∈ R≥0},

it is easy to check that it has the desired properties and the proof of the lemma is
complete. �

Lemma 2.15. Let Y be a connected, separated scheme which is flat and locally of
finite type over an irreducible noetherian ring R0, let α : S → S ′ be an isogeny of
split tori over Y , and let Σ′0 (resp. Σ0) be a locally finite partial fan for S ′ (resp. S).
Suppose that Σ′0 is full. Also suppose that Σ0 is a quasi-refinement of Σ′0, and let π∧

denote the map T∧Σ0
→ (α∗T )∧Σ′0

.

Then for i > 0 we have
Riπ∧∗OT∧Σ0

= (0),

while
O(α∗T )∧

Σ′0

∼−→ (π∧∗OT∧Σ0
)kerα.

If moreover Σ0 and Σ′0 are smooth then, for i > 0 we have

Riπ∧∗ I∧∂,Σ0
= (0).

while
I∧∂,Σ′0

∼−→ (π∧∗ I∧∂,Σ0
)kerα.

Proof: We may reduce to the case that Y = SpecA is affine. The map π∧ is proper
and hence

Riπ∧∗OT∧Σ0

and
Riπ∧∗ I∧∂,Σ0

and
coker (O(α∗T )∧

Σ′0
−→ (π∧∗OT∧Σ0

)kerα)

and
coker (I∧∂,Σ′0 −→ (π∧∗ I∧∂,Σ0

)kerα)

are coherent sheaves. Thus they have closed support. Their support is also S-
invariant. Thus it suffices to show that for each maximal element σ′ ∈ Σ′0 the space
∂σ′(α∗T )Σ̃′0

does not lie in the support of these sheaves. Let Σ0(σ′) denote the subset

of elements σ ∈ Σ0 which lie in σ′, but in no face of σ′. Then Σ0(σ′) is a partial
fan and T∧Σ0(σ′) equals the formal completion of T∧Σ0

along ∂σ′TΣ̃′0
. Thus the formal
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completion of the above four sheaves along ∂σ′TΣ̃′0
equal the corresponding sheaf for

the pair Σ0(σ′) and {σ′}, so that we are reduced to the case that Σ′0 = {σ′} is a
singleton.

In the case that Σ′0 = {σ′} then (α∗T )Σ′0
and Y have the same underlying topo-

logical space. Let π∧1 denote the map of ringed spaces T∧Σ0
→ Y . Then it suffices to

show that for i > 0 we have

Riπ∧1,∗OT∧Σ0
= (0)

and

Riπ∧1,∗I∧∂,Σ0
= (0);

and that we have

O(α∗T )∧
Σ′0

∼−→ (π∧1,∗OT∧Σ0
)kerα

and

I∧∂,Σ′0
∼−→ (π∧1,∗I∧∂,Σ0

)kerα.

This follows from lemma 2.14. (Note that∏
χ∈|Σ0|∨∩X∗(S)

L(χ) =
⊕

ξ∈(kerα)∨

∏
χ∈|Σ0|∨∩X∗(S)

χ|kerα=ξ

L(χ),

where kerα acts on the ξ term via ξ; and that

{χ ∈ |Σ0|∨ ∩X∗(S) : χ|kerα = 1} = |Σ0|∨ ∩X∗(S ′) = |{σ′}|∨ ∩X∗(S ′).

These assertions remain true with |Σ0|∨,0 replacing |Σ0|∨ and |{σ′}|∨,0 replacing
|{σ′}|∨.) �

Lemma 2.16. Let Y be a connected, separated scheme which is flat and locally of
finite type over an irreducible noetherian ring R0, let S/Y be a split torus, let T/Y
be an S-torsor, let Σ0 be a partial fan for S, and let π∧Σ0

denote the map of ringed
spaces T∧Σ0

→ Y . Suppose that Σ0 is non-empty, full, locally finite and open, and that
|Σ0|0 is convex.

(1) Then

Riπ∧Σ0,∗OT∧Σ0
=

{ ∏
χ∈|Σ0|∨ L(χ) if i = 0

(0) otherwise.

(2) If in addition Σ0 is smooth then

Riπ∧Σ0,∗I
∧
∂,Σ0

=

{ ∏
χ∈|Σ0|∨,0 L(χ) if i = 0

(0) otherwise.

Proof: Let σ1, σ2, ... be an enumeration of the 1 cones in Σ̃0. Let ∆(i) ⊂ |Σ| denote
the convex hull of σ1, ..., σi. It is a rational polyhedral cone contained in |Σ0|, and
there exists i0 such that for i ≥ i0 the cone ∆(i) will have the same dimension as
X∗(S)R. Let ∂∆(i) denote the union of the proper faces of ∆(i); and let ∆(i),c denote
the closure of |Σ0| −∆(i) in |Σ0|.
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Define recursively fans Σ(i) and boundary data Σ
(i)
0 as follows. We set Σ(i0−1) = Σ̃0

and Σ
(i0−1)
0 = Σ0. For i ≥ i0 set

Σ(i) = {σ ∩∆(i), σ ∩ ∂∆(i), σ ∩∆(i),c : σ ∈ Σ(i−1)}.

Then Σ(i) refines Σ(i−1) and we choose Σ
(i)
0 to be the unique subset of Σ(i) such that

(Σ(i),Σ
(i)
0 ) refines (Σ(i−1),Σ

(i−1)
0 ). Then Σ̃

(i)
0 = Σ(i). We also check by induction on i

that

• Σ(i) ∪ Σ(i−1) − (Σ(i) ∩ Σ(i−1)) is finite;

• and Σ
(i)
0 is locally finite.

(The point being that the local finiteness of Σ
(i−1)
0 implies that only finitely many

elements of Σ
(i−1)
0 , and hence of Σ(i−1), meet both ∆(i) − ∂∆(i) and X∗(S)R −∆(i).)

Now define Σ(∞) (resp. Σ
(∞)
0 ) to be the set of cones that occur in Σ(i) (resp. Σ

(i)
0 )

for infinitely many i. Alternatively

Σ(∞) =
⋃
i

{σ ∈ Σ(i) : σ ⊂ ∆(i)}.

Also let Σ(∞),sm denote a smooth refinement of Σ(∞) and let Σ
(∞),sm
0 denote the

elements of σ ∈ Σ(∞),sm for which there exists τ ∈ Σ0 such that σ ⊂ τ and σ∩τ 0 6= ∅.
(See lemma 2.4.) Then Σ(∞),sm is a fan, Σ

(∞),sm
0 provides locally finite boundary

data for Σ(∞),sm, we have Σ̃
(∞),sm
0 = Σ(∞),sm, and (Σ(∞),sm,Σ

(∞),sm
0 ) refines (Σ̃0,Σ0).

Moreover Σ
(∞),sm
0 is open. We also define Σ

(∞),sm
i to be the set of σ ∈ Σ

(∞),sm
0 such

that σ ⊂ ∆(i) but σ 6⊂ ∂∆(i). Note that:

• Σ
(∞),sm
i is finite and open;

• Σ
(∞),sm
i ⊃ Σ

(∞),sm
i−1 ;

• |Σ(∞),sm
i |0 = ∆(i) − ∂∆(i) is convex;

• and Σ
(∞),sm
0 =

⋃
i>0 Σ

(∞),sm
i .

(For the last of these properties use the fact that Σ
(∞),sm
0 is open.)

By lemma 2.15 it suffices to prove this lemma after replacing the pair Σ0 by Σ
(∞),sm
0 .

This lemma then follows from lemmas 2.13 and 2.14. �
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2.5. The case of a disconnected base.

Throughout this section we will continue to assume that Y is a separated scheme,
flat and locally of finite type over SpecR0. We prove nothing new in this section,
we simply explain how to re-express the last two sections in a way that makes sense
over a disconnected base, so that the results we have already established immediately
extend.

Let S be a split torus over Y and let T/Y be an S-torsor. By a rational polyhedral
cone σ in X∗(S)R we shall mean a locally constant sheaf of subsets σ ⊂ X∗(S)R, such
that

• for each connected open U ⊂ Y the set σ(U) ⊂ X∗(S)R(U) is either empty or
a rational polyhedral cone,
• and the locus where σ 6= ∅ is non-empty and connected. We call this locus

the support of σ.

We call σ′ a face of σ if for each open connected U either σ(U) = σ′(U) = ∅ or the
cone σ′(U) is a face of σ(U). We call σ smooth if each σ(U) is smooth. By a fan Σ
in X∗(S)R we mean a set of rational polyhedral cones in X∗(S)R, such that

• if σ ∈ Σ then so is any face σ′ of σ;
• if σ, σ′ ∈ Σ then σ ∩ σ′ is either empty or a face of σ and σ′,
• any connected component of Y arises as the support of some element of Σ.

Thus to give a fan in X∗(S)R is the same as giving a fan in X∗(S)R(Z) for each
connected component Z of Y . If U is a non-empty connected open in Y then we set

Σ(U) = {σ(U) : σ ∈ Σ} − {∅}.

It is a fan for X∗(S)R(U).
We call Σ smooth (resp. full, resp. finite) if each Σ(U) is. We define a locally

constant sheaf |Σ| of subsets of X∗(S)R by setting

|Σ|(U) =
⋃
σ∈Σ

σ(U)

(resp.

|Σ|∗(U) =
⋃
σ∈Σ

(σ(U)− {0}))

for U any connected open subset of Y . We will call |Σ| (resp. |Σ|∗) convex if |Σ|(U)
(resp. |Σ|∗(U)) is for each connected open U ⊂ Y . We also define locally constant
sheaves of subsets |Σ|∨ and |Σ|∨,0 of X∗(S)R by setting

|Σ|∨(U) = {χ ∈ X∗(S)R(U) : χ(|Σ|(U)) ⊂ R≥0} =
⋂
σ∈Σ

σ(U)∨

and

|Σ|∨,0(U) = {χ ∈ X∗(S)R(U) : χ(|Σ|∗(U)) ⊂ R>0} =
⋂
σ∈Σ

σ(U)∨,0.
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We call Σ′ a refinement of Σ if each Σ′(U) is a refinement of Σ(U) for each open,
connected U . Any fan Σ has a smooth refinement Σ′ such that every smooth cone
σ ∈ Σ also lies in Σ′.

To a fan Σ one can attach a scheme TΣ flat and separated over Y and locally
(on TΣ) of finite type over Y , together with an action of S and an S-equivariant
embedding T ↪→ TΣ. It has an open cover {Tσ}σ∈Σ, with each Tσ relatively affine
over Y . Over a connected open U ⊂ Y this restricts to the corresponding picture
for Σ(U). We write OTΣ

for the structure sheaf of TΣ. If Σ is smooth then TΣ/Y is
smooth. If Σ is finite and |Σ| = X∗(S)R, then TΣ is proper over Y . If Σ′ refines Σ
then there is an S-equivariant proper map

TΣ′ → TΣ

which restricts to the identity on T .
By boundary data we shall mean a proper subset Σ0 ⊂ Σ such that Σ−Σ0 is a fan.

If U ⊂ Y is a connected open we set

Σ0(U) = {σ(U) : σ ∈ Σ0} − {∅}.
If Σ0 is boundary data, then we can associate to it a closed subscheme ∂Σ0TΣ ⊂ TΣ,
which over a connected open U ⊂ Y restricts to ∂Σ0(U)(T |U)Σ(U) ⊂ (T |U)Σ(U).

In the case that Σ0 is the set of elements of Σ of dimension bigger than 0 we shall
simply write ∂TΣ for ∂Σ0TΣ. Thus T = TΣ − ∂TΣ. We will write I∂TΣ

for the ideal
of definition of ∂TΣ in OTΣ

. We will also write MΣ → OTΣ
for the associated log

structure and Ω1
TΣ/SpecR0

(log∞) for the log differentials Ω1
TΣ/SpecR0

(logMΣ).
If Σ is smooth then ∂TΣ is a simple normal crossings divisor on TΣ relative to Y .
If σ ∈ Σ has positive dimension and if Σ0 denotes the set of elements of Σ which

have σ for a face, then we will write ∂σTΣ for ∂Σ0TΣ. It is connected and flat over
Y , and, locally on Y , it has codimension in TΣ equal to the dimension of σ. If Σ is
smooth then each ∂σTΣ is smooth over Y . The schemes ∂σ1TΣ, ..., ∂σsTΣ intersect if
and only if σ1, ..., σs are all contained in some σ ∈ Σ. In this case the intersection
equals ∂σTΣ for the smallest such σ. We set

∂iTΣ =
∐

dimσ=i

∂σTΣ.

If the connected components of Y are irreducible then each ∂σTΣ is irreducible.
Moreover the irreducible components of ∂TΣ are the ∂σTΣ as σ runs over one dimen-
sional elements of Σ. If Σ is smooth then we see that S(∂TΣ) is the delta set with
cells in bijection with the elements of Σ with dimension bigger than 0 and with the
same ‘face relations’. In particular it is in fact a simplicial complex and

|S(∂TΣ)| =
∐

Z∈π0(Y )

|Σ|∗(Z)/R×>0.

We will call Σ0 open (resp. finite, resp. locally finite) if Σ0(U) is for each open
connected U ⊂ Y . If Σ0 is finite and open, then ∂Σ0TΣ is proper over Y .

By a partial fan in X∗(S) we mean a collection Σ0 of rational polyhedral cones in
X∗(S) such that
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• Σ0 does not contain (0) ⊂ X∗(S)(U)R for any open connected U ;
• if σ1, σ2 ∈ Σ0 then σ1 ∩ σ2 is either empty or a face of σ1 and of σ2;
• if σ1, σ2 ∈ Σ0 and if σ ⊃ σ2 is a face of σ1, then σ ∈ Σ0.

In this case we will let Σ̃0 denote the set of faces of elements of Σ0 together with {0}
supported on any connected component of Y . It is a fan, and Σ0 is boundary data

for Σ̃0. By boundary data Σ1 for Σ0 we shall mean a subset Σ1 ⊂ Σ0 such that if
σ ∈ Σ0 contains σ1 ∈ Σ1, then σ ∈ Σ1. In this case Σ1 is again a partial fan and

boundary data for Σ̃0. We say that a partial fan Σ0 for X∗(S) refines a partial fan
Σ′0 for X∗(S) if every element of Σ0 lies in an element of Σ′0 and if every element of
Σ′0 is a finite union of elements of Σ0.

If Σ0 is a partial fan we define locally constant sheaves of subsets |Σ0|, |Σ0|∗, |Σ0|∨
and |Σ0|∨,0 of X∗(S)R or X∗(S)R to be |Σ̃0|, |Σ̃0|∗, |Σ̃0|∨ and |Σ̃0|∨,0 respectively. We
also define a sheaf of subsets |Σ0|0 by

|Σ0|0(U) = |Σ̃0|(U) −
⋃

σ∈Σ̃0(U)−Σ0(U)

σ

for any connected open set U ⊂ Y . We will call |Σ0| (resp. |Σ0|0) convex if |Σ0|(U)
(resp. |Σ0|0(U)) is convex for all open connected subsets U ⊂ Y .

We will call Σ0 smooth (resp. full, resp. open, resp. finite, resp. locally finite) if
Σ0(U) is for each U ⊂ Y open and connected. We will call Σ0 non-degenerate if for
each non-empty connected open subset U ⊂ Y the set Σ0(U) is non-empty.

If Σ0 is a partial fan we will write

∂Σ0T

for ∂Σ0TΣ̃0
;

T∧Σ0

for the completion of TΣ̃0
along ∂Σ0TΣ̃0

; and

M∧
Σ0
−→ OT∧Σ0

for the log structure induced by MΣ̃0
. We make the following definitions.

• IT∧Σ0
will denote the completion of I∂Σ0

T
Σ̃0

, the sheaf of ideals defining ∂Σ0TΣ̃0
.

It is an ideal of definition for T∧Σ0
.

• I∧∂,Σ0
will denote the completion of I∂T

Σ̃0
, the sheaf of ideals defining ∂Σ0TΣ̃0

.

Thus I∧∂,Σ0
⊂ IT∧Σ0

.

• Ω1
T∧Σ0

/Spf R0
(log∞) will denote Ω1

T∧Σ0
/Spf R0

(logM∧
Σ).

We will write ∏
χ∈|Σ0|∨

LT (χ)

(resp. ∏
χ∈|Σ0|∨,0

LT (χ))
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for the sheaf (of abelian groups) on Y such that for any connected open subset U ⊂ Y
we have  ∏

χ∈|Σ0|∨
LT (χ)

∣∣∣∣∣∣
U

=
∏

χ∈|Σ0|∨(U)∩X∗(S)(U)

LT (χ)

(resp.  ∏
χ∈|Σ0|∨,0

LT (χ)

∣∣∣∣∣∣
U

=
∏

χ∈|Σ0|∨,0(U)∩X∗(S)(U)

LT (χ)).

Suppose that α : S → S ′ is a surjective map of split tori over Y . Then X∗(α) :
X∗(S ′) ↪→ X∗(S) and X∗(α) : X∗(S)R →→ X∗(S

′)R. We call fans Σ for X∗(S) and Σ′

for X∗(S
′) compatible if for all σ ∈ Σ the image X∗(α)σ is contained in some element

of Σ′. In this case the map α : T → α∗T extends to an S-equivariant map

α : TΣ −→ (α∗T )Σ′ .

We will write
Ω1
TΣ/(α∗T )Σ′

(log∞) = Ω1
TΣ/(α∗T )Σ′

(logMΣ/MΣ′).

The following lemma is an immediate consequence of lemma 2.5.

Lemma 2.17. If α is surjective and #cokerX∗(α) is invertible on Y then α :
(TΣ,MΣ)→ ((α∗T )Σ′ ,MΣ′) is log smooth, and there is a natural isomorphism

(X∗(S)/X∗(α)X∗(S ′))⊗Z OTΣ

∼−→ Ω1
TΣ/(α∗T )Σ′

(log∞).

If α is an isogeny, if Σ and Σ′ are compatible, and if every element of Σ′ is a finite
union of elements of Σ, then we call Σ a quasi-refinement of Σ′. In that case the map
α : TΣ → (α∗T )Σ′ is proper.

Suppose that α : S →→ S ′ is a surjective map of tori, and that Σ0 (resp. Σ′0) is a
partial fan for S (resp. S ′). We call Σ0 and Σ′0 compatible if for every σ ∈ Σ0 the

image X∗(α)σ is contained in some element of Σ′0 but in no element of Σ̃′0 − Σ′0. In
this case there is a natural morphism

α : (T∧Σ0
,M∧

Σ0
) −→ ((α∗T )∧Σ′0 ,M

∧
Σ′0

).

We will write

Ω1
T∧Σ0

/(α∗T )∧
Σ′0

(log∞) = Ω1
T∧Σ0

/(α∗T )∧
Σ′0

(logM∧
Σ0
/M∧

Σ′0
).

The following lemma follows immediately from lemma 2.8.

Lemma 2.18. If α is surjective and #cokerX∗(α) is invertible on Y then there is a
natural isomorphism

(X∗(S)/X∗(α)X∗(S ′))⊗Z OT∧Σ0

∼−→ Ω1
T∧Σ0

/(α∗T )∧
Σ′0

(log∞).

We will call Σ0 and Σ′0 strictly compatible if they are compatible and if an element

of Σ̃0 lies in Σ0 if and only if it maps to no element of Σ̃′0 − Σ′0. We will say that

• Σ0 is open over Σ′0 if |Σ0|0(U) is open in X∗(α)−1|Σ′0|0(U) for all connected
opens U ⊂ Y ;
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• and that Σ0 is finite over Σ′0 if only finitely many elements of Σ0 map into
any element of Σ′0.

If α is an isogeny, if Σ0 and Σ′0 are strictly compatible, and if every element of Σ′0 is a
finite union of elements of Σ0, then we call Σ0 a quasi-refinement of Σ′0. In this case
Σ0 is open and finite over Σ′0. The next lemma follows immediately from lemma 2.9.

Lemma 2.19. Suppose that Σ′0 and Σ0 are strictly compatible.

(1) T∧Σ0
is the formal completion of TΣ̃0

along ∂Σ′0
(α∗T ), and T∧Σ0

is locally (on the
source) topologically of finite type over (α∗T )∧Σ′0

.

(2) If Σ0 is locally finite and if it is open and finite over Σ′0 then T∧Σ0
is proper

over (α∗T )∧Σ′0
.

Corollary 2.20. If α is an isogeny, if Σ0 is locally finite, and if Σ0 is a quasi-
refinement of Σ′0 then T∧Σ0

is proper over (α∗T )∧Σ′0
.

If Σ0 and Σ′0 are compatible partial fans and if Σ′1 ⊂ Σ′0 is boundary data then
Σ0(Σ′1) will denote the set of elements σ ∈ Σ0 such that X∗(α)σ is contained in no
element of Σ′0 − Σ′1. It is boundary data for Σ0. Moreover the formal completion of
T∧Σ0

along the reduced sub-scheme of (α∗T )∧Σ′1
is canonically identified with T∧Σ0(Σ′1).

If Σ′1 = {σ′} is a singleton we will write Σ0(σ′) for Σ0({σ′}).
The next two lemmas follow immediately from lemmas 2.15 and 2.16 respectively.

Lemma 2.21. Let Y be a separated scheme which is flat and locally of finite type
over an irreducible noetherian ring R0, let α : S → S ′ be an isogeny of split tori over
Y , let Σ′0 (resp. Σ0) be a locally finite partial fan for S ′ (resp. S). Suppose that Y
is separated and locally noetherian, that Σ′0 is full and that Σ0 is locally finite. Also
suppose that Σ0 is a quasi-refinement of Σ′0. Let π∧ denote the map T∧σ0

→ (α∗T )∧σ′0
.

Then for i > 0 we have
Riπ∧∗OT∧Σ0

= (0),

while
O(α∗T )∧

Σ′0

∼−→ (π∧∗OT∧Σ0
)kerα.

If moreover Σ0 and Σ′0 are smooth then, for i > 0 we have

Riπ∧∗ I∧∂,Σ0
= (0).

while
I∧∂,Σ′0

∼−→ (π∧∗ I∧∂,Σ0
)kerα.

Lemma 2.22. Let Y be a separated scheme which is flat and locally of finite type over
an irreducible noetherian ring R0, let S/Y be a split torus, let T/Y is an S-torsor,
let Σ0 be a partial fan for S, and let π∧Σ0

denote the map T∧Σ0
→ Y . Suppose that Y

is separated and locally noetherian, that Σ0 is non-degenerate, full, locally finite and
open, and that |Σ0|0 is convex.

(1) Then

Riπ∧Σ0,∗OT∧Σ0
=

{ ∏
χ∈|Σ0|∨ L(χ) if i = 0

(0) otherwise.
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(2) If in addition Σ0 is smooth then

Riπ∧Σ0,∗I
∧
∂,Σ0

=

{ ∏
χ∈|Σ0|∨,0 L(χ) if i = 0

(0) otherwise.
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3. Shimura Varieties.

In this section we will describe the Shimura varieties associated to Gn and the
mixed Shimura varieties associated to G

(m)
n and G̃

(m)
n . We assume that all schemes

discussed in this section are locally noetherian.

3.1. Some Shimura varieties.

3.1.1. Moduli Problems: By a Gn-abelian scheme over a scheme Y/Q we shall mean
an abelian scheme A/Y of relative dimension n[F : Q] together with an embedding

i : F ↪→ End (A/Y )Q

such that LieA is a locally free rightOY⊗QF -module of rank n. By a morphism (resp.
quasi-isogeny) of Gn-abelian schemes we mean a morphism (resp. quasi-isogeny)
of abelian schemes which commutes with the F -action. If (A, i) is a Gn-abelian
scheme then we give A∨ the structure (A∨, i∨) of a Gn-abelian scheme by setting
i∨(a) = i(ca)∨. By a quasi-polarization of a Gn-abelian scheme (A, i)/Y we shall
mean a quasi-isogeny λ : A→ A∨ of Gn-abelian schemes, some Q×-multiple of which
is a polarization. (Note that according to this convention, if λ is a polarization, then
−λ is a quasi-polarization.) If Y = Spec k with k a field, we will let 〈 , 〉λ denote
the Weil pairing induced on the adelic Tate module V A (see section 23 of [M]).

Lemma 3.1. If k is a field of characteristic 0 and if (A, i, λ)/k is a quasi-polarized
Gn-abelian scheme, then Vp(A× k) is a free Fp-module of rank 2n.

Proof: We may suppose that k is a finitely generated field extension of Q, which
we may embed into C. Then

(Vp(A× k)⊗Qp,ı C) ∼= (LieAy ⊗k C)⊕ (LieAy ⊗k,c C),

so that Vp(A×k)⊗Qp,ıC is a free F ⊗QC-module. As F ⊗QC = Fp⊗Qp,ıC we deduce

that Vp(A× k) is a free Fp-module, as desired. �

By an ordinary Gn-abelian scheme over a Z(p)- scheme Y we shall mean an abelian
scheme A/Y of relative dimension n[F : Q], such that for each geometric point y of
Y we have #A[p](k(y)) ≥ pn[F :Q], together with an embedding

i : OF,(p) ↪→ End (A/Y )Z(p)

such that LieA is a locally free right OY ⊗Z(p)
OF,(p)-module of rank n. By a mor-

phism of ordinary Gn-abelian schemes we mean a morphism of abelian schemes which
commutes with the OF,(p)-action. If (A, i) is an ordinary Gn-abelian scheme then we
give A∨ the structure, (A∨, i∨), of a Gn-abelian scheme by setting i∨(a) = i(ca)∨. By
a prime-to-p quasi-polarization of an ordinary Gn-abelian scheme (A, i)/Y we shall
mean a prime-to-p quasi-isogeny λ : A → A∨ of ordinary Gn-abelian schemes, some
Z×(p)-multiple of which is a prime-to-p polarization.

If U is an open compact subgroup of Gn(A∞) then by a U-level structure on a
quasi-polarized Gn-abelian scheme (A, i, λ) over a connected scheme Y/SpecQ with
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a geometric point y, we mean a π1(Y, y)-invariant U -orbit [η] of pairs (η0, η1) of A∞-
linear isomorphisms

η0 : A∞y
∼−→ A∞(1)y = VGm,y

and
η1 : Vn ⊗Q A∞ ∼−→ V Ay

such that
η1(ax) = i(a)η1(x)

for all a ∈ F and x ∈ Vn ⊗Q A∞, and such that

〈η1x, η1y〉λ = η0〈x, y〉n
for all x, y ∈ Vn⊗QA∞. This definition is independent of the choice of geometric point
y of Y . By a U -level structure on a quasi-polarized Gn-abelian scheme (A, i, λ) over
a general (locally noetherian) scheme Y/SpecQ, we mean the collection of a U -level
structure over each connected component of Y . If [(η0, η1)] is a level structure we
define ||η0|| ∈ Q×>0 by

||η0||η0Ẑ = Ẑ(1).

Now suppose that Up is an open compact subgroup of Gn(A∞,p) and that N1 ≤ N2

are non-negative integers. By a Up(N1, N2)-level structure on an ordinary, prime-to-
p quasi-polarized, Gn-abelian scheme (A, i, λ) over a connected scheme Y/SpecZ(p)

with a geometric point y, we mean a π1(Y, y)-invariant Up-orbit [η] of four-tuples
(ηp0, η

p
1, C, ηp) consisting of

• an A∞,p-linear isomorphism ηp0 : A∞,py
∼−→ A∞,p(1)y = V pGm,y;

• an A∞,pF -linear isomorphism

ηp1 : Vn ⊗Q A∞,p ∼−→ V pAy

such that
〈ηp1x, η

p
1y〉λ = η0〈x, y〉n

for all x, y ∈ Vn ⊗Q A∞,p;
• a locally free sub-OF,(p)-module scheme C ⊂ A[pN2 ], such that for every

geometric point ỹ of Y there is an OF,(p)-invariant sub-Barsotti-Tate group

C̃ỹ ⊂ Aỹ[p
∞] with the following properties

– Cỹ = C̃ỹ[p
N2 ],

– for all N the sub-group scheme C̃ỹ[p
N ] is isotropic in A[pN ]ỹ for the λ-Weil

pairing,

– Aỹ[p
∞]/C̃ỹ is ind-etale,

– the Tate module T (Aỹ[p
∞]/C̃ỹ) is free over OF,p of rank n;

• and an isomorphism

ηp : p−N1Λn/(p
−N1Λn,(n) + Λn)

∼−→ A[pN1 ]/(A[pN1 ] ∩ C)

such that
ηp(ax) = i(a)ηp(x)

for all a ∈ OF,(p) and x ∈ p−N1Λn/(p
−N1Λn,(n) + Λn).
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This definition is independent of the choice of the geometric point y ∈ Y . By a
Up(N1, N2)-level structure on an ordinary, prime-to-p quasi-polarized, Gn-abelian
scheme (A, i, λ) over a general (locally noetherian) scheme Y/SpecZ(p), we mean
the collection of a Up(N1, N2)-level structure over each connected component of Y .
If [(ηp0, η

p
1, C, ηp)] is a level structure we define ||ηp0|| ∈ Z×(p),>0 by

||ηp0||η
p
0Ẑp = Ẑp(1).

By a quasi-isogeny (resp. prime-to-p quasi-isogeny) between quasi-polarized, Gn-
abelian schemes with U -level structures (resp. ordinary, prime-to-p quasi-polarized,
Gn-abelian schemes with Up(N1, N2)-level structures)

(β, δ) : (A, i, λ, [η]) −→ (A′, i′, λ′, [η′])

we mean a quasi-isogeny (resp. prime-to-p quasi-isogeny) of abelian schemes β ∈
Hom (A,A′)Q (resp. β ∈ Hom (A,A′)Z(p)

) and δ ∈ Q× (resp. δ ∈ Z×(p)) such that

• β ◦ i(a) = i′(a) ◦ β for all a ∈ F (resp. OF,(p));
• δλ = β∨ ◦ λ′ ◦ β;
• [(δη0, (V β) ◦ η1)] = [η′] (resp. [(δηp0, (V

pβ) ◦ ηp1, βC, β ◦ ηp)] = [η′]).

Lemma 3.2. Suppose that T is an OF,p-module, which is free over OF,p of rank 2n,
with a perfect alternating pairing

〈 , 〉 : T × T −→ Zp
such that

〈ax, y〉 = 〈x, cay〉
for all x, y ∈ T and a ∈ OF,p. Also suppose that T̃ ⊂ T is a sub-OF,p-module which

is isotropic for 〈 , 〉 and such that T/T̃ is free of rank n over OF,p. Finally suppose
that

ηp : p−N1Λn/(p
−N1Λn,(n) + Λn)

∼−→ p−N1T/(p−N1T̃ + T )

is an OF,p-module isomorphism.
Consider the set [η] of isomorphisms

η : Λn ⊗ Zp
∼−→ T

such that

• η(ax) = aη(x) for all a ∈ OF,(p);
• there exists δ ∈ Z×p such that

〈ηx, ηy〉 = δ〈x, y〉n
for all x, y ∈ Λn ⊗ Zp;
• η((p−N2Λn,(n))⊗ Zp + Λn ⊗ Zp) = p−N2T̃ + T ;
• the map

p−N1Λn/(p
−N1Λn,(n) + Λn)

∼−→ p−N1T/(p−N1T̃ + T )

induced by η equals ηp.

Then [η] is non-empty and a single Up(N1, N2)-orbit.
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Proof: Let e1, ..., en denote a OF,p-basis of T/T̃ . Note that 〈 , 〉 induces a perfect

pairing between T̃ and T/T̃ . We recursively lift the ei to elements ẽi ∈ T with ẽi
orthogonal to the OF,p span of the ẽj for j < i. Suppose that ẽ1, ..., ẽi−1 have already

been chosen. Choose some lift e′i of ei. Then choose t ∈ T̃ such that

• 〈t, x〉 = 〈e′i, x〉 for all x ∈
⊕i−1

j=1OF,pẽj,
• and 〈t, αe′i〉 = 〈e′i/2, αe′i〉 for all α ∈ Oc=−1

F,p .

(If p = 2 some explanation is required as to why we can do this. The map

OF,p −→ Zp
α 7−→ 〈e′i, αe′i〉

is of the form
α 7−→ tr F/Q(βα)

for some β ∈ (D−1
F,p)

c=−1. Because p = 2 is unramified in F/F+, we can write

β = γ − cγ for some γ ∈ D−1
F,p. Thus the second condition can be replaced by the

condition
〈t, αe′i〉 = tr F/Q(γα)

for all α ∈ Oc=−1
F,p . Now it is clear that the required element t exists.) Then take

ẽi = e′i − t. Then ẽi is orthogonal to
⊕i−1

j=1OF,pẽj. Moreover for α ∈ OF,p we have

〈ẽi, αẽi〉 = 〈e′i, αe′i〉 − 〈t, (α− cα)e′i〉
= 〈e′i, αe′i〉 − 〈e′i/2, (α− cα)e′i〉
= (〈e′i, αe′i〉+ 〈e′i, cαe′i〉)/2
= 0.

Thus we can write
T = T̃ ⊕ T̃ ′

with T̃ ′ an isotropic OF,p-subspace of T , which is free over OF,p of rank n. We see
that

T̃ ′ ∼= Hom Zp(T̃ ,Zp).
The lemma now follows without difficulty. �

Corollary 3.3. If Y is a Q-scheme with geometric point y, if (A, i, λ)/Y is an
ordinary Gn-abelian scheme, and if [(ηp0, η

p
1, C, ηp)] is a Up(N1, N2)-level structure on

(A, i, λ), then there is a unique Up(N1, N2)-orbit of pairs of isomorphisms

η0,p : Zp,y
∼−→ Zp(1)y

and
η1,p : Λn ⊗ Zp

∼−→ TpAy

such that

• η1,p(ax) = aη1,p(x) for all a ∈ OF,(p),
• 〈η1,px, η1,py〉λ = η0,p〈x, y〉n for all x, y ∈ Λn ⊗ Zp,
• η1,pp

−N2Λn,(n)/Λn,(n) = C,
• η1,p induces ηp.
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Proof: This follows on combining the lemmas 3.1 and 3.2. �

Corollary 3.4. Suppose that Y is a scheme over SpecQ. There is a natural bijection
between prime-to-p quasi-isogeny classes of ordinary, prime-to-p quasi-polarized Gn-
abelian schemes with Up(N1, N2)-level structure and quasi-isogeny classes of quasi-
polarized Gn-abelian schemes with Up(N1, N2)-level structure.

Proof: We may assume that Y is connected with geometric point y. We will show
both sets are in natural bijection with the set of prime-to-p quasi-isogeny classes of
four-tuples (A, i, λ, [η]), where (A, i) is a Gn-abelian scheme, λ is a prime-to-p quasi-
polarization of (A, i), and [η] is a π1(Y, y)-invariant Up(N1, N2)-orbit of pairs (η0, η1),
where

• η0 : A∞,p × Zp
∼→ A∞,p(1)× Zp(1),

• and η1 : Λn ⊗ (A∞,p × Zp)
∼→ V pAy × TpAy satisfies

η0〈x, y〉n = 〈η1x, η1y〉λ.
There is a natural map from this set to the set of quasi-isogeny classes of quasi-
polarized Gn-abelian schemes with Up(N1, N2)-level structure, which is easily checked
to be a bijection. The bijection between this set and the set of prime-to-p quasi-
isogeny classes of ordinary, prime-to-p quasi-polarized Gn-abelian schemes with a
Up(N1, N2)-level structure, follows by the usual arguments (see for instance section
III.1 of [HT]) from corollary 3.3. �

3.1.2. Hecke actions: If (A, i, λ, [η])/Y is a quasi-polarized, Gn-abelian scheme with
U -level structure and if g ∈ Gn(A∞) with U ′ ⊃ g−1Ug, then we can define a quasi-
polarized, Gn-abelian scheme with U ′-level structure (A, i, λ, [η])g/Y by

(A, i, λ, [(η0, η1)])g = (A, i, λ, [(ν(g)η0, η1 ◦ g]).

This action takes one quasi-isogeny class to another.
If (A, i, λ, [η])/Y is an ordinary, prime-to-p quasi-polarized, Gn-abelian scheme

with Up(N1, N2)-level structure and if g ∈ Gn(A∞)ord,× with

(U ′)p(N ′1, N
′
2) ⊃ g−1Up(N1, N2)g

(so that in particular Ni ≥ N ′i for i = 1, 2), then we can define an ordinary, prime-to-p
quasi-polarized, Gn-abelian scheme with (U ′)p(N ′1, N

′
2)-level structure (A, i, λ, [η])g/Y

by

(A, i, λ, [(ηp0, η
p
1, C, ηp)])g = (A, i, λ, [(ν(gp)ηp0, η

p
1 ◦ gp, C[pN

′
2 ], ηp ◦ gp)]).

Recall the definition of ςp towards the end of section 1.2. If (U ′)p(N ′1, N
′
2) ⊃

ς−1
p Up(N1, N2)ςp (so that in particular N1 ≥ N ′1 and N2 > N ′2), then we can define

an ordinary, prime-to-p quasi-polarized, Gn-abelian scheme with (U ′)p(N ′1, N
′
2)-level

structure (A, i, λ, [η])ςp/Y by

(A, i, λ, [(ηp0, η
p
1, C, ηp)])ςp =

(A/C[p], i, F (λ), [(pηp0, F (ηp1), C[p1+N ′2 ]/C[p], F (ηp))]);
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where

F (λ) : A/C[p]
λ−→ A∨/λC[p] = A∨/C[p]⊥

∼−→ (A/C[p])∨

with the last isomorphism being induced by the dual of the map A/C[p]→ A induced
by multiplication by p on A; where F (ηp1) is the composition of ηp1 with the natural

map V pA
∼→ V p(A/C[p]); and where F (ηp) is the composition of ηp with the natural

identification

A[pN
′
1 ]/(C ∩ A[pN

′
1 ]) = (A/C[p])[pN

′
1 ]/(C[p1+N ′2 ]/C[p] ∩ (A/C[p])[pN

′
1 ]).

If Y is an Fp-scheme then ςp is the composite of pull-back by absolute Frobenius
followed by forgetting some of the structure.

Together these two definitions give an action of Gn(A∞)ord. This action takes one
prime-to-p quasi-isogeny class to another.

With these definitions the correspondence of corollary 3.4 isGn(A∞)ord-equivariant.

3.1.3. Representability: If U is a neat open compact subgroup of Gn(A∞) then the
functor that sends a (locally noetherian) scheme S/Q to the set of quasi-isogeny
classes of polarized Gn-abelian schemes with U -level structures is represented by a
quasi-projective scheme Xn,U which is smooth of relative dimension n2[F+ : Q] over
Q. Let

[(Auniv, iuniv, λuniv, [ηuniv])]/Xn,U

denote the universal equivalence class of polarized Gn-abelian schemes with U -level
structure. If U ′ ⊃ g−1Ug then there is a map g : Xn,U → Xn,U ′ arising from
(Auniv, iuniv, λuniv, [ηuniv])g/Xn,U and the universal property of Xn,U ′ . This makes
{Xn,U} an inverse system of schemes with right Gn(A∞)-action. The maps g are
finite etale. If U1 ⊂ U2 is a normal subgroup then Xn,U1/Xn,U2 is Galois with group
U2/U1.

There are identifications of topological spaces:

Xn,U(C) ∼= Gn(Q)+\(Gn(A∞)/U × H+
n ) ∼= Gn(Q)\(Gn(A∞)/U × H±n )

compatible with the right action of Gn(A∞). (See sections 7 and 8 of [Ko]. Note that
ker1(Q, Gn) = (0), as is explained in section 7 of [Ko].) More precisely we associate
to (g, I) ∈ Gn(A∞)/U × H+

n the torus (Λn ⊗Z R)/Λn with complex structure coming
from I; with polarization corresponding to the Riemann form given by 〈 , 〉; and
with level structure coming from

η1 : Λn ⊗ A∞ g−→ Λn ⊗ A∞ = V ((Λn ⊗Z R)/Λn)

and
η0 : A∞ ∼−→ A∞(1)

x 7−→ −ν(g)xζ,

where ζ = lim←N e
2πi/N ∈ Ẑ(1). We deduce that

π0(Xn,U × SpecQ) ∼= Gn(Q)\Gn(A)/(UGn(R)+)
∼= Gn(Q)\(Gn(A∞)/U × π0(Gn(R)))
∼= Cn(Q)\Cn(A)/UCn(R)0.
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If Up is neat then the functor that sends a scheme Y/Z(p) to the set of prime-to-p
quasi-isogeny classes of ordinary, prime-to-p quasi-polarized, Gn-abelian schemes with
Up(N1, N2)-level structure is represented by a scheme X ord

n,Up(N1,N2) quasi-projective

over Z(p). (See theorems 3.4.1.9 and 3.4.2.5 in [La4]. Note that, by theorem 3.4.1.9
in [La4], the naive moduli problem there is already smooth, and hence the submoduli
problem with the right Lie algebra condition agrees with the normalization in theorem
3.4.2.5 in [La4].) Let

[(Auniv, iuniv, λuniv, [ηuniv])]/X ord
n,Up(N1,N2)

denote the universal equivalence class. If g ∈ Gn(A∞)ord and (Up)′(N ′1, N
′
2) ⊃

g−1Up(N1, N2)g, then there is a quasi-finite map

g : X ord
n,Up(N1,N2) −→ X ord

(Up)′(N ′1,N
′
2)

arising from (Auniv, iuniv, λuniv, [ηuniv])g/X ord
n,Up(N1,N2) and the universal property of

X ord
n,(Up)′(N ′1,N

′
2). If g ∈ Gn(A∞)ord,× then the map g is etale, and, if further N2 =

N ′2, then it is finite etale. If Up(N1, N2) is a normal subgroup of (Up)′(N ′1, N2)
then X ord

n,Up(N1,N2)/X ord
n,(Up)′(N ′1,N2) is Galois with group (Up)′(N ′1)/Up(N1). There are

Gn(A∞)ord-equivariant identifications

X ord
n,Up(N1,N2) × SpecQ ∼= Xn,Up(N1,N2).

The scheme X ord
n,Up(N1,N2) is smooth over Z(p) of relative dimension n2[F+ : Q]. (By

the Serre-Tate theorem (see [Katz2]) the formal completion of X ord
n,Up(N1,N2) at a point

x in the special fibre is isomorphic to

Hom Zp(S(TpAuniv
x ), Ĝm).

This is formally smooth as long as S(TpAuniv
x ) ∼= S(OnF,p) is torsion free. This module

is torsion free because in the case p = 2 we are assuming that p = 2 is unramified in
F/F+.) Suppose that g ∈ Gn(A∞)ord and (Up)′(N ′1, N

′
2) ⊃ g−1Up(N1, N2)g, then the

quasi-finite map
g : X ord

n,Up(N1,N2) −→ X ord
n,(Up)′(N ′1,N

′
2)

is in fact flat, because it is a quasi-finite map between locally noetherian regular
schemes which are equi-dimensional of the same dimension. (See pages 507 and 508
of [KM].)

On Fp-fibres the map

ςp : X ord
n,Up(N1,N2+1) × SpecFp −→ X ord

n,Up(N1,N2) × SpecFp
is the absolute Frobenius map composed with the forgetful map 1 : X ord

n,Up(N1,N2+1) →
X ord
n,Up(N1,N2) (for any N2 ≥ N1 ≥ 0). Thus if N2 > 0, then the quasi-finite, flat map

ςp : X ord
n,Up(N1,N2+1) −→ X ord

n,Up(N1,N2)

has all its fibres of degree pn
2[F+:Q] and hence is finite flat of this degree. (A flat, quasi-

finite morphism f : X → Y between noetherian schemes with constant fibre degree
is proper and hence, by theorem 8.11.1 of [EGA4], finite. We give the argument for
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properness. By the valuative criterion we may reduce to the case Y = SpecB for
a DVR B with fraction field L. By theorem 8.12.6 of [EGA4] X is a dense open
subscheme of SpecA, for A a finite B algebra. Let I denote the ideal of A consisting
of all mB-torsion elements. If f ∈ A and SpecAf ⊂ X, then by flatness the map
A→ Af factors through A/I. Thus X ⊂ SpecA/I and in fact I = (0), so that A/B
is finite flat. Because an open subscheme is determined by its points, we conclude
that we must have X = SpecA′ for some A ⊂ A′ ⊂ A ⊗B L. By the constancy
of the fibre degree we conclude that A′ is finite over B.) We deduce that for any
g ∈ Gn(A∞)ord, if N ′2 > 0 and pN2−N ′2ν(gp) ∈ Z×p , then the map

g : X ord
n,Up(N1,N2) −→ X ord

(Up)′(N ′1,N
′
2)

is finite.

Lemma 3.5. Write X ord,∧
n,Up(N1,N2) for the completion of X ord

Up(N1,N2) along its Fp-fibre.

If N ′2 > N2 ≥ N1 then the map

1 : X ord,∧
n,Up(N1,N ′2) −→ X

ord,∧
n,Up(N1,N2)

is an isomorphism.

Proof: The map has an inverse which sends a tuple [(Auniv, iuniv, λuniv, [ηuniv])] over

X ord,∧
n,Up(N1,N2) to

[(Auniv, iuniv, λuniv, [(ηuniv,p
0 , ηuniv,p

1 ,Auniv[pN
′
2 ]0, ηuniv

p )])]

over X ord,∧
n,Up(N1,N ′2). �

Thus we will denote X ord,∧
n,Up(N1,N2) simply

Xord
n,Up(N1).

Then {Xord
n,Up(N)} is a system of p-adic formal schemes with right Gn(A∞)ord-action.

We will write X
ord

n,Up(N) for the reduced sub-scheme of Xord
n,Up(N).

Throughout the paper we will use usual Roman letters, such as X, for ‘Shimura-
like’ varieties of finite type over Q, cursive letters, such as X , for models of them of
finite type over Z(p), over-lined usual Roman letters, such as X, for their Fp-fibre,
and Gothic letters, such as X, for their formal completion along this special fibre.
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3.2. Some Kuga-Sato varieties.

Recall that a semi-abelian scheme is a smooth separated commutative group scheme
such that each geometric fibre is the extension of an abelian scheme by a torus. To
a semi-abelian scheme G/Y one can associate an etale constructible sheaf of abelian
groups X∗(G), the ‘character group of the toric part of G’. See theorem I.2.10 of
[CF]. If X∗(G) is locally constant then G is an extension

(0) −→ SG −→ G −→ AG −→ (0)

of a uniquely determined abelian scheme AG by a uniquely determined split torus
SG with character group X∗(G). By an isogeny (resp. prime-to-p isogeny) of semi-
abelian schemes we mean a morphism which is quasi-finite and surjective (resp. quasi-
finite and surjective and whose geometric fibres have orders relatively prime to p).
If Y is locally noetherian, then by a quasi-isogeny (resp. prime-to-p quasi-isogeny)
α : G → G′ we mean an element of Hom (G,G′)Q (resp. Hom (G,G′)Z(p)

) with an

inverse in Hom (G′, G)Q (resp. Hom (G′, G)Z(p)
).

Suppose that Y/SpecQ is a locally noetherian scheme. By a G
(m)
n -semi-abelian

scheme G over Y we mean a triple (G, i, j) where

• G/Y is a semi-abelian scheme,
• i : F ↪→ End (G)Q,

• and j : Fm ∼→ X∗(G)Q is an F -linear isomorphism;
• such that LieAG is a free OY ⊗Q F module of rank n[F : Q].

Then AG is a Gn-abelian scheme. By a quasi-isogeny of G
(m)
n -semi-abelian schemes

we mean a quasi-isogeny of semi-abelian schemes

β : G→ G′

such that

i′(a) ◦ β = β ◦ i(a)

for all a ∈ F , and

j = X∗(β) ◦ j′.
Note that, if y is a geometric point of Y , then j induces a map

j∗ : V SG,y
∼−→ Hom Q(Fm, VGm,y).

By a quasi-polarization of (G, i, j) we mean a quasi-polarization of AG.

If Y is connected and y is a geometric point of Y and if U ⊂ G
(m)
n (A∞) is a

neat open compact subgroup then by a U level structure on a quasi-polarized G
(m)
n -

semi-abelian scheme (G, i, j, λ) we mean a π1(Y, y)-invariant U -orbit of pairs (η0, η1)
where

η0 : A∞ ∼−→ VGm,y

is an A∞-linear map, and where

η1 : Λ(m)
n ⊗Z A∞ −→ V Gy
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is an A∞F -linear map such that

η1|Hom Z(OmF ,A∞) = (j∗)−1 ◦ Hom (1Fm , η0)

and
[(η0, η1 mod V SG,y)]

is a U -level structure on AG. This is canonically independent of y. We define a U level

structure on a G
(m)
n -semi-abelian scheme over a general locally noetherian scheme Y

to be such a level structure over each connected component of Y . By a quasi-isogeny

between two quasi-polarized, G
(m)
n -semi-abelian schemes with U -level structure

(β, δ) : (G, i, j, λ, [(η0, η1)]) −→ (G′, i′, j′, λ′, [(η′0, η
′
1)])

we mean a quasi-isogeny
β : (G, i, j) −→ (G′, i′, j′)

and an element δ ∈ Q× such that

δλ = β∨ ◦ λ′ ◦ β
and

[(η′0, η
′
1)] = [(δη0, V (β) ◦ η1)].

If (G, i, j, λ, [(η0, η1)]) is a quasi-polarized, G
(m)
n -semi-abelian scheme with U -level

structure, if g ∈ G
(m)
n (A∞) and if U ′ ⊃ g−1Ug then we define a quasi-polarized,

G
(m)
n -semi-abelian scheme with U ′-level structure

(G, i, j, λ, [(η0, η1)])g = (G, i, j, λ, [(ν(g)η0, η1 ◦ g)]).

The quasi-isogeny class of (G, i, j, λ, [(η0, η1)])g only depends on the quasi-isogeny

class of (G, i, j, λ, [(η0, η1)]). If (G, i, j, λ, [(η0, η1)]) is a quasi-polarized, G
(m)
n -semi-

abelian scheme with U -level structure, if γ ∈ GLm(F ) and U ′ ⊃ γU then we define a

quasi-polarized, G
(m)
n -semi-abelian scheme with U ′-level structure

γ(G, i, j, λ, [(η0, η1)]) = (G, i, j ◦ γ−1, λ, [(η0, η1 ◦ γ−1)]).

The quasi-isogeny class of γ(G, i, j, λ, [(η0, η1)]) only depends on the quasi-isogeny
class of (G, i, j, λ, [(η0, η1)]). We have γ ◦ g = γ(g) ◦ γ. If (G, i, j, λ, [(η0, η1)]) is

a quasi-polarized, G
(m)
n -semi-abelian scheme with U -level structure, if m′ ≤ m and

if U ′ ⊃ i∗m′,mU , then we define a quasi-polarized, G
(m′)
n -semi-abelian scheme with

U ′-level structure

πm,m′(G, i, j, λ, [(η0, η1)]) = (G/S, i, j ◦ im′,m, λ, [(η0, η
′
1)]),

where S ⊂ SG is the subtorus with

X∗(S) = X∗(SG)/(X∗(SG) ∩ j ◦ im′,mFm′)

and where
η′1 ◦ i∗m′,m = η1 mod V S.

The quasi-isogeny class of πm,m′(G, i, j, λ, [(η0, η1)]) only depends on the quasi-isogeny
class of (G, i, j, λ, [(η0, η1)]). If γ ∈ Qm,m′(F ) then πm,m′ ◦ γ = γ ◦ πm,m′ , where γ

denotes the image of γ in GLm′(F ). If g ∈ G(m)
n (A∞) then πm,m′ ◦g = i∗m′,m(g)◦πm,m′ .
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If U is a neat open compact subgroup of G
(m)
n (A∞) then the functor which sends a

locally noetherian scheme Y/Q to the set of quasi-isogeny classes of quasi-polarized

G
(m)
n -semi-abelian schemes with U -level structure is represented by a quasi-projective

scheme A
(m)
n,U , which is smooth of dimension n(n + 2m)[F+ : Q]. (See proposition

1.3.2.14 of [La4].) We remark that according to our notational conventions we have

A
(0)
n,U = Xn,U .

Let

[(Guniv, iuniv, juniv, λuniv, [ηuniv])]/A
(m)
n,U

denote the universal quasi-isogeny class of quasi-polarized G
(m)
n -semi-abelian schemes

with U -level structure. If g ∈ G(m)
n (A∞) and U1, U2 are neat open compact subgroups

of G
(m)
n (A∞) with U2 ⊃ g−1U1g then there is a map

g : A
(m)
n,U1
−→ A

(m)
n,U2

arising from (Guniv, iuniv, juniv, λuniv, [ηuniv])g/A
(m)
n,U1

and from the universal property

of A
(m)
n,U2

. Similarly if γ ∈ GLm(F ) and U1, U2 are neat open compact subgroups of

G
(m)
n (A∞) with U2 ⊃ γU1 then there is a map

γ : A
(m)
n,U1
−→ A

(m)
n,U2

arising from γ(Guniv, iuniv, juniv, λuniv, [ηuniv])/A
(m)
n,U1

and from the universal property

of A
(m)
n,U2

. Moreover if m′ ≤ m, if U ⊂ G
(m)
n (A∞) and if U ′ denotes the image of U in

G
(m′)
n (A∞), then there is a smooth projective map

π
A

(m)
n /A

(m′)
n

: A
(m)
n,U −→ A

(m′)
n,U ′

arising from πm,m′(G
univ, iuniv, juniv, λuniv, [ηuniv])/A

(m)
n,U and the universal property of

A
(m′)
n,U ′ . (We will sometimes write π

A
(m)
n /Xn

for π
A

(m)
n /A

(0)
n

.) We see that these actions

have the following properties.

• g1 ◦ g2 = g2g1 (i.e. this is a right action) and γ1 ◦ γ2 = γ1γ2 (i.e. this is a left
action) and γ ◦ g = γ(g) ◦ γ.
• If γ ∈ Qm,m′(F ) then π

A
(m)
n /A

(m′)
n
◦ γ = γ ◦ π

A
(m)
n /A

(m′)
n

, where γ denotes the

image of γ in GLm′(F ).

• π
A

(m)
n /A

(m′)
n
◦ g = g′ ◦π

A
(m)
n /A

(m′)
n

, where g′ denotes the image of g in G
(m′)
n (A∞).

Moreover we have the following properties.

• The maps g and γ are finite etale. The maps πm,m′ are smooth and projective.
• If U1 ⊂ U2 is an open normal subgroup of a neat open compact subgroup then

A
(m)
n,U1

/A
(m)
n,U2

is Galois with group U2/U1.

• If U = U ′ nM with U ′ ⊂ Gn(A∞) and M ⊂ Hom (m)
n (A∞) then A

(m)
n,U/Xn,U ′

is an abelian scheme of relative dimension mn[F : Q].
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• In general A
(m)
n,U is a principal homogenous space for A

(m)

n,U ′n(U∩Hom
(m)
n (A∞))

over

Xn,U ′ , where U ′ denotes the image of U in Gn(A∞).

• There are G
(m)
n (A∞)- and GLm(F )-equivariant homeomorphisms

A
(m)
n,U(C) ∼= G(m)

n (Q)\G(m)
n (A)/(U × U0

n,∞An(R)0).

Moreover in the case U = U ′ nM , if Guniv/A
(m)
n,U and Auniv/Xn,U ′ are chosen so that

π∗
A

(m)
n /Xn

Auniv ∼= AGuniv , then there is a Q-linear map

i
(m)

Auniv : Fm −→ Hom /Xn,U′
(A

(m)
n,U , (A

univ)∨)Q

with the following properties.

• If a ∈ F then

i
(m)

Auniv(ax) = iuniv,∨(ca) ◦ i(m)

Auniv(x).

• If (β, δ) is a quasi-isogeny

(Guniv, iuniv, juniv, λuniv, [ηuniv]) −→ (Guniv,′, iuniv,′, juniv,′, λuniv,′, [ηuniv,′]),

then

β∨ ◦ i(m)

(Auniv)′
(x) = i

(m)

Auniv(x).

In particular i
(m)

Auniv depends only on Auniv and not on Guniv.

• If g ∈ G(m)
n (A∞) and γ ∈ GLm(F ) then

i
(m)

Auniv(x) ◦ g = i
(m)

g∗Auniv(x)

and

i
(m)

Auniv(x) ◦ γ = i
(m)

γ∗Auniv(γ−1x).

• If e1, ..., em denotes the standard basis of Fm then

iAuniv = ||ηuniv
0 ||−1((λuniv)−1 ◦ i(m)

Auniv(e1), ..., (λuniv)−1 ◦ i(m)

Auniv(em)) : A
(m)
n,U −→ (Auniv)m

is a quasi-isogeny. If (β, δ) is a quasi-isogeny

(Guniv, iuniv, juniv, λuniv, [ηuniv]) −→ (Guniv,′, iuniv,′, juniv,′, λuniv,′, [ηuniv,′]),

then

β⊕m ◦ iAuniv = i(Auniv)′ .

• The map

η
(m)
n,U : Hom F (Fm, Vn)⊗Q A∞ ∼→ V (Auniv)m

∼→ V A
(m)
n,U

f 7→ (ηuniv
1 (f(e1)), ..., ηuniv

1 (f(em)))
x 7→ V (iAuniv)−1x

is an isomorphism, which does not depend on the choice of Guniv. It satisfies

η
(m)
n,UM = TA

(m)
n,U .
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(See lemmas 1.3.2.7 and 1.3.2.50, propositions 1.3.2.14, 1.3.2.24 and 1.3.2.55, theorem
1.3.3.15, and remark 1.3.3.33 of [La4]; and section 3.5 of [La3].)

Note that
iAuniv ◦ g = ig∗Auniv

and
iAuniv ◦ γ = tγ−1 ◦ iγ∗Auniv .

Define
i
(m)
λ : Fm ⊗F,c Fm −→ Hom /Xn,U′

(A
(m)
n,U , A

(m),∨
n,U )Q

by

i
(m)
λ (x⊗ y) = ||ηuniv

0 ||−1i
(m)

Auniv(x)∨ ◦ λuniv,−1 ◦ i(m)

Auniv(y).

This does not depend on the choice of Auniv. We have

i
(m)
λ (x⊗ y)∨ = i

(m)
λ (y ⊗ x).

Moreover
(i−1
Auniv)∨ ◦ i(m)

λ (x⊗ y) ◦ i−1
Auniv = (λuniv)⊕m ◦ iuniv(c,txy).

If a ∈ (Fm ⊗F,c Fm)sw=1 has image in S(Fm) lying in S(Fm)>0 then

(i−1
Auniv)∨ ◦ i(m)

λ (a) ◦ i−1
Auniv = (λuniv)⊕m ◦ iuniv(a′)

for some matrix a′ ∈ Mm×m(F )t=c all whose eigenvalues are positive real numbers.

(See section 1.1 for the definition of sw.) Thus i
(m)
λ (a) is a quasi-polarization. (See

the end of section 21 of [M].)
Now suppose that Y/SpecZ(p) is a locally noetherian scheme. By an ordinary

G
(m)
n -semi-abelian scheme G over Y we mean a triple (G, i, j) where

• G/Y is a semi-abelian scheme such that X∗(G) is locally constant over Y ,
and such that #G[p](k(y)) ≥ p(n+m)[F :Q] for each geometric point y of Y ,
• i : OF,(p) ↪→ End (G)Z(p)

such that LieAG is a free OY ⊗Z(p)
OF,(p) module of

rank n[F : Q],

• and j : OmF,(p)
∼→ X∗(G)Z(p)

is a OF,(p)-linear isomorphism.

Then AG is an ordinary Gn-abelian scheme. By a prime-to-p quasi-isogeny of ordi-

nary G
(m)
n -semi-abelian schemes we mean a prime-to-p quasi-isogeny of semi-abelian

schemes
β : G→ G′

such that
i′(a) ◦ β = β ◦ i(a)

for all a ∈ OF,(p), and

j = X∗(β) ◦ j′.
Note that, if y is a geometric point of Y , then j induces a map

j∗ : V pSG,y
∼−→ Hom Z(p)

(OmF,(p), V pGm,y).

By a prime-to-p quasi-polarization of (G, i, j) we shall mean a prime-to-p quasi-
polarization of AG.
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If Y is connected and y is a geometric point of Y , if Up ⊂ G
(m)
n (A∞,p) is a neat

open compact subgroup, and if N2 ≥ N1 ≥ 0 then by a Up(N1, N2) level structure on

a prime-to-p quasi-polarized ordinary G
(m)
n -semi-abelian scheme (G, i, j, λ) we mean

a π1(Y, y)-invariant Up-orbit [η] of five-tuples (ηp0, η
p
1, C,D, ηp) consisting of

• an A∞,p-linear isomorphism ηp0 : A∞,p ∼−→ A∞,p(1)y = V pGm,y;
• an A∞,pF -linear isomorphism

ηp1 : Λ(m)
n ⊗Z A∞,p ∼−→ V pGy

such that ηp1|Hom Z(OmF ,A∞,p) = (j∗)−1 ◦ Hom (1OmF , η
p
0);

• a locally free sub-OF,(p)-module scheme C ⊂ G[pN2 ], such that for every
geometric point ỹ of Y there is an OF,(p)-invariant sub-Barsotti-Tate group

C̃ỹ ⊂ Gỹ[p
∞] with the following properties

– Cỹ = C̃ỹ[p
N2 ],

– C̃ỹ ⊃ SG,ỹ[p
∞],

– for all N the sub-group scheme C̃ỹ[p
N ]/SG,ỹ[p

N ] is isotropic in AG[pN ]ỹ
for the λ-Weil pairing,

– Gỹ[p
∞]/C̃ỹ is ind-etale,

– the Tate module T (Gỹ[p
∞]/C̃ỹ) is free over OF,p of rank n;

• a locally free sub-OF,(p)-module scheme D ⊂ C[pN1 ] such that

D
∼→ C[pN1 ]/SG[pN1 ];

• and an isomorphism

ηp : p−N1Λn/(p
−N1Λn,(n) + Λn)

∼−→ G[pN1 ]/C[pN1 ]

such that

ηp(ax) = i(a)ηp(x)

for all a ∈ OF,(p) and x ∈ p−N1Λn/(p
−N1Λn,(n) + Λn);

such that

[(ηp0, η
p
1 mod V pSG, C/SG[pN2 ], ηp)]

is a Up(N1, N2)-level structure for (AG, i, λ). This definition is independent of the
choice of geometric point y of Y . By a Up(N1, N2)-level structure on an ordinary,

prime-to-p quasi-polarized, G
(m)
n -semi-abelian scheme (G, i, j, λ) over a general (lo-

cally noetherian) scheme Y/SpecZ(p), we mean the collection of a Up(N1, N2)-level
structure over each connected component of Y .

By a prime-to-p quasi-isogeny between two quasi-polarized, ordinary G
(m)
n -semi-

abelian schemes with Up(N1, N2)-level structure

(β, δ) : (G, i, j, λ, [(η0, η1)]) −→ (G′, i′, j′, λ′, [(η′0, η
′
1)])

we mean a prime-to-p quasi-isogeny

β : (G, i, j) −→ (G′, i′, j′)
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and an element δ ∈ Z×(p) such that

δλ = β∨ ◦ λ′ ◦ β
and

[((ηp0)′, (ηp1)′, C ′, D′, η′p)] = [(δηp0, V
p(β) ◦ ηp1, βC, βD, β ◦ ηp)].

If (G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)]) is a prime-to-p quasi-polarized, ordinary G

(m)
n -semi-

abelian scheme with Up(N1, N2)-level structure, if g ∈ G(m)
n (A∞)ord,× and if

(Up)′(N ′1, N
′
2) ⊃ g−1Up(N1, N2)g

then we define a prime-to-p quasi-polarized, ordinary G
(m)
n -semi-abelian scheme with

(Up)′(N ′1, N
′
2)-level structure

(G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)])g = (G, i, j, λ, [(ν(g)ηp0, η

p
1 ◦ gp, C,D, ηp ◦ gp)]).

The prime-to-p quasi-isogeny class of (G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)])g only depends on

the prime-to-p quasi-isogeny class of (G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)]). Similarly, if

(G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)])

is a prime-to-p quasi-polarized, ordinary G
(m)
n -semi-abelian scheme with Up(N1, N2)-

level structure and if

(Up)′(N ′1, N
′
2) ⊃ ς−1

p Up(N1, N2)ςp,

then we define a prime-to-p quasi-polarized, ordinary G
(m)
n -semi-abelian scheme with

(Up)′(N ′1, N
′
2)-level structure

(G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)])ςp =

(G/C[p], i, pj, F (λ), [(pηp0, F (ηp1), C[p1+N ′2 ]/C[p], (D′/C[p])[pN
′
1 ], F (ηp))]);

where

F (λ) : AG/C[p]
λ−→ A∨G/λC[p] = A∨G/C[p]⊥

∼−→ (AG/C[p])∨

with the latter isomorphism being induced by the dual of the map AG/C[p] → AG
induced by multiplication by p on AG; where F (ηp1) is the composition of ηp1 with the

natural map V pG
∼→ V p(G/C[p]); where D′ denotes the pre-image of D under the

multiplication by p map C → C; and where F (ηp) is the composition of ηp with the
natural identification

G[pN
′
1 ]/(C ∩G[pN

′
1 ]) = (G/C[p])[pN

′
1 ]/(C[p1+N ′2 ]/C[p] ∩ (G/C[p])[pN

′
1 ]).

Together these two definitions give an action of Gn(A∞)ord.

If (G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)]) is a prime-to-p quasi-polarized, ordinary G

(m)
n -semi-

abelian scheme with Up(N1, N2)-level structure, if γ ∈ GLm(OF,(p)) and if

(Up)′(N ′1, N
′
2) ⊃ γUp(N1, N2)

then we define a prime-to-p quasi-polarized, ordinary G
(m)
n -semi-abelian scheme with

(Up)′(N ′1, N
′
2)-level structure

γ(G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)]) = (G, i, j ◦ γ−1, λ, [(ηp0, η

p
1 ◦ γ−1, C,D, ηp)]).
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The prime-to-p quasi-isogeny class of γ(G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)]) only depends on

the quasi-isogeny class of (G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)]). We have γ ◦ g = γ(g) ◦ γ.

If (G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)]) is a prime-to-p quasi-polarized, ordinary G

(m)
n -semi-

abelian scheme with Up(N1, N2)-level structure, if m′ ≤ m and if (Up)′(N ′1, N
′
2) ⊃

i∗m′,mU
p(N1, N2), then we define a quasi-polarized, ordinaryG

(m′)
n -semi-abelian scheme

with (Up)′(N ′1, N
′
2)-level structure

πm,m′(G, i, j, λ, [(η
p
0, η

p
1, C,D, ηp)]) = (G/S, i, j ◦ im′,m, λ, [(ηp0, (η

p
1)′, C ′, D′, ηp)]),

where S ⊂ SG is the subtorus with

X∗(S) = X∗(SG)/(X∗(SG) ∩ j ◦ im′,mOm
′

F,(p))

and where
(ηp1)′ ◦ i∗m′,m = ηp1 mod V pS

and C ′ (resp. D′) denotes the image of C (resp. D). The prime-to-p quasi-isogeny
class of πm,m′(G, i, j, λ, [(η

p
0, η

p
1, C,D, ηp)]) only depends on the quasi-isogeny class

of (G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)]). If γ ∈ Qm,m′(OF,(p)) then πm,m′ ◦ γ = γ ◦ πm,m′ ,

where γ denotes the image of γ in GLm′(OF,(p)). If g ∈ G(m)
n (A∞) then πm,m′ ◦ g =

i∗m′,m(g) ◦ πm,m′ .
For each m ≥ 0 there is a system of Z(p)-schemes {A(m),ord

n,Up(N1,N2)} as Up runs over

neat open compact subgroups of G
(m)
n (A∞,p) and N1, N2 run over integers with N2 ≥

N1 ≥ 0, together with the following extra structures:

• If g ∈ G
(m)
n (A∞)ord and Up

2 (N21, N22) ⊃ g−1Up
1 (N11, N12)g then there is a

quasi-finite, flat map

g : A(m),ord

n,Up1 (N11,N12)
−→ A(m),ord

n,Up2 (N21,N22)
.

• If m′ ≤ m and if (Up)′ denotes the image of Up in G
(m′)
n (A∞,p), then there is

a smooth projective map with geometrically connected fibres

πA(m),ord
n /A(m′),ord

n
: A(m),ord

n,Up(N1,N2) −→ A
(m′),ord
n,(Up)′(N1,N2).

• If γ ∈ GLm(OF,(p)) and Up
2 ⊃ γUp

1 then there is a finite etale map

γ : A(m),ord

n,Up1 (N1,N2)
−→ A(m),ord

n,Up2 (N1,N2)
.

Moreover there is a canonical prime-to-p quasi-isogeny class of ordinary G
(m)
n -semi-

abelian schemes with Up(N1, N2) level structure

(Guniv, iuniv, juniv, λuniv, [ηuniv])/A(m),ord
n,Up(N1,N2)

These enjoy the following properties:

• A(0),ord
n,Up(N1,N2) = X ord

n,Up(N1,N2). (We will sometimes write πA(m),ord
n /X ord

n
instead of

πA(m),ord
n /A

(0),ord
n

.) This identification is Gn(A∞)ord-equivariant.

• g1 ◦ g2 = g2g1 (i.e. this is a right action) and γ1 ◦ γ2 = γ1γ2 (i.e. this is a left
action) and γ ◦ g = γ(g) ◦ γ.
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• If γ ∈ Qm,m′(OF,(p)) then πA(m),ord
n /A(m′),ord

n
◦ γ = γ ◦ πA(m),ord

n /A(m′),ord
n

, where γ

denotes the image of γ in GLm′(OF,(p)).
• πA(m),ord

n /A(m′),ord
n

◦ g = g′ ◦ πA(m),ord
n /A(m′),ord

n
, where g′ denotes the image of g in

G
(m′)
n (A∞)ord.

• If g ∈ G(m)
n (A∞)ord, then the induced map

g : A(m),ord

n,Up1 (N11,N12)
−→ g∗A(m),ord

n,Up2 (N21,N22)

over X ord
n,Up1 (N11,N12)

is finite flat of degree pnm[F :Q]. If g ∈ G(m)
n (A∞)ord,×, then

this map is also etale.

• If Up
1 ⊂ Up

2 is an open normal subgroup of a neat open compact of G
(m)
n (A∞,p)

and if N11 ≥ N21, then A(m),ord

n,Up1 (N11,N2)
/A(m),ord

n,Up2 (N21,N2)
is Galois with Galois group

Up
2 (N21)/Up

1 (N11).
• On Fp-fibres the map

ςp : A(m),ord
n,Up(N1,N2+1) × SpecFp −→ A(m),ord

n,Up(N1,N2) × SpecFp
equals the composition of the absolute Frobenius map with the forgetful map
(for any N2 ≥ N1 ≥ 0).

• If g ∈ G(m)
n (A∞)ord and Up

2 (N21, N22) ⊃ g−1Up
1 (N11, N12)g then the pull-back

g∗(Guniv
2 , iuniv

2 , juniv
2 , λuniv

2 , [ηuniv
2 ])

is prime-to-p quasi-isogenous to the tuple (Guniv
1 , iuniv

1 , juniv
1 , λuniv

1 , [ηuniv
1 ])g.

• If γ ∈ GLm(OF,(p)) and Up
2 (N21, N22) ⊃ γUp

1 (N11, N12) then the pull-back

γ∗(Guniv
2 , iuniv

2 , juniv
2 , λuniv

2 , [ηuniv
2 ])

is prime-to-p quasi-isogenous to the tuple γ(Guniv
1 , iuniv

1 , juniv
1 , λuniv

1 , [ηuniv
1 ]).

• If m′ ≤ m and if Up
2 (N21, N22) ⊃ i∗m′,mU

p
1 (N11, N12) then the pull-back

π∗
A(m)
n /A(m′)

n

(Guniv
2 , iuniv

2 , juniv
2 , λuniv

2 , [ηuniv
2 ]) is prime-to-p quasi-isogenous to the

tuple πm,m′(Guniv
1 , iuniv

1 , juniv
1 , λuniv

1 , [ηuniv
1 ]).

• If Up = (Up)′ nMp with (Up)′ ⊂ Gn(A∞,p) and Mp ⊂ Hom (m)
n (A∞,p) then

A(m),ord
n,Up(N1,N2)/X

ord
n,(Up)′(N1,N2)

is an abelian scheme of relative dimension mn[F : Q].

• In general A(m),ord
n,Up(N1,N2) is a principal homogenous space for the abelian scheme

A(m),ord
n,((Up)′nMp)(N1,N2) over X ord

n,(Up)′(N1,N2), where (Up)′ denotes the image of Up

in Gn(A∞,p) and Mp = Up ∩ Hom (m)
n (A∞,p).

• There are natural identifications

A(m),ord
n,Up(N1,N2) × SpecQ ∼= A

(m)
n,Up(N1,N2).

These identifications are compatible with the identifications

X ord
n,(Up)′(N1,N2) × SpecQ ∼= Xn,(Up)′(N1,N2)
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and the maps πA(m),ord
n /A(m′),ord

n
and π

A
(m)
n /A

(m′)
n

. They are also equivariant for

the actions of the semi-group G
(m)
n (A∞)ord and the group GLm(OF,(p)).

Moreover in the case Up = (Up)′ nMp, if Guniv/A(m),ord
n,Up(N1,N2) and Auniv/X ord

n,Up(N1,N2)

are chosen so that π∗
A(m),ord
n /X ord

n

Auniv ∼= AGuniv , then there is a Z(p)-linear map

i
(m)

Auniv : OmF,(p) −→ Hom /X ord
n,(Up)′(N1,N2)

(A(m),ord
n,Up(N1,N2), (A

univ/Cuniv[pN1 ])∨)Z(p)

with the following properties.

• If a ∈ OF,(p) then

i
(m)

Auniv(ax) = iuniv,∨(ca) ◦ i(m)

Auniv(x).

• If (β, δ) is a prime-to-p quasi-isogeny

(Guniv, iuniv, juniv, λuniv, [ηuniv]) −→ (Guniv,′, iuniv,′, juniv,′, λuniv,′, [ηuniv,′]),

then

β∨ ◦ i(m)

(Auniv)′
(x) = i

(m)

Auniv(x).

In particular i
(m)

Auniv depends only on Auniv and not on Guniv.

• If g ∈ G(m)
n (A∞)ord and γ ∈ GLm(OF,(p)) then

i
(m)

Auniv(x) ◦ g = i
(m)

g∗Auniv(x)

and

i
(m)

Auniv(x) ◦ γ = i
(m)

γ∗Auniv(γ−1x).

• If e1, ..., em denotes the standard basis of OmF,(p) then

iAuniv = ||ηp,univ
0 ||−1((λ(N1)univ)−1 ◦ i(m)

Auniv(e1), ..., (λ(N1)univ)−1 ◦ i(m)

Auniv(em))

is a prime-to-p quasi-isogeny

A(m),ord
n,Up(N1,N2) −→ (Auniv/Cuniv[pN1 ])m.

Here λ(N1)univ refers to the prime-to-p quasi-polarization Auniv/C[pN1 ] →
(Auniv/C[pN1 ])∨ for which the composite

Auniv −→ Auniv/C[pN1 ]
λ(N1)univ

−→ (Auniv/C[pN1 ])∨ −→ Auniv,∨

equals pN1λuniv.
We have

β⊕m ◦ iAuniv = i(Auniv)′ .

The composite map

η
(m)
n,Up(N1,N2) : HomOF (OmF ,Λn)⊗Z A∞,p −→ V p(Auniv)m

p−N1

−→ V p(Auniv/Cuniv[pN1 ])m

−→ V pA(m),ord
n,Up(N1,N2),
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where the first maps sends

f 7−→ (ηp,univ
1 (f(e1)), ..., ηp,univ

1 (f(em)))

and the third map sends

x 7−→ V p(iAuniv)−1x,

is an isomorphism, which does not depend on the choice of Guniv. It satisfies

η
(m)
n,Up(N1,N2)M

p = T pA(m),ord
n,Up(N1,N2).

(See lemmas 5.2.4.7 and 7.1.2.1, propositions 5.2.4.13, 5.2.4.25 and 7.1.2.5, remarks
7.1.2.38 and 7.1.4.27, and theorem 7.1.4.1 of [La4].)

We deduce the following additional properties:

• If g ∈ G(m)
n (A∞)ord,× then the map g : A(m),ord

n,Up1 (N11,N12)
→ A(m),ord

n,Up2 (N21,N22)
is etale.

If further N12 = N22, then it is finite etale.

• If g ∈ G(m)
n (A∞)ord, if N22 > 0, and if pN12−N22ν(gp) ∈ Z×p then

g : A(m),ord

n,Up1 (N11,N12)
−→ A(m),ord

n,Up2 (N21,N22)

is finite. If N2 > 0 then the finite flat map

ςp : A(m),ord
n,Up(N1,N2+1) −→ A

(m),ord
n,Up(N1,N2)

has degree pn(n+2m)[F+:Q].
•

iAuniv ◦ g = ig∗Auniv

and

iAuniv ◦ γ = tγ−1 ◦ iγ∗Auniv .

Also in this case define

i
(m)
λ : OmF,(p) ⊗OF,(p),c O

m
F,(p) −→ Hom /X ord

n,(Up)′(N1,N2)
(A(m),ord

n,Up(N1,N2), A
(m),ord,∨
n,Up(N1,N2))Z(p)

by

i
(m)
λ (x⊗ y) = ||ηp,univ

0 ||−1i
(m)

Auniv(x)∨ ◦ (λ(N1)univ)−1 ◦ i(m)

Auniv(y).

This does not depend on the choice of Auniv. We have

i
(m)
λ (x⊗ y)∨ = i

(m)
λ (y ⊗ x).

Moreover

(i−1
Auniv)∨ ◦ i(m)

λ (x⊗ y) ◦ i−1
Auniv = (λ(N1)univ)⊕m ◦ iuniv(c,txy).

If a ∈ (OmF,(p) ⊗OF,(p),c OmF,(p))sw=1 has image in S(OmF,(p)) lying in S(OmF,(p))>0 then

(i−1
Auniv)∨ ◦ i(m)

λ (a) ◦ i−1
Auniv = (λ(N1)univ)⊕m ◦ iuniv(a′)

for some matrix a′ ∈Mm×m(OF,(p))t=c all whose eigenvalues are positive real numbers.

Thus i
(m)
λ (a) is a quasi-polarization. (See the end of section 21 of [M].)
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The completion of A(m),ord
Up(N1,N2) along its Fp-fibre does not depend on N2, so we will

denote it
A

(m),ord
Up(N1).

(See theorem 7.1.4.1 of [La4].) Then {A(m),ord
Up(N) } is a system of p-adic formal schemes

with a right G
(m)
n (A∞)ord-action and a left GLm(OF,(p))-action. There is an equivari-

ant map

{A(m),ord
n,Up(N)} −→ {X

ord
n,(U ′)p(N)}.

We will write A
(m),ord

n,Up(N) for the reduced sub-scheme of A
(m),ord
n,Up(N).
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3.3. Some mixed Shimura varieties.

If Ũ (resp. Ũp) is a neat open compact subgroup of G̃
(m)
n (A∞) (resp. G̃

(m)
n (A∞,p)) we

will denote by S
(m)

n,Ũ
(resp. S(m),ord

n,Ũp
) the split torus over SpecQ (resp. SpecZ(p)) with

X∗(S
(m)

n,Ũ
) = Z(N (m)

n )(Q) ∩ Ũ ⊂ Herm(m)(Q)

(resp.

X∗(S(m),ord

n,Ũp
) = Z(N (m)

n )(Z(p)) ∩ Ũp ⊂ Herm(m)(Z(p))).

If g ∈ G̃(m)
n (A∞) (resp. G̃

(m)
n (A∞)ord) and Ũ2 ⊃ g−1Ũ1g (resp. Ũp

2 ⊃ g−1Ũp
1 g) we get

a map

g : S
(m)

n,Ũ1
−→ S

(m)

n,Ũ2

(resp.

g : S(m),ord

n,Ũp1
−→ S(m),ord

n,Ũp2
)

corresponding to

||ν(g)|| : X∗(S(m)

n,Ũ1
) −→ X∗(S

(m)

n,Ũ2
)

(resp.

||ν(g)|| : X∗(S(m),ord

n,Ũp1
) −→ X∗(S(m),ord

n,Ũp2
)),

where we think of the domain and codomain both as subspaces of Herm(m). If γ ∈
GLm(Q) (resp. GLm(Z(p))) and Ũ2 ⊃ γŨ1 (resp. Ũp

2 ⊃ γŨp
1 ) we get a map

γ : S
(m)

n,Ũ1
−→ S

(m)

n,Ũ2

(resp.

γ : S(m),ord

n,Ũp1
−→ S(m),ord

n,Ũp2
)

corresponding to

γ : X∗(S
(m)

n,Ũ1
) −→ X∗(S

(m)

n,Ũ2
)

(resp.

γ : X∗(S(m),ord

n,Ũp1
) −→ X∗(S(m),ord

n,Ũp2
)),

where again we think of the domain and codomain both as subspaces of Herm(m).

If m1 ≥ m2 and if Ũ2 (resp. Ũp
2 ) is the image of Ũ1 (resp. Ũp

1 ) in G̃
(m2)
n (A∞) (resp.

G̃
(m2)
n (A∞,p)), then our chosen map Herm(m1) → Herm(m2) induces a map

S
(m1)

n,Ũ1
−→ S

(m2)

n,Ũ2

(resp.

S(m1),ord

n,Ũp1
−→ S(m2),ord

n,Ũp2
).
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As Ũ runs over neat open compact subgroups of G̃
(m)
n (A∞), there is a system of

S
(m)

n,Ũ
-torsors

T
(m)

n,Ũ
= Spec

⊕
χ∈X∗(S(m)

n,Ũ
)

L(m)

n,Ũ
(χ)

over A
(m)

n,Ũ
together with the following extra structures:

• If g ∈ G̃(m)
n (A∞) and Ũ1, Ũ2 are neat open compact subgroups of G̃

(m)
n (A∞)

with Ũ2 ⊃ g−1Ũ1g then there is a finite etale map

g : T
(m)

n,Ũ1
−→ T

(m)

n,Ũ2

compatible with the maps g : A
(m)

n,Ũ1
−→ A

(m)

n,Ũ2
and g : S

(m)

n,Ũ1
−→ S

(m)

n,Ũ2
.

• If γ ∈ GLm(F ) and Ũ1, Ũ2 are neat open compact subgroups of G̃
(m)
n (A∞)

with Ũ2 ⊃ γŨ1 then there is a finite etale map

γ : T
(m)

n,Ũ1
−→ T

(m)

n,Ũ2
,

compatible with the maps γ : A
(m)

n,Ũ1
−→ A

(m)

n,Ũ2
and γ : S

(m)

n,Ũ1
−→ S

(m)

n,Ũ2
.

• If m1 ≥ m2 and Ũ2 is the image of Ũ1 in G̃(m2)(A∞), then there is a map

T
(m1)

n,Ũ1
−→ T

(m2)

n,Ũ2

compatible with the maps S
(m1)

n,Ũ1
−→ S

(m2)

n,Ũ2
and A

(m1)

n,Ũ1
−→ A

(m2)

n,Ũ2
.

These enjoy the following properties:

• g1 ◦ g2 = g2g1 (i.e. this is a right action) and γ1 ◦ γ2 = γ1γ2 (i.e. this is a left
action) and γ ◦ g = γ(g) ◦ γ.

• If Ũ1 ⊂ Ũ2 is an open normal subgroup of a neat open compact subgroup of

G̃
(m)
n (A∞), then T

(m)

n,Ũ1
/T

(m)

n,Ũ2
is Galois with group Ũ2/Ũ1.

• The maps T
(m1)

n,Ũ1
−→ T

(m2)

n,Ũ2
are compatible with the actions of G̃

(m1)
n (A∞) and

G̃
(m2)
n (A∞) and the map G̃

(m1)
n (A∞) → G̃

(m2)
n (A∞), and also with the action

of Qm1,m2(F ).

• Suppose that Ũ = U ′ nM with U ′ ⊂ Gn(A∞) and M ⊂ N
(m)
n (A∞). Also

suppose that

χ ∈ X∗(S(m)

n,Ũ
) ⊂ S(Fm)

is sufficiently divisible. Then we can find a ∈ Fm ⊗F,c Fm lifting χ such that

i
(m)
λ (a) : A

(m)

n,Ũ
−→ (A

(m)

n,Ũ
)∨

is a homomorphism. For any such a

L(m)

n,Ũ
(χ) = (1, i

(m)
λ (a))∗P

A
(m)

n,Ũ

.

• If χ ∈ X∗(S(m)

n,Ũ
) ∩ S(Fm)>0 then L(m)

n,Ũ
(χ) is relatively ample for A

(m)

n,Ũ
/Xn,Ũ .
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• There are G̃
(m)
n (A∞)- and GLm(F )-equivariant homeomorphisms

T
(m)

n,Ũ
(C) ∼= G̃(m)

n (Q)\G̃(m)
n (A)Herm(m)(C)/(Ũ × U0

n,∞An(R)0).

(See lemmas 1.3.2.25 and 1.3.2.72, and propositions 1.3.2.31, 1.3.2.45 and 1.3.2.90 of
[La4]; section 3.6 of [La3]; and the second paragraph of section 3.2 above.)

Similarly as Ũp runs over neat open compact subgroups of G̃
(m)
n (A∞,p) and N1, N2

run over integers with N2 ≥ N1 ≥ 0, there is a system of S(m),ord

n,Ũp
-torsors

T (m),ord

n,Ũp(N1,N2)
= Spec

⊕
χ∈X∗(S(m),ord

n,Ũp(N1,N2)
)

L(m),ord

n,Ũp(N1,N2)
(χ)

over A(m),ord

n,Ũp(N1,N2)
together with the following extra structures:

• If g ∈ G̃
(m)
n (A∞)ord and Ũp

2 (N21, N22) ⊃ g−1Ũp
1 (N11, N12)g then there is a

quasi-finite, flat map

g : T (m),ord

n,Ũp1 (N11,N12)
−→ T (m),ord

n,Ũp2 (N21,N22)

compatible with the map g : A(m),ord

n,Ũp1 (N11,N12)
−→ A(m),ord

n,Ũp2 (N21,N22)
and the map

g : S(m),ord

n,Ũp1
−→ S(m),ord

n,Ũp2
.

• If γ ∈ GLm(OF,(p)) and Ũp
2 ⊃ γŨp

1 then there is a finite etale map

γ : T (m),ord

n,Ũp1 (N1,N2)
−→ T (m),ord

n,Ũp2 (N1,N2)
,

compatible with the maps

γ : A(m),ord

n,Ũp1 (N1,N2)
−→ A(m)

n,Ũp2 (N1,N2)

and

γ : S(m),ord

n,Ũp1
−→ S(m),ord

n,Ũp2
.

• If m1 ≥ m2 and Ũp
2 is the image of Ũp

1 in G̃(m2)(A∞,p), then there is a map

T (m1),ord

n,Ũp1 (N1,N2)
−→ T (m2),ord

n,Ũp2 (N1,N2)

compatible with the map S(m1),ord

n,Ũp1
−→ S(m2),ord

n,Ũp2
and the map A(m1),ord

n,Ũp1 (N1,N2)
−→

A(m2),ord

n,Ũp2 (N1,N2)
.

These enjoy the following properties:

• g1 ◦ g2 = g2g1 (i.e. this is a right action) and γ1 ◦ γ2 = γ1γ2 (i.e. this is a left
action) and γ ◦ g = γ(g) ◦ γ.

• If g ∈ G̃(m)
n (A∞)ord,× then the map g : T (m),ord

n,Ũp1 (N11,N12)
→ T (m),ord

n,Ũp2 (N21,N22)
is etale.

If further N12 = N22, then it is finite etale.
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• The maps T (m1),ord

n,Ũp1 (N1,N2)
−→ T (m2),ord

n,Ũp2 (N1,N2)
are compatible with the actions of

G̃
(m1)
n (A∞)ord and G̃

(m2)
n (A∞)ord and the map G̃

(m1)
n (A∞) → G̃

(m2)
n (A∞), and

with the action of Qm1,m2(OF,(p)).
• If Ũp

1 ⊂ Ũp
2 is an open normal subgroup of a neat open compact of G̃

(m)
n (A∞,p),

and if N11 ≥ N21 then T (m),ord

n,Ũp1 (N11,N2)
/T (m),ord

n,Ũp2 (N21,N2)
is Galois with Galois group

Ũp
2 (N21)/Ũp

1 (N11).

• If g ∈ G
(m)
n (A∞)ord, if N22 > 0, and if pN12−N22ν(gp) ∈ Z×p , then the map

g : T (m),ord

n,Ũp1 (N11,N12)
→ T (m),ord

n,Ũp2 (N21,N22)
is finite. If N2 > 0 then the finite flat map

ςp : T (m),ord

n,Ũp1 (N1,N2+1)
→ T (m),ord

n,Ũp2 (N1,N2)

has degree p(n+m)2[F+:Q].
• On the Fp-fibre

ςp : T (m),ord

n,Ũp(N1,N2+1)
× SpecFp −→ T (m),ord

n,Ũp(N1,N2)
× SpecFp

equals the composition of the absolute Frobenius map with the forgetful map
(for any N2 ≥ N1 ≥ 0).

• Suppose that Ũp = (Up)′nMp with (Up)′ ⊂ Gn(A∞,p) and Mp ⊂ N
(m)
n (A∞,p).

Also suppose that

χ ∈ X∗(S(m),ord

n,Ũp
) ⊂ S(OmF,(p))

is sufficiently divisible. Then we can find a ∈ OmF,(p) ⊗OF,(p) OmF,(p) lifting χ
such that

i
(m)
λ (a) : A(m),ord

n,Ũp(N1,N2)
−→ (A(m),ord

n,Ũp(N1,N2)
)∨

is a homomorphism. For any such a

L(m),ord

n,Ũp(N1,N2)
(χ) = (1, i

(m)
λ (a))∗PA(m),ord

n,Ũp(N1,N2)

.

• If χ ∈ X∗(S(m)

n,Ũp
) ∩ S(OmF,(p))>0 then L(m),ord

n,Ũp(N1,N2)
(χ) is relatively ample for

A(m),ord

n,Ũp(N1,N2)
/X ord

n,Ũp(N1,N2)
.

• There are natural identifications

T (m),ord

n,Ũp(N1,N2)
× SpecQ ∼= T

(m)

n,Ũp(N1,N2)
.

These identifications are compatible with the identifications

A(m),ord

n,Ũp(N1,N2)
× SpecQ ∼= A

(m)

n,Ũp(N1,N2)

and the maps

T (m),ord

n,Ũp(N1,N2)
−→ A(m),ord

n,Ũp(N1,N2)

and
T

(m)

n,Ũp(N1,N2)
−→ A

(m)

n,Ũp(N1,N2)
.
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The identifications are also equivariant for the actions of the semi-group

G̃
(m)
n (A∞)ord and the group GLm(OF,(p)).

(See lemmas 5.2.4.26 and 7.1.2.22, propositions 5.2.4.30, 5.2.4.41 and 7.1.2.36, and
remark 7.1.2.38 of [La4].)
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3.4. Vector bundles.

3.4.1. Vector bundles on Shimura varieties in characteristic zero. : Suppose that U
is a neat open compact subgroup of Gn(A∞). We will let Ωn,U denote the pull-back
by the identity section of the sheaf of relative differentials Ω1

Auniv/Xn,U
. This is a

locally free sheaf of rank n[F : Q]. Up to unique isomorphism its definition does
not depend on the choice of Auniv. (Because, by the neatness of U , there is a unique
quasi-isogeny between any two universal four-tuples (Auniv, iuniv, λuniv, [ηuniv]).) The
system of sheaves {Ωn,U} has an action of Gn(A∞). There is a natural isomorphism
between Ω1

Auniv/Xn,U
and the pull-back of Ωn,U from Xn,U to Auniv. We will write

ωU = ωn,U = ∧n[F :Q]Ωn,U .

Similarly, if π : Auniv → Xn,U is the structural map, then the sheaf

Riπ∗Ω
j
Auniv/Xn,U

∼= (∧jΩn,U)⊗Riπ∗OAuniv

is locally free and canonically independent of the choice of Auniv. These sheaves again
have an action of Gn(A∞).

We will also write Ξn,U = OXn,U (||ν||) for the sheaf OXn,U but with the Gn(A∞)-
action multiplied by ||ν||.

For any m ∈ Z such that mλuniv is a true isogeny we get a class

[(1, [m]λuniv)∗PAuniv ] ∈ H1(Auniv,O×
Auniv)

−→ H0(Xn,U , R
1π∗O×Auniv)

d log−→ H0(Xn,U , R
1π∗Ω

1
Auniv/Xn,U

).

The class

[(1, λuniv)∗PAuniv ] = [(1, [m]λuniv)∗PAuniv ]/m ∈ H0(Xn,U , R
1π∗Ω

1
Auniv/Xn,U

)

is well defined independently of m. We obtain an embedding

Ξn,U ↪→ R1π∗Ω
1
Auniv/Xn,U

sending 1 to ||ηuniv||[(1, λuniv)∗PAuniv ]. (See section 3.1 for the definition of ||ηuniv||.)
These maps are compatible with the isomorphisms

R1π∗Ω
1
Auniv/Xn,U

∼−→ R1π∗Ω
1
Auniv,′/Xn,U

induced by the unique quasi-isogeny between two universal four-tuples. They are also
Gn(A∞)-equivariant.

The composites of induced maps

Hom (Ωn,U ,Ξn,U) ↪→ Hom (Ωn,U , R
1π∗Ω

1
Auniv/Xn,U

)
∼←− Hom (Ωn,U ,Ωn,U ⊗R1π∗OAuniv)
tr−→ R1π∗OAuniv
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are Gn(A∞)-equivariant isomorphisms, independent of the choice of Auniv. Moreover
the short exact sequence

(0) −→ Ω1
Xn,U
⊗OAuniv −→ Ω1

Auniv −→ Ωn,U ⊗OAuniv −→ (0)

gives rise to a map

Ωn,U −→ Ω1
Xn,U
⊗R1π∗OAuniv

∼←− Ω1
Xn,U
⊗ Hom (Ωn,U ,Ξn,U)

and hence to a map
Ω⊗2
n,U −→ Ω1

Xn,U
⊗ Ξn,U .

These maps do not depend on the choice of Auniv and are Gn(A∞)-equivariant. They
further induce Gn(A∞)-equivariant isomorphisms

S(Ωn,U)
∼−→ Ω1

Xn,U
⊗ Ξn,U ,

which again do not depend on the choice of Auniv. (See for instance propositions
2.1.7.3 and 2.3.5.2 of [La1]. This is referred to as the ‘Kodaira-Spencer isomorphism’.)

Let EU denote the principal Ln,(n)-bundle on Xn,U in the Zariski topology defined
by setting, for W ⊂ Xn,U a Zariski open, EU(W ) to be the set of pairs (ξ0, ξ1), where

ξ0 : Ξn,U |W
∼−→ OW

and
ξ1 : Ωn,U

∼−→ Hom Q(Vn/Vn,(n),OW ).

We define the Ln,(n)-action on EU by

h(ξ0, ξ1) = (ν(h)−1ξ0, (◦h−1) ◦ ξ1).

The inverse system {EU} has an action of Gn(A∞).
Suppose that R0 is a Q-algebra and that ρ is a representation of Ln,(n) on a finite,

locally free R0-module Wρ. We define a locally free sheaf EU,ρ over Xn,U × SpecR0

by setting EU,ρ(W ) to be the set of Ln,(n)(OW )-equivariant maps of Zariski sheaves of
sets

EU |W → Wρ ⊗R0 OW .
Then {EU,ρ} is a system of locally free sheaves with Gn(A∞)-action over the system
of schemes {Xn,U × SpecR0}. If g ∈ Gn(A∞), then the natural map

g∗EU,ρ −→ EU ′,ρ
is an isomorphism.

In the case R0 = C, the holomorphic vector bundle on Xn,U(C) associated to EU,ρ
is

EU,ρ = Gn(Q)\ (Gn(A∞)/U × Eρ)

over
Xn,U(C) = Gn(Q)\

(
Gn(A∞)/U × H±n

)
.

(See section 1.1 for the definition of the holomorphic vector bundle Eρ/H
±
n .)

Note that
EU,Std∨

∼= Ωn,U
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and

EU,ν−1
∼= Ξn,U

and

EU,∧n[F :Q]Std∨
∼= ωU

and

EU,KS
∼= Ω1

Xn,U
.

(See section 1.2 for the definition of the representation KS.)

3.4.2. Vector bundles on Kuga-Sato varieties in characteristic zero. : Suppose now

that U is a neat open compact subgroup of G
(m)
n (A∞) with image U ′ in Gn(A∞).

We will let Ω
(m)
n,U denote the pull-back by the identity section of the sheaf of relative

differentials Ω1

Guniv/A
(m)
n,U

. This is a locally free sheaf of rank (n + m)[F : Q]. Up

to unique isomorphism its definition does not depend on the choice of Guniv. The

system of sheaves {Ω(m)
n,U} has actions of G

(m)
n (A∞) and of GLm(F ). Moreover there

is an exact sequence

(0) −→ π∗
A

(m)
n /Xn

Ωn,U ′ −→ Ω
(m)
n,U −→ Fm ⊗Q OA(m)

n,U
−→ (0)

which is equivariant for the actions of G
(m)
n (A∞) and GLm(F ).

Let E (m)
U denote the principal R

(m)
n,(n)-bundle on A

(m)
n,U in the Zariski topology defined

by setting, for W ⊂ A
(m)
n,U a Zariski open, E (m)

U (W ) to be the set of pairs (ξ0, ξ1), where

ξ0 : Ξn,U |W
∼−→ OW

and

ξ1 : Ω
(m)
n,U

∼−→ Hom Q(Vn/Vn,(n) ⊕ Hom Q(Fm,Q),OW )

satisfies

ξ1 : Ωn,U
∼−→ Hom Q(Vn/Vn,(n),OW )

and induces the canonical isomorphism

Fm ⊗Q OW −→ Hom Q(Hom Q(Fm,Q),OW ).

We define the R
(m)
n,(n)-action on E (m)

U by

h(ξ0, ξ1) = (ν(h)−1ξ0, (◦h−1) ◦ ξ1).

The inverse system {E (m)
U } has an action of G

(m)
n (A∞) and of GLm(F ).

Suppose that R0 is a Q-algebra and that ρ is a representation of R
(m)
n,(n) on a finite,

locally free R0-module Wρ. We define a locally free sheaf E (m)
U,ρ over A

(m)
n,U × SpecR0

by setting E (m)
U,ρ (W ) to be the set of R

(m)
n,(n)(OW )-equivariant maps of Zariski sheaves

of sets

E (m)
U |W −→ Wρ ⊗R0 OW .
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Then {E (m)
U,ρ } is a system of locally free sheaves with both G

(m)
n (A∞)-action and

GLm(F )-action over the system of schemes {A(m)
n,U × SpecR0}. If g ∈ G

(m)
n (A∞)

and γ ∈ GLm(F ), then the natural maps

g∗E (m)
U,ρ −→ E

(m)
U ′,ρ

and

γ∗E (m)
U,ρ −→ E

(m)
U ′,ρ

are isomorphisms. If ρ factors through R
(m)
n,(n) →→ Ln,(n) then E (m)

U,ρ is canonically

isomorphic to the pull-back of EU,ρ from Xn,U . In general Wρ has a filtration by

R
(m)
n,(n)-invariant direct-summands such that the action of R

(m)
n,(n) on each graded piece

factors through Ln,(n). (To see this apply proposition 4.7.3 of exposé I of [SGA3] to

the action of Ln,(n),herm on Wρ.) Thus E (m)
U,ρ has a G

(m)
n (A∞)- and GLm(F )-invariant

filtration by local direct summands such that each graded piece is the pull-back of
some EU,ρ′ from Xn,U .

3.4.3. Vector bundles on Shimura varieties in mixed characteristic. : Similarly sup-
pose that Up is a neat open compact subgroup of Gn(A∞,p), and that N2 ≥ N1 ≥ 0
are integers. We will let Ωord

n,Up(N1,N2) denote the pull-back by the identity section of

Ω1
Auniv/X ord

n,Up(N1,N2)

. This is a locally free sheaf of rank n[F : Q]. Up to unique iso-

morphism its definition does not depend on the choice of Auniv. (Because, by the
neatness of Up, there is a unique prime-to-p quasi-isogeny between any two universal
four-tuples (Auniv, iuniv, λuniv, [ηuniv]).) The system of sheaves {Ωord

n,Up(N1,N2)} has an

action of Gn(A∞)ord. There is a natural isomorphism between Ω1
Auniv/X ord

n,Up(N1,N2)

and

the pull-back of Ωord
n,Up(N1,N2). We will write

ωUp(N1,N2) = ωn,Up(N1,N2) = ∧n[F :Q]Ωord
n,Up(N1,N2).

We will also write Ξn,Up(N1,N2) = OX ord
n,Up(N1,N2)

(||ν||) for the sheaf OX ord
n,Up(N1,N2)

but

with the Gn(A∞)ord-action multiplied by ||ν||.
For any m ∈ Z such that p 6 |m and mλuniv is a true isogeny we get a class

[(1, [m]λuniv)∗PAuniv ] ∈ H1(Auniv,O×Auniv)
−→ H0(X ord

n,Up(N1,N2), R
1π∗O×Auniv)

d log−→ H0(X ord
n,Up(N1,N2), R

1π∗Ω
1
Auniv/X ord

n,Up(N1,N2)

).

The class

[(1, λuniv)∗PAuniv ] = [(1, [m]λuniv)∗PAuniv ]/m
∈ H0(X ord

n,Up(N1,N2), R
1π∗Ω

1
Auniv/X ord

n,Up(N1,N2)

)

is well defined independently of m. We obtain an embedding

Ξord
n,Up(N1,N2) ↪→ R1π∗Ω

1
Auniv/X ord

n,Up(N1,N2)
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sending 1 to ||ηuniv||[(1, λuniv)∗PAuniv ]. These maps are compatible with the isomor-
phisms

R1π∗Ω
1
Auniv/X ord

n,Up(N1,N2)

∼→ R1π∗Ω
1
Auniv,′/X ord

n,Up(N1,N2)

induced by the unique prime-to-p quasi-isogeny between two universal four-tuples.
They are also Gn(A∞)ord-equivariant.

The composites of induced maps

Hom (Ωord
n,Up(N1,N2),Ξ

ord
n,Up(N1,N2))

↪→ Hom (Ωord
n,Up(N1,N2), R

1π∗Ω
1
Auniv/X ord

n,Up(N1,N2)

)
∼←− Hom (Ωord

n,Up(N1,N2),Ω
ord
n,Up(N1,N2) ⊗R1π∗OAuniv)

tr−→ R1π∗OAuniv

are Gn(A∞)ord-equivariant isomorphisms, independent of the choice of Auniv. More-
over the short exact sequence

(0) −→ Ω1
X ord
n,Up(N1,N2)

⊗OAuniv −→ Ω1
Auniv −→ Ωord

n,Up(N1,N2) ⊗OAuniv −→ (0)

gives rise to a map

Ωord
n,Up(N1,N2) −→ Ω1

X ord
n,Up(N1,N2)

⊗R1π∗OAuniv

∼←− Ω1
X ord
n,Up(N1,N2)

⊗ Hom (Ωord
n,Up(N1,N2),Ξ

ord
n,Up(N1,N2))

and hence to a map

(Ωord
n,Up(N1,N2))

⊗2 −→ Ω1
X ord
n,Up(N1,N2)

⊗ Ξord
n,Up(N1,N2).

These maps do not depend on the choice of Auniv and are Gn(A∞)ord-equivariant.
They further induce Gn(A∞)ord isomorphisms

S(Ωord
n,Up(N1,N2))

∼−→ Ω1
X ord
n,Up(N1,N2)

⊗ Ξord
n,Up(N1,N2),

which again do not depend on the choice of Auniv. (See for instance proposition
3.4.3.3 of [La4].)

Let Eord
Up(N1,N2) denote the principal Ln,(n)-bundle on X ord

n,Up(N1,N2) in the Zariski topol-

ogy defined by setting, for W ⊂ X ord
n,Up(N1,N2) a Zariski open, Eord

Up(N1,N2)(W ) to be the

set of pairs (ξ0, ξ1), where

ξ0 : Ξord
n,Up(N1,N2)|W

∼−→ OW
and

ξ1 : Ωord
n,Up(N1,N2)

∼−→ Hom Z(Λn/Λn,(n),OW ).

We define the Ln,(n)-action on Eord
Up(N1,N2) by

h(ξ0, ξ1) = (ν(h)−1ξ0, (◦h−1) ◦ ξ1).

The inverse system {Eord
Up(N1,N2)} has an action of Gn(A∞)ord,×.

Suppose that R0 is a Z(p)-algebra and that ρ is a representation of the algebraic
group Ln,(n) on a finite, locally free R0-module Wρ. We define a locally free sheaf
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Eord
Up(N1,N2),ρ over X ord

n,Up(N1,N2) × SpecR0 by setting Eord
Up(N1,N2),ρ(W ) to be the set of

Ln,(n)(OW )-equivariant maps of Zariski sheaves of sets

Eord
Up(N1,N2)|W → Wρ ⊗R0 OW .

Then {Eord
Up(N1,N2),ρ} is a system of locally free sheaves with Gn(A∞)ord,×-action over

the system of schemes {X ord
n,Up(N1,N2) × SpecR0}. The maps

g∗EUp(N1,N2),ρ −→ E(Up)′(N ′1,N
′
2),ρ

are isomorphisms. The pull-back of Eord
Up(N1,N2),ρ to

X ord
n,Up(N1,N2) × SpecR0[1/p]

is canonically identified with the sheaf EUp(N1,N2),ρ⊗R0
R0[1/p]. This identification is

Gn(A∞)ord,×-equivariant.
Note that

Eord
Up(N1,N2),Std∨

∼= Ωord
n,Up(N1,N2)

and
Eord
Up(N1,N2),ν−1

∼= Ξord
n,Up(N1,N2)

and
Eord
Up(N1,N2),∧n[F :Q]Std∨

∼= ωord
Up(N1,N2)

and
Eord
Up(N1,N2),KS

∼= Ω1
X ord
n,Up(N1,N2)

.

3.4.4. Vector bundles on Kuga-Sato varieties in mixed characteristic. : Suppose now

that Up is a neat open compact subgroup of G
(m)
n (A∞,p) with image (Up)′ in Gn(A∞,p).

We will let Ω
(m),ord
n,Up(N1,N2) denote the pull-back by the identity section of the sheaf of

relative differentials Ω1

Guniv/A(m),ord
n,Up(N1,N2)

. This is a locally free sheaf of rank (n+m)[F :

Q]. Up to unique isomorphism its definition does not depend on the choice of Guniv.

The system of sheaves {Ω(m),ord
n,Up(N1,N2)} has actions of G

(m)
n (A∞)ord and of GLm(OF,(p)).

Moreover there is an exact sequence

(0)→ π∗
A(m),ord
n /X ord

n

Ωord
n,(Up)′(N1,N2) → Ω

(m)
n,Up(N1,N2) → O

m
F,(p) ⊗Q OA(m)

n,Up(N1,N2)

→ (0)

which is equivariant for the actions of G
(m)
n (A∞)ord and GLm(OF,(p)).

Let E (m),ord
Up(N1,N2) denote the principalR

(m)
n,(n)-bundle onA(m),ord

n,Up(N1,N2) in the Zariski topol-

ogy defined by setting, for W ⊂ A(m),ord
n,Up(N1,N2) a Zariski open, E (m),ord

Up(N1,N2)(W ) to be the

set of pairs (ξ0, ξ1), where

ξ0 : Ξord
n,Up(N1,N2)|W

∼−→ OW
and

ξ1 : Ω
(m),ord
n,Up(N1,N2)

∼−→ Hom (Λn/Λn,(n) ⊕ Hom (OmF ,Z),OW )

satisfies
ξ1 : Ωord

n,Up(N1,N2)
∼−→ Hom (Λn/Λn,(n),OW )
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and induces the canonical isomorphism

OmF,(p) ⊗Z(p)
OW −→ Hom (Hom (OmF ,Z),OW ).

We define the R
(m)
n,(n)-action on E (m),ord

Up(N1,N2) by

h(ξ0, ξ1) = (ν(h)−1ξ0, (◦h−1) ◦ ξ1).

The inverse system {E (m),ord
Up(N1,N2)} has an action of G

(m)
n (A∞)ord,× and of GLm(OF,(p)).

Suppose that R0 is a Z(p)-algebra and that ρ is a representation of R
(m)
n,(n) on a

finite, locally free R0-module Wρ. We define a locally free sheaf E (m),ord
Up(N1,N2),ρ over

A(m),ord
n,Up(N1,N2) × SpecR0 by setting E (m)

U,ρ (W ) to be the set of R
(m)
n,(n)(OW )-equivariant

maps of Zariski sheaves of sets

E (m),ord
Up(N1,N2)|W −→ Wρ ⊗R0 OW .

Then {E (m),ord
Up(N1,N2),ρ} is a system of locally free sheaves with G

(m)
n (A∞)ord,×-action and

GLm(OF,(p))-action over the system of schemes {A(m),ord
n,Up(N1,N2) × SpecR0}. If g ∈

G
(m)
n (A∞)ord,× and γ ∈ GLm(OF,(p)), then the natural maps

g∗E (m),ord
Up(N1,N2),ρ −→ E

(m),ord

(Up)′(N ′1,N
′
2),ρ

and

γ∗E (m),ord
Up(N1,N2),ρ −→ E

(m),ord

(Up)′(N ′1,N
′
2),ρ

are isomorphisms. If ρ factors through R
(m)
n,(n) →→ Ln,(n) then E (m),ord

Up(N1,N2),ρ is canonically

isomorphic to the pull-back of Eord
Up(N1,N2),ρ from X ord

n,Up(N1,N2). In general Wρ has a

filtration by R
(m)
n,(n)-invariant local direct-summands such that the action of R

(m)
n,(n) on

each graded piece factors through Ln,(n). (To see this apply proposition 4.7.3 of exposé

I of [SGA3] to the action of Ln,(n),herm on Wρ.) Thus E (m),ord
Up(N1,N2),ρ has a G

(m)
n (A∞)-

and GLm(OF,(p))-invariant filtration by local direct summands such that each graded
piece is the pull-back of some Eord

Up(N1,N2),ρ′ from X ord
n,Up(N1,N2).

3.4.5. Higher direct images from Kuga-Sato varieties to Shimura varieties, character-

istic zero case. : If m ≥ m′ and if U is a neat open compact subgroup of G
(m)
n (A∞)

with image U ′ in G
(m′)
n (A∞) then the sheaf

Rjπ
A

(m)
n /A

(m′)
n ,∗Ω

i

A
(m)
n,U/A

(m′)
n,U′

depends only on U ′ and not on U . We will denote it

(Rjπ∗Ω
i

A
(m)
n /A

(m′)
n

)U ′ .

If g ∈ G(m)
n (A∞) and g−1U1g ⊂ U2 then there is a natural isomorphism

g : (g′)∗(Rjπ∗Ω
i

A
(m)
n /A

(m′)
n

)U ′2
∼−→ (Rjπ∗Ω

i

A
(m)
n /A

(m′)
n

)U ′1 ,
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where g′ (resp. U ′1, resp. U ′2) denotes the image of g (resp. U1, resp. U2) in G
(m′)
n (A∞).

This isomorphism only depends on g′, U ′1 and U ′2 and not on g, U1 and U2. This

gives the system of sheaves {(Rjπ∗Ω
i

A
(m)
n /A

(m′)
n

)U ′} a left action of G
(m′)
n (A∞). Also if

γ ∈ Qm,m′(F ) then γ : A
(m)
n,U → A

(m)
n,γU gives a natural isomorphism

γ : (Rjπ∗Ω
i

A
(m)
n /A

(m′)
n

)U ′
∼−→ (Rjπ∗Ω

i

A
(m)
n /A

(m′)
n

)U ′ ,

which depends only on U ′ and not on U . This gives the system of sheaves

{(Rjπ∗Ω
i

A
(m)
n /A

(m′)
n

)U ′}

a right action of Qm,m′(F ). We have γ ◦ g = γ(g) ◦ γ.
If U ′1 ⊃ U ′2 and g′ ∈ U ′2 normalizes U ′1 then on

(Rjπ∗Ω
i

A
(m)
n /A

(m′)
n

)U ′2
∼= (Rjπ∗Ω

i

A
(m)
n /A

(m′)
n

)U ′1 ⊗O
A

(m′)
n,U′1

O
A

(m′)
n,U′2

the actions of g and 1⊗ g agree. Moreover if U is a neat open compact subgroup of

G
(m)
n (A∞) with image U ′ in G

(m′)
n (A∞) then the natural map

π∗
A

(m)
n /A

(m′)
n

(π∗Ω
1

A
(m)
n /A

(m′)
n

)U ′ −→ Ω1

A
(m)
n,U/A

(m′)
n,U′

is an isomorphism. These isomorphisms are equivariant for the actions of the groups

G
(m)
n (A∞) and Qm,m′(F ).
The natural maps

∧i(π∗Ω1

A
(m)
n /A

(m′)
n

)U ′ ⊗ ∧j(R1π∗OA(m)
n

)U ′ −→ (Rjπ∗Ω
i

A
(m)
n /A

(m′)
n

)U ′

are G
(m′)
n (A∞)- and Qm,m′(F )-equivariant isomorphisms.

Suppose that U is a neat open compact subgroup of G
(m)
n (A∞) with image U ′ in

G
(m′)
n (A∞) and U ′′ in Gn(A∞). If U is of the form U ′ nM , then the quasi-isogeny

iAuniv : A
(m)
n,U → (Auniv)m−m

′
over A

(m′)
n,U ′ gives rise to an isomorphism

Hom F (Fm−m′ ,Ωn,U ′′)⊗OA(m)
n,U

∼= Ω1

A
(m)
n,U/A

(m′)
n,U′

and a canonical embedding

Ξn,U ′′ ⊗OA(m′)
n,U′

↪→ Ξ
⊕(m−m′)
n,U ′′ ⊗O

A
(m′)
n,U′

↪→ (R1π∗Ω
1
A(m)/A(m′))U ′ ,

where the first map denotes the diagonal embedding. These maps do not depend on

the choice of Auniv. They are G
(m)
n (A∞)-equivariant. The first map is also Qm,m′(F )-

equivariant, where an element γ ∈ Qm,m′(F ) acts on the left hand sides by composi-
tion with the inverse of the projection of γ to GLm−m′(F ). This remains true if we
do not assume that U has the form U ′ nM .

This gives rise to canonical G
(m′)
n (A∞)-equivariant isomorphisms

Hom F (Fm−m′ ,Ωn,U ′′)⊗OA(m′)
n,U′

∼= (π∗Ω
1

A
(m)
n /A

(m′)
n

)U ′ .
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Moreover the composite maps

Hom ((π∗Ω
1

A
(m)
n /A

(m′)
n

)U ′ ,Ξn,U ′′ ⊗OA(m′)
n,U′

)

↪→ Hom ((π∗Ω
1

A
(m)
n /A

(m′)
n

)U ′ , (R
1π∗Ω

1

A
(m)
n /A

(m′)
n

)U ′)
∼←− Hom ((π∗Ω

1

A
(m)
n /A

(m′)
n

)U ′ , (π∗Ω
1

A
(m)
n /A

(m′)
n

)U ′ ⊗ (R1π∗OA(m)
n

)U ′)
tr−→ (R1π∗OA(m)

n
)U ′

are G
(m′)
n (A∞)-equivariant isomorphisms.

3.4.6. Higher direct images from Kuga-Sato varieties to Shimura varieties, mixed
characteristic case. : If m ≥ m′ and if Up is a neat open compact subgroup of

G
(m)
n (A∞,p) with image (Up)′ in G

(m′)
n (A∞,p), and if 0 ≤ N1 ≤ N2 are integers, then

the sheaf
RjπA(m),ord

n /A(m′),ord
n ,∗Ω

i

A(m),ord
n,Up(N1,N2)

/A(m′),ord

n,(Up)′(N1,N2)

depends only on (Up)′ and not on Up. We will denote it

(Rjπ∗Ω
i

A(m),ord
n /A(m′),ord

n

)(Up)′(N1,N2).

If g ∈ G
(m)
n (A∞)ord and g−1Up

1 (N11, N12)g ⊂ Up
2 (N21, N22), then there is a natural

map

g : (g′)∗(Rjπ∗Ω
i

A(m),ord
n /A(m′),ord

n

)(Up2 )′(N21,N22) → (Rjπ∗Ω
i

A(m),ord
n /A(m′),ord

n

)(Up1 )′(N11,N12),

where (Up
i )′ denotes the image of Up

i in G
(m′)
n (A∞,p) and g′ denotes the image of g in

G
(m′)
n (A∞)ord. If g ∈ G(m)

n (A∞)ord,× then it is an isomorphism. Moreover this map
only depends on g′, (Up

1 )′(N11, N12) and (Up
2 )′(N21, N22) and not on g, Up

1 (N11, N12)
and Up

2 (N21, N22). This gives the system of sheaves

{(Rjπ∗Ω
i

A(m),ord
n /A(m′),ord

n

)(Up)′(N1,N2)}

a left action of G
(m′)
n (A∞)ord.

If γ ∈ Qm,m′(OF,(p)) then γ : A
(m)
n,Up(N1,N2) → A

(m)
n,γUp(N1,N2) gives a natural isomor-

phism

γ : (Rjπ∗Ω
i

A(m),ord
n /A(m′),ord

n

)(Up)′(N1,N2)
∼−→ (Rjπ∗Ω

i

A(m),ord
n /A(m′),ord

n

)(Up)′(N1,N2),

which depends only on (Up)′(N1, N2) and not on Up(N1, N2). This gives the system
of sheaves

{(Rjπ∗Ω
i

A(m),ord
n /A(m′),ord

n

)(Up)′(N1,N2)}

a right action of Qm,m′(OF,(p)). We have γ ◦ g = γ(g) ◦ γ.
If (Up

1 )′(N11, N12) ⊃ (Up
2 )′(N21, N22) and g ∈ (Up

1 )′(N11, N12) normalizes the sub-
group (Up

2 )′(N21, N22), then on

(Rjπ∗Ω
i

A(m),ord
n /A(m′),ord

n

)(Up2 )′(N21,N22)
∼=

(Rjπ∗Ω
i

A(m),ord
n /A(m′),ord

n

)(Up1 )′(N11,N12) ⊗O
A(m′),ord

n,(U
p
1 )′(N11,N12)

OA(m′),ord

n,(U
p
2 )′(N21,N22)
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the actions of g and 1 ⊗ g agree. Moreover if Up is a neat open compact subgroup

of G
(m)
n (A∞,p) with image (Up)′ in G

(m′)
n (A∞,p), and if 0 ≤ N1 ≤ N2 then the natural

map

π∗
A(m),ord
n /A(m′),ord

n

(π∗Ω
1

A(m),ord
n /A(m′),ord

n

)(Up)′(N1,N2) −→ Ω1

A(m),ord
n,Up(N1,N2)

/A(m′),ord

n,(Up)′(N1,N2)

is an isomorphism. These isomorphisms areG
(m)
n (A∞)ord- andQm,m′(OF,(p))-equivariant.

The natural maps

∧i(π∗Ω1

A(m),ord
n /A(m′),ord

n

)(Up)′(N1,N2) ⊗ ∧j(R1π∗OA(m),ord
n

)(Up)′(N1,N2) −→
(Rjπ∗Ω

i

A(m),ord
n /A(m′),ord

n

)(Up)′(N1,N2)

are G
(m′)
n (A∞)ord and Qm,m′(OF,(p)) equivariant isomorphisms.

Under the identification

X ord
n,(Up)′(N1,N2) × SpecQ ∼= Xn,(Up)′(N1,N2)

the sheaves Ωord
n,(Up)′(N1,N2) (resp. Ξord

n,(Up)′(N1,N2)) are naturally identified with the

sheaves Ωn,(Up)′(N1,N2) (resp. Ξn,(Up)′(N1,N2)). Moreover, under the identification

A(m′),ord
n,Up(N1,N2) × SpecQ ∼= A

(m′)
n,Up(N1,N2)

the sheaf (Rjπ∗Ω
i

A(m),ord/A(m′),ord
n

)(Up)′(N1,N2) is naturally identified with the sheaf

(Rjπ∗Ω
i

A
(m)
n /A

(m′)
n

)(Up)′(N1,N2). These identifications are equivariant for the actions of

Gn(A∞)ord and Qm,m′(OF,(p)).
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4. Generalized Shimura Varieties

We will introduce certain disjoint unions of mixed Shimura varieties, which are

associated to Ln,(i),lin and Ln,(i) and P+
n,(i)/Z(Nn,(i)) and P+

n,(i); to L
(m)
n,(i),lin and L

(m)
n,(i)

and P
(m),+
n,(i) /Z(N

(m)
n,(i)) and P

(m),+
n,(i) ; and to P̃

(m),+
n,(i) . The differences with the last section

are purely book keeping. We then describe certain torus embeddings for these gen-
eralized Shimura varieties and discuss their completion along the boundary. These
completions will serve as formal local models near the boundary of the toroidal com-

pactifications of the Xn,U and the A
(m)

n,Ũ
to be discussed in the next section.

We remind the reader of our convention that, if U is a subgroup of G and H is a
quotient of G, then we will sometimes use U to denote its image in H. We hope that
this causes no confusion as we will only do this when the context makes clear we are
referring to a subgroup of H.

4.1. Generalized Shimura varieties.

If U is a neat open compact subgroup of L
(m)
n,(i),lin(A∞) we set

Y
(m),+
n,(i),U =

∐
L

(m)
n,(i),lin

(A∞)/U

SpecQ.

In the case m = 0 we will write simply Y +
n,(i),U . Then {Y (m),+

n,(i),U} is a system of

schemes (locally of finite type over SpecQ) with right L
(m)
n,(i),lin(A∞)-action. Each

Y
(m),+
n,(i),U also has a left action of L

(m)
n,(i),lin(Q), and the inverse system has a right action

of L
(m)
n,(i),lin(A∞). If δ ∈ GLm(F ) we get a map

δ : Y
(m)
n,(i),U −→ Y

(m)
n,(i),δ(U)

which sends (SpecQ)hU → (SpecQ)δ(h)δ(U) via the identity. This gives a left action

of GLm(F ) on the inverse system of the Y
(m)
n,(i),U . If δ ∈ GLm(F ) and γ ∈ L(m)

n,(i),lin(Q)

and g ∈ L(m)
n,(i),lin(A∞) then δ ◦ γ = δ(γ) ◦ δ and δ ◦ g = δ(g) ◦ δ. If U ′ denotes the

image of U in Ln,(i),lin(A∞) then there is a natural map

Y
(m),+
n,(i),U →→ Y +

n,(i),U ′ .

These maps are equivariant for

L
(m)
n,(i),lin(Q)× L(m)

n,(i),lin(A∞) −→ Ln,(i),lin(Q)× Ln,(i),lin(A∞).

The naive quotient

L
(m)
n,(i),lin(Q)\Y (m),+

n,(i),U

makes sense. We will denote this space

Y
(m),\
n,(i),U
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and drop the (m) if m = 0. The inverse system of these spaces has a right action of

L
(m)
n,(i),lin(A∞), and a left action of GLm(F ). The induced map

Y
(m),\
n,(i),U −→ Y \

n,(i),U

is an isomorphism, and GLm(F ) acts trivially on these spaces. (Use the fact that

(U ∩ (Hom F (Fm, F i)⊗Q A∞)) + Hom F (Fm, F i) = Hom F (Fm, F i)⊗Q A∞.)

Similarly if Up is a neat open compact subgroup of L
(m)
n,(i),lin(A∞,p) and if N ∈ Z≥0

we set

Y(m),ord,+
n,(i),Up(N) =

∐
L

(m)
n,(i),lin

(A∞)ord,×/Up(N)

SpecZ(p).

In the case m = 0 we drop it from the notation. Each Y(m),ord,+
n,(i),Up(N) has a left action of

L
(m)
n,(i),lin(Z(p)) and the inverse system of the Y(m),ord,+

n,(i),Up(N) has a commuting right action

of L
(m)
n,(i),lin(A∞)ord. It also has a left action of GLm(OF,(p)). If δ ∈ GLm(OF,(p)) and

γ ∈ L(m)
n,(i),lin(Z(p)) and g ∈ L(m)

n,(i),lin(A∞)ord then δ ◦ γ = δ(γ) ◦ δ and δ ◦ g = δ(g) ◦ δ.
There are equivariant maps

Y(m),ord,+
n,(i),Up(N) −→ Y

ord,+
n,(i),Up(N).

We set

Yord,\
n,(i),Up(N) = Ln,(i),lin(Z(p))\Yord,+

n,(i),Up(N) = L
(m)
n,(i),lin(Z(p))\Y(m),ord,+

n,(i),Up(N).

There are maps

Y(m),ord,+
n,(i),Up(N) × SpecQ ↪→ Y

(m),+
n,(i),Up(N)

which are equivariant for the actions of the groups L
(m)
n,(i),lin(Z(p)) and L

(m)
n,(i),lin(A∞)ord

and GLm(OF,(p)). Moreover the maps Y(m),ord,+
n,(i),Up(N) → Y

ord,+
n,(i),Up(N) and Y

(m),+
n,(i),Up(N) →

Y +
n,(i),Up(N) are compatible. The induced maps

Y(m),ord,\
n,(i),Up(N) × SpecQ ∼−→ Y

(m),\
n,(i),Up(N)

are isomorphisms.

Suppose now that U is a neat open compact subgroup of L
(m)
n,(i)(A

∞). We set

X
(m),+
n,(i),U =

(
Xn−i,U∩Gn−i(A∞) × Y (m),+

n,(i),U∩L(m)
n,(i),lin

(A∞)

)/
U

In the case m = 0 we will write simply X+
n,(i),U . Then {X(m),+

n,(i),U} is a system of

schemes (locally of finite type over SpecQ) with right L
(m)
n,(i)(A

∞)-action via finite

etale maps. Each X
(m),+
n,(i),U has a left action of L

(m)
n,(i),lin(Q), which commutes with the

right L
(m)
n,(i)(A

∞)-action. The system also has a left action of GLm(F ). If δ ∈ GLm(F )

and γ ∈ L(m)
n,(i),lin(Q) and g ∈ L(m)

n,(i)(A
∞) then δ◦γ = δ(γ)◦δ and δ◦g = δ(g)◦δ. If U ′ is
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an open normal subgroup of U then X
(m),+
n,(i),U is identified with X

(m),+
n,(i),U ′/U . Projection

to the second factor gives L
(m)
n,(i),lin(Q)× L(m)

n,(i)(A
∞)- and GLm(F )-equivariant maps

X
(m),+
n,(i),U −→ Y

(m),+
n,(i),U .

The fibre over g ∈ Ln,(i),lin(A∞) is simply Xn−i,U∩Gn−i(A∞). If U ′ denotes the im-

age of U in Ln,(i)(A∞) then there is a natural, L
(m)
n,(i),lin(Q) × L(m)

n,(i)(A
∞)-equivariant,

commutative diagram

X
(m),+
n,(i),U →→ X+

n,(i),U ′

↓ ↓
Y

(m),+
n,(i),U →→ Y +

n,(i),U ′ .

We have
X

(m),+
n,(i),U(C) = Ln,(i),herm(Q)\(L(m)

n,(i)(A
∞)/U × H±n−i)

and

π0(X
(m),+
n,(i),U × SpecQ) ∼=

(
L

(m)
n,(i),lin(A∞)× (Cn−i(Q)\Cn−i(A)/Cn−i(R)0)

)
/U.

The naive quotient

X
(m),\
n,(i),U = L

(m)
n,(i),lin(Q)\X(m),+

n,(i),U

makes sense and fibres over Y
(m),\
n,(i),U , the fibre over g being Xn−i,U1 , where U1 denotes

the projection to Gn−i(A∞) of the subgroup U2 ⊂ U consisting of elements whose

projection to L
(m)
n,(i),lin(A∞) lies in g−1L

(m)
n,(i),lin(Q)g. We sometimes write X\

n,(i),U for

X
(0),\
n,(i),U . If U ′ denotes the projection of U to Ln,(i)(A∞), then the induced map

X
(m),\
n,(i),U

∼−→ X\
n,(i),U ′

is an isomorphism. The action of L
(m)
n,(i)(A

∞) is by finite etale maps and if U ′ is an

open normal subgroup of U then X
(m),\
n,(i),U is identified with X

(m),\
n,(i),U ′/U . We have

π0(X
(m),\
n,(i),U × SpecQ) ∼= (F× × Cn−i(Q))\(A×F × Cn−i(A))/U(F×∞ × Cn−i(R)0).

We define sheaves Ω+
n,(i),U and Ξ+

n,(i),U over X+
n,(i),U as the quotients of

Ωn−i,U∩Gn−i(A∞)/Xn−i,U∩Gn−i(A∞) × Y +
n,(i),U∩Ln,(i),lin(A∞)

and
Ξn−i,U∩Gn−i(A∞)/Xn−i,U∩Gn−i(A∞) × Y +

n,(i),U∩Ln,(i),lin(A∞)

by U . Then {Ω+
n,(i),U} and {Ξ+

n,(i),U} are systems of locally free sheaves on X+
n,(i),U

with left Ln,(i)(A∞)-action and commuting right Ln,(i),lin(Q)-action.
Let E+

(i),U denote the principal Rn,(n),(i)/N(Rn,(n),(i))-bundle on X+
n,(i),U in the Zariski

topology defined by setting, for W ⊂ X+
n,(i),U a Zariski open, E+

(i),U(W ) to be the set

of triples (ξ0, ξ11, ξ12), where

ξ0 : Ξ+
n,(i),U |W

∼−→ OW
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and
ξ11 : Ω+

n,(i),U

∼−→ Hom Q(Vn−i/Vn−i,(n−i),OW )

and
ξ12 : F i ⊗Q OW

∼−→ Hom (Vn/V
⊥
n,(i),OW ).

We define the Rn,(n),(i)/N(Rn,(n),(i))-action on E+
(i),U by

h(ξ0, ξ11, ξ12) = (ν(h)−1ξ0, (◦h−1) ◦ ξ11, (◦h−1) ◦ ξ12).

The inverse system {E+
(i),U} has an action of Ln,(i)(A∞) and of Ln,(i),lin(Q).

Suppose that R0 is a Q-algebra and that ρ is a representation of the algebraic
group Rn,(n),(i)/N(Rn,(n),(i)) on a finite, locally free R0-module Wρ. We define a lo-
cally free sheaf E+

(i),U,ρ over X+
n,(i),U × SpecR0 by setting E+

(i),U,ρ(W ) to be the set of

(Rn,(n),(i)/N(Rn,(n),(i)))(OW )-equivariant maps of Zariski sheaves of sets

E+
(i),U |W −→ Wρ ⊗R0 OW .

Then {E+
(i),U,ρ} is a system of locally free sheaves with an Ln,(i)(A∞)-action and an

Ln,(i),lin(Q)-action over the system of schemes {X+
n,(i),U ×SpecR0}. The restriction of

E+
(i),U,ρ to Xn−i,hUh−1∩Gn−i(A∞) can be identified with EhUh−1∩Gn−i(A∞),ρ|Ln−i,(n−i)

. How-

ever the description of the actions of Ln,(i)(A∞) and Ln,(i),lin(Q) involve ρ and not
just ρ|Ln−i,(n−i) . If g ∈ Ln,(i)(A∞) and γ ∈ Ln,(i),lin(Q), then the natural maps

g∗E+
(i),U,ρ −→ E

+
(i),U ′,ρ

and
γ∗E+

(i),U,ρ −→ E
+
(i),U ′,ρ

are isomorphisms.
We will also write

Ω\
n,(i),U = Ln,(i),lin(Q)\Ω+

n,(i),U

and
Ξ\
n,(i),U = Ln,(i),lin(Q)\Ξ+

n,(i),U ,

locally free sheaves on X\
n,(i),U . (If ρ is trivial on Ln,(i),lin then one can also form the

quotient of E+
(i),U,ρ by Ln,(i),lin(Q), but in general this quotient does not make sense.)

If Up is a neat open compact subgroup of L
(m)
n,(i)(A

∞,p) and N2 ≥ N1 ≥ 0 we set

X (m),ord,+
n,(i),Up(N1,N2) =

(
X ord
n−i,(Up∩Gn−i(A∞,p))(N1,N2) × Y

(m),ord,+

n,(i),(Up∩L(m)
n,(i),lin

(A∞,p))(N1)

)/
Up.

In the case m = 0 we drop it from the notation. Each X (m),ord,+
n,(i),Up(N1,N2) has a left action

of L
(m)
n,(i),lin(Z(p)) and the inverse system has a commuting right action of L

(m)
n,(i)(A

∞)ord.

There is also a left action of GLm(OF,(p)). If δ ∈ GLm(OF,(p)) and γ ∈ L(m)
n,(i),lin(Z(p))

and g ∈ L(m)
n,(i),lin(A∞)ord then δ ◦ γ = δ(γ) ◦ δ and δ ◦ g = δ(g) ◦ δ. If g ∈ L(m)

n,(i)(A
∞)ord

and if
g : X (m),ord,+

n,(i),Up(N1,N2) −→ X
(m),ord,+

n,(i),(Up)′(N ′1,N
′
2),
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then this map is quasi-finite and flat. If g ∈ L(m)
n,(i)(A

∞)ord,× then it is etale, and, if

further N2 = N ′2, then it is finite etale. If N ′2 > 0 and pN2−N ′2ν(gp) ∈ Z×p then the map
is finite. On Fp-fibres the map ςp is absolute Frobenius composed with the forgetful
map. If (Up)′ is an open normal subgroup of Up and if N1 ≤ N ′1 ≤ N2 then

X (m),ord,+

n,(i),(Up)′(N ′1,N2)/U
p(N1, N2)

∼−→ X (m),ord,+
n,(i),Up(N1,N2).

There are commutative diagrams

X (m),ord,+
n,(i),Up(N1,N2) →→ X ord,+

n,(i),Up(N1,N2)

↓ ↓
Y(m),ord,+
n,(i),Up(N1,N2) →→ Yord,+

n,(i),Up(N1,N2).

We set
X (m),ord,\
n,(i),Up(N1,N2) = L

(m)
n,(i),lin(Z(p))\X (m),ord,+

n,(i),Up(N1,N2),

and write X ord,\
n,(i),Up(N1,N2) for X (0),ord,\

n,(i),Up(N1,N2). The system of these spaces has a right

action of L
(m)
n,(i)(A

∞)ord and a left action of GLm(OF,(p)). If δ ∈ GLm(OF,(p)) and

g ∈ L(m)
n,(i),lin(A∞)ord then δ ◦ g = δ(g) ◦ δ. If g ∈ L(m)

n,(i)(A
∞)ord and if

g : X (m),ord,\
n,(i),Up(N1,N2) −→ X

(m),ord,\

n,(i),(Up)′(N ′1,N
′
2),

then this map is quasi-finite and flat. If g ∈ L(m)
n,(i)(A

∞)ord,× then it is etale, and, if

further N2 = N ′2, then it is finite etale. If N ′2 > 0 and pN2−N ′2ν(gp) ∈ Z×p then the map
is finite. On Fp-fibres the map ςp is absolute Frobenius composed with the forgetful
map. If (Up)′ is an open normal subgroup of Up and if N1 ≤ N ′1 ≤ N2 then

X (m),ord,\

n,(i),(Up)′(N ′1,N2)/U
p(N1, N2)

∼−→ X (m),ord,\
n,(i),Up(N1,N2).

The natural maps

X (m),ord,\
n,(i),Up(N1,N2) −→ X

ord,\
n,(i),Up(N1,N2)

are isomorphisms.
We define sheaves Ωord,+

n,(i),Up(N1,N2) and Ξord,+
n,(i),Up(N1,N2) over X ord,+

n,(i),Up(N1,N2) as the quo-

tients of

Ωord
n−i,(Up∩Gn−i(A∞,p))(N1,N2)/X ord

n−i,(Up∩Gn−i(A∞,p))(N1,N2) × Y
ord,+
n,(i),(Up∩Ln,(i),lin(A∞,p))(N1)

and

Ξord
n−i,(Up∩Gn−i(A∞,p))(N1,N2)/X ord

n−i,(Up∩Gn−i(A∞,p))(N1,N2) × Y
ord,+
n,(i),(Up∩Ln,(i),lin(A∞,p))(N1)

by Up. Then the systems of sheaves Ωord,+
n,(i),Up(N1,N2) and Ξord,+

n,(i),Up(N1,N2) have commuting

actions of Ln,(i),lin(Z(p)) and Ln,(i)(A∞)ord.

Let Eord,+
(i),Up(N1,N2) denote the principal Rn,(n),(i)/N(Rn,(n),(i))-bundle for the Zariski

topology on X ord,+
n,(i),Up(N1,N2) defined by setting, for W ⊂ X ord,+

n,(i),Up(N1,N2) a Zariski open,

Eord,+
(i),Up(N1,N2)(W ) to be the set of triples (ξ0, ξ11, ξ12), where

ξ0 : Ξord,+
n,(i),Up(N1,N2)|W

∼−→ OW
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and

ξ11 : Ωord,+
n,(i),Up(N1,N2)

∼−→ Hom (Λn−i/Λn−i,(n−i),OW )

and

ξ12 : OiF ⊗Z OW
∼−→ Hom (Λn/Λ

⊥
n,(i),OW ).

We define the Rn,(n),(i)/N(Rn,(n),(i))-action on Eord,+
(i),Up(N1,N2) by

h(ξ0, ξ11, ξ12) = (ν(h)−1ξ0, (◦h−1) ◦ ξ11, (◦h−1) ◦ ξ12).

The inverse system {E+
(i),Up(N1,N2)} has an action of Ln,(i)(A∞)ord,× and an action of

Ln,(i),lin(Z(p)).
Suppose that R0 is a Z(p)-algebra and that ρ is a representation of the algebraic

group Rn,(n),(i)/N(Rn,(n),(i)) on a finite, locally free R0-module Wρ. We define a locally

free sheaf Eord,+
(i),Up(N1,N2),ρ over X ord,+

n,(i),Up(N1,N2)× SpecR0 by setting Eord,+
(i),Up(N1,N2),ρ(W ) to

be the set of (Rn,(n),(i)/N(Rn,(n),(i)))(OW )-equivariant maps of Zariski sheaves of sets

Eord,+
(i),Up(N1,N2)|W −→ Wρ ⊗R0 OW .

Then {Eord,+
(i),Up(N1,N2),ρ} is a system of locally free sheaves with Ln,(i)(A∞)ord,×-action

and Ln,(i),lin(Z(p))-action over the system of schemes {X ord,+
n,(i),Up(N1,N2)× SpecR0}. The

restriction of Eord,+
(i),Up(N1,N2),ρ to X ord

n−i,(hUph−1∩Gn−i(A∞,p)(N1,N2)) can be identified with

Eord
(hUph−1∩Gn−i(A∞,p))(N1,N2),ρ|Ln−i,(n−i)

. However the description of the actions of the

groups Ln,(i)(A∞)ord,× and Ln,(i),lin(Z(p)) involve ρ and not just ρ|Ln−i,(n−i) . If g ∈
Ln,(i)(A∞)ord,× and γ ∈ Ln,(i),lin(Z(p)), then the natural maps

g∗Eord,+
(i),Up(N1,N2),ρ −→ E

ord,+
(i),(Up)′(N ′1,N

′
2),ρ

and

γ∗Eord,+
(i),Up(N1,N2),ρ −→ E

ord,+
(i),(Up)′(N ′1,N

′
2),ρ

are isomorphisms.
We will also write

Ωord,\
n,(i),Up(N1,N2) = Ln,(i),lin(Z(p))\Ωord,+

n,(i),Up(N1,N2)

and

Ξord,\
n,(i),Up(N1,N2) = Ln,(i),lin(Z(p))\Ξord,+

n,(i),Up(N1,N2),

locally free sheaves on X ord,\
n,(i),Up(N1,N2).

There are maps

X (m),ord,+
n,(i),Up(N1,N2) × SpecQ ↪→ X

(m),+
n,(i),Up(N1,N2)

which are equivariant for the actions of the groups L
(m)
n,(i)(A

∞)ord and L
(m)
n,(i),lin(Z(p))

and GLm(OF,(p)). Under these maps the sheaves Ωord,+
n,(i),Up(N1,N2) (resp. Ξord,+

n,(i),Up(N1,N2),
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resp. Eord,+
(i),Up(N1,N2),ρ) corresponds to Ω+

n,(i),Up(N1,N2) (resp. to Ξ+
n,(i),Up(N1,N2), resp. to

Eord,+
(i),Up(N1,N2),ρ⊗Q). The induced maps

X (m),ord,\
n,(i),Up(N1,N2) × SpecQ −→ X

(m),\
n,(i),Up(N1,N2)

are isomorphisms.
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4.2. Generalized Kuga-Sato varieties.

Now suppose that U is a neat open compact subgroup of

(P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞) = (P̃
(m),+
n,(i) /Z(Ñ

(m)
n,(i)))(A

∞).

We set
A

(m),+
n,(i),U =

∐
h∈L(m)

n,(i),lin
(A∞)/U

A
(i+m)

n−i,hUh−1∩G(i+m)
n−i (A∞)

.

In the case m = 0 we will write simply A+
n,(i),U .

If g ∈ (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞) and g−1Ug ⊂ U ′, then we define a finite etale map

g : A
(m),+
n,(i),U −→ A

(m),+
n,(i),U ′

to be the coproduct of the maps

g′ : A
(i+m)

n−i,hUh−1∩G(i+m)
n−i (A∞)

−→ A
(i+m)

n−i,h′U ′(h′)−1∩G(i+m)
n−i (A∞)

,

where h, h′ ∈ L
(m)
n,(i),lin(A∞) and g′ ∈ G

(i+m)
n−i (A∞) satisfy hg = g′h′. This makes

{A(m),+
n,(i),U} a system of schemes (locally of finite type over SpecQ) with right action

of the group (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞). If U ′ is an open normal subgroup of U then

A
(m),+
n,(i),U is identified with A

(m),+
n,(i),U ′/U .

If γ ∈ L(m)
n,(i),lin(Q), then we define

γ : A
(m),+
n,(i),U −→ A

(m),+
n,(i),U

to be the coproduct of the maps

γ : A
(i+m)

n−i,hUh−1∩G(i+m)
n−i (A∞)

−→ A
(i+m)

n−i,(γh)U(γh)−1∩G(i+m)
n−i (A∞)

.

This gives a left action of L
(m)
n,(i),lin(Q) on each A

(m),+
n,(i),U , which commutes with the action

of (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞).

If δ ∈ GLm(F ) define a map

δ : A
(m),+
n,(i),U −→ A

(m),+
n,(i),δ(U)

as the coproduct of the maps

δ : A
(i+m)

n−i,hUh−1∩G(i+m)
n−i (A∞)

−→ A
(i+m)

n−i,δ(hUh−1)∩G(i+m)
n−i (A∞)

.

This gives a left GLm(F )-action on the system of the A
(m),+
n,(i),U . If δ ∈ GLm(F ) and

γ ∈ L(m)
n,(i),lin(Q) and g ∈ (P

(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞) then δ◦γ = δ(γ)◦δ and δ◦g = δ(g)◦δ.
There are natural maps

A
(m),+
n,(i),U −→ X

(m),+
n,(i),U ,

which are equivariant for the actions of (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞) and L
(m)
n,(i),lin(Q) and

GLm(F ).
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If U ′ denotes the image of U in (P+
n,(i)/Z(Nn,(i)))(A∞) then there is a natural

commutative diagram:

A
(m),+
n,(i),U →→ A+

n,(i),U ′

↓ ↓
X

(m),+
n,(i),U →→ X+

n,(i),U ′

↓ ↓
Y

(m),+
n,(i),U →→ Y +

n,(i),U ′ ,

which is L
(m)
n,(i),lin(Q)- and (P

(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞)-equivariant.

We have

A
(m),+
n,(i),U(C) = (P

(m)
n,(i)/Z(N

(m)
n,(i)))(Q)\(P (m),+

n,(i) /Z(N
(m)
n,(i)))(A)/(UU0

n−i,∞An−i(R)0).

Note that it does not make sense to divide A
(m),+
n,(i),U by L

(m)
n,(i),lin(Q), so we don’t do

so.
We define a semi-abelian scheme G̃univ/A+

n,(i),U by requiring that over the open

and closed subscheme A
(i)

n−i,hUh−1∩G(i)
n−i(A∞)

it restricts to Guniv. It is unique up to

unique quasi-isogeny. We also define a sheaf Ω̃+
n,(i),U (resp. Ξ̃+

n,(i),U) over A+
n,(i),U

to be the unique sheaf which, for each h, restricts to Ω
(i)

n−i,hUh−1∩G(i)
n−i(A∞)

(resp.

Ξ
n−i,hUh−1∩G(i)

n−i(A∞)
) on A

(i)

n−i,hUh−1∩G(i)
n−i(A∞)

. Thus Ω̃+
n,(i),U is the pull-back by the

identity section of Ω1
G̃univ/A+

n,(i),U

. Then {Ω̃+
n,(i),U} (resp. {Ξ̃+

n,(i),U}) is a system of lo-

cally free sheaves on A+
n,(i),U with a left (P+

n,(i)/Z(Nn,(i)))(A∞)-action and a commuting

right Ln,(i),lin(Q)-action. There are equivariant exact sequences

(0) −→ π∗Ω+
n,(i),U −→ Ω̃+

n,(i),U −→ F i ⊗Q OA+
n,(i),U

−→ (0),

where π denotes the map A+
n,(i),U → X+

n,(i),U .

Let Ẽ+
(i),U denote the principal Rn,(n),(i)-bundle on A+

n,(i),U in the Zariski topology

defined by setting, for W ⊂ A+
n,(i),U a Zariski open, Ẽ+

(i),U(W ) to be the set of pairs

(ξ0, ξ1), where

ξ0 : Ξ+
n,(i),U |W

∼−→ OW
and

ξ1 : Ω̃+
n,(i),U

∼−→ Hom Q(Vn−i/Vn−i,(n−i) ⊕ Hom Q(F i,Q),OW )

satisfies

ξ1 : Ω+
n,(i),U

∼−→ Hom Q(Vn−i/Vn−i,(n−i),OW ).

We define the Rn,(n),(i)-action on E+
(i),U by

h(ξ0, ξ1) = (ν(h)−1ξ0, (◦h−1) ◦ ξ1).

The inverse system {Ẽ+
(i),U} has an action of P+

n,(i)(A
∞) and of Ln,(i),lin(Q).
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Suppose that R0 is a Q-algebra and that ρ is a representation of Rn,(n),(i) on a
finite, locally free R0-module Wρ. We define a locally free sheaf E+

(i),U,ρ over A+
n,(i),U ×

SpecR0 by setting E+
(i),U,ρ(W ) to be the set of Rn,(n),(i)(OW )-equivariant maps of

Zariski sheaves of sets
Ẽ+

(i),U |W −→ Wρ ⊗R0 OW .
Then {E+

(i),U,ρ} is a system of locally free sheaves with both a P+
n,(i)(A

∞)-action and

an Ln,(i),lin(Q)-action over the system of schemes {A+
n,(i),U × SpecR0}. The restric-

tion of E+
(i),U,ρ to A

(i)

n−i,hUh−1∩G(i)
n−i(A∞)

can be identified with E (i)

hUh−1∩G(i)
n−i(A∞),ρ|

R
(i)
n−i,(n−i)

.

However the description of the actions of P+
n,(i)(A

∞) and Ln,(i),lin(Q) involve ρ and

not just ρ|
R

(i)
n−i,(n−i)

. If g ∈ P+
n,(i)(A

∞) and γ ∈ Ln,(i),lin(Q), then the natural maps

g∗E+
(i),U,ρ −→ E

+
(i),U ′,ρ

and
γ∗E+

(i),U,ρ −→ E
+
(i),U ′,ρ

are isomorphisms. If ρ factors through Rn,(n),(i)/N(Rn,(n),(i)) then E+
(i),U,ρ is canonically

isomorphic to the pull-back of E+
(i),U,ρ from X+

n,(i),U . In general Wρ has a filtration by

Rn,(n),(i)-invariant local direct-summands such that the action of Rn,(n),(i) on each
graded piece factors through Rn,(n),(i)/N(Rn,(n),(i)). (To see this apply proposition
4.7.3 of exposé I of [SGA3] to the action of An,(i),lin on Wρ.) Thus E+

(i),U,ρ has a

P+
n,(i)(A

∞)- and Ln,(i),lin(Q)-invariant filtration by local direct summands such that

each graded piece is the pull-back of some E+
(i),U,ρ′ from X+

n,(i),U .

Similarly if Up is a neat open compact subgroup of (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞,p) =

(P̃
(m),+
n,(i) /Z(Ñ

(m)
n,(i)))(A

∞,p) we set

A(m),ord,+
n,(i),Up(N1,N2) =

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up(N1)

A(i+m),ord

n−i,(hUph−1∩G(i+m)
n−i (A∞,p))(N1,N2)

.

In the case m = 0 we will write simply Aord,+
n,(i),Up(N1,N2). The inverse system of the

A(m),ord,+
n,(i),Up(N1,N2) has a right action of (P

(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞)ord and a commuting left

action of L
(m)
n,(i),lin(Z(p)). If g ∈ (P

(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞)ord then the map

g : A(m),ord,+
n,(i),Up(N1,N2) −→ A

(m),ord,+

n,(i),(Up)′(N ′1,N
′
2),

is quasi-finite and flat. If g ∈ (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞)ord,× then it is etale, and, if

further N2 = N ′2, then it is finite etale. If N ′2 > 0 and pN2−N ′2ν(gp) ∈ Z×p then
the map is finite. On Fp-fibres the map ςp is absolute Frobenius composed with the
forgetful map. If (Up)′ is an open normal subgroup of Up and if N1 ≤ N ′1 ≤ N2

then A(m),ord,+

n,(i),(Up)′(N ′1,N2)/U
p(N1, N2) is identified with A(m),ord,+

n,(i),Up(N1,N2). Further there is a

left action of GLm(OF,(p)) such that if δ ∈ GLm(OF,(p)) and γ ∈ L
(m)
n,(i),lin(Z(p)) and
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g ∈ (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞)ord, δ ◦ γ = δ(γ) ◦ δ and δ ◦ g = δ(g) ◦ δ. There are natural
equivariant maps

A(m),ord,+
n,(i),Up(N1,N2) −→ X

(m),ord,+
n,(i),Up(N1,N2).

If (Up)′ denotes the image of Up in (P+
n,(i)/Z(Nn,(i)))(A∞,p) then there is a natural

equivariant, commutative diagram:

A(m),ord,+
n,(i),Up(N1,N2) →→ Aord,+

n,(i),(Up)′(N1,N2)

↓ ↓
X (m),ord,+
n,(i),Up(N1,N2) →→ X ord,+

n,(i),(Up)′(N1,N2)

↓ ↓
Y(m),ord,+
n,(i),Up(N1,N2) →→ Yord,+

n,(i),(Up)′(N1,N2).

There are equivariant embeddings

A(m),ord,+
n,(i),Up(N1,N2) × SpecQ ↪→ A

(m),+
n,(i),Up(N1,N2).

We define a semi-abelian scheme G̃univ/Aord,+
n,(i),Up(N1,N2) over Aord,+

n,(i),Up(N1,N2) by re-

quiring that over A(i),ord

n−i,(hUph−1∩G(i)
n−i(A∞,p))(N1,N2)

it restricts to Guniv. It is unique up to

unique prime-to-p quasi-isogeny. We define a locally free sheaf Ω̃ord,+
n,(i),Up(N1,N2) (resp.

Ξ̃ord,+
n,(i),Up(N1,N2)) over the scheme Aord,+

n,(i),Up(N1,N2) to be the sheaf which, for each h,

restricts to the sheaf
Ω

(i),ord

n−i,(hUph−1∩G(i)
n−i(A∞,p))(N1,N2)

(resp. Ξ
(i),ord

n−i,(hUph−1∩G(i)
n−i(A∞,p))(N1,N2)

) on the sub-schemeA(i),ord

n−i,(hUph−1∩G(i)
n−i(A∞,p))(N1,N2)

.

Then Ω̃ord,+
n,(i),Up(N1,N2) is the pull-back by the identity section of Ω1

G̃univ/Aord,+
n,(i),Up(N1,N2)

. The

collection {Ω̃ord,+
n,(i),Up(N1,N2)} (resp. {Ξ̃ord,+

n,(i),Up(N1,N2)}) is a system of locally free sheaves

on Aord,+
n,(i),Up(N1,N2) with a left (P+

n,(i)/Z(Nn,(i)))(A∞)ord-action and a commuting right

Ln,(i),lin(Z(p))-action. Also there are equivariant exact sequences

(0) −→ π∗Ωord,+
n,(i),Up(N1,N2) −→ Ω̃ord,+

n,(i),Up(N1,N2) −→ O
i
F ⊗Z OAord,+

n,(i),Up(N1,N2)
−→ (0),

where π denotes the map Aord,+
n,(i),U → X

ord,+
n,(i),U .

Let Ẽord,+
(i),Up(N1,N2) denote the principal Rn,(n),(i)-bundle on the scheme Aord,+

n,(i),Up(N1,N2)

in the Zariski topology defined by setting, for W ⊂ Aord,+
n,(i),Up(N1,N2) a Zariski open,

Ẽord,+
(i),Up(N1,N2)(W ) to be the set of pairs (ξ0, ξ1), where

ξ0 : Ξord,+
n,(i),Up(N1,N2)|W

∼−→ OW
and

ξ1 : Ω̃ord,+
n,(i),Up(N1,N2)

∼−→ Hom Z(Λn−i/Λn−i,(n−i) ⊕ Hom Z(OiF ,Z),OW )

satisfies
ξ1 : Ωord,+

n,(i),Up(N1,N2)

∼−→ Hom Z(Λn−i/Λn−i,(n−i),OW ).
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We define the Rn,(n),(i)-action on Ẽord,+
(i),Up(N1,N2) by

h(ξ0, ξ1) = (ν(h)−1ξ0, (◦h−1) ◦ ξ1).

The inverse system {Ẽord,+
(i),Up(N1,N2)} has an action both of the groups P+

n,(i)(A
∞)ord,×

and of Ln,(i),lin(Z(p)).
Suppose that R0 is a Q-algebra and that ρ is a representation of Rn,(n),(i) on a

finite, locally free R0-module Wρ. We define a locally free sheaf Eord,+
(i),Up(N1,N2),ρ over

Aord,+
n,(i),Up(N1,N2) × SpecR0 by setting Eord,+

(i),Up(N1,N2),ρ(W ) to be the set of Rn,(n),(i)(OW )-

equivariant maps of Zariski sheaves of sets

Ẽord,+
(i),Up(N1,N2)|W −→ Wρ ⊗R0 OW .

Then {Eord,+
(i),Up(N1,N2),ρ} is a system of locally free sheaves with P+

n,(i)(A
∞)ord,×-action

and Ln,(i),lin(Z(p))-action over the system of schemes {Aord,+
n,(i),Up(N1,N2)×SpecR0}. The

restriction of Eord,+
(i),Up(N1,N2),ρ to A(i),ord

n−i,(hUph−1∩G(i)
n−i(A∞,p))(N1,N2)

can be identified with

E (i),ord

(hUph−1∩G(i)
n−i(A∞,p))(N1,N2),ρ|

R
(i)
n−i,(n−i)

.

However the description of the actions of the groups P+
n,(i)(A

∞)ord,× and Ln,(i),lin(Z(p))

involve ρ and not just ρ|
R

(i)
n−i,(n−i)

. If g ∈ P+
n,(i)(A

∞)ord,× and γ ∈ Ln,(i),lin(Z(p)), then

the natural maps
g∗Eord,+

(i),Up(N1,N2),ρ −→ E
ord,+
(i),(Up)′(N ′1,N

′
2),ρ

and
γ∗Eord,+

(i),Up(N1,N2),ρ −→ E
ord,+
(i),(Up)′(N ′1,N

′
2),ρ

are isomorphisms. If ρ factors through Rn,(n),(i)/N(Rn,(n),(i)) then Eord,+
(i),Up(N1,N2),ρ is

canonically isomorphic to the pull-back of Eord,+
(i),Up(N1,N2),ρ from X ord,+

n,(i),Up(N1,N2). In gen-

eral Wρ has a filtration by Rn,(n),(i)-invariant local direct-summands such that the
action of Rn,(n),(i) on each graded piece factors through Rn,(n),(i)/N(Rn,(n),(i)). (To
see this apply proposition 4.7.3 of exposé I of [SGA3] to the action of An,(i),lin on

Wρ.) Thus Eord,+
(i),Up(N1,N2),ρ has a P+

n,(i)(A
∞)ord,×- and Ln,(i),lin(Z(p))-invariant filtra-

tion by local direct summands such that each graded piece is the pull-back of some
Eord,+

(i),Up(N1,N2),ρ′ from X ord,+
n,(i),Up(N1,N2).

The next lemma follows from the discussion in section 3.4.

Lemma 4.1. If U ′ is the image of U (resp. Up) and if π denotes the map A
(m),+
n,(i),U →

A+
n,(i),U ′ then there are Ln,(i),lin(Q)-equivariant, (P+

n,(i)/Z(Nn,(i)))(A∞)-equivariant and

GLm(F )-equivariant isomorphisms

Rjπ∗Ω
k

A
(m),+
n,(i),U

/A+
n,(i),U′

∼=(
∧k(Fm ⊗F Ω+

n,(i),U ′)
)
⊗
(
∧j(Fm ⊗F Hom (Ω+

n,(i),U ′ ,Ξ
+
n,(i),U ′))

)
.
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4.3. Generalized mixed Shimura varieties.

Next suppose Ũ is an open compact subgroup of P̃
(m),+
n,(i) (A∞). We define a split torus

S̃
(m),+

n,(i),Ũ
/Y

(m),+

n,(i),Ũ
as ∐

h∈L(m)
n,(i),lin

(A∞)/Ũ

S
(m+i)

n−i,hŨh−1∩G̃(m+i)
n−i (A∞)

.

Thus X∗(S̃
(m),+

n,(i),Ũ
)Q is a constant sheaf:

X∗(S̃
(m),+

n,(i),Ũ
)Q ∼= Herm

(m+i)
Q

∼= Z(N
(m)
n,(i))(Q).

If g̃ ∈ P̃ (m),+
n,(i) (A∞) and g̃−1Ũ g̃ ⊂ Ũ ′, then we define

g̃ : S̃
(m),+

n,(i),Ũ
−→ S̃

(m),+

n,(i),Ũ ′

to be the coproduct of the maps

g̃′ : S
(m+i)

n−i,hŨh−1∩G̃(m+i)
n−i (A∞)

−→ S
(m+i)

n−i,h′Ũ ′(h′)−1∩G̃(m+i)
n−i (A∞)

,

where h, h′ ∈ L
(m)
n,(i),lin(A∞) and g̃′ ∈ G̃

(m+i)
n−i (A∞) satisfy hg̃ = g̃′h′. This makes

{S̃(m),+

n,(i),Ũ
} a system of relative tori with right P̃

(m),+
n,(i) (A∞)-action. If γ ∈ L(m)

n,(i),lin(Q),

then we define

γ : S̃
(m),+

n,(i),Ũ
−→ S̃

(m),+

n,(i),Ũ

to be the coproduct of the maps

γ : S
(m+i)

n−i,hŨh−1∩G̃(m+i)
n−i (A∞)

−→ S
(m+i)

n−i,(γh)Ũ(γh)−1∩G̃(m+i)
n−i (A∞)

.

This gives a left action of L
(m)
n,(i),lin(Q) on each S̃

(m),+

n,(i),Ũ
, which commutes with the action

of P̃
(m),+
n,(i) (A∞).

Similarly suppose Ũp is an open compact subgroup of P̃
(m),+
n,(i) (A∞,p) and that N is

a non-negative integer. We define a split torus S̃(m),ord,+

n,(i),Ũp(N)
/Y(m),ord,+

n,(i),Ũp(N)
as∐

h∈L(m)
n,(i),lin

(A∞)ord,×/Ũp(N)

S(m+i)

n−i,(hŨph−1∩G̃(m+i)
n−i (A∞,p))

for any N ′ ≥ N . Thus X∗(S̃
(m),ord,+

n,(i),Ũp(N)
)Z(p)

is a constant sheaf:

X∗(S̃(m),ord,+

n,(i),Ũp(N)
)Z(p)
∼= Herm

(m+i)
Z(p)

∼= Z(N
(m)
n,(i))(Z(p)).

If g̃ ∈ P̃ (m),+
n,(i) (A∞)ord and g̃−1Ũp(N)g̃ ⊂ (Ũp)′(N ′), then we define

g̃ : S̃(m),ord,+

n,(i),Ũp(N)
−→ S̃(m),ord,+

n,(i),(Ũp)′(N ′)
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to be the coproduct of the maps

g̃′ : S(m+i)

n−i,(hŨph−1∩G̃(m+i)
n−i (A∞,p))

−→ S(m+i)

n−i,(h′(Ũp)′(h′)−1∩G̃(m+i)
n−i (A∞,p))

,

where h, h′ ∈ L(m)
n,(i),lin(A∞)ord and g̃′ ∈ G̃(m+i)

n−i (A∞)ord satisfy hg̃ = g̃′h′. This makes

{S̃(m),+

n,(i),Ũp(N)
} a system of relative tori with right P̃

(m),+
n,(i) (A∞)ord-action. If γ is an

element of L
(m)
n,(i),lin(Z(p)), then we define

γ : S̃(m),+

n,(i),Ũp(N)
−→ S̃(m),+

n,(i),Ũp(N)

to be the coproduct of the maps

γ : S(m+i)

n−i,(hŨph−1∩G̃(m+i)
n−i (A∞,p))

−→ S(m+i)

n−i,((γh)Ũp(γh)−1∩G̃(m+i)
n−i (A∞,p))

.

This gives a left action of L
(m)
n,(i),lin(Z(p)) on each S̃(m),+

n,(i),Ũp(N)
, which commutes with the

action of P̃
(m),+
n,(i) (A∞)ord.

The sheaves X∗(S̃
(m),+

n,(i),Ũ
) and X∗(S̃

(m),+

n,(i),Ũ
) have actions of L

(m)
n,(i),lin(Q). The sheaves

X∗(S̃(m),ord,+

n,(i),Ũp(N)
) and X∗(S̃(m),ord,+

n,(i),Ũp(N)
) have actions of the group L

(m)
n,(i),lin(Z(p)). The

systems of sheaves {X∗(S̃(m),+

n,(i),Ũ
)} and {X∗(S̃(m),+

n,(i),Ũ
)} (resp. {X∗(S̃(m),ord,+

n,(i),Ũp(N)
)} and

{X∗(S̃(m),ord,+

n,(i),Ũp(N)
)}) have actions of P̃

(m),+
n,(i) (A∞) (resp. P̃

(m),+
n,(i) (A∞)ord).

The sheaf

(X∗(S̃
(m),+

n,(i),Ũ
) ∩ HermFm) =

∐
h∈L(m)

n,(i),lin
(A∞)/Ũ

(X∗(S̃
(m+i)

n−i,hŨh−1∩G̃(m+i)
n−i (A∞)

) ∩ HermFm)

is a subsheaf of X∗(S̃
(m),+

n,(i),Ũ
). (Recall the embedding

Herm(m) ∼= ker(Z(Ñ
(m)
n,(i))→ Z(N

(m)
n,(i))) ⊂ Herm(i+m).)

It is invariant by the actions of the groups L
(m)
n,(i),lin(Q) and P̃

(m),+
n,(i) (A∞). We define a

split torus

Ŝ
(m),+

n,(i),Ũ
/Y

(m),+

n,(i),Ũ

by

X∗(Ŝ
(m),+

n,(i),Ũ
) = X∗(S̃

(m),+

n,(i),Ũ
) ∩ HermFm .

If U denote the image of Ũ in P
(m),+
n,(i) (A∞), then we will write

S
(m),+
n,(i),U = S̃

(m),+

n,(i),Ũ
/Ŝ

(m),+

n,(i),Ũ
.

It depends only on U and not on the choice of Ũ mapping onto U . The sheaf

X∗(S
(m),+
n,(i),U)Q is constant:

X∗(S
(m),+
n,(i),U)Q ∼= Z(N

(m)
n,(i))(Q).
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In the case m = 0 we will write simply S+
n,(i),U . The tori S̃

(m),+

n,(i),Ũ
and S

(m),+

n,(i),Ũ
inherit

a left action of L
(m)
n,(i),lin(Q) and a right action of P̃

(m),+
n,(i) (A∞). In the case of S

(m),+

n,(i),Ũ

the latter factors through P
(m),+
n,(i) (A∞). If Ũ is a neat open compact subgroup of

P̃
(m),+
n,(i) (A∞) with image U in P

(m),+
n,(i) (A∞) and image U ′ in P+

n,(i)(A
∞), then there is a

natural, L
(m)
n,(i),lin(Q)-equivariant and P̃

(m),+
n,(i) (A∞)-equivariant, commutative diagram:

S̃
(m),+

n,(i),Ũ
→→ S

(m),+
n,(i),U →→ S+

n,(i),U ′

↓ ↓ ↓
Y

(m),+

n,(i),Ũ
= Y

(m),+
n,(i),U →→ Y +

n,(i),U ′ .

Similarly the sheaf

(X∗(S̃(m),ord,+

n,(i),Ũp(N)
) ∩ HermFm) =∐

h∈L(m)
n,(i),lin

(A∞)ord,×/Ũp(N)
(X∗(S̃(m+i),ord

n−i,(hŨph−1∩G̃(m+i)
n−i (A∞,p))

) ∩ HermFm)

is a sub-sheaf of X∗(S̃(m),ord,+

n,(i),Ũp(N)
). It is invariant by the actions of L

(m)
n,(i),lin(Z(p)) and

P̃
(m),+
n,(i) (A∞)ord. We define a split torus

Ŝ(m),ord,+

n,(i),Ũp(N)
/Y(m),ord,+

n,(i),Ũp(N)

by

X∗(Ŝ(m),ord,+

n,(i),Ũp(N)
) = X∗(S̃(m),ord,+

n,(i),Ũp(N)
) ∩ HermFm .

If Up denotes the image of Ũp in P
(m)
n,(i)(A

∞,p), then we will write

S(m),ord,+
n,(i),Up(N) = S̃(m),ord,+

n,(i),Ũp(N)
/Ŝ(m),ord,+

n,(i),Ũp(N)
.

It depends only on Up and not the Ũp mapping to Up. The sheaf X∗(S(m),ord,+
n,(i),Up(N))Z(p)

is constant:

X∗(S(m),ord,+
n,(i),Up(N))Z(p)

∼= Z(N
(m)
n,(i))(Z(p)).

In the case m = 0 we will write simply S+
n,(i),Up(N). The tori Ŝ(m),ord,+

n,(i),Ũp(N)
and S(m),ord,+

n,(i),Up(N)

inherit a left action of L
(m)
n,(i),lin(Z(p)) and a right action of P̃

(m),+
n,(i) (A∞)ord. In the

case of S(m),ord,+
n,(i),Up(N) the latter factors through P

(m),+
n,(i) (A∞)ord. If Ũp is a neat open

compact subgroup of P̃
(m),+
n,(i) (A∞,p) with image Up in P

(m),+
n,(i) (A∞,p) and image (Up)′

in P+
n,(i)(A

∞,p), then there is a natural, L
(m)
n,(i),lin(Z(p))-equivariant and P̃

(m),+
n,(i) (A∞)ord-

equivariant, commutative diagram:

S̃(m),ord,+

n,(i),Ũp(N)
→→ S(m),ord,+

n,(i),Up(N) →→ Sord,+
n,(i),(Up)′(N)

↓ ↓ ↓
Y(m),ord,+

n,(i),Ũp(N)
= Y(m),ord,+

n,(i),Up(N) →→ Yord,+
n,(i),(Up)′(N).
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There are natural equivariant embeddings

S̃(m),ord,+

n,(i),Ũp(N)
× SpecQ ↪→ S̃

(m),+

n,(i),Ũp(N)

and
S(m),ord,+
n,(i),Up(N) × SpecQ ↪→ S

(m),+
n,(i),Up(N)

and
Ŝ(m),ord,+
n,(i),(Up)′(N) × SpecQ ↪→ Ŝ

(m),+
n,(i),(Up)′(N).

We write X∗(S
(m),+
n,(i),U)�0

R (resp. X∗(S
(m),+
n,(i),U)>0

R , resp. X∗(S
(m),+
n,(i),U)≥0

R ) for the sub-

sheaves (of monoids) of X∗(S
(m),+
n,(i),U)R corresponding to the subset C(m),�0(Vn,(i)) ⊂

Z(N
(m)
n,(i))(R) (resp. to the subset C(m),>0(Vn,(i)) ⊂ Z(N

(m)
n,(i))(R), resp. to the subset

C(m),≥0(Vn,(i)) ⊂ Z(N
(m)
n,(i))(R)).

We will also write X∗(S
(m),+
n,(i),U)≥0

R (resp. X∗(S
(m),+
n,(i),U)>0

R , resp. X∗(S
(m),+
n,(i),U)≥0, resp.

X∗(S
(m),+
n,(i),U)>0) for the sub-sheaves (of monoids) of X∗(S

(m),+
n,(i),U)R (resp. X∗(S

(m),+
n,(i),U)R,

resp. X∗(S
(m),+
n,(i),U), resp. X∗(S

(m),+
n,(i),U)) consisting of sections that have non-negative

(resp. strictly positive, resp. non-negative, resp. strictly positive) pairing with

each non-zero section of X∗(S
(m),+
n,(i),U)≥0

R . All these sheaves have (compatible) actions

of L
(m)
n,(i),lin(Q). The system of sheaves {X∗(S(m),+

n,(i),U)} has an action of P
(m),+
n,(i) (A∞),

and the same is true for all the other systems of sheaves we are considering in this
paragraph.

We may take the quotients of the sheaves X∗(S
(m),+
n,(i),U) (resp. X∗(S

(m),+
n,(i),U)>0, resp.

X∗(S
(m),+
n,(i),U)≥0) by L

(m)
n,(i),lin(Q) to give sheaves of sets on Y

(m),\
n,(i),U , which we will denote

X∗(S
(m),+
n,(i),U)\ (resp. X∗(S

(m),+
n,(i),U)>0,\, resp. X∗(S

(m),+
n,(i),U)≥0,\). If y = hU lies in Y

(m),+
n,(i),U

above y\ ∈ Y (m),\
n,(i),U then the stalk of X∗(S

(m),+
n,(i),U)\ at y\ equals

{γ ∈ L(m)
n,(i),lin(Q) : γy = y}\X∗(S(m+i)

n−i,hUh−1∩G̃(m+i)
n−i (A∞)

).

We will write X∗(S(m),ord,+
n,(i),Up(N))

≥0
R (resp. X∗(S(m),ord,+

n,(i),Up(N))
>0
R , resp. X∗(S(m),ord,+

n,(i),Up(N))
≥0
R )

for the sub-sheaves (of monoids) of X∗(S(m),ord,+
n,(i),Up(N))R corresponding to

C(m),�0(Vn,(i)) ⊂ Z(N
(m)
n,(i))(R)

(resp.

C(m),>0(Vn,(i)) ⊂ Z(N
(m)
n,(i))(R),

resp.

C(m),≥0(Vn,(i)) ⊂ Z(N
(m)
n,(i))(R)).

Again we will write X∗(S(m),ord,+
n,(i),Up(N))

≥0
R (resp. X∗(S(m),ord,+

n,(i),Up(N))
≥0) for the sub-sheaves

(of monoids) of X∗(S(m),ord,+
n,(i),Up(N))R (resp. X∗(S(m),ord,+

n,(i),Up(N))) consisting of sections that

have non-negative pairing with each section of X∗(S(m),ord,+
n,(i),Up(N))

≥0
R . We will also write
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X∗(S(m),ord,+
n,(i),Up(N))

>0
R (resp. X∗(S(m),ord,+

n,(i),Up(N))
>0) for the sub-sheaves (of monoids) of the

sheaves X∗(S(m),ord,+
n,(i),Up(N))R (resp. X∗(S(m),ord,+

n,(i),Up(N))) consisting of sections that have

strictly positive pairing with each non-zero section of X∗(S(m),ord,+
n,(i),Up(N))

≥0
R . All these

sheaves have actions of L
(m)
n,(i),lin(Z(p)). The system of sheaves {X∗(S(m),ord,+

n,(i),Up(N))} has

an action of P
(m),+
n,(i) (A∞)ord, and the same is true for all the other systems of sheaves

we are considering in this paragraph.

We may take the quotients of the sheaves X∗(S(m),ord,+
n,(i),Up(N)) and X∗(S(m),ord,+

n,(i),Up(N))
>0

and X∗(S(m),ord,+
n,(i),Up(N))

≥0 by L
(m)
n,(i),lin(Z(p)) to give sheaves of sets on Y(m),ord,\

n,(i),Up(N), which

we will denote X∗(S(m),ord,+
n,(i),Up(N))

\ and X∗(S(m),ord,+
n,(i),Up(N))

>0,\ and X∗(S(m),ord,+
n,(i),Up(N))

≥0,\.

Suppose again that Ũ is a neat open compact subgroup of P̃
(m),+
n,(i) (A∞) and set

T̃
(m),+

n,(i),Ũ
=

∐
h∈L(m)

n,(i),lin
(A∞)/Ũ

T
(m+i)

n−i,hŨh−1∩G̃(m+i)
n−i (A∞)

.

It is an S̃
(m),+

n,(i),Ũ
-torsor over A

(m),+

n,(i),Ũ
. If U denotes the image of Ũ in P

(m),+
n,(i) (A∞) then the

push-out of T̃
(m),+

n,(i),Ũ
under S̃

(m),+

n,(i),Ũ
→→ S

(m),+
n,(i),U is an S

(m),+
n,(i),U -torsor over A

(m),+
n,(i),U = A

(m),+

n,(i),Ũ
,

which only depends on U (and not Ũ), and which we will denote T
(m),+
n,(i),U . In the case

m = 0 we will write simply T+
n,(i),U . Note that T̃

(m),+

n,(i),Ũ
is an Ŝ

(m),+

n,(i),Ũ
-torsor over T

(m),+

n,(i),Ũ
.

If g̃ ∈ P̃ (m),+
n,(i) (A∞) and g̃−1Ũ g̃ ⊂ Ũ ′, then we define

g̃ : T̃
(m),+

n,(i),Ũ
−→ T̃

(m),+

n,(i),Ũ ′

to be the coproduct of the maps

g̃′ : T̃
(m+i)

n−i,hŨh−1∩G̃(m+i)
n−i (A∞)

−→ T̃
(m+i)

n−i,h′Ũ ′(h′)−1∩G̃(m+i)
n−i (A∞)

,

where h, h′ ∈ L
(m)
n,(i),lin(A∞) and g̃′ ∈ G̃

(m+i)
n−i (A∞) satisfy hg̃ = g̃′h′. This makes

{T̃ (m),+

n,(i),Ũ
} a system of {S̃(m),+

n,(i),Ũ
}-torsors over {A(m),+

n,(i),Ũ
} with right P̃

(m),+
n,(i) (A∞)-action.

It also induces an action of P
(m),+
n,(i) (A∞) on {T (m),+

n,(i),U}, which makes {T (m),+
n,(i),U} a system

of {S(m),+
n,(i),U}-torsors over {A(m),+

n,(i),U} with right P
(m),+
n,(i) (A∞)-action. If γ ∈ L(m)

n,(i),lin(Q),

then we define
γ : T̃

(m),+

n,(i),Ũ
−→ T̃

(m),+

n,(i),Ũ

to be the coproduct of the maps

γ : T
(m+i)

n−i,hŨh−1∩G̃(m+i)
n−i (A∞)

−→ T
(m+i)

n−i,(γh)Ũ(γh)−1∩G̃(m+i)
n−i (A∞)

.

This gives a left action of L
(m)
n,(i),lin(Q) on each T̃

(m),+

n,(i),Ũ
, which commutes with the action

of P̃
(m),+
n,(i) (A∞). It induces a left action of L

(m)
n,(i),lin(Q) on each T

(m),+
n,(i),U , which commutes

with the action of P
(m),+
n,(i) (A∞). Suppose that Ũ is a neat open compact subgroup of
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P̃
(m),+
n,(i) (A∞) with image U in P

(m),+
n,(i) (A∞) and image U ′ in P+

n,(i)(A
∞). Then there is

a commutative diagram

T̃
(m),+

n,(i),Ũ
→→ T

(m),+
n,(i),U →→ T+

n,(i),U ′

↓ ↓ ↓
A

(m),+
n,(i),U = A

(m),+
n,(i),U →→ A+

n,(i),U ′

↓ ↓ ↓
X

(m),+
n,(i),U = X

(m),+
n,(i),U →→ X+

n,(i),U ′

↓ ↓ ↓
Y

(m),+
n,(i),U = Y

(m),+
n,(i),U →→ Y +

n,(i),U ′ .

This diagram is L
(m)
n,(i),lin(Q)-equivariant and P̃

(m),+
n,(i) (A∞)-equivariant. We have

T
(m),+
n,(i),U(C) = P

(m)
n,(i)(Q)\(P (m),+

n,(i) (A)Z(N
(m)
n,(i))(C))/(UU0

n−i,∞An−i(R)0).

Similarly if Ũp is a neat open compact subgroup of P̃
(m),+
n,(i) (A∞,p) and 0 ≤ N1 ≤ N2

we set

T̃ (m),ord,+

n,(i),Ũp(N1,N2)
=

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Ũp(N1,N2)

T (m+i),ord

n−i,(hŨph−1∩G̃(m+i)
n−i (A∞,p))(N1,N2)

.

It is an S̃(m),ord,+

n,(i),Ũp(N1)
-torsor over A(m),ord,+

n,(i),Ũp(N1,N2)
. If Up denotes the image of Ũp in

P
(m),+
n,(i) (A∞,p) then the push-out of T̃ (m),ord,+

n,(i),Ũp(N1,N2)
under S̃(m),ord,+

n,(i),Ũp(N1)
→→ S(m),ord,+

n,(i),Up(N1) is

an S(m),ord,+
n,(i),Up(N1)-torsor over A(m),ord,+

n,(i),Up(N1,N2), which only depends on Up (and not Ũp) and

N1, N2, and which we will denote T (m),ord,+
n,(i),Up(N1,N2). In the case m = 0 we will write sim-

ply T ord,+
n,(i),Up(N1,N2). Note that T̃ (m),ord,+

n,(i),Ũp(N1,N2)
is a Ŝ(m),ord,+

n,(i),Ũp(N1)
-torsor over T (m),ord,+

n,(i),Ũp(N1,N2)
.

As above the system {T̃ (m),ord,+

n,(i),Ũp(N1,N2)
} has a right action of P̃

(m),+
n,(i) (A∞)ord and a

commuting left action of L
(m)
n,(i),lin(Z(p)). If g ∈ P̃

(m),+
n,(i) (A∞)ord,× then the map g is

finite etale. The map

ςp : T̃ (m),ord,+

n,(i),Ũp(N1,N2)
× SpecFp −→ T̃ (m),ord,+

n,(i),Ũp(N1,N2−1)
× SpecFp

equals absolute Frobenius composed with the forgetful map. If N2 > 1 then the map

ςp : T̃ (m),ord,+

n,(i),Ũp(N1,N2)
−→ T̃ (m),ord,+

n,(i),Ũp(N1,N2−1)

is finite flat. Further there is a left action of GLm(OF,(p)) such that if δ ∈ GLm(OF,(p))
and γ ∈ L(m)

n,(i),lin(Z(p)) and g ∈ P̃ (m),+
n,(i) (A∞)ord, then γ followed by δ equals δ followed

by δγδ−1, and g followed by δ equals δ followed by δgδ−1. These actions are also

all compatible with the actions on {S̃(m),ord,+

n,(i),Ũp(N1)
}. There are induced actions of the

groups GLm(OF,(p)) and L
(m)
n,(i),lin(Z(p)) and P

(m),+
n,(i) (A∞)ord on {T (m),ord,+

n,(i),Up(N1,N2)}, which
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are compatible with the actions on {S(m),ord,+
n,(i),Up(N1)}. There is an equivariant commuta-

tive diagram

T̃ (m),ord,+

n,(i),Ũp(N1,N2)
→→ T (m),ord,+

n,(i),Ũp(N1,N2)
→→ T ord,+

n,(i),Ũp(N1,N2)

↓ ↓ ↓
A(m),ord,+

n,(i),Ũp(N1,N2)
= A(m),ord,+

n,(i),Ũp(N1,N2)
→→ Aord,+

n,(i),Ũp(N1,N2)

↓ ↓ ↓
X (m),ord,+

n,(i),Ũp(N1,N2)
= X (m),ord,+

n,(i),Ũp(N1,N2)
→→ X ord,+

n,(i),Ũp(N1,N2)

↓ ↓ ↓
Y(m),ord,+

n,(i),Ũp(N1)
= Y(m),ord,+

n,(i),Ũp(N1)
→→ Yord,+

n,(i),Ũp(N1)
.

There are natural equivariant embeddings

T̃ (m),ord,+

n,(i),Ũp(N1,N2)
× SpecQ ↪→ T̃

(m),+

n,(i),Ũp(N1,N2)

and
T (m),ord,+
n,(i),Up(N1,N2) × SpecQ ↪→ T

(m),+
n,(i),Up(N1,N2).

If a is a section of X∗(S
(m),+
n,(i),U)(W ) over W ⊂ Y

(m),+
n,(i),U then we can associate to it a

line bundle
L+
U(a)

over A
(m),+
n,(i),U |W as in section 2.1. There are natural isomorphisms

L+
U(a)⊗ L+

U(a′) ∼= L+
U(a+ a′).

Suppose that R0 is a noetherian Q-algebra. Suppose also that U is a neat open
compact subgroup of P+

n,(i)(A
∞). If a is a section in X∗(S+

n,(i),U)>0(W ) then L+
U(a) is

relatively ample for A+
n,(i),U |W/X

+
n,(i),U |W . If π+ denotes the map

A+
n,(i),U |W × SpecR0 −→ X+

n,(i),U |W × SpecR0,

then we see that
Riπ+

∗ L+
U(a) = (0)

for i > 0. (Because A+
n,(i),U |W/X

+
n,(i),U |W is a torsor for an abelian scheme and L+

U(a)

is relatively ample for this morphism.) We will denote by (πA+/X+,∗L)+
U(a) the image

π+
∗ L+

U(a). Suppose further that F is a locally free sheaf on X+
n,(i),U × SpecR0 with

Ln,(i),lin(Q)-action. If a\ is a section of X∗(S+
n,(i),U)>0,\ we will define

(πA+/X\,∗L ⊗ F)+
U(a\)

as follows: Over a point y\ of Y \
n,(i),U we take the sheaf∏

y,a

(πA+/X+,∗L)+
U(a)y ⊗Fy

over X\
n,(i),U,y\

×SpecR0, where y runs over points of Y +
n,(i),U above y\ and a runs over

sections of X∗(S+
n,(i),U)y above a\. It is a sheaf with an action of Ln,(i),lin(Q).
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Lemma 4.2. Keep the notation and assumptions of the previous paragraph.

(1)

(πA+/X\,∗L ⊗ F)+
U(a\) ∼= Ind

Ln,(i),lin(Q)

{1}
(
(πA+/X\,∗L ⊗ F)+

U(a\)Ln,(i),lin(Q)
)

as a sheaf on X\
n,(i),U × SpecR0 with Ln,(i),lin(Q)-action.

(2) If

π : A+
n,(i),U × SpecR0 −→ X\

n,(i),U × SpecR0

then

Riπ∗
∏

a∈X∗(S+
n,(i),U

)>0(L+
U(a)⊗F)

∼=

{ ∏
a\∈X∗(S+

n,(i),U
)>0,\(πA+/X\,∗L ⊗ F)+

U(a\) if i = 0

(0) otherwise.

Proof: For the first part note that if y in Y +
n,(i),U and if a ∈ X∗(S+

n,(i),U)>0
y then the

stabilizer of a in {γ ∈ Ln,(i)(Q) : γy = y} is finite, and that if U is neat then it
is trivial. The second part follows from the observations of the previous paragraph
together with proposition 0.13.3.1 of [EGA3]. �

Similarly if a is a section of X∗(S(m),ord,+
n,(i),Up(N1)) over W ⊂ Y (m),ord,+

n,(i),Up(N1) then we can

associate to it a line bundle

L+
Up(N1,N2)(a)

over A(m),ord,+
n,(i),Up(N1,N2)|W . There are natural isomorphisms

L+
Up(N1,N2)(a)⊗ L+

Up(N1,N2)(a
′) ∼= L+

Up(N1,N2)(a+ a′).

Suppose that R0 is a noetherian Z(p)-algebra. Suppose that Up is a neat open
compact subgroup of P+

n,(i)(A
∞,p) and that 0 ≤ N1 ≤ N2. If a is a section in

X∗(S+
n,(i),Up(N1))

>0(W ) then L+
Up(N1,N2)(a) is relatively ample for Aord,+

n,(i),Up(N1,N2)|W over

X ord,+
n,(i),Up(N1,N2)|W . If π+ denotes the map

Aord,+
n,(i),Up(N1,N2)|W × SpecR0 −→ X ord,+

n,(i),Up(N1,N2)|W × SpecR0

then we see that

Riπ+
∗ L+

Up(N1,N2)(a) = (0)

for i > 0. (Again because Aord,+
n,(i),Up(N1,N2)|W/X

ord,+
n,(i),Up(N1,N2)|W is a torsor for an abelian

scheme and L+
Up(N1,N2)(a) is relatively ample for this morphism.) We will denote by

(πAord,+/X ord,+,∗L)+
Up(N1,N2)(a) the image π+

∗ L+(a). Suppose further that F is a locally

free sheaf on X ord,+
n,(i),Up(N1,N2) × SpecR0 with Ln,(i),lin(Z(p))-action. If a\ is a section of

X∗(Sord,+
n,(i),Up(N1))

>0,\ we define a sheaf

(πAord,+/X ord,\,∗L ⊗ F)+
Up(N1,N2)(a

\)
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as follows: Over a point y\ of Yord,\
n,(i),Up(N1,N2) we take the sheaf∏

y,a

(πAord,+/X ord,+,∗L)+
Up(N1,N2)(a)y ⊗Fy

over X ord,\
n,(i),Up(N1,N2),y\

× SpecR0, where y runs over points of Yord,\
n,(i),Up(N1,N2) above y\

and a runs over sections of X∗(Sord,+
n,(i),Up(N1))y above a\. It is a sheaf with an action of

Ln,(i),lin(Z(p)). As above we have the following lemma.

Lemma 4.3. Keep the notation and assumptions of the previous paragraph.

(1)

(πAord,+/X ord,\,∗L ⊗ F)+
Up(N1,N2)(a

\) ∼=
Ind

Ln,(i),lin(Z(p))

{1}

(
(πAord,+/X ord,+,∗L ⊗ F)+

Up(N1,N2)(a
\)Ln,(i),lin(Z(p))

)
as a sheaf on X ord,\

n,(i),Up(N1,N2) × SpecR0 with Ln,(i),lin(Z(p))-action.

(2) If

π : Aord,+
n,(i),Up(N1,N2) × SpecR0 −→ X ord,\

n,(i),Up(N1,N2) × SpecR0

then
Riπ∗

∏
a∈X∗(Sord,+

n,(i),Up(N1)
)>0

(L+
Up(N1,N2)(a)⊗F)

is isomorphic to∏
a\∈X∗(Sord,+

n,(i),Up(N1)
)>0,\

(πAord,+/X ord,\,∗L ⊗ F)+
Up(N1,N2)(a

\)

if i = 0, and otherwise is (0).
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4.4. Partial compactifications.

We will now turn to the partial compactification of the generalized Shimura varieties,

T
(m)
n,(i),U , we discussed in the last section. These will serve as models for the full

compactification of the A
(m)
n,U , which near the boundary can be formally modeled on

the partial compactifications of the T
(m)
n,(i),U .

Suppose that U (resp. Up) is a neat open compact subgroup of L
(m)
n,(i),lin(A∞)

(resp. L
(m)
n,(i),lin(A∞,p)) and that N is a non-negative integer. By an admissible cone

decomposition Σ0 for X∗(S
(m),+
n,(i),U)�0

R (resp. X∗(S(m),ord,+
n,(i),Up(N))

�0
R ) we shall mean a partial

fan Σ0 in X∗(S
(m),+
n,(i),U)R (resp. X∗(S(m),ord,+

n,(i),Up(N))R) such that

• |Σ0| = X∗(S
(m),+
n,(i),U)�0

R (resp. X∗(S(m),ord,+
n,(i),Up(N))

�0
R );

• |Σ0|0 = X∗(S
(m),+
n,(i),U)>0

R (resp. X∗(S(m),ord,+
n,(i),Up(N))

>0
R );

• Σ0 is invariant under the left action of L
(m)
n,(i),lin(Q) (resp. L

(m)
n,(i),lin(Z(p)));

• L(m)
n,(i),lin(Q)\Σ0 (resp. L

(m)
n,(i),lin(Z(p))\Σ0) is a finite set;

• if σ ∈ Σ0 and 1 6= γ ∈ L(m)
n,(i),lin(Q) (resp. L

(m)
n,(i),lin(Z(p))) then

σ ∩ γσ 6∈ Σ0.

(Many authors would not include the last condition in the definition of an ‘admis-
sible cone decomposition’.) In concrete terms Σ0 consists of a partial fan Σg,0 in

Z(N
(m)
n,(i))(R) for each g ∈ L(m)

n,(i),lin(A∞) (resp. L
(m)
n,(i),lin(A∞)ord,×), such that

• Σγgu,0 = γΣg,0 for all γ ∈ L(m)
n,(i),lin(Q) (resp. L

(m)
n,(i),lin(Z(p))) and u ∈ U (resp.

Up(N));
• |Σg,0| = C(m),�0(Vn,(i)) and |Σg,0|0 = C(m),>0(Vn,(i)) for each g;

• (L
(m)
n,(i),lin(Q) ∩ gUg−1)\Σg,0 (resp. (L

(m)
n,(i),lin(Z(p)) ∩ gUp(N)g−1)\Σg) is finite

for all g;

• for each g and each σ ∈ Σg,0, if 1 6= γ ∈ (L
(m)
n,(i),lin(Q) ∩ gUg−1) (resp.

(L
(m)
n,(i),lin(Z(p)) ∩ gUp(N)g−1)) then

σ ∩ γσ 6∈ Σg,0.

Note that an admissible cone decomposition Σ0 for X∗(S
(m),+
n,(i),Up(N))

�0
R induces (by

restriction) one, which we will denote Σord
0 , for X∗(S(m),ord,+

n,(i),Up(N))
�0
R . This sets up

a bijection between admissible cone decompositions for X∗(S
(m),+
n,(i),Up(N))

�0
R and for

X∗(S(m),ord,+
n,(i),Up(N))

�0
R .

Lemma 4.4. Suppose that U (resp. Up) is a neat open compact subgroup of the

group L
(m)
n,(i),lin(A∞) (resp. L

(m)
n,(i),lin(A∞)) and that N is a non-negative integer. Sup-

pose also that Σ0 is an admissible cone decomposition for X∗(S
(m),+
n,(i),U)�0

R (resp. for
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X∗(S(m),ord,+
n,(i),Up(N))

�0
R ). Also suppose that τ ⊂ |Σ0| is a rational polyhedral cone. Then

the set

{γ ∈ L(m)
n,(i),lin(Q) : γτ ∩ τ ∩ |Σ0|0 6= ∅}

(resp.

{γ ∈ L(m)
n,(i),lin(Z(p)) : γτ ∩ τ ∩ |Σ0|0 6= ∅})

is finite.

Proof: We treat the case of X∗(S
(m),+
n,(i),U)�0

R , the other being exactly similar. Suppose

that τ has support y = hU and set Γ = L
(m)
n,(i),lin(Q) ∩ hUh−1 a discrete subgroup of

L
(m)
n,(i),lin(Q). We certainly have

{γ ∈ L(m)
n,(i),lin(Q) : γτ ∩ τ ∩ |Σ0|0 6= ∅} = {γ ∈ Γ : γτ ∩ τ ∩ |Σ0|0(y) 6= ∅}.

That this set is finite follows from theorem II.4.6 and the remark (ii) at the end of
section II.4.1 of [AMRT]. �

Corollary 4.5. If Σ0 is an admissible cone decomposition for X∗(S
(m),+
n,(i),U)�0

R or for

X∗(S(m),ord,+
n,(i),Up(N))

�0
R , then Σ0 is locally finite.

Proof: Let τ ⊂ |Σ0| be a rational polyhedral cone. Let σ1, ..., σr be representa-

tives for L
(m)
n,(i),lin(A∞)\Σ0 (resp. L

(m)
n,(i),lin(Z(p))\Σ0); and suppose they are chosen with

the same support as τ whenever possible. Let τ ′ be the rational polyhedral cone

spanned by τ and those σi with the same support as τ . If γ ∈ L(m)
n,(i),lin(A∞) (resp.

L
(m)
n,(i),lin(Z(p))) and

γσi ∩ τ ∩ |Σ0|0 6= ∅,
then

γτ ′ ∩ τ ′ ∩ |Σ0|0 6= ∅
and so by the previous lemma γ lies in a finite set. The corollary follows. �

If g ∈ P (m),+
n,(i) (A∞), if U ′ ⊃ g−1Ug are neat open compact subgroups of the group

P
(m),+
n,(i) (A∞), and if Σ′0 is a U ′-admissible cone decomposition for X∗(S

(m),+
n,(i),U ′)

�0
R , then

Σ′0g
−1 is a U -admissible cone decomposition for X∗(S

(m),+
n,(i),U)�0

R . We will call a U -

admissible cone decomposition Σ0 for X∗(S
(m),+
n,(i),U)�0

R compatible with Σ′0 with respect

to g if Σ0 refines Σ′0g
−1. Similarly if g ∈ P (m),+

n,(i) (A∞)ord, if (Up)′(N ′) ⊃ (g−1Upg)(N),

and if Σ′0 is a (Up)′(N ′)-admissible cone decomposition for X∗(S(m),ord,+
n,(i),(Up)′(N ′))

�0
R , then

(Σ′g−1,Σ′0g
−1) is an admissible cone decomposition for X∗(S(m),ord,+

n,(i),Up(N))
�0
R . We will

call a Up(N)-admissible cone decomposition Σ0 for X∗(S(m),ord,+
n,(i),Up(N))

�0
R compatible with

Σ′0 with respect to g if Σ0 refines Σ′0g
−1.
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If U ′ is a neat open compact subgroup of P+
n,(i)(A

∞) which contains the image of U ,

we will call an admissible cone decomposition Σ0 of X∗(S
(m),+
n,(i),U)�0

R and an admissible

cone decomposition ∆0 of X∗(S
+
n,(i),U ′)

�0
R compatible if, under the natural map

X∗(S
(m),+
n,(i),U)�0

R →→ X∗(S
+
n,(i),U ′)

�0
R ,

the image of each σ ∈ Σ0 is contained in some element of ∆0. Similarly if (Up)′ is
a neat open compact subgroup of P+

n,(i)(A
∞,p) which contains the image of Up and if

N ′ ≥ N , we will call an admissible cone decomposition Σ0 of X∗(S(m),ord,+
n,(i),Up(N))

�0
R and

an admissible cone decomposition ∆0 of X∗(Sord,+
n,(i),(Up)′(N ′))

�0
R compatible if, under the

natural map

X∗(S(m),ord,+
n,(i),Up(N))

�0
R →→ X∗(Sord,+

n,(i),(Up)′(N ′))
�0
R ,

the image of each σ ∈ Σ0 is contained in some element of ∆0.

If Σ0 is a smooth admissible cone decomposition for X∗(S
(m),+
n,(i),U)�0

R (resp. for

X∗(S(m),ord,+
n,(i),Up(N1,N2)))

�0
R ), then the log smooth, log scheme

(T
(m),+

n,(i),U,Σ̃0
,MΣ̃0

)

(resp. the log smooth, log scheme

(T (m),ord,+

n,(i),Up(N1,N2),Σ̃0
,MΣ̃0

))

has a left action of L
(m)
n,(i),lin(Q) (resp. L

(m)
n,(i),lin(Z(p))) extending that on T

(m),+
n,(i),U (resp.

T (m),ord,+
n,(i),Up(N1,N2)). (Recall the definition of Σ̃0 from section 2.5.) If g ∈ P

(m),+
n,(i) (A∞)

(resp. g ∈ P (m),+
n,(i) (A∞)ord) and if Σ0 is compatible with Σ′0 with respect to g then the

map

g : T
(m),+
n,(i),U −→ T

(m),+
n,(i),U ′

(resp.

g : T (m),ord,+
n,(i),Up(N1,N2) −→ T

(m),ord,+

n,(i),(Up)′(N ′1,N
′
2))

uniquely extends to an L
(m)
n,(i),lin(Q)-equivariant (resp. L

(m)
n,(i),lin(Z(p))-equivariant) log

etale map

g : (T
(m),+

n,(i),U,Σ̃0
,MΣ̃0

) −→ (T
(m),+

n,(i),U ′,Σ̃′0
,MΣ̃′0

)

(resp.

g : (T (m),ord,+

n,(i),Up(N1,N2),Σ̃0
,MΣ̃0

) −→ (T (m),ord,+

n,(i),(Up)′(N ′1,N
′
2),Σ̃′0

,MΣ̃′0
)).

This makes {(T (m),+

n,(i),U,Σ̃0
,MΣ̃0

)} (resp. {(T (m),ord,+

n,(i),Up(N1,N2),Σ̃0
,MΣ̃0

)}) a system of log

schemes with P
(m),+
n,(i) (A∞)-action (resp. P

(m),+
n,(i) (A∞)ord-action). There are equivariant

embeddings

(T (m),ord,+

n,(i),Up(N1,N2),Σ̃ord
0

× SpecQ,MΣ̃ord
0

) ↪→ (T
(m),+

n,(i),Up(N1,N2),Σ̃0
,MΣ̃0

).
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We have

|S(∂T
(m),+

n,(i),U,Σ̃0
)| − |S(∂T

(m),+

n,(i),U,Σ̃0−Σ0
)| =

(L
(m)
n,(i),lin(A∞)× (Cn−i(Q)\Cn−i(A)/Cn−i(R)0))/U × (C

(m),>0
(i) /R×>0).

If U ′ (resp. (U ′)p) is a neat open compact subgroup of the group P+
n,(i)(A

∞)

(resp. P+
n,(i)(A

∞,p)) which contains the image of U (resp. Up), if ∆0 is a smooth

admissible cone decomposition of X∗(S
+
n,(i),U ′)

�0
R (resp. X∗(Sord,+

n,(i),(U ′)p(N1))
�0
R ), and if

Σ0 is a compatible smooth admissible cone decomposition of X∗(S
(m),+
n,(i),U)�0

R (resp.

X∗(S(m),ord,+
n,(i),Up(N1))

�0
R ), then the map

T
(m),+
n,(i),U −→ T+

n,(i),U ′

(resp.

T (m),ord,+
n,(i),Up(N1,N2) −→ T

ord,+
n,(i),(U ′)p(N1,N2))

extends to an L
(m)
n,(i),lin(Q)-equivariant (resp. L

(m)
n,(i),lin(Z(p))-equivariant) log smooth

map

(T
(m),+

n,(i),U,Σ̃0
,MΣ̃0

) −→ (T+

n,(i),U ′,∆̃0
,M∆̃0

)

(resp.

(T (m),ord,+

n,(i),Up(N1,N2),Σ̃0
,MΣ̃0

) −→ (T ord,+

n,(i),(U ′)p(N1,N2),∆̃0
,M∆̃0

)).

This gives rise to a P
(m),+
n,(i) (A∞)-equivariant (resp. P

(m),+
n,(i) (A∞)ord-equivariant) map

of systems of log schemes

{(T (m),+

n,(i),U,Σ̃0
,MΣ̃0

)} −→ {(T+

n,(i),U ′,∆̃0
,M∆̃0

)}

(resp.

{(T (m),ord,+

n,(i),Up(N1,N2),Σ̃0
,MΣ̃0

)} −→ {(T ord,+

n,(i),(U ′)p(N ′1,N
′
2),∆̃0

,M∆̃0
)}).

These maps are compatible with the embeddings

(T (m),ord,+

n,(i),Up(N1,N2),Σ̃0
× SpecQ,MΣ̃0

) ↪→ (T
(m),+

n,(i),Up(N1,N2),Σ̃0
,MΣ̃0

)

and
(T ord,+

n,(i),Up(N1,N2),∆̃0
× SpecQ,M∆̃0

) ↪→ (T+

n,(i),Up(N1,N2),∆̃0
,M∆̃0

).
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4.5. Completions.

If Σ0 denotes a smooth admissible cone decomposition of X∗(S
(m),+
n,(i),U)�0

R (resp. of

X∗(S(m),ord,+
n,(i),Up(N1,N2)))

�0
R ), then the associated log formal scheme (T

(m),+,∧
n,(i),U,Σ0

,M∧
Σ0

) (resp.

(T (m),ord,+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)) inherits a left action of L
(m)
n,(i),lin(Q) (resp. L

(m)
n,(i),lin(Z(p))). If

g ∈ P (m),+
n,(i) (A∞) (resp. P

(m),+
n,(i) (A∞)ord) and if Σ0 is compatible with Σ′0 with respect to

g, then there is an induced L
(m)
n,(i),lin(Q)-equivariant (resp. L

(m)
n,(i),lin(Z(p))-equivariant)

map

g : (T
(m),+,∧
n,(i),U,Σ0

,M∧
Σ0

) −→ (T
(m),+,∧
n,(i),U ′,Σ′0

,M∧
Σ′0

)

(resp.

g : (T (m),ord,+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

) −→ (T (m),ord,+,∧
n,(i),(Up)′(N ′1,N

′
2),Σ′0

,M∧
Σ′0

)).

This makes {(T (m),+,∧
n,(i),U,Σ0

,M∧
Σ0

)} (resp. {(T (m),ord,+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)}) a system of log

formal schemes with P
(m),+
n,(i) (A∞)-action (resp. P

(m),+
n,(i) (A∞)ord-action).

Similarly the schemes ∂Σ0T
(m),+
n,(i),U (resp. ∂Σ0T

(m),ord,+
n,(i),Up(N1,N2)) inherit a left action of the

group L
(m)
n,(i),lin(Q) (resp. L

(m)
n,(i),lin(Z(p))). If g ∈ P (m),+

n,(i) (A∞) (resp. P
(m),+
n,(i) (A∞)ord) and

if Σ0 is compatible with Σ′0 with respect to g, then there is an induced L
(m)
n,(i),lin(Q)-

equivariant (resp. L
(m)
n,(i),lin(Z(p))-equivariant) map

g : ∂Σ0T
(m),+
n,(i),U −→ ∂Σ′0

T
(m),+
n,(i),U ′

(resp.

g : ∂Σ0T
(m),ord,+
n,(i),Up(N1,N2) −→ ∂Σ′0

T (m),ord,+

n,(i),(Up)′(N ′1,N
′
2)).

This makes {∂Σ0T
(m),+
n,(i),U} (resp. {∂Σ0T

(m),ord,+
n,(i),Up(N1,N2)}) a system of log formal schemes

with P
(m),+
n,(i) (A∞)-action (resp. P

(m),+
n,(i) (A∞)ord-action).

If U ′ (resp. (Up)′) is a neat open compact subgroup of the group P+
n,(i)(A

∞)

(resp. P+
n,(i)(A

∞,p)) which contains the image of U (resp. Up), if ∆0 is a smooth

admissible cone decomposition of X∗(S
+
n,(i),U ′)

�0
R (resp. X∗(Sord,+

n,(i),(Up)′(N1))
�0
R ), and if

Σ0 is a compatible smooth admissible cone decomposition of X∗(S
(m),+
n,(i),U)�0

R (resp.

X∗(S(m),ord,+
n,(i),Up(N1))

�0
R ), then there are induced maps

(T
(m),+,∧
n,(i),U,Σ0

,M∧
Σ0

) −→ (T+,∧
n,(i),U ′,∆0

,M∧
∆0

)

and
∂Σ0T

(m),+
n,(i),U −→ ∂∆0T

+
n,(i),U ′

(resp.

(T (m),ord,+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

) −→ (T ord,+,∧
n,(i),(Up)′(N1,N2),∆0

,M∧
∆0

)

and
∂Σ0T

(m),ord,+
n,(i),Up(N1,N2) −→ ∂∆0T

ord,+
n,(i),(Up)′(N1,N2)),
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which are L
(m)
n,(i),lin(Q)-equivariant (resp. L

(m)
n,(i),lin(Z(p))-equivariant). This gives rise

to P
(m),+
n,(i) (A∞)-equivariant (resp. P

(m),+
n,(i) (A∞)ord-equivariant) maps of systems of log

formal schemes
{(T (m),+,∧

n,(i),U,Σ0
,M∧

Σ0
)} −→ {(T+,∧

n,(i),U ′,∆0
,M∧

∆0
)}

and of systems of schemes

{∂Σ0T
(m),+
n,(i),U} −→ {∂∆0T

+
n,(i),U ′}

(resp.

{(T (m),ord,+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)} −→ {(T ord,+,∧
n,(i),(U ′)p(N ′1,N

′
2),∆0

,M∧
∆0

)}
and

{∂Σ0T
(m),ord,+
n,(i),Up(N1,N2)} −→ {∂∆0T

ord,+
n,(i),(Up)′(N1,N2)}).

If σ ∈ Σ0 and if 1 6= γ ∈ L(m)
n,(i),lin(Q) (resp. L

(m)
n,(i),lin(Z(p))) then σ ∩ γσ 6∈ Σ0. Thus

(T
(m),+,∧
n,(i),U,Σ0

)σ ∩ (T
(m),+,∧
n,(i),U,Σ0

)γσ = ∅
and

(∂Σ0T
(m),+
n,(i),U)σ ∩ (∂Σ0T

(m),+
n,(i),U)γσ = ∅

(resp.

(T (m),ord,+,∧
n,(i),Up(N1,N2),Σ0

)σ ∩ (T (m),ord,+,∧
n,(i),Up(N1,N2),Σ0

)γσ = ∅
and

(∂Σ0T
(m),ord,+
n,(i),Up(N1,N2))σ ∩ (∂Σ0T

(m),ord,+
n,(i),Up(N1,N2))γσ = ∅).

It follows we can form log formal schemes

(T
(m),\,∧
n,(i),U,Σ0

,M∧
Σ0

) = L
(m)
n,(i),lin(Q)\(T (m),+,∧

n,(i),U,Σ0
,M∧

Σ0
)

(resp.

(T (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

) = L
(m)
n,(i),lin(Z(p))\(T (m),ord,+,∧

n,(i),Up(N1,N2),Σ0
,M∧

Σ0
))

and
(T

(m),\+,∧
n,(i),U,Σ0

,M∧
Σ0

) = Hom F (Fm, F i)\(T (m),+,∧
n,(i),U,Σ0

,M∧
Σ0

)

(resp.

(T (m),ord,\+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

) = HomOF,(p)(O
m
F,(p),OiF,(p))\(T

(m),ord,+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)).

We can also form schemes

∂Σ0T
(m),\
n,(i),U = L

(m)
n,(i),lin(Q)\∂Σ0T

(m),+
n,(i),U

(resp.

∂Σ0T
(m),ord,\
n,(i),Up(N1,N2) = L

(m)
n,(i),lin(Z(p))\∂Σ0T

(m),ord,+
n,(i),Up(N1,N2)).

The quotient maps

(T
(m),+,∧
n,(i),U,Σ0

,M∧
Σ0

)→→ (T
(m),\+,∧
n,(i),U,Σ0

,M∧
Σ0

)→→ (T
(m),\,∧
n,(i),U,Σ0

,M∧
Σ0

)

and
∂Σ0T

(m),+
n,(i),U →→ ∂Σ0T

(m),\
n,(i),U
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(resp.

(T (m),ord,+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)→→ (T (m),ord,\+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)→→ (T (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)

and
∂Σ0T

(m),ord,+
n,(i),Up(N1,N2) →→ ∂Σ0T

(m),ord,\
n,(i),Up(N1,N2))

are Zariski locally isomorphisms. The log formal scheme (T
(m),\+,∧
n,(i),U,Σ0

,M∧
Σ0

) (resp.

(T (m),ord,\+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)) inherits an action of Ln,(i),lin(Q) (resp. Ln,(i),lin(Z(p))).

If g ∈ P
(m),+
n,(i) (A∞) (resp. P

(m),+
n,(i) (A∞)ord) and if Σ0 is compatible with Σ′0 with

respect to g then there are induced maps

g : (T
(m),\,∧
n,(i),U,Σ0

,M∧
Σ0

) −→ (T
(m),\,∧
n,(i),U ′,Σ′0

,M∧
Σ′0

)

(resp.

g : (T (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

) −→ (T (m),ord,\,∧
n,(i),(Up)′(N ′1,N

′
2),Σ′0

,M∧
Σ′0

))

and
g : (T

(m),\+,∧
n,(i),U,Σ0

,M∧
Σ0

) −→ (T
(m),\+,∧
n,(i),U ′,Σ′0

,M∧
Σ′0

)

(resp.

g : (T (m),ord,\+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

) −→ (T (m),ord,\+,∧
n,(i),(Up)′(N ′1,N

′
2),Σ′0

,M∧
Σ′0

))

and
g : ∂Σ0T

(m),\
n,(i),U −→ ∂Σ′0

T
(m),\
n,(i),U ′

(resp.

g : ∂Σ0T
(m),ord,\
n,(i),Up(N1,N2) −→ ∂Σ′0

T (m),ord,\

n,(i),(Up)′(N ′1,N
′
2)).

This makes the collections {(T (m),\,∧
n,(i),U,Σ0

,M∧
Σ0

)} (resp. {(T (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)}) and

{(T (m),\+,∧
n,(i),U,Σ0

,M∧
Σ0

)} (resp. {(T (m),ord,\+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)}) systems of log formal schemes

with P
(m),+
n,(i) (A∞)-action (resp. P

(m),+
n,(i) (A∞)ord-action). It also makes the collections

{∂Σ0T
(m),\
n,(i),U} (resp. {∂Σ0T

(m),ord,\
n,(i),Up(N1,N2)}) systems of schemes with P

(m),+
n,(i) (A∞)-action

(resp. P
(m),+
n,(i) (A∞)ord-action).

If U ′ (resp. (Up)′) is a neat open compact subgroup of the group P+
n,(i)(A

∞)

(resp. P+
n,(i)(A

∞,p)) which contains the image of U (resp. Up), if ∆0 is a smooth

admissible cone decomposition of X∗(S
+
n,(i),U ′)

�0
R (resp. X∗(Sord,+

n,(i),(Up)′(N1))
�0
R ), and if

Σ0 is a compatible smooth admissible cone decomposition of X∗(S
(m),+
n,(i),U)�0

R (resp.

X∗(S(m),ord,+
n,(i),Up(N1))

�0
R ), then there are induced maps

(T
(m),\,∧
n,(i),U,Σ0

,M∧
Σ0

) −→ (T \,∧n,(i),U ′,∆0
,M∧

∆0
)

(resp.

(T (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

) −→ (T ord,\,∧
n,(i),(Up)′(N1,N2),∆0

,M∧
∆0

))

and
(T

(m),\+,∧
n,(i),U,Σ0

,M∧
Σ0

) −→ (T+,∧
n,(i),U ′,∆0

,M∧
∆0

)
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(resp.

(T (m),ord,\+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

) −→ (T ord,+,∧
n,(i),(Up)′(N1,N2),∆0

,M∧
∆0

))

and

∂Σ0T
(m),\
n,(i),U −→ ∂∆0T

\
n,(i),U ′

(resp.

∂Σ0T
(m),ord,\
n,(i),Up(N1,N2) −→ ∂∆0T

ord,\
n,(i),(Up)′(N1,N2)).

These give rise to P
(m),+
n,(i) (A∞)-equivariant (resp. P

(m),+
n,(i) (A∞)ord-equivariant) maps of

systems of log formal schemes

{(T (m),\,∧
n,(i),U,Σ0

,M∧
Σ0

)} −→ {(T \,∧n,(i),U ′,∆0
,M∧

∆0
)}

(resp.

{(T (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)} −→ {(T ord,\,∧
n,(i),(Up)′(N ′1,N

′
2),∆0

,M∧
∆0

)})

and

{(T (m),\+,∧
n,(i),U,Σ0

,M∧
Σ0

)} −→ {(T+,∧
n,(i),U ′,∆0

,M∧
∆0

)}

(resp.

{(T (m),ord,\+,∧
n,(i),Up(N1,N2),Σ0

,M∧
Σ0

)} −→ {(T ord,+,∧
n,(i),(Up)′(N ′1,N

′
2),∆0

,M∧
∆0

)}).

They also give rise to a P
(m)
n,(i)(A

∞)-equivariant (resp. P
(m)
n,(i)(A

∞)ord-equivariant) map

of systems of schemes

{∂Σ0T
(m),\
n,(i),U} −→ {∂∆0T

\
n,(i),U ′}

(resp.

{∂Σ0T
(m),ord,\
n,(i),Up(N1,N2)} −→ {∂∆0T

ord,\
n,(i),(Up)′(N1,N2)}).

We will write

∂Σ0T
(m),ord,\

n,(i),Up(N) = ∂Σ0T
(m),ord,\
n,(i),Up(N1,N2) × SpecFp.

It is independent of N2.
We also get a commutative diagram

T
(m),+,∧
n,(i),U,Σ0

↓
T

(m),\+,∧
n,(i),U,Σ0

−→ T+,∧
n,(i),U ′,∆0

↓ ↓
T

(m),\,∧
n,(i),U,Σ0

−→ T \,∧n,(i),U ′,∆0

↓ ↓
X

(m),\
n,(i),U = X\

n,(i),U ′

↓ ↓
Y

(m),\
n,(i),U = Y \

n,(i),U ′
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(resp.

T (m),ord,+,∧
n,(i),Up(N1,N2),Σ0

↓
T (m),ord,\+,∧
n,(i),Up(N1,N2),Σ0

−→ T ord,+,∧
n,(i),(Up)′(N1,N2),∆0

↓ ↓
T (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

−→ T \,∧n,(i),(Up)′(N1,N2),∆0

↓ ↓
X (m),ord,\
n,(i),Up(N1,N2) = X ord,\

n,(i),(U ′)p(N1,N2)

↓ ↓
Y(m),ord,\
n,(i),Up(N1,N2) = Yord,\

n,(i),(U ′)p(N1,N2)).

We will let I(m),\+,∧
∂,n,(i),U,Σ0

denote the formal completion of the ideal sheaf defining

∂T
(m),+

n,(i),U,Σ̃0
⊂ T

(m),+

n,(i),U,Σ̃0
.

We will let I(m),\+,∧
∂,n,(i),U,Σ0

denote its quotient by Hom F (Fm, F i) and I(m),\,∧
∂,n,(i),U,Σ0

denote

its quotient by L
(m)
n,(i),lin(Q). Similarly we will let I(m),ord,+,∧

∂,n,(i),Up(N1,N2),Σ0
denote the formal

completion of the ideal sheaf defining

∂T (m),ord,+

n,(i),Up(N1,N2),Σ̃0
⊂ T (m),ord,+

n,(i),Up(N1,N2),Σ̃0
.

We will let I(m),ord,\+,∧
∂,n,(i),Up(N1,N2),Σ0

denote its quotient by HomOF,(p)(OmF,(p),OiF,(p)) and

I(m),ord,\,∧
∂,n,(i),Up(N1,N2),Σ0

denote its quotient by L
(m)
n,(i),lin(Z(p)).

There are P
(m),+
n,(i) (A∞)ord- and Ln,(i),lin(Z(p))-equivariant maps

T (m),ord,+,∧
n,(i),Up(N1,N2),Σord

0
× Spf Q ↪→ T

(m),+,∧
n,(i),Up(N1,N2),Σ0

,

if Σord
0 and Σ0 correspond under the bijection of section 4.4. These embeddings are

compatible with the maps

T (m),ord,+,∧
n,(i),Up(N1,N2),Σord

0
−→ T ord,+,∧

n,(i),Up(N1,N2),∆ord
0

and

T
(m),+,∧
n,(i),Up(N1,N2),Σ0

−→ T+,∧
n,(i),Up(N1,N2),∆0

.

Moreover they are also compatible with the log structures and with the sheaves

I(m),ord,+,∧
∂,n,(i),Up(N1,N2),Σord

0
and I(m),+,∧

∂,n,(i),Up(N1,N2),Σ0
. They induce isomorphisms

T (m),ord,\,∧
n,(i),Up(N1,N2),Σord

0
× Spf Q ∼−→ T

(m),\,∧
n,(i),Up(N1,N2),Σ0

.

Lemma 4.6. Suppose that R0 is an irreducible noetherian Q-algebra (resp. Z(p)-
algebra) with the discrete topology. Suppose also that U ⊃ U ′ (resp. Up ⊃ (Up)′)

are neat open compact subgroups of P
(m),+
n,(i) (A∞) (resp. P

(m),+
n,(i) (A∞,p)), that N ′2 ≥

N ′1 ≥ 0 and N2 ≥ N1 ≥ 0 are integers with N ′2 ≥ N2 and N ′1 ≥ N1, and that

Σ0 and Σ′0 are compatible smooth admissible cone decompositions for X∗(S
(m),+
n,(i),U)�0

R
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and X∗(S
(m),+
n,(i),U ′)

�0
R (resp. for X∗(S(m),ord,+

n,(i),Up(N1,N2))
�0
R and X∗(S(m),ord,+

n,(i),(Up)′(N ′1,N
′
2))
�0
R ). Let

π(U ′,Σ′0),(U,Σ0) (resp. π((Up)′(N ′1,N
′
2),Σ′0),(Up(N1,N2),Σ0)) denote the map

1∗ : T
(m),\,∧
n,(i),U ′,Σ′0

→ T
(m),\,∧
n,(i),U,Σ0

(resp.

1∗ : T (m),ord,\,∧
n,(i),(Up)′(N ′1,N

′
2),Σ′0
→ T (m),ord,\,∧

n,(i),Up(N1,N2),Σ0
).

(1) If i > 0 then

Riπ(U ′,Σ′0),(U,Σ0),∗(I(m),\,∧
∂,n,(i),U ′,Σ′0

⊗̂R0) = Riπ(U ′,Σ′0),(U,Σ0),∗OT (m),\,∧
n,(i),U′,Σ′0

×Spf R0
= (0)

(resp.

Riπ((Up)′(N ′1,N
′
2),Σ′0),(Up(N1,N2),Σ0),∗(I(m),ord,\,∧

∂,n,(i),(Up)′(N ′1,N
′
2),Σ′0
⊗̂R0) = (0)

and

Riπ((Up)′(N ′1,N
′
2),Σ′0),(Up(N1,N2),Σ0),∗OT (m),ord,\,∧

n,(i),(Up)′(N′1,N
′
2),Σ′0

×Spf R0
= (0)).

(2) Suppose further that U ′ (resp. (Up)′) is a normal subgroup of U (resp. Up)
and that Σ′0 is U-invariant (resp. Up(N1, N2)-invariant). Then the natural
maps

O
T

(m),\,∧
n,(i),U,Σ0

×Spf R0
−→ (π(U ′,Σ′0),(U,Σ0),∗OT (m),\,∧

n,(i),U′,Σ′0
×Spf R0

)U

(resp.

OT (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

×Spf R0
−→

(π(((Up)′(N2,N2),Σ′0),(Up(N1,N2),Σ0),∗OT (m),ord,\,∧
n,(i),(Up)′(N2,N2),Σ′0

×Spf R0
)U

p(N1,N2))

and

I(m),\,∧
∂,n,(i),U,Σ0

⊗̂R0 −→ (π(U ′,Σ′0),(U,Σ0),∗(I(m),\,∧
∂,n,(i),U ′,Σ′0

⊗̂R0))U

(resp.

I(m),ord,\,∧
∂,n,(i),Up(N1,N2),Σ0

⊗̂R0 −→
(π((Up)′(N2,N2),Σ′0),(Up(N1,N2),Σ0),∗(I(m),ord,\,∧

∂,n,(i),(Up)′(N2,N2),Σ′0
⊗̂R0))U

p(N1,N2))

are isomorphisms.

The same statements are true with \ replaced by + or by \+.

Proof: It suffices to treat the case of +. We treat the case of T
(m),+,∧
n,(i),U ′,Σ′0

× Spf R0,

the case of T (m),ord,+,∧
n,(i),(Up)′(N1,N2),Σ′0

× Spf R0 being exactly similar.

Let U ′′ denote the open compact subgroup of P
(m),+
n,(i) (A∞) generated by U ′ and

U ∩ Z(N
(m)
n,(i))(A

∞). Then Σ0 is a U ′′ admissible smooth cone decomposition of
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X∗(S
(m),+
n,(i),U ′′)

�0
R . Moreover

T
(m),+,∧
n,(i),U ′′,Σ̃0

× Spf R0 −→ T
(m),+,∧
n,(i),U,Σ̃0

× Spf R0

is finite etale, and if U ′ is normal in U then it is Galois with group U/U ′′. Thus we
may replace U by U ′′ and reduce to the case that U and U ′ have the same projection

to (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞). In this case the result follows from lemma 2.15. �

Define Ω̃\
n,(i),U,∆0

on T \,∧n,(i),U,∆0
as the quotient by Ln,(i),lin(Q) of the pull-back of

Ω̃+
n,(i),U from A+

n,(i),U to T+,∧
n,(i),U,∆0

. Also define Ω̃ord,\
n,(i),Up(N1,N2),∆0

on T ord,\,∧
n,(i),Up(N1,N2),∆0

as the quotient by Ln,(i),lin(Z(p)) of the pull-back of the sheaf Ω̃ord,+
n,(i),Up(N1,N2) from

Aord,+
n,(i),Up(N1,N2) to T ord,+,∧

n,(i),Up(N1,N2),∆0
.

Suppose that R0 is a Q-algebra and that ρ is a representation of Rn,(n),(i) on a

finite, locally free R0-module Wρ. Then we define a locally free sheaf E \(i),U,∆0,ρ
on

T \,∧n,(i),U,∆0
as the quotient by Ln,(i),lin(Q) of the pull-back of E+

(i),U,ρ from A+
n,(i),U to

T+,∧
n,(i),U,∆0

. Then the system of sheaves {E \(i),U,∆0,ρ
} over {T \,∧n,(i),U,∆0

} has an action of

P+
n,(i)(A

∞). If g ∈ P+
n,(i)(A

∞), then the natural map

g∗E \(i),U,∆0,ρ
−→ E \(i),U ′,∆′0,ρ

is an isomorphism. The sheaves E \(i),U,∆0,ρ
have P+

n,(i)(A
∞)-invariant filtrations by

local direct summands whose graded pieces pull-backed to T+,∧
n,(i),U,∆0

are equivariantly

isomorphic to the pull-backs of sheaves of the form E+
(i),U,ρ′ on X+

n,(i),U .

Similarly in the case of mixed characteristic suppose that R0 is a Z(p)-algebra and
that ρ is a representation of Rn,(n),(i) on a finite, locally free R0-module Wρ. Then

we define a locally free sheaf Eord,\
(i),Up(N1,N2),∆0,ρ

on T ord,\,∧
n,(i),Up(N1,N2),∆0

as the quotient by

Ln,(i),lin(Z(p)) of the pull-back of Eord,+
(i),Up(N1,N2),ρ from Aord,+

n,(i),Up(N1,N2) to T ord,+,∧
n,(i),Up(N1,N2),∆0

.

Then the collection {Eord,\
(i),Up(N1,N2),∆0,ρ

} is a system of sheaves over {T ord,\,∧
n,(i),Up(N1,N2),∆0

}
with an action of P+

n,(i)(A
∞)ord,×. If g ∈ P+

n,(i)(A
∞)ord,×, then the natural map

g∗Eord,\
(i),Up(N1,N2),∆0,ρ

−→ Eord,\
(i),(Up)′(N1,N2),∆′0,ρ

is an isomorphism. The sheaves Eord,\
(i),Up(N1,N2),∆0,ρ

have P+
n,(i)(A

∞)ord,×-invariant filtra-

tions by local direct summands whose graded pieces pull-backed to the formal scheme
T ord,+,∧
n,(i),Up(N1,N2),∆0

are equivariantly isomorphic to the pull-backs of sheaves of the form

Eord,+
(i),Up(N1,N2),ρ′ on X ord,+

n,(i),Up(N1,N2).

Corollary 4.7. Suppose that R0 is an irreducible noetherian Q-algebra (resp. Z(p)-
algebra) with the discrete topology. Let ρ be a representation of Rn,(n),(i) on a finite,
locally free R0-module Wρ. Suppose also that U ⊃ U ′ (resp. Up ⊃ (Up)′) are neat

open compact subgroups of P
(m),+
n,(i) (A∞) (resp. P

(m),+
n,(i) (A∞,p)), that N ′2 ≥ N ′1 ≥ 0 and
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N2 ≥ N1 ≥ 0 are integers with N ′2 ≥ N2 and N ′1 ≥ N1, and that Σ0 and Σ′0 are com-

patible smooth admissible cone decompositions for X∗(S
(m),+
n,(i),U)�0

R and X∗(S
(m),+
n,(i),U ′)

�0
R

(resp. X∗(S(m),ord,+
n,(i),Up(N1,N2))

�0
R and X∗(S(m),ord,+

n,(i),(Up)′(N ′1,N
′
2))
�0
R ). Let π(U ′,Σ′0),(U,Σ0) (resp.

π((Up)′(N ′1,N
′
2),Σ′0),(Up(N1,N2),Σ0)) denote the map

1∗ : T
(m),\,∧
n,(i),U ′,Σ′0

→ T
(m),\,∧
n,(i),U,Σ0

(resp.

1∗ : T (m),ord,\,∧
n,(i),(Up)′(N ′1,N

′
2),Σ′0
→ T (m),ord,\,∧

n,(i),Up(N1,N2),Σ0
).

(1) If i > 0 then

Riπ(U ′,Σ′0),(U,Σ0),∗(I(m),\,∧
∂,n,(i),U ′,Σ′0

⊗̂E \(i),U ′,Σ′0,ρ) = Riπ(U ′,Σ′0),(U,Σ0),∗E \(i),U ′,Σ′0,ρ = (0)

(resp.

Riπ((Up)′(N ′1,N
′
2),Σ′0),(Up(N1,N2),Σ0),∗(I(m),ord,\,∧

∂,n,(i),(Up)′(N ′1,N
′
2),Σ′0
⊗̂Eord,\

(i),(Up)′(N ′1,N
′
2),Σ′0,ρ

) = (0)

and

Riπ((Up)′(N ′1,N
′
2),Σ′0),(Up(N1,N2),Σ0),∗Eord,\

(i),(Up)′(N ′1,N
′
2),Σ′0,ρ

= (0)).

(2) Suppose further that U ′ (resp. (Up)′) is a normal subgroup of U (resp. Up)
and that Σ′0 is U-invariant (resp. Up(N1, N2)-invariant). Then the natural
maps

E \(i),U,Σ0,ρ
−→ (π(U ′,Σ′0),(U,Σ0),∗E \(i),U ′,Σ′0,ρ)

U

(resp.

Eord,\
(i),Up(N1,N2),Σ0,ρ

−→
(π(((Up)′(N2,N2),Σ′0),(Up(N1,N2),Σ0),∗Eord,\

(i),(Up)′(N2,N2),Σ′0,ρ
)U

p(N1,N2))

and

I(m),\,∧
∂,n,(i),U,Σ0

⊗̂E \(i),U,Σ0,ρ
−→ (π(U ′,Σ′0),(U,Σ0),∗(I(m),\,∧

∂,n,(i),U ′,Σ′0
⊗̂E \(i),U ′,Σ′0,ρ))

U

(resp.

I(m),ord,\,∧
∂,n,(i),Up(N1,N2),Σ0

⊗̂Eord,\
(i),Up(N1,N2),Σ0,ρ

−→
(π((Up)′(N2,N2),Σ′),(Up(N1,N2),Σ),∗(I(m),ord,\,∧

∂,n,(i),(Up)′(N2,N2),Σ′0
⊗̂Eord,\

(i),(Up)′(N2,N2),Σ′0,ρ
))U

p(N1,N2))

are isomorphisms.

Lemma 4.8. Suppose that U is a neat open compact subgroup of P
(m),+
n,(i) (A∞) and

let U ′ denote the image of U in P+
n,(i)(A

∞). Let ∆0 be a smooth admissible cone

decomposition for X∗(S
+
n,(i),U ′) and let Σ0 be a compatible smooth admissible cone

decomposition for X∗(S
(m),+
n,(i),U). Let π+ = π+

(U,Σ0),(U ′,∆0) denote the map

T
(m),\+,∧
n,(i),U,Σ0

−→ T+,∧
n,(i),U ′,∆0
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and let π\ = π\(U,Σ0),(U ′,∆0) denote the map

T
(m),\,∧
n,(i),U,Σ0

−→ T \,∧n,(i),U ′,∆0
.

(1) The maps π+
(U,Σ0),(U ′,∆0) and π\(U,Σ0),(U ′,∆0) are proper.

(2) The natural maps

OT+,∧
n,(i),U′,∆0

−→ π+
(U,Σ0),(U ′,∆0),∗OT (m),\+,∧

n,(i),U,Σ0

and

I+,∧
∂,n,(i),U ′,∆0

−→ π+
(U,Σ0),(U ′,∆0),∗I

(m),\+,∧
∂,n,(i),U,Σ0

and

OT \,∧
n,(i),U′,∆0

−→ π\(U,Σ0),(U ′,∆0),∗OT (m),\,∧
n,(i),U,Σ0

and

I\,∧∂,n,(i),U ′,∆0
−→ π\(U,Σ0),(U ′,∆0),∗I

(m),\,∧
∂,n,(i),U,Σ0

are isomorphisms.
(3) The natural maps

I+,∧
∂,n,(i),U ′,∆0

⊗Rjπ+
(U,Σ0),(U ′,∆0),∗OT (m),\+,∧

n,(i),U,Σ0

−→ Rjπ+
(U,Σ0),(U ′,∆0),∗I

(m),\+,∧
∂,n,(i),U,Σ0

and

I\,∧∂,n,(i),U ′,∆0
⊗Rjπ\(U,Σ0),(U ′,∆0),∗OT (m),\,∧

n,(i),U,Σ0

−→ Rjπ\(U,Σ0),(U ′,∆0),∗I
(m),\,∧
∂,n,(i),U,Σ0

are isomorphisms.

Proof: It suffices to treat the + case.
The first part follows from lemma 2.19. We deduce that all the sheaves mentioned

in the remaining parts are coherent.
Thus, by theorem 4.1.5 of [EGA3] (‘the theorem on formal functions’), it suffices

to prove the remaining assertions after completing at a point of T+,∧
n,(i),U ′,∆0

. The set

points where the assertions are true after completing at that point is open. (Again
because the sheaves involved are all coherent.) This open set is S+

n,(i),U ′-invariant.

(The sheaves in question do not all have S+
n,(i),U ′-actions. However locally on T+,∧

n,(i),U ′,∆0

they do.) Thus it will do to prove the lemma after completion at ∂σT
+

n,(i),U ′,∆̃0
, for

σ ∈ ∆0 maximal. We will add a subscript σ to denote completion along ∂σT
+

n,(i),U ′,∆̃0
.

We write π̃ for the map

T
(m),+,∧
n,(i),U,Σ0

−→ T+,∧
n,(i),U ′,∆0

and factor π̃ = π2 ◦ π1, where

π1 : T
(m),+,∧
n,(i),U,Σ0

−→ T+,∧
n,(i),U ′,∆0

×A+
n,(i),U′

A
(m),+
n,(i),U

and

π2 : T+,∧
n,(i),U ′,∆0

×A+
n,(i),U′

A
(m),+
n,(i),U −→ T+,∧

n,(i),U ′,∆0
.
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Also write π3 for the other projection

π3 : T+,∧
n,(i),U ′,∆0

×A+
n,(i),U′

A
(m),+
n,(i),U −→ A

(m),+
n,(i),U .

We will first show that

Rjπ1,σ,∗OT (m),+,∧
n,(i),U,Σ0,σ

=

{
(0) if j > 0
O
T+,∧
n,(i),U′,∆0,σ

×
A+
n,(i),U′

A
(m),+
n,(i),U

if j = 0

and

Rjπ1,σ,∗I(m),+,∧
∂,n,(i),U,Σ0,σ

=

{
(0) if j > 0
π∗2,σI

+,∧
∂,n,(i),U ′,∆0,σ

if j = 0.

As T+,∧
n,(i),U ′,∆0,σ

×A+
n,(i),U′

A
(m),+
n,(i),U has the same underlying topological space as A

(m),+
n,(i),U ,

i.e. π3,σ is a homeomorphism on the underlying topological space, it suffices to show
that

Rj(π3 ◦ π1)σ,∗OT (m),+,∧
n,(i),U,Σ0,σ

=

{
(0) if j > 0
π3,σ,∗OT+,∧

n,(i),U′,∆0,σ
×
A+
n,(i),U′

A
(m),+
n,(i),U

if j = 0

and

Rjπ1,σ,∗I(m),+,∧
∂,n,(i),U,Σ0,σ

=

{
(0) if j > 0
π3,σ,∗π

∗
2,σI

+,∧
∂,n,(i),U ′,∆0,σ

if j = 0.

This would follow from lemma 2.22 as long as we can show that, for all y ∈ Y (m),+
n,(i),U

with image y′ in Y +
n,(i),U ′ , we have |Σ0|∨(y) = |∆0|∨(y′) and |Σ0|∨,0(y) = |∆0|∨,0(y′).

Concretely these required equalities are

{χ ∈ C(Vn,(i))
∨ : χ ≥ 0 on C�0(Vn,(i))}

∼−→
{χ ∈ C(m)(Vn,(i))

∨ : χ ≥ 0 on C(m),�0(Vn,(i))}
and

{χ ∈ C(Vn,(i))
∨ : χ > 0 on C�0(Vn,(i))− {0}}

∼−→
{χ ∈ C(m)(Vn,(i))

∨ : χ > 0 on C(m),�0(Vn,(i))− {0}}.
If χ lies in one of the right hand sides then χ(z, f) ≥ 0 for all z ∈ C>0(Vn,(i)) and
all f ∈ Hom (Fm, Vn,(i)) ⊗Q R. Taking the limit as z → 0 we see that χ ≥ 0 on the
vector space Hom (Fm, Vn,(i))⊗Q R and so χ = 0 on this space. Thus the right hand
sides are the set of χ ∈ C(Vn,(i))

∨ such that χ ≥ 0 (resp. χ > 0) on the images of

C(m),�0(Vn,(i)) −→ C(Vn,(i))

(resp.

C(m),�0(Vn,(i))− {0} −→ C(Vn,(i)) ).

But these images are C�0(Vn,(i)) (resp. C�0(Vn,(i))−{0}) and so the required equalities
hold.

We deduce that

Rjπ̃σ,∗OT (m),+,∧
n,(i),U,Σ0,σ

= (∧jHom F (Ω+
n,(i),U ′ , F

m ⊗Q Ξ+
n,(i),U ′))⊗OX+

n,(i),U′
OT+,∧

n,(i),U′,∆0,σ
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and

Rjπ̃σ,∗I(m),+,∧
∂,n,(i),U,Σ0,σ

= (∧jHom F (Ω+
n,(i),U ′ , F

m ⊗Q Ξ+
n,(i),U ′))⊗OX+

n,(i),U′
I+,∧
∂,n,(i),U ′,∆0,σ

.

As T
(m),\+,∧
n,(i),U,Σ0,σ

is the quotient of T
(m),+,∧
n,(i),U,Σ0,σ

by Hom F (Fm, F i), we obtain spectral
sequences

Hj1(Hom F (Fm, F i), (∧j2Hom F (Ω+
n,(i),U ′ , F

m ⊗Q Ξ+
n,(i),U ′)))⊗OX+

n,(i),U′
OT+,∧

n,(i),U′,∆0,σ

⇒ Rj1+j2π+
∗ OT (m),\+,∧

n,(i),U,Σ0,σ

and

Hj1(Hom F (Fm, F i), (∧j2Hom F (Ω+
n,(i),U ′ , F

m ⊗Q Ξ+
n,(i),U ′)))⊗OX+

n,(i),U′
I+,∧
∂,n,(i),U ′,∆0,σ

⇒ Rj1+j2π+
∗ I

(m),\+,∧
∂,n,(i),U,Σ0,σ

.

These can also be written

Hom (∧j1Hom F (Fm, F i),∧j2Hom F (Ω+
n,(i),U ′ , F

m ⊗Q Ξ+
n,(i),U ′))⊗OX+

n,(i),U′
OT+,∧

n,(i),U′,∆0,σ

⇒ Rj1+j2π+
∗ OT (m),\+,∧

n,(i),U,Σ0,σ

and

Hom (∧j1Hom F (Fm, F i),∧j2Hom F (Ω+
n,(i),U ′ ,F

m ⊗Q Ξ+
n,(i),U ′))⊗OX+

n,(i),U′
I+,∧
∂,n,(i),U ′,∆0,σ

⇒ Rj1+j2π+
∗ I

(m),\+,∧
∂,n,(i),U,Σ0,σ

.

The lemma follows (as I+,∧
∂,n,(i),U ′,∆0,σ

is flat over OT+,∧
n,(i),U′,∆0,σ

). �

The following lemma is equation (1.3.2.86) in lemma 1.3.2.79 of [La4].

Lemma 4.9. Suppose that U is a neat open compact subgroup of P
(m),+
n,(i) (A∞) and

let U ′ denote the image of U in P+
n,(i)(A

∞). Let ∆0 be a smooth admissible cone

decomposition for X∗(S
+
n,(i),U ′) and let Σ0 be a compatible smooth admissible cone

decomposition for X∗(S
(m),+
n,(i),U). There are canonical equivariant isomorphisms

Hom F (Fm, Ω̃+
n,(i),U ′)⊗OA+

n,(i),U′
O
T

(m),+,∧
n,(i),U,Σ0

∼−→ Ω1

T
(m),+,∧
n,(i),U,Σ0

/T+,∧
n,(i),U′,∆0

(log∞).

We deduce the following lemmas.

Lemma 4.10. Suppose that U is a neat open compact subgroup of P
(m),+
n,(i) (A∞) and

let U ′ denote the image of U in P+
n,(i)(A

∞). Let ∆0 be a smooth admissible cone

decomposition for X∗(S
+
n,(i),U ′) and let Σ0 be a compatible smooth admissible cone

decomposition for X∗(S
(m),+
n,(i),U). Let π+ = π+

(U,Σ0),(U ′,∆0) denote the map

T
(m),\+,∧
n,(i),U,Σ0

−→ T+,∧
n,(i),U ′,∆0

and let π\ = π\(U,Σ0),(U ′,∆0) denote the map

T
(m),\,∧
n,(i),U,Σ0

−→ T \,∧n,(i),U ′,∆0
.



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 155

(1) π\∗Ω
1

T
(m),\,∧
n,(i),U,Σ0

/T \,∧
n,(i),U′,∆0

(log∞) ∼= Hom F (Fm, Ω̃\
n,(i),U ′) is locally free of finite

rank.
(2) The natural map

π\,∗(U,Σ0),(U ′,∆0)π
\
(U,Σ0),(U ′,∆0),∗Ω

1

T
(m),\,∧
n,(i),U,Σ0

/T \,∧
n,(i),U′,∆0

(log∞) −→

Ω1

T
(m),\,∧
n,(i),U,Σ0

/T \,∧
n,(i),U′,∆0

(log∞)

is an isomorphism.
(3) The natural maps

(Rj1π\∗OT (m),\,∧
n,(i),U,Σ0

)⊗ (∧j2π\∗Ω1

T
(m),\,∧
n,(i),U,Σ0

/T \,∧
n,(i),U′,∆0

(log∞)) −→

Rj1π\∗Ω
j2

T
(m),\,∧
n,(i),U,Σ0

/T \,∧
n,(i),U′,∆0

(log∞)

and

(Rj1π\∗OT (m),\,∧
n,(i),U,Σ0

)⊗ (∧j2π\∗Ω1

T
(m),\,∧
n,(i),U,Σ0

/T \,∧
n,(i),U′,∆0

(log∞))⊗ I\,∧∂,n,(i),U ′,∆0
−→

Rj1π\∗(Ω
j2

T
(m),\,∧
n,(i),U,Σ0

/T \,∧
n,(i),U′,∆0

(log∞)⊗ I(m),\,∧
∂,n,(i),U,σ0

)

are isomorphisms.

Lemma 4.11. Suppose that U ⊃ U ′ are neat open compact subgroups of the group

P
(m),+
n,(i) (A∞) and let V and V ′ denote the images of U and U ′ in P+

n,(i)(A
∞). Let

∆0 (resp. ∆′0) be a smooth admissible cone decomposition for X∗(S
+
n,(i),V ) (resp.

X∗(S
+
n,(i),V ′)) and let Σ0 (resp. Σ′0) be a compatible smooth admissible cone decom-

position for X∗(S
(m),+
n,(i),U) (resp. X∗(S

(m),+
n,(i),U ′)). Further suppose that Σ0 and Σ′0 are

compatible and that ∆0 and ∆′0 are compatible.

(1) The natural map

π∗(U ′,Σ′0),(U,Σ0)Ω
1

T
(m),\,∧
n,(i),U,Σ0

/T \,∧
n,(i),V,∆0

(log∞) −→ Ω1

T
(m),\,∧
n,(i),U′,Σ′0

/T \,∧
n,(i),V ′,∆′0

(log∞)

is an isomorphism.
(2) The natural map

π∗(V ′,∆′0),(V,∆0)π(U,Σ0),(V,∆0),∗Ω
1

T
(m),\,∧
n,(i),U,Σ0

/T \,∧
n,(i),V,∆0

(log∞) −→

π(U ′,Σ′0),(V ′,∆′0),∗Ω
1

T
(m),\,∧
n,(i),U′,Σ′0

/T \,∧
n,(i),V ′,∆′0

(log∞)

is an isomorphism.

Similarly we have the following lemma.

Lemma 4.12. Suppose that Up is a neat open compact subgroup of P
(m),+
n,(i) (A∞,p) and

let (Up)′ denote the image of Up in P+
n,(i)(A

∞,p). Suppose that N2 ≥ N1 ≥ 0 are inte-

gers. Let ∆0 be a smooth admissible cone decomposition for X∗(Sord,+
n,(i),(Up)′(N1,N2)) and
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let Σ0 be a compatible smooth admissible cone decomposition for X∗(S(m),ord,+
n,(i),Up(N1,N2)).

Let π\ = π\(Up(N1,N2),Σ0),((Up)′(N1,N2),∆0) denote the map

T (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

−→ T ord,\,∧
n,(i),(Up)′(N1,N2),∆0

.

(1) The map π\(Up(N1,N2),Σ0),((Up)′(N1,N2),∆0) is proper.

(2) The natural maps

OT ord,\,∧
n,(i),(Up)′(N1,N2),∆0

−→ π\(Up(N1,N2),Σ0),((Up)′(N1,N2),∆0),∗OT (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

and

Iord,\,∧
∂,n,(i),(Up)′(N1,N2),∆0

−→ π\(Up(N1,N2),Σ0),((Up)′(N1,N2),∆0),∗I
(m),ord,\,∧
∂,n,(i),Up(N1,N2),Σ0

are isomorphisms.
(3) The natural map

Iord,\,∧
∂,n,(i),(Up)′(N1,N2),∆0

⊗Rjπ\∗OT (m),ord,\,∧
n,(i),Up(N1,N2),Σ0

−→ Rjπ\∗I
(m),ord,\,∧
∂,n,(i),Up(N1,N2),Σ0

is an isomorphism.

We finish this section with an important vanishing result.

Lemma 4.13. Suppose that R0 is an irreducible, noetherian Q-algebra (resp. Z(p)-
algebra) with the discrete topology. Suppose also that U (resp. Up) is a neat open
compact subgroup of P+

n,(i)(A
∞) (resp. P+

n,(i)(A
∞,p)), that N2 ≥ N1 ≥ 0 are inte-

gers, and that ∆0 is a smooth admissible cone decomposition for X∗(S
+
n,(i),U)�0

R (resp.

X∗(Sord,+
n,(i),U)�0

R ). Let π denote the map

π : T \,∧n,(i),U,∆0
−→ X\

n,(i),U

(resp.

π : T ord,\,∧
n,(i),Up(N1,N2),∆0

−→ X ord,\
n,(i),Up(N1,N2)).

Further suppose that E is a coherent sheaf on the formal scheme T \,∧n,(i),U,∆0
×Spf R0

(resp. T ord,\,∧
n,(i),Up(N1,N2),∆0

×Spf R0) with an exhaustive separated filtration, such that the

pull-back to T+,∧
n,(i),U,∆0

× Spf R0 (resp. T ord,+,∧
n,(i),Up(N1,N2),∆0

× Spf R0) of each

gr iE
is Ln,(i),lin(Q)-equivariantly (resp. Ln,(i),lin(Z(p))-equivariantly) isomorphic to the pull-

back to T+,∧
n,(i),U,∆0

× Spf R0 (resp. T ord,+,∧
n,(i),Up(N1,N2),∆0

× Spf R0) of a locally free sheaf Fi
with Ln,(i),lin(Q)-action (resp. Ln,(i),lin(Z(p))-action) over X+

n,(i),U × SpecR0 (resp.

X ord,+
n,(i),U × SpecR0).

Then for i > 0
Riπ∗(E ⊗ I\,∧∂,n,(i),U,∆0

) = (0)

(resp.

Riπ∗(E ⊗ Iord,\,∧
∂,n,(i),Up(N1,N2),∆0

) = (0)).
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Proof: We will treat the case of T \,∧n,(i),U,∆0
× Spf R0, the other case being exactly

similar. We can immediately reduce to the case that the pull-back to T+,∧
n,(i),U,∆0

×
Spf R0 of E is Ln,(i),lin(Q)-equivariantly isomorphic to the pull-back to T+,∧

n,(i),U,∆0
Spf R0

of a locally free sheaf F with Ln,(i),lin(Q)-action over X+
n,(i),U × SpecR0.

Let π+ denote the map

π+ : T+,∧
n,(i),U,∆0

× Spf R0 −→ X\
n,(i),U × SpecR0

Also write π+ = π+
1 ◦ π+

2 , where

π+
1 : A+

n,(i),U × SpecR0 −→ X\
n,(i),U × SpecR0

and
π+

2 : T+,∧
n,(i),U,∆0

× SpecR0 −→ A+
n,(i),U × SpecR0.

By lemma 2.22 we have that

Riπ+
2,∗(F ⊗ I∧∂,n,(i),U,∆0

) =

{
F ⊗

∏
a∈X∗(S+

n,(i),U
)>0 L+

U(a) if i = 0

(0) otherwise.

Then by lemma 4.2 (or in the case of T ord,\,∧
n,(i),Up(N1,N2),∆0

×Spf R0 lemma 4.3) we deduce

that

Riπ+
∗ (F ⊗ I∧∂,n,(i),U,∆0

)

=

{
Ind

Ln,(i),lin(Q)

{1}

(∏
a\∈X∗(S+

n,(i),U
)>0,\(πA+/X\,∗L ⊗ F)+

U(a\)Ln,(i),lin(Q)
)

if i = 0

(0) otherwise

Finally there is a spectral sequence

H i(Ln,(i),lin(Q), Rjπ+
∗ (F ⊗ I∧∂,n,(i),U,∆0

))⇒ Ri+jπ∗(F ⊗ I∧∂,n,(i),U,∆0
),

and so the present lemma follows on applying Shapiro’s lemma. �

Corollary 4.14. Suppose that U (resp. Up) is a neat open compact subgroup of
P+
n,(i)(A

∞) (resp. P+
n,(i)(A

∞,p)), that N2 ≥ N1 ≥ 0 are integers, and that ∆0 is a

smooth admissible cone decomposition for X∗(S
+
n,(i),U)�0

R (resp. X∗(Sord,+
n,(i),U)�0

R ). Let π

denote the map
π : T \,∧n,(i),U,∆0

−→ X\
n,(i),U

(resp.

π : T ord,\,∧
n,(i),Up(N1,N2),∆0

−→ X ord,\
n,(i),Up(N1,N2)).

Also suppose that R0 is an irreducible noetherian Q-algebra (resp. Z(p)-algebra)
with the discrete topology and that ρ is a representation of Rn,(n),(i) on a finite locally
free R0-module.

Then for i > 0
Riπ∗(E \n,(i),U,∆0,ρ

⊗ I\,∧∂,n,(i),U,∆0
) = (0)

(resp.

Riπ∗(Eord,\
n,(i),Up(N1,N2),∆0,ρ

⊗ Iord,\,∧
∂,n,(i),Up(N1,N2),∆0

) = (0)).
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5. Compactification of Shimura Varieties.

We now turn to the compactification of the Xn,U and the A
(m)
n,U .

5.1. The minimal compactification.

There is a canonically defined system of normal projective schemes with Gn(A∞)-
action, {Xmin

n,U /SpecQ} (for U ⊂ Gn(A∞) a neat open compact subgroup), together
with compatible, Gn(A∞)-equivariant, dense open embeddings

jmin
U : Xn,U ↪→ Xmin

n,U .

These schemes are referred to as the minimal (or sometimes ‘Baily-Borel’) compact-
ifications. (The introduction to [Pi] asserts that the scheme Xmin

n,U is the minimal
normal compactification of Xn,U , although we won’t need this fact.) For g ∈ Gn(A∞)
and g−1Ug ⊂ U ′ the maps

g : Xmin
n,U −→ Xmin

n,U ′

are finite.
Write

∂Xmin
n,U = Xmin

n,U −Xn,U .

There is a family of closed sub-schemes

∂0X
min
n,U = Xmin

n,U ⊃ ∂1X
min
n,U = ∂Xmin

n,U ⊃ ∂2X
min
n,U ⊃ ... ⊃ ∂nX

min
n,U ⊃ ∂n+1X

min
n,U = ∅

such that each
∂0
iX

min
n,U = ∂iX

min
n,U − ∂i+1X

min
n,U

is smooth of dimension (n − i)2[F+ : Q]. The families {∂iXmin
n,U } and {∂0

iX
min
n,U } are

families of schemes with Gn(A∞)-action. Moreover we have a decomposition

∂0
iX

min
n,U =

∐
h∈P+

n,(i)
(A∞)\Gn(A∞)/U

X\

n,(i),hUh−1∩P+
n,(i)

(A∞)
.

If g ∈ Gn(A∞) and if g−1Ug ⊂ U ′ then the map

g : ∂0
iX

min
n,U −→ ∂0

iX
min
n,U ′

is the coproduct of the maps

g′ : X\

n,(i),hUh−1∩P+
n,(i)

(A∞)
−→ X\

n,(i),h′U ′(h′)−1∩P+
n,(i)

(A∞)

where hg = g′h′ with g′ ∈ P+
n,(i)(A

∞). We will write Xmin,∧
n,U,i for the completion of

Xmin
n,U along ∂0

iX
min
n,U . (See theorem 1.3.1.5 and proposition 1.3.1.14 of [La4].)

There is also a canonically defined system of normal quasi-projective schemes with
Gn(A∞)ord-action, {X ord,min

n,Up(N1,N2)/SpecZ(p)}, together with compatible, dense open

embeddings

jmin
Up(N1,N2) : X ord

n,Up(N1,N2) ↪→ X
ord,min
n,Up(N1,N2),

which are Gn(A∞)ord-equivariant. Suppose that g ∈ Gn(A∞)ord and that

g−1Up(N1, N2)g ⊂ (Up)′(N ′1, N
′
2),
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then
g : X ord,min

n,Up(N1,N2) −→ X
ord,min
n,(Up)′(N ′1,N

′
2)

is quasi-finite. If pN2−N ′2ν(g) ∈ Z×p and either N ′2 = N2 or N ′2 > 0, then it is also finite.
On Fp-fibres ςp acts as absolute Frobenius composed with the forgetful map. (See
theorem 6.2.1.1, proposition 6.2.2.1 and corollary 6.2.2.9 of [La4]. We remark that
we are, perhaps unfortunately, following a different convention from [La4]. According
to our convention

X ord,min
n,Up(N1,N2) × SpecQ ∼= Xmin

n,Up(N1,N2).

In contrast [La4] works with an open sub-scheme which only contains the ‘ordinary’

part of the boundary. Our X ord,min
n,Up(N1,N2) is the union of this open sub-scheme with

Xmin
n,Up(N1,N2).)
Write

∂X ord,min
n,Up(N1,N2) = X ord,min

n,Up(N1,N2) −X
ord
n,Up(N1,N2).

There is a family of closed sub-schemes

∂0X ord,min
n,Up(N1,N2)= X

ord,min
n,Up(N1,N2) ⊃ ∂1X ord,min

n,Up(N1,N2) = ∂X ord,min
n,Up(N1,N2) ⊃ ∂2X ord,min

n,Up(N1,N2) ⊃
... ⊃ ∂nX ord,min

n,Up(N1,N2) ⊃ ∂n+1X ord,min
n,Up(N1,N2) = ∅

such that each

∂0
iX

ord,min
n,Up(N1,N2) = ∂iX ord,min

n,Up(N1,N2) − ∂i+1X ord,min
n,Up(N1,N2)

is smooth over Z(p) of relative dimension (n− i)2[F+ : Q]. Then

{∂iX ord,min
n,Up(N1,N2)}

and
{∂0

iX
ord,min
n,Up(N1,N2)}

are families of schemes with Gn(A∞)ord-action. We will write X ord,min,∧
n,Up(N1,N2),i for the

completion of X ord,min
n,Up(N1,N2) along ∂0

iX
ord,min
n,Up(N1,N2). We have a decomposition

∂0
iX

ord,min
n,Up(N1,N2)=

∐
h∈P+

n,(i)
(A∞)ord,×\Gn(A∞)ord,×/Up(N1)X

ord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2)

q
∐

hX
\

n,(i),hUp(N1,N2)h−1∩P+
n,(i)

(A∞)
,

where the second coproduct runs over

h ∈ (P+
n,(i)(A

∞)\Gn(A∞)/Up(N1, N2))− (P+
n,(i)(A

∞)ord,×\Gn(A∞)ord,×/Up(N1)).

(Again see theorems 6.2.1.1 and proposition 6.2.2.1 of [La4].)
[We explain why the map

P+
n,(i)(A

∞)ord,×\Gn(A∞)ord,×/Up(N1) −→ P+
n,(i)(A

∞)\Gn(A∞)/Up(N1, N2)

is injective. It suffices to check that

(P+
n,(i) ∩ P

+
n,(n))(Zp)\P

+
n,(n)(Zp)/Up(N1, N1)+

n,(n)

↪→ P+
n,(i)(Qp)\Gn(Qp)/Up(N1, N2)n

= P+
n,(i)(Zp)\Gn(Zp)/Up(N1, N2)n,
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or even that
(P+

n,(i) ∩ P
+
n,(n))(Z/p

N2Z)\P+
n,(n)(Z/p

N2Z)/V

↪→ P+
n,(i)(Z/p

N2Z)\Gn(Z/pN2Z)/V,

where

V = ker(P+
n,(n)(Z/p

N2Z)→ Ln,(n),lin(Z/pN1Z)).

This is clear.]
If g ∈ Gn(A∞)ord and if g−1Up(N1, N2)g ⊂ (Up)′(N ′1, N

′
2) then the map

g : ∂0
iX

ord,min
n,Up(N1,N2) −→ ∂0

iX
ord,min
n,(Up)′(N ′1,N

′
2)

is the coproduct of the maps

g′ : X ord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2)
−→ X ord,\

n,(i),(h′(Up)′(h′)−1∩P+
n,(i)

(A∞,p))(N ′1,N
′
2)

where hg = g′h′ with g′ ∈ P+
n,(i)(A

∞)ord, and of the maps

g′ : X\

n,(i),hUp(N1,N2)h−1∩P+
n,(i)

(A∞)
−→ X\

n,(i),h′(Up)′(N ′1,N
′
2)(h′)−1∩P+

n,(i)
(A∞)

where hg = g′h′ with g′ ∈ P+
n,(i)(A

∞). (Again see theorems 6.2.1.1 and proposition

6.2.2.1 of [La4].)
If N ′2 ≥ N2 ≥ N1 then the natural map

X ord,min
n,Up(N1,N ′2) −→ X

ord,min
n,Up(N1,N2)

is etale in a Zariski neighborhood of the Fp-fibre, and the natural map

Xord,min
n,Up(N1,N ′2) −→ Xord,min

n,Up(N1,N2)

between formal completions along the Fp-fibres is an isomorphism. (See corollary
6.2.2.8 and example 3.4.4.5 of [La4].) We will denote this p-adic formal scheme

Xord,min
n,Up(N1)

and will denote its reduced subscheme

X
ord,min

n,Up(N1).

We will also write

∂X
ord,min

n,Up(N1) = X
ord,min

n,Up(N1) −X
ord

n,Up(N1).

The families {Xord,min
n,Up(N)} and {Xord,min

n,Up(N)} and {∂Xord,min

n,Up(N)} have Gn(A∞)ord-actions.

There is a family of closed sub-schemes

∂0X
ord,min

n,Up(N) = X
ord,min

n,Up(N) ⊃ ∂1X
ord,min

n,Up(N) = ∂X
ord,min

n,Up(N) ⊃ ∂2X
ord,min

n,Up(N) ⊃ ...

... ⊃ ∂nX
ord,min

n,Up(N) ⊃ ∂n+1X
ord,min

n,Up(N) = ∅

such that each

∂0
iX

ord,min

n,Up(N) = ∂iX
ord,min

n,Up(N) − ∂i+1X
ord,min

n,Up(N)
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is smooth of dimension (n − i)2[F+ : Q]. Then {∂iX
min

n,Up(N)} and {∂0
iX

min

n,Up(N)} are

families of schemes with Gn(A∞)ord-action. Moreover we have a decomposition

∂0
iX

ord,min

n,Up(N) =
∐

h∈P+
n,(i)

(A∞)ord,×\Gn(A∞)ord,×/Up(N)

X
ord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N).

If g ∈ Gn(A∞)ord and if g−1Up(N)g ⊂ (Up)′(N ′) then the map

g : ∂0
iX

ord,min

n,Up(N) −→ ∂0
iX

ord,min

n,(Up)′(N ′)

is the coproduct of the maps

g′ : X
ord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N) −→ X
ord,\

n,(i),(h′(Up)′(h′)−1∩P+
n,(i)

(A∞,p))(N ′)

where hg = g′h′ with g′ ∈ P+
n,(i)(A

∞)ord. In particular ςp acts as absolute Frobenius.

The schemes X ord,min
n,Up(N1,N2) are not proper. There are proper integral models of the

schemes Xmin
n,U , but we have less control over them.

More specifically suppose that U ⊂ Gn(A∞,p × Zp) is an open compact subgroup
whose projection to Gn(A∞,p) is neat. Then there is a normal, projective, flat Z(p)-
scheme Xmin

n,U with generic fibre Xmin
n,U . If g ∈ Gn(A∞,p × Zp) and if

g−1Ug ⊂ U ′

then there is a map
g : Xmin

n,U −→ Xmin
n,U ′

extending the map g : Xmin
n,U → Xmin

n,U ′ . This gives the system {Xmin
n,U } an action of

Gn(A∞,p × Zp). We set

X
min

n,U = Xmin
n,U ×Z(p)

Fp.
On Xmin

n,U there is an ample line bundle ωU , and the system of line bundles {ωU} over

{Xmin
n,U } has an action of Gn(A∞,p × Zp). The pull-back of ωU to Xn,U is Gn(A∞,p ×

Zp)-equivariantly identified with ∧n[F :Q]Ωn,U .(See propositions 2.2.1.2 and 2.2.3.1 of
[La4]. The rough idea is to take Xmin

n,U as the normalization of Xmin
n,U over the minimal

compactification of some Siegel moduli of genus n[F : Q] and a suitable neat level
away from p, and take ωU to be the pull-back of the corresponding Hodge invertible
sheaf there. It is not easy to describe such normalizations in as much detail as in
[CF] and [La1], but we can still verify the assertions in this paragraph using the
corresponding assertions for the minimal compactifications of Siegel moduli.)

Moreover there are canonical sections

HasseU ∈ H0(X
min

U , ω
⊗(p−1)
U )

such that
g∗HasseU ′ = HasseU

whenever g ∈ Gn(A∞,p × Zp) and U ′ ⊃ g−1Ug. We will write X
min,n-ord

n,U for the zero

locus in X
min

n,U of HasseU . (See corollaries 6.3.1.7 and 6.3.1.8 of [La4]. The rough idea
is to take HasseU to be the pull-back of the corresponding section over the minimal
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compactifications of some Siegel moduli.) Then X
min

n,U −X
min,n-ord

n,U is relatively affine

over X
min

n,U associated to the sheaf of algebras(
∞⊕
i=0

ω⊗(p−1)ai

)
/(HasseaU − 1)

for any a ∈ Z>0. It is also affine over Fp associated to the algebra(
∞⊕
i=0

H0(X
min

n,U , ω
⊗(p−1)ai)

)
/(HasseaU − 1)

for any a ∈ Z>0.
There are Gn(A∞)ord,×-equivariant open embeddings

X ord,min
n,Up(N1,N2) ↪→ X

min
n,Up(N1,N2).

These induce maps

X
ord,min

n,Up(N1,N2) ↪→ X
min

n,Up(N1,N2) −X
min,n-ord

n,Up(N1,N2)

on Fp-fibres which are open and closed embeddings. (See proposition 6.3.2.2 of [La4].)
In the case N1 = N2 = 0 this map is in fact an isomorphism. (See lemmas 6.3.2.7
and 6.3.2.9 of [La4].) We remark that for N2 > 0 this map is not an isomorphism:

The definition of X
ord

n,Up(N1,N2) requires not only that the universal abelian scheme

is ordinary, the condition that defines Xn,Up(N1,N2) − X
min,n-ord

n,Up(N1,N2), but also that the

universal subgroup Cuniv ⊂ Auniv[pN2 ] is connected above each geometric point.
Also the pull-back of ωUp(N1,N2) to X ord

n,Up(N1,N2) is Gn(A∞)ord,×-equivariantly iden-

tified with the sheaf ∧n[F :Q]Ωord
n,Up(N1,N2). If g ∈ Gn(A∞)ord,× and

g−1(Up)′(N ′1, N2)g ⊂ Up(N1, N2),

then the commutative square

X ord,min
n,(Up)′(N ′1,N2)

g−→ X ord,min
n,Up(N1,N2)

↓ ↓
Xmin
n,(Up)′(N ′1,N2)

g−→ Xmin
n,Up(N1,N2)

is a pull-back square. (See theorem 6.2.1.1 and proposition 6.2.2.1 of [La4].)
At the referee’s suggestion we include a few remarks about the construction of

X ord,min
Up(N1,N2) and Xmin

U in [La4]. If p is unramified in F then one has good control

of certain integral toroidal compactifications XUp(0,0),∆ and of the integral minimal
compactification Xmin

Up(0,0). Moreover over XUp(0,0),∆ there is a ‘universal’ semi-abelian

scheme and ‘ordinarity’ and Up(N1, N2)-level structure can be defined for this semi-
abelian scheme. For U = UpUp with Up ⊂ Gn(Zp) one can then define Xmin

U as a
normalization of Xmin

Up(0,0) in Xmin
U . One can then define XU,∆′ as a suitable normalized

blow-up of Xmin
U . We don’t have very much control of XU,∆′ or Xmin

U . One can also
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define X ord
Up(N1,N2),∆ and it solves a relative moduli problem over X ord

Up(0,0),∆ ⊂ XUp(0,0),∆.
There are maps

X ord
Up(N1,N2),∆ −→ XUp(N1,N2),∆ −→ Xmin

Up(N1,N2).

The key point is to show that this map has open image, which we define to be
X ord,min
Up(N1,N2) and that X ord

Up(N1,N2),∆ is the pre-image of this open set in XUp(N1,N2),∆.

In the case that p ramifies in F things are a bit harder, because we don’t even
have a good candidate for Xmin

Up(0,0). In this case one first constructs the corresponding
spaces in the Siegel case, which is analogous to the good case discussed in the previous
paragraph. One then has a proper map X ord

Up(N1,N2),∆ → Z
ord,min
V p(N1,N2), where Zord,min

V p(N1,N2) is

the integral minimal partial compactification of the ordinary locus of a Siegel variety.
One applies Stein factorization to this map and uses this to define X ord,min

Up(N1,N2):

X ord
Up(N1,N2),∆ −→ X

ord,min
Up(N1,N2) −→ Z

ord,min
V p(N1,N2).

Then X ord,min
Up(N1,N2) admits a quasi-finite map to Xmin

Up(N1,N2), which is shown to be an

open immersion using Zariski’s main theorem.



164 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

5.2. Cone decompositions.

Let U ⊂ G(m)(A∞) be an open compact subgroup. By a U-admissible cone decom-

position Σ of G
(m)
n (A∞) × π0(Gn(R)) × C(m) we shall mean a set of closed subsets

σ ⊂ G
(m)
n (A∞)× π0(Gn(R))× C(m) such that

(1) each σ is contained in {(g, δ)}×C(m),�0(W ) for some isotropic subspace W ⊂
Vn and some (g, δ) ∈ G

(m)
n (A∞) × π0(Gn(R)) and is the set of R≥0-linear

combinations of a finite set of elements of HermV/W⊥ ×Wm;

(2) no σ ∈ Σ contains a complete line through the origin in any (g, δ)×C(m)(W );
(3) if σ ∈ Σ then any face of σ also lies in Σ;
(4) if σ, σ′ ∈ Σ then either σ ∩ σ′ = ∅ or σ ∩ σ′ is a face of σ and σ′;

(5) G
(m)
n (A∞)× π0(Gn(R))× C(m) =

⋃
σ∈Σ σ;

(6) Σ is invariant by the diagonal action of G
(m)
n (Q) on G

(m)
n (A∞)× π0(Gn(R))×

C(m);

(7) Σ is invariant by the right action of U on G
(m)
n (A∞)×π0(Gn(R))×C(m) (acting

only on the first factor);

(8) G
(m)
n (Q)\Σ/U is a finite set;

(9) if σ ∈ Σ lies in G
(m)
n (A∞) × π0(Gn(R)) × C(m),�0(Vn,(i)) and if h ∈ P (m)

n,(i)(A),

then hσ ∈ Σ;

(10) if σ ∈ Σ lies in G
(m)
n (A∞) × π0(Gn(R)) × C(m),�0(Vn,(i)), if γ ∈ G

(m)
n (Q), if

u ∈ U and if h ∈ P (m)
n,(i)(A) satisfy

σ ∩ γhσu ∩ (G(m)
n (A∞)× π0(Gn(R))× C(m),>0(Vn,(i))) 6= ∅

then γ ∈ P (m)
n,(i)(Q).

(Here we let G
(m)
n (A) act on G

(m)
n (A∞)× π0(Gn(R))× C(m) via multiplication on the

first two factors. The restriction of this action to G
(m)
n (Q) does not coincide with the

standard action of G
(m)
n (Q), which we are using.) Note that if U ′ ⊂ U and if Σ is

a U -admissible cone decomposition of G
(m)
n (A∞) × π0(Gn(R)) × C(m) then Σ is also

U ′-admissible. We will call a set Σ of closed subsets of G
(m)
n (A∞)×π0(Gn(R))×C(m)

an admissible cone decomposition of G
(m)
n (A∞)×π0(Gn(R))×C(m) if it is U -admissible

for some open compact subgroup U .
We remark that different authors use the term ‘U -admissible cone decomposition’

in somewhat different ways.
We call Σ′ a refinement of Σ if every element of Σ is a union of elements of Σ′.

We define a partial order on the set of pairs (U,Σ), where U ⊂ G
(m)
n (A∞) is an

open compact subgroup and Σ is a U -admissible cone decomposition of G
(m)
n (A∞)×

π0(Gn(R))× C(m), as follows: we set

(U ′,Σ′) ≥ (U,Σ)
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if and only if U ′ ⊂ U and Σ′ is a refinement of Σ. If g ∈ G
(m)
n (A∞) and Σ is a

U -admissible cone decomposition of G
(m)
n (A∞)× π0(Gn(R))× C(m), then

Σg = {σ(g × 1) : σ ∈ Σ}

is a g−1Ug-admissible cone decomposition of G
(m)
n (A∞) × π0(Gn(R)) × C(m). The

action of G
(m)
n (A∞) preserves ≥.

There is a natural projection

G(m)
n (A∞)× π0(Gn(R))× C(m) →→ Gn(A∞)× π0(Gn(R))× C.

We will call admissible cone decompositions Σ of G
(m)
n (A∞)× π0(Gn(R))× C(m) and

∆ of Gn(A∞)× π0(Gn(R))×C compatible if the image of every σ ∈ Σ is contained in
an element of ∆. If in addition Σ is U -admissible, ∆ is U ′-admissible and U ′ contains
the image of U in Gn(A∞) we will say that (U,Σ) and (U ′,∆) are compatible and
write

(U,Σ) ≥ (U ′,∆′).

Now let Up ⊂ G(m)(A∞,p) be an open compact subgroup and letN ≥ 0 be an integer

and consider Up(N) ⊂ G
(m)
n (A∞)ord,×. By a Up(N)-admissible cone decomposition Σ

of (G
(m)
n (A∞) × π0(Gn(R)) × C(m))ord we shall mean a set of closed subsets σ ⊂

(G
(m)
n (A∞)× π0(Gn(R))× C(m))ord such that

(1) each σ is contained in {(g, δ)}×C(m),�0(W ) for some isotropic subspace W ⊂
Vn and some (g, δ) ∈ G

(m)
n (A∞) × π0(Gn(R)) and is the set of R≥0-linear

combinations of a finite set of elements of HermV/W⊥ ×Wm;

(2) no σ ∈ Σ contains a complete line through the origin in any (g, δ)×C(m)(W );
(3) if σ ∈ Σ then any face of σ also lies in Σ;
(4) if σ, σ′ ∈ Σ then either σ ∩ σ′ = ∅ or σ ∩ σ′ is a face of σ and σ′;

(5) (G
(m)
n (A∞)× π0(Gn(R))× C(m))ord =

⋃
σ∈Σ σ;

(6) if σ ∈ Σ, if γ ∈ G(m)
n (Q) and if u ∈ Up(N,N) are such that γσu ⊂ (G

(m)
n (A∞)×

π0(Gn(R))× C(m))ord, then γσu ∈ Σ;
(7) there is a finite subset of Σ such that any element of Σ has the form γσu with

γ ∈ G(m)
n (Q) and u ∈ Up(N,N) and σ in the given finite subset;

(8) if σ ∈ Σ lies in G
(m)
n (A∞)×π0(Gn(R))×C(m),�0(Vn,(i)) and meets G

(m)
n (A∞)×

π0(Gn(R))×C(m),>0(Vn,(i)), and if h ∈ P (m)
n,(i)(A

∞)ord,××P (m)
n,(i)(R), then hσ ∈ Σ;

(9) if σ ∈ Σ lies in G
(m)
n (A∞) × π0(Gn(R)) × C(m),�0(Vn,(i)), if γ ∈ G

(m)
n (Q), if

u ∈ Up(N,N) and if h ∈ P (m)
n,(i)(A

∞)ord,× × P (m)
n,(i)(R) satisfy γhσu ∈ Σ and

σ ∩ γhσu ∩ (G(m)
n (A∞)× π0(Gn(R))× C(m),>0(Vn,(i))) 6= ∅

then γ ∈ P (m)
n,(i)(Q).

Note that if (Up)′(N ′) ⊂ Up(N) and if Σ is a Up(N)-admissible cone decomposition

of (G
(m)
n (A∞) × π0(Gn(R)) × C(m))ord then Σ is also (Up)′(N ′)-admissible. We will

call a set Σ of closed subsets of (G
(m)
n (A∞)×π0(Gn(R))×C(m))ord an admissible cone
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decomposition of (G
(m)
n (A∞)×π0(Gn(R))×C(m))ord if it is Up(N)-admissible for some

open compact subgroup Up and for some N .

If Σ is a Up(N1, N2)-admissible cone decomposition of G
(m)
n (A∞)×π0(Gn(R))×C(m)

then

Σord = {σ ∈ Σ : σ ⊂ (G(m)
n (A∞)× π0(Gn(R))× C(m))ord}

is a Up(N1)-admissible cone decomposition for (G
(m)
n (A∞)× π0(Gn(R))× C(m))ord.

We call Σ′ a refinement of Σ if every element of Σ is a union of elements of Σ′. We

define a partial order on the set of pairs (Up(N),Σ), where Up ⊂ G
(m)
n (A∞,p) is an

open compact subgroup, N ∈ Z≥0 and Σ is a Up(N)-admissible cone decomposition

of (G
(m)
n (A∞)× π0(Gn(R))× C(m))ord, as follows: We set

((Up)′(N ′),Σ′) ≥ (Up(N),Σ)

if and only if (Up)′(N ′) ⊂ Up(N) and Σ′ is a refinement of Σ. If g ∈ G(m)
n (A∞)ord and

Σ is a Up(N)-admissible cone decomposition of (G
(m)
n (A∞) × π0(Gn(R)) × C(m))ord,

then

Σg = {σ(g × 1) : σ ∈ Σ}
is a g−1Up(N)g-admissible cone decomposition of

(G(m)
n (A∞)× π0(Gn(R))× C(m))ord.

The action of G
(m)
n (A∞)ord preserves ≥.

There is a natural projection

(G(m)
n (A∞)× π0(Gn(R))× C(m))ord →→ (Gn(A∞)× π0(Gn(R))× C)ord.

We will call admissible cone decompositions Σ of (G
(m)
n (A∞)× π0(Gn(R))× C(m))ord

and ∆ of (Gn(A∞) × π0(Gn(R)) × C)ord compatible if the image of every σ ∈ Σ is
contained in an element of ∆. If in addition Σ is Up(N)-admissible, ∆ is (Up)′(N ′)-
admissible and (Up)′(N ′) contains the image of Up(N) in Gn(A∞)ord we will say that
(Up(N),Σ) and ((Up)′(N ′),∆) are compatible and write

(Up(N),Σ) ≥ ((Up)′(N ′),∆′).

If Σ is a U -admissible cone decomposition of G
(m)
n (A∞)× π0(Gn(R))× C(m) and if

h ∈ G(m)
n (A∞) then we define an admissible cone decomposition Σ(h)0 for

X∗(S
(m),+

n,(i),hUh−1∩P (m),+
n,(i)

(A∞)
)�0
R

as follows: The cones in Σ(h)0 over an element

y = [h′((hUh−1 ∩ P (m),+
n,(i) (A∞))/(hUh−1 ∩ P (m)

n,(i)(A
∞)))] ∈ Y (m),+

n,(i),hUh−1∩P (m),+
n,(i)

(A∞)

are the cones

σ ⊂ C(m),�0(Vn,(i)) ∼= X∗(S
(m),+

n,(i),hUh−1∩P (m),+
n,(i)

(A∞)
)�0
R,y
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which meet C(m),>0(Vn,(i)) and satisfy

{(h′h, 1)} × σ ∈ Σ.

This does not depend on the representative h′ we choose for y. It also only depends
on

h ∈ P (m)
n,(i)(A

∞)\G(m)
n (A∞)/U.

If h1 ∈ L(m)
n,(i),lin(A∞) then under the natural isomorphism

h1 : Y
(m),+

n,(i),hUh−1∩P (m),+
n,(i)

(A∞)

∼−→ Y
(m),+

n,(i),h1hU(h1h)−1∩P (m),+
n,(i)

(A∞)

we see that Σ(h)0 and Σ(h1h)0 correspond.
Similarly if Σ is a Up(N)-admissible cone decomposition of

(G(m)
n (A∞)× π0(Gn(R))× C(m))ord

and if h ∈ G(m)
n (A∞)ord,× then we define an admissible cone decomposition Σ(h)0 for

X∗

(
S(m),ord,+

n,(i),hUp(N)h−1∩P (m),+
n,(i)

(A∞)ord,×

)�0

R

as follows: The cones in Σ(h)0 over an element y given as

[h′(hUp(N)h−1 ∩ P (m),+
n,(i) (A∞)ord,×)/(hUp(N)h−1 ∩ P (m),+

n,(i) (A∞)ord,×)]

∈ Y(m),ord,+

n,(i),hUp(N)h−1∩P (m),+
n,(i)

(A∞)ord,×

are the cones

σ ⊂ C(m),�0(Vn,(i)) ∼= X∗(S(m),ord,+

n,(i),hUp(N)h−1∩P (m),+
n,(i)

(A∞)ord,×
)�0
R,y

which meet C(m),>0(Vn,(i)) and satisfy

{(h′h, 1)} × σ ∈ Σ.

This does not depend on the representative h′ we choose for y. It also only depends
on

h ∈ P (m)
n,(i)(A

∞)ord,×\G(m)
n (A∞)ord,×/Up(N).

If h1 ∈ L(m)
n,(i),lin(A∞)ord,× then under the natural isomorphism

h1 : Y(m),ord,+

n,(i),hUp(N)h−1∩P (m),+
n,(i)

(A∞)ord,×

∼−→ Y(m),ord,+

n,(i),h1hUp(N)(h1h)−1∩P (m),+
n,(i)

(A∞)ord,×

we see that Σ(h)0 and Σ(h1h)0 correspond.

There are sets J (m),tor
n (resp. J (m),tor,ord

n ) of pairs (U,Σ) (resp. (Up(N),Σ)) where

U ⊂ G
(m)
n (A∞) is a neat open compact subgroup (resp. Up ⊂ G

(m)
n (A∞,p) is a

neat open compact subgroup and N ∈ Z≥0) and Σ is a U -admissible (resp. Up(N)-

admissible) cone decomposition of G
(m)
n (A∞)×π0(Gn(R))×C(m) (resp. (G

(m)
n (A∞)×

π0(Gn(R))×C(m))ord), with a number of properties which will be listed in this section
and the next section. (See [La4].)

Firstly we have the following properties:
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(1) The sets J (m),tor
n (resp. J (m),tor,ord

n ) are invariant under the action of G
(m)
n (A∞)

(resp. G
(m)
n (A∞)ord,×).

(2) If U is any neat open compact subgroup of G
(m)
n (A∞), then there is some Σ

with (U,Σ) ∈ J (m),tor
n .

(3) If Up is any neat open compact subgroup of G
(m)
n (A∞,p) and if N ∈ Z≥0, then

there is some Σ with (Up(N),Σ) ∈ J (m),tor,ord
n .

(4) If (U,Σ) ∈ J (m),tor
n and if U ′ ⊂ U then there exists (U ′,Σ′) ∈ J (m),tor

n with
(U ′,Σ′) ≥ (U,Σ).

(5) If (Up(N),Σ′) ∈ J (m),tor,ord
n , if N ′ ≥ N and if (Up)′(N ′) ⊂ Up(N) then

there exists an element ((Up)′(N ′),Σ′) ∈ J (m),tor,ord
n with ((Up)′(N ′),Σ′) ≥

(Up(N),Σ).

(6) If (U ′,Σ′) ≥ (U,Σ) are elements of J (m),tor
n and if moreover U ′ is a normal

subgroup of U , then we may choose (U ′,Σ′′) ∈ J (m),tor
n such that Σ′′ is U -

invariant and such that (U ′,Σ′′) ≥ (U ′,Σ′).

(7) If ((Up)′(N ′),Σ′) ≥ (Up(N),Σ) are elements of J (m),tor,ord
n with (Up)′ a normal

subgroup of Up, then there is an element ((Up)′(N ′),Σ′′) ∈ J (m),tor
n such that

Σ′′ is Up(N)-invariant and such that ((Up)′(N ′),Σ′′) ≥ ((Up)′(N ′),Σ′).

(8) If (U,Σ) and (U,Σ′) ∈ J (m),tor
n (resp. if (Up(N),Σ) and (Up(N),Σ′) ∈

J (m),tor.ord
n ) then there exists (U,Σ′′) ∈ J (m),tor

n (resp. there exists (Up(N),Σ′′)

in J (m),tor,ord
n ) with (U,Σ′′) ≥ (U,Σ) and (U,Σ′′) ≥ (U,Σ′) (resp. with

(Up(N),Σ′′) ≥ (Up(N),Σ) and (Up(N),Σ′′) ≥ (Up(N),Σ′)).
(9) If (U ′,∆) ∈ J tor

n (resp. ((Up)′(N ′),∆) ∈ J tor,ord
n ) and if U is a neat open

compact subgroup of G
(m)
n (A∞) mapping into U ′ (resp. Up is a neat open

compact subgroup of G
(m)
n (A∞,p) mapping into (Up)′ and N ≥ N ′), then

there exists (U,Σ) ∈ J (m),tor
n (resp. (Up(N),Σ) ∈ J (m),tor,ord

n ) compatible
with (U ′,∆) (resp. ((Up)′(N ′),∆)).

(10) If (Up(N1, N2),Σ) ∈ J (m),tor
n then (Up(N1),Σord) ∈ J (m),tor,ord

n .

(11) If (Up(N),Σ′) ∈ J (m),tor,ord
n and if N ′ ≥ N , then there exists (Up(N,N ′),Σ) ∈

J (m),tor
n with Σord = Σ′.

(12) If (Up(N1, N2),Σ) and (Up(N1, N2),Σ′) ∈ J (m),tor
n with Σord = (Σ′)ord, then

there is an element (Up(N1, N2),Σ′′) ∈ J (m),tor
n with (Σ′′)ord = Σord = (Σ′)ord

and with (Up(N1, N2),Σ′′) ≥ (Up(N1, N2),Σ) and with (Up(N1, N2),Σ′′) ≥
(Up(N1, N2),Σ′).

(13) If (Up(N1, N2),Σ) and ((Up)′(N ′1, N
′
2),Σ′) ∈ J (m),tor

n with (Up)′(N ′1, N
′
2) ⊂

Up(N1, N2) and with (Σ′)ord refining Σord, then there also exists another

pair ((Up)′(N ′1, N
′
2),Σ′′) ∈ J (m),tor

n with Σ′′ refining both Σ and Σ′ and with
(Σ′′)ord = (Σ′)ord.

(14) If (Up(N1, N2),∆) ∈ J tor
n and ((Up)′(N ′1, N

′
2),Σ′) ∈ J (m),tor

n are such that
(Up)′(N ′1, N

′
2) ⊂ Up(N1, N2) and (Σ′)ord is compatible with ∆ord, then there
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exists ((Up)′(N ′1, N
′
2),Σ′′) ∈ J (m),tor

n with Σ′′ refining Σ′ and compatible with
∆ and with (Σ′′)ord = (Σ′)ord.

(15) If (Up(N1, N2),Σ) ∈ J (m),tor
n and if N ′2 ≥ N2 then there exists a new pair

(Up(N1, N
′
2),Σ′) ∈ J (m),tor

n with (Σ′)ord = Σord.

(See propositions 1.2.4.52 and 7.1.1.21 of [La4].)

Secondly if (U,Σ) ∈ J (m),tor
n (resp. (Up(N),Σ) ∈ J (m),tor,ord

n ) and if h ∈ G(m)
n (A∞)

(resp. h ∈ G(m)
n (A∞)ord,×) then Σ(h)0 is smooth.

Thirdly if (U,Σ) ∈ J (m),tor
n , then there is a simplicial complex S(U,Σ) whose

simplices are in bijection with the cones in

G(m)
n (Q)\Σ/U

which have dimension bigger than 0, and have the same face relations. We will write
S(U,Σ)≤i for the subcomplex of S(U,Σ) consisting of simplices associated to the
orbits of cones (g, δ) × σ ∈ Σ with σ ⊂ C(m),�0(W ) for some W with dimF W ≤ i.
We will also set

|S(U,Σ)|=i = |S(U,Σ)≤i| − |S(U,Σ)≤i−1|,
an open subset of |S(U,Σ)≤i|. Then one sees that

|S(U,Σ)| ∼= G(m)
n (Q)\

(
(G(m)

n (A∞)/U)× π0(Gn(R))× ((C(m) − C
(m)
=0 )/R×>0)

)
and

|S(U,Σ)|=i
∼= G

(m)
n (Q)\

(
(G

(m)
n (A∞)/U)× π0(Gn(R))× ((C

(m)
=i )/R×>0)

)
∼=

∐
h∈P (m),+

n,(i)
(A∞)\G(m)

n (A∞)/U
L

(m)
n,(i)(Q)\L(m)

n,(i)(A)/

(hUh−1 ∩ P (m),+
n,(i) (A∞))Ln,(i),herm(R)+(L

(m)
n,(i),lin(R) ∩ U0

n,∞)An,(i)(R)0.

(See section 1.4.)

If (Up(N),Σ) ∈ J (m),tor,ord
n then there is a simplicial complex S(Up(N),Σ)ord whose

simplices are in bijection with equivalence classes of cones of dimension greater than

0 in Σ, where σ and σ′ are considered equivalent if σ′ = γσu for some γ ∈ G(m)
n (Q)

and some u ∈ Up(N,N). We will write S(Up(N),Σ)ord
≤i for the subcomplex of

S(Up(N),Σ)ord consisting of simplices associated to the orbits of cones (g, δ)×σ ∈ Σ
with σ ⊂ C(m),�0(W ) for some W with dimF W ≤ i. We will also set

|S(Up(N),Σ)ord|=i = |S(Up(N),Σ)ord
≤i | − |S(Up(N),Σ)ord

≤i−1|,

an open subset of |S(Up,Σ)ord
≤i |. Then we see that

|S(Up(N),Σ)ord|
∼= G

(m)
n (Q)\

(
(G

(m)
n (A∞)/Up(N))× π0(Gn(R))× (C(m) − C

(m)
=0 )/R×>0)

)ord

,

where (
(G(m)

n (A∞)/Up(N))× π0(Gn(R))× (C(m) − C
(m)
=0 )/R×>0)

)ord
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denotes the image of(
G(m)
n (A∞)× π0(Gn(R))× C(m)

)ord −
(
G(m)
n (A∞)× π0(Gn(R))× C

(m)
=0

)ord

in
G(m)
n (Q)\

(
(G(m)

n (A∞)/Up(N,N))× π0(Gn(R))× (C(m) − C
(m)
=0 )/R×>0)

)
.

Moreover

|S(Up(N),Σ)ord|=i
∼= G

(m)
n (Q)\

(
(G

(m)
n (A∞)/Up(N,N))× π0(Gn(R))× ((C

(m)
=i )/R×>0)

)ord

∼=
∐

h∈P (m),+
n,(i)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N)

L
(m)
n,(i)(Q)\L(m)

n,(i)(A)/

(hUp(N)h−1 ∩ P (m),+
n,(i) (A∞)ord)L−n,(i),herm(Zp)Ln,(i),herm(R)+(L

(m)
n,(i),lin(R) ∩ U0

n,∞)

An,(i)(R)0.

(Use the same argument as in the proof of lemma 1.8.) In particular

|S(Up(N),Σ)ord|=n ∼= T
(m),ord
Up(N),=n.
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5.3. Toroidal compactifications.

If (U,Σ) ∈ J (m),tor
n , then there is a smooth projective scheme A

(m)
n,U,Σ and a divisor

with simple normal crossings

∂A
(m)
n,U,Σ ⊂ A

(m)
n,U,Σ,

together with an isomorphism

j
(m)
U,Σ : A

(m)
n,U

∼−→ A
(m)
n,U,Σ − ∂A

(m)
n,U,Σ

and a projection

πA(m),tor/Xmin : A
(m)
n,U,Σ −→ Xmin

n,U

such that

A
(m)
n,U ↪→ A

(m)
n,U,Σ

↓ ↓
Xn,U ↪→ Xmin

n,U

is a commutative pull-back square. (The set J (m),tor
n was chosen so that inter alia

these properties are true.) The divisor ∂A
(m)
n,U,Σ induces a log structureMΣ on A

(m)
n,U,Σ.

If (U,Σ) ∈ J (m),tor
n and (U ′,∆) ∈ J tor

n with (U,Σ) ≥ (U ′,∆) then there is a log
smooth map

πA(m),tor/Xtor : (A
(m)
n,U,Σ,MΣ) −→ (Xn,U ′,∆,M∆)

over Xmin
n,U ′ extending the map

πA(m)/X : A
(m)
n,U −→ Xn,U ′ .

If (U ′,Σ′) and (U,Σ) ∈ J (m),tor
n ; if g ∈ G(m)

n (A∞); if U ′ ⊃ g−1Ug; and if Σg is a

refinement of Σ′ then the map g : A
(m)
n,U → A

(m)
n,U ′ extends to a log etale morphism

g : (A
(m)
n,U,Σ,MΣ) −→ (A

(m)
n,U ′,Σ′ ,MΣ′).

The collection {A(m)
n,U,Σ} becomes a system of schemes with right G

(m)
n (A∞)-action, in-

dexed by J (m),tor
n . The maps j

(m)
U,Σ and πA(m),tor/Xmin and πA(m),tor/Xtor are all G

(m)
n (A∞)-

equivariant. If (U,Σ) ≥ (U ′,Σ′) we will write π(U,Σ),(U ′,Σ′) for the map 1 : A
(m)
n,U,Σ →

A
(m)
n,U ′,Σ′ . (See theorem 1.3.3.15 of [La4] for the assertions of the last three paragraphs.)

Any of the (canonically quasi-isogenous) universal abelian schemes Auniv/Xn,U ex-
tend uniquely to semi-abelian schemes Auniv

∆ /Xn,U,∆. The quasi-isogenies between
the Auniv extend uniquely to quasi-isogenies between the Auniv

∆ . If g ∈ Gn(A∞) and
(U,∆) ≥ (U ′,∆′)g then g∗Auniv

∆′ is one of the Auniv
∆ . (See remarks 1.1.2.1 and 1.3.1.4

of [La4].)

We will write ∂iA
(m)
n,U,Σ for the pre-image under πA(m),tor/Xmin|

∂A
(m)
n,U,Σ

of ∂iX
min
U . We

also set

∂0
iA

(m)
n,U,Σ = ∂iA

(m)
n,U,Σ − ∂i+1A

(m)
n,U,Σ.
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We will also write A
(m),∧
n,U,Σ,i for the formal completion of A

(m)
n,U,Σ along ∂0

iA
(m)
n,U,Σ and

M∧
Σ,i for the log structure induced on A

(m),∧
n,U,Σ,i by MΣ. There are isomorphisms

(A
(m),∧
n,U,Σ,i,M

∧
Σ,i)
∼=

∐
h∈P (m),+

n,(i)
(A∞)\G(m)

n (A∞)/U

(T
(m),\,∧
n,(i),hUh−1∩P (m),+

n,(i)
(A∞),Σ(h)0

,M∧
Σ(h)0

).

Suppose that g−1Ug ⊂ U ′ and that Σg is a refinement of Σ′. Suppose also that

h, h′ ∈ G(m)
n (A∞) with

hg(h′)−1 ∈ P (m),+
n,(i) (A∞).

Then the diagram

T
(m),\,∧
n,(i),hUh−1∩P (m),+

n,(i)
(A∞),Σ(h)0

hg(h′)−1

−→ T
(m),\,∧
n,(i),h′U ′(h′)−1∩P (m),+

n,(i)
(A∞),Σ′(h′)0

↓ ↓
A

(m),∧
n,U,Σ,i

g−→ A
(m),∧
n,U ′,Σ′,i

commutes, and is compatible with the log structures on each of these formal schemes.
(See theorem 1.3.3.15 of [La4].)

If U ′ is a neat subgroup of Gn(A∞) containing the image of U ; if (U ′,∆) ∈ J tor
n ; and

if Σ and ∆ are compatible, then for all h ∈ P (m),+
n,(i) (A∞) with image h′ ∈ P+

n,(i)(A
∞)

the cone decompositions Σ(h)0 and ∆(h′)0 are compatible and we have a diagram

T
(m),\,∧
n,(i),hUh−1∩P (m),+

n,(i)
(A∞),Σ(h)0

↪→ A
(m),∧
n,U,Σ,i

↓ ↓
T \,∧
n,(i),h′U(h′)−1∩P+

n,(i)
(A∞),∆(h′)0

↪→ X∧n,U ′,∆,i

↓ ↓
X\

n,(i),h′U(h′)−1∩P+
n,(i)

(A∞)
↪→ Xmin,∧

n,U ′,i ,

which is commutative as a diagram of topological spaces (but not as a diagram of
locally ringed spaces). The top square is commutative as a diagram of formal schemes
and is compatible with the log structures. (Again see theorem 1.3.3.15 of [La4].)

The pull-back of Auniv
∆ from X∧n,U ′,∆,i to T+,∧

n,(i),h′U(h′)−1∩P+
n,(i)

(A∞),∆(h′)0
is canonically

quasi-isogenous to the pull-back of G̃univ from A+,∧
n,(i),h′U(h′)−1∩P+

n,(i)
(A∞),∆(h′)0

.

We will write

|S(∂A
(m)
n,U,Σ)|=i = |S(∂A

(m)
n,U,Σ − ∂i+1A

(m)
n,U,Σ)| − |S(∂A

(m)
n,U,Σ − ∂iA

(m)
n,U,Σ)|.

Then there are compatible identifications

S(∂A
(m)
n,U,Σ) ∼= S(U,Σ)

and
S(∂A

(m)
n,U,Σ − ∂i+1A

(m)
n,U,Σ) ∼= S(U,Σ)≤i

and
|S(∂A

(m)
n,U,Σ)|=i ∼= |S(U,Σ)|=i;
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and the latter is compatible with the identifications

|S(∂A
(m)
n,U,Σ)|=i

∼=
∐

h∈P (m),+
n,(i)

(A∞)\G(m)
n (A∞)/U

L
(m)
n,(i),lin(Q)\(

|S(∂T
(m),+

n,(i),hUh−1∩P (m),+
n,(i)

(A∞),Σ̃(h)0

)| − |S(∂T
(m),+

n,(i),hUh−1∩P (m),+
n,(i)

(A∞),Σ̃(h)0−Σ(h)0

)|
)

∼=
∐

h∈P (m),+
n,(i)

(A∞)\G(m)
n (A∞)/U

L
(m)
n,(i)(Q)\L(m)

n,(i)(A)/

(hUh−1 ∩ P (m),+
n,(i) (A∞))Ln,(i),herm(R)+(L

(m)
n,(i),lin(R) ∩ U0

n,∞)An,(i)(R)0

∼= |S(U,Σ)|=i.

(See theorem 1.3.3.15 of [La4].) If [σ] ∈ S(U,Σ) we will write

∂[σ]A
(m)
n,U,Σ

for the corresponding closed boundary stratum of A
(m)
n,U,Σ.

Similarly if (Up(N1, N2),Σ) ∈ J (m),tor
n , then there is a smooth quasi-projective

scheme A(m),ord
n,Up(N1,N2),Σ and a divisor with simple normal crossings

∂A(m),ord
n,Up(N1,N2),Σ ⊂ A

(m),ord
n,Up(N1,N2),Σ

together with an isomorphism

j
(m),ord
Up(N1,N2),Σ : A(m),ord

n,Up(N1,N2)

∼−→ A(m),ord
n,Up(N1,N2),Σ − ∂A

(m),ord
n,Up(N1,N2),Σ

and a projection

πA(m),ord,tor/X ord,min : A(m),ord
n,Up(N1,N2),Σ −→ X

ord,min
n,(Up)′(N1,N2)

such that

A(m),ord
n,Up(N1,N2) ↪→ A(m),ord

n,Up(N1,N2),Σ

↓ ↓
X ord
n,(Up)′(N1,N2) ↪→ X ord,min

n,(Up)′(N1,N2)

is a commutative pull-back square. The divisor ∂A(m),ord
n,Up(N1,N2),Σ induces a log structure

MΣ on A(m),ord
n,Up(N1,N2),Σ.

If (Up(N1, N2),Σ) ∈ J (m),tor
n and ((Up)′(N1, N2),∆) ∈ J tor

n satisfy

(Up(N1, N2),Σ) ≥ ((Up)′(N1, N2),∆)

then there is a log smooth map

πA(m),ord,tor/X ord,tor : (A(m),ord
n,Up(N1,N2),Σ,MΣ) −→ (X ord

n,(Up)′(N1,N2),∆,M∆)

over X ord,min
n,(Up)′(N1,N2) extending the map

πA(m),ord/Xord : A(m),ord
n,Up(N1,N2) −→ X

ord
n,(Up)′(N1,N2).
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If ((Up)′(N1, N2),Σ′) and (Up)′(N1, N2),Σ) ∈ J (m),tor
n ; if g ∈ G

(m)
n (A∞)ord; if

(Up)′(N ′1, N
′
2) ⊃ g−1Up(N1, N2)g; and if Σg is a refinement of Σ′ then the map

g : A(m),ord
n,Up(N1,N2) → A

(m),ord
n,(Up)′(N1,N2) extends to a log etale morphism

g : (A(m),ord
n,Up(N1,N2),Σ,MΣ) −→ (A(m),ord

n,(Up)′(N1,N2),Σ′ ,MΣ′).

Then {A(m),ord
n,Up(N1,N2),Σ} is a system of schemes with right G

(m)
n (A∞)ord-action, indexed

by the subset of J (m),tor
n consisting of elements of the form (Up(N1, N2),Σ). The maps

j
(m),ord
U,Σ and πA(m),ord,tor/X ord,min and πA(m),ord,tor/X ord,tor are G

(m)
n (A∞)ord-equivariant. If

(Up(N1, N2),Σ) ≥ ((Up)′(N ′1, N
′
2),Σ′), then we will denote the map 1 : A(m),ord

n,Up(N1,N2),Σ →
A(m),ord
n,(Up)′(N1,N2),Σ′ by π(Up(N1,N2),Σ),((Up)′(N1,N2),Σ′). (See theorem 7.1.4.1 of [La4] for the

assertions of the last three paragraphs.)
Any of the (canonically prime-to-p quasi-isogenous) universal abelian schemes
Auniv/X ord

n,Up(N1,N2) extend uniquely to semi-abelian schemes Auniv
∆ /X ord

n,Up(N1,N2),∆. The

prime-to-p quasi-isogenies between the Auniv extend uniquely to prime-to-p quasi-
isogenies between the Auniv

∆ . If g ∈ Gn(A∞)ord,× and

(Up(N1, N2),∆) ≥ ((Up)′(N1, N2),∆′)g

then g∗Auniv
∆′ is one of the Auniv

∆ . (See remarks 3.4.2.8 and 5.2.1.5 of [La4].)

We will write ∂iA(m),ord
n,Up(N1,N2),Σ for the pre-image of ∂iX ord,min

n,Up(N1,N2) under the map

πA(m),ord,tor/X ord,min|
∂A(m),ord

n,Up(N1,N2),Σ

and set

∂0
iA

(m),ord
n,Up(N1,N2),Σ = ∂iA(m),ord

n,Up(N1,N2),Σ − ∂i+1A(m),ord
n,Up(N1,N2),Σ.

We will also write A(m),ord,∧
n,Up(N1,N2),Σ,i for the formal completion of A(m),ord

n,Up(N1,N2),Σ along

∂0
iA

(m),ord
n,Up(N1,N2),Σ, and M∧

Σ,i for the log structure induced on A(m),ord,∧
n,Up(N1,N2),Σ,i by MΣ.

There are isomorphisms

(A(m),ord,∧
n,Up(N1,N2),Σ,i,M∧

Σ,i)
∼=
∐

h∈P (m),+
n,(i)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1)

(T (m),ord,\,∧
n,(i),(hUph−1∩P (m),+

n,(i)
(A∞,p))(N1,N2),Σord(h)0

,M∧
Σord(h)0

)

q
∐

h∈(P
(m),+
n,(i)

(A∞)\G(m)
n (A∞)/Up(N1,N2))−(P

(m),+
n,(i)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1))

(T
(m),\,∧
n,(i),hUp(N1,N2)h−1∩P (m),+

n,(i)
(A∞),Σ(h)0

,M∧
Σ(h)0

).

Suppose that g ∈ G(m)
n (A∞)ord and g−1Up(N1, N2)g ⊂ (Up)′(N ′1, N

′
2) and that Σg is

a refinement of Σ′. Suppose also that h, h′ ∈ G(m)
n (A∞)ord,× with

hg(h′)−1 ∈ P (m),+
n,(i) (A∞)ord.
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Then the diagram

T (m),ord,\,∧
n,(i),V,Σ(h)ord

hg(h′)−1

−→ T (m),ord,\,∧
n,(i),V ′,Σ′(h′)ord

↓ ↓
A(m),ord,∧
n,Up(N1,N2),Σ,i

g−→ A(m),ord,∧
n,(Up)′(N ′1,N

′
2),Σ′,i

commutes, where

V = (hUph−1 ∩ P (m),+
n,(i) (A∞,p))(N1, N2)

and

V ′ = (h′(Up)′(h′)−1 ∩ P (m),+
n,(i) (A∞,p))(N ′1, N ′2).

Moreover this is compatible with the log structures defined on each of the four formal
schemes. (See theorem 7.1.4.1 of [La4].)

If [σ] ∈ S(Up(N1, N2),Σ) we will write

∂[σ]A(m),ord
n,Up(N1,N2),Σ

for the closure of ∂[σ]A
(m)
n,Up(N1,N2),Σ in A(m),ord

n,Up(N1,N2),Σ. The special fibre

(∂[σ]A(m),ord
n,Up(N1,N2),Σ)× SpecFp

is non-empty if and only if [σ] ∈ S(Up(N1),Σord)ord. (We remind the reader that
the first superscript ord associates the ‘ordinary’ cone decomposition Σord to the cone
decomposition Σ, while the second superscript ord is the notation we are using for the
simplicial complex associated to an ‘ordinary’ cone decomposition.) We will write

(A(m),ord
n,Up(N1,N2),Σ)0 = A(m),ord

n,Up(N1,N2),Σ −
⋃

[σ]∈S(Up(N1,N2),Σ)−S(Up(N1),Σord)ord

∂[σ]A(m),ord
n,Up(N1,N2),Σ.

This only depends on Σord.
If (Up)′ is a neat subgroup of Gn(A∞,p) containing the image of Up; if the pair

((Up)′(N1, N2),∆) ∈ J tor
n ; and if Σ and ∆ are compatible, then for all h ∈ P (m),+

n,(i) (A∞)ord,×

with image h′ ∈ P+
n,(i)(A

∞)ord,× the cone decompositions Σord(h)0 and ∆ord(h′)0 are

compatible and we have a diagram

T (m),ord,\,∧
n,(i),(hUph−1∩P (m),+

n,(i)
(A∞,p))(N1,N2),Σord(h)0

↪→ A(m),ord,∧
n,Up(N1,N2),Σ,i

↓ ↓
T ord,\,∧
n,(i),(h′(Up)′(h′)−1∩P+

n,(i)
(A∞,p))(N1,N2),∆ord(h′)0

↪→ X ord,∧
n,(Up)′(N1,N2),∆,i

↓ ↓
X ord,\

n,(i),(h′(Up)′(h′)−1∩P+
n,(i)

(A∞,p))(N1,N2)
↪→ X ord,min,∧

n,(Up)′(N1,N2),i,

which is commutative as a diagram of topological spaces (but not as a diagram of
locally ringed spaces). The top square is commutative as a diagram of formal schemes
and is compatible with the log structures. (See theorem 7.1.4.1 of [La4].)
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The pull-back of Auniv
∆ to T ord,+,∧

n,(i),(h′(Up)′(h′)−1∩P+
n,(i)

(A∞,p))(N1,N2),∆ord(h′)0
is canonically

quasi-isogenous to the pull-back of G̃univ from

Aord,+,∧
n,(i),(h′(Up)′(h′)−1∩P+

n,(i)
(A∞,p))(N1,N2),∆ord(h′)0

.

All this is compatible with passage to the generic fibre and our previous discussion.
(Again see theorem 7.1.4.1 of [La4].)

If N ′2 ≥ N2 ≥ N1, if Σ′ is a refinement of Σ and if Σord = (Σ′)ord then the natural
map

A(m),ord

n,Up(N1,N ′2),Σ′ −→ A
(m),ord
n,Up(N1,N2),Σ

is etale in a neighbourhood of the Fp-fibre of A(m),ord

n,Up(N1,N ′2),Σ′ and induces an isomor-

phism between the formal completions of these schemes along their Fp-fibres. (See
theorem 7.1.4.1(4) of [La4].) We will denote this p-adic formal scheme

A
(m),ord

n,Up(N1),Σord

and will denote its reduced subscheme

A
(m),ord

n,Up(N1),Σord .

(In the case m = 0 we could also write Xord
n,Up(N1),Σord and xord

n,Up(N1),Σord .) We will also
write

∂A
(m),ord

n,Up(N1),Σord = A
(m),ord

n,Up(N1),Σord − A(m),ord

n,Up(N1).

The family {A(m),ord

n,Up(N),Σord} (resp. {A(m),ord

n,Up(N),Σord}, resp. {∂A(m),ord

n,Up(N),Σord}) is a family of

formal schemes (resp. schemes, resp. schemes) indexed by J (m),tor,ord
n with Gn(A∞)ord

action. Let
∂iA

(m),ord

n,Up(N),Σord

denote the pre-image of ∂iX
ord,min

n,Up(N) in ∂A
(m),ord

n,Up(N),Σord , and set

∂0
iA

(m),ord

n,Up(N),Σord = ∂iA
(m),ord

n,Up(N),Σord − ∂i+1A
(m),ord

n,Up(N),Σord .

The families {∂iA
(m),ord

n,Up(N),Σord} and {∂0
iA

(m),ord

n,Up(N),Σord} have actions of Gn(A∞)ord. More-
over we have a decomposition

∂0
iA

(m),ord

n,Up(N),Σord =∐
h∈P+

n,(i)
(A∞)ord\Gn(A∞)ord/Up(N) ∂Σord(h)0

T
(m),ord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N).

If g ∈ G(m)
n (A∞)ord, if g−1Up(N)g ⊂ (Up)′(N ′) and if Σordg is a refinement of (Σ′)ord,

then the map

g : ∂0
iA

(m),ord

n,Up(N),Σord −→ ∂0
iA

(m),ord

n,(Up)′(N ′),(Σ′)ord

is the coproduct of the maps

g′ : ∂Σord(h)0
T

(m),ord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N) −→

∂Σord(h)0
T

(m),ord,\

n,(i),(h′(U ′)p(h′)−1∩P+
n,(i)

(A∞,p))(N ′)
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where hg = g′h′ with g′ ∈ P+
n,(i)(A

∞)ord.

The map

ςp : A
(m),ord

n,Up(N),Σord −→ A
(m),ord

n,Up(N),Σord

is finite flat of degree p(2m+n)n[F+:Q] and on Fp-fibres it is identified with absolute
Frobenius.

If N ′2 ≥ N2 ≥ N1, if Σ′ is a refinement of Σ and if σ ∈ Σord = (Σ′)ord then the
natural map

∂[σ]A(m),ord

n,Up(N1,N ′2),Σ′ −→ ∂[σ]A(m),ord
n,Up(N1,N2),Σ

is etale in a neighbourhood of the Fp-fibre of ∂[σ]A(m),ord

n,Up(N1,N ′2),Σ′ and so induces an

isomorphism of the formal completions of these schemes along their Fp-fibres. We
will denote this p-adic formal scheme

∂[σ]A
(m),ord

n,Up(N1),Σord

and will denote its reduced subscheme

∂[σ]A
(m),ord

n,Up(N1),Σord .

For s > 0 we will write

∂(s)A
(m),ord

n,Up(N1),Σord =
∐

[σ]∈S(Up(N1),Σord)ord

dimσ=s

∂[σ]A
(m),ord

n,Up(N1),Σord

and

∂(s)A
(m),ord

n,Up(N1),Σord =
∐

[σ]∈S(Up(N1),Σord)ord

dimσ=s

∂[σ]A
(m),ord

n,Up(N1),Σord .

The maps

ςp : ∂(s)A
(m),ord

n,Up(N1),Σord −→ ∂(s)A
(m),ord

n,Up(N1),Σord

are finite flat of degree p(2m+n)n[F+:Q]−s.

Then ∂A
(m),ord

n,Up(N1),Σord is stratified by the ∂[σ]A
(m),ord

n,Up(N1),Σord with [σ] running over

S(Up(N1),Σord)ord. If σ ∈ Σord but σ is not contained in⋃
i<n

(G(m)
n (A∞)× π0(G(m)

n (R))× C
(m)
=i )ord

then ∂[σ]A
(m),ord

n,Up(N1),Σord is irreducible. (Because ∂[σ]A
(m),ord

n,Up(N1),Σord is a toric variety over

Fp. It is presumably also true that ∂[σ]A
(m),ord

n,Up(N1),Σord is irreducible for any σ, but
to prove it one would need an irreducibility statement about the special fibre of a
Shimura variety. In many cases such a theorem has been proved by Hida in [Hi], but
not in the full generality in which we are working here.)

We will write

|S(∂A
(m),ord

n,Up(N),Σord)|=i =

|S(∂A
(m),ord

n,Up(N),Σord − ∂i+1A
(m),ord

n,Up(N),Σord)| − |S(∂A
(m),ord

n,Up(N),Σord − ∂iA
(m),ord

n,Up(N),Σord)|
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an open subset of |S(∂A
(m),ord

n,Up(N),Σord − ∂i+1A
(m),ord

n,Up(N),Σord)|. Then there are natural sur-
jections

S(∂A
(m),ord

n,Up(N),Σord)→→ S(Up(N),Σord)ord

which restrict to surjections

S(∂A
(m),ord

n,Up(N),Σord − ∂i+1A
(m),ord

n,Up(N),Σord)→→ S(Up(N),Σord)ord
≤i .

This gives rise to surjections

|S(∂A
(m),ord

n,Up(N),Σord)|=i →→ |S(Up(N),Σord)ord|=i.
In the case n = i this is actually a homeomorphism

|S(∂A
(m),ord

n,Up(N),Σord)|=n ∼= |S(Up(N),Σord)ord|=n ∼= T
(m),ord
Up(N),=n.

This is compatible with the identifications

|S(∂A
(m),ord

n,Up(N),Σord)|=n
∼=

∐
h∈P (m),+

n,(n)
(A∞)ord,×\G(m)

n (A∞)ord,×/Up(N)
L

(m)
n,(n),lin(Z(p))\(

|S(∂T
(m),ord,+

n,(n),hUp(N)h−1∩P (m),+
n,(n)

(A∞)ord,Σ̃ord(h)0

)|−

|S(∂T
(m),ord,+

n,(n),hUp(N)h−1∩P (m),+
n,(n)

(A∞)ord,Σ̃ord(h)0−Σord(h)0

)|
)

∼=
∐

h∈P (m),+
n,(i)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N)

L
(m)
n,(n)(Q)\L(m)

n,(n)(A)/

(hUp(N)h−1 ∩ P (m),+
n,(n) (A∞))Ln,(n),herm(R)+(L

(m)
n,(n),lin(R) ∩ U0

n,∞)An,(n)(R)0

∼= |S(Up(N),Σord)ord|=n.
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5.4. Vector bundles.

We will write I∂Xmin
n,U

(resp. I∂Xn,U,∆ , resp. I
∂A

(m)
U,Σ

) for the ideal sheaf in OXmin
n,U

(resp.

OXn,U,∆ , resp. O
A

(m)
U,Σ

) defining the boundary ∂Xmin
n,U (resp. ∂Xn,U,∆, resp. ∂A

(m)
U,Σ).

More generally we will write I∂Xmin
n,U×SpecR0

(resp. I∂Xn,U,∆×SpecR0 , resp. I
∂A

(m)
U,Σ×SpecR0

)

for the correspondingly defined sheaves on Xmin
n,U × SpecR0 (resp. Xn,U,∆ × SpecR0,

resp. A
(m)
U,Σ × SpecR0).

Lemma 5.1. Suppose that R0 is an irreducible, noetherian Q-algebra.

(1) If i > 0 then

Riπ(U,Σ),(U ′,Σ′),∗OA(m)
n,U,Σ×SpecR0

= (0)

and
Riπ(U,Σ),(U ′,Σ′),∗I∂A(m)

n,U,Σ×SpecR0
= (0).

(2) If (U,Σ) ≥ (U ′,Σ′) and U is a normal subgroup of U ′, then the natural maps

O
A

(m)

U′,Σ′×SpecR0
−→ (π(U,Σ),(U ′,Σ′),∗OA(m)

U,Σ×SpecR0
)U
′

and
I
∂A

(m)

U′,Σ′×SpecR0
−→ (π(U,Σ),(U ′,Σ′),∗I∂A(m)

U,Σ×SpecR0
)U
′

are isomorphisms.

(3) If U ′ is the image in Gn(A∞) of U ⊂ G
(m)
n (A∞) and if Σ and ∆ are compatible,

then
πA(m),tor/Xtor,∗OA(m)

n,U,Σ
= OXn,U′,∆ .

Proof: If Σ is U ′-invariant the first two parts follow from lemma 4.6. In the general
case we choose (U,Σ′′) ≥ (U,Σ) with Σ′′ being U ′-invariant, and apply the cases of
the lemma already proved to the pairs ((U,Σ′′), (U ′,Σ′)) and ((U,Σ′′), (U,Σ)).

The third part follows from lemma 4.8. �

Similarly we will write I∂X ord,min
n,Up(N1,N2)

(resp. I∂X ord
n,Up(N1,N2),∆

, resp. I
∂A(m),ord

n,Up(N1,N2),Σ

)

for the ideal sheaf in OX ord,min
n,Up(N1,N2)

(resp. OX ord
n,Up(N1,N2),∆

, resp. OA(m),ord
n,Up(N1,N2),Σ

) defin-

ing the boundary ∂X ord,min
n,Up(N1,N2) (resp. ∂X ord

n,Up(N1,N2),∆, resp. ∂A(m),ord
n,Up(N1,N2),Σ). More

generally we will also write I∂X ord,min
n,Up(N1,N2)

×SpecR0
(resp. I∂X ord

n,Up(N1,N2),∆
×SpecR0

, resp.

I
∂A(m),ord

n,Up(N1,N2),Σ
×SpecR0

) for the sheaf defined in the corresponding manner on the

scheme X ord,min
n,Up(N1,N2) × SpecR0 (resp. X ord

n,Up(N1,N2),∆ × SpecR0, resp. A(m),ord
n,Up(N1,N2),Σ ×

SpecR0). The next lemma follows from lemmas 4.6 and 4.12.

Lemma 5.2. Suppose that R0 is an irreducible, noetherian Z(p)-algebra.

(1) If i > 0 then

Riπ(Up(N1,N2),Σ),((Up)′(N ′1,N
′
2),Σ′),∗OA(m),ord

n,Up(N1,N2),Σ
×SpecR0

= (0)
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and

Riπ(Up(N1,N2),Σ),((Up)′(N ′1,N
′
2),Σ′),∗I∂A(m),ord

n,Up(N1,N2),Σ
×SpecR0

= (0).

(2) If (Up(N1, , N2),Σ) ≥ ((Up)′(N ′1, N2),Σ′) and Up is a normal subgroup of
(Up)′, then the natural maps

OA(m),ord

n,(Up)′(N′1,N
′
2),Σ′×SpecR0

→ (π(Up(N1,N2),Σ),((Up)′(N ′1,N
′
2),Σ′),∗OA(m),ord

n,Up(N1,N2),Σ
×SpecR0

)(Up)′(N ′1)

and

I
∂A(m),ord

n,(Up)′(N′1,N
′
2),Σ′×SpecR0

→ (π(Up(N1,N2),Σ),((Up)′(N ′1,N
′
2),Σ′),∗I∂A(m),ord

n,Up(N1,N2),Σ
×SpecR0

)(Up)′(N ′1)

are isomorphisms.

(3) If (Up)′ is the image in Gn(A∞,p) of Up ⊂ G
(m)
n (A∞,p) and if Σ and ∆ are

compatible, then

πA(m),ord,tor/Xord,tor,∗OA(m),ord
n,Up(N1,N2),Σ

= OXn,(Up)′(N1,N2),∆
.

The pull-back by the identity section of Ω1
Auniv

∆ /Xn,U,∆
(resp. Ω1

Auniv
∆ /X ord

n,Up(N1,N2),∆

) is

a locally free sheaf, which is canonically independent of the choice of Auniv (resp.
Auniv). We will denote it Ωn,U,∆ (resp. Ωord

n,Up(N1,N2),∆). If g ∈ Gn(A∞) (resp. g ∈
Gn(A∞)ord,×) and (U,∆)g ≥ (U ′,∆′) (resp. (Up(N1, N2),∆)g ≥ ((Up)′(N ′1, N

′
2),∆′))

then there is a natural isomorphism

g∗Ωn,U ′,∆′ −→ Ωn,U,∆

(resp.

g∗Ωord
n,(Up)′(N1,N2),∆′ −→ Ωord

n,Up(N1,N2),∆).

This gives the inverse system {Ωn,U,∆} (resp. {Ωord
n,Up(N1,N2),∆}) an action of Gn(A∞)

(resp. Gn(A∞)ord,×). There is also a natural map

ςp : ς∗pΩord
n,Up(N1,N2−1),∆ −→ Ωord

n,Up(N1,N2),∆.

There is a canonical identification

Ωn,U,∆|Xn,U ∼= Ωn,U

(resp.

Ωord
n,Up(N1,N2),∆|X ord

n,Up(N1,N2)

∼= Ωord
n,Up(N1,N2)).

We will write
ωU,∆ = ∧n[F :Q]Ωn,U,∆

(resp.

ωord
Up(N1,N2),∆ = ∧n[F :Q]Ωord

n,Up(N1,N2),∆).

The pull-back of Ωn,U,∆ to T \,∧
n,(i),hUh−1∩P+

n,(i)
(A∞),∆(h)0

is canonically and equivari-

antly identified with the sheaf Ω̃\

n,(i),hUh−1∩P+
n,(i)

(A∞),∆(h)0
. Similarly the pull-back of
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Ωord
n,Up(N1,N2),∆ to T ord,\,∧

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2),∆ord(h)0
is canonically and equivariantly

identified with the sheaf Ω̃ord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2),∆ord(h)0
. (See lemmas 1.3.2.41

and 5.2.4.38 of [La4].)
We will write

Ξn,U,∆ = OXn,U,∆(||ν||)
(resp.

Ξord
n,Up(N1,N2),∆ = OX ord

n,Up(N1,N2),∆
(||ν||))

for the structure sheaf of Xn,U,∆ (resp. X ord
n,Up(N1,N2),∆) with the Gn(A∞) (resp.

Gn(A∞)ord) action twisted by ||ν||. If g ∈ Gn(A∞) (resp. g ∈ Gn(A∞)ord,×) then
the maps

g∗Ξn,U,∆ −→ Ξn,U ′,∆′

(resp.
g∗Ξord

n,Up(N1,N2),∆ −→ Ξord
n,(Up)′(N ′1,N

′
2),∆′)

are isomorphisms.
The pull-back of Ξn,U,∆ to the formal scheme T \,∧

n,(i),hUh−1∩P+
n,(i)

(A∞),∆(h)0
equals the

pull-back of the sheaf Ξ\

n,(i),hUh−1∩P+
n,(i)

(A∞)
from X\

n,(i),hUh−1∩P+
n,(i)

(A∞)
. Similarly the

pull-back of Ξord
n,Up(N1,N2),∆ to T ord,\,∧

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2),∆ord(h)0
is naturally iso-

morphic to the pull-back of the sheaf Ξord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2)
from the scheme

X ord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2)
to T ord,\,∧

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2),∆ord(h)0
.

Let Ecan
U,∆ (resp. Eord,can

Up(N1,N2),∆) denote the principal Ln,(n)-bundle on Xn,U,∆ (resp.

on X ord
n,Up(N1,N2),∆) in the Zariski topology defined by setting, for W ⊂ Xn,U,∆ (resp.

X ord
n,Up(N1,N2),∆) a Zariski open, Ecan

U,∆(W ) (resp. Eord,can
Up(N1,N2),∆(W )) to be the set of pairs

(ξ0, ξ1), where

ξ0 : Ξn,U,∆|W
∼−→ OW

(resp.

ξ0 : Ξord
n,Up(N1,N2),∆|W

∼−→ OW )

and
ξ1 : Ωn,U,∆

∼−→ Hom Q(Vn/Vn,(n),OW )

(resp.

ξ1 : Ωord
n,Up(N1,N2),∆

∼−→ Hom Z(Λn/Λn,(n),OW )).

We define the Ln,(n)-action on Ecan
U,∆ (resp. Eord,can

Up(N1,N2),∆) by

h(ξ0, ξ1) = (ν(h)−1ξ0, (◦h−1) ◦ ξ1).

The inverse system {Ecan
U,∆} (resp. {Eord,can

Up(N1,N2),∆}) has an action of Gn(A∞) (resp.

Gn(A∞)ord,×).
Suppose that R0 is a Q-algebra (resp. Z(p)-algebra) and that ρ is a representation

of Ln,(n) on a finite, locally free R0-module Wρ. We define a locally free sheaf Ecan
U,∆,ρ
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(resp. Eord,can
Up(N1,N2),∆,ρ) over Xn,U,∆×SpecR0 (resp. X ord

n,Up(N1,N2),∆×SpecR0) by setting

Ecan
U,∆,ρ(W ) (resp. Eord,can

Up(N1,N2),∆,ρ(W )) to be the set of Ln,(n)(OW )-equivariant maps of

Zariski sheaves of sets
Ecan
U,∆|W → Wρ ⊗R0 OW

(resp.

Eord,can
Up(N1,N2),∆|W → Wρ ⊗R0 OW ).

Then {Ecan
U,∆,ρ} (resp. {Eord,can

Up(N1,N2),∆,ρ}) is a system of locally free sheaves with Gn(A∞)-

action (resp. Gn(A∞)ord,×-action) over the system of schemes {Xn,U,∆ × SpecR0}
(resp. {X ord

n,Up(N1,N2),∆ × SpecR0}).
Note that

Ecan
U,∆,Std∨

∼= Ωn,U,∆

and
Ecan
U,∆,ν−1

∼= Ξn,U,∆

and
Ecan
U,∆,∧n[F :Q]Std∨

∼= ωU,∆.

Similarly
Eord,can
Up(N1,N2),∆,Std∨

∼= Ωord
n,Up(N1,N2),∆

and
Eord,can
Up(N1,N2),∆,ν−1

∼= Ξord
n,Up(N1,N2),∆

and
Eord,can

Up(N1,N2),∆,∧n[F :Q]Std∨
∼= ωUp(N1,N2),∆.

Also note that the pull-back of Ecan
U,∆,ρ (resp. Eord,can

Up(N1,N2),∆,ρ) to Xn,U ×SpecR0 (resp.

X ord
n,Up(N1,N2) × SpecR0) is canonically identified with EU,ρ (resp. Eord

Up(N1,N2),ρ). These

identifications are Gn(A∞)- (resp. Gn(A∞)ord,×-) equivariant.

Moreover note that the pull-back of Ecan
U,∆,ρ to T \,∧

n,(i),hUh−1∩P+
n,(i)

(A∞),∆(h)0
is canonically

and equivariantly identified with the sheaf E \
n,(i),hUh−1∩P+

n,(i)
(A∞),∆(h)0,ρ|Rn,(n),(i)

. Simi-

larly the pull-back of Eord,can
Up(N1,N2),∆,ρ to T ord,\,∧

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2),∆ord(h)0
is canoni-

cally and equivariantly identified with

Eord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2),∆ord(h)0,ρ|Rn,(n),(i)

.

Set
E sub
U,∆,ρ = I∂Xn,U,∆EU,∆,ρ ∼= I∂Xn,U,∆ ⊗ EU,∆,ρ

and

Eord,sub
Up(N1,N2),∆,ρ = I∂X ord

n,Up(N1,N2),∆
Eord
Up(N1,N2),∆,ρ

∼= I∂X ord
n,Up(N1,N2),∆

⊗ Eord
Up(N1,N2),∆,ρ

Then {E sub
U,∆,ρ} (resp. {Eord,sub

Up(N1,N2),∆,ρ}) is also a system of locally free sheaves with

Gn(A∞)-action (resp. Gn(A∞)ord,×-action) over the systems of schemes {Xn,U,∆ ×
SpecR0} (resp. {X ord

n,Up(N1,N2),∆ × SpecR0}).
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Lemma 5.3. (1) If g ∈ Gn(A∞) (resp. Gn(A∞)ord,×) and g : Xn,U,∆ → Xn,U ′,∆′

(resp. g : X ord
n,Up(N1,N2),∆ → X ord

n,(Up)′(N ′1,N
′
2),∆′) then

g∗Ecan
U ′,∆′,ρ

∼−→ Ecan
U,∆,ρ

(resp.

g∗Eord,can
(Up)′(N ′1,N

′
2),∆′,ρ

∼−→ Eord,can
Up(N1,N2),∆,ρ).

(2) If i > 0 then
Riπ(U,∆),(U ′,∆′),∗Ecan

U,∆,ρ = (0)

and
Riπ(U,∆),(U ′,∆′),∗E sub

U,∆,ρ = (0).

Similarly, for i > 0 we have

Riπ(Up(N1,N2),∆),((Up)′(N ′1,N
′
2),∆′),∗Eord,can

Up(N1,N2),∆,ρ = (0)

and
Riπ(Up(N1,N2),∆),((Up)′(N ′1,N

′
2),∆′),∗Eord,sub

Up(N1,N2),∆,ρ = (0).

(3)

( lim
→(U,∆)

π(U,∆),(U ′,∆′),∗Ecan
U,∆,ρ)

U ′ = EU ′,∆′,ρ

and
( lim
→(U,∆)

π(U,∆),(U ′,∆′),∗E sub
U,∆,ρ)

U ′ = E sub
U ′,∆′,ρ

and

Eord,can
(Up)′(N ′1,N2),∆′,ρ =

(lim→(Up(N1,N2),∆) π(Up(N1,N2),∆),((Up)′(N ′1,N2),∆′),∗Eord,can
Up(N1,N2),∆,ρ)

(Up)′(N ′1)

and

Eord,sub
(Up)′(N ′1,N2),∆′,ρ =

(lim→(Up(N1,N2),∆) π(Up(N1,N2),∆),((Up)′(N ′1,N2),∆′),∗Eord,sub
Up(N1,N2),∆,ρ)

(Up)′(N ′1).

Proof: the first part follows easily from the corresponding facts for Ωn,U,∆ and Ξn,U,∆

(resp. Ωord
n,Up(N1,N2),∆ and Ξord

n,Up(N1,N2),∆). The second and third parts follow from the

first part and parts 1 and 2 of lemma 5.1 (resp. lemma 5.2). �

We next deduce our first main observation.

Theorem 5.4. If i > 0 and U is neat then RiπXtor/Xmin,∗E sub
U,∆,ρ = (0).

Similarly if i > 0 and Up is neat then RiπX ord,tor/X ord,min,∗Eord,sub
Up(N1,N2),∆,ρ = (0).

Proof: The argument is the same in both cases, so we explain the argument only in
the first case. Write X∧n,U,∆,i,h (resp. Xmin,∧

n,U,i,h) for the open and closed subset of X∧n,U,∆,i
(resp. Xmin,∧

n,U,i ) corresponding to T \,∧
n,(i),hUh−1∩P+

n,(i)
(A∞),∆(h)

(resp. X\

n,(i),hUh−1∩P+
n,(i)

(A∞)
).

(Recall that X∧n,U,∆,i is the completion of a smooth toroidal compactification of the
Shimura variety Xn,U along the locally closed subspace of the boundary corresponding

to the parabolic subgroup P+
n,(i) ⊂ Gn. The formal scheme Xmin,∧

n,U,i is the completion
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of the minimal (Baily-Borel) compactification of the same Shimura variety along the
locally closed subspace of the boundary corresponding to the same parabolic. Each
of these formal schemes is a disjoint union of sub-formal schemes indexed by certain
elements h ∈ Gn(A∞).)

We have maps of locally ringed spaces

T \,∧
n,(i),hUh−1∩P+

n,(i)
(A∞),∆(h)

∼−→ X∧n,U,∆,i,h

↓ ↓
X\

n,(i),hUh−1∩P+
n,(i)

(A∞)
↪→ Xmin,∧

n,U,i,h.

(Recall that T \,∧
n,(i),hUh−1∩P+

n,(i)
(A∞),∆(h)

is a formal local model for the boundary of the

toroidal compactification. It is the quotient by a discrete group of the formal comple-
tion of a toroidal embedding over a principal homogeneous space for an abelian scheme
over a disjoint union of smaller Shimura varieties. The scheme X\

n,(i),hUh−1∩P+
n,(i)

(A∞)

is a disjoint union of smaller Shimura varieties, and also a locally closed subscheme
of the boundary of the minimal compactification of Xn,U .)

This diagram is commutative as a diagram of topological spaces (but not of locally
ringed spaces) and the lower horizontal map is an isomorphism on the underlying
topological spaces. It suffices to show that the higher direct images from the topo-
logical space T \,∧

n,(i),hUh−1∩P+
n,(i)

(A∞),∆(h)
to the topological space X\

n,(i),hUh−1∩P+
n,(i)

(A∞)
of

the pull-back of E sub
U,∆,ρ vanishes. The theorem follows from corollary 4.14. �

We set

E sub
U,ρ = πXtor/Xmin,∗E sub

U,∆,ρ

(resp.

Eord,sub
Up(N1,N2),ρ = πX ord,tor/X ord,min,∗Eord,sub

Up(N1,N2),∆,ρ)

a coherent sheaf on Xmin
n,U × SpecR0 (resp. X ord,min

n,Up(N1,N2) × SpecR0). (Note that we

do not expect these sheaves to be locally free in general.) These definitions are
independent of ∆. Note that

E sub
U,ρ ⊗ ω⊗NU ∼= E sub

U,ρ⊗(∧n[F :Q]Std∨)⊗N

and

Eord,sub
Up(N1,N2),ρ ⊗ (ωUp(N1,N2))

⊗N ∼= Eord,sub

Up(N1,N2),ρ⊗(∧n[F :Q]Std∨)⊗N
.

We will let Eord,can
Up(N),∆ord,ρ

(resp. Eord,sub
Up(N),∆ord,ρ

, resp. Eord,sub
Up(N),ρ) denote the pull-back of

Eord,can
Up(N,N ′),∆,ρ (resp. Eord,sub

Up(N,N ′),∆,ρ, resp. Eord,sub
Up(N,N ′),ρ) to Xord

Up(N),∆ord (resp. Xord
Up(N),∆ord ,

resp. Xord,min
Up(N) ). It is independent of the choice of N ′ and ∆.

If ρ is a representation of Ln,(n) on a finite Q-vector space, we will set

H i(Xmin
n , E sub

ρ ) = lim−→
U ′
H i(Xmin

n,U ′ , E sub
U ′,ρ)

= lim −→
U ′,∆

H i(Xn,U ′,∆, E sub
U ′,∆,ρ).
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It is an admissible Gn(A∞)-module with

H i(Xmin
n , E sub

ρ )U
′
= H i(Xmin

n,U ′ , E sub
U ′,ρ).

Similarly, if ρ is a representation of Ln,(n) on a finite free Z(p)-module, we will set

H0(X ord,min
n , Eord,sub

ρ ⊗ Z/prZ)

= lim −→
Up,N1,N2

H0(X ord,min
n,Up(N1,N2), E

ord,sub
Up(N1,N2),ρ ⊗ Z/prZ)

= lim −→
Up,N1,N2,∆

H0(X ord
n,Up(N1,N2),∆, E

ord,sub
Up(N1,N2),∆,ρ ⊗ Z/prZ)

and
H0(Xord,min

n , Eord,sub
ρ )

= lim −→
Up,N

H0(Xord,min
n,Up(N), E

ord,sub
Up(N),ρ)

= lim −→
Up,N,∆

H0(Xord
n,Up(N),∆, E

ord,sub
Up(N),∆,ρ)

They are smooth Gn(A∞)ord,×-modules with

H0(X ord,min
n , Eord,sub

ρ ⊗ Z/prZ)U
p(N1) = H0(X ord,min

n,Up(N1,N2), E
ord,sub
Up(N1,N2),ρ ⊗ Z/prZ)

and

H0(Xord,min
n , Eord,sub

ρ )U
p(N) = H0(Xord,min

n,Up(N), E
ord,sub
Up(N),ρ).

(Use lemma 5.3.) Note that there is a Gn(A∞)ord,×-equivariant embedding

H0(Xord,min
n , Eord,sub

ρ )⊗Zp Z/prZ ↪→ H0(X ord,min
n , Eord,sub

ρ ⊗ Z/prZ).

Finally set

H0(Xord,min, Eord,sub
ρ )Qp = H0(Xord,min, Eord,sub

ρ )⊗Zp Qp,

a smooth representation of Gn(A∞)ord,×.
We record the following result from [La4].

Lemma 5.5. If ρ is a representation of Ln,(n) on a finite locally free Z(p)-module then
there is a unique system {E sub

Up(N1,N2),ρ} of OXmin
n,Up(N1,N2)

-torsion free coherent sheaves

with Gn(A∞)ord,×-action over {Xmin
n,Up(N1,N2)} with the following properties.

(1) {E sub
Up(N1,N2),ρ} pulls back to {E sub

Up(N1,N2),ρ⊗Z(p)
Q} on {Xmin

n,Up(N1,N2)};

(2) {E sub
Up(N1,N2),ρ} pulls back to {Eord,sub

Up(N1,N2),ρ} on {X ord,min
n,Up(N1,N2)};

(3) if Up is a normal subgroup of (Up)′ and if g ∈ (Up)′(N ′1, N2) then

g : g∗E sub
Up(N1,N2),ρ

∼→ E sub
Up(N1,N2),ρ;

(4) if Up is a normal subgroup of (Up)′ then

E sub
(Up)′(N1,N2),ρ

∼→ (πUp(N ′1,N2),(Up)′(N1,N2),∗E sub
Up(N ′1,N2),ρ)

(Up)′(N1,N2);

(5) {E sub
Up(N1,N2),ρ⊗∧n[F :Q]Std∨

} ∼= {ωUp(N1,N2) ⊗ E sub
Up(N1,N2),ρ}.
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Proof: For the definition of E sub
Up(N1,N2),ρ see definition 8.3.5.1 of [La4]. For the

OXmin
n,Up(N1,N2)

-torsion freeness see corollary 8.3.5.8 of [La4]. For the Gn(A∞)ord,×-action

see corollary 8.3.6.5 of [La4]. For part one of the lemma see lemma 8.3.5.2 of [La4].
For the second part see corollary 8.3.5.4 of [La4]. The third part is clear. For the
fourth part see proposition 8.3.6.9 of [La4], and for the final part see lemma 8.3.5.10
of [La4]. �

We will write Ωi

A
(m)
n,U,Σ

(log∞) (resp. Ωi

A
(m)
n,U,Σ/Xn,U′,∆

(log∞)) as shorthand for the

sheaf Ωi

A
(m)
n,U,Σ/SpecQ

(logMΣ) (resp. Ωi

A
(m)
n,U,Σ/Xn,U′,∆

(logMΣ/M∆)). Then the collection

{Ω1

A
(m)
n,U,Σ

(log∞)} (resp. {Ω1

A
(m)
n,U,Σ/Xn,U′,∆

(log∞)}) is a system of locally free sheaves

(for the Zariski topology) with G
(m)
n (A∞)-action.

There are natural differentials

d : Ωi

A
(m)
n,U,Σ

(log∞) −→ Ωi+1

A
(m)
n,U,Σ

(log∞),

(resp.
d : Ωi

A
(m)
n,U,Σ/Xn,U′,∆

(log∞) −→ Ωi+1

A
(m)
n,U,Σ/Xn,U′,∆

(log∞))

making Ω•
A

(m)
n,U,Σ

(log∞) (resp. Ω•
A

(m)
n,U,Σ/Xn,U′,∆

(log∞)) a complex. The tensor product

Ω•
A

(m)
n,U,Σ

(log∞)⊗ I
∂A

(m)
n,U,Σ

(resp. Ω•
A

(m)
n,U,Σ/Xn,U′,∆

(log∞)⊗ I
∂A

(m)
n,U,Σ

) is a sub-complex.

Lemma 5.6. (1) If (U,Σ) ≥ (U ′,∆) ≥ (U ′′,∆′) then the natural morphism

Ω1

A
(m)
n,U,Σ/Xn,U′′,∆′

(log∞)
∼→ Ω1

A
(m)
n,U,Σ/Xn,U′,∆

(log∞)

is an isomorphism, so we will simply write Ω1

A
(m)
n,U,Σ/X

(log∞) for this sheaf.

(2) If (U ′,Σ′) ≥ (U,Σ) then

π∗(U ′,Σ′),(U,Σ)Ω
1

A
(m)
n,U,Σ

(log∞)
∼→ Ω1

A
(m)

n,U′,Σ′
(log∞)

and
π∗(U ′,Σ′),(U,Σ)Ω

1

A
(m)
n,U,Σ/X

(log∞)
∼→ Ω1

A
(m)

n,U′,Σ′/X
(log∞).

(3) If (U,Σ) ≥ (U ′,∆) then there is an exact sequence

(0)→ π∗(U,Σ),(U ′,∆)Ω
1
Xn,U′,∆

(log∞)→ Ω1

A
(m)
n,U,Σ

(log∞)→ Ω1

A
(m)
n,U,Σ/X

(log∞)→ (0).

(4) Suppose that (U1,Σ1) ≥ (U2,Σ2) ≥ (U ′,∆), and that U ′ is the image of both
U1 and U2 in Gn(A∞). Then the natural maps

RiπA(m),tor/Xtor,∗Ω
j

A
(m)
n,U2,Σ2

/X
(log∞) −→ RiπA(m),tor/Xtor,∗Ω

j

A
(m)
n,U1,Σ1

/X
(log∞)

and

RiπA(m),tor/Xtor,∗(Ω
j

A
(m)
n,U2,Σ2

/X
(log∞)⊗ I

∂A
(m)
n,U2,Σ2

)

−→ RiπA(m),tor/Xtor,∗(Ω
j

A
(m)
n,U1,Σ1

/X
(log∞)⊗ I

∂A
(m)
n,U1,Σ1

)



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 187

on Xn,U ′,∆ are isomorphisms. We will write simply

(Riπ∗Ω
j

A(m)/X
(log∞))(U ′,∆)

and
(Riπ∗(Ω

j

A(m)/X
(log∞)⊗ I∂A(m)))(U ′,∆)

for these sheaves.
(5) {(Riπ∗Ω

j

A(m)/X
(log∞))(U ′,∆)} and {(Riπ∗(Ω

j

A(m)/X
(log∞)⊗I∂A(m)))(U ′,∆)} are

systems of coherent sheaves with G
(m)
n (A∞)-action over {Xn,U ′,∆}. Moreover

the maps

g : g∗(Riπ∗Ω
j

A(m)/X
(log∞))(U ′,∆) −→ (Riπ∗Ω

j

A(m)/X
(log∞))(U ′′,∆′)

are isomorphisms.

(6) The G
(m)
n (A∞)-actions on both the systems

{(Riπ∗Ω
j

A(m)/X
(log∞))(U ′,∆)}

and
{(Riπ∗(Ω

j

A(m)/X
(log∞)⊗ I∂A(m)))(U ′,∆)}

factor through Gn(A∞).

(7) The pull-back of (π∗Ω
1
A(m)/X

(log∞))(U,∆) to T \,∧
n,(i),hUh−1∩P+

n,(i)
(A∞),∆(h)0

is iso-

morphic to

π(U ′,Σ0),(hUh−1∩P+
n,(i)

(A∞),∆(h)0),∗Ω
1

T
(m),\,∧
n,(i),U′,Σ0

/T \,∧
n,(i),hUh−1∩P+

n,(i)
(A∞),∆(h)0

(log∞)

for some U ′ and Σ0.

Proof: This follows from the properties of log differentials for log smooth maps (see
section 2.2). For part 4 we also use lemma 5.1. For part 6 we also use the discussion
of section 3.4 and a density argument. �

The next lemma follows from lemma 4.10.

Lemma 5.7. (1) The natural maps

(π∗Ω
1
A(m)/X(log∞))(U ′,∆) ⊗OXn,U′,∆ OA(m)

n,U,Σ
−→ Ω1

A
(m)
n,U,Σ/X

(log∞)

are G
(m)
n (A∞)-equivariant isomorphisms.

(2) The natural maps

(∧j(π∗Ω1
A(m)/X(log∞))(U ′,∆))⊗ (Riπ∗OA(m))(U ′,∆) −→ (Riπ∗Ω

j

A(m)/X
(log∞))(U ′,∆)

and

(∧j(π∗Ω1
A(m)/X

(log∞))(U ′,∆))⊗ (Riπ∗OA(m))(U ′,∆) ⊗ I∂Xn,U′,∆
−→ (Riπ∗(Ω

j

A(m)/X
(log∞)⊗ I∂A(m)))(U ′,∆)

are Gn(A∞)-equivariant isomorphisms.
(3) (π∗Ω

1
A(m)/X

(log∞))(U,∆) is a flat coherent OXn,U,∆-module, and hence locally

free of finite rank.
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Next we record some results from [La2] and [La4].

Lemma 5.8. (1) There are natural Gn(A∞)-equivariant isomorphisms

Hom F (Fm,Ωn,U ′,∆)
∼−→ (π∗Ω

1

A
(m)
n /Xn

(log∞))(U ′,∆).

(2) The cup product maps

∧i(R1π∗OA(m))(U ′,∆) −→ (Riπ∗OA(m))(U ′,∆)

are Gn(A∞)-equivariant isomorphisms.
(3) There is a unique embedding

Ξn,U ′,∆ ↪→ (R1π∗Ω
1
A(m)/X(log∞))(U ′,∆)

extending
Ξn,U ′ ↪→ (R1π∗Ω

1
A(m)/X)U ′ .

It is Gn(A∞)-equivariant.
(4) The composite maps

Hom ((π∗Ω
1

A
(m)
n /Xn

(log∞))(U ′,∆),Ξn,U ′,∆)

−→ Hom
(

(π∗Ω
1

A
(m)
n /Xn

(log∞))(U ′,∆),

(π∗Ω
1

A
(m)
n /Xn

(log∞))(U ′,∆) ⊗ (R1π∗OA(m))(U ′,∆)

)
tr−→ (R1π∗OA(m))(U ′,∆)

are Gn(A∞)-equivariant isomorphisms.
(5) The boundary maps

Ωn,U ′,∆ −→ R1πA(1)/X,∗(π
∗
A(1)/X

Ω1
Xn,U′,∆

(log∞))
∼= Ω1

Xn,U′,∆
(log∞)⊗ Hom (Ωn,U ′,∆,Ξn,U ′,∆)

associated to the short exact sequence of part 3 of lemma 5.6, give rise to
isomorphisms

S(Ωn,U ′,∆)
∼−→ Ω1

Xn,U′,∆
(log∞)⊗ Ξn,U ′,∆.

(6) There are Gn(A∞,p × Zp)-equivariant identifications between the pull-back of
ωU from Xmin

n,U to Xn,U,∆ and ωU,∆.

Proof: For the first four parts see theorem 2.15 and proposition 6.9 of [La2] and
theorem 1.3.3.15 of [La4]. For the fifth part see theorem 1.3.1.3(4) of [La4]. For the
sixth part see propositions 2.2.1.2 and 2.2.3.1 of [La4]. �

Corollary 5.9. There are equivariant isomorphisms Ecan
U,∆,KS

∼= Ω1
Xn,U,∆

(log∞). (See

section 1.2 for the definition of the representation KS.)

Lemma 5.10. Suppose that U is a neat open compact subgroup of G
(m)
n (A∞) with

image U ′ in Gn(A∞). The coherent sheaf Ωr

A
(m)
n,U,Σ

(log∞) admits a decreasing filtration

by local direct summands Fil jΩr

A
(m)
n,U,Σ

(log∞) with
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• Fil 0Ωr

A
(m)
n,U,Σ

(log∞) = Ωr

A
(m)
n,U,Σ

(log∞),

• Fil r+1Ωr

A
(m)
n,U,Σ

(log∞) = (0),

• and gr jΩr

A
(m)
n,U,Σ

(log∞) ∼= (π∗
A(m),tor/XtorΩ

j
Xn,U′,∆

(log∞))⊗ Ωr−j
A

(m)
n,U,Σ/X

(log∞).

This filtration is Gn(A∞)-equivariant.
Moreover there are representations ρi,jm,r of Ln,(n) such that there are Gn(A∞)-

equivariant isomorphisms

RiπA(m),tor/Xmin,∗gr jΩr

A
(m)
n,U,Σ

(log∞)⊗ I
∂A

(m)
n,U,Σ

∼= E sub
U ′,ρi,jm,r

.

Thus there is a spectral sequence with first page

Ei,j
1 = E sub

U ′,ρi,jm,r
⇒ Ri+jπA(m),tor/Xmin,∗(Ω

r

A
(m)
n,U,Σ

(log∞)⊗ I
∂A

(m)
n,U,Σ

).

This spectral sequence is Gn(A∞)-equivariant.

Proof: Using part 2 of corollary 5.6 and parts 1 and 2 of lemma 5.1, we may reduce
to the case that there is a cone decomposition ∆ compatible with Σ. The first
assertion now follows from part 3 of lemma 5.6.

For the second assertion, note that by lemma 5.7 we have that

(∧jΩ1
Xn,U′,∆

(log∞))⊗ (∧r−j(π∗Ω1
A(m)/X

(log∞))(U ′,∆))

⊗(RiπA(m),tor/Xtor,∗OA(m))(U ′,∆) ⊗ I∂Xn,U′,∆∼−→ RiπA(m),tor/Xtor,∗(π
∗
A(m),tor/XtorΩ

j
Xn,U′,∆

(log∞)⊗ Ωr−j
A

(m)
n,U,Σ/X

(log∞)

⊗I
∂A

(m)
n,U,Σ

) .

Combining this with parts 1, 2, 4 and 5 of lemma 5.8 we find representations ρi,jm,r
such that there are Gn(A∞)-equivariant isomorphisms

RiπA(m),tor/Xtor,∗gr jΩr

A
(m)
n,U,Σ

(log∞)⊗ I
∂A

(m)
n,U,Σ

∼= E sub
U ′,∆,ρi,jm,r

.

The second assertion now follows from theorem 5.4.
The third assertion follows from the first two. �
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5.5. Connection to the complex theory.

Lemma 5.11. Suppose that

b = (b0, (bτ,i)τ∈Hom (F,C)) ∈ X∗(Tn/C)+
(n)

satisfies

−2n ≥ bτ,1 + bτc,1

for all τ ∈ Hom (F,C). Then H0(Xmin, E sub
ρ(n),b

) is a semi-simple Gn(A∞)-module. If

π is an irreducible sub-quotient of H0(Xmin, E sub
ρ(n),b

), then π is the finite part of a

cohomological, cuspidal automorphic representation of Gn(A).

Proof: According to proposition 5.4.2 and lemma 5.2.3 of [Ha] and theorems 4.1.1,
5.1.1 and 5.2.12 of [La3] we have an isomorphism

H0(Xmin
n , E sub

ρ(n),b
) ∼=

⊕
Π

Π∞ ⊗H0(qn, U
0
n,∞An(R)0,Π∞ ⊗ ρ(n),b)

where Π runs over cuspidal automorphic representations of Gn(A) taken with their
multiplicity in the space of cuspidal automorphic forms.

Thus π ∼= Π∞ for some cuspidal automorphic representation Π of Gn(A) with

H0(qn, U
0
n,∞An(R)0,Π∞ ⊗ ρ(n),b) 6= (0).

It follows from theorem 2.6 of [CO] that the Harish-Chandra parameter of the infin-
itesimal character of Π∞ equals

%n − 2%n,(n) − b.

As we have assumed that

b− 2(%n − %n,(n)) ∈ X∗(Tn/C)+,

we see that Π∞ has the same infinitesimal character as ρ∨b−2(%n−%n,(n))
. Moreover

proposition 4.5 of [Ha] tells us that

Hom U0
n,∞An(R)0(ρ∨(n),b,Π∞) 6= (0).

We deduce that

Hom U0
n,∞An(R)0(ρ(n),−2(%n−%n,(n)),Π∞ ⊗ ρb−2(%n−%n,(n))) 6= (0).

However ρ(n),−2(%n−%n,(n)) is the representation of U0
n,∞An(R)0 on ∧[F+:Q]n2

p+. Thus

Hom U0
n,∞An(R)0(∧[F+:Q]n2

p⊗R C,Π∞ ⊗ ρb−2(%n−%n,(n))) 6= (0).

Proposition II.3.1 of [BW] then tells us that

H [F+:Q]n2

((LieGn(R))⊗R C, U0
n,∞An(R)0,Π∞ ⊗ ρb−2(%n−%n,(n))) 6= (0),

and the lemma follows. �
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Corollary 5.12. Suppose that

b = (b0, (bτ,i)τ∈Hom (F,Qp)) ∈ X∗(Tn/Qp)
+
(n)

satisfies
−2n ≥ bτ,1 + bτc,1

for all τ ∈ Hom (F,Qp). If Π is an irreducible sub-quotient of H0(Xmin
n , E sub

ρ(n),b
), then

there is a continuous representation

Rp(Π) : GF −→ GL2n(Qp)

which is de Rham above p and has the following property: Suppose that v is a prime
of F above a rational prime q 6= p such that

• either q splits in F0,
• or F and Π are unramified above q;

then
WD(Rp(Π)|GFv )F-ss ∼= recFv(BC (Πq)v| det |(1−2n)/2

v ),

where q is the rational prime below v.

Proof: By the lemma ıΠ is the finite part of a cohomological, square integrable,
automorphic representation of Gn(A). The result now follows from corollary 1.3. �
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6. The Ordinary Locus.

We will now fairly systematically drop the subscript n, as it will be fixed throughout
this section.

6.1. P-adic automorphic forms.

Let U be a neat open compact subgroup of Gn(A∞,p×Zp). Zariski locally on Xmin
U we

may lift HasseU to a (non-canonical) section H̃asseU of ω⊗(p−1) over (an open subset

of) Xmin
U . Although H̃asseU is non-canonical,

H̃asse
pM−1

U mod pM

is canonical, and so these glue to give a canonical element

HasseM,U ∈ H0(Xmin
U × SpecZ/pMZ, ω⊗(p−1)pM−1

U ).

Again if g ∈ Gn(A∞,p × Zp) and U ′ ⊃ g−1Ug then

gHasseM,U ′ = HasseM,U .

We will denote by ωUp(N) the line bundle on Xord,min
Up(N) induced by ωUp(N,N ′) on Xmin

Up(N,N ′),

and by HasseM,Up(N) the restriction of HasseM,Up(N,N ′) to

H0(Xord,min
Up(N) × SpecZ/pMZ, (ωord

Up(N))
⊗(p−1)pM−1

)

This is independent of N ′.
If ρ is a representation of Ln,(n) on a finite free Zp-module then, for any integer i,

there is a natural map

H0(Xmin
Up(N1,N2), E sub

ρ⊗(∧n[F :Q]Std∨)ip
M−1(p−1)

) ∼= H0(Xmin
Up(N1,N2), E sub

ρ ⊗ ω⊗i(p−1)pM−1

U )

−→ H0(X ord,min
Up(N1,N2), Eord,sub

ρ ⊗ Z/pMZ),

which sends f to
(f |X ord,min

Up(N1,N2)
)/HasseiM,Up(N1,N2).

These maps are Gn(A∞)ord,×-equivariant.

Lemma 6.1. For any r the induced map⊕∞
j=rH

0(Xmin
Up(N1,N2), E sub

Up(N1,N2),ρ⊗(∧n[F :Q]Std∨)jp
M−1(p−1)

)

−→ H0(X ord,min
Up(N1,N2), E

ord,sub
Up(N1,N2),ρ ⊗ Z/pMZ)

is surjective.

Proof: The proof here follows standard lines. As far as we know the argument
originated in [Katz1]. For the properties of Xmin

U see section 5.1.
To simplify the formulae in this proof, for the duration of the proof we will write

U for Up(N1, N2).
Multiplying by a power of HasseM,U we may replace ρ by

ρ⊗ (∧n[F :Q]Std∨)tp
M−1(p−1)
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and r by r− t for any t. Thus, using the ampleness of ωU over Xmin
U , we may suppose

that

H i(Xmin
U , E sub

U,ρ ⊗ ω
⊗j
U ) = (0)

for all i > 0 and j ≥ 0. We may also suppose that r ≤ 0. Then we may replace r by
0.

Because X ord,min
U × SpecZ/pMZ is a union of connected components of

Y = Xmin
U × SpecZ/pMZ−Xmin,n-ord

U

it suffices to replace X ord,min
U × SpecZ/pMZ by Y .

Now we need to show that
∞⊕
j=0

H0(Xmin
U , E sub

U,ρ ⊗ ω
⊗j(p−1)pM−1

U )→→ H0(Y , Eord,sub
U,ρ ⊗ Z/pMZ),

under the assumption that

H i(Xmin
U , E sub

U,ρ ⊗ ω
⊗j
U ) = (0)

for all i > 0 and j ≥ 0.
The scheme Y is relatively affine over Xmin

U corresponding to the sheaf of algebras

(
∞⊕
j=0

ω
⊗jpM−1(p−1)
U )/(HasseM,U − 1, pM).

Hence

H0(Y , E sub
U,ρ ) ∼= H0

(
Xmin
U ,

(
∞⊕
j=0

E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U

)
/(HasseM,U − 1, pM)

)
and the map

∞⊕
j=0

H0(Xmin
U , E sub

U,ρ ⊗ ω
⊗j(p−1)pM−1

U ) −→ H0(Y , Eord,sub
U,ρ ⊗ Z/pMZ)

is induced by the map

∞⊕
j=0

E sub
U,ρ ⊗ ω

⊗j(p−1)pM−1

U →→

(
∞⊕
j=0

E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U

)/
(HasseM,U − 1, pM)

of sheaves over Xmin
U .

Because

H i(Xmin
U , E sub

U,ρ ⊗ ω
⊗j
U ) = (0)

for all i > 0 and j ≥ 0, we see that

H0(Xmin
U , E sub

Up,ρ ⊗ ω
⊗j
U )⊗ Z/pMZ ∼−→ H0(Xmin

U , E sub
U,ρ ⊗ ω

⊗j
U ⊗ Z/pMZ)

for all j ≥ 0, and

H i(Xmin
U , E sub

U,ρ ⊗ ω
⊗j
U ⊗ Z/pMZ) = (0)
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for all i > 0 and j ≥ 0. Thus it suffices to check that

H0
(
Xmin
U ,

⊕∞
j=0 E sub

U,ρ ⊗ ω
⊗pM−1(p−1)j
U ⊗ Z/pMZ

)/
(HasseM,U − 1)

↓
H0
(
Xmin
U , (

⊕∞
j=0 E sub

U,ρ ⊗ ω
⊗pM−1(p−1)j
U ⊗ Z/pMZ)/(HasseM,U − 1)

)
is surjective. This follows using the long exact sequence in cohomology associated to
the short exact sequence

(0) −→
⊕∞

j=0 E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U ⊗ Z/pMZ

HasseM,U−1
−→⊕∞

j=0 E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U ⊗ Z/pMZ −→(⊕∞

j=0 E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U ⊗ Z/pMZ

)
/(HasseM,U − 1) −→ (0)

and the vanishing

H1

(
Xmin
U ,

∞⊕
j=0

E sub
U,ρ ⊗ ω

⊗pM−1(p−1)j
U ⊗ Z/pMZ

)
= (0).

�

Let S denote a finite set of rational primes containing p and all rational primes q
which are both non-split in F0 and ramified in F . Also choose a neat open compact
subgroup

Up = Gn(ẐS)× Up
S ⊂ Gn(A∞,p).

Suppose that v is a place of F above a rational prime q 6∈ S and let i ∈ Z. There

is a unique element t
(i)
v in the Bernstein centre of Gn(Qq) such that

• t
(i)
v acts as 0 on any irreducible smooth representation of Gn(Qq) over C which

is not a subquotient of an unramified principal series;

• on an unramified representation Πq of Gn(Qq) the eigenvalue of t
(i)
v on Πq

equals tr recFv(BC (Πq)v| det |(1−2n)/2
v )(Frobiv).

(See [BD].) Multiplying t
(i)
v by the characteristic function of Gn(Zq) we obtain a

unique element T
(i)
v ∈ C[Gn(Zq)\Gn(Qq)/Gn(Zq)] such that if Πq is an unramified

representation of Gn(Qq) and if T
(i)
v has eigenvalue t

(i)
v (Πq) on Π

Gn(Zq)
q then

tr recFv(BC (Πq)v| det |(1−2n)/2
v )(Frobiv) = t(i)v (Πq).

(See [HT].) If σ ∈ Aut (C) we see that σT
(i)
v = T

(i)
v . (Use the fact that

σrecFv(BC (Πq)v| det |(1−2n)/2
v ) ∼= recFv(BC (σΠq)v| det |(1−2n)/2

v ).)

Thus

T (i)
v ∈ Q[Gn(Zq)\Gn(Qq)/Gn(Zq)].

Choose d
(i)
v ∈ Q× such that

d(i)
v T

(i)
v ∈ Z[Gn(Zq)\Gn(Qq)/Gn(Zq)].
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Suppose that q 6∈ S is a rational prime. Let u1, ..., ur denote the primes of F+

above Q which split ui = wi
cwi in F , and let v1, ..., vs denote the primes of F+ above

q which do not split in F . Then under the identification

Gn(Qq) ∼=
r∏
i=1

GL2n(Fwi)×H

of section 1.3, the Hecke operator T
(1)
wi is identified with the double coset

Gn(Zq)aiGn(Zq),
where ai ∈ GLn(Fwi) is the diagonal matrix diag(1, ..., 1, $wi), and we may take

d
(1)
wi = 1.

We will call a topological Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)]-algebra T of Galois type if
there is a continuous pseudo-representation (see [T])

T : GS
F −→ T

such that

d(i)
v T (Frobiv) = θ(d(i)

v T
(i)
v )

for all v|q 6∈ S and all i ∈ Z.

Let TSUp(N1,N2),ρ denote the image of Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)] in the endomor-

phism algebra End (H0(Xmin
Up(N1,N2), E sub

ρ )), which is also the image in the endomor-

phism algebra End (H0(Xmin
Up(N1,N2), E sub

ρ )).

Lemma 6.2. For t sufficiently large TS
Up(N1,N2),ρ⊗(∧n[F :Q]Std∨)⊗t

is of Galois type.

Proof: Write

ρt = ρ⊗ (∧n[F :Q]Std∨)⊗t.

It suffices to show that there is a continuous pseudo-representation

T : GS
F −→ TSUp(N1,N2),ρt ⊗Qp

which is unramified outside S and satisfies

T (Frobiv) = T (i)
v

for all v|q 6∈ S and all i ∈ Z. (Because T will then automatically be valued in
TSUp(N1,N2),ρt

, by the Cebotarev density theorem. Note that if v is a prime of F split

over F+ and lying above a rational prime q 6∈ S, then

T (Frobv) = T (1)
v ∈ TSUp(N1,N2),ρt .)

We may then reduce to the case that ρ⊗Qp is irreducible. Let

(b0, (bτ,i)) ∈ X∗(Tn/Qp)
+
(n)

denote the highest weight of ρ⊗Qp.
Suppose that t satisfies the inequality

−2n ≥ (bτ,1 − t) + (bτc,1 − t).
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By lemma 5.11,

TSUp(N1,N2),ρt ⊗Qp
∼=
⊕
ΠS

Qp

where the sum runs over irreducible admissible representations of Gn(AS,∞) for which
there exists an irreducible admissible representation ΠS of

∏
v∈S Gn(Qv) such that

ΠS ⊗ΠS occurs in H0(Xmin × SpecQp, E sub
ρt ) and (ΠS ⊗ΠS)U

p(N1,N2) 6= (0). Further,
from corollary 5.12, we deduce that there is a continuous representation

r : GS
F −→ GL2n(TSUp(N1,N2),ρt ⊗Qp)

such that if v|q 6∈ S then r is unramified at v and

tr r(Frobiv) = T (i)
v

for all i ∈ Z. Taking T = tr r completes the proof of the lemma. �

If

W ⊂ H0(Xord,min
Up(N) , E

ord,sub
ρ )

(resp.

W ⊂ H0(X ord,min
Up(N1,N2), E

ord,sub
ρ ⊗ Z/pMZ))

is a finitely generated Zp-submodule invariant under the action of the Hecke algebra

Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)],

then we will let Tord,S
Up(N),ρ(W ) (resp. Tord,S

Up(N1,N2),ρ(W )) denote the image of the abstract

Hecke algebra Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)] in End Zp(W ). The next corollary follows
from lemmas 6.1 and 6.2.

Corollary 6.3. If

W ⊂ H0(X ord,min
Up(N1,N2), E

ord,sub
ρ ⊗ Z/pMZ)

is a finitely generated Zp-submodule invariant under the action of the Hecke algebra

Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)],

then Tord,S
Up(N1,N2),ρ(W ) is of Galois type.

We deduce from this the next corollary.

Corollary 6.4. If

W ⊂ H0(Xord,min
Up(N) , E

ord,sub
ρ )

is a finitely generated Zp-submodule invariant under the action of the Hecke algebra

Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)],

then Tord,S
Up(N),ρ(W ) is of Galois type.

Finally we deduce the following proposition.
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Proposition 6.5. Suppose that ρ is a representation of Ln,(n) over Z(p). Suppose
also that Π is an irreducible quotient of an admissible Gn(A∞)ord,×-sub-module Π′ of
H0(Xord,min, Eord,sub

ρ )Qp. Then there is a continuous semi-simple representation

Rp(Π) : GF −→ GL2n(Qp)

with the following property: If Π is unramified at a rational prime q 6= p (in the sense
of section 1.3) and if v|q is a prime of F , then

WD(Rp(Π)|GFv )F-ss ∼= recFv(BC (Πq)v| det |(1−2n)/2
v ).

Proof: Let S denote the set of rational primes consisting of p and the primes where
F or Π ramifies. Also choose a neat open compact subgroup

Up = Gn(ẐS)× Up
S

and integer N such that
ΠUp(N) 6= (0).

As (Π′)U
p(N) is a finite dimensional, and hence closed, subspace of the topological

vector space H0(Xord,min, Eord,sub
ρ )Qp preserved by Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)] and,

as there is a Zp[Gn(ẐS)\Gn(AS)/Gn(ẐS)]-equivariant map (Π′)U
p(N) →→ ΠUp(N), there

is a continuous homomorphism

θ : Tord,S
Up(N),ρ((Π

′)U
p(N)) −→ Qp

which for v|q 6∈ S sends T
(i)
v to its eigenvalue on ΠGn(Zq). Proposition 6.5 now follows

from the above corollary and the main theorem on pseudo-representations (see [T]).
�

We remark that we don’t know how to prove this proposition for a general irre-
ducible subquotient of H0(Xord,min, Eord,sub

ρ )Qp (or indeed whether the corresponding

statement remains true).
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6.2. Interlude concerning linear algebra.

Suppose that K is an algebraic extension of Qp. For a ∈ Q, we say that a polynomial
P (X) ∈ K(X) has slopes ≤ a if P (X) 6= 0 and every root of P (X) in K has p-adic
valuation ≤ a. (We normalize the p-adic valuation so that p has valuation 1.) If V is
a K-vector space and T is an endomorphism of V , then we say that V admits slope
decompositions for T , if for each a ∈ Q there is a decomposition

V = V≤a ⊕ V>a
with the following properties:

• T preserves V≤a and V>a;
• V≤a is finite dimensional;
• if P (X) ∈ K[X] has slopes ≤ a then the endomorphism P (T ) restricts to an

automorphism of V>a;
• there is a non-zero polynomial P (X) ∈ K[X] with slopes ≤ a such that the

endomorphism P (T ) restricts to 0 on V≤a.

In this case V≤a and V>a are unique, and we refer to them as the slope a decomposition
of V with respect to T .

Lemma 6.6. (1) If V is finite dimensional then it always admits slope decompo-
sitions.

(2) If K is a finite extension of Qp, if V is a K-Banach space, and if T is
a completely continuous (see [Se]) endomorphism of V then V admits slope
decompositions for T .

(3) Suppose that L/K is an algebraic extension and that V is a K vector space
which admits slope decompositions with respect to an endomorphism T . Then
V ⊗K L also admits slope decompositions with respect to T .

(4) Suppose that V1 admits slope decompositions with respect to T1; that V2 admits
a slope decomposition with respect to T2; and that d : V1 → V2 is a linear map
such that

d ◦ T1 = T2 ◦ d.
Then for all a ∈ Q we have

dV1,≤a ⊂ V2,≤a

and
dV1,>a ⊂ V2,>a.

Moreover ker d admits slope decompositions for T1, while Im d and coker d
admit slope decompositions for T2. More specifically

(ker d)≤a = (ker d) ∩ V1,≤a

and
(ker d)>a = (ker d) ∩ V1,>a

and
(Im d)≤a = V1,≤a/(ker d)≤a
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and
(Im d)>a = V1,>a/(ker d)>a

and
(coker d)≤a = V2,≤a/(Im d)≤a

and
(coker d)>a = V2,>a/(Im d)>a.

(5) Suppose that
V1 ⊂ V2 ⊂ V3 ⊂ .... ⊂ V∞

are vector spaces with

V∞ =
∞⋃
i=1

Vi.

Suppose also that T is an endomorphism of V∞ such that for all i > 1

TVi ⊂ Vi−1.

If for each i the space Vi admits slope decompositions for i, then V∞ admits
slope decompositions for T .

(6) Suppose that
(0) −→ V1 −→ V −→ V2 −→ (0)

is an exact sequence of K vector spaces and that T is an endomorphism of V
that preserves V1. If V1 and V2 both admit slope decompositions with respect
to T , then so does V . Moreover we have short exact sequences

(0) −→ V1,≤a −→ V≤a −→ V2,≤a −→ (0)

and
(0) −→ V1,>a −→ V>a −→ V2,>a −→ (0)

Proof: The first and third and fourth parts are straightforward. The second part
follows from [Se].

For the fifth part one checks that Vi,≤a is independent of i. If we set

V∞,≤a = Vi,≤a

for any i, and

V∞,>a =
∞⋃
i=1

Vi,>a,

then these provide the slope a decomposition of V∞ with respect to T .
Finally we turn to the sixth part. Choose non-zero polynomials Pi(X) ∈ K[X]

with slopes ≤ a such that Pi(T )Vi,≤a = (0), for i = 1, 2. Set P (X) = P1(X)P2(X).
Also set V≤a = kerP (T ) and V>a = ImP (T ). We have complexes

(0) −→ V1,>a −→ V>a −→ V2,>a −→ (0)

and
(0) −→ V1,≤a −→ V≤a −→ V2,≤a −→ (0).

It suffices to show that these complexes are both short exact sequences. For then we
see that, if Q(X) ∈ K[X] has slopes ≤ a, then the restriction of Q(T ) to V>a is an
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automorphism of V>a. Applying this to P (T ), we see that V≤a∩V>a = (0). Moreover
V≤a + V>a contains V1 and maps onto V2, so that V = V≤a + V>a.

To show the first complex is short exact we need only check that V1,>a = V>a ∩ V1,
i.e. that V1,≤a ∩ V>a = (0). So suppose that v ∈ V1,≤a ∩ V>a. Then v = P (T )v′ and
P1(T )v = 0. Thus P1(T )2P2(T )v′ = 0 so the image of v′ in V2 lies in V2,≤a and so
P2(T )v′ ∈ V1, and in fact P2(T )v′ ∈ V1,≤a. Finally we see that v = P1(T )P2(T )v′ = 0,
as desired.

To show the second complex is short exact we have only to show that V≤a → V2,≤a
is surjective. So suppose that v ∈ V2,≤a and suppose that v ∈ V lifts v. Then
P (T )v ∈ V1,>a. Set

v′ = v − (P (T )|−1
V1,>a

)P (T )v ∈ v + V1,>a

Then v′ maps to v ∈ V2, while

P (T )v′ = P (T )v − P (T )v = 0,

so that v′ ∈ V≤a. �

We warn the reader that to the best of our knowledge it is not in general true that,
if V admits a slope decomposition for T and V1 ⊂ V is T -invariant, then either V1 or
V/V1 admits slope decompositions for T .
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6.3. The ordinary locus of a toroidal compactification as a dagger space.

6.3.1. Review of dagger spaces: We first review some general facts about dagger
spaces. We refer to [GK] for the basic facts.

Suppose that K/Qp is a finite extension with ring of integers OK and residue
field k. Suppose also that Y/OK is quasi-projective. Let Y denote the generic fibre
Y × SpecK, let Y denote the special fibre Y × Spec k and let Y∧ denote the formal
completion of Y along Y . Let Y an (resp. Y †) denote the rigid analytic (resp. dagger)
space associated to Y . (For the latter see section 3.3 of [GK].) Thus Y an and Y †

share the same underlying G-topological space, and in fact the completion (Y †)′ (see
theorem 2.19 of [GK]) of Y † equals Y an. Let Y∧η denote the rigid analytic space
associated to Y∧, its ‘generic fibre’. Then Y∧η is identified with an admissible open

subset ]Y [⊂ Y an. We will denote by Y† the admissible open dagger subspace of Y †

with the same underlying topological space as ]Y [.
To a coherent sheaf F/Y one can associate a coherent sheaf F †/Y † and hence

F †/Y†. The functor F 7→ F † from coherent sheaves on Y to coherent sheaves on Y†
is exact.

Lemma 6.7. If Y and Y ′ are two quasi-projective OK-schemes as described in the
previous paragraph and if f : Y → Y ′ is a morphism, then there is an induced map
f † : Y† → (Y ′)†.

If further f : Y
∼→ Y

′
and f is etale in a neighbourhood of Y then f † is an

isomorphism.

Proof: The first part of the lemma is clear.
For the second part, let Y ↪→ PMOK and Y ′ ↪→ PM ′OK be closed embeddings. Let P ′

denote the closure of Y ′ in PM ′OK . Also let P denote the closure of Y in PMOK × PM ′OK .
Then f extends to a map P → P ′. The second part of the lemma follows from

theorem 1.3.5 of [Bert1] applied to Y ⊂ P and Y
′ ⊂ P ′. �

We will let H i
rig(Y ) denote the rigid cohomology of Y in the sense of Berthelot—see

for instance [LeS].

Lemma 6.8. (1) If Y/OK is a smooth and quasi-projective scheme, then there is
a canonical isomorphism

H i
rig(Y ) ∼= Hi(Y†,Ω•Y†).

(2) If f : Y → Z is a morphism of smooth quasi-projective schemes over OK then
the following diagram is commutative:

H i
rig(Z)

f∗−→ H i
rig(Y )

||o ||o
Hi(Z†,Ω•Z†)

f∗−→ Hi(Y†,Ω•Y†).

Proof: For the first part apply theorem 5.1 of [GK] to the closure of Y in some
projective space over OK . For the second part choose embeddings i : Y ↪→ PMOK and
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i′ : Z ↪→ PM ′OK . Let P ′ denote the closure of Z in PM ′OK and P the closure of Y in

PMOK ×P
′, so that f extends to a map P → P ′. The desired result again follows from

theorem 5.1 of [GK], because the isomorphisms of theorem 5.1 of [GK] are functorial
under morphisms of the set up in that theorem. �

[It is unclear to us whether this functoriality is supposed to be implied by the
word ‘canonical’ in the statement of theorem 5.1 of [GK]. For safety’s sake we sketch
the argument for this functoriality. More precisely if f : X1 → X2 is a morphism
of proper admissible formal Spf R-schemes which takes Y1 ⊂ X1,s to Y2 ⊂ X2,s, then
we will show that the isomorphisms of theorem 5.1 of [GK] are compatible with the
maps in cohomology induced by f . For part (a) we also suppose that we are given a
map f ∗ : f ∗F2 → F1.

Using the notation of part (a) of theorem 5.1 of [GK], it suffices to show that the
diagram

Hq(X2,F2,X2)
f∗−→ Hq(X1,F1,X1)

↓ ↓
Hq(]Y 2[X2 , j

†
2F ′2)

f∗−→ Hq(]Y 1[X2 , j
†
2F ′2)

commutes. (The functoriality of parts (b) and (c) follow easily from the functoriality
of part (a).) The vertical morphisms arise from maps L•k → K•k of resolutions of

the sheaves Ri∗Fk,Xk and j†kF ′k respectively. To define these resolutions one needs to
choose affine covers {Yk,i} of Yk. We may suppose these are chosen so that f carries
Y1,i to Y2,i for all i. Then L•k and K•k are the Cech complexes with

Lqk =
⊕

#J=q

iJ∗Fk,]Yk,J [Xk

and

Kq
k =

⊕
#J=q

j†k,JF
′
k.

The maps L•k → K•k arise from maps

(iJ∗Fk,]Yk,J [Xk
)(U) ∼= lim

→V
F ′k(V ) −→ lim

→V ′
F ′k(V ′ ∩ U) = (j†k,JF

′
k)(U).

Here V runs over strict neighbourhoods of U∩]Yk,J [Xk in ]Y k[Xk and V ′ runs over strict
neighbourhoods of ]Yk,J [Xk in ]Y k[Xk . The first isomorphism is justified in section 2.23
of [GK]. The second morphism arises because, for every V , we can find a V ′ so that

V ′ ∩ U ⊂ V.

It suffices to show that if fU1 ⊂ U2, then the diagrams

(iJ∗F2,]Y2,J [X2
)(U)2

f∗−→ (iJ∗F1,]Y1,J [X1
)(U1)

↓ ↓
(j†2,JF ′2)(U2)

f∗−→ (j†1,JF ′1)(U1)

are commutative. But this is now clear.]
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Lemma 6.9. Suppose that f : X → Y is a proper morphism between Qp-schemes
of finite type and that F/X is a coherent sheaf. Denote by f † : X† → Y † the
corresponding map of dagger spaces and by F † the coherent sheaf on X† corresponding
to F/X. Suppose also that V is an admissible open subset of Y † and that U is its
pre-image in X†. Then

Ri(f †|U)∗(F †|U) ∼= (Rif∗F)†|V ,
where (Rif∗F)† denotes the coherent sheaf on Y † corresponding to (Rif∗F)/Y .

Proof: It suffices to check this in the case V = Y †. There is a chain of isomorphisms[
(Rif∗F)†

]an → (Rif∗F)an → Rif an
∗ Fan → (Rif †∗F †)an.

The first arrow is the transitivity of dagger and rigid analytification. The second
arrow is theorem 6.5 of [Kö]. The third arrow is theorem 3.5 of [GK]. Since Y † is
partially proper, theorem 2.26 of [GK] implies that there is a unique isomorphism
(Rif∗F)† ∼= Rif †∗F † which recovers the above map after passage to rigid spaces. �

6.3.2. The ordinary locus as a dagger space: Now we return to our Shimura and
Kuga-Sato varieties.

If Up is a neat open compact subgroup of G
(m)
n (A∞,p), if N2 ≥ N1 ≥ 0 and if

(Up(N1, N2),Σ) ∈ J (m),tor, we will write

A(m),ord,†
Up(N1,N2),Σ

(resp.

∂A(m),ord,†
Up(N1,N2),Σ,

resp.

∂[σ]A(m),ord,†
Up(N1,N2),Σ

for [σ] ∈ S(Up(N1, N2),Σ)) for the dagger space associated to A(m),ord
Up(N1,N2),Σ (resp.

∂A(m),ord
Up(N1,N2),Σ, resp. ∂[σ]A(m),ord

Up(N1,N2),Σ) as described in the paragraph before lemma 6.7.

For s > 0 also write

∂(s)A(m),ord,†
Up(N1,N2),Σ =

∐
[σ]∈S(Up(N1,N2),Σ)

dim [σ]=s−1

∂[σ]A(m),ord,†
Up(N1,N2),Σ

and i(s) for the finite map

∂(s)A(m),ord,†
Up(N1,N2),Σ −→ ∂A(m),ord,†

Up(N1,N2),Σ ↪→ A
(m),ord,†
Up(N1,N2),Σ.

We set
∂(0)A(m),ord,†

Up(N1,N2),Σ = A(m),ord,†
Up(N1,N2),Σ

and
i(0) = 1A(m),ord,†

Up(N1,N2),Σ

.

Then the various systems of dagger spaces {A(m),ord,†
Up(N1,N2),Σ} and {∂A(m),ord,†

Up(N1,N2),Σ} and

{∂(s)A(m),ord,†
Up(N1,N2),Σ} have compatible actions of G

(m)
n (A∞)ord.
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If N ′2 ≥ N2 and if Σ′ is a refinement of Σ with Σord = (Σ′)ord then the natural map

A(m),ord

Up(N1,N ′2),Σ′ −→ A
(m),ord
Up(N1,N2),Σ

restricts to an isomorphism

A
(m),ord

Up(N1,N ′2),Σ′
∼−→ A

(m),ord

Up(N1,N2),Σ

and is etale in a neighbourhood of A
(m),ord

Up(N1,N ′2),Σ′ . It follows from lemma 6.7 that

A(m),ord,†
Up(N1,N ′2),Σ′ −→ A

(m),ord,†
Up(N1,N2),Σ

is an isomorphism. We will denote this dagger space simply

A(m),ord,†
Up(N1),Σord .

Similarly ∂A(m),ord,†
Up(N1,N2),Σ and ∂[σ]A(m),ord,†

Up(N1,N2),Σ and ∂(s)A(m),ord,†
Up(N1,N2),Σ depend only on the

group Up(N1) and Σord and we will denote them ∂A(m),ord,†
Up(N1),Σord and ∂[σ]A(m),ord,†

Up(N1),Σord

and ∂(s)A(m),ord,†
Up(N1),Σord respectively. If [σ] 6∈ S(Up(N1),Σord)ord then

∂[σ]A(m),ord,†
Up(N1),Σord = ∅.

Thus for s > 0

∂(s)A(m),ord,†
Up(N),Σord =

∐
[σ]∈S(Up(N),Σord)ord

dim [σ]=s−1

∂[σ]A(m),ord,†
Up(N),Σord

The three projective systems of dagger spaces {A(m),ord,†
Up(N),Σord} and {∂A(m),ord,†

Up(N),Σord} and

{∂(s)A(m),ord,†
Up(N),Σord} have actions of G

(m)
n (A∞)ord.

We will write Xord,†
(Up)′(N),∆ for A

(0),ord,†
(Up)′(N),∆. If (Up)′ contains the projection of Up and

if ∆ord and Σord are compatible, then there are maps

A(m),ord,†
Up(N),Σord −→ X ord,†

(Up)′(N),∆ord .

These maps are G
(m)
n (A∞)ord-equivariant (as Up, (Up)′ and N vary).

We will write Ωj

A(m),ord,†
Up(N),Σ

(log∞) (resp. Ωj

A(m),ord,†
Up(N),Σ

(log∞)⊗I
∂A(m),ord,†

Up(N),Σ

) for the locally

free sheaf on A(m),ord,†
Up(N),Σ induced by Ωj

A(m),ord

Up(N,N′),Σ′
(log∞) (resp. Ωj

A(m),ord

Up(N,N′),Σ′
(log∞) ⊗

I
∂A(m),ord

Up(N,N′),Σ′
) for any N ′ ≥ N and Σ′ ∈ J (m),tor

n with (Σ′)ord = Σ. This is canonically

independent of the choices of N ′ and Σ′. The systems of sheaves {Ωj

A(m),ord,†
Up(N),Σ

(log∞)}

and {Ωj

A(m),ord,†
Up(N),Σ

(log∞) ⊗ I
∂A(m),ord,†

Up(N),Σ

} over {A(m),ord,†
Up(N),Σ} have actions of G

(m)
n (A∞)ord.

For g ∈ G(m)
n (A∞)ord the map

g : g∗Ωj

A(m),ord,†
(Up)′(N′),Σ′

(log∞) −→ Ωj

A(m),ord,†
Up(N),Σ

(log∞)

is an isomorphism.
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We will also write Ωj

∂(s)A(m),ord,†
Up(N),Σ

for the sheaf of j-forms on ∂(s)A(m),ord,†
Up(N),Σ . The system

{Ωj

∂(s)A(m),ord,†
Up(N),Σ

} over {∂(s)A(m),ord,†
Up(N),Σ} has an action of G

(m)
n (A∞)ord.

Furthermore if ρ is a representation of Ln,(n) on a finite dimensional Qp-vector

space, there is a locally free sheaf Ecan,†
Up(N),∆,ρ (resp. E sub,†

Up(N),∆,ρ) on X ord,†
Up(N),∆ induced by

Ecan
Up(N,N ′),∆′,ρ (resp. E sub

Up(N,N ′),∆′,ρ) for any N ′ ≥ N and ∆′ ∈ J tor
n with (∆′)ord = ∆.

This is canonically independent of the choices of N ′ and ∆′. The systems of sheaves
{Ecan,†

Up(N),∆,ρ} and {E sub,†
Up(N),∆,ρ} over {X ord,†

Up(N),∆} have actions of Gn(A∞)ord. There are

equivariant identifications

E sub,†
Up(N),∆,ρ

∼= Ecan,†
Up(N),∆,ρ ⊗ I∂X ord,†

Up(N),∆
,

where I∂X ord,†
Up(N),∆

denotes the sheaf of ideals in OX ord,†
Up(N),∆

defining ∂X ord,†
Up(N),∆. For

g ∈ Gn(A∞)ord the map

g : g∗Ecan,†
(Up)′(N ′),∆′,ρ −→ E

can,†
Up(N),∆,ρ

is an isomorphism. (Because the same is true over XUp(N,N ′),∆′ and hence over

X†Up(N,N ′),∆′ .)

We define H i(A(m),ord,†,Ωj(log∞)⊗ I) to be

lim−→
Up,N,Σ

H i(A(m),ord,†
Up(N),Σ ,Ω

j

A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

)

and H i(∂(s)A(m),ord,†,Ωj) to be

lim−→
Up,N,Σ

H i(∂(s)A(m),ord,†
Up(N),Σ ,Ω

j

∂(s)A(m),ord,†
Up(N),Σ

)

and H0(X ord,†, E sub
ρ ) to be

lim−→
Up,N,∆

H0(X ord,†
Up(N),∆, E

sub,†
Up(N),∆,ρ).

They are all smooth Gn(A∞)ord-modules.

Lemma 6.10. There are natural isomorphisms

H i(A(m),ord,†
Up(N),Σ ,Ω

j

A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

)

∼−→ H i(A(m),ord,†,Ωj(log∞)⊗ I)U
p(N)

and

H0(X ord,†
Up(N),∆, E

sub,†
Up(N),∆,ρ)

∼−→ H0(X ord,†, E sub
ρ )U

p(N).

Proof: Use lemmas 5.1, 5.6, 5.7, 5.3 and 6.9. �
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6.3.3. The Frobenius lift ςp and tr F : The inverse of ς∗p gives maps

ςp,∗Ω
j

A(m),ord,†
Up(N),Σ

(log∞)
∼−→ Ωj

A(m),ord,†
Up(N),Σ

(log∞)⊗O
A(m),ord,†
Up(N),Σ

,ς∗p OA(m),ord,†
Up(N),Σ

and
ςp,∗(Ω

j

A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

)
∼−→

Ωj

A(m),ord,†
Up(N),Σ

(log∞)⊗O
A(m),ord,†
Up(N),Σ

,ς∗p I∂A(m),ord,†
Up(N),Σ

.

The maps

• ςp : A(m),ord,†
Up(N),Σord → A(m),ord,†

Up(N),Σord ,

• and ςp : ∂(s)A(m),ord,†
Up(N),Σord → ∂(s)A(m),ord,†

Up(N),Σord

are finite, flat of degrees p(2m+n)n[F+:Q] and p(2m+n)n[F+:Q]−s, respectively. (Use the
finite flatness of

ςp : A
(m),ord

Up(N),Σord → A
(m),ord

Up(N),Σord

and
ςp : ∂(s)A

(m),ord

Up(N),Σord → ∂(s)A
(m),ord

Up(N),Σord

(see section 5.3), together with theorems 1.7(1) and 1.12 of [GK].)

As ςp : A(m),ord,†
Up(N),Σord → A(m),ord,†

Up(N),Σord is finite and flat we get a trace map

tr ςp : ςp,∗OA(m),ord,†
Up(N),Σ

−→ OA(m),ord,†
Up(N),Σ

.

Because ∂A(m),ord,†
Up(N),Σ has the same support as

A(m),ord,†
Up(N),Σ ×ςp,A(m),ord,†

Up(N),Σ

∂A(m),ord,†
Up(N),Σ ,

this trace map restricts to a map

tr ςp : ςp,∗I∂A(m),ord,†
Up(N),Σ

−→ I
∂A(m),ord,†

Up(N),Σ

.

(This is a consequence of the following fact: If R is a noetherian ring, if S is an
R-algebra, finite and free as an R-module, and if I and J are ideals of R and S
respectively with √

J =
√
IS,

then the trace map tr S/R maps J to I. To see this we may reduce to the case I = 0.
In this case every element of J is nilpotent and so has trace 0.)

Composing (ς∗p )−1 with tr ςp we get G
(m)
n (A∞)ord,×-equivariant maps

tr F : ςp,∗Ω
j

A(m),ord,†
Up(N),Σ

(log∞) −→ Ωj

A(m),ord,†
Up(N),Σ

(log∞).

and

tr F : ςp,∗(Ω
j

A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

) −→ Ωj

A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

.

We have
tr F ◦ ς∗p = p(n+2m)n[F+:Q].
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This induces endomorphisms

tr F ∈ End (H i(A(m),ord,†
Up(N),Σ ,Ω

j

A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

))

which commute with the action of Gn(A∞)ord,× and satisfy

tr F ◦ ςp = p(n+2m)n[F+:Q].

We obtain an element

tr F ∈ End (H i(A(m),ord,†,Ωj(log∞)⊗ I))

which commutes with the Gn(A∞)ord,×-action and satisfies

tr F ◦ ςp = p(n+2m)n[F+:Q].

Similarly the inverse of ς∗p gives maps

ςp,∗Ecan,†
Up(N),∆,ρ

∼−→ Ecan,†
Up(N),∆,ρ ⊗OXord,†

Up(N),∆

,ς∗p OX ord,†
Up(N),∆

and
ςp,∗E sub,†

Up(N),∆,ρ

∼−→ Ecan,†
Up(N),∆,ρ ⊗OXord,†

Up(N),∆

,ς∗p I∂X ord,†
Up(N),∆

.

Composing (ς∗p )−1 with tr ςp we get G
(m)
n (A∞)ord,×-equivariant maps

tr F : ςp,∗Ecan,†
Up(N),∆,ρ −→ E

can,†
Up(N),∆,ρ.

and
tr F : ςp,∗E sub,†

Up(N),∆,ρ −→ E
sub,†
Up(N),∆,ρ.

We have
tr F ◦ ς∗p = pn

2[F+:Q].

This induces compatible endomorphisms

tr F ∈ End (H0(X ord,†
Up(N),∆, E

can,†
Up(N),∆,ρ))

and
tr F ∈ End (H0(X ord,†

Up(N),∆, E
sub,†
Up(N),∆,ρ))

which commute with the action of Gn(A∞)ord,× and satisfy

tr F ◦ ςp = pn
2[F+:Q].

We obtain an element
tr F ∈ End (H0(X ord,†, E sub

ρ ))

which commutes with the Gn(A∞)ord,×-action and satisfies

tr F ◦ ςp = pn
2[F+:Q].

We remark that tr F is closely related to the operator often denoted Up: probably
they differ simply by a scalar multiple.
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6.4. The ordinary locus of the minimal compactification as a dagger space.

6.4.1. The ordinary locus as a dagger space: Suppose that Up is a neat open compact
subgroup of Gn(A∞,p) and that N2 ≥ N1 ≥ 0. We will write

X ord,min,†
Up(N1,N2)

for the dagger space associated to X ord,min
Up(N1,N2) as described in the paragraph be-

fore lemma 6.7. Then the system of dagger spaces {X ord,min,†
Up(N1,N2)} has an action of

Gn(A∞)ord.

If Up denotes the image in Gn(A∞,p) of (Up)′ ⊂ G
(m)
n (A∞,p) then there is a natural

map

A(m),ord,†
Up(N1,N2),Σ −→ X

ord,min,†
(Up)′(N1,N2).

These maps are G
(m)
n (A∞)ord-equivariant (as (Up)′, N1 and N2 vary).

Recall from section 5.1 that, if N ′2 ≥ N2, then the natural map

X ord,min
Up(N1,N ′2) −→ X

ord,min
Up(N1,N2)

restricts to an isomorphism

X
ord,min

Up(N1,N ′2)
∼−→ X

ord,min

Up(N1,N2)

and is etale in a neighbourhood of X
ord,min

Up(N1,N ′2). It follows from lemma 6.7 that

X ord,min,†
Up(N1,N ′2) −→ X

ord,min,†
Up(N1,N2)

is an isomorphism. We will denote this dagger space simply

X ord,min,†
Up(N1) .

The system of dagger spaces {X ord,min,†
Up(N) } has an action of Gn(A∞)ord.

Let eUp(N1,N2) denote the idempotent in(
∞⊕
i=0

H0(X
min

Up(N1,N2), ω
⊗(p−1)i)

)/
(HasseUp(N1,N2) − 1)

which is 1 on X
ord,min

Up(N1,N2) and 0 on

X
min

Up(N1,N2) −X
min,n-ord

Up(N1,N2) −X
min,ord

Up(N1,N2).

(The existence of eUp(N1,N2) follows from the results recalled in section 5.1.) Multi-
plying the terms of eUp(N1,N2) by suitable powers of HasseUp(N1,N2), we may suppose

that eUp(N1,N2) lies in H0(X
min

Up(N1,N2), ω
⊗(p−1)a) for any sufficiently large a, and that

eUp(N1,N2)/HasseUp(N1,N2) ∈ H0(X
min

Up(N1,N2), ω
⊗(p−1)(a−1)).
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Then

X
ord

Up(N1,N2) = Spec

(
∞⊕
i=0

H0(X
min

Up(N1,N2), ω
⊗(p−1)ai)

)/
(eUp(N1,N2) − 1).

For a sufficiently large we have H1(Xmin
Up(N1,N2), ω

⊗(p−1)a) = (0). In that case we can
lift eUp(N1,N2) to a non-canonical element

eUp(N1,N2) ∈ H0(Xmin
Up(N1,N2), ω

⊗(p−1)a).

Let Xmin
Up(N1,N2)[1/eUp(N1,N2)] denote the locus in Xmin

Up(N1,N2) where eUp(N1,N2) 6= 0. As

ω⊗(p−1)a is ample, Xmin
Up(N1,N2)[1/eUp(N1,N2)] is affine and so has the form

SpecZ(p)[T1, ..., Ts]/I

for some s and I. It is normal and flat over Z(p).
For r ∈ pQ≥0 let || ||r denote the norm on Z(p)[T1, ..., Ts] defined by

||
∑
~i

a~iT
~i||r = sup

~i

|a~i|pr
|~i|,

where ~i runs over Zs≥0 and |(i1, ..., is)| = i1 + ... + is. We will write Zp〈T1, ..., Ts〉r
for the completion of Z(p)[T1, ..., Ts] with respect to || ||r. Thus Zp〈T1, ..., Ts〉1 is the
p-adic completion of Z(p)[T1, ..., Ts] and also the p-adic completion of Zp〈T1, ..., Ts〉r
for any r ≥ 1. Set Qp〈T1, ..., Ts〉r = Zp〈T1, ..., Ts〉r[1/p], the completion of Q[T1, ..., Ts]
with respect to || ||r. In the case r = 1 we will drop it from the notation. We will
write Zp〈T1/r, ..., Ts/r〉1 for the || ||r unit-ball in Qp〈T1, ..., Ts〉r, i.e. for the set of
power series ∑

~i∈Zs≥0

a~i
~T
~i

where a~i ∈ Qp, and |a~i|p ≤ r−|
~i| for all ~i, and |a~i|pr|

~i| → 0 as |~i| → ∞. We will also
write

Qp〈T1, ..., Ts〉† =
⋃
r>1

Qp〈T1, ..., Ts〉r.

Let 〈I〉r denote the ideal of Zp〈T1, ..., Ts〉r generated by I and let 〈I〉′r denote the
intersection of 〈I〉1 with Zp〈T1, ..., Ts〉r. Then 〈I〉1 is the p-adic completion of I.
Moreover

Zp〈T1, ..., Ts〉1/〈I〉1
is normal and flat over Zp, and

Xord,min
Up(N1) = Spf Zp〈T1, ..., Ts〉1/〈I〉1.

Note that

Z(p)[T1, ..., Ts]/(I, p)
∼−→ Zp〈T1, ..., Ts〉r/(〈I〉r, p)

for all r ≥ 1. Thus (〈I〉r, p) = (〈I〉′r, p).
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We will also write 〈I〉r,Qp (resp. 〈I〉′r,Qp) for the Qp span of 〈I〉r (resp. 〈I〉′r) in

Qp〈T1, ..., Ts〉r. Then

SpQp〈T1, ..., Ts〉1/〈I〉1,Qp ⊂ SpQp〈T1, ..., Ts〉r/〈I〉′r,Qp ⊂ SpQp〈T1, ..., Ts〉r/〈I〉r,Qp

are all affinoid subdomains of Xmin,an
Up(N1,N2), the rigid analytic space associated to the

scheme Xmin
Up(N1,N2) × SpecQp. Thus they are normal. Also SpQp〈T1, ..., Ts〉r/〈I〉′r,Qp

and

SpQp〈T1, ..., Ts〉r/〈I〉r,Qp − SpQp〈T1, ..., Ts〉r/〈I〉′r,Qp
form an admissible open cover of SpQp〈T1, ..., Ts〉r/〈I〉r,Qp . (SpQp〈T1, ..., Ts〉r/〈I〉′r,Qp
is the union of the connected components of SpQp〈T1, ..., Ts〉r/〈I〉r,Qp which contain a
component of SpQp〈T1, ..., Ts〉1/〈I〉1,Qp . See proposition 8 of section 9.1.4 of [BGR].)
Moreover SpQp〈T1, ..., Ts〉1/〈I〉1,Qp is Zariski dense in SpQp〈T1, ..., Ts〉r/〈I〉r,Qp . In-
deed

Xan
Up(N1,N2) ∩ SpQp〈T1, ..., Ts〉1/〈I〉1

is Zariski dense in SpQp〈T1, ..., Ts〉r/〈I〉r,Qp , where Xan
Up(N1,N2), the rigid analytic space

associated to XUp(N1,N2) × SpecQp.
If 1 ≤ r′ < r then

SpQp〈T1, ..., Ts〉r′/〈I〉′r′,Qp ⊂ SpQp〈T1, ..., Ts〉r/〈I〉′r,Qp
and

SpQp〈T1, ..., Ts〉r′/〈I〉r′,Qp ⊂ SpQp〈T1, ..., Ts〉r/〈I〉r,Qp ,
and these are strict neighbourhoods. The natural maps

ir,r′ : Qp〈T1, ..., Ts〉r/〈I〉r,Qp −→ Qp〈T1, ..., Ts〉r′/〈I〉r′,Qp
and

i′r,r′ : Qp〈T1, ..., Ts〉r/〈I〉′r,Qp ↪→ Qp〈T1, ..., Ts〉r′/〈I〉′r′,Qp
are completely continuous. The latter is an inclusion. Moreover

(i′r,1)−1Zp〈T1, ..., Ts〉r/〈I〉1 = Zp〈T1, ..., Ts〉r/〈I〉′r.

Also write 〈I〉† for the ideal of Qp〈T1, ..., Ts〉† generated by I. Thus

〈I〉† =
⋃
r>1

〈I〉r,Qp =
⋃
r>1

〈I〉′r,Qp .

Moreover

Qp〈T1, ..., Ts〉†/〈I〉† = lim→
r>1

Qp〈T1, ..., Ts〉r/〈I〉r,Qp = lim→
r>1

Qp〈T1, ..., Ts〉r/〈I〉′r,Qp ,

and

X ord,min,†
Up(N1) = SpQp〈T1, ..., Ts〉†/〈I〉†.

(See for instance proposition 3.3.7 of [LeS]. For the meaning of Sp in the context of
dagger algebras see section 2.11 of [GK].) Thus we have the following lemma.

Lemma 6.11. X ord,min,†
Up(N) is affinoid.
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Suppose that ρ0 is a representation of Ln,(n) on a finite free Zp-module and let ρ
denote ρ0 base changed to Qp. There are Gn(A∞)ord-equivariant isomorphisms

H0(X ord,min,†
Up(N) , E sub,†

Up(N),ρ)
∼−→ H0(X ord,†

Up(N),∆, E
sub,†
Up(N),∆,ρ).

There are also natural Gn(A∞)ord,×-equivariant embeddings

H0(X ord,min,†
Up(N) , E sub,†

Up(N),ρ) ↪→ H0(Xord,min
Up(N) , E

ord,sub
Up(N),ρ0

)⊗Zp Qp.

We will set

H0(X ord,min,†, E sub
ρ )Qp =

(
lim
→Up,N

H0(X ord,min,†
Up(N) , E sub,†

Up(N),ρ)

)
⊗Qp Qp,

a smooth Gn(A∞)ord-module. From lemma 6.10 and the first observation of the last
paragraph, we see that

H0(X ord,min,†, E sub
ρ )

Up(N)

Qp
= H0(X ord,min,†

Up(N) , E sub,†
Up(N),ρ)Qp .

There is a Gn(A∞)ord,×-equivariant embedding

H0(X ord,min,†, E sub
ρ )Qp ↪→ H0(Xord,min, Eord,sub

ρ0
)Qp .

The coherent sheaf E sub
Up(N1,N2),ρ gives rise to a coherent sheaf E sub,an

Up(N1,N2),ρ on the rigid

space Xmin,an
Up(N1,N2). The inverse system {E sub,an

Up(N1,N2),ρ} is a system of coherent sheaves

with Gn(A∞)ord-action on {Xmin,an
Up(N1,N2)}.

6.4.2. The Frobenius lift ςp and tr F : We have a map

ς∗p : Zp〈T1, ..., Ts〉1/〈I〉1 −→ Zp〈T1, ..., Ts〉1/〈I〉1
such that

• ς∗p (Tj) ≡ (Tj)
p mod p,

• and there exists an r1 ∈ pQ>0 such that for all j = 1, ..., s the element ς∗p (Tj)
is in the image of Qp〈T1, ..., Ts〉r1/〈I〉r1 .

Thus (ς∗p (Tj) − T pj )/p ∈ Zp〈T1, ..., Ts〉r/〈I〉′r1 , and so is the image of some element

Gj(~T ) ∈ Zp〈T1, ..., Ts〉r1 . We have

ς∗p (Tj) ≡ (Tj)
p + pGj(T1, ..., Ts) mod 〈I〉1.

This formula then defines a map ς∗p : Zp[T1, ..., Ts]→ Zp〈T1, ..., Ts〉r1 such that

Zp[T1, ..., Ts]
ς∗p−→ Zp〈T1, ..., Ts〉r1

↓ ↓
Zp〈T1, ..., Ts〉1/〈I〉1

ς∗p−→ Zp〈T1, ..., Ts〉1/〈I〉1
commutes. Write Gj(~T ) =

∑
~i gj,~i

~T
~i. Choose I0 ∈ Z>0 such that

p−1||Gj||r1 < (
√
r1)I0

for all j = 1, ..., s and then choose r2 ∈ (1,
√
r1) ∩ pQ with

rI02 < p.
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If r ∈ [1, r2] ∩ pQ we have
||ς∗p (Tj)− (Tj)

p||r < 1.

(Because if |~i| ≥ I0 then ||pgj,~i ~T
~i||r ≤ (1/p)||Gj||r1(r/r1)I0 < 1, while for |~i| ≤ I0 we

have ||pgj,~i ~T
~i||r ≤ (1/p)rI0 < 1.) If r ∈ (1, r2] ∩ pQ and H ∈ Zp[T1, ..., Ts] we deduce

that
||ς∗pH −H(~T p)||r ≤ r−p||H||rp .

(We only need check this on monomials. Hence we only need check that if it is true
for H1 and H2 then it is also true for H1H2. For this one uses the formula

ς∗p (H1H2)− (H1H2)(~T p) = (ς∗pH1 −H1(~T p))(ς∗pH2 −H2(~T p))+

(ς∗pH1 −H1(~T p))H2(~T p) + (ς∗pH2 −H2(~T p))H1(~T p).)

Hence, if r ∈ (1, r2] ∩ pQ and H ∈ Zp[T1, ..., Ts] we deduce that

||ς∗pH||r = ||H||rp ,
and so ς∗p extends to an isometric homomorphism

ς∗p : Zp〈T1/r
p, ..., Ts/r

p〉1 −→ Zp〈T1/r, ..., Ts/r〉1.
Modulo p this map reduces to the Frobenius, which is finite and so

ς∗p : Zp〈T1/r
p, ..., Ts/r

p〉1 −→ Zp〈T1/r, ..., Ts/r〉1
is finite. (See section 6.3.2 of [BGR].) Thus we get an isometric, finite homomorphism
between normal rings

ς∗p : Qp〈T1, ..., Ts〉rp/〈I〉′rp,Qp −→ Qp〈T1, ..., Ts〉r/〈I〉′r,Qp ,
such that the diagram

Qp〈T1, ..., Ts〉rp/〈I〉′rp,Qp
ς∗p−→ Qp〈T1, ..., Ts〉r/〈I〉′r,Qp

↓ ↓
Qp〈T1, ..., Ts〉†/〈I〉†

ς∗p−→ Qp〈T1, ..., Ts〉†/〈I〉†
↓ ↓

Qp〈T1, ..., Ts〉1/〈I〉1,Qp
ς∗p−→ Qp〈T1, ..., Ts〉1/〈I〉1,Qp

commutes.
The map

ςp : SpQp〈T1, ..., Ts〉r/〈I〉′r,Qp −→ SpQp〈T1, ..., Ts〉rp/〈I〉′rp,Qp
is compatible with the map

ςp : Xmin,an
Up(N1,N2) −→ Xmin,an

Up(N1,N2−1).

This latter map is finite, and away from the boundary is flat of degree pn
2[F+:Q]. Thus

the pre-image of SpQp〈T1, ..., Ts〉rp/〈I〉′rp,Qp has the form SpB where B is a normal,

finite Qp〈T1, ..., Ts〉rp/〈I〉′rp,Qp algebra, and we have a factorization

ς∗p : Qp〈T1, ..., Ts〉rp/〈I〉′rp,Qp −→ B −→ Qp〈T1, ..., Ts〉r/〈I〉′r,Qp .
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For m a maximal ideal of Qp〈T1, ..., Ts〉rp/〈I〉′rp,Qp corresponding to a point of the

intersection Xan
Up(N1,N2) ∩ SpQp〈T1, ..., Ts〉1/〈I〉1 we see that

B/m = (Qp〈T1, ..., Ts〉1/〈I〉1)/ς∗pm = (Qp〈T1, ..., Ts〉r/〈I〉′r,Qp)/ς
∗
pm.

Thus for a Zariski dense set of maximal ideals m ∈ SpQp〈T1, ..., Ts〉rp/〈I〉′rp,Qp the
map

B −→ Qp〈T1, ..., Ts〉r/〈I〉′r,Qp
becomes an isomorphism modulo m. Hence for any minimal prime ℘ of the ring
Qp〈T1, ..., Ts〉rp/〈I〉′rp,Qp we have

B℘/℘ = (Qp〈T1, ..., Ts〉r/〈I〉′r,Qp)℘/℘.

(Choose bases over A℘/℘. Then this map being an isomorphism is equivalent to some
matrix having full rank. For m in a dense Zariski open set these bases reduce to bases
modulo m. So modulo a Zariski dense set of m this matrix has full rank, so it has
full rank.) As B is normal and Qp〈T1, ..., Ts〉r/〈I〉′r,Qp is finite over B, we see that

B = Qp〈T1, ..., Ts〉r/〈I〉′r,Qp ,

i.e.

ς−1
p SpQp〈T1, ..., Ts〉rp/〈I〉′rp,Qp = SpQp〈T1, ..., Ts〉r/〈I〉′r,Qp .

The sheaf E sub
Up(N1,N2),ρ induces a coherent sheaf E sub,†

Up(N1),ρ on X ord,min,†
Up(N1) , which does not

depend on N2. It equals the push forward from any X ord,†
Up(N1),∆ of the sheaf E sub,†

Up(N1),ρ.

The inverse system {E sub,†
Up(N),ρ} is a system of coherent sheaves with Gn(A∞)ord-action

on {X ord,min,†
Up(N1) }. The map

tr F : ςp,∗E sub,†
Up(N),∆,ρ −→ E

sub,†
Up(N),∆,ρ

over X ord,†
Up(N1),∆ induces a map

tr F : ςp,∗E sub,†
Up(N),ρ −→ E

sub,†
Up(N),ρ

over X ord,min,†
Up(N1) . This map does not depend on the choice of ∆ and is Gn(A∞)ord,×-

equivariant. It satisfies

tr F ◦ ςp = pn
2[F+:Q].

It induces a map

tr F ∈ End (H0(X ord,min,†
Up(N) , E sub,†

Up(N),ρ))

also satisfying

tr F ◦ ςp = pn
2[F+:Q].

We again remark that tr F is closely related to the operator often denoted Up—
probably they differ simply by a scalar multiple.

The isomorphisms

H0(X ord,min,†
Up(N) , E sub,†

Up(N),ρ)
∼−→ H0(X ord,†

Up(N),∆, E
sub,†
Up(N),∆,ρ)
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are tr F -equivariant. Moreover the space H0(X ord,min,†, E sub
ρ )Qp inherits an endomor-

phism tr F , which commutes with Gn(A∞)ord,× and satisfies tr F ◦ ςp = pn
2[F+:Q].

The sheaf E sub,an
Up(N1,N2),ρ restricted to the space SpQp〈T1, ..., Ts〉r/〈I〉′r,Qp corresponds

to a finitely generated module Er over the ring Qp〈T1, ..., Ts〉r/〈I〉′p,Qp , which is nat-

urally a Banach module. If r′ < r then

Er′ = Er ⊗Qp〈T1,...,Ts〉r/〈I〉′r,Qp ,i
′
r,r′

(Qp〈T1, ..., Ts〉r′/〈I〉′r′,Qp).

Then the map Er → Er′ , which we will also denote i′r,r′ , is completely continuous.
The map tr F extends to a continuous Qp〈T1, ..., Ts〉rp/〈I〉′rp,Qp linear map

tr : Er −→ Erp

for r ∈ [1, r2] ∩ pQ. We set

E† =
⋃
r>1

Er,

so that

E† = H0(X ord,min,†
Up(N1) , E sub,†

Up(N1),ρ).

We have that tr F |Er = tr. As tr is continuous and i′rp,r is completely continuous we
see that

tr F : Er −→ Er

and that this map is completely continuous. Thus each Er admits slope decomposi-
tions for tr F and hence by lemma 6.6 so does E† and E† ⊗Qp.

If a ∈ Q we thus have a well defined, finite dimensional subspace

H0(X ord,min,†
Up(N) , E sub,†

Up(N),ρ)Qp,≤a ⊂ H0(X ord,min,†
Up(N) , E sub,†

Up(N),ρ)⊗Qp Qp.

(Defined with respect to tr F .) We set

H0(X ord,min,†, E sub
ρ )Qp,≤a = lim

→Up,N
H0(X ord,min,†

Up(N) , E sub,†
Up(N),ρ)Qp,≤a,

so that there are Gn(A∞)ord,×-equivariant embeddings

H0(X ord,min,†, E sub
ρ )Qp,≤a ⊂ H0(X ord,min,†, E sub

ρ )Qp ↪→ H0(Xord,min, Eord,sub
ρ0

)Qp .

We have proved the following lemma. (The referee suggests, in politer terms, that
we have made a mountain out of a mole hill in proving this lemma and lemma 6.11.
The referee is probably correct. We are not very practiced at these sorts of arguments.
Neither lemma will come as any surprise to experts.)

Lemma 6.12. H0(X ord,min,†, E sub
ρ )Qp,≤a is an admissible Gn(A∞)ord,×-module.

Combining this with corollary 6.5 we obtain the following result.

Corollary 6.13. Suppose that ρ is a representation of Ln,(n) over Q, that a ∈ Q and
that Π is an irreducible Gn(A∞)ord,×-subquotient of

H0(X ord,min,†, E sub
ρ )Qp,≤a.
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Then there is a continuous semi-simple representation

Rp(Π) : GF −→ GL2n(Qp)

with the following property: If Π is unramified at a rational prime q 6= p (in the sense
of section 1.3) and if v|q is a prime of F , then

WD(Rp(Π)|GFv )F-ss ∼= recFv(BC (Πq)v| det |(1−2n)/2
v ).

We will next explain the consequences of these results for sheaves of differentials

on A
(m),ord,†
Up(N1,N2),Σ. But we first need to record a piece of commutative algebra.

Lemma 6.14. Suppose that A → B → C are reduced noetherian rings, with B a
finite flat A module of rank rB and C a finite flat A-module of rank rC. Suppose also
that the total ring of fractions of C is finite flat over the total ring of fractions of B.
Then rB|rC and

(rC/rB)tr B/A = tr C/A : B −→ A.

Proof: It suffices to check this after passing to total rings of fractions (i.e. localiza-
tions at the set of non-zero divisors). In this case B is free over A and C is free over
B, so the lemma is clear. �

Proposition 6.15. There are representations ρi,jm,s of Ln,(n) over Q with the follow-

ing property. If (Up(N),Σ) ∈ J (m),tor,ord
n and if (Up)′ denotes the image of Up in

Gn(A∞,p), then there is a spectral sequence with first page

Ei,j
1 = H0(X ord,min,†

(Up)′(N) , E
sub,†
(Up)′(N),ρi,jm,s

)⇒
H i+j(A(m),ord,†

Up(N),Σ ,Ω
s

A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

).

These spectral sequences are equivariant for the action of Gn(A∞)ord. The map

tr F on the H i+j(A(m),ord,†
Up(N),Σ ,Ω

s

A
(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

) is compatible with the map

pnm[F :Q]tr F on the H0(X ord,min,†
(Up)′(N) , E

sub,†
(Up)′(N),ρi,jm,s

).

Proof: Let π denote the map A(m),ord,†
Up(N),Σ → X

ord,min,†
(Up)′(N) . Lemmas 5.10 and 6.9 tell us

that there is a spectral sequence of coherent sheaves on X ord,min,†
Up(N) with first page

Ei,j
1 = E sub,†

(Up)′(N),ρi,jm,s
⇒ Ri+jπ∗(Ω

s

A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

).

The first assertion follows from lemma 6.11 and proposition 3.1 of [GK] (which tell
us that

Hk(X ord,min,†, E sub,†
ρi,jm,s

) = (0)

for k > 0).
For the last assertion we may replace Σ by a refinement and so reduce to the case

that there is a ∆ with ((Up)′,∆) ∈ J tor,ord
n and ((Up)′(N),∆) ≤ (Up(N),Σ). (Use
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lemma 5.6.) To avoid confusion we will write ςp,A or ςp,X depending on whether ςp is

acting on A(m),ord,†
Up(N),Σord or X ord,†

(Up)′(N),∆ord . We will also factorize ςp,A as

A(m),ord,†
Up(N),Σord

Φ−→ ς∗p,XA
(m),ord,†
Up(N),Σord

Ψ−→ A(m),ord,†
Up(N),Σord .

Write π′ for the map

π′ : A(m),ord,†
Up(N),Σord → X ord,†

(Up)′(N),∆ord

and π′′ for the map

π′′ : ς∗p,XA
(m),ord,†
Up(N),Σord → X ord,†

(Up)′(N),∆ord .

The sheaf Ecan,†
ρi,jm,s

on X ord,†
(Up)′(N),∆ord is Riπ′∗Fj, where

Fj = Ωj

X ord,†
(Up)′(N),∆ord

(log∞)⊗ Ωs−j
A(m),ord,†
Up(N),Σord/X

ord,†
(Up)′(N),∆ord

(log∞).

To prove the last sentence of the lemma it suffices to show that the diagrams

ςp,A,∗(Fj ⊗ (π′)∗I∂X ord,†
(Up)′(N),∆ord

) ←− Fj ⊗O
Xord,†

(Up)′(N),∆ord

,ς∗p,X
I∂X ord,†

(Up)′(N),∆ord

↓ ↓
ςp,A,∗(Fj ⊗ I∂A(m),ord,†

Up(N),Σord
) ←− Fj ⊗O

A(m),ord,†
Up(N),Σord

,ς∗p,A
I
∂A(m),ord,†

Up(N),Σord

and

Fj ⊗O
Xord,†

(Up)′(N),∆ord

,ς∗p,X
I∂X ord,†

(Up)′(N),∆ord

1⊗pnm[F :Q]tr−→ Fj ⊗O
Xord,†

(Up)′(N),∆ord

I∂X ord,†
(Up)′(N),∆ord

↓ ↓
Fj ⊗O

A(m),ord,†
Up(N),Σord

,ς∗p,A
I
∂A(m),ord,†

Up(N),Σord

1⊗tr−→ Fj ⊗O
A(m),ord,†
Up(N),Σord

I
∂A(m),ord,†

Up(N),Σord

commute. In the first diagram the upper horizontal map is the composite

Fj ⊗O
Xord,†

(Up)′(N),∆ord

,ς∗p,X
I∂X ord,†

(Up)′(N),∆ord

= Ψ∗((Ψ
∗Fj)⊗ (π′′)∗I∂X ord,†

(Up)′(N),∆ord
)

−→ Ψ∗Φ∗((Φ
∗Ψ∗Fj)⊗ (Φ∗(π′′)∗I∂X ord,†

(Up)′(N),∆ord
))

= ςp,A,∗((ς
∗
p,AFj)⊗ (π′)∗I∂X ord,†

(Up)′(N),∆ord
)

ς∗p,A−→ ςp,A,∗(Fj ⊗ (π′)∗I∂X ord,†
(Up)′(N),∆ord

),

and the lower horizontal map is

Fj ⊗O
A(m),ord,†
Up(N),Σord

,ς∗p,A
I
∂A(m),ord,†

Up(N),Σord

∼= ςp,A,∗((ς
∗
p,AFj)⊗ I∂A(m),ord,†

Up(N),Σord
)

ς∗p,A−→ ςp,A,∗(Fj ⊗ I∂A(m),ord,†
Up(N),Σord

).

We see that the first square tautologically commutes. The second square commutes
because the two maps

pnm[F :Q]tr : Ψ∗Oς∗p,XA(m),ord,†
Up(N),Σord

−→ OA(m),ord,†
Up(N),Σord
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and
Ψ∗Oς∗p,XA(m),ord,†

Up(N),Σord

Φ∗−→ ςp,A,∗OA(m),ord,†
Up(N),Σord

tr−→ OA(m),ord,†
Up(N),Σord

are equal. This in turn follows from lemma 6.14. �

Corollary 6.16. For all i and s the vector space H i(A(m),ord,†
Up(N),Σ ,Ω

s

A(m),ord,†
Up(N),Σ

(log∞) ⊗

I
∂A(m),ord,†

Up(N),Σ

) admits slope decompositions for tr F .

We write

H i(A(m),ord,†,Ωs(log∞)⊗ I∂A(m),ord,†)≤a
= lim→Up,N,ΣH

i(A(m),ord,†
Up(N),Σ ,Ω

s

A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

)≤a.

The next corollary now follows from the proposition and lemma 6.6.

Corollary 6.17. For any a ∈ Q there is a Gn(A∞)ord,×-equivariant spectral sequence
with first page Ei,j

1 :

H0(X ord,min,†, E sub
ρi,jm,s

)≤a ⇒ H i+j(A(m),ord,†,Ωs
A(m),ord,†(log∞)⊗ I∂A(m),ord,†)≤a+mn[F :Q].

Combining this with corollary 6.13 we obtain the following corollary.

Corollary 6.18. Suppose that Π is an irreducible Gn(A∞)ord,×-subquotient of

H i(A(m),ord,†,Ωs
A(m),ord,†(log∞)⊗ I∂A(m),ord,†)≤a ⊗Qp Qp

for some a ∈ Q. Then there is a continuous semi-simple representation

Rp(Π) : GF −→ GL2n(Qp)

with the following property: If Π is unramified at a rational prime q 6= p (in the sense
of section 1.3) and if v|q is a prime of F , then

WD(Rp(Π)|GFv )F-ss ∼= recFv(BC (Πq)v| det |(1−2n)/2
v ).
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6.5. Rigid cohomology.

Our main object of study will be the groups

H i
c−∂(A

(m),ord

Up(N),Σ) = Hi(A(m),ord,†
Up(N),Σ ,Ω

•
A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

),

where (Up(N),Σ) ∈ J (m),tor,ord
n . This can be thought of as a sort of rigid cohomology

ofA
(m),ord

Up(N),Σ with compact supports towards the toroidal boundary, but not towards the
non-ordinary locus. It seems plausible to us that this can be intrinsically attached to

the pair A
(m),ord

Up(N) ⊃ ∂A
(m),ord

Up(N) . Hence our notation. However we will not prove this, so
the reader is cautioned that our notation is nothing more than a short-hand, and the

group H i
c−∂(A

(m),ord

Up(N),Σ) must be assumed to depend on the pair A(m),ord,†
Up(N),Σ ⊃ ∂A(m),ord,†

Up(N),Σ .

We will also set

H i
c−∂(A

(m),ord
) = lim−→

Up,N,Σ

H i
c−∂(A

(m),ord

Up(N),Σ).

It has a smooth action of Gn(A∞)ord. The maps

tr F : ςp,∗Ω
j

A(m),ord,†
Up(N),Σ

(log∞) −→ Ωj

A(m),ord,†
Up(N),Σ

(log∞)

induce endomorphisms

tr F ∈ End (H i
c−∂(A

(m),ord

Up(N),Σ))

which commute with the action of Gn(A∞)ord,× and satisfy

tr F ◦ ςp = p(n+2m)n[F+:Q].

Lemma 6.19. There are natural isomorphisms

H i
c−∂(A

(m),ord

Up(N),Σ)
∼−→ H i

c−∂(A
(m),ord

)U
p(N).

Proof: Use lemmas 5.1, 5.6, 5.7 and 6.9. �

We will compute the group H i
c−∂(A

(m),ord

Up(N),Σ) in two ways. The first way will be
in terms of p-adic cusp forms and will allow us to attach Galois representations to

irreducible Gn(A∞)ord,×-sub-quotients of H i
c−∂(A

(m),ord
)⊗Qp Qp. The second way will

be geometrical, in terms of the stratification of the boundary. In this second approach

the cohomology of the locally symmetric spaces associated to L
(m)
n,(n),lin will appear.

Here is our first calculation.

Lemma 6.20. The vector spaces H i
c−∂(A

(m),ord

Up(N),Σ) admit slope decompositions for tr F .
If moreover we set

H i
c−∂(A

(m),ord
)≤a = lim−→

Up,N,Σ

H i
c−∂(A

(m),ord

Up(N),Σ)≤a,

then there is a Gn(A∞)ord,×-spectral sequence with first page

Ei,j
1 = H i(A(m),ord,†,Ωj(log∞)⊗ I∂A(m),ord,†)≤a ⇒ H i+j

c−∂(A
(m),ord

)≤a.
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Proof: This follows from lemma 6.6, corollary 6.16 and the spectral sequence

Ei,j
1 = H i(A(m),ord,†

Up(N),Σ ,Ω
j

A(m),ord,†
Up(N),Σ

(log∞)⊗ I
∂A(m),ord,†

Up(N),Σ

)⇒ H i+j
c−∂(A

(m),ord

Up(N),Σ).

�

And here is our second calculation.

Lemma 6.21. There are Gn(A∞)ord,×-equivariant spectral sequences with first page

Ei,j
1 = H i

rig(∂(j)A
(m),ord

Up(N),Σ)⇒ H i+j
c−∂(A

(m),ord

Up(N),Σ).

Moreover the action of Frobenius on the left hand side is compatible with the action
of ςp on the right hand side.

Proof: By lemmas 2.3 and 6.9 the group H i
c−∂(A

(m),ord

Up(N),Σ) is isomorphic to the hyper-
cohomology of the double complex

Hi(A(m),ord,†
Up(N),Σ , i

(s)
∗ Ωr

∂(s)A(m),ord,†
Up(N),Σ

),

and so there is a spectral sequence with first page

Ei,j
1 = Hi(∂(j)A(m),ord,†

Up(N),Σ ,Ω
•
∂(j)A(m),ord,†

Up(N),Σ

)⇒ H i
c−∂(A

(m),ord

Up(N),Σ).

However, by lemma 6.8 and the quasi-projectivity of ∂(j)A(m),ord
Up(N),Σ, we see that there

are G
(m)
n (A∞)ord-equivariant isomorphisms

Hi(∂(j)A(m),ord,†
Up(N),Σ ,Ω

•
∂(j)A(m),ord,†

Up(N),Σ

) ∼= H i
rig(∂(j)A

(m),ord

Up(N),Σ),

and that under this identification ςp corresponds to Frobenius (because ςp equals
Frobenius on the special fibre). �

Corollary 6.22. H i
c−∂(A

(m),ord

Up(N),Σ) is finite dimensional. Moreover

H i
c−∂(A

(m),ord

Up(N),Σ) = H i
c−∂(A

(m),ord

Up(N),Σ)≤a,

for some a, and so

H i
c−∂(A

(m),ord
) =

⋃
a∈Q

H i
c−∂(A

(m),ord
)≤a.

Proof: The first assertion follows from the lemma and theorem 3.1 of [Bert2]. The
second assertion follows because tr F ◦ ςp = pn(n+2m)[F+:Q] and so by the first part tr F

must be an automorphism of H i
c−∂(A

(m),ord

Up(N),Σ).�

Combining this with corollary 6.18 and lemma 6.20 we obtain the following corol-
lary.
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Corollary 6.23. Suppose that Π is an irreducible Gn(A∞)ord,×-subquotient of

H i
c−∂(A

(m),ord
)⊗Qp Qp.

Then there is a continuous semi-simple representation

Rp(Π) : GF −→ GL2n(Qp)

with the following property: If Π is unramified at a rational prime q 6= p (in the sense
of section 1.3) and if v|q is a prime of F . Then

WD(Rp(Π)|GFv )F-ss ∼= recFv(BC (Πq)v| det |(1−2n)/2
v ).

Corollary 6.24. The eigenvalues of ςp on H i
c−∂(A

(m),ord
)Qp are Weil pw-numbers for

some w ∈ Z≥0 (depending on the eigenvalue). We will write

W0H
i
c−∂(A

(m),ord
)Qp

for the subspace of H i
c−∂(A

(m),ord
)Qp spanned by generalized eigenspaces of ςp with

eigenvalue a p0-Weil number.
For i > 0 there is a Gn(A∞)ord-equivariant isomorphism

lim−→
Up,N,Σ

H i(|S(∂A
(m),ord

Up(N),Σ)|,Qp)
∼−→ W0H

i+1
c−∂(A

(m),ord
)Qp .

(For i = 0 there is still a surjection.)

Proof: By theorem 2.2 of [Ch], the eigenvalues of the Frobenius endomorphism

on H i
rig(∂(j)A

(m),ord

Up(N),Σ) are all Weil pw-numbers for some w ∈ Z≥i (depending on the
eigenvalue). The first part of the corollary follows.

It follows moreover that W0H
i
c−∂(A

(m),ord

Up(N),Σ)Qp is the cohomology of the complex

... −→ H0
rig(∂(i)A

(m),ord

Up(N),Σ,Qp) −→ H0
rig(∂(i+1)A

(m),ord

Up(N),Σ,Qp) −→ ...

However by proposition 8.2.15 of [LeS]

H0
rig(∂(i)A

(m),ord

Up(N),Σ,Qp) ∼= Qπ0(∂(i)A
(m),ord
Up(N),Σ×SpecFp)

p ,

and so the cohomology of the above complex becomes

ker(H0
rig(A

(m),ord

Up(N),Σ,Qp) −→ H0(|S(∂A
(m),ord

Up(N),Σ)|,Qp)) in degree 0

H0(|S(∂A
(m),ord

Up(N),Σ)|,Qp)/ImH0
rig(A

(m),ord

Up(N),Σ,Qp) in degree 1

H i−1(|S(∂A
(m),ord

Up(N),Σ)|,Qp) in degree i > 1.

The last part of the corollary follows. �

The discussion at the end of section 5.3 shows that there are Gn(A∞)ord-equivariant
open embeddings

T
(m),ord
Up(N),=n ↪→ |S(∂A

(m),ord

Up(N),Σ)|.
Thus the following corollary follows by applying lemma 1.7 and corollary 1.6.
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Corollary 6.25. For i > 0,

H i
Int(T

(m),ord
=n ,Qp) ∼= Ind

G
(m)
n (A∞,p)

P
(m),+
n,(n)

(A∞,p)
H i

Int(T
(m)
(n) ,Qp)

Z×p

is a Gn(A∞)ord subquotient of W0H
i+1
c−∂(A

(m),ord

n )Qp.

Combining this proposition with corollary 6.23 (and using lemma 1.1) we deduce
the following consequence.

Corollary 6.26. Suppose that i > 0 and that π is an irreducible Ln,(n),lin(A∞)-

subquotient of H i
Int(T

(m)
(n) ,Qp). Then there is a continuous semi-simple representation

Rp(π) : GF −→ GL2n(Qp)

with the following property: Suppose that q 6= p is a rational prime which either splits
in F0 or is unramified in F . Suppose further that π is unramified at all primes of F
above q. If v|q is a prime of F , then

Rp(π)|F-ss
WFv

∼= recFv(πv| det |(1−n)/2
v )⊕ recFcv(πcv| det |(1−n)/2

cv )∨,cε1−2n
p .

Combining this with corollary 1.9 we obtain the following result.

Corollary 6.27. Suppose that n > 1, that ρ is an irreducible algebraic representation
of Ln,(n),lin on a finite dimensional C-vector space, and that π is a cuspidal automor-
phic representation of Ln,(n),lin(A) so that π∞ has the same infinitesimal character
as ρ∨. Then, for all sufficiently large integers N , there is a continuous, semi-simple
representation

Rp,ı(π,N) : GF −→ GL2n(Qp)

with the following property: Suppose that q 6= p is a rational prime which either splits
in F0 or is unramified in F . Suppose further that π is unramified at all primes of F
above q. If v|q is a prime of F , then

Rp,ı(π,N)|F-ss
WFv

= ı−1recFv(πv| det |(1−n)/2
v )⊕ (ı−1recFcv(πcv| det |(1−n)/2

cv ))∨,cε1−2n−2N
p .

Proof: Take
Rp,ı(π,N) = Rp(ı

−1(π∞|| det ||N))⊗ ε−Np .

�
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7. Galois representations.

In order to improve upon corollary 6.27 it is necessary to apply some simple group
theory. To this end, let Γ be a topological group and let F be a dense set of elements
of Γ. Let k be an algebraically closed, topological field of characteristic 0 and let
d ∈ Z>0.

Let

µ : Γ −→ k×

be a continuous homomorphism such that µ(f) has infinite order for all f ∈ F. For
f ∈ F let E1

f and E2
f be two d-element multisets of elements of k×. Let M be an

infinite subset of Z. For m ∈M let

ρm : Γ −→ GL2d(k)

be a continuous semi-simple representation such that for every f ∈ F the multiset of
roots of the characteristic polynomial of ρm(f) equals

E1
f q E2

fµ(f)m.

Suppose that M′ is a finite subset of M. Let GM′ denote the Zariski closure in
Gm ×GLM

′

2d of the image of

µ⊕
⊕
m∈M′

ρm.

It is a, possibly disconnected, reductive group. There is a natural continuous homo-
morphism

ρM′ = µ×
∏
m∈M′

ρm : Γ −→ GM′(k).

Note that ρM′(F) is Zariski dense in GM′ . We will use µ for the character of GM′
which is projection to Gm. For m ∈M′ we will let

Rm : GM′ −→ GL2d

denote the projection to the factor indexed by m.

Lemma 7.1. For every g ∈ GM′(k) there are two d-element multisets Σ1
g and Σ2

g of
elements of k× such that for every m ∈M′ the multiset of roots of the characteristic
polynomial of Rm(g) equals

Σ1
g q Σ2

gµ(g)m.

Proof: It suffices to show that the subset of k× × GLM′2d (k) consisting of elements
(t, (gm)m∈M′) such that there are d-element multisets Σ1 and Σ2 of elements of k×

such that for all m ∈M′ the multiset of roots of the characteristic polynomial of gm
equals Σ1 qΣ2tm, is Zariski closed. Let Pol2d denote the space of monic polynomials
of degree 2d. It even suffices to show that the subset X of k××PolM

′

2d (k) consisting of
elements (t, (Pm)m∈M′) such that there are d-element multisets Σ1 and Σ2 of elements
of k such that for all m ∈M′ the multiset of roots of Pm equals Σ1qΣ2tm, is Zariski
closed.
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There is a natural finite map

π : Aff2d −→ Pol2d
(αi) 7−→

∏
i(T − αi).

If
(σm) ∈ SM′2d ,

where S2d denotes the symmetric group on 2d letters, define V(σm) to be the set of

(t, (am,i)) ∈ Gm × (Aff2d)M
′

such that, for all m,m′ ∈M′ we have

am,σmi = am′,σm′ i

if i = 1, .., d and
am,σmi = am′,σm′ it

m′−m

if i = d+ 1, ..., 2d. Then V(σm) is closed in Gm × (Aff2d)M
′
. Moreover

X =
⋃

(σm)∈SM′2d

(1× πM′)V(σm).

The lemma now follows from the finiteness of 1× πM′ . �

Corollary 7.2. If ∅ 6=M′ ⊂M′′ are finite subsets of M then GM′′
∼→ GM′.

Proof: Suppose that g is in the kernel of the natural map

GM′′ →→ GM′ .

Then for all m ∈ M′′ the only eigenvalue of Rm(g) is 1. Thus g must be unipotent.
However ker(GM′′ →→ GM′) is reductive and so must be trivial. �

Thus we can write G for GM′ without danger of confusion.

Corollary 7.3. For every g ∈ G(k) there are two d-element multisets Σ1
g and Σ2

g of
elements of k× such that for every m ∈M the multiset of roots of the characteristic
polynomial of Rm(g) equals

Σ1
g q Σ2

gµ(g)m.

Moreover if µ(g) has infinite order then the multisets Σ1
g and Σ2

g are unique.

Proof: Choose non-empty finite subsets

M′
1 ⊂M′

2 ⊂ ... ⊂M
with

M =
∞⋃
i=1

M′
i.

For each i we can find two d-element multisets Σ1
g,i and Σ2

g,i of elements of k× such
that for every m ∈M′

i the multiset of roots of the characteristic polynomial of Rm(g)
equals

Σ1
g,i q Σ2

g,iµ(g)m.
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Let m1 ∈M′
1 and let Σ denote the set of eigenvalues of Rm1(g). Then, for every i,

the multiset Σ1
g,i consists of elements of Σ and the multiset Σ2

g,i consists of elements
of Σµ(g)−m1 . Thus there are only finitely many possibilities for the pair of multisets
(Σ1

g,i,Σ
2
g,i) as i varies. Hence some such pair (Σ1

g,Σ
2
g) occurs infinitely often. This

pair satisfies the requirements of the corollary.
For uniqueness suppose that Σ1,′

g and Σ2,′
g is another such pair of multisets. Choose

m ∈M with µ(g)m 6= α/β for any α, β ∈ Σ1
g q Σ2

g q Σ1,′
g q Σ2,′

g . Then the equality

Σ1
g q Σ2

gµ(g)m = Σ1,′
g q Σ2,′

g µ(g)m

implies that Σ1,′
g = Σ1

g and Σ2,′
g = Σ2

g. �

The connected component Z(G)0 of the centre of G is a torus.

Lemma 7.4. The character µ is non-trivial on Z(G)0.

Proof: If µ were trivial on Z(G0)0 then it would be trivial onG0 (becauseG0/Z(G0)0

is semi-simple), and so µ would have finite order, a contradiction. Thus µ|Z(G0)0 is
non-trivial.

The space

X∗(Z(G0)0)⊗Z Q
is a representation of the finite group G/G0 and we can decompose

X∗(Z(G0)0)⊗Z Q = (X∗(Z(G)0)⊗Z Q)⊕ Y

where Y is a Q[G/G0]-module with

Y G/G0

= (0).

But

µ|Z(G0)0 ∈ X∗(Z(G0)0)G/G
0 ⊂ X∗(Z(G)0)⊗Z Q

is non-trivial, and so µ|Z(G)0 is non-trivial. �

For m ∈ M let Xm denote the 2d-element multiset of characters of Z(G)0 which
occur in Rm (taken with their multiplicity). If g ∈ G then we will write Y(g)m for the
2d-element multiset of pairs (χ, a), where χ is a character of Z(G)0 and a is a root of
the characteristic polynomial of g acting on the χ eigenspace of Z(G)0 in Rm. (The
pair (χ, a) occurs with the same multiplicity as a has as a root of the characteristic
polynomial of g acting on the χ-eigenspace of Rm.)

If Y ⊂ Y(g)m and if ψ ∈ X∗(G) then we will set

Yψ = {(χψ, aψ(g)) : (χ, a) ∈ Y}.

We warn the reader that this depends on g and not just on the set Y.

Lemma 7.5. Suppose that T/k is a torus and that X is a finite set of non-trivial
characters of T . Let A be a finite subset of k×. Then we can find t ∈ T (k) such that
χ(t) 6= a for all χ ∈ X and a ∈ A.
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Proof: Let ( , ) denote the usual perfect pairing

X∗(T )×X∗(T ) −→ Z.
We can find ν ∈ X∗(T ) such that (χ, ν) 6= 0 for all χ ∈ X. Thus we are reduced to
the case T = Gm, in which case we may take t to be any element of k× that does not
lie in the divisible hull of the subgroup H of k× generated by A. (For example we
can take t to be a rational prime such that all elements of a finite set of generators
of H ∩Q× are units at t.) �

Corollary 7.6. Suppose that T/k is a torus and that X is a finite set of characters
of T . Then we can find t ∈ T (k) such that if χ 6= χ′ lie in X then

χ(t) 6= χ′(t).

Lemma 7.7. If m,m′,m′′ ∈M, then we can decompose

Y(g)m = Y(g)1
m,m′,m′′ qY(g)2

m,m′,m′′

into two d-element multisets, such that

Y(g)m′ = Y(g)1
m,m′,m′′ qY(g)2

m,m′,m′′µ
m′−m

and
Y(g)m′′ = Y(g)1

m,m′,m′′ qY(g)2
m,m′,m′′µ

m′′−m.

If µm−m
′ 6= χ/χ′ for all χ, χ′ ∈ Xm then the equation

Y(g)m′ = Y(g)1
m,m′,m′′ qY(g)2

m,m′,m′′µ
m′−m

uniquely determines this decomposition.

Proof: Choose t ∈ Z(G)0(k) such that aχ(t) 6= a′χ′(t) for (χ, a) 6= (χ′, a′) with

(χ, a), (χ′, a′) ∈ Y(g)m ∪Y(g)mµ
m′−m ∪Y(g)mµ

m′′−m ∪Y(g)m′ ∪Y(g)m′′ .

(Note that it suffices to choose t ∈ Z(G)0(k) such that for

(χ, a), (χ′, a′) ∈ Y(g)m ∪Y(g)mµ
m′−m ∪Y(g)mµ

m′′−m ∪Y(g)m′ ∪Y(g)m′′ ,

with χ 6= χ′ we have (χ/χ′)(t) 6= a′/a.) We can decompose

Y(g)m = Y(g)1
m,m′,m′′ qY(g)2

m,m′,m′′

into two d-element multisets, such that

{aχ(t) : (χ, a) ∈ Y(g)1
m,m′,m′′} = Σ1

gt

and
{aχ(t) : (χ, a) ∈ Y(g)2

m,m′,m′′µ
−m} = Σ2

gt.

Then

{aχ(t) : (χ, a) ∈ Y(g)m′} =
{aχ(t) : (χ, a) ∈ Y(g)1

m,m′,m′′} q {aχ(t) : (χ, a) ∈ Y(g)2
m,m′,m′′µ

m′−m}
and

{aχ(t) : (χ, a) ∈ Y(g)m′′} =
{aχ(t) : (χ, a) ∈ Y(g)1

m,m′,m′′} q {aχ(t) : (χ, a) ∈ Y(g)2
m,m′,m′′µ

m′′−m}.
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It follows that
Y(g)m′ = Y(g)1

m,m′,m′′ qY(g)2
m,m′,m′′µ

m′−m

and
Y(g)m′′ = Y(g)1

m,m′,m′′ qY(g)2
m,m′,m′′µ

m′′−m.

If µm−m
′ 6= χ/χ′ for all χ, χ′ ∈ Xm then

Y(g)1
m,m′,m′′ = Y(g)m ∩Y(g)m′ ,

so the uniqueness assertion is clear. �

Corollary 7.8. If m ∈M, then we can uniquely decompose

Y(g)m = Y(g)1
m qY(g)2

m

into two d-element multisets, such that for all m′ ∈M we have

Y(g)m′ = Y(g)1
m qY(g)2

mµ
m′−m.

Proof: Choose m′ such that µm−m
′ 6= χ/χ′ for all χ, χ′ ∈ Xm. Then we see that for

all m′′,m′′′ ∈M we have

Y(g)1
m,m′,m′′ = Y(g)1

m,m′,m′′′

and
Y(g)2

m,m′,m′′ = Y(g)2
m,m′,m′′′ .

Then we can simply take Y(g)im = Y(g)im,m′,m′′ . �

Corollary 7.9. For all m,m′ ∈M we have

Y(g)1
m′ = Y(g)1

m

and
Y(g)2

m′ = Y(g)2
mµ

m′−m.

Proof: It is immediate from the previous corollary that Y(g)1
m and Y(g)2

mµ
m′−m

have the properties that uniquely characterize Y(g)1
m′ and Y(g)2

m′ . �

Corollary 7.10. For all g ∈ G and m ∈M and for i = 1, 2 we have

Y(1)im = {(χ, 1) : ∃a, (χ, a) ∈ Y(g)im}.

Proof: It is again immediate that {(χ, 1) : ∃a, (χ, a) ∈ Y(g)1
m} and {(χ, 1) :

∃a, (χ, a) ∈ Y(g)2
m} have the properties that uniquely characterize Y(1)1

m and Y(1)2
m.

�

We set
Xi
m = {χ : (χ, 1) ∈ Y(1)im}.

Note that
X1
m′ = X1

m

and that
X2
m′ = X2

mµ
m′−m.
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Corollary 7.11. For all but finitely many m ∈ M the multisets X1
m and X2

m are
disjoint.

Let M′ denote the set of m ∈M such that X1
m and X2

m are disjoint. Then we see
that for m ∈M′ we have

Y(g)im = {(χ, a) ∈ Y(g)m : χ ∈ Xi
m}.

Moreover for m ∈M′ we may decompose

Rm = R1
m ⊕R2

m

where Ri
m is the sum of the χ-eigenspaces of Z(G)0 for χ ∈ Xi

m. We see that the
multiset of roots of the characteristic polynomial of Ri

m(g) equals

{a : (χ, a) ∈ Y(g)im}.
Thus R1

m is independent of m ∈ M′, as is R2
mµ
−m. Denote these representations of

G by r1 and r2, so that
Rm
∼= r1 ⊕ r2µ

m

for all m ∈ M′. From corollary 7.3 (applied to M′) we see that if g ∈ G and µ(g)
has infinite order then Σi

g is the multiset of roots of the characteristic polynomial of

ri(g). Thus we have proved the following result.

Proposition 7.12. Keep the notation and assumptions of the first two paragraphs
of this section. Then there are continuous semi-simple representations

ρi : Γ −→ GLd(k)

for i = 1, 2 such that for all f ∈ F the multiset of roots of the characteristic polynomial
of ρi(f) equals E if .

This proposition allows us to deduce our main theorem from corollary 6.27.

Theorem 7.13. Suppose that π is a cuspidal automorphic representation of GLn(AF )
such that π∞ has the same infinitesimal character as an algebraic representation of
RSFQGLn. Then there is a continuous semi-simple representation

rp,ı(π) : GF −→ GLn(Qp)

with the following property: Suppose that q 6= p is a rational prime which either splits
in F0 or is unramified in F . Suppose further that π is unramified at all primes of F
above q. If v|q is a prime of F , then

rp,ı(π)|F-ss
WFv

= ı−1recFv(πv| det |(1−n)/2
v ).

Proof: We may suppose that n > 1, as in the case n = 1 the result is well known.
Let S denote the set of rational primes above which F or π ramifies together with
p; and let GF,S denote the Galois group over F of the maximal extension of F

unramified outside S. Apply proposition 7.12 to Γ = GF,S, and k = Qp, and
µ = ε−2

p , and M consisting of all sufficiently large integers, and ρm = Rp,ı(π,m)
(as in theorem 6.27), and F the set of Frobenius elements at primes not above
S, and E1

Frobv
equal to the multiset of roots of the characteristic polynomial of
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ı−1recFv(πv| det |(1−n)/2
v )(Frobv), and E2

Frobv
equal to the multiset of roots of the char-

acteristic polynomial of ı−1recFcv(πcv| det |(−1+3n)/2
cv )(Frob−1

cv ). �

Corollary 7.14. Suppose that E is a totally real or CM field and that π is a cuspidal
automorphic representation such that π∞ has the same infinitesimal character as
an algebraic representation of RSEQGLn. Then there is a continuous semi-simple
representation

rp,ı(π) : GE −→ GLn(Qp)

such that, if q 6= p is a rational prime above which π is unramified and if v|q is a
prime of E, then rp,ı(π) is unramified at v and

rp,ı(π)|F-ss
WEv

= ı−1recEv(πv| det |(1−n)/2
v ).

Proof: This can be deduced from theorem 7.13 by using lemma 1 of [So]. (This is
the same argument used in the proof of theorem VII.1.9 of [HT].) �
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Appendix A. Guide to notation

As the paper contains a lot of different notations, we will informally summarize
some of the principal notations in this section. We hope that this will help the reader.
Formal definitions will be given in the main body of the paper.

A.1. Shimura varieties.

We fix a totally real field F+, an imaginary quadratic field F0 and let F denote their
composite. We also fix a prime p which splits in F0.

We will consider a quasi-split unitary similitude group Gn/Q defined with respect
to (the trace of) the skew-hermitian form on Vn = F 2n

〈x, y〉n = tr F/Q(txJn
cy)

where Jn is an anti-diagonal matrix with 1’s in the first n rows and −1’s in the last
n rows. The similitude factor ν : Gn → Gm. (See section 1.1.) For U ⊂ Gn(A∞)
a neat open compact subgroup we have a corresponding Shimura variety Xn,U and
over it a universal abelian scheme Auniv, which is unique up to unique quasi-isogeny.
The system {Xn,U} has an action of Gn(A∞). (See section 3.1.)

We will also consider the group

G(m)
n = Gn n RSFQHom (Gm

a ,G2n
a ).

It has a (left) action of RSFQGLm. (See section 1.1.) For U ⊂ G
(m)
n (A∞) a neat

open compact subgroup we have the corresponding Kuga-Sato variety A
(m)
n,U which is

smooth and projective over Xn,U ′ , where U ′ denotes the projection of U . The system

of schemes {A(m)
n,U} has a right action of G

(m)
n (A∞) and a left action of GLm(F ), which

don’t commute. (See section 3.2.)
We will also need to consider integral models of these varieties over Z(p), but only

for certain level structures at p. To define these level structures we give Gn the
integral structure coming from the (self-dual) lattice Λn = (D−1

F )n ⊕OnF ⊂ F 2n. We

give G
(m)
n a compatible integral structure so that

G(m)
n (Z) = Gn(Z) n ((D−1

F )n ⊕OnF )m.

We will only consider integral models for Shimura varieties with level Up(N1, N2),
where N2 ≥ N1 ≥ 0 are integers and Up is a neat open compact subgroup of Gn(A∞,p)
or G

(m)
n (A∞,p). Here Up(N1, N2) = Up ×Up(N1, N2)n where Up(N1, N2)n ⊂ Gn(Zp) is

the subgroup of matrices of the form(
µ1n mod pN1 ∗
0 mod pN2 1n mod pN1

)
,

or Up(N1, N2) = Up×Up(N1, N2)
(m)
n where Up(N1, N2)

(m)
n ⊂ G

(m)
n (Zp) is the subgroup

of matrices of the form(
µ1n mod pN1 ∗
0 mod pN2 1n mod pN1

)(
∗

0 mod pN1

)
.
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(See section 1.1.)
We will consider a certain integral model X ord

n,Up(N1,N2) of Xn,Up(N1,N2). (See section

3.1.) Although its generic fibre is all of Xn,Up(N1,N2), its special fibre consists only of
points parameterising ordinary abelian schemes with a level structure with respect
to which the distinguished sub-group scheme of order pN2[F :Q]n is connected. Thus
for example if N ′2 > N2 then X ord

n,Up(N1,N ′2) → X ord
n,Up(N1,N2) is not finite, because we

are only including some of the possible Up(N1, N
′
2)-level structures extending a given

Up(N1, N2)-level structure. We denote the universal abelian scheme over X ord
n,Up(N1,N2)

by Auniv. It is uniquely defined up to prime-to-p quasi-isogeny. The action of the
whole group Gn(A∞) on {Xn,U} does not extend to an action on {X ord

n,Up(N1,N2)}.
However the action of a sub-semigroup

Gn(A∞)ord = Gn(A∞,p)× ςZ≥0
p P+

n,(n)(Zp)

does extend. Here P+
n,(n) denotes the subgroup of Gn consisting of elements of the

form (
∗ ∗

0n×n ∗

)
(over Q this defines a maximal parabolic subgroup) and ςp denotes the element(

p−11n 0
0 1n

)
.

We write Gn(A∞)ord,× for the maximal subgroup of the semi-group Gn(A∞)ord. We
will also write

Up(N1) = Up(N1, N2) ∩Gn(A∞)ord,×

which is independent of N2. (See section 1.2.)
The formal completion of X ord

n,Up(N1,N2) along its Fp-fibre only depends on Up(N1) =

Up(N1, N2) ∩ Gn(A∞)ord,×, and so we will denote it Xord
n,Up(N1). We will also denote

its reduced subscheme X
ord

n,Up(N1). The systems {Xord
n,Up(N1)} and {Xord

n,Up(N1)} also have

actions of Gn(A∞)ord. (See section 3.1.)

We will also consider a certain integral model A(m),ord
n,Up(N1,N2) of A

(m)
n,Up(N1,N2). Note

that A(m),ord
n,Up(N1,N2) is smooth and projective over X ord

n,(Up)′(N1,N2), where (Up)′ denotes

the image of Up in Gn(A∞,p). The system of schemes {A(m),ord
n,Up(N1,N2)} has an action of

the semi-group

G(m)
n (A∞)ord = G(m)

n (A∞,p)× ςZ≥0
p P

(m),+
n,(n) (Zp) ⊂ G(m)

n (A∞),

where P
(m),+
n,(n) denotes the subgroup of G

(m)
n consisting of elements of the form(

∗ ∗
0n×n ∗

)(
∗
∗

)
.
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We also write G
(m)
n (A∞)ord,× for the maximal subgroup of the semi-group G

(m)
n (A∞)ord

and
Up(N1) = Up(N1, N2) ∩G(m)

n (A∞)ord,×.

It also has an action of GLm(OF,(p)). The formal completion of A(m)
n,Up(N1,N2) along its

Fp-fibre depends only on Up(N1), so we will denote it A
(m),ord
n,Up(N1). We will also denote

its special fibre A
(m),ord

n,Up(N1). (See sections 1.2 and 3.2.)

We will write Ln,(n) for the subgroup of P+
n,(n) consisting of matrices of the form(

∗ 0n×n
0n×n ∗

)
.

We let Std denote the representation of Ln,(n) over Z which sends the above matrix

to the lower left n× n-block in RSOFZ GLn ⊂ GLn[F :Q]. In fact

ν × Std : Ln,(n)
∼−→ Gm × RSOFZ GLn.

We will let Tn denote the subgroup of Gn consisting of diagonal matrices and Bn the
subgroup of upper triangular matrices. The isomorphism ν×Std allows us to identify
Tn with Gm × RSOFZ Gn

m and hence we get an isomorphism

X∗(Tn)
∼−→ Z⊕

⊕
τ∈Hom (F,Q)

Zn.

We will denote a typical element of this group (b0, (bτ,i)). The set X∗(Tn)+
(n) ⊂ X∗(Tn)

of positive elements of X∗(Tn) with respect to the subgroup Bn∩Ln,(n) is characterized
by

bτ,1 ≥ bτ,2 ≥ ... ≥ bτ,n

for all τ . The set X∗(Tn)+
(n) ⊂ X∗(Tn) of positive elements with respect to Bn is

further characterized by
bτ,1 + bτc,1 ≤ 0

for all τ . Over Q we can decompose

Std =
⊕

τ :F ↪→Q

Stdτ ,

where Stdτ : Ln,(n) → GLn. There is a representation

KS : Ln,(n) −→ GL[F+:Q]n2

over Z, such that over Q

KS ∼= ν ⊗
⊕

τ∈Hom (F,Q)/{1,c}

Std∨τ ⊗ Std∨τc.

(See section 1.2.)
If R0 is an irreducible noetherian Q-algebra and ρ is a representation of Ln,(n) on a

locally free R0-module then we may associate a locally free sheaf EU,ρ/Xn,U ×SpecR0

(in the Zariski topology). As examples we have the following.
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• EU,Std∨
∼= Ωn,U , the pull-back by the identity section of the sheaf of relative

differentials Ω1
Auniv/Xn,U

.

• EU,∧n[F :Q]Std∨
∼= ∧n[F :Q]Ωn,U = ωU .

• EU,KS
∼= Ω1

Xn,U/Q.

The system of sheaves {EU,ρ} has an action of Gn(A∞). (See section 3.4.)
Similarly if R0 is an irreducible noetherian Z(p)-algebra and ρ is a representa-

tion of Ln,(n) on a locally free R0-module then we may associate a locally free sheaf
Eord
Up(N1,N2),ρ/X ord

n,Up(N1,N2) × SpecR0 (in the Zariski topology). As examples we have
the following.

• Eord
Up(N1,N2),Std∨

∼= Ωord
n,Up(N1,N2), the pull-back by the identity section of the sheaf

of relative differentials Ω1
Auniv/X ord

n,Up(N1,N2)

.

• EUp(N1,N2),∧n[F :Q]Std∨
∼= ∧n[F :Q]Ωord

n,Up(N1,N2) = ωord
Up(N1,N2).

• EUp(N1,N2),KS
∼= Ω1

X ord
n,Up(N1,N2)

/Z(p)
.

The system of sheaves {EUp(N1,N2),ρ} has an action of Gn(A∞)ord,×. (See section 3.4.)
The scheme Xn,U has a canonical compactification Xmin

n,U called the minimal or

Baily-Borel compactification with boundary ∂Xmin
n,U . It is a normal projective scheme

over Q. The line bundle ωU extends (uniquely, if n > 1 or F+ 6= Q) to an ample
line bundle ωU on Xmin

n,U . However we can not expect the vector bundles EU,ρ to all

extend to vector bundles on Xmin
n,U ×SpecR0. All these systems of spaces and the line

bundles ωU have compatible actions of Gn(A∞). (See section 5.1.) We can describe
the scheme ∂Xmin

n,U more precisely, but this will require considerably more notation,
so we will come back to this in the next section.

We can also define a normal quasi-projective scheme X ord,min
n,Up(N1,N2) over Z(p) with a

closed subscheme ∂X ord,min
n,Up(N1,N2) such that

X ord
n,Up(N1,N2) = X ord,min

n,Up(N1,N2) − ∂X
ord,min
n,Up(N1,N2)

is a dense open sub-scheme. The scheme X ord,min
n,Up(N1,N2) is not proper—informally

speaking it is missing points in characteristic p. Its generic fibre is identified with
Xmin
n,Up(N1,N2) and there is a unique line bundle ωord

Up(N1,N2) over it which restricts to

ωord
Up(N1,N2) on X ord

n,Up(N1,N2) and to ωUp(N1,N2) on Xmin
n,Up(N1,N2). We will write Xord,min

n,Up(N1,N2)

for the formal completion of X ord,min
n,Up(N1,N2) along its Fp-fibre X

ord,min

n,Up(N1,N2). Schemes

∂X
ord,min

n,Up(N1,N2) are defined similarly. All these systems of (formal) schemes have com-

patible actions of Gn(A∞)ord. The system of line bundles {ωord
Up(N1,N2)} has an action

of Gn(A∞)ord,×. (See section 5.1.) Again we will describe the schemes ∂X ord,min
n,Up(N1,N2)

more precisely in the next section.
If U ⊂ Gn(A∞,p×Zp) then we can define a normal scheme Xmin

n,U which is projective

and flat over Z(p) with generic fibre Xmin
n,U , together with an extension of ωU to an

ample line bundle on Xmin
n,U , which we will also denote ωU . These systems of schemes
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and line bundles have compatible actions of Gn(A∞,p × Zp). There are Gn(A∞)ord,×-

equivariant open embeddings X ord,min
n,Up(N1,N2) ↪→ Xmin

n,Up(N1,N2). We will write X
min

n,U for the

Fp-fibre of Xmin
U,n . There is a canonical section

HasseU ∈ H0(X
min

n,U , ω
⊗p−1
U ).

These sections are invariant under the action of Gn(A∞,p × Zp). We write X
min,n-ord

n,U

for the vanishing locus of HasseU . Then X
ord,min

n,Up(N1,N2) is an open and closed sub-scheme

of X
min

n,Up(N1,N2) −X
min,n-ord

n,Up(N1,N2). They are equal if N1 = N2 = 0. (See section 5.1.)

To certain additional data ∆, with (U,∆) in a certain partially ordered set J tor
n ,

which we will describe more carefully in the next section, one can associate a smooth
projective scheme Xn,U,∆/Q and a simple normal crossings divisor

∂Xn,U,∆ ⊂ Xn,U,∆

such that
Xn,U = Xn,U,∆ − ∂Xn,U,∆.

We write (Xn,U,∆,M∆) for the log-scheme associated to (Xn,U,∆, ∂Xn,U,∆). There is a
natural map Xn,U,∆ → Xmin

n,U which is the identity of Xn,U and sends ∂Xn,U,∆ to ∂Xmin
n,U .

The universal abelian scheme Auniv/Xn,U extends uniquely to a semi-abelian scheme
Auniv/Xn,U,∆. The system of schemes {Xn,U,∆} has an action of Gn(A∞) via log
etale maps. Similarly to certain additional data Σ, with (U,Σ) in a certain partially

ordered set J (m),tor
n , which we will describe more carefully in the next section, one

can associate a smooth projective scheme A
(m)
n,U,Σ/Q and a simple normal crossings

divisor ∂A
(m)
n,U,Σ ⊂ A

(m)
n,U,Σ such that

A
(m)
n,U = A

(m)
n,U,Σ − ∂A

(m)
n,U,Σ.

We write (A
(m)
n,U,Σ,MΣ) for the log-scheme associated to (A

(m)
n,U,Σ, ∂A

(m)
n,U,Σ). If (U,Σ)

and (U ′,∆) are compatible in a suitable sense, then there is a natural log smooth

map A
(m)
n,U,Σ → Xn,U ′,∆. (See sections 5.2 and 5.3.) More details on the structure of

the boundary will be given in the next section.
If R0 is an irreducible noetherian Q-algebra and ρ is a representation of Ln,(n) on

a locally free R0-module then we may associate a locally free sheaf Ecan
U,∆,ρ/Xn,U,∆ ×

SpecR0 (in the Zariski topology) such that

Ecan
U,∆,ρ|Xn,U×SpecR0 = EU,ρ.

As examples we have the following.

• Ecan
U,∆,Std∨

∼= Ωn,U,∆, the pull-back by the identity section of the sheaf of relative

differentials Ω1
Auniv/Xn,U,∆

.

• Ecan
U,∆,∧n[F :Q]Std∨

∼= ∧n[F :Q]Ωn,U,∆ = ωU,∆ is naturally identified with the pull-back

of ωU from Xmin
n,U .

• Ecan
U,∆,KS

∼= Ω1
Xn,U,∆

(log∞), the sheaf of differentials with log poles along the
boundary.
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We will write
E sub
U,∆,ρ = Ecan

U,∆,ρ ⊗ I∂Xn,U,∆ ,
where I∂Xn,U,∆ denotes the ideal sheaf of the boundary. It is again a locally free sheaf.

We will also write E sub
U,ρ for the coherent sheaf on Xmin

n,U which is the push-forward of

E sub
U,∆,ρ from Xn,U,∆. (This is independent of the choice of ∆.) The systems of sheaves

{Ecan
U,∆,ρ}, {E sub

U,∆,ρ}, and {E sub
U,ρ } have actions of Gn(A∞). (See section 5.4.)

We will write Ω1

A
(m)
U,Σ

(log∞) for the sheaf of differentials on A
(m)
U,Σ with log poles

along ∂A
(m)
U,Σ, and Ωi

A
(m)
U,Σ

(log∞) for its ith exterior power.

Similarly to certain additional data ∆, with (Up(N1, N2),∆) ∈ J tor
n , one can asso-

ciate a smooth quasi-projective scheme X ord
n,Up(N1,N2),∆/Q and a simple relative normal

crossings divisor
∂X ord

n,Up(N1,N2),∆ ⊂ X ord
n,Up(N1,N2),∆

such that
X ord
n,Up(N1,N2) = X ord

n,Up(N1,N2),∆ − ∂X ord
n,Up(N1,N2),∆.

The Q-fibre is identified with Xn,Up(N1,N2),∆. We write (X ord
n,Up(N1,N2),∆,M∆) for the

log-scheme associated to (X ord
n,Up(N1,N2),∆, ∂X ord

n,Up(N1,N2),∆). There is a natural map

X ord
n,Up(N1,N2),∆ → X ord,min

n,Up(N1,N2) which equals the identity of X ord
n,Up(N1,N2) and sends

∂X ord
n,Up(N1,N2),∆ to ∂X ord,min

n,Up(N1,N2). The universal abelian scheme Auniv/X ord
n,Up(N1,N2) ex-

tends uniquely to a semi-abelian scheme Auniv/X ord
n,Up(N1,N2),∆. The system of schemes

{X ord
n,Up(N1,N2),∆} has an action of Gn(A∞)ord. Also to certain additional data Σ,

with (Up(N1, N2),Σ) ∈ J (m),tor
n , one can associate a smooth quasi-projective scheme

A(m),ord
n,Up(N1,N2),Σ/Z(p) and a simple normal crossings divisor

∂A(m),ord
n,Up(N1,N2),Σ ⊂ A

(m),ord
n,Up(N1,N2),Σ

such that
A(m),ord
n,Up(N1,N2) = A(m),ord

n,Up(N1,N2),Σ − ∂A
(m),ord
n,Up(N1,N2),Σ.

The Q-fibre is identified with A
(m)
n,Up(N1,N2),Σ. We write (A(m),ord

n,Up(N1,N2),Σ,MΣ) for the

log-scheme associated to (A(m),ord
n,Up(N1,N2),Σ, ∂A

(m),ord
n,Up(N1,N2),Σ). If the pairs (Up(N1, N2),Σ)

and ((Up)′(N ′1, N
′
2),∆) are compatible in a suitable sense, then there is a natural

log smooth map A(m),ord
n,Up(N1,N2),Σ → X ord

n,(Up)′(N ′1,N
′
2),∆. (See sections 5.2 and 5.3.) More

details on the structure of the boundary will be given in the next section.
Similarly if R0 is an irreducible noetherian Z(p)-algebra and ρ is a representa-

tion of Ln,(n) on a locally free R0-module then we may associate a locally free sheaf

Eord,can
Up(N1,N2),∆,ρ/X ord

n,Up(N1,N2),∆ × SpecR0 (in the Zariski topology) such that

Eord,can
Up(N1,N2),∆,ρ|X ord

n,Up(N1,N2)
×SpecR0

= Eord
Up(N1,N2),ρ

and the pull-back to the Q-fibre is identified with Ecan
Up(N1,N2),∆,ρ. As examples we have

the following.
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• Eord,can
Up(N1,N2),∆,Std∨

∼= Ωord
n,Up(N1,N2),∆, the pull-back by the identity section of the

sheaf of relative differentials Ω1
Auniv/X ord

n,Up(N1,N2),∆

.

• Eord,can

Up(N1,N2),∆,∧n[F :Q]Std∨
∼= ∧n[F :Q]Ωord

n,Up(N1,N2),∆ = ωord
Up(N1,N2),∆ is naturally iden-

tified with the pull-back of ωord
Up(N1,N2) from X ord,min

n,Up(N1,N2).

• Eord,can
Up(N1,N2),∆,KS

∼= Ω1
X ord
n,Up(N1,N2),∆

(log∞), the sheaf of differentials with log poles

along the boundary.

We will write

Eord,sub
Up(N1,N2),∆,ρ = Eord,can

Up(N1,N2),∆,ρ ⊗ I∂X ord
n,Up(N1,N2),∆

,

where I∂X ord
n,Up(N1,N2),∆

denotes the ideal sheaf of the boundary. It is again a locally free

sheaf. We will also write Eord,sub
Up(N1,N2),ρ for the coherent sheaf on X ord,min

n,Up(N1,N2) which is the

push-forward of Eord,sub
Up(N1,N2),∆,ρ from Xn,Up(N1,N2),∆. (This is independent of the choice

of ∆.) The systems of sheaves {Eord,can
Up(N1,N2),∆,ρ}, {E

ord,sub
Up(N1,N2),∆,ρ}, and {Eord,sub

Up(N1,N2),ρ}
have actions of Gn(A∞)ord,×. (See section 5.4.)

The formal completion of X ord
n,Up(N1,N2),∆ along its special fibre depends only on

Up(N1) and ∆ord, a subset of the data contained in ∆, which we will describe in more
detail in the next section. Thus we will denote this completion Xord

n,Up(N1),∆ord , and

its reduced sub-scheme X
ord

n,Up(N1),∆ord . The latter contains a simple normal crossings

divisor ∂X
ord

n,Up(N1),∆ord such that X
ord

n,Up(N1),∆ord − ∂X
ord

n,Up(N1),∆ord = X
ord

n,Up(N1). The

systems of these (formal) schemes have an action of Gn(A∞)ord. The map

ςp : Xord
n,Up(N1),∆ord −→ Xord

n,Up(N1),∆ord

is finite flat of degree pn
2[F+:Q] and the induced map on reduced sub-schemes is ab-

solute Frobenius. Similarly the formal completion of A(m),ord
n,Up(N1,N2),Σ along its special

fibre depends only on Up(N1) and Σord, a subset of the data contained in ∆, which we
will describe in more detail in the next section. Thus we will denote this completion

A
(m),ord

n,Up(N1),Σord , and its reduced sub-scheme A
(m),ord

n,Up(N1),Σord . The latter contains a sim-

ple normal crossings divisor ∂A
(m),ord

n,Up(N1),Σord such that A
(m),ord

n,Up(N1),Σord−∂A(m),ord

n,Up(N1),Σord =

A
(m),ord

n,Up(N1). The systems of these (formal) schemes have an action of G
(m)
n (A∞)ord. The

map

ςp : A
(m),ord

n,Up(N1),Σord −→ A
(m),ord

n,Up(N1),Σord

is finite flat of degree p(n+2m)n[F+:Q] and the induced map on reduced sub-schemes is
absolute Frobenius. (See section 5.3.)

We will write Xmin,†
U ′ and X†U ′,∆ and A

(m),†
U,Σ for the dagger spaces in the sense of

[GK] associated to Xmin
n,U ′/Qp and Xn,U ′,∆/Qp and A

(m)
n,U,Σ/Qp. We will write X ord,min,†

(Up)′(N1)

and X ord,†
(Up)′(N1),∆ord and A(m),ord,†

Up(N1),Σord for the sub-dagger spaces of Xmin,†
(Up)′(N1,N2) and
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X†(Up)′(N1,N2),∆ and A
(m),†
Up(N1,N2),Σ corresponding to the admissible opens in the cor-

responding rigid spaces which are the generic fibres of Xord,min
n,(Up)′(N1) and Xord

n,(Up)′(N1),∆ord

and A
(m),ord

n,Up(N1),Σord respectively. These depend only on (Up)′(N1), ∆ord, Up(N1) and

Σord. If Up maps to (Up)′ then the spaces X ord,†
(Up)′(N1),∆ord and A(m),ord,†

Up(N1),Σord are the

pre-images in X†(Up)′(N1,N2),∆ and A
(m),†
Up(N1,N2),Σ of

X ord,min,†
(Up)′(N1) ⊂ Xmin,†

(Up)′(N1,N2).

Similarly we define closed sub-dagger spaces ∂X ord,min,†
(Up)′(N1) and ∂X ord,†

(Up)′(N1),∆ord and

∂A(m),ord,†
Up(N1),Σord . (See sections 6.3 and 6.4.)

The systems of dagger spaces {X ord,min,†
V p(N1) } and {X ord,†

V p(N1),∆ord} and {A(m),ord,†
Up(N1),Σord}

have actions of Gn(A∞)ord and Gn(A∞)ord and G
(m)
n (A∞)ord respectively, which re-

spect the boundaries. If g ∈ Gn(A∞)ord or Gn(A∞)ord or G
(m)
n (A∞)ord respectively,

then X ord,min
V p(N1) and X ord,†

V p(N1),∆ord and A(m),ord,†
Up(N1),Σord are the pre-images of X ord,min

(V p)′(N ′1) and

X ord,†
(V p)′(N ′1),∆′,ord and A(m),ord,†

(Up)′(N ′1),Σ′,ord under

g : Xmin,†
V p(N1,N2) −→ Xmin,†

(V p)′(N ′1,N2+val p(ν(g)))

and

g : X†V p(N1,N2),∆ −→ X†(V p)′(N ′1,N2+val p(ν(g))),∆′

and

g : A
(m),†
Up(N1,N2),Σ −→ A

(m),†
(Up)′(N ′1,N2+val p(ν(g))),Σ′ ,

provided that either val p(ν(g)) = 0 or N2 + val p(ν(g)) > 0. (See sections 6.3 and
6.4.)

We will write Ecan,†
Up(N1),∆ord,ρ

for the restriction to X ord,†
Up(N1),∆ord of the locally free sheaf

on X†Up(N1,N2),∆ associated to Ecan
Up(N1,N2),∆,ρ. It does not depend on N2 or ∆. We define

E sub,†
Up(N1),∆ord,ρ

similarly. The systems of sheaves {Ecan,†
Up(N1),∆ord,ρ

} and {E sub,†
Up(N1),∆ord,ρ

}
have actions of Gn(A∞)ord. If g ∈ Gn(A∞)ord then the map

g : g∗Ecan,†
(Up)′(N ′1),∆′,ord,ρ

−→ Ecan,†
Up(N1),∆ord,ρ

is an isomorphism. We have maps, which we will denote tr F :

ςp,∗Ecan,†
Up(N1),∆ord,ρ

(ς∗p )−1

−→ Ecan,†
Up(N1),∆ord,ρ

⊗O
Xord,†
Up(N1),∆ord

,ς∗p OX ord,†
Up(N1),∆ord

1⊗tr ςp−→ Ecan,†
Up(N1),∆ord,ρ

and

ςp,∗E sub,†
Up(N1),∆ord,ρ

(ς∗p )−1

−→ Ecan,†
Up(N1),∆ord,ρ

⊗O
Xord,†
Up(N1),∆ord

,ς∗p I∂X ord,†
Up(N1),∆ord

1⊗tr ςp−→ E sub,†
Up(N1),∆ord,ρ

,

where I∂X ord,†
Up(N1),∆ord

⊂ OX ord,†
Up(N1),∆ord

denotes the ideal sheaf of the boundary. (See

section 6.3.)
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We will also write E sub,†
Up(N1),ρ for the restriction to X ord,min,†

Up(N1) of the locally free sheaf

on Xmin,†
Up(N1,N2) associated to E sub

Up(N1,N2),ρ. It does not depend on N2. It can be identified

with the push-forward from X ord,†
Up(N1),∆ord to X ord,min,†

Up(N1) of Ecan,†
Up(N1),∆ord,ρ

. The system of

sheaves {E sub,†
Up(N1),ρ} has an action of Gn(A∞)ord. Moreover the map

tr F : ςp,∗E sub,†
Up(N1),∆ord,ρ

−→ E sub,†
Up(N1),∆ord,ρ

pushes forward to a map

tr F : ςp,∗E sub,†
Up(N1),ρ −→ E

sub,†
Up(N1),ρ

which does not depend on ∆ord. (See section 6.4.)

We will denote by Ωi

A(m),ord,†
Up(N1),Σord

(log∞) the sheaf on A(m),ord,†
Up(N1),Σord associated to the

sheaf Ωi

A
(m)
n,Up(N1,N2),Σ

(log∞). It is independent of N2 and Σ. Also let I
∂A(m),ord,†

Up(N1),Σord

denote the ideal sheaf in OA(m),ord,†
Up(N1),Σord

defining ∂A(m),ord,†
Up(N1),Σord . The systems of sheaves

{Ωi

A(m),ord,†
Up(N1),Σord

(log∞)} and {Ωi

A(m),ord,†
Up(N1),Σord

(log∞)⊗I
∂A(m),ord,†

Up(N1),Σord
} both have actions of

G
(m)
n (A∞)ord. If g ∈ G(m)

n (A∞)ord then the map

g : g∗Ωi

A(m),ord,†
(Up)′(N′1),Σ′,ord

(log∞) −→ Ωi

A(m),ord,†
Up(N1),Σord

(log∞)

is an isomorphism. We have maps, which we will denote tr F :

ςp,∗Ω
i

A(m),ord,†
Up(N1),Σord

(log∞)

(ς∗p )−1

−→ Ωi

A(m),ord,†
Up(N1),Σord

(log∞)⊗O
A(m),ord,†
Up(N1),Σord

,ς∗p OA(m),ord,†
Up(N1),Σord

1⊗tr ςp−→ Ωi

A(m),ord,†
Up(N1),Σord

(log∞)

and
ςp,∗(Ω

i

A(m),ord,†
Up(N1),Σord

(log∞)⊗ I
∂A(m),ord,†

Up(N1),Σord
)

(ς∗p )−1

−→ Ωi

A(m),ord,†
Up(N1),Σord

(log∞)⊗O
A(m),ord,†
Up(N1),Σord

,ς∗p I∂A(m),ord,†
Up(N1),Σord

1⊗tr ςp−→ Ωi

A(m),ord,†
Up(N1),Σord

(log∞)⊗ I
∂A(m),ord,†

Up(N1),Σord
.

(See sections 6.3.)
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A.2. The boundary.

Unfortunately to describe the boundaries of our various compactifications requires
significantly more notation. We remind the reader of our convention that, if U ⊂ G
are groups and G→ H is a homomorphism, we will sometimes also use U to denote
the image of U in H, where from the context it is clear that we need a subgroup of
H.

We will first consider the boundary of Xmin
n,U . For i = 0, ..., n let P+

n,(i) denote the

subgroup of Gn consisting of matrices of the form ∗ ∗ ∗
02(n−i)×i ∗ ∗

0i×i 0i×2(n−i) ∗


and let Ln,(i) denote the subgroup consisting of block diagonal matrices. Then Ln,(i) =

Ln,(i),lin × Ln,(i),herm, where Ln,(i),lin ∼= RSOFZ GLi is the set of matrices of the form ∗ 0 0
0 12(n−i) 0
0 0 h


with h ∈ RSOFZ GLi, and where Ln,(i),herm

∼= Gn−i is the set of matrices of the form ν(g)1i 0 0
0 g 0
0 0 1i


with g ∈ Gn−i. (See section 1.2.)

For U ⊂ Ln,(i)(A∞) a neat open compact subgroup we set

X+
n,(i),U =

∐
h∈Ln,(i),lin(A∞)/U

Xn−i,hUh−1∩Ln,(i),herm(A∞).

This is locally of finite type, but not of finite type over Q. We refer to it as a
generalized Shimura variety. It has a left action of Ln,(i),lin(Q) = GLi(F ) such that
δ ∈ Ln,(i),lin(Q) acts via the coproduct of the identity maps

Xn−i,hUh−1∩Ln,(i),herm(A∞) −→ Xn−i,δhUh−1δ−1∩Ln,(i),herm(A∞).

The inverse system {X+
n,(i),U} has a commuting right action of Ln,(i)(A∞) such that

g = (glin, gherm) ∈ Ln,(i)(A∞) acts via the coproduct of the maps

gherm : Xn−i,hUh−1∩Ln,(i),herm(A∞) −→ Xn−i,hglinV g
−1
lin h

−1∩Ln,(i),herm(A∞)

if V ⊃ g−1Ug. We further define

X\
n,(i),U = Ln,(i),lin(Q)\X+

n,(i),U .

The inverse system {X\
n,(i),U} has a right action of Ln,(i)(A∞). (See section 4.1.)
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With these definitions we can describe the boundary of Xmin
n,U . There is a family of

closed sub-schemes

Xmin
n,U = ∂0X

min
n,U ⊃ ∂1X

min
n,U = ∂Xmin

n,U ⊃ ∂2X
min
n,U ⊃ ... ⊃ ∂n+1X

min
n,U = ∅

which are preserved by the action of Gn(A∞). We set

∂0
iX

min
n,U = ∂iX

min
n,U − ∂i+1X

min
n,U

which is smooth over Q of dimension (n− i)2[F+ : Q] and write Xmin,∧
n,U,i for the formal

completion of Xmin
n,U along ∂0

iX
min
n,U . We can describe ∂0

iX
min
n,U as∐

h∈P+
n,(i)

(A∞)\Gn(A∞)/U

X\

n,(i),hUh−1∩P+
n,(i)

(A∞)
.

If g ∈ Gn(A∞) and if g−1Ug ⊂ V then the map

g : ∂0
iX

min
n,U −→ ∂0

iX
min
n,V

is the coproduct of the maps

g′ : X\

n,(i),hUh−1∩P+
n,(i)

(A∞)
−→ X\

n,(i),h′V h′,−1∩P+
n,(i)

(A∞)

where hg = g′h′ with g′ ∈ Pn,(i)(A∞). (See section 5.1.)
We write

Up(N1)n,(i),lin = ker(Ln,(i),lin(Zp)→ Ln,(i),lin(Z/pN1Z)) ⊂ Ln,(i),lin(A∞)

and
Up(N1, N2)n,(i) = Up(N1)n,(i),lin × Up(N1, N2)n−i ⊂ Ln,(i)(Qp),

and if Up is a neat open compact subgroup of Ln,(i),lin(A∞,p) or Ln,(i)(A∞,p) we will
write

Up(N1) = Up × Up(N1)n,(i),lin.

or
Up(N1, N2) = Up × Up(N1, N2)n,(i).

Moreover we write
Ln,(i),lin(A∞)ord = Ln,(i),lin(A∞,p × Zp)

and
Ln,(i)(A∞)ord = Ln,(i),lin(A∞)ord ×Gn−i(A∞)ord

and
Ln,(i)(A∞)ord,× = Ln,(i),lin(A∞)ord ×Gn−i(A∞)ord,×.

(See section 1.2.)
We set

X ord,+
n,(i),Up(N1,N2) =

∐
h∈Ln,(i),lin(A∞)ord,×/Up(N1)

X ord
n−i,(hUph−1∩Ln,(i),herm(A∞,p))(N1,N2).

It has a left action of Ln,(i),lin(Z(p)) = GLi(OF,(p)) such that δ ∈ Ln,(i),lin(Z(p)) acts
via the coproduct of the identity maps

X ord
n−i,(hUph−1∩Ln,(i),herm(A∞,p))(N1,N2) −→ X ord

n−i,(δhUph−1δ−1∩Ln,(i),herm(A∞,p))(N1,N2).
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The inverse system {X ord,+
n,(i),Up(N1,N2)} has a commuting right action of Ln,(i)(A∞)ord

such that g = (glin, gherm) ∈ Ln,(i)(A∞)ord acts via the coproduct of the maps

gherm : Xn−i,(hUph−1∩Ln,(i),herm(A∞,p))(N1,N2) −→ X ord
n−i,(hglinV pg

−1
lin h

−1∩Ln,(i),herm(A∞,p))(N ′1,N
′
2)

if V p(N ′1, N
′
2) ⊃ g−1Up(N1, N2)g. We further define

X ord,\
n,(i),Up(N1,N2) = Ln,(i),lin(Z(p))\X ord,+

n,(i),Up(N1,N2).

The inverse system {X ord,\
n,(i),Up(N1,N2)} has a right action of Ln,(i)(A∞)ord. (See section

4.1.)
There is a family of closed sub-schemes

X ord,min
n,Up(N1,N2) = ∂0X ord,min

n,Up(N1,N2) ⊃ ∂1X ord,min
n,Up(N1,N2) = ∂X ord,min

n,Up(N1,N2) ⊃ ∂2X ord,min
n,Up(N1,N2) ⊃

... ⊃ ∂n+1X ord,min
n,Up(N1,N2) = ∅

which are preserved by the action of Gn(A∞)ord. We set

∂0
iX

ord,min
n,Up(N1,N2) = ∂iX ord,min

n,Up(N1,N2) − ∂i+1X ord,min
n,Up(N1,N2)

which is smooth over Z(p) of relative dimension (n− i)2[F+ : Q]. We can describe it
as ∐

h∈P+
n,(i)

(A∞)ord,×\Gn(A∞)ord,×/Up(N1)X
ord,\

n,(i),(hUph−1∩P+
n,(i)

(A∞,p))(N1,N2)

q
∐

hX
\

n,(i),hUp(N1,N2)h−1∩P+
n,(i)

(A∞)
,

where the second coproduct runs over

h ∈ (P+
n,(i)(A

∞)\Gn(A∞)/Up(N1, N2)− P+
n,(i)(A

∞)ord,×\Gn(A∞)ord,×/Up(N1)).

The action of Gn(A∞)ord can be described as in the case of ∂0
iX

min
n,U . (See section 5.1.)

We will now turn to the boundary of Xn,U,∆ and A
(m)
n,U,Σ. The former is the special

case of the latter in which m = 0, so we will discuss only the case of A
(m)
n,U,Σ and allow

the reader to specialize to the case m = 0. We will first describe more precisely what
is the data encoded in Σ.

If X is an F -vector space we let HermX denote the space of symmetric Q-bilinear
forms

( , ) : X ×X −→ Q
such that

(ax, y) = (x, cay)

for x, y ∈ X and a ∈ F . If W ⊂ Vn is an isotropic F -subspace we set

C(m)(W ) = (HermVn/W⊥ ⊕ Hom F (Fm,W ))⊗Q R.

If Vn,(i) denotes the subspace of Vn with the last 2n− i entries zero then C(m)(Vn,(i))

can be identified with Z(N
(m)
n,(i))(R), where Z(N

(m)
n,(i)) is the subgroup of G

(m)
n consisting
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of matrices of the following shape: 1i 0 ∗
0 12(n−i) 0
0 0 1i

 ∗0
0

 .

If W ′ ⊂ W then Vn/W
⊥ →→ Vn/(W

′)⊥ and so

C(m)(W ′) ↪→ C(m)(W ).

If γ ∈ G(m)
n (Q) then there is a natural map

γ : C(m)(W )
∼−→ C(m)(γW ).

We define C(m),>0(W ) (resp. C(m),≥0(W )) to be the set of pairs (( , ), f) such that
( , ) is positive definite (positive semi-definite) on (Vn/W

⊥)⊗Q R, and set

C(m),�0(W ) =
⋃

W ′⊂W

C(m),>0(W ′) ⊂ C(m),≥0(W ).

Alternatively C(m),�0(W ) can be described as the set of (( , ), f) ∈ C(m),≥0(W ) such
that the kernel (i.e. radical) of ( , ) is defined over Q. We then define a topological
space C(m) by

C(m) =

(⋃
W

C(m),�0(W )

)
/ ∼,

where ∼ is the equivalence relation generated by the identifications of C(m),�0(W ′)
with its image in C(m),�0(W ) whenever W ′ ⊂ W . Thus as a set

C(m) =
∐
W

C(m),>0(W ).

The space C(m) has a continuous action of G
(m)
n (Q) and of R×>0, the latter acting

by scalar multiples on each C(m),�0(W ). The natural projections C(m),�0(W ) →
C(0),�0(W ) give rise to a projection C(m) → C = C(0). (See section 1.4.)

By a U-admissible cone decomposition Σ of G
(m)
n (A∞)×π0(Gn(R))×C(m) we shall

mean a set of closed subsets σ ⊂ G
(m)
n (A∞)× π0(Gn(R))× C(m) such that

(1) each σ is contained in {(g, δ)}×C(m),�0(W ) for some isotropic subspace W ⊂
Vn and some (g, δ) ∈ G

(m)
n (A∞) × π0(Gn(R)) and is the set of R≥0-linear

combinations of a finite set of elements of HermV/W⊥ ×Wm;

(2) no σ ∈ Σ contains a complete line through the origin in any (g, δ)×C(m)(W );
(3) if σ ∈ Σ then any face of σ also lies in Σ;
(4) if σ, σ′ ∈ Σ then either σ ∩ σ′ = ∅ or σ ∩ σ′ is a face of σ and σ′;

(5) G
(m)
n (A∞)× π0(Gn(R))× C(m) =

⋃
σ∈Σ σ;

(6) Σ is invariant by the diagonal action of G
(m)
n (Q) on G

(m)
n (A∞)× π0(Gn(R))×

C(m);

(7) Σ is invariant by the right action of U on G
(m)
n (A∞)×π0(Gn(R))×C(m) (acting

only on the first factor);
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(8) G
(m)
n (Q)\Σ/U is a finite set;

(9) if σ ∈ Σ lies in G
(m)
n (A∞) × π0(Gn(R)) × C(m),�0(Vn,(i)) and if h ∈ P (m)

n,(i)(A),

then hσ ∈ Σ;

(10) if σ ∈ Σ lies in G
(m)
n (A∞) × π0(Gn(R)) × C(m),�0(Vn,(i)), if γ ∈ G

(m)
n (Q), if

u ∈ U and if h ∈ P (m)
n,(i)(A) satisfy

σ ∩ γhσu ∩ (G(m)
n (A∞)× π0(Gn(R))× C(m),>0(Vn,(i))) 6= ∅

then γ ∈ P (m)
n,(i)(Q).

(Here we let G
(m)
n (A) act on G

(m)
n (A∞) × π0(Gn(R)) × C(m) via multiplication on

the first two factors. The restriction of this action to G
(m)
n (Q) does not coincide

with the standard action of G
(m)
n (Q), which we are using.) We call Σ an admissible

cone decomposition if it is U -admissible for some U . The group G(m)
n (A∞) acts on

admissible cone decompositions. We call Σ′ a refinement of Σ if every element of Σ is
a union of elements of Σ′. We write (U ′,Σ′) ≥ (U,Σ) if U ′ ⊂ U and Σ′ is a refinement
of Σ. We say that Σ is compatible with ∆, an admissible cone decomposition of
Gn(A∞) × π0(Gn(R)) × C, if the projection of each element of Σ is contained in
an element of ∆. We write (U,Σ) ≥ (V,∆) if U maps to V and Σ is compatible

with ∆. For each m there is a cofinal collection J (m),tor
n of pairs (U,Σ) of a neat

open compact subgroup U ⊂ G
(m)
n (A∞) and a U -admissible cone decomposition Σ

of G
(m)
n (A∞)× π0(Gn(R))× C(m) with various natural properties, some of which are

listed in section 5.2. In particular it is preserved by the action of G
(m)
n (A∞). (See

section 5.2.)

We define (G
(m)
n (A∞) × π0(Gn(R)) × C(m))ord to be the subset of (g, δ, x) such

that for some W we have x ∈ C(m),�0(W ) and W ⊗ Qp = gp(Vn,(n) ⊗ Qp). It is

invariant under the left action of G
(m)
n (Q), under the right action of G

(m)
n (A∞)ord

and under the action of R×>0. (See section 1.4.) For Up(N) ⊂ G
(m)
n (A∞)ord,×, by a

Up(N)-admissible cone decomposition of (G
(m)
n (A∞)×π0(Gn(R))×C(m))ord we mean

a collection Σ of closed subsets σ ⊂ (G
(m)
n (A∞) × π0(Gn(R)) × C(m))ord satisfying

analogous properties to those listed in the previous paragraph. Notions of ‘refinement’
and ‘compatibility’ are defined just as in the previous paragraph. In the same manner
we also define a partial ordering on pairs (Up(N),Σ). If Σ is a Up(N1, N2)-admissible

cone decomposition of G
(m)
n (A∞) × π0(Gn(R)) × C(m), then the collection Σord of

elements of Σ which are contained in (G
(m)
n (A∞)× π0(Gn(R))×C(m))ord is a Up(N1)-

admissible cone decomposition of (G
(m)
n (A∞)× π0(Gn(R))× C(m))ord. For each m we

define J (m),tor,ord
n to be the set of (Up(N1),Σord), where (Up(N1, N2),Σ) ∈ J (m),tor

n for
some N2 and Σ. It has various natural properties listed in section 5.2. In particular

it is preserved by the action of G
(m)
n (A∞)ord. (See section 5.2.)

As was already mentioned, to each (U,Σ) ∈ J (m).tor
n we can associate a smooth pro-

jective variety A
(m)
n,U,Σ/X

min
n,U together with a simple normal crossings divisor ∂A

(m)
n,U,Σ ⊂
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A
(m)
n,U,Σ such that

A
(m)
n,U,Σ − ∂A

(m)
n,U,Σ = A

(m)
n,U

and ∂A
(m)
n,U,Σ is the reduced pre-image of ∂Xmin

n,U . We write ∂iA
(m)
n,U,Σ for the reduced

pre-image of ∂iX
min
n,U ;

∂0
iA

(m)
n,U,Σ = ∂iA

(m)
n,U,Σ − ∂i+1A

(m)
n,U,Σ.

The irreducible components of ∂A
(m)
n,U,Σ are in bijection with the one dimensional

cones in G
(m)
n (Q)\Σ/U . A collection of such irreducible components have a non-

empty intersection if and only if there is a cone σ ∈ Σ such that the given irreducible
components correspond to the one dimensional faces of σ. In that case we write

∂[σ]A
(m)
n,U,Σ for this intersection. We introduce the simplicial complex S(∂A

(m)
n,U,Σ) whose

vertices are the irreducible components of ∂A
(m)
n,U,Σ and whose simplices correspond

to collections of such irreducible components with non-zero intersection. Then the

topological realization |S(∂A
(m)
n,U,Σ)| of S(∂A

(m)
n,U,Σ) can be identified with

G(m)
n (Q)\(G(m)

n (A∞)/U × π0(Gn(R))× (C(m) − {0})/R×>0).

Moreover

|S(∂A
(m)
n,U,Σ)| − |S(∂A

(m)
n,U,Σ − ∂nA

(m)
n,U,Σ)|

is identified with

G(m)
n (Q)\(G(m)

n (A∞)/U × π0(Gn(R))× C(m)
=n /R×>0),

where

C(m)
=n =

⋃
dimW=n

C(m),>0(W ) ⊂ C(m)

is a dense open subset. Moreover G
(m)
n (Q)\(G(m)

n (A∞)/U × π0(Gn(R)) × C
(m)
=n /R

×
>0)

can be identified with∐
h∈P (m),+

n,(n)
(A∞)\G(m)

n (A∞)/U
L

(m)
n,(n)(Q)\L(m)

n,(n)(A)/

(hUh−1 ∩ P (m),+
n,(n) (A∞))Ln,(n),herm(R)+(L

(m)
n,(n),lin(R) ∩ U0

n,∞)An,(n)(R)0,

where U0
n,∞ is a certain maximal connected compact subgroup of Gn(R) defined in

section 1.1, and An,(n) denotes the maximal split torus in the centre of Ln,(n). (See
section 5.3.)

Similarly to each (Up(N1, N2),Σ) ∈ J (m).tor
n we can associate a smooth quasi-

projective variety A(m),ord
n,Up(N1,N2),Σ/X

ord,min
n,Up(N1,N2) together with a simple normal crossings

divisor

∂A(m),ord
n,Up(N1,N2),Σ ⊂ A

(m),ord
n,Up(N1,N2),Σ

such that

A(m),ord
n,Up(N1,N2),Σ − ∂A

(m),ord
n,Up(N1,N2),Σ = A(m),ord

n,Up(N1,N2)
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and ∂A(m),ord
n,Up(N1,N2),Σ is the reduced pre-image of ∂X ord,min

n,Up(N1,N2). We will also write

∂iA(m),ord
n,Up(N1,N2),Σ for the reduced pre-image of ∂iX ord,min

n,Up(N1,N2) and set

∂0
iA

(m),ord
n,Up(N1,N2),Σ = ∂iA(m),ord

n,Up(N1,N2),Σ − ∂i+1A(m),ord
n,Up(N1,N2),Σ.

The irreducible components of ∂A(m),ord
n,Up(N1,N2),Σ are in bijection with the one dimen-

sional cones in G
(m)
n (Q)\Σ/Up(N1, N2). A collection of such irreducible components

have a non-empty intersection if and only if there is a cone σ ∈ Σ such that the given
irreducible components correspond to the one dimensional faces of σ. In that case

we write ∂[σ]A(m),ord
n,Up(N1,N2),Σ for this intersection. The Fp-fibre of ∂[σ]A(m),ord

n,Up(N1,N2),Σ is

non-empty if and only if G
(m)
n (Q)σU contains an element of Σord. (See section 5.3.)

We let A
(m),ord

n,Up(N1),Σord denote the Fp-fibre of A(m),ord
n,Up(N1,N2),Σ. It is independent of

N2 ≥ N1 and Σ inducing Σord. Similarly we define ∂A
(m),ord

n,Up(N1),Σord and ∂iA
(m),ord

n,Up(N1),Σord

and, if σ ∈ Σord, also ∂[σ]A
(m),ord

n,Up(N1),Σord . If σ meets G
(m)
n (A∞)×π0(Gn(R))×C

(m)
=n then

∂[σ]A
(m),ord

n,Up(N1),Σord is irreducible. (It probably is in all cases, but we don’t know that.)
We also define

∂(s)A
(m),ord

n,Up(N1),Σord =
∐

dimσ=s

∂[σ]A
(m),ord

n,Up(N1),Σord ,

where the disjoint union is over s-dimensional cones σ ∈ Σord taken up to equiv-
alence, where two cones are considered equivalent if they have the same image in

G
(m)
n (Q)\Σ/Up(N1, N2). We have an identification of the topological spaces associ-

ated to the simplicial complex recording the intersections of the irreducible compo-
nents of the boundary:

|S(∂A
(m),ord

n,Up(N1),Σord)| − |S(∂A
(m),ord

n,Up(N1),Σord − ∂nA
(m),ord

n,Up(N1),Σord)|
with∐

h∈P (m),+
n,(n)

(A∞,p×Zp)\G(m)
n (A∞)ord,×/Up(N)

L
(m)
n,(n)(Q)\L(m)

n,(n)(A)/

(hUp(N1)h−1 ∩ P (m),+
n,(n) (A∞,p × Zp))Ln,(n),herm(R)+(L

(m)
n,(n),lin(R) ∩ U0

n,∞)An,(n)(R)0.

(See section 5.3.) We write

T
(m)
(n),V = L

(m)
n,(n)(Q)\L(m)

n,(n)(A)/V Ln,(n),herm(R)+(L
(m)
n,(n),lin(R) ∩ U0

n,∞)An,(n)(R)0,

an (S1)nm[F :Q]-bundle over a locally symmetric space associated to Ln,(n),lin. With
this notation

|S(∂A
(m),ord

n,Up(N1),Σord)| − |S(∂A
(m),ord

n,Up(N1),Σord − ∂nA
(m),ord

n,Up(N1),Σord)| ∼=∐
h∈P (m),+

n,(n)
(A∞,p×Zp)\G(m)

n (A∞)ord,×/Up(N)
T

(m)

(n),(hUp(N1)h−1∩P (m),+
n,(n)

(A∞,p×Zp))
.

(See section 1.4.)

We also define A
(m),ord

n,Up(N1),Σord to be the formal completion of A(m),ord
n,Up(N1,N2),Σ along its

Fp-fibre. It is independent of N2 ≥ N1 and Σ inducing Σord. We similarly define
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∂A
(m),ord

n,Up(N1),Σord and ∂iA
(m),ord

n,Up(N1),Σord and ∂[σ]A
(m),ord

n,Up(N1),Σord and ∂(s)A
(m),ord

n,Up(N1),Σord . (See

section 5.3.) We will write ∂[σ]A(m),ord,†
n,Up(N1),Σord and ∂(s)A(m),ord,†

n,Up(N1),Σord for the tube over

the corresponding schemes in characteristic p inside the dagger spaces associated to

∂[σ]A
(m)
n,Up(N1,N2),Σ and ∂(s)A

(m)
n,Up(N1,N2),Σ. Again this is independent of N2 and Σ. (See

section 6.3.)

We write A
(m),∧
n,U,Σ,i for the formal completion of A

(m)
n,U,Σ along ∂0

iA
(m)
n,U,Σ. There is an

explicit description of A
(m),∧
n,U,Σ,i, but it will require considerable extra notation, which

we now explain. (See section 5.3.)

The group P
(m),+
n,(i) is the subgroup of G

(m)
n consisting of elements of the form ∗ ∗ ∗

02(n−i)×i ∗ ∗
0i×i 0i×2(n−i) ∗

 ∗∗
∗

 .

It is the semi-direct product of the subgroup N
(m)
n,(i) consisting of elements of the form 1i ∗ ∗

0 12(n−i) ∗
0 0 1i

 ∗∗
0


by L

(m)
n,(i) = Ln,(i),herm × L(m)

n,(i),lin, where L
(m)
n,(i),lin is the subgroup consisting of elements

of the form  ∗ 0 0
0 12(n−i) 0
0 0 ∗

 0
0
∗

 .

Thus

L
(m)
n,(i),lin

∼= RSOFZ (GLi n Hom (Gm
a ,Gi

a)) ↪→ RSOFZ GLi+m.

We also write P
(m)
n,(i) for the subgroup of P

(m),+
n,(i) consisting of matrices of the form 1i ∗ ∗

0 ∗ ∗
0 0 1i

 ∗∗
0

 .

Then

P
(m)
n,(i)/Z(N

(m)
n,(i))

∼= G
(i+m)
n−i

and

P
(m),+
n,(i) = L

(m)
n,(i),lin n P

(m)
n,(i).

(See section 1.2.)

For U ⊂ L
(m)
n,(i)(A

∞) a neat open compact subgroup we set

X
(m),+
n,(i),U =

∐
h∈L(m)

n,(i),lin
(A∞)/U

Xn−i,hUh−1∩Ln,(i),herm(A∞).
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It has a left action of L
(m)
n,(i),lin(Q) = GLi(F )nHom F (Fm, F i) and the inverse system

{X(m),+
n,(i),U} has a commuting right action of L

(m)
n,(i)(A

∞). These actions are defined

exactly similarly to those on X+
n,(i),U . We have

X\
n,(i),U = L

(m)
n,(i),lin(Q)\X(m),+

n,(i),U .

(See section 4.1.)

If U is a neat open compact subgroup of (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞) we set

A
(m),+
n,(i),U =

∐
h∈L(m)

n,(i),lin
(A∞)/U

A
(i+m)

n−i,hUh−1∩G(i+m)
n−i (A∞)

.

The scheme A
(m),+
n,(i),U has a left action of L

(m)
n,(i),lin(Q) such that δ ∈ L(m)

n,(i),lin(Q) acts via

the co-product of the maps

δ : A
(i+m)

n−i,hUh−1∩G(i+m)
n−i (A∞)

−→ A
(i+m)

n−i,δhUh−1δ−1∩G(i+m)
n−i (A∞)

= A
(i+m)

n−i,δ(hUh−1∩G(i+m)
n−i (A∞))

.

The system of schemes {A(m),+
n,(i),U} has a commuting right action of the quotient group

(P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞)

such that if g ∈ (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞) maps to glin ∈ L(m)
n,(i),lin(A∞) then g acts by

the coproduct of the maps

hgg−1
lin h

−1 : A
(i+m)

n−i,hUh−1∩G(i+m)
n−i (A∞)

−→ A
(i+m)

n−i,hglinV g
−1
lin h

−1∩G(i+m)
n−i (A∞)

.

(See section 4.2.)

If U is a neat open compact subgroup of P
(m),+
n,(i) (A∞) we define S

(m),+
n,(i),U to be the

torus over X
(m),+
n,(i),U with co-character group constant over

Xn−i,hUh−1∩Ln,(i),herm(A∞) ⊂ X+
n,(i),U

(where U denotes the image of U in L
(m)
n,(i)(A

∞)) and identified with

hUh−1 ∩ Z(N
(m)
n,(i))(Q),

In fact we define
Y +
n,(i),U =

∐
h∈Ln,(i),lin(A∞)/U

SpecQ

so that S
(m),+
n,(i),U is already defined over Y +

n,(i),U . The torus S
(m),+
n,(i),U has a left action of

L
(m)
n,(i),lin(Q) such that δ ∈ L(m)

n,(i),lin sends

S
(m),+
n,(i),U |Xn−i,hUh−1∩Ln,(i),herm(A∞)

−→ S
(m),+
n,(i),U |Xn−i,δhUh−1δ−1∩Ln,(i),herm(A∞)

via the morphism induced by the map on co-character groups

hUh−1 ∩ Z(N
(m)
n,(i))(Q) −→ δhUh−1δ−1 ∩ Z(N

(m)
n,(i))(Q)
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given by conjugation by δ. The system of tori {S(m),+
n,(i),U} also has a right action of

P
(m),+
n,(i) (A∞) such that g ∈ P (m),+

n,(i) (A∞) mapping to glin ∈ L(m)
n,(i),lin(A∞) sends

S
(m),+
n,(i),U |Xn−i,hUh−1∩Ln,(i),herm(A∞)

−→ S
(m),+
n,(i),U |Xn−i,hglinV g−1

lin
h−1∩Ln,(i),herm(A∞)

via the morphism induced by the map on co-character groups

hUh−1 ∩ Z(N
(m)
n,(i))(Q) −→ hglinV g

−1
lin h

−1 ∩ Z(N
(m)
n,(i))(Q)

by conjugation by hgling
−1h−1. (See section 4.3.)

If (U,Σ) ∈ J (m),tor
n then we define a partial fan (in the sense of section 2.5) Σ(h)0

in X∗(S
(m),+

n,(i),hUh−1∩P (m),+
n,(i)

(A∞)
) as follows. Over

X
n−i,h′(hUh−1∩P (m),+

n,(i)
(A∞))h′,−1∩Ln,(i),herm(A∞)

we take the cones

σ ⊂
(
h′(hUh−1 ∩ P (m),+

n,(i) (A∞))h′,−1 ∩ Z(N
(m)
n,(i))(Q)

)
⊗Z R = C(m)(Vn,(i))

such that

{(h′h, 1)} × σ ∈ Σ

and σ∩C(m),>0(Vn,(i)) is non-empty. It is preserved by the action of L
(m)
n,(i),lin(Q). (See

section 5.2.) This, in the sense of section 4.4, is an ‘admissible cone decomposition’

of X∗(S
(m),+

n,(i),hUh−1∩P (m),+
n,(i)

(A∞)
)�0. We write Σ̃(h)0 for the fan consisting of all faces of

elements of Σ(h)0.

If U is a neat open compact subgroup of P
(m),+
n,(i) (A∞) we define an S

(m),+
n,(i),U -torsor

T
(m),+
n,(i),U/A

(m),+
n,(i),U . It has an action of L

(m)
n,(i),lin(Q). The system {T (m),+

n,(i),U} has a commuting

action of P
(m),+
n,(i) (A∞). (See section 4.3.) There is a torus embedding

T
(m),+
n,(i),U ↪→ T

(m),+

n,(i),U,Σ̃(h)0

over A
(m),+
n,(i),U corresponding to Σ̃(h)0. We write

∂Σ(h)0T
(m),+
n,(i),U = ∂Σ(h)0T

(m),+

n,(i),U,Σ̃(h)0

for the closed subset of the boundary corresponding to Σ(h)0 ⊂ Σ̃(h)0, and let

T
(m),+,∧
n,(i),U,Σ(h)0

denote the completion of T
(m),+

n,(i),U,Σ̃(h)0

along ∂Σ(h)0T
(m),+

n,(i),U,Σ̃(h)0

. (See sections 2.3 and

2.5.) The L
(m)
n,(i),lin(Q) action extends to T

(m),+

n,(i),U,Σ̃(h)0

and ∂Σ(h)0T
(m),+
n,(i),U and T

(m),+,∧
n,(i),U,Σ(h)0

.

The quotients

∂Σ(h)0T
(m),\
n,(i),U = L

(m)
n,(i)(Q)\∂Σ(h)0T

(m),+
n,(i),U
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and
T

(m),\,∧
n,(i),U,Σ(h)0

= L
(m)
n,(i)(Q)\T (m),+,∧

n,(i),U,Σ(h)0

make sense. Sometimes it will be convenient to take the quotient in two stages. Thus
we set

∂Σ(h)0T
(m),\+
n,(i),U = Hom F (Fm, F i)\∂Σ(h)0T

(m),+
n,(i),U

and
T

(m),\+,∧
n,(i),U,Σ(h)0

= Hom F (Fm, F i)\T (m),+,∧
n,(i),U,Σ(h)0

.

These still carry an action of Ln,(i)(Q). If (U,Σ) ≥ (V,∆), then there is also a natural
Ln,(i)(Q)-equivariant map

T
(m),\+,∧
n,(i),U,Σ(h)0

−→ T
(m),+,∧
n,(i),V,∆(h)0

.

The inverse systems {T (m),\,∧
n,(i),U,Σ(h)0

} and {∂Σ(h)0T
(m),\
n,(i),U} as U and Σ vary has an action

of P
(m),+
n,(i) (A∞). (See section 4.5.)

Then we have an identification

A
(m),∧
n,U,Σ,i =

∐
h∈P (m),+

n,(i)
(A∞)\G(m)

n (A∞)/U

T
(m),\,∧
n,(i),hUh−1∩P (m),+

n,(i)
(A∞),Σ(h)0

,

where the term indexed by h is exactly the open and closed sub-formal scheme whose
underlying topological space is the pre-image of X\

n,(i),hUh−1∩P (m),+
n,(i)

(A∞)
⊂ ∂0

iX
min
n,U .

These identifications are compatible with the action of G
(m)
n (A∞) and the maps

A
(m),∧
n,U,Σ,i −→ A

(0),∧
n,V,∆,i = X∧n,V,∆,i −→ Xmin,∧

n,V,i .

(See section 5.3.)

There is a similar description for the formal completion of A(m),ord
n,Up(N1,N2),Σ along

∂0
iA

(m),ord
n,Up(N1,N2),Σ, which we will denote A(m),ord,∧

n,Up(N1,N2),Σ,i.

We let L
(m)
n,(i),lin(A∞)ord = L

(m)
n,(i),lin(A∞)ord,× denote L

(m)
n,(i),lin(A∞,p × Zp). We write

Up(N)
(m)
n,(i),lin = ker(L

(m)
n,(i),lin(Zp)→ L

(m)
n,(i),lin(Z/pNZ)).

If Up ⊂ L
(m)
n,(i),lin(A∞,p) we write Up(N) = Up × Up(N)

(m)
n,(i),lin. We also define

Y(m),ord,+
n,(i),Up(N) =

∐
L

(m)
n,(i),lin

(A∞)ord,×/Up(N)

SpecZ(p),

which has a left action of L
(m)
n,(i),lin(Z(p)). The inverse system {Y(m),ord,+

n,(i),Up(N)} has a

commuting right action of L
(m)
n,(i),lin(A∞)ord. We set

Y(m),ord,\
n,(i),Up(N) = L

(m)
n,(i),lin(Z(p))\Y(m),ord,+

n,(i),Up(N).

(See section 4.1.)
We set

L
(m)
n,(i)(A

∞)ord = Ln,(i),herm(A∞)ord × L(m)
n,(i),lin(A∞)ord
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and

L
(m)
n,(i)(A

∞)ord,× = Ln,(i),herm(A∞)ord,× × L(m)
n,(i),lin(A∞)ord,×.

We set

Up(N1, N2)
(m)
n,(i) = Up(N1, N2)n−i × Up(N1)

(m)
n,(i),lin,

and, if Up ⊂ L
(m)
n,(i)(A

∞,p), then we set Up(N1, N2) = Up × Up(N1, N2)
(m)
n,(i). We define

X (m),ord,+
n,(i),Up(N1,N2) =

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up(N1)

X ord
n−i,(hUph−1∩Ln,(i),herm(A∞,p))(N1,N2),

which has a left action of L
(m)
n,(i),lin(Z(p)). The inverse system {X (m),ord,+

n,(i),Up(N1,N2)} has a

commuting right action of L
(m)
n,(i)(A

∞)ord. We set

X (m),ord,\
n,(i),Up(N) = L

(m)
n,(i),lin(Z(p))\X (m),ord,+

n,(i),Up(N).

(See section 4.1.)

Further we set P
(m),+
n,(i) (A∞)ord to be P

(m),+
n,(i) (A∞,p) × L

(m)
n,(i)(A

∞)ordN
(m)
n,(i)(Zp) and

P
(m),+
n,(i) (A∞)ord,× to be P

(m),+
n,(i) (A∞,p) × L(m)

n,(i)(A
∞)ord,×N

(m)
n,(i)(Zp). Moreover we define

Up(N1, N2)
(m),+
n,(i) to be the subgroup of P

(m),+
n,(i) (Zp) consisting of matrices of the form

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ≡ 0 mod pN2 ≡ 1n−i mod pN1 ≡ 0 mod pN1

0 0 0 ≡ 1i mod pN1




∗
∗

≡ 0 mod pN1

≡ 0 mod pN1

 .

If Up ⊂ P
(m),+
n,(i) (A∞,p) (resp. (P

(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞,p)) we define Up(N1, N2) to be

Up × Up(N1, N2)
(m),+
n,(i) (resp. Up × Up(N1, N2)

(m),+
n,(i) /(Z(N

(m)
n,(i))(Zp))). If Up is a neat

open compact subgroup of (P
(m),+
n,(i) /Z(N

(m)
n,(i)))(A

∞,p) we define

A(m),ord,+
n,(i),Up(N1,N2) =

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up(N1)

A(i+m),ord

n−i,(hUph−1∩G(i+m)
n−i (A∞,p))(N1,N2)

,

which has a left action of L
(m)
n,(i),lin(Z(p)). The system of schemes {A(m),ord,+

n,(i),Up(N1,N2)} has

a commuting right action of P
(m),+
n,(i) (A∞)ord/(Z(N

(m)
n,(i))(A

∞,p×Zp)). (See section 4.2.)

If Up is a neat open compact subgroup of P
(m),+
n,(i) (A∞,p) we define S(m),ord,+

n,(i),Up(N) to

be the torus over Y(m),ord,+
n,(i),Up(N) with co-character group over the SpecZ(p) indexed by

h ∈ L(m)
n,(i),lin(A∞)ord,×/Up(N) identified with

hUph−1 ∩ Z(N
(m)
n,(i))(Z(p)).

The torus S(m),ord,+
n,(i),Up(N) has a left action of L

(m)
n,(i),lin(Z(p)). The system of tori {S(m),ord,+

n,(i),Up(N)}
also has a right action of P

(m),+
n,(i) (A∞)ord. (See section 4.3.)
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If (Up(N),Σ) ∈ J (m),tor,ord
n and h ∈ G

(m)
n (A∞)ord,× then we define a partial fan

Σ(h)0 in X∗(S(m),ord,+

n,(i),(hUph−1∩P (m),+
n,(i)

(A∞,p))(N)
) as follows. Over the SpecZ(p) corresponding

to h′ ∈ L(m)
n,(i),lin(A∞)ord,×/Up(N) we take the cones

σ ⊂
(
h′(hUph−1 ∩ P (m),+

n,(i) (A∞,p))h′,−1 ∩ Z(N
(m)
n,(i))(Z(p))

)
⊗Z R = C(m)(Vn,(i))

such that

{(h′h, 1)} × σ ∈ Σ

and σ∩C(m),>0(Vn,(i)) is non-empty. It is preserved by the action of L
(m)
n,(i),lin(Z(p)). (See

section 5.2.) This, in the sense of section 4.4, is an ‘admissible cone decomposition’ of

X∗(S(m),+,ord

n,(i),(hUph−1∩P (m),+
n,(i)

(A∞,p))(N)
)�0. We write Σ̃(h)0 for the fan consisting of all faces

of elements of Σ(h)0.

If Up is a neat open compact subgroup of P
(m),+
n,(i) (A∞,p) we define an S(m),ord,+

n,(i),Up(N1)-

torsor T (m),ord,+
n,(i),Up(N1,N2)/A

(m),ord,+
n,(i),Up(N1,N2). It has an action of L

(m)
n,(i),lin(Z(p)). The system

{T (m),ord,+
n,(i),Up(N1,N2)} has a commuting action of P

(m),+
n,(i) (A∞)ord. (See section 4.3.) There

is a torus embedding

T (m),ord,+
n,(i),Up(N1,N2) ↪→ T

(m),ord,+

n,(i),Up(N1,N2),Σ̃(h)0

over A(m),ord,+
n,(i),Up(N1,N2) corresponding to Σ̃(h)0. We write

∂Σ(h)0T
(m),ord,+
n,(i),Up(N1,N2) = ∂Σ(h)0T

(m),+

n,(i),Up(N1,N2),Σ̃(h)0

for the closed subset of the boundary corresponding to Σ(h)0 ⊂ Σ̃(h)0, and let

T (m),ord,+,∧
n,(i),Up(N1,N2),Σ(h)0

denote the completion of T (m),ord,+

n,(i),Up(N1,N2),Σ̃(h)0

along ∂Σ(h)0T
(m),ord,+

n,(i),Up(N1,N2),Σ̃(h)0

. (See

sections 2.3 and 2.5.) The L
(m)
n,(i),lin(Z(p)) action extends to T (m),ord,+

n,(i),Up(N1,N2),Σ̃(h)0

and

∂Σ(h)0T
(m),+
n,(i),Up(N1,N2) and T (m),ord,+,∧

n,(i),Up(N1,N2),Σ(h)0
. The quotients

∂Σ(h)0T
(m),ord,\
n,(i),Up(N1,N2) = L

(m)
n,(i)(Z(p))\∂Σ(h)0T

(m),ord,+
n,(i),Up(N1,N2)

and

T (m),ord,\,∧
n,(i),Up(N1,N2),Σ(h)0

= L
(m)
n,(i)(Z(p))\T (m),ord,+,∧

n,(i),Up(N1,N2),Σ(h)0

make sense. Sometimes it will be convenient to take the quotient in two stages. Thus
we set

∂Σ(h)0T
(m),ord,\+
n,(i),Up(N1,N2) = HomOF (OmF,(p),OiF,(p))\∂Σ(h)0T

(m),ord,+
n,(i),Up(N1,N2)

and

T (m),ord,\+,∧
n,(i),Up(N1,N2),Σ(h)0

= HomOF (OmF,(p),OiF,(p))\T
(m),ord,+,∧
n,(i),Up(N1,N2),Σ(h)0

.
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These still carry an action of Ln,(i)(Z(p)). The inverse systems {T (m),ord,\,∧
n,(i),Up(N1,N2),Σ(h)0

}
and {∂Σ(h)0T

(m),ord,\
n,(i),Up(N1,N2)} as Up(N1, N2) and Σ vary have actions of P

(m),+
n,(i) (A∞)ord.

(See section 4.5.)
Then we have an identification

A(m),ord,∧
n,Up(N1,N2),Σ,i =∐

h∈P (m),+
n,(i)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1)

T (m),ord,\,∧
n,(i),(hUph−1∩P (m),+

n,(i)
(A∞,p))(N1,N2),Σord(h)0

q
∐

h∈(P
(m),+
n,(i)

(A∞)\G(m)
n (A∞)/Up(N1,N2))−(P

(m),+
n,(i)

(A∞)ord,×\G(m)
n (A∞)ord,×/Up(N1))

T
(m),\,∧
n,(i),hUp(N1,N2)h−1∩P (m),+

n,(i)
(A∞),Σ(h)0

,

where the term indexed by h is exactly the open and closed sub-formal scheme whose
underlying topological space is the pre-image of

X ord,\

n,(i),(hUph−1∩P (m),+
n,(i)

(A∞,p))(N1,N2)

or
X\

n,(i),hUp(N1,N2)h−1∩P (m),+
n,(i)

(A∞)
⊂ ∂0

iX
ord,min
n,Up(N1,N2).

These identifications are compatible with the action of G
(m)
n (A∞)ord and the maps

A(m),ord,∧
n,Up(N1,N2),Σ,i −→ A

(0),ord,∧
n,V p(N1,N2),∆,i = X ord,∧

n,V p(N1,N2),∆,i −→ X
ord,min,∧
n,V p(N1,N2),i.

(See section 5.3.)
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Appendix B. Comparison with [La4]

This appendix is meant to be a guide to the notation system in [La4] (and in the
earlier works [La1, La2, La3]). While we will not cover everything, we will highlight
the key definitions and results used in this paper so that, it is hoped, the reader can
understand the references more easily. We will adopt the notation and conventions
introduced in [La1, Notation and Conventions], which might be quite different from
the ones introduced in this paper. (We will explain the differences when necessary.)

B.1. Shimura varieties as PEL moduli in characteristic zero. In [La1] and
[La4] the symbols Z(1) are used to denote ker(exp : C → C×). In those papers,
unlike this paper, Tate twists just mean tensor products with powers of Z(1) as a Z-
module, with no attached Galois actions at all. Let us fix the choice of a square-root√
−1 in C, which defines an isomorphism 2π

√
−1 : Z ∼→ Z(1) = ker(exp : C→ C×).

Consider the integral PEL datum

(O, ?, L, 〈 · , · 〉, h0) = (OF , c,Λn, 2π
√
−1〈 , 〉n, h0)

in the sense of definition 1.1.1.1 of [La4], where h0 is the R-algebra homomorphism

h0 : C→ EndO⊗ZR(L⊗Z R)

z = z1 +
√
−1z2 7→

(
z1 Idn −z2Ψn

z2Ψn z1 Idn

)
with Ψn being the n× n-matrix with 1’s on the anti-diagonal and 0’s elsewhere (see
section 1.1). Note that the technical condition 1.4.3.10 in [La1] or condition 1.2.1.1
in [La4] are satisfied.

The group functor G of definition 1.1.1.3 of [La4] is just our Gn, and ν has the same
meaning in this paper and in [La4]. The reflex field F0 defined by (L⊗ZR, 〈 · , · 〉, h0)
(see section 1.2.5 of [La1]) is just Q, and S0 = SpecF0 = SpecQ.

For each open compact subgroup H of G(Ẑ), [La4] defines a moduli problem

MH

over S0 = SpecQ (parameterising isomorphism classes of abelian schemes with ad-
ditional PEL structures) as in the beginning of section 1.1.2 of [La4], which is rep-
resentable by a smooth quasi-projective scheme over SpecQ when H is neat. As
explained in remark 1.1.2.1 in [La4], the definition of MH only depends on the ratio-
nal PEL datum (O⊗ZQ, ?, L⊗ZQ, 〈 · , · 〉⊗ZQ, h0), and hence can be extended to the
cases of all open compact subgroups H of G(A∞), up to replacing L with any lattice
in L⊗Z Q stabilized by H (and replacing 〈 · , · 〉 with a suitable Q×>0-multiple of the
induced pairing). By proposition 1.4.3.4 in [La1], this moduli problem is canonically
isomorphic to the

Xn,U

in this paper when U = H is contained in G(Ẑ) (see section 3.1.1). (The condition
on Lie algebras in this paper is equivalent to the determinantal condition in [Ko]
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and [La1].) The collection {MH}H indexed by neat open compact subgroups H of
G(A∞) can be G(A∞)-equivariantly identified with {Xn,U}U (with U = H), because
the (Hecke) actions of G(A∞) on them are defined by twisting level structures on
quasi-isogeny classes in the same way (see remark 1.4.3.11 of [La1]). (Later we will
not repeat the explanation on such canonical isomorphisms between moduli of iso-
morphism classes and of quasi-isogeny classes. Also, we will tacitly assume that all
Hecke actions to be introduced are compatible with previously introduced ones under
canonical morphisms.)

B.2. Filtrations. Consider any filtration V = {V−j}j on L⊗Z Q ∼= F 2n such that

(0) = V−3 ⊂ V−2 ⊂ V−1 = V⊥−2 ⊂ V0 = L⊗Z Q,
which is symplectic in the sense of definition 1.2.6.8 in [La1] (or definition 1.2.1.2(4)
in [La4]). By lemma A.4.3 in [La5], up to the action of G(Q), we may assume that
there exists an integer 0 ≤ i ≤ n such that

(0) = V−3 ⊂ V−2 = Vn,(i) ⊂ V−1 = V ⊥n,(i) ⊂ V0 = L⊗Z Q,

which we call the i-th standard symplectic filtration, and write V = V(i). The stabilizer
of V(i) is then the parabolic subgroup P+

n,(i)(Q) of Gn(Q).

We will need to consider filtrations Z = {Z−j}j on L⊗Z Ẑ such that

(0) = Z−3 ⊂ Z−2 ⊂ Z−1 = Z⊥−2 ⊂ Z0 = L⊗Z Ẑ,
which is fully symplectic admissible as in definition 5.2.7.1 in [La1] or definition 1.2.1.4
in [La4]. If 0 ≤ i ≤ n and g ∈ G(A∞), then we can define such a filtration Z(i,g) by

Z
(i,g)
−j =

(
g−1(V

(i)
−j ⊗Q A∞)

)
∩ (L⊗Z Ẑ),

for each j. Since we are not in the so-called type D case, by the proof of proposition
A.5.9 of [La5], any fully symplectic admissible filtration arises as Z(i,g) for some i and

some g. In fact, using the Iwasawa decomposition, we may suppose that g ∈ G(Ẑ).
For each j, let GrZ−j := Z−j/Z−j−1 as usual. Then 〈 · , · 〉 canonically induces a perfect
pairing

〈 · , · 〉−1 : GrZ−1×GrZ−1 → Ẑ(1).

Let us temporarily fix such a Z = Z(i,g) with g ∈ G(Ẑ) and fix an open compact

subgroup H ⊂ G(Ẑ). In [La4], the following groups are defined for Ẑ-algebras R
along with open compact subgroups (see definitions 1.2.1.9, 1.2.1.10, and 1.2.1.11 in
[La4]):

(1) PZ(R) := {g ∈ G(R) : g(Z) = Z} = g−1P+
n,(i)(R)g. We set HPZ

:= H ∩ PZ(Ẑ).

(2) G′l,Z(R) is set equal to the subgroup of GLO(GrZ−2⊗ẐR) × GLO(GrZ0⊗ẐR)

consisting of elements respecting the pairing GrZ−2×GrZ0 → Ẑ(1) induced by
〈 · , · 〉. This group comes isomorphically from g−1Ln,(i),lin(R)g. There is a
natural surjective map (ν−1 GrZ−2,GrZ0) : PZ(R) � G′l,Z(R) corresponding to

P+
n,(i)(R)→→ Ln,(i),lin(R). We denote the kernel by P′Z(R) = g−1Pn,(i)(R)g. We

set HP′Z
:= H ∩ P′Z(Ẑ), HG′h,Z

:= HP′Z
/HUZ

, and HG′l,Z
:= HPZ

/HP′Z
.
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(3) Gh,Z(R) :=

{
(g, r) ∈ GLO⊗ZR(GrZ−1⊗ẐR)×Gm(R) :
〈gx, gy〉−1 = r〈x, y〉−1, ∀x, y ∈ GrZ−1⊗ẐR

}
, which comes iso-

morphically from g−1Ln,(i),herm(R)g. Then there is a natural surjective map
GrZ−1 : PZ(R) � Gh,Z(R) corresponding to P+

n,(i)(R) →→ Ln,(i),herm(R). We de-

note the kernel ZZ(R) = (g−1Ln,(i),lin(R)g) n (g−1Nn,(i)(R)g). We set HZZ
:=

H ∩ ZZ(Ẑ) and HGh,Z := HPZ
/HZZ

.

(4) UZ(R) is the subgroup of PZ(R) consisting of elements g such that GrZ(g) =

IdGrZ⊗ẐR
. Thus UZ(R) = g−1Nn,(i)(R)g. We set HUZ

:= H ∩ UZ(Ẑ).

(5) U2,Z(R) is the subgroup of PZ(R) consisting of elements g which induce
IdZ−1⊗ẐR

and Id(Z0⊗ẐR)/(Z−2⊗ẐR) on Z−1 ⊗Ẑ R and (Z0 ⊗Ẑ R)/(Z−2 ⊗Ẑ R), re-

spectively. Thus we have U2,Z(R) = g−1Z(Nn,(i))(R)g ∼= Herm(i)(R) ↪→
HomO⊗ZR(GrZ0⊗ẐR,GrZ−2⊗ẐR). We set HU2,Z := H ∩ U2,Z(Ẑ).

(6) U1,Z(R) := UZ(R)/U2,Z(R) = (g−1Nn,(i)(R)g)/(g−1Z(Nn,(i))(R)g), which is

isomorphic to Hom
(i)
n−i(R). We set HU1,Z := HUZ

/HU2,Z .
(7) Gl,Z(R) := ZZ(R)/UZ(R). This maps isomorphically to G′l,Z(R), but [La4]

chooses to distinguish it as a subgroup rather than a quotient of PZ(R)/UZ(R).
We set HGl,Z := HZZ

/HUZ
, which may differ from HG′l,Z

.

(8) G′h,Z(R) := P′Z(R)/UZ(R). This maps isomorphically to Gh,Z(R), but [La4]
chooses to distinguish it as a subgroup rather than a quotient of PZ(R)/UZ(R).
We set HG′h,Z

:= HP′Z
/HUZ

, which may differ from HGh,Z .

(9) G1,Z(R) := P′Z(R)/U2,Z(R). It is isomorphic to G
(i)
n−i(R). We set HG′1,Z

:=

HP′Z
/HU2,Z .

For each open compact subgroup H = U of G(Ẑ), as g varies in G(A∞), the

H-orbits Z
(i,g)
H of Z(i,g) are parameterised by the double coset space

PZ(i,1)(A∞)\G(A∞)/H = P+
n,(i)(A

∞)\Gn(A∞)/U.

(See, for example, section 5.1.)

B.3. Cusp labels. Given any fully symplectic admissible filtration Z, we define a
torus argument to be a rigidification Φ = (X, Y, φ, ϕ−2, ϕ0) on the top and bottom
graded pieces (see definition 5.4.1.3 in [La1] or definition 1.2.1.5 in [La4]):

(1) X and Y are locally free O-modules, and φ : Y → X is an isomorphism of
O-modules.

(2) ϕ−2 : GrZ−2
∼→ HomZ(X, Ẑ(1)) and ϕ0 : GrZ0

∼→ Y ⊗Z Ẑ are isomorphisms of

O ⊗Z Ẑ-modules such that the pairing 〈 · , · 〉20 : GrZ−2×GrZ0 → Ẑ(1) induced
by 〈 · , · 〉 is the pull-back of the pairing

〈 · , · 〉φ : HomẐ(X ⊗Z Ẑ, Ẑ(1))× (Y ⊗Z Ẑ)→ Ẑ(1)

defined by 〈x, y〉φ = x(φ(y)).

(For a general integral PEL datum, the first condition should be weakened to φ being
injective with finite cokernel, but in our setting the second condition then forces it
to be an isomorphism.) We say that two torus arguments Φ = (X, Y, φ, ϕ−2, ϕ0)
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and Φ′ = (X ′, Y ′, φ′, ϕ′−2, ϕ
′
0) are equivalent if there exists a pair of isomorphisms

(γX : X ′
∼→ X, γY : Y

∼→ Y ′) of O-lattices matching all other data. For 0 ≤ i ≤ n we
have a torus argument

Φ(i) := (OiF ,OiF , Id, (2π
√
−1)ΨiId

∨, Id)

for Z(i,1), where Ψi is (as before) the i × i-matrix with 1’s on the anti-diagonal and
0’s elsewhere (see section 1.1).

If Φ = (X, Y, φ, ϕ−2, ϕ0) is a torus argument for Z and g ∈ PZ(A∞), then we obtain a

torus argument Φ(g) = (X(g), Y (g), φ(g), ϕ
(g)
−2, ϕ

(g)
0 ) for Z(g) induced by g : Grg

−1Z → GrZ

(see section 1.2.3 of [La4] for more details). We shall write Φ(i,g) = (Φ(i))(g).
Consider triples of the form (Z,Φ, δ), where Z is a filtration as in the previous sec-

tion, where Φ is a torus argument as above, and where δ : GrZ = GrZ−2⊕GrZ−1⊕GrZ0
∼→

L ⊗Z Ẑ is an O ⊗Z Ẑ-equivariant splitting. The group G(Ẑ) acts naturally on such
triples, and hence we can consider their H-orbits of the form (ZH,ΦH, δH), for each

open compact subgroup H of G(Ẑ). We consider two such orbits (ZH,ΦH, δH) and
(Z′H,Φ

′
H, δ

′
H) equivalent if ZH = Z′H and if there exist representatives Φ and Φ′ of ΦH

and Φ′H, respectively, which are equivalent. (Note that no compatibility condition
is imposed on δH and δ′H.) We call the equivalence classes [(ZH,ΦH, δH)], or simply
[(ΦH, δH)], the cusp labels for MH.

For each (Z,Φ, δ) as above, and any Z-algebraR, we define G′l,Φ(R) = GLO⊗ZR(Y⊗Z

R), which admits a canonical map to G′l,Z(R ⊗Z Ẑ) induced by Φ. When R is a Ẑ-
algebra, we have G′l,Φ(R) ∼= G′l,Z(R). When R = Q, we have G′l,Φ(Q) ↪→ G′l,Z(A∞),
and we define

ΓΦH := HG′l,Z
∩G′l,Φ(Q),

a congruence subgroup of G′l,Φ(Z) = G′l,Z(Ẑ) ∩ G′l,Φ(Q) depending only on ΦH (see
definition 1.2.2.3 of [La4] for an equivalent definition).

The map that sends g ∈ G(A∞) to [(Z
(i,g)
H ,Φ

(i,g)
H , δH)] (for any δ) sets up a bijection

between the double coset space

(G′l,Φ(i,1)(Q) n P′
Z(i,1)(A∞))\G(A∞)/H,

and cusp labels [(ZH,ΦH, δH)] such that GrZ0 has rank i over O ⊗Z Ẑ. This identifies

the set of cusp labels of the form [(Z
(i,g)
H ,ΦH, δH)] with

G′l,Φ(i,1)(Q)\G′l,Z(i,1)(A∞)/(gHg−1)G′
l,Z(i,1)

.

This last double coset space is the index set of

Y \

n,(i),gUg−1∩P+
n,(i)

(A∞)
=

∐
Ln,(i),lin(Q)\Ln,(i),lin(A∞)/(gUg−1∩P+

n,(i)
(A∞))

SpecQ

in this paper (see section 4.1), with U = H.
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B.4. Minimal compactifications in characteristic zero. For each neat open
compact subgroup H = U , there is a normal projective scheme

Mmin
H = Xmin

n,U

containing MH = Xn,U as an open dense subscheme (see theorem 1.3.1.5 of [La4]).
The minimal compactification Mmin

H admits a stratification by locally closed sub-
schemes

Mmin
H =

∐
[(ΦH,δH)]

Z[(ΦH,δH)] =
n∐
i=0

∐
g

Z
[(Φ

(i,g)
H ,δH)]

where [(ΦH, δH)] runs over cusp labels for MH and g runs over the double quotient
(G′

l,Φ(i,1)(Q)nP′
Z(i,1)(A∞))\G(A∞)/H (see theorem 1.3.1.5(4) of [La4]). If H = U this

induces
∂0
iX

min
n,U =

∐
g

Z
[(Φ

(i,g)
H ,δH)]

.

The decomposition

∂0
iX

min
n,U =

∐
g∈P+

n,(i)
(A∞)\Gn(A∞)/U

X\

n,(i),gUg−1∩P+
n,(i)

(A∞)

(see section 5.1) corresponds to

X\

n,(i),gUg−1∩P+
n,(i)

(A∞)
=

∐
h∈Ln,(i),lin(Q)\Ln,(i),lin(A∞)/(gUg−1∩P+

n,(i)
(A∞))

Z
[(Φ

(i,hg)
H ,δH)]

.

Each Z[(ΦH,δH)] is the quotient MZH
H of

MΦH
H
∼= MHG′

h,Z

by ΓΦH , which is isomorphic to MHGh,Z,Φ
, whereHGh,Z,Φ is the image ofHPZ

∩(G′l,Φ(Q)n
P′Z(A∞)) in Gh,Z(A∞) (see lemmas 1.3.2.1 and 1.3.2.5 of [La4]). Here MHG′

h,Z

and

MHGh,Z,Φ
are moduli problems analogously defined by some integral PEL datum

(O, ?, LZ, 〈 · , · 〉Z, hZ0) associated with a representative Z of ZH (see definition 1.2.1.15
and lemmas 1.3.2.1 and 1.3.2.5 of [La4]). If we let U ′g (resp. U ′g,lin) denote the image of

gUg−1 ∩ P+
n,(i)(A

∞) in Ln,(i)(A∞) (resp. Ln,(i),lin(A∞)), then under the identifications

X\
n,(i),U ′g

= Ln,(i),lin(Q)\X+
n,(i),U ′g

= Ln,(i),lin(Q)\
( ∐
h∈Ln,(i),lin(A∞)/(U ′g∩Ln,(i),lin(A∞))

Xn,(i),U ′g∩Gn−i(A∞)

)
/U ′g

=
∐

h∈Ln,(i),lin(Q)\Ln,(i),lin(A∞)/U ′g,lin

(
(Ln,(i),lin(Q) ∩ hU ′g,linh−1)\Xn,(i),U ′g∩Gn−i(A∞)

)
,

of section 4.1,

• the term Xn,(i),U ′g∩Gn−i(A∞) indexed by h is identified with M
Φ

(i,hg)
H
H ;

• the group Ln,(i),lin(Q) ∩ hU ′g,linh−1 is identified with Γ
Φ

(i,hg)
H

;
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• and the term

(Ln,(i),lin(Q) ∩ hU ′g,linh−1)\Xn,(i),U ′g∩Gn−i(A∞)

is identified with M
Z

(i,hg)
H
H .

Similarly, under the identification

X+
n,(i),U ′g

=
∐

h∈Ln,(i),lin(A∞)/U ′g

Xn,(i),U ′g∩Gn−i(A∞),

the term Xn,(i),U ′g∩Gn−i(A∞) indexed by h is identified with M
Φ

(i,hg)
H
H . These identifica-

tions are all Hecke equivariant.

B.5. Toroidal compactifications of Shimura varieties in characteristic zero.
For each representative (ZH,ΦH, δH) of a cusp label [(ZH,ΦH, δH)] for MH, there is a
torsor

CΦH,δH → MΦH
H

of an abelian scheme

Cgrp
ΦH,δH

→ MΦH
H

(see lemma 1.3.2.7 and propositions 1.3.2.12 and 1.3.2.14 of [La4]). The abelian
scheme Cgrp

ΦH,δH
over MΦH

H is Q×-isogenous (i.e. quasi-isogenous) to HomO(X,B)

(where B is the pull-back of the universal abelian scheme over MZH
H ). We obtain

an isomorphic abelian scheme torsor if we replace (ZH,ΦH, δH) with another repre-
sentative (but its universal property, which we have not described here, depends on
this choice of representative).

If U ′g again denotes gUg−1 ∩ P+
n,(i)(A

∞), then the map

A+
n,(i),U ′g

=
∐

h∈Ln,(i),lin(A∞)/U ′g
A

(i)

n−i,hgUg−1h−1∩Pn,(i)(A∞)

↓ ↓
X+
n,(i),U ′g

=
∐

h∈Ln,(i),lin(A∞)/U ′g
Xn,(i),U ′g∩Pn,(i)(A∞)

in this paper (see sections 4.1 and 4.2) with U = H is identified with∐
h∈Ln,(i),lin(A∞)/U ′g

C
Φ

(i,hg)
H ,δH

↓∐
h∈Ln,(i),lin(A∞)/U ′g

M
Φ

(i,hg)
H
H .

These maps are PZ(i,g)(A∞)/U2,Z(i,g)(A∞)-equivariant. (See proposition 1.3.2.24 of
[La4].) (Since our pairing 〈 · , · 〉 is perfect, the universal property of CΦH,δH in propo-
sition 1.3.2.14 of [La4] can be simplified by suppressing the dual objects. This uni-

versal property then agrees with that of A
(i)

n−i,hgUg−1h−1∩Pn,(i)(A∞) in section 3.2 of this

paper.)
For each representative (ZH,ΦH, δH) of a cusp label [(ZH,ΦH, δH)] for MH, there is

a torsor

ΞΦH,δH → CΦH,δH
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under the pull-back of a split torus
EΦH

over SpecZ with character group
SΦH

(see lemma 1.3.2.25 and proposition 1.3.2.31 of [La4]). We obtain an isomorphic
torus torsor if we replace (ZH,ΦH, δH) with another representative, but its universal
property depends on this choice of representative. For a fixed (Z,Φ, δ), the morphisms

ΞΦH,δH → CΦH,δH

are P′Z(A∞)-equivariant. (See proposition 1.3.2.45 of [La4].)

When HU2,Z = G(Ẑ)U2,Z = U2,Z(Ẑ) and when ΦH is represented by some Φ =
(X, Y, φ, ϕ−2, ϕ0) (where φ : Y ↪→ X must be an isomorphism, as explained above),
the group SΦH is the group S(Y )TF in the notation of this paper (see section 1.1).
For more general H, we set SΦ1 = S(Y )TF (see section 1.2.2 of [La4]), and then SΦH

is the unique lattice in SΦ1⊗ZQ such that SΦH/SΦ1
∼= S∨Φ1

/S∨ΦH
∼= U2,Z(Ẑ)/HU2,Z (see

proposition 1.3.2.31 of [La4]), where the superscript ∨ denotes the dual of Z-modules.
Then (SΦH)∨R can be identified with the space of hermitian forms over Y ⊗Z R, and
we define PΦH (resp. P+

ΦH
) to be the subset of (SΦH)∨R corresponding to positive

semi-definite hermitian forms with rational radicals (resp. positive definite hermitian

forms). When ZH = Z
(i,g)
H for some g ∈ G(A∞), we have Y ⊗Z Q ∼= F i; and the sets

SΦH ⊗Z Q and P+
ΦH

are the sets S(F i) and Herm>0
F i , respectively, in this paper (see

sections 1.1 and 1.4).
The torus

S+
n,(i),U ′g

→ Y +
n,(i),U ′g

in this paper (see section 4.3) with U = H is identified with∐
h∈Ln,(i),lin(A∞)/U ′g

E
Φ

(i,hg)
H ,δH

→
∐

h∈Ln,(i),lin(A∞)/U ′g

SpecQ.

Moreover, the sheaves X∗(S+
n,(i),U ′g

), X∗(S
+
n,(i),U ′g

)�0
R , and X∗(S

+
n,(i),U ′g

)>0
R are identified

with ∐
h∈Ln,(i),lin(A∞)/U ′g

S
Φ

(i,hg)
H

,
∐

h∈Ln,(i),lin(A∞)/U ′g

P
Φ

(i,hg)
H

, and
∐

h∈Ln,(i),lin(A∞)/U ′g

P+

Φ
(i,hg)
H

respectively. The S+
n,(i),U ′g

-torsor

T+
n,(i),U ′g

=
∐

h∈Ln,(i),lin(A∞)/U ′g
T

(i)

n−i,hgUg−1h−1∩Pn,(i)(A∞)

↓ ↓
A+
n,(i),U ′g

=
∐

h∈Ln,(i),lin(A∞)/U ′g
A

(i)

n−i,hgUg−1h−1∩Pn,(i)(A∞)

is identified with ∐
h∈Ln,(i),lin(A∞)/U ′g

Ξ
Φ

(i,hg)
H ,δH

↓∐
h∈Ln,(i),lin(A∞)/U ′g

C
Φ

(i,hg)
H ,δH

.
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These maps are PZ(i,g)(A∞)-equivariant.
Consider any compatible collection

Σ = {ΣΦH}[(ΦH,δH)]

of admissible projective smooth rational polyhedral cone decompositions for MH,
where each ΣΦH is a ΓΦH-admissible projective smooth rational polyhedral cone de-
composition of PΦH , as in definitions 1.2.2.13 and 1.2.2.14 of [La4]. (Note that in
[La4] rational polyhedral cones are open cones, whereas in this paper they are closed
cones.) Each such Σ considered in [La4] induces a pair

(U,∆)

in J tor
n (with U = H) in section 5.2 of this paper, because, in order to define (U,∆)

as in section 5.2, it suffices to define the admissible cone decomposition ∆(g)0 for
X∗(S

+

n,(i),gUg−1∩P+
n,(i)

(A∞)
)�0
R , for each g ∈ G(A∞), which can be taken to be the pull-

back of the subcollection {ΣΦH}[(ΦH,δH)] of Σ indexed by the cusp labels [(ΦH, δH)]

with underlying ZH equal to Z
(i,g)
H . In fact, J tor

n is exactly the set of such induced
pairs (as U = H varies).

Each ΣΦH defines an affine toroidal embedding

ΞΦH,δH ↪→ ΞΦH,δH = ΞΦH,δH,ΣΦH
=

⋃
σ∈ΣΦH

ΞΦH,δH(σ) =
∐

σ∈ΣΦH

ΞΦH,δH,σ

over CΦH,δH . Rather confusingly ΞΦH,δH(σ) (in the notation of [La4]) is what in this
paper we would have denoted ΞΦH,δH,σ; and ΞΦH,δH,σ is what in this paper we would
have denoted ∂σΞΦH,δH,ΣΦH

. The formal completion of ΞΦH,δH,ΣΦH
along the union of

the σ-strata ΞΦH,δH,σ for all σ ∈ ΣΦH such that σ ∩P+
ΦH
6= ∅ is denoted

XΦH,δH = XΦH,δH,ΣΦH
.

(See (1.3.2.34), (1.3.2.35), (1.3.2.36), and lemma 1.3.2.41 of [La4]). The schemes

T+
n,(i),U ′g ,∆(g)0

→ A+
n,(i),U ′g

of this paper (see section 4.4) are identified with∐
h∈Ln,(i),lin(A∞)/U ′g

Ξ
Φ

(i,hg)
H ,δH

→
∐

h∈Ln,(i),lin(A∞)/U ′g

C
Φ

(i,hg)
H ,δH

.

Moreover, T+,∧
n,(i),U ′g ,∆(g)0

is identified with∐
h∈Ln,(i),lin(A∞)/U ′g

X
Φ

(i,hg)
H ,δH

and T \,∧n,(i),U ′g ,∆(g)0
is identified with∐

h∈Ln,(i),lin(Q)\Ln,(i),lin(A∞)/U ′g

(X
Φ

(i,hg)
H ,δH

/Γ
Φ

(i,hg)
H

) =
∐

[(ΦH,δH)]

(XΦH,δH/ΓΦH),
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where the second disjoint union runs over all cusp labels [(ΦH, δH)] with underlying

ZH equal to Z
(i,g)
H . (Again U = H.)

For each pair (H,Σ) as above, we have a smooth projective scheme

Mtor
H,Σ

containing MH as an open dense subscheme, called a toroidal compactification of MH
(see theorems 1.3.1.3 and 1.3.1.10 of [La4]). This is the

Xn,U,∆

in this paper (see section 5.3), with U = H and with (U,∆) ∈ J tor
n induced by Σ as

above. This identification is compatible with the actions of G(A∞) on the collections
{Mtor
H,Σ}(H,Σ) (see proposition 1.3.1.15 of [La4]) and {Xn,U,∆}(U,∆).

The toroidal compactification Mtor
H,Σ admits a stratification by locally closed sub-

schemes

Mtor
H,Σ =

∐
[(ΦH,δH,σ)]

Z[(ΦH,δH,σ)]

(see theorem 1.3.1.3(2) of [La4]) indexed by equivalence classes [(ΦH, δH, σ)] as in
definition 1.2.2.10 of [La4]. Without repeating the definition in detail, let us just
note that the equivalence classes [(ΦH, δH, σ)] with the same underlying cusp label
[(ΦH, δH)] can be identified with the ΓΦH-orbits of the cones σ ∈ ΣΦH such that
σ ∩ P+

ΦH
6= ∅. Each stratum Z[(ΦH,δH,σ)] is canonically isomorphic to ΞΦH,δH,σ, and

the formal completion of Mtor
H,Σ along the union of the strata Z[(ΦH,δH,σ)] labeled by

equivalence classes [(ΦH, δH, σ)] with the same underlying cusp label [(ΦH, δH)] is
canonically isomorphic to XΦH,δH/ΓΦH .

When U = H, and when (U,∆) ∈ J tor
n is induced by Σ as above, the formal

completion of Mtor
H,Σ along the union of all strata Z[(ΦH,δH,σ)] labeled by equivalence

classes [(ΦH, δH, σ)] with underlying ZH equal to Z
(i,g)
H for some g ∈ G(A∞) is

X∧n,U,∆,i
∼=
∐
g

T \,∧
n,(i),gUg−1∩P+

n,(i)
(A∞),∆(g)0

=
∐
g

∐
h

(X
Φ

(i,hg)
H ,δH

/Γ
Φ

(i,hg)
H

),

where the indices g and h run over P+
n,(i)(A

∞)\Gn(A∞)/U and

Ln,(i),lin(Q)\Ln,(i),lin(A∞)/(gUg−1 ∩ P+
n,(i)(A

∞)),

respectively, in this paper (see section 5.3).
These identifications are all Hecke equivariant (see proposition 1.3.2.45 of [La4]).

B.6. Kuga families in characteristic zero. Consider any O-lattice Q. Define Ĝ
to be the subgroup of automorphisms of L ⊕ Q which preserve L, act trivially on
the quotient (L⊕Q)/L and preserve, up to scalar multiples, the pairing 〈 · , · 〉 on L.

Restriction to L gives a surjective homomorphism Ĝ→ G, and we denote the kernel

Û. This homomorphism is naturally split. (Compare with definition 1.2.4.3 of [La4].)

If Q = OmF , then Ĝ = G
(m)
n and Û = Hom (m)

n . If Ĥ is any open compact subgroup of

Ĝ(Ẑ), then ĤÛ denotes Ĥ ∩ Û(Ẑ), and ĤG denotes Ĥ/ĤÛ.
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To each neat open compact subgroup Ĥ of Ĝ(Ẑ) with image H = ĤG in G(Ẑ),
[La4] attached a generalized Kuga family N → MH. (See definition 1.3.3.4 of [La4].)

If Q = OmF and U = Ĥ, then it is the scheme denoted A
(m)
n,U in this paper. The

generalized Kuga family attached to ĤG n ĤÛ is denoted Ngrp → MH, and is a Kuga
family as in definition 1.3.3.3 of [La4]. It is an abelian scheme Q×-isogenous to the
m-fold fiber product of the universal abelian scheme over MH when Q ∼= OmF . The
generalized Kuga family N→ MH is a torsor for Ngrp → MH.

To study these schemes and their compactifications [La4] realizes them, in a non-
canonical way, inside the boundary of a larger Shimura variety. Concretely, as in
section 1.2.4 of [La4], to define such generalized Kuga families, we start with an
O-lattice Q; consider

Q−2 := HomO(Q,Diff−1
O/Z(1))) and Q0 := Q

(where Diff−1
O/Z denotes the inverse different), with the natural perfect pairing

〈 · , · 〉Q : Q−2 ×Q0 → Z(1)

induced by the trace pairing; and set

L̃ := Q−2 ⊕ L⊕Q0,

with the (self-dual) pairing

〈 · , · 〉̃ : L̃× L̃→ Z(1)

defined by

〈(x−2, x−1, x0), (y−2, y−1, y0)〉̃ = 〈x−2, y0〉Q + 〈x−1, y−2〉 − 〈y−2, x0〉Q
for x−2, y−2 ∈ Q−2, x−1, y−1 ∈ L, and x0, y0 ∈ Q0. We shall fix the choice of

Q = OmF
in what follows, since this is all we need in this paper. Then the above L̃ and
〈 · , · 〉̃ can be identified with the Λm+n and 〈 , 〉m+n : Λm+n × Λm+n → Z in this
paper (see sections 1.1 and B.1), up to reversing the ordering of the coordinates of
Q−2 = (Diff−1

OF /Z(1))m and dividing by 2π
√
−1. Then there is a natural choice of

h̃0 : C→ EndO⊗ZR(L̃⊗Z R) extending h0 : C→ EndO⊗ZR(L⊗Z R) (see section 1.2.4
of [La4]) which makes

(O, ?, L̃, 〈 · , · 〉̃ , h̃0)

an integral PEL datum as in definition 1.1.1.1 of [La4], which defines a group functor

G̃ and a PEL moduli problem M̃H̃ for each open compact subgroup H̃ of G̃(Ẑ) as in
the case of G and MH in section B.1. We shall always denote the analogues of objects

for (O, ?, L̃, 〈 · , · 〉̃ , h̃0) with a tilde ,̃ without explicitly introducing them.

By the definition of (L̃, 〈 · , · 〉̃ ), there is a fully symplectic admissible filtration Z̃

on L̃⊗Z Ẑ induced by

0 ⊂ Q−2 ⊂ Q−2 ⊕ L ⊂ Q−2 ⊕ L⊕Q0 = L̃.
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Let X̃ := HomO(Q−2,Diff−1
O/Z(1)) and Ỹ := Q0. The pairing 〈 · , · 〉Q : Q−2 × Q0 →

Z(1) induces a canonical isomorphism φ̃ : Ỹ
∼→ X̃, and there are canonical isomor-

phisms ϕ̃−2 : GrZ̃−2
∼→ HomẐ(X̃ ⊗Z Ẑ, Ẑ(1)) and ϕ̃0 : GrZ̃0

∼→ Ỹ ⊗Z Ẑ (of O ⊗Z Ẑ-
modules). These data define a torus argument

Φ̃ := (X̃, Ỹ , φ̃, ϕ̃−2, ϕ̃0)

for Z̃ (see definition 5.4.1.3 in [La1] or definition 1.2.1.5 in [La4]). Let δ̃ be the obvious

splitting of Z̃ induced by the equality Q−2 ⊕ L⊕Q0 = L̃.

Then we can define algebraic groups P̃Z̃, ŨZ̃, Ũ2,Z̃, Ũ1,Z̃, G̃l,Z̃, G̃′
l,Z̃

, P̃′
Z̃
, G̃1,Z̃, G̃h,Z̃,

and G̃′
h,Z̃

. By definition, we have canonical isomorphisms

Gh,Z̃
∼= G′

h,Z̃
∼= G⊗Z Ẑ

and
Ĝ = G̃1,Z̃ and Û = Ũ1,Z̃.

For each open compact subgroup H̃ of G̃(Ẑ), we define

(1) Ĥ := H̃Ĝ := H̃G̃1,̃Z
.

(2) ĤÛ := H̃Û := H̃Ũ1,̃Z
.

(3) ĤG := Ĥ/ĤÛ
∼= H̃G̃′

h,̃Z

.

(See definition 1.2.4.4 of [La4].)

Given any neat open compact Ĥ ⊂ Ĝ(Ẑ), we can always find some neat H̃ ⊂ G̃(Ẑ)

such that Ĥ = H̃Ĝ as above and

H̃P̃Z̃
/H̃ŨZ̃

∼= H̃G̃l,̃Z
× ĤG

(cf. condition 1.2.4.7 of [La4]). In this case the abelian scheme torsor

C̃Φ̃H̃,Φ̃δ̃
→ M̃

Φ̃H̃
H̃
∼= M̃

Z̃H̃
H̃

depends only on Ĥ (but not on the auxiliary choice of H̃) and equals the above

generalized Kuga family N→ MH attached to Ĥ.
We can explicitly compare some of the above groups with the related groups defined

in our paper (see sections 1.1 and 1.2), as follows:

(1) G̃′
h,Z̃

(R) ∼= G̃h,Z̃(R) = G(R) = Gn(R).

(2) G̃l,Z̃(R) ∼= G̃′
l,Z̃

(R) ∼= GLm(OF ⊗Z R).

(3) P̃Z̃(R) ∼= GLm(OF ⊗Z R) n G̃
(m)
n (R) ∼= (GLm(OF ⊗Z R)×Gn(R)) nN

(m)
n (R).

(4) ŨZ̃(R) = N
(m)
n (R).

(5) Ũ2,Z̃(R) = Z(N
(m)
n )(R) = Herm(m)(R).

(6) Û(R) = Ũ1,Z̃(R) = Hom (m)
n (R).

(7) P̃′
Z̃
(R) = G̃

(m)
n (R) = Gn(R) nN

(m)
n (R).

(8) Ĝ(R) = G̃1,Z̃(R) ∼= G
(m)
n (R) = Gn(R) n Hom (m)

n (R).
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(9) P̃Z̃(R)/ŨZ̃(R) ∼= GLm(OF ⊗Z R)×Gn(R).

B.7. Toroidal compactifications of Kuga families in characteristic zero. Let

us fix the choice of some (Z̃, Φ̃, δ̃) as above. Then there is a bijection between the

fully symplectic admissible filtrations Z̆ of L̃⊗Z Ẑ such that

0 ⊂ Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂ Z̃−1 ⊂ L̃⊗Z Ẑ
and the fully symplectic admissible filtrations Z of L⊗Z Ẑ such that Z−2 = Z̆−2/Z̃−2.
(The notation ˘ will always mean some objects related to such a filtration Z̆.) When
Z = Z(i,1), we have Z̆ = Z̃(i+m,1).

For each Z̆ as above, and for each Ẑ-algebra R, we define the following quotients

of subgroups of Ĝ(R) (see definition 1.2.4.53 of [La4]):

(1) P̂Z̆(R) := (P̃Z̆(R) ∩ P̃′
Z̃
(R))/Ũ2,Z̃(R), so that P̂Z̃(i+m,1)(R) = P

(m),+
n,(i) (R).

(2) P̂′
Z̆
(R) := P̃′

Z̆
(R)/Ũ2,Z̃(R), so that P̂′

Z̃(i+m,1)(R) = P
(m)
n,(i)(R).

(3) ÛZ̆(R) := ŨZ̆(R)/Ũ2,Z̃(R), so that ÛZ̃(i+m,1)(R) = N
(m)
n,(i)(R).

(4) Û2,Z̆(R) := Ũ2,Z̆(R)/Ũ2,Z̃(R), so that

Û2,Z̃(i+m,1)(R) = Z(N
(m)
n,(i))(R) ∼= Herm(i+m)(R)/Herm(m)(R).

(5) Û1,Z̆(R) := ÛZ̆(R)/Û2,Z̆(R) ∼= Ũ1,Z̆(R), so that

Û1,Z̃(i+m,1)(R) = N
(m)
n,(i)(R)/Z(N

(m)
n,(i))(R) ∼= Hom

(i+m)
n−i (R).

(6) Ĝh,Z̆(R) := G̃h,Z̆(R) and Ĝ′
h,Z̆

(R) := G̃′
h,Z̆

(R), so that Ĝh,Z̆(R) ∼= Ĝ′
h,Z̆

(R) ∼=
Gh,Z(R), and Ĝh,Z̃(i+m,1)(R) = Ln,(i),herm(R).

(7) Ĝl,Z̆(R) := (Z̃Z̆(R) ∩ P̃′
Z̃
(R))/ŨZ̆(R) and Ĝ′

l,Z̆
(R) := P̂Z̆(R)/P̂′

Z̆
(R), so that

Ĝl,Z̆(R)
∼→ Ĝ′

l,Z̆
(R) and Ĝ′

l,Z̃(i+m,1)(R) ∼= L
(m)
n,(i),lin(R).

(8) Ĝ1,Z̆(R) := P̂′
Z̆
(R)/Û2,Z̆(R) ∼= G̃1,Z̆(R), so that Ĝ1,Z̃(i+m,1)(R) ∼= G

(i+m)
n−i (R).

Hence it makes sense to define ĤP̂Z̆
:= (H̃P̃Z̆

∩ H̃P̃′
Z̃

)/H̃Ũ2,̃Z
etc when Ĥ = H̃Ĝ, so that

we have ĤP̂Z̆
→ HPZ

etc.

If g̃ ∈ P̃′
Z̃
(A∞), then Z̃(i+m,g̃) depends only on the image ĝ of g̃ in Ĝ(Ẑ), so we

will denote it Z̆(i,ĝ). This sets up a bijection between the Ĥ-orbits Z̃
(i+m,g̃)

Ĥ
= Z̆

(i,ĝ)

Ĥ
of

Z̃(i+m,g̃) = Z̆(i,ĝ) and the double coset space

P̂Z̆(i,1)(A∞)\Ĝ(A∞)/Ĥ,
which equals

P
(m),+
n,(i) (A∞)\G(m)

n (A∞)/U

in this paper (see, for example, section 1.4), with U = Ĥ.
By taking graded pieces with respect to filtrations induced by 0 ⊂ Z̃−2 ⊂ Z̆−2 ⊂

Z̆−1 ⊂ Z̃−1 ⊂ L̃ ⊗Z Ẑ, there is also a bijection between the torus arguments Φ̆ =

(X̆, Y̆ , φ̆, ϕ̆−2, ϕ̆0) for Z̆ which induce Φ̃ and the torus arguments Φ = (X, Y, φ, ϕ−2, ϕ0)
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for the filtration Z corresponding to Z̆. If we set H = ĤG, then this bijection is com-

patible with the formation of the Ĥ-orbits of Φ̆ and the H-orbits of the corresponding
Φ, which induces bijections among the following three sets (see lemmas 1.2.4.15 and
1.2.4.16 of [La4]):

(1) The cusp labels [(Z̆H̃, Φ̆H̃, δ̆H̃)] for M̃H̃ such that the stratum Z̃[(Φ̆H̃,δ̆H̃)] of M̃min
H̃

is contained in the closure of Z̃[(Φ̃H̃,δ̃H̃)].

(2) The Ĥ-orbits of equivalence classes of (Z̆, Φ̆, δ̆), where Z̆ and Φ̆ are compatible

with Z̃ and Φ̃ in the sense that 0 ⊂ Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂ Z̃−1 ⊂ L̃ ⊗Z Ẑ and

that Φ̆ induces Φ̃ as above, which we denote by [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] and call it a

cusp label (at level Ĥ) for (L̃, 〈 · , · 〉̃ , h̃0, Z̃) (see definition 1.2.4.17 of [La4]).
(3) The cusp labels [(ZH,ΦH, δH)] for MH.

The stratum Z̃[(Φ̆H̃,δ̆H̃)]
∼= M̃

Z̃H̃
H̃

, the finite étale cover M̃
Φ̃H̃
H̃
→ M̃

Z̃H̃
H̃

, the abelian scheme

torsor C̃Φ̃H̃,δ̃H̃
→ M̃

Φ̃H̃
H̃

, and the abelian scheme C̃grp

Φ̃H̃,δ̃H̃
→ M̃

Φ̃H̃
H̃

depend (up to canon-

ical isomorphism) only on the Ĥ-orbit of (Z̆, Φ̆, δ̆) (see lemma 1.3.2.50 of [La4]), and
hence we shall denote them by

M̂
Z̆Ĥ
Ĥ
, M̂

Φ̆Ĥ
Ĥ
→ M̂

Z̆Ĥ
Ĥ
, ĈΦ̆Ĥ,δ̆Ĥ

→ M̂
Φ̆Ĥ
Ĥ
, and Ĉgrp

Φ̆Ĥ,δ̆Ĥ
→ M̂

Φ̆Ĥ
Ĥ
,

respectively. For a fixed (Z̆, Φ̆, δ̆), the morphisms

ĈΦ̆Ĥ,δ̆Ĥ
→ M̂

Φ̆Ĥ
Ĥ
→ M̂

Z̆Ĥ
Ĥ

are equivariant with

Ĝ1,Z̆(A∞)→ Ĝ′h,Z̆(A
∞) ∼= Ĝh,Z̆(A∞)

(see propositions 1.3.2.24 and 1.3.2.55 of [La4]).

For each [(Z̆, Φ̆, δ̆)] as above, and any Z-algebra R, we define Ĝ′
l,Φ̆

(R) to be the

subgroup of GLO⊗ZR(Y̆ ⊗Z R) of elements stabilizing the kernel of Y̆ � Ỹ and

inducing IdỸ , which admits a canonical map to Ĝ′
l,Z̆

(R⊗Z Ẑ) induced by Φ̆. When R is

a Ẑ-algebra, we have Ĝ′
l,Φ̆

(R) ∼= Ĝ′
l,Z̆

(R). When R = Q, we have Ĝ′
l,Φ̆

(Q) ↪→ Ĝ′
l,Z̆

(A∞),

and we define
ΓΦ̆Ĥ

:= ĤĜ′
l,Z̆

∩ Ĝ′
l,Φ̆

(Q),

a congruence subgroup of Ĝ′
l,Φ̆

(Z) = Ĝ′
l,Z̆

(Ẑ) ∩ Ĝ′
l,Φ̆

(Q) depending only on Φ̆Ĥ (see

definition 1.2.4.21 of [La4] for an equivalent definition).

If g̃ ∈ P̃′
Z̃
(A∞), then the equivalence class of (Z̃(i+m,g̃), Φ̃(i+m,g̃), δ̆) depends only on

the image ĝ of g̃ in Ĝ(A∞). We will denote it (Z̆(i,ĝ), Φ̆(i,ĝ), δ̆). The map

ĝ 7→ [(Z̆
(i,ĝ)

Ĥ
, Φ̆

(i,ĝ)

Ĥ
, δ̆Ĥ)]

sets up a bijection between the double coset space

(Ĝ′
l,Φ̆(i,1)(Q) n P̂′

Z̆(i,1)(A∞))\Ĝ(A∞)/Ĥ.
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and the set of cusp labels [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] such that Z̆Ĥ = Z̆
(i,ĝ)

Ĥ
for some ĝ ∈ Ĝ(A∞).

The forgetful map sending [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] to Z̆Ĥ can be identified with the canonical
map

(Ĝ′
l,Φ̆(i,1)(Q) n P̂′

Z̆(i,1)(A∞))\Ĝ(A∞)/Ĥ → P̂Z̆(i,1)(A∞)\Ĝ(A∞)/Ĥ

whose fiber above the double coset of ĝ ∈ Ĝ(A∞) can be identified with

Ĝ′
l,Φ̆(i,1)(Q)\Ĝ′l,Z̆(i,1)(A∞)/(ĝĤĝ−1)Ĝ′

l,Z̆(i,1)
.

This last double coset space is the index set of

Y
(m),\

n,(i),gUg−1∩P (m),+
n,(i)

(A∞)
=

∐
L

(m)
n,(i),lin

(Q)\L(m)
n,(i),lin

(A∞)/(gUg−1∩P (m),+
n,(i)

(A∞))

SpecQ

in this paper (see section 4.1), with g = ĝ and U = Ĥ.

If U = Ĥ is any neat open compact subgroup of G
(m)
n (A∞) = Ĝ(A∞), if g = ĝ ∈

G
(m)
n (A∞) = Ĝ(A∞), and if U ′g = gUg−1 ∩ P (m),+

n,(i) (A∞), then the maps

A
(m),+
n,(i),U ′g

=
∐

h∈L(m)
n,(i),lin

(A∞)/U ′g
A

(i+m)

n−i,hU ′gh−1∩P (m)
n,(i)

(A∞)

↓ ↓
X

(m),+
n,(i),U ′g

=
∐

h∈L(m)
n,(i),lin

(A∞)/U ′g
X
n−i,hU ′gh−1∩P (m)

n,(i)
(A∞)

↓
X

(m),\
n,(i),U ′g

in this paper (see sections 4.1 and 4.2) are identified with∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

Ĉ
Φ̆

(i,hg)

Ĥ
,δ̆Ĥ

↓∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

M̂
Φ̆

(i,hg)

Ĥ
Ĥ

↓∐
h∈L(m)

n,(i),lin
(Q)\L(m)

n,(i),lin
(A∞)/U ′g

M̂
Z̆

(i,hg)

Ĥ
Ĥ

.

For each representative (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) of a cusp label [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] as above, there
is a torsor

Ξ̂Φ̆Ĥ,δ̆Ĥ
→ ĈΦ̆Ĥ,δ̆Ĥ

under the pull-back of a split torus

ÊΦ̆Ĥ

over SpecZ with character group

ŜΦ̆Ĥ
:= ker(SΦ̆H̃

→ SΦ̃H̃
)
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(which only depends on ĤP̂Z̆
; see definition 1.2.4.29 and proposition 1.3.2.56 of [La4]).

We obtain an isomorphic torus torsor if we replace (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) with another repre-
sentative, but its universal property depends on this choice of representative.

For a fixed (Z̆, Φ̆, δ̆), the collection {Ξ̂Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂′
Z̆

admits an action of P̂′
Z̆
(A∞) such

that the morphisms

Ξ̂Φ̆Ĥ,δ̆Ĥ
→ ĈΦ̆Ĥ,δ̆Ĥ

are equivariant with

P̂′
Z̆
(A∞)→ Ĝ1,Z̆(A∞)

(see proposition 1.3.2.67 of [La4]).

When HÛ2,Z̆
= Ĝ(Ẑ)Û2,Z̆

= Û2,Z̆(Ẑ) and when Φ̆Ĥ is represented by some Φ̆ =

(X̆, Y̆ , φ̆, ϕ̆−2, ϕ̆0) (where φ̆ : Y̆ ↪→ X̆ must be an isomorphism, as explained above),

which admits a surjection Y̆ � Ỹ with kernel Y an O-lattice, the group ŜΦ̆Ĥ
is the

group ker(S(Y̆ )TF → S(Ỹ )TF) in the notation of this paper (see section 1.1). For

more general Ĥ, we write ŜΦ̆1
= ker(S(Y̆ )TF → S(Ỹ )TF), and ŜΦ̆Ĥ

is the unique

lattice in ŜΦ̆1
⊗Z Q such that ŜΦ̆Ĥ

/ŜΦ̆1

∼= Ŝ∨
Φ̆1
/Ŝ∨

Φ̆Ĥ

∼= Û2,Z̆(Ẑ)/ĤÛ2,Z̆
(see proposition

1.3.2.56 of [La4]). Then (ŜΦ̆Ĥ
)∨R is a quotient of the space of hermitian forms over

Y̆ ⊗ZR, which also admits a projection to the space of hermitian forms over Y ⊗ZR.

We define P̂Φ̆Ĥ
(resp. P̂+

Φ̆Ĥ
) to be the subset of (ŜΦ̆Ĥ

)∨R consisting of images of positive

semi-definite hermitian forms with rational radicals (resp. positive definite hermitian

forms) over Y̆ ⊗Z R (see (1.2.4.33) and (1.2.4.34) of [La4]), which can be identified
with the subset consisting of preimages of positive semi-definite hermitian forms with
rational radicals (resp. positive definite hermitian forms) over Y ⊗Z R.

The torus

S
(m),+
n,(i),U ′g

→ Y
(m),+
n,(i),U ′g

in this paper (see section 4.3) with U = H is identified with∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

Ê
Φ̆

(i,hg)

Ĥ
→

∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

SpecQ.

Moreover, the sheaves X∗(S
(m),+
n,(i),U ′g

), X∗(S
(m),+
n,(i),U ′g

)�0
R , and X∗(S

(m),+
n,(i),U ′g

)>0
R are identified

with ∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

Ŝ
Φ̆

(i,hg)

Ĥ
,

∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

P̂
Φ̆

(i,hg)

Ĥ
, and

∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

P̂+

Φ̆
(i,hg)

Ĥ
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respectively. The S
(m),+
n,(i),U ′g

-torsor

T
(m),+
n,(i),U ′g

=
∐

h∈L(m)
n,(i),lin

(A∞)/U ′g
T

(i+m)

n−i,hgUg−1h−1∩P (m)
n,(i)

(A∞)

↓ ↓
A

(m),+
n,(i),U ′g

=
∐

h∈L(m)
n,(i),lin

(A∞)/U ′g
A

(i+m)

n−i,hgUg−1h−1∩P (m)
n,(i)

(A∞)

is identified with ∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

Ξ̂
Φ̆

(i,hg)

Ĥ
,δ̆Ĥ

↓∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

Ĉ
Φ̆

(i,hg)

Ĥ
,δ̆Ĥ
.

These maps are P̂Z̆(i,g)(A∞)-equivariant (see proposition 1.3.2.67 of [La4]).
Consider any compatible collection

Σ̂ = {Σ̂Φ̆Ĥ
}[(Φ̆Ĥ,δ̆Ĥ)]

of admissible projective smooth rational polyhedral cone decompositions, where each

Σ̂Φ̆Ĥ
is a ΓΦ̆Ĥ

-admissible projective smooth rational polyhedral cone decomposition of

P̂Φ̆Ĥ
, as in lemma 1.2.4.42 of [La4]. (We caution the reader that the definition there is

rather ad hoc.) The set of pairs κ = (Ĥ, Σ̂) with ĤG ⊂ H is denoted K++
Q,H; the subset

of K++
Q,H consisting of κ = (Ĥ, Σ̂) with ĤG = H is denoted K+

Q,H; and the subset of

K+
Q,H consisting of κ = (Ĥ, Σ̂) with ĤG = H and Ĥ = H n ĤÛ is denoted KQ,H

(see definitions 1.2.4.11 and 1.2.4.44 of [La4]). For any given compatible collection
Σ of admissible projective smooth rational polyhedral cone decompositions for MH,

and for ? = ∅, +, or ++, the subset of K?
Q,H consisting of κ = (Ĥ, Σ̂) such that Σ̂ is

compatible with Σ in the sense that each ρ̂ ∈ Σ̂Φ̆Ĥ
is mapped into some σ ∈ ΣΦH (see

condition 1.2.4.49 and definition 1.2.4.50 of [La4]) is denoted K?
Q,H,Σ. This notion of

compatibility agrees with the one in this paper (see section 5.2).

Each such κ = (Ĥ, Σ̂) in K++
Q,H induces a pair

(U,Σ)

in J (m),tor
n (with U = Ĥ) in section 5.2 of this paper, because, in order to define

(U,Σ) as in section 5.2, it suffices to define the admissible cone decomposition Σ(g)0

for X∗(S
(m),+

n,(i),gUg−1∩P (m),+
n,(i)

(A∞)
)�0
R , for each g ∈ G

(m)
n (A∞), which can be taken to be

the pull-back of the subcollection {Σ̂Φ̆Ĥ
}[(Φ̆Ĥ,δ̆Ĥ)] of Σ̂ indexed by the cusp labels

[(Φ̆Ĥ, δ̆Ĥ)] with underlying Z̆Ĥ equal to Z̆
(i,ĝ)

Ĥ
for some ĝ in Ĝ(A∞) corresponding to

g ∈ G
(m)
n (A∞) ∼= Ĝ(A∞). In fact, J (m),tor

n is exactly the set of such induced pairs

(as U = Ĥ varies). (It is hard to explicitly describe the set J (m),tor
n when m > 0,

because they are induced by auxiliary choices of compatible collections Σ̃ for M̃H̃.
Nevertheless, this is unnecessary for our purposes.)
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Each Σ̂Φ̆Ĥ
defines an affine toroidal embedding

Ξ̂Φ̆Ĥ,δ̆Ĥ
↪→ Ξ̂Φ̆Ĥ,δ̆Ĥ

= Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

=
⋃

ρ̂∈Σ̂Φ̆Ĥ

Ξ̂Φ̆Ĥ,δ̆Ĥ
(ρ̂) =

∐
ρ̂∈Σ̂Φ̆Ĥ

Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂

over ĈΦ̆Ĥ,δ̆Ĥ
. The formal completion of Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

along the union of the ρ̂-strata

Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂
for all ρ̂ ∈ Σ̂Φ̆Ĥ

such that ρ̂ ∩ P̂+

Φ̆Ĥ
6= ∅ is denoted

X̂Φ̆Ĥ,δ̆Ĥ
= X̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

(see (1.3.2.62), (1.3.2.63), (1.3.2.64), and (1.3.2.66) of [La4]). The schemes

T
(m),+
n,(i),U ′g ,Σ(g)0

→ A
(m),+
n,(i),U ′g

of this paper (see section 4.4) are identified with∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

Ξ̂
Φ̆

(i,hg)

Ĥ
,δ̆Ĥ
→

∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

Ĉ
Φ̆

(i,hg)

Ĥ
,δ̆Ĥ
.

Moreover, T
(m),+,∧
n,(i),U ′g ,Σ(g)0

is identified with∐
h∈L(m)

n,(i),lin
(A∞)/U ′g

X̂
Φ̆

(i,hg)

Ĥ
,δ̆Ĥ
,

and T
(m),\,∧
n,(i),U ′g ,Σ(g)0

is identified with∐
h∈L(m)

n,(i),lin
(Q)\L(m)

n,(i),lin
(A∞)/U ′g

(X̂
Φ̆

(i,hg)

Ĥ
,δ̆Ĥ
/Γ

Φ̆
(i,hg)

Ĥ
) =

∐
[(Φ̆Ĥ,δ̆Ĥ)]

(X̂Φ̆Ĥ,δ̆Ĥ
/ΓΦ̆Ĥ

),

where the second disjoint union is over cusp labels with underlying Z̆Ĥ equal to Z̆
(i,ĝ)

Ĥ
for a fixed ĝ in Ĝ(A∞) corresponding to g ∈ G(m)

n (A∞) ∼= Ĝ(A∞). (Again Ĥ = U .)

For each κ = (Ĥ, Σ̂) ∈ K++
Q,H, we have a smooth projective scheme

Ntor
κ

containing N (of section B.6, which we will henceforth write as Nκ to emphasize the

dependence on Ĥ) as an open dense subscheme, called a toroidal compactification

of Nκ (see theorem 1.3.3.15 of [La4]). When U = Ĥ, and when (U,Σ) ∈ J (m),tor
n is

induced by κ = (Ĥ, Σ̂) as above, the toroidal compactification

Nκ ↪→ Ntor
κ

is the
A

(m)
n,U ↪→ A

(m)
n,U,Σ

in this paper (see section 5.3). Such toroidal compactifications and the identifications

between them are compatible with the actions of Ĝ(A∞) = G
(m)
n (A∞) (see theorem

1.3.3.15(4) of [La4]).
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The toroidal compactification Ntor
κ admits a stratification by locally closed sub-

schemes

Ntor
κ =

∐
[(Φ̆Ĥ,δ̆Ĥ,ρ̂)]

Ẑ[(Φ̆Ĥ,δ̆Ĥ,ρ̂)]

(see theorem 1.3.3.15(1) of [La4]) indexed by equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] as
in lemma 1.2.4.42 of [La4]. Without repeating the definition in detail, let us just

note that the equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] with the same underlying cusp label

[(Φ̆Ĥ, δ̆Ĥ)] can be identified with the ΓΦ̆Ĥ
-orbits of the cones ρ̂ ∈ Σ̂Φ̆Ĥ

such that

ρ̂ ∩ P̂+

Φ̆Ĥ
6= ∅. Each stratum Ẑ[(Φ̆Ĥ,δ̆Ĥ,ρ̂)] is canonically isomorphic to Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂

, and

the formal completion of Ntor
κ along the union of the strata Ẑ[(Φ̆Ĥ,δ̆Ĥ,ρ̂)] labeled by

equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] with the same underlying cusp label [(Φ̆Ĥ, δ̆Ĥ)] is

canonically isomorphic to X̂Φ̆Ĥ,δ̆Ĥ
/ΓΦ̆Ĥ

(see theorem 1.3.3.15(1) of [La4]).

When U = Ĥ, and when (U,Σ) ∈ J (m),tor
n is induced by κ = (Ĥ, Σ̂) as above,

the formal completion of Ntor
κ along the union of all strata Ẑ[(Φ̆Ĥ,δ̆Ĥ,ρ̂)] labeled by

equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] with underlying Z̆Ĥ equal to Z̆
(i,ĝ)

Ĥ
for some ĝ ∈ Ĝ(A∞)

is

A
(m),∧
n,U,Σ,i

∼=
∐
g

T
(m),\,∧
n,(i),gUg−1∩P (m),+

n,(i)
(A∞),Σ(g)0

=
∐
g

∐
h

(X̂
Φ̆

(i,hg)

Ĥ
,δ̆Ĥ
/Γ

Φ̆
(i,hg)

Ĥ
),

where the indices g and h run over P
(m),+
n,(i) (A∞)\G(m)

n (A∞)/U and

L
(m)
n,(i),lin(Q)\L(m)

n,(i),lin(A∞)/(gUg−1 ∩ P (m),+
n,(i) (A∞)),

respectively, in this paper (see section 5.3).
These identifications are all Hecke equivariant (see theorem 1.3.3.15(4) of [La4]).
If κ ∈ K++

Q,H,Σ, then the canonical morphism

Nκ → MH

extends to a canonical log smooth morphism

Ntor
κ → Mtor

H,Σ

(see theorem 1.3.3.15(2) of [La4]). When U = Ĥ and U ′ = H, and when (U,Σ) ∈
J (m),tor
n and (U ′,∆) ∈ J tor

n are induced by κ = (Ĥ, Σ̂) and (H,Σ), respectively, we
have

(U,Σ) ≥ (U ′,∆)

(see section 5.2 in this paper) and the above morphism is the log smooth morphism

A
(m)
n,U,Σ → Xn,U ′,∆

in this paper (see section 5.3). These morphisms and identifications are equivariant

with Ĝ(A∞)→ G(A∞) (see proposition 1.3.3.15(4) of [La4]).
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B.8. Automorphic bundles in characteristic zero. Since the maximal isotropic
submodule V0 of L ⊗Z C on which h0(z) acts by 1 ⊗ z is isomorphic to (F ⊗Q C)n

as an F ⊗Q C-module, we can take F ′0 = F0 = Q and L0 = F n in the beginning of
section 1.4.1 of [La4], and define

M0(R) := GLO⊗ZR(L∨0 (1)⊗Q R)×Gm(R)

for each Q-algebra R. (See definition 6.2 of [La2] and definition 1.4.1.1 of [La4]. We
will not need the other groups G0(R) and P0(R) in this paper.) This can be canoni-
cally identified with the group Ln,(n)(R) in this paper (see section 1.2), by matching
GLO⊗ZR(L∨0 (1)⊗Q R) with Ln,(n),lin(R), and by matching Gm(R) with Ln,(n),herm(R).

Let H be any neat open compact subgroup of G(Ẑ), so that MH is defined over
SpecQ as in section B.1. Then the tautological abelian scheme A over MH defines a
locally free sheaf

Lie∨A/MH := e∗AΩ1
A/MH

(where eA denotes the identity section), which is the

Ωn,U

in this paper (see section 3.4.1), with U = H. We can similarly define Lie∨A∨/MH . The
action of G(A∞) on {MH}H is defined by respecting their tautological abelian schemes
up to canonical Q×-isogenies, which induces actions of G(A∞) on {Lie∨A/MH}H and

{Lie∨A∨/MH}H covering the one on {MH}H, which are compatible with the isomor-
phisms

λ∗ : Lie∨A∨/MH(1)
∼→ Lie∨A/MH

induced by the tautological polarizations λ : A → A∨. Here the formal Tate twist
is induced by the one on de Rham homology, realized by tensor products with Z(1)
over Z. Therefore, the corresponding Hecke action must be twisted by the similitude
character ν, which corresponds to the tensor product with

Ξn,U = OXn,U (‖ν‖)
in this paper (see section 3.4.1).

Let Σ be a compatible collection of admissible projective smooth rational polyhe-
dral cone decompositions for MH, so that Mtor

H,Σ is defined over SpecQ as in section
B.5. Then the tautological semi-abelian scheme G over Mtor

H,Σ defines a locally free
sheaf

Lie∨G/Mtor
H,Σ

:= e∗GΩ1
G/Mtor

H,Σ

(where eG denotes the identity section), which is the

Ωn,U,∆

in this paper (see section 5.4), with U = H, and with ∆ induced by Σ as in section
B.5. We can similarly define Lie∨G∨/Mtor

H,Σ
, where G∨ denotes the tautological ‘dual

semi-abelian scheme’ over Mtor
H,Σ extending A∨. (Note that dual semi-abelian schemes

only make sense as such extensions.) The action of G(A∞) on {Mtor
H,Σ}(H,Σ) is defined

by respecting their tautological semi-abelian schemes up to canonical Q×-isogenies,
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which induces actions of G(A∞) on {Lie∨G/Mtor
H,Σ
}(H,Σ) and {Lie∨G∨/Mtor

H,Σ
}(H,Σ) covering

the one on {Mtor
H,Σ}(H,Σ), which are compatible with the isomorphisms

λ∗ : Lie∨G∨/Mtor
H,Σ

(1)
∼→ Lie∨G/Mtor

H,Σ

induced by the tautological polarizations λ : G → G∨. Here the formal Tate twist
requires (as before) the Hecke action to be twisted by the similitude character ν,
which corresponds to the tensor product with the dual of

Ξn,U,Σ = OXn,U,Σ(‖ν‖)

in this paper (see section 5.4).
Then we have the principal M0-bundle

EM0 := IsomO⊗ZOMH
((Lie∨A∨/MH(1),OMH(1)), (L∨0 (1)⊗Q OMH ,OMH(1))),

which is an M0-torsor over MH (see definition 1.4.1.5 and lemma 1.4.1.7 of [La4]),
which canonically extends (as an M0-torsor) to a principal M0-bundle

Ecan
M0

:= IsomO⊗ZOMtor
H,Σ

((Lie∨G∨/Mtor
H,Σ

(1),OMtor
H,Σ

(1)), (L∨0 (1)⊗Q OMtor
H,Σ
,OMtor

H,Σ
(1)))

over Mtor
H,Σ (see (1.4.2.7) and lemma 1.4.2.8 of [La4]). These are the

EU and Ecan
U,∆

in this paper (see sections 3.4.1 and 5.4), with U = H, and with ∆ induced by Σ as
in section B.5.

For each Q-algebra R, we denote by RepR(M0) the category of R-modules with
algebraic actions of M0 ⊗Q R (see definition 1.4.1.8 of [La4]). Then we also define,
for each W ∈ RepR(M0) that is locally free of finite rank as an R-module, the
automorphic bundle

EM0,R(W ) := (EM0 ⊗Q R)×(M0⊗QR) W

over MH⊗QR (see definition 1.4.1.9 of [La4]), which extends to the canonical extension

Ecan
M0,R

(W ) := (Ecan
M0
⊗Q R)×(M0⊗QR) W

and the subcanonical extension

E sub
M0,R

(W ) := Ecan
M0,R

(W )⊗OMtor
H,Σ

ID∞,H,Σ

over Mtor
H ⊗Q R (see definition 1.4.2.9 of [La4]), where ID∞,H,Σ is the OMtor

H,Σ
-ideal

defining the boundary divisor D∞,H,Σ := Mtor
H,Σ − MH (with its canonical reduced

subscheme structure). These are the vector bundles

EU,ρ, Ecan
U,∆,ρ, and E sub

U,∆,ρ

in this paper (see sections 3.4.1 and 5.4), with U = H and Wρ = W . The bundles
EM0,R(W ) and Ecan

M0,R
(W ) admit compatible actions of G(A∞) (see proposition 1.4.3.1

of [La4]), which are compatible with the compatible actions of Gn(A∞) on EU,ρ and
Ecan
U,∆,ρ, covering the ones on their respective base schemes.



272 MICHAEL HARRIS, KAI-WEN LAN, RICHARD TAYLOR, AND JACK THORNE

B.9. Total objects in mixed characteristics. For each open compact subgroup
H of G(Ẑ) whose image Hp under the canonical homomorphism G(Ẑ) → G(Ẑp) is
neat, which implies, a fortiori, that H is also neat, we have a normal scheme

~MH

which is quasi-projective and flat over ~S0 = SpecOF0,(p) = SpecZ(p) and satisfies
~MH⊗ZQ ∼= MH (see proposition 2.2.1.1 in [La4]). This is simply the normalization of
MH over the auxiliary (Siegel) moduli MHaux over SpecOF0,aux,(p) = SpecZ(p) defined
by the auxiliary integral PEL datum

(Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux) = (Z, Id, L, 〈 · , · 〉, h0),

forgetting the actions of O = OF , for any neat open compact subgroup Haux of
Gaux(Ẑ) (defined by the above auxiliary integral PEL datum) containing the image

of H under the canonical homomorphism G(Ẑ) → Gaux(Ẑ) (see lemma 2.1.1.18 of
[La4] for the existence of Haux).

Similarly, we have a normal scheme

~Mmin
H

which is projective and flat over SpecZ(p) and satisfies ~Mmin
H ⊗Z Q ∼= Mmin

H , and

contains ~MH as an open fiberwise dense subscheme (see propositions 2.2.1.2 and

2.2.1.7, and corollary 2.2.1.15, in [La4]). The scheme ~Mmin
H is the

Xmin
n,U

in this paper with U = H, and the special fiber

~Mmin
H ⊗Z Fp

is the
X

min

n,U ,

in this paper (see section 5.1).

The projective scheme ~Mmin
H is equipped with an ample invertible sheaf

ω~Mmin
H

(see proposition 2.2.1.2 in [La4]). (Since 〈 · , · 〉 is self-dual, we can take a1 = 1,
a2 = 0, a0 = 1, and a = 1 in lemmas 2.1.1.1 and 2.1.2.35 of [La4].) This is the

ωU

in this paper (see section 5.1). We have a section

HasseH ∈ H0(~Mmin ⊗Z Fp, ω⊗(p−1)
~Mmin
H

⊗Z Fp)

(see corollary 6.3.1.7 of [La4]), which is the

HasseU ∈ H0(X
min

n,U , ω
⊗(p−1)
U )

in this paper (see section 5.1), whose vanishing and nonvanishing loci are

(~Mmin
H ⊗Z Fp)non-ord and (~Mmin

H ⊗Z Fp)full-ord
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(see definition 6.3.2.1 of [La4]), which are the

X
min,n-ord

n,U and X
min

n,U −X
min,n-ord

n,U ,

respectively, in this paper (see section 5.1).

The collections {~MH}H, {~Mmin
H }H, {ω~Mmin

H
}H, and {HasseH}H admit compatible

actions of G(A∞,p)×G(Zp) (see proposition 2.2.3.1 and corollary 6.3.1.8 of [La4]).

While the reader might be interested in knowing more about ~MH and ~Mmin
H , we

emphasize that we need to know almost nothing about them in this paper. What
we really need to know in detail are their ordinary loci (or more precisely just their

multiplicative-type ordinary loci, rather than the whole (~Mmin
H ⊗ZFp)full-ord as above),

which we will explain below.

B.10. Ordinary loci of Shimura varieties. To define the ordinary loci ~Mord
H in

[La4], which will be compared with the X ord
n,Up(N1,N2) for suitable choices of H and

Up(N1, N2), we consider the maximal totally isotropic filtration

0 = D1 ⊂ D0 ⊂ D−1 = L⊗Z Zp
(see lemma 3.2.2.1 of [La4]) given by

D0 = V(n) ∩ (L⊗Z Zp).
Since 〈 · , · 〉 is self-dual, the dual filtration D# in lemma 3.2.2.4 of [La4] can be iden-
tified with D, and the induced inclusions φ0

D : Gr0
D ↪→ Gr0

D# and φ−1
D : Gr−1

D ↪→ Gr−1
D#

(again, see lemma 3.2.2.4 of [La4]) are isomorphisms. Moreover, the group ~SD in
theorem 3.4.1.9 of [La4] is torsion free because it can be identified with S(OnF,p) in
this paper (see section 1.1), and hence the invariant rD in definition 3.4.2.1 of [La4]
is just zero under the assumptions of this paper.

Then we define the following groups, for each Zp-algebra R (see definition 3.2.2.7
of [La4]):

Pord
D (R) :=

{
(g, r) ∈ GLO⊗ZR(L⊗Z R)×Gm(R) :
(g, r) ∈ G(R), g(D⊗Zp R) = D⊗Zp R

}
= P+

n,(n)(R),

Mord
D (R) :=

{
(g, r) ∈ GLO⊗ZR(GrD⊗ZpR)×Gm(R) :
〈gx, gy〉 = r〈x, y〉, ∀x, y ∈ GrD⊗ZpR

}
= Ln,(n)(R),

Uord
D (R) := ker(GrD : Pord

D (R)→ Mord
D (R)) = Nn,(n)(R),

and

Uord,−1
D (R) := ker(Gr−1

D : Pord
D (R)→ GLO⊗ZR(Gr−1

D ⊗ZpR)) = Pn,(n)(R).

Then G(A∞,p)× Pord
D (Zp) = Gn(A∞)ord,×, in the notation of this paper.

For all integers 0 ≤ r and 0 ≤ r1 ≤ r0, we set (see definition 3.2.2.8 of [La4]):

(1) Up,0(pr) := (G(Zp)→ G(Z/prZ))−1(Pord
D (Z/prZ)) = Up(0, r).

(2) Up,1(pr) := (G(Zp)→ G(Z/prZ))−1(Uord,−1
D (Z/prZ)) = Up(r, r).

(3) Ubal
p,1 (pr) := (G(Zp)→ G(Z/prZ))−1(Uord

D (Z/prZ)).
(4) Up,1,0(pr1 , pr0) := Up,1(pr1) ∩ Up,0(pr0) = Up(r1, r0).

(5) Uord(pr) := ker(Mord
D (Zp)→ Mord

D (Z/prZ)) = Up(r)n,(n) × (1 + prZp)×.
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An open compact subgroup Hp of G(Qp) is said to be of standard form and of depth
r in the sense of definition 3.2.2.9 of [La4] if

Ubal
p,1 (pr) ⊂ Hp ⊂ Up,0(pr).

In this case we define Hord
p to be the unique open compact subgroup of Mord

D (Zp) such

that Hord
p /Uord(pr) ∼= Hp/Ubal

p,1 (pr) (see definition 3.3.3.4 of [La4]).

The theory in [La4] is developed for open compact subgroups H of G(Ẑ) of the

form H = HpHp, where Hp is a neat open compact subgroup of G(Ẑp), and where Hp

is an open compact subgroup of G(Zp) of standard form. In this paper, we will only
need H of the form Up(N1, N2), which satisfies the above requirement with Hp = Up

and Hp = Up,1,0(pN1 , pN2). In this case, since ν(Hp) = Z×p and rD = 0, the invariant
rH in definition 3.4.2.1 of [La4] is just zero. Then we have a smooth quasi-projective
scheme

~Mord
H

over ~S0 = SpecOF0,(p) = SpecZ(p), which satisfies ~Mord
H ⊗ZQ ∼= MH and can be canon-

ically embedded as an open subscheme of ~MH (see theorem 3.4.2.5 and proposition

3.4.6.3 of [La4]). Note that, in theorem 3.4.2.5 of [La4], ~Mord
H is defined as a normal-

ization of the base change from SpecZ(p) to Spec (OF0,(p)[ζprH ]) of a naive moduli
...
M

ord

H
over SpecZ(p) (see definition 3.4.1.1 and theorem 3.4.1.9 of [La4]), but since F0 = Q,
rD = 0, and rH = 0, the base change has no effect, and the normalization merely
singles out the correct components satisfying the condition on Lie algebra. Hence,
~Mord
H coincides with the moduli problem

X ord
n,Up(N1,N2)

in this paper (see section 3.1.1), with Up(N1, N2) = H (that is, with Up = Hp,
N1 = r1, and N2 = r0). (See remark 3.4.2.8 of [La4] for the comparison between the
definition using isomorphism classes of abelian schemes with additional structures
in [La4], and the definition of X ord

n,Up(N1,N2) using prime-to-p quasi-isogeny classes in

this paper, and for the extension of the definition of ~Mord
H to allow H = HpHp for all

open compact subgroups Hp of G(Ẑp). Again, since the pairing 〈 · , · 〉 is self-dual,
the consideration of dual objects in [La4] can be suppressed, although they were
clarifying when developing the general theory.)

The formal completion of ~Mord
H
∼= X ord

n,Up(N1,N2) (with Up(N1, N2) = H) along

~Mord
H ⊗Z Fp ∼= X

ord

n,Up(N1)

is denoted
~Mord
H
∼= Xord

n,Up(N1)

(see definition 3.4.4.2 of [La4]). Their independence of N2 = r0 is explained in
corollary 3.4.4.4 of [La4].

The collection {~Mord
H }H indexed by neat open compact subgroups H of G(A∞)

of the form considered above admits compatible actions (see proposition 3.4.4.1 of
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[La4]) of G(A∞,p) × Pord
D (Zp) and of the element of Pord

D (Qp) ⊂ G(Qp) correspond-
ing to ςp ∈ Ln,(n),herm(Qp) in this paper (see section 1.2) under the identification
between G(Qp) and Gn(Qp), which are compatible with the action of Gn(A∞)ord on
{X ord

n,Up(N1,N2)}Up(N1,N2). (In fact, proposition 3.4.4.1 of [La4] gives the actions of many

more elements, but we omit them because they are not needed in this paper.) While
these actions are given by quasi-finite morphisms which are often not finite, the in-
duced morphisms on the p-adic completions are always finite (see corollary 3.4.4.3 of
[La4]). The element of Pord

D (Qp) corresponding to ςp is a typical example of an ele-
ment of Up type in definition 3.3.6.1 of [La4], which induces the composite of absolute
Frobenius and forgetful morphisms in characteristic p (see corollary 3.4.4.6 of [La4]).

B.11. Ordinary cusp labels. Let H be any open compact subgroup of G(Ẑ) as
above. We say that a cusp label (ZH,ΦH, δH) is ordinary (see definition 3.2.3.8 of
[La4]) if ZH contains an element Z that is compatible with the filtration D in the sense
that

0 ⊂ Z−2 ⊗Ẑ Zp ⊂ D ⊂ Z−1 ⊗Ẑ Zp ⊂ L⊗Z Zp
(see definition 3.2.3.1 of [La4]). Then we have an induced filtration D−1 on GrZ−1⊗ẐZp
given by

0 = D1
−1 ⊂ D0

−1 := D0/(Z−2 ⊗Ẑ Zp) ⊂ D−1
−1 = GrZ−1⊗ẐZp.

For any such Z, and for each Zp-algebra R, we define the following quotients of
subgroups of PZ(R) (see definition 3.2.3.9 of [La4]):

(1) Pord
Z,D (R) := PZ(R) ∩ Pord

D (R).

(2) Pord,′
Z,D (R) := P′Z(R) ∩ Pord

D (R).

(3) Pord
1,Z,D(R) := Pord,′

Z,D (R)/U2,Z(R).

(4) Pord
h,Z,D(R) is the subgroup of elements of Gh,Z(R) preserving the filtration D−1

induced by D on GrZ−1⊗ẐZp.
(5) Pord,′

h,Z,D(R) := Pord,′
Z,D (R)/UZ(R)

∼→ Pord
h,Z,D(R).

We have, for example,

PZ(i,1)(A∞,p)× Pord
Z(i,1),D(Zp) = P+

n,(i)(A
∞)ord,×

in the notation of this paper (see section 1.2). (In this paper, all intersections with
Pord
D (Zp) = P+

n,(n)(Zp) at the factors at p are denoted by the superscript ord,×.) By

definition, as g varies in G(A∞), the filtration Z(i,g) is compatible with D if and only
if g ∈ G(A∞,p)× PZ(i,1)(Qp)P

ord
D (Qp).

Now suppose H = HpHp, where Hp is an open compact subgroup of G(A∞,p)
and Hp = Up,1,0(pr1 , pr0) for some integers 0 ≤ r1 ≤ r0. The H-orbits Z

(i,g)
H of

Z(i,g) that contains a filtration compatible with D are parameterised by the image of
G(A∞,p)×PZ(i,1)(Qp)P

ord
D (Qp) in PZ(i,1)(A∞)\G(A∞)/H. As in section 5.1, this image

is in bijection with the double coset space

(PZ(i,1)(A∞,p)× Pord
Z(i,1),D(Zp))\(G(A∞,p)× Pord

D (Zp))/(Hp × (Hp ∩ Pord
D (Zp))),
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which is the double coset space

P+
n,(i)(A

∞)ord,×\Gn(A∞)ord,×/Up(N1)

in this paper (see, for example, section 5.1), with Up(N1, N2) = H and with Up(N1)
denoting the intersection of Up(N1, N2) with Gn(A∞)ord,×. The ordinary cusp labels

[(ZH,ΦH, δH)] for MH with underlying ZH equal to Z
(i,g)
H for some g ∈ G(A∞,p) ×

Pord
D (Zp) are parameterised by the double coset space

(G′l,Φ(i,1)(Z(p)) n (P′
Z(i,1)(A∞,p)× Pord,′

Z(i,1),D
(Zp)))\(G(A∞)× Pord

D (Zp))

/(Hp × (Hp ∩ Pord
D (Zp))),

and the forgetful map sending [(ZH,ΦH, δH)] to ZH can be identified with the canonical
map from this double coset space to

(PZ(i,1)(A∞,p)× Pord
Z(i,1),D(Zp))\(G(A∞,p)× Pord

D (Zp))/(Hp × (Hp ∩ Pord
D (Zp))),

whose fiber above the double coset of g ∈ G(A∞,p)× Pord
D (Zp) can be identified with

G′l,Φ(i,1)(Z(p))\G′l,Z(i,1)(A∞,p × Zp)/(gHg−1)G′
l,Z(i,1)

.

This last double coset space is the index set of

Yord,\

n,(i),(gUpg−1∩P+
n,(i)

(A∞,p))(N1)

=
∐

Ln,(i),lin(Z(p))\Ln,(i),lin(A∞)ord,×/(gUpg−1∩P+
n,(i)

(A∞,p))(N1)

SpecZ(p)

in this paper (see section 4.1), with Up(N1, N2) = H.

B.12. Partial minimal compactifications of ordinary PEL moduli. For each
H = HpHp, where Hp is a neat open compact subgroup of G(A∞,p), and where
Hp = Up,1,0(pr1 , pr0) for some integers 0 ≤ r1 ≤ r0, there is a normal scheme

~Mord,min
H

quasi-projective and flat over SpecZ(p), with geometrically normal fibers, which con-

tains ~Mord
H as an open fiberwise dense subscheme and can be canonically embedded

as an open subscheme of ~Mmin
H , called the partial minimal compactification of ~Mord

H ,

whose characteristic zero pull-back ~Mord,min
H ⊗ZQ is an open subscheme of Mmin

H which
can be identified with the union of the strata Z[(ΦH,δH)] indexed by ordinary cusp
labels (see theorem 6.2.1.1 and proposition 6.2.1.6 of [La4]). The union

~Mord,min
H ∪Mmin

H

(by gluing along their common open subscheme described above) is the

Xmin
n,Up(N1,N2)

in this paper (see section 5.1), with Up(N1, N2) = H. The collection {~Mord,min
H }H

admits compatible actions of G(A∞,p) × Pord
D (Zp) and of the element of Pord

D (Qp)
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corresponding to ςp (see proposition 6.2.2.1 of [La4]), which are compatible with the
action of Gn(A∞)ord on {Xmin

n,Up(N1,N2)}Up(N1,N2).

The partial minimal compactification ~Mord,min
H admits a stratification by locally

closed subschemes

~Mord,min
H =

∐
[(ΦH,δH)]

~Zord
[(ΦH,δH)] =

n∐
i=0

∐
g

~Zord

[(Φ
(i,g)
H ,δH)]

where [(ΦH, δH)] runs over ordinary cusp labels for MH and g runs over

(G′l,Φ(i,1)(Z(p)) n (P′
Z(i,1)(A∞,p)× Pord,′

Z(i,1),D
(Zp)))\(G(A∞)× Pord

D (Zp))

/(Hp × (Hp ∩ Pord
D (Zp)))

(see theorem 6.2.1.1(4) of [La4]). If H = Up(N1, N2), this matches∐
g

~Zord

[(Φ
(i,g)
H ,δH)]

(where the indices g are as above) with the subscheme∐
g∈P+

n,(i)
(A∞)ord,×\Gn(A∞)ord,×/Up(N1)

X ord,\

n,(i),(gUpg−1∩P+
n,(i)

(A∞,p))(N1,N2)

of ∂0
iX

ord,min
n,Up(N1,N2) (see section 5.1), where

X ord,\

n,(i),(gUpg−1∩P+
n,(i)

(A∞,p))(N1,N2)

=
∐

h∈Ln,(i),lin(Z(p))\Ln,(i),lin(A∞)ord,×/(gUpg−1∩P+
n,(i)

(A∞,p))(N1)

~Zord

[(Φ
(i,hg)
H ,δH)]

.

Each ~Zord
[(ΦH,δH)] is the quotient ~Mord,ZH

H of

~Mord,ΦH
H

∼= ~Mord
HG′

h,Z

by ΓΦH , which is isomorphic to ~Mord
HGh,Z,Φ

, where HGh,Z,Φ is as in section B.4 (see

lemmas 5.2.4.1 and 5.2.4.5 of [La4]). Here ~Mord
HG′

h,Z

and ~Mord
HGh,Z,Φ

are analogues of

~Mord
H defined by an integral PEL datum (O, ?, LZ, 〈 · , · 〉Z, hZ0) defining MHG′

h,Z

and

MHGh,Z,Φ
, which is associated with a representative Z of ZH that is compatible with

D, and by the filtration D−1 on LZ⊗Z Zp ∼= GrZ−1⊗ẐZp determined by D as above (see
definition 1.2.1.15 and lemma 5.2.4.1 of [La4]). If we let Up,′

g (resp. Up,′
g,lin) denote the

image of gUpg−1 ∩ P+
n,(i)(A

∞,p) in Ln,(i)(A∞,p) (resp. Ln,(i),lin(A∞,p)), then under the
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identifications

X ord,\

n,(i),Up,′g (N1,N2)
= Ln,(i),lin(Z(p))\X ord,+

n,(i),Up,′g (N1,N2)

= Ln,(i),lin(Z(p))\( ∐
h∈Ln,(i),lin(A∞)ord,×/(Up,′g ∩Ln,(i),lin(A∞,p))(N1)

X ord
n,(i),(Up,′g ∩Gn−i(A∞,p))(N1,N2)

)
/Up,′

g

=
∐

h∈Ln,(i),lin(Z(p))\Ln,(i),lin(A∞)ord,×/Up,′g,lin(N1)(
(Ln,(i),lin(Z(p)) ∩ (hUp,′

g,linh
−1)(N1))\X ord

n,(i),(Up,′g ∩Gn−i(A∞,p))(N1,N2)

)
,

of section 4.1,

• the term X ord
n,(i),(Up,′g ∩Gn−i(A∞,p))(N1,N2)

indexed by h is identified with ~M
ord,Φ

(i,hg)
H

H ;

• the group Ln,(i),lin(Z(p)) ∩ (hUp,′
g,linh

−1)(N1) is identified with Γ
Φ

(i,hg)
H

;

• and the term

(Ln,(i),lin(Z(p)) ∩ (hUp,′
g,linh

−1)(N1))\X ord
n,(i),(Up,′g ∩Gn−i(A∞,p))(N1,N2)

is identified with ~M
ord,Z

(i,hg)
H

H .

Similarly, under the identification

X ord,+

n,(i),Up,′g (N1,N2)
=

∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

X ord
n,(i),(Up,′g ∩Gn−i(A∞,p))(N1,N2)

,

the term X ord
n,(i),(Up,′g ∩Gn−i(A∞,p))(N1,N2)

indexed by h is identified with ~M
ord,Φ

(i,hg)
H

H . These

identifications are Hecke equivariant.

If H = Up(N1, N2), then the formal completion of ~Mord,min
H

∼= X ord,min
n,Up(N1,N2) along

~Mord,min
H ⊗Z Fp ∼= X

ord,min

n,Up(N1)

is denoted
~Mord,min
H

∼= Xord,min
n,Up(N1)

(see definition 3.4.4.2 of [La4]). Their independence of N2 = r0 is explained in
corollary 6.2.2.8 and example 3.4.4.5 of [La4]. For the Hecke actions on these formal
schemes, see corollaries 6.2.2.7, 6.2.2.8, and 6.2.2.9 of [La4].

B.13. Partial toroidal compactifications of ordinary PEL moduli. For each
representative (ZH,ΦH, δH) of an ordinary cusp label [(ZH,ΦH, δH)] for MH, there is
a torsor

~Cord
ΦH,δH

→ ~Mord,ΦH
H

of an abelian scheme
~Cord,grp

ΦH,δH
→ ~Mord,ΦH

H ;

this abelian scheme is Q×-isogenous to HomO(X,B), and in fact its Z×(p)-isogeny class

(i.e. prime-to-p quasi-isogeny class) can be described explicitly (see lemma 5.2.4.7
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and propositions 5.2.4.11 and 5.2.4.13 of [La4]). We obtain an isomorphic abelian
scheme torsor if we replace (ZH,ΦH, δH) with another representative, but its universal
property depends on this choice of representative.

If Up,′
g again denotes gUpg−1 ∩ P+

n,(i)(A
∞,p) then the map

Aord,+

n,(i),Up,′g (N1,N2)
=

∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)A

(i),ord

n−i,(hgUpg−1h−1∩Pn,(i)(A∞,p))(N1,N2)

↓ ↓
X ord,+

n,(i),Up,′g (N1,N2)
=

∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)X ord

n,(i),(Up,′g ∩Pn,(i)(A∞,p))(N1,N2)

in this paper (see sections 4.1 and 4.2) with Up(N1, N2) = H is identified with∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

~Cord

Φ
(i,hg)
H ,δH

↓∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

~M
ord,Φ

(i,hg)
H

H .

These maps are equivariant with compatible actions of PZ(i,g)(A∞,p)×Pord
Z(i,g),D

(Zp) and

of the element of Pord
Z(i,g),D

(Qp) corresponding to ςp. (See proposition 5.2.4.25 of [La4].)

(Since our pairing 〈 · , · 〉 is perfect, the universal property of ~Cord
ΦH,δH

in proposition
5.2.4.13 of [La4] can be simplified by suppressing the dual objects. This universal

property then agrees with that of A(i),ord

n−i,(hgUpg−1h−1∩Pn,(i)(A∞,p))(N1,N2) in section 3.2 of

this paper.)
For each representative (ZH,ΦH, δH) of an ordinary cusp label [(ZH,ΦH, δH)] for

MH, there is a torsor
~Ξord

ΦH,δH
→ ~Cord

ΦH,δH

under the pull-back of the same split torus EΦH over SpecZ as before (see section B.5;
and see lemma 5.2.4.26 and proposition 5.2.4.30 of [La4]). We obtain an isomorphic
torus torsor if we replace (ZH,ΦH, δH) with another representative, but its universal
property depends on this choice of representative. For a fixed (Z,Φ, δ), the collection

{~Ξord
ΦH,δH

}HP′Z
admits compatible actions of P′Z(A∞,p) × Pord,′

Z,D (Zp) and of the element

of Pord,′
Z,D (Qp) corresponding to ςp such that the morphisms

~Ξord
ΦH,δH

→ ~Cord
ΦH,δH

are equivariant with

P′Z(A∞,p)× Pord,′
Z,D (Zp)→ G1,Z(A∞,p)× P1,Z,D(Zp)

and with the compatible actions of the elements corresponding to ςp (see proposition
5.2.4.41 of [La4]).

The torus
Sord,+

n,(i),Up,′g (N1)
→ Yord,+

n,(i),Up,′g (N1)

in this paper (see section 4.3) with Up(N1, N2) = H is identified with∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

~Eord

Φ
(i,hg)
H ,δH

→
∐

h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

SpecZ(p).
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Moreover, the sheaves X∗(Sord,+

n,(i),Up,′g (N1)
), X∗(Sord,+

n,(i),Up,′g (N1)
)�0
R , and X∗(Sord,+

n,(i),Up,′g
)>0
R are

identified with ∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

S
Φ

(i,hg)
H

,
∐

h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

P
Φ

(i,hg)
H

,

and ∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

P+

Φ
(i,hg)
H

,

respectively. The Sord,+

n,(i),Up,′g (N1)
-torsor

T ord,+

n,(i),Up,′g (N1,N2)
=

∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1) T

(i),ord

n−i,(hgUpg−1h−1∩Pn,(i)(A∞,p))(N1,N2)

↓ ↓
Aord,+

n,(i),Up,′g (N1,N2)
=

∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)A

(i),ord

n−i,(hgUpg−1h−1∩Pn,(i)(A∞,p))(N1,N2)

is identified with ∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

~Ξord

Φ
(i,hg)
H ,δH

↓∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

~Cord

Φ
(i,hg)
H ,δH

.

These maps are equivariant with the compatible actions of PZ(i,g)(A∞,p)×Pord,′
Z(i,g),D

(Zp)
and of the elements corresponding to ςp. (See proposition 5.2.4.41 of [La4].)

Consider any compatible collection

Σord = {ΣΦH}[(ΦH,δH)]

of admissible projective smooth rational polyhedral cone decompositions for ~Mord
H ,

where each ΣΦH is a ΓΦH-admissible projective smooth rational polyhedral cone de-
composition of PΦH , and where the indices [(ΦH, δH)] are ordinary cusp labels for
MH, as in definitions 5.1.3.1 and 5.1.3.3 of [La4]. Any compatible collection Σ for MH
induces a compatible collection Σord for ~Mord

H by restricting to the indices given by

ordinary cusp labels, and conversely any compatible collection Σord for ~Mord
H extends

to a compatible collection Σ for MH (see proposition 5.1.3.4 of [La4]). Each such Σord

considered in [La4] induces a pair

(Up(N1),∆)

in J tor,ord
n (with Up(N1, N2) = H) in section 5.2 of this paper, because, in order

to define (Up(N1),∆) as in section 5.2, it suffices to define the admissible cone de-

composition ∆(g)0 for X∗(Sord,+

n,(i),(gUpg−1∩P+
n,(i)

(A∞,p))(N1)
)�0
R , for each g ∈ Gn(A∞)ord,× =

G(A∞,p) × Pord
D (Zp), which can be taken to be the pull-back of the subcollection

{ΣΦH}[(ΦH,δH)] of Σord indexed by the cusp labels [(ΦH, δH)] with underlying ZH equal

to Z
(i,g)
H . In fact, J tor,ord

n is exactly the set of such induced pairs (as Up(N1, N2) = H
varies).



ON THE RIGID COHOMOLOGY OF CERTAIN SHIMURA VARIETIES. 281

Each ΣΦH defines an affine toroidal embedding

~Ξord
ΦH,δH

↪→ ~Ξ
ord

ΦH,δH
= ~Ξ

ord

ΦH,δH,ΣΦH
=

⋃
σ∈ΣΦH

~Ξord
ΦH,δH

(σ) =
∐

σ∈ΣΦH

~Ξord
ΦH,δH,σ

over ~Cord
ΦH,δH

. Rather confusingly ~Ξord
ΦH,δH

(σ) (in the notation of [La4]) is what in this

paper we would have denoted ~Ξord
ΦH,δH,σ

; and ~Ξord
ΦH,δH,σ

is what in this paper we would

have denoted ∂σ~Ξ
ord
ΦH,δH,ΣΦH

. The formal completion of ~Ξ
ord

ΦH,δH,ΣΦH
along the union of

the σ-strata ~Ξord
ΦH,δH,σ

for all σ ∈ ΣΦH such that σ ∩P+
ΦH
6= ∅ is denoted

~Xord
ΦH,δH

= ~Xord
ΦH,δH,ΣΦH

(see (4.2.2.4), (5.2.4.32), (5.2.4.33), and lemma 5.2.4.38 of [La4]).
For a fixed g ∈ G(A∞,p)× Pord

D (Zp), the schemes

T ord,+

n,(i),Up,′g (N1,N2),∆(g)0
→ Aord,+

n,(i),Up,′g (N1,N2)

of this paper (see section 4.4) are identified with∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

~Ξ
ord

Φ
(i,hg)
H ,δH

→
∐

h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

~Cord

Φ
(i,hg)
H ,δH

Moreover, T ord,+,∧
n,(i),Up,′g (N1,N2),∆(g)0

is identified with∐
h∈Ln,(i),lin(A∞)ord,×/Up,′g (N1)

~Xord

Φ
(i,hg)
H ,δH

and T ord,\,∧
n,(i),Up,′g (N1,N2),∆(g)0

is identified with∐
h∈Ln,(i),lin(Z(p))\Ln,(i),lin(A∞)ord,×/Up,′g (N1)

(~Xord

Φ
(i,hg)
H ,δH

/Γ
Φ

(i,hg)
H

) =
∐

[(ΦH,δH)]

(~Xord
ΦH,δH

/ΓΦH),

where the second disjoint union runs over all ordinary cusp labels [(ΦH, δH)] with

underlying ZH equal to Z
(i,g)
H . (Again U = H.)

For each Σord as above (and each H as above; see the beginning of section B.12),
we have a smooth quasi-projective scheme

~Mord,tor
H,Σord

over SpecZ(p), which contains ~Mord
H as an open fiberwise dense subscheme, and is

called a partial toroidal compactification of ~Mord
H . Its characteristic zero pull-back

~Mord,tor
H,Σord ⊗Z Q is an open subscheme of Mtor

H,Σ, for any Σ extending Σord, which can

be identified with the union of the strata Z[(ΦH,δH,σ)] indexed by equivalence classes
whose underlying cusp labels [(ΦH, δH)] are ordinary (see theorems 5.2.1.1 and 6.2.3.1
and remark 5.2.1.5 of [La4]). The union

~Mord,tor
H,Σord ∪Mtor

H,Σ
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(by gluing along their common open subscheme described above) is the

X ord
n,Up(N1,N2),∆

in this paper (see section 5.3), with Up(N1, N2) = H and with (Up(N1, N2),∆) ∈ J tor
n

induced by Σ as in section B.5. In this case, the (Up(N1),∆ord) ∈ J tor,ord
n induced by

(Up(N1, N2),∆) is induced by the Σord induced by Σ. The collection {~Mord,tor
H,Σord}(H,Σord)

admits compatible actions of G(A∞,p) × Pord
D (Zp) and of the element of Pord

D (Qp)
corresponding to ςp (see proposition 5.2.2.2 of [La4]), which are compatible with the
action of Gn(A∞)ord on {Xn,Up(N1,N2),∆}(Up(N1,N2),∆).

The partial toroidal compactification ~Mord,tor
H,Σord admits a stratification by locally

closed subschemes
~Mord,tor
H,Σord =

∐
[(ΦH,δH,σ)]

~Zord
[(ΦH,δH,σ)]

(see theorem 5.2.1.1(2) of [La4]) indexed by equivalence classes [(ΦH, δH, σ)] as in
definition 1.2.2.10 of [La4] whose underlying cusp labels [(ΦH, δH)] are ordinary. Each

stratum ~Zord
[(ΦH,δH,σ)] is canonically isomorphic to ~Ξord

ΦH,δH,σ
, and the formal completion

of ~Mord,tor
H,Σord along the union of the strata ~Zord

[(ΦH,δH,σ)] labeled by equivalence classes

[(ΦH, δH, σ)] with the same underlying ordinary cusp label [(ΦH, δH)] is canonically

isomorphic to ~Xord
ΦH,δH

/ΓΦH (see lemma 5.2.4.38 of [La4]).

When Up(N1, N2) = H, and when (Up(N1),∆ord) ∈ J tor,ord
n is induced by Σord

as above, the formal completion of ~Mord,tor
H,Σord along the union of all strata ~Zord

[(ΦH,δH,σ)]

labeled by equivalence classes [(ΦH, δH, σ)] with underlying ZH equal to Z
(i,g)
H for some

g ∈ G(A∞,p)× Pord
D (Zp) is∐

g∈P+
n,(i)

(A∞)ord,×\Gn(A∞)ord,×/Up(N1)

T ord,\,∧
n,(i),(gUpg−1∩P+

n,(i)
(A∞,p))(N1,N2),∆(g)0

⊂ X ord,∧
n,Up(N1,N2),∆,i

in this paper, whose union with X∧n,Up(N1,N2),∆,i is

X ord,∧
n,Up(N1,N2),∆,i

(see section 5.3). It can be identified with∐
g

∐
h

(~Xord

Φ
(i,hg)
H ,δH

/Γ
Φ

(i,hg)
H

),

where g runs over P+
n,(i)(A

∞)ord,×\Gn(A∞)ord,×/Up(N1) and h runs over

Ln,(i),lin(Z(p))\Ln,(i),lin(A∞)ord,×/(gUpg−1 ∩ P+
n,(i)(A

∞,p))(N1).

These identifications are all Hecke equivariant (see proposition 5.2.4.41 of [La4]).

The formal completion of ~Mord,tor
H,Σord along

~Mord,tor
H,Σord ⊗Z Fp

is denoted
~Mord,tor
H,Σord
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in [La4] (see definition 3.4.4.2). When Up(N1, N2) = H, and when (Up(N1),∆) ∈
J tor,ord
n induced by Σord as above, these are denoted X

ord

n,Up(N1),∆ and Xord
n,Up(N1),∆,

respectively, in this paper (see section 5.3). (Their independence of N2 = r0 is
explained in corollary 5.2.2.4 of [La4].) For the Hecke actions on these formal schemes,
see corollaries 5.2.2.3, 5.2.2.4, and 5.2.2.5 of [La4].

B.14. Ordinary loci of Kuga families. Recall the choice of Q = OmF in section
B.6, and the associated algebraic groups. For a Zp-algebra R, we set

P̂ord
D (R)

to be the pre-image of Pord
D (R) under the homomorphism Ĝ(R) � G(R). This is

P
(m),+
n,(n) (R) in the notation of this paper. Thus,

Ĝ(A∞,p)× P̂ord
D (Zp) = G(m)

n (A∞)ord,×.

For all integers 0 ≤ r and 0 ≤ r1 ≤ r0, we set:

(1) Ûp,0(pr) := (Ĝ(Zp)→ Ĝ(Z/prZ))−1(P̂ord
D (Z/prZ)) = Up(0, r)

(m)
n .

(2) Ûp,1(pr) := Up(r, r)
(m)
n .

(3) Ûbal
p,1 (pr) := ker(ν : Ûp,1(pr)→ (Z/prZ)×).

(4) Ûp,1,0(pr1 , pr0) := Ûp,1(pr1) ∩ Ûp,0(pr0) = Up(r1, r0)
(m)
n .

(The first and third of these definitions are consistent with definition 7.1.1.2 of [La4].)

An open compact subgroup Ĥp ⊂ Ĝ(Qp) is said to be of standard form and of depth
r if

Ûbal
p,1 (pr) ⊂ Ĥp ⊂ Ûp,0(pr)

(see definition 7.1.1.2 of [La4]).

The theory in [La4] is developed for open compact subgroups Ĥ of Ĝ(Ẑ) of the form

Ĥ = ĤpĤp, where Ĥp is a neat open compact subgroup of Ĝ(Ẑp), and where Ĥp is an

open compact subgroup of Ĝ(Zp) of standard form. In this paper, we will only need

Ĥ of the form Up(N1, N2), which satisfies the above requirement with Ĥp = Up and

Ĥp = Ûp,1,0(pN1 , pN2). Then rĤG
= 0 and Ĥ satisfies conditions 7.1.1.4 and 7.1.1.5 of

[La4]. To each Ĥ as above with image H = ĤG in G(Ẑ), [La4] attached a generalized
ordinary Kuga family

~Nord → ~Mord
H

(see definition 7.1.3.2 of [La4]). Its characteristic zero pull-back is a generalized Kuga

family N→ MH as in section B.6. Since Q = OmF , it is the scheme denotedA(m),ord
n,Up(N1,N2)

in this paper. The generalized ordinary Kuga family attached to ĤĜnĤÛ is denoted

~Nord,grp → ~Mord
H

and is a Kuga family as in definition 7.1.3.1 of [La4]. It is an abelian scheme and,
since Q = OmF , it is Q×-isogenous to the m-fold fiber product of the universal abelian

scheme over ~Mord
ĤG

. Its characteristic zero pull-back is a Kuga family Ngrp → MH as
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in section B.6. The generalized ordinary Kuga family ~Nord → ~Mord
H is a torsor for

~Nord,grp → ~Mord
H .

To study these schemes and their compactification [La4] again realizes them in a
non-canonical way inside the boundary of a larger Shimura variety. We will continue
to use the notation of B.6. We consider the maximal totally isotropic filtration

0 = D̃1 ⊂ D̃0 =
(
(Z̃−2 ⊗Ẑ Zp)⊕ D

)
⊂ D̃−1 = L̃⊗Z Zp

of L̃⊗Z Zp (see the beginning of section 7.1.1 of [La4]). We have

D̃0 = Ṽ(m+n) ∩ (L̃⊗Z Zp).

We define (see definition 7.1.1.22 of [La4]):

(1) P̃ord
Z̃,D̃

(R) := P̃Z̃(R) ∩ P̃ord
D̃

(R).

(2) P̃ord,′
Z̃,D̃

(R) := P̃′
Z̃
(R) ∩ P̃ord

D̃
(R) = P̃

(m),+
n,(n) .

For any such Ĥ, we can always find some

H̃ = H̃p × Ũp,1,0(pN1 , pN2) ⊂ G̃(Ẑ)

with H̃p neat such that Ĥ = H̃Ĝ (see section B.6) and

H̃P̃Z̃
/H̃ŨZ̃

∼= H̃G̃l,̃Z
× ĤG.

(Then rH̃ = 0.) In this case, the abelian scheme torsor

~̃
C

ord

Φ̃H̃,Φ̃δ̃
→ ~̃

M
ord,Φ̃H̃

H̃
∼= ~̃

M
ord,Z̃H̃

H̃

depends only on Ĥ (but not on the auxiliary choice of H̃) and equals the above

generalized ordinary Kuga family ~Nord → ~Mord
H attached to Ĥ.

B.15. Partial toroidal compactifications of ordinary loci of Kuga families.

Let us fix the choice of some (Z̃, Φ̃, δ̃) as in section B.6. Then the bijection described
at the start of section B.7 restricts to a bijection between the following two sets:

(1) The fully symplectic admissible filtrations Z̆ of L̃⊗Z Ẑ compatible with D̃ such

that 0 ⊂ Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂ Z̃−1 ⊂ L̃⊗Z Ẑ.

(2) The fully symplectic admissible filtrations Z of L⊗Z Ẑ compatible with D such
that Z−2 = Z̆−2/Z̃−2.

(Recall that the notation ˘ will always mean objects related to such a filtration Z̆.)
For each Z̆ as above, and for each Zp-algebra R, we define the following quotients

of subgroups of P̂Z̆(R) (see definition 7.1.1.27 of [La4]):

(1) P̂ord
Z̆,D

(R) := (P̃ord
Z̆,D̃

(R) ∩ P̃′
Z̃
(R))/Ũ2,Z̃(R).

(2) P̂ord,′
Z̆,D

(R) := P̃ord,′
Z̆,D̃

(R)/Ũ2,Z̃(R).

(3) P̂ord
1,Z̆,D

(R) := P̂ord,′
Z̆,D

(R)/Û2,Z̆(R).

(4) P̂ord,′
h,Z̆,D

(R) := P̂ord
1,Z̆,D

(R)/Û1,Z̆(R) ∼= P̂ord
h,Z̆,D

(R).
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(5) P̂ord
h,Z̆,D

(R) denotes the subgroup of elements of Ĝh,Z̆(R) ∼= Gh,Z(R) which pre-

serve D̃−1 = D ⊂ GrZ̆−1⊗ẐZp ∼= GrZ−1⊗ẐZp. Thus P̂ord,′
h,Z̆,D

(R)
∼→ P̂ord

h,Z̆,D
(R).

When Z = Z(i,1), in which case Z̆ = Z̃(i+m,1) = Z̆(i,1), we have, for example,

P̂Z̆(i,1)(A∞,p)× P̂ord
Z̆(i,1),D(Zp) = P

(m),+
n,(i) (A∞)ord,×

in the notation of this paper (see section 1.2).
The filtration Z̆(i,ĝ) is compatible with D̃ if and only if

ĝ ∈ Ĝ(A∞,p)× P̂ord
Z̆(i,1)(Qp)P̂

ord
D (Qp),

where P̂ord
D (Qp) = P̃ord

1,Z̃,D̃
(Qp).

Now suppose Ĥ is an open compact subgroup Ĥ of Ĝ(Ẑ) of the form Ĥ = ĤpĤp,

where Ĥp is a neat open compact subgroup of Ĝ(Ẑp), and where Ĥp = Ûp,1,0(pr1 , pr0)

for some integers 0 ≤ r1 ≤ r0. The Ĥ-orbits Z̆
(i,ĝ)

Ĥ
containing a filtration com-

patible with D̃ are parameterised by the image of Ĝ(A∞,p) × P̂ord
Z̆(i,1)(Qp)P̂

ord
D (Qp) in

P̂ord
Z̆(i,1)(A∞)\Ĝ(A∞)/Ĥ. As in section 5.1, this set is in bijection with the double coset

space

(P̂Z̆(i,1)(A∞,p)× P̂ord
Z̆(i,1),D(Zp))\(Ĝ(A∞,p)× P̂ord

D (Zp))/(Ĥp × (Ĥp ∩ P̂ord
D (Zp))),

which is the double coset space

P
(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1)

in this paper (see, for example, section 1.4), with Up(N1, N2) = Ĥ. It maps isomor-
phically to

P+
n,(i)(A

∞)ord,×\Gn(A∞)ord,×/Up(N1).

The correspondence of cusp labels from section B.7 sets up bijections between the
following sets (see lemmas 1.2.4.15 and 1.2.4.16, definitions 1.2.4.17 and 3.2.3.8, and
lemma 7.1.1.8 of [La4]):

(1) The ordinary cusp labels [(Z̆H̃, Φ̆H̃, δ̆H̃)] for M̃H̃ such that the stratum Z̃[(Φ̆H̃,δ̆H̃)]

of M̃min
H̃ is contained in the closure of Z̃[(Φ̃H̃,δ̃H̃)].

(2) The Ĥ-orbits, [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)], of equivalence classes of (Z̆, Φ̆, δ̆), where Z̆ and

Φ̆ are compatible with Z̃ and Φ̃, as described in section B.7, and with D̃. We

call such an orbit an ordinary cusp label for (L̃, 〈 · , · 〉̃ , h̃0, Z̃, D̃).
(3) The ordinary cusp labels [(ZH,ΦH, δH)] for MH.

The stratum
~̃
Z

ord

[(Φ̆H̃,δ̆H̃)]
∼= ~̃

M
ord,Z̃H̃

H̃ , the finite étale cover
~̃
M

ord,Φ̃H̃

H̃ → ~̃
M

ord,Z̃H̃

H̃ , the abelian

scheme torsor
~̃
C

ord

Φ̃H̃,δ̃H̃
→ ~̃

M
ord,Φ̃H̃

H̃ , and the abelian scheme
~̃
C

ord,grp

Φ̃H̃,δ̃H̃
→ ~̃

M
ord,Φ̃H̃

H̃ depend

(up to canonical isomorphism) only on the Ĥ-orbit of (Z̆, Φ̆, δ̆) (see lemma 7.1.2.1 of
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[La4]), and hence we shall denote them by

~̂
M

ord,Z̆Ĥ

Ĥ ,
~̂
M

ord,Φ̆Ĥ

Ĥ → ~̂
M

ord,Z̆Ĥ

Ĥ ,
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
→ ~̂

M
ord,Φ̆Ĥ

Ĥ , and
~̂
C

ord,grp

Φ̆Ĥ,δ̆Ĥ
→ ~̂

M
ord,Φ̆Ĥ

Ĥ ,

respectively. For a fixed (Z̆, Φ̆, δ̆), the morphisms

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
→ ~̂

M
ord,Φ̆Ĥ

Ĥ → ~̂
M

ord,Z̆Ĥ

Ĥ

are equivariant with

Ĝ1,Z̆(A∞,p)× P̂ord
1,Z̆,D(Zp)→ Ĝ′h,Z̆(A

∞,p)× P̂ord,′
h,Z̆,D

(Zp) ∼= Ĝh,Z̆(A∞,p)× P̂ord
h,Z̆,D(Zp)

and with the compatible actions of the elements corresponding to ςp (see propositions
5.2.4.25 and 7.1.2.5 of [La4]).

The cusp labels [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] such that Z̆Ĥ = Z̆
(i,ĝ)

Ĥ
for some ĝ ∈ Ĝ(A∞,p)×P̂ord

D (Zp)
are parameterised by the double coset space

(Ĝ′
l,Φ̆(i,1)(Z(p)) n (P̂′

Z̆(i,1)(A∞,p)× P̂ord,′
Z̆(i,1),D

(Zp)))\(Ĝ(A∞,p)× P̂ord
D (Zp))

/(Ĥp × (Ĥp ∩ P̂ord
D (Zp))),

and the forgetful map sending [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] to Z̆Ĥ can be identified with the canonical
map from this double coset space to

(P̂Z̆(i,1)(A∞,p)× P̂ord
Z̆(i,1),D(Zp))\(Ĝ(A∞,p)× P̂ord

D (Zp))/(Ĥp × (Ĥp ∩ P̂ord
D (Zp)))

whose fiber above the double coset of ĝ ∈ Ĝ(A∞,p)× P̂ord
D (Zp) can be identified with

Ĝ′
l,Φ̆(i,1)(Z(p))\Ĝ′l,Z̆(i,1)(A∞,p × Zp)/(ĝĤĝ−1)Ĝ′

l,Z̆(i,1)
.

(See section B.7 for the definition of Ĝ′
l,Φ̆(i,1) .) This last double coset space is the

index set of

Y(m),ord,\

n,(i),(gUpg−1∩P (m),+
n,(i)

(A∞,p))(N1)

=
∐

L
(m)
n,(i),lin

(Z(p))\L
(m)
n,(i),lin

(A∞)ord,×/(gUpg−1∩P (m),+
n,(i)

(A∞,p))(N1)

SpecZ(p)

in this paper (see section 4.1), with g = ĝ and Up(N1, N2) = Ĥ.

If Up(N1, N2) = Ĥ is a neat open compact subgroup of G
(m)
n (A∞) = Ĝ(A∞) as

above, if g = ĝ ∈ G
(m)
n (A∞)ord,× = Ĝ(A∞,p) × P̂ord

D (Zp) and if Up,′
g = gUpg−1 ∩
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P
(m),+
n,(i) (A∞), then the maps

A(m),ord,+

n,(i),Up,′g (N1,N2)
=

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

A(i+m),ord

n−i,(hUp,′g h−1∩P (m)
n,(i)

(A∞,p))(N1,N2)

↓ ↓
X (m),ord,+

n,(i),Up,′g (N1,N2)
=

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

X ord

n−i,(hUp,′g h−1∩P (m)
n,(i)

(A∞,p))(N1,N2)

↓
X (m),ord,\

n,(i),Up,′g (N1,N2)

in this paper (see sections 4.1 and 4.2) are identified with∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

~̂
C

ord

Φ̆
(i,hg)

Ĥ
,δ̆Ĥ

↓∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

~̂
M

ord,Φ̆
(i,hg)

Ĥ

Ĥ

↓∐
h∈L(m)

n,(i),lin
(Z(p))\L

(m)
n,(i),lin

(A∞)ord,×/Up,′g (N1)

~̂
M

ord,Z̆
(i,hg)

Ĥ

Ĥ .

For each representative (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) of an ordinary cusp label [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] as above,
there is a torsor

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
→ ~̂

C
ord

Φ̆Ĥ,δ̆Ĥ

under the pull-back of the same split torus ÊΦ̆Ĥ
over SpecZ with character group

ŜΦ̆Ĥ
as before (see section B.7; and see proposition 7.1.2.6 of [La4]). We obtain an

isomorphic torus torsor if we replace (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) with another representative, but
its universal property depends on this choice of representative.

The torus

S(m),ord,+

n,(i),Up,′g (N1)
→ Y(m),ord,+

n,(i),Up,′g (N1)

in this paper (see section 4.3) with Up(N1, N2) = H is identified with∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

Ê
Φ̆

(i,hg)

Ĥ
→

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

SpecZ(p).

Moreover, the sheaves X∗(S(m),ord,+

n,(i),Up,′g (N1)
), X∗(S(m),ord,+

n,(i),Up,′g (N1)
)�0
R , and X∗(S(m),ord,+

n,(i),Up,′g (N1)
)>0
R

are identified with ∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

Ŝ
Φ̆

(i,hg)

Ĥ
,

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

P̂
Φ̆

(i,hg)

Ĥ
,

and ∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

P̂+

Φ̆
(i,hg)

Ĥ

,
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respectively. The S(m),ord,+

n,(i),Up,′g (N1)
-torsor

T (m),ord,+

n,(i),Up,′g (N1,N2)
=

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

T (i+m),ord

n−i,(hgUpg−1h−1∩P (m)
n,(i)

(A∞,p))(N1,N2)

↓ ↓
A(m),ord,+

n,(i),Up,′g (N1,N2)
=

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

A(i+m),ord

n−i,(hgUpg−1h−1∩P (m)
n,(i)

(A∞,p))(N1,N2)

is identified with ∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

~̂
Ξ

ord

Φ̆
(i,hg)

Ĥ
,δ̆Ĥ

↓∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

~̂
C

ord

Φ̆
(i,hg)

Ĥ
,δ̆Ĥ
.

These maps are equivariant with P̂Z̆(i,g)(A∞,p)× P̂ord
Z̆(i,g),D

(Zp) and with the compatible

actions of the elements corresponding to ςp (see proposition 1.3.2.67 of [La4]).
In lemma 7.1.1.9 of [La4], we have introduced an ad hoc definition of a compatible

collection

Σ̂ord = {Σ̂Φ̆Ĥ
}[(Φ̆Ĥ,δ̆Ĥ)]

of admissible projective smooth rational polyhedral cone decompositions, where each

Σ̂Φ̆Ĥ
is a ΓΦ̆Ĥ

-admissible projective smooth rational polyhedral cone decomposition of

P̂Φ̆Ĥ
, and where the indices are ordinary cusp labels [(Φ̆Ĥ, δ̆Ĥ)]. In [La4], we allow Ĥp

to be all subgroups of Ĝ(Zp) of standard form (which is more general than just of the

form Ûp,1,0(pr1 , pr0) for some integers 0 ≤ r1 ≤ r0), and the set of pairs κ = (Ĥ, Σ̂ord)

with ĤG ⊂ H is denoted Kord,++
Q,H ; the subset of Kord,++

Q,H consisting of κ = (Ĥ, Σ̂ord)

with ĤG = H is denoted Kord,+
Q,H ; and the subset of Kord,+

Q,H consisting of κ = (Ĥ, Σ̂ord)

with ĤG = H and Ĥ = Hn ĤÛ is denoted Kord
Q,H (see definitions 7.1.1.7 and 7.1.1.11

of [La4]). For ? = ∅, +, or ++, any pair κ = (Ĥ, Σ̂) in K?
Q,H introduced earlier in

section B.7 such that Ĥ is of the form allowed here induces a pair (Ĥ, Σ̂ord) in Kord,?
Q,H ,

and conversely any pair in Kord,?
Q,H extends to a pair in K?

Q,H (see proposition 7.1.1.21

of [La4]). For any compatible collection Σord of admissible projective smooth rational

polyhedral cone decompositions for ~Mord
H , and for ? = ∅, +, ++, the subset of Kord,?

Q,H

consisting of κ = (Ĥ, Σ̂ord) such that Σ̂ord is compatible with Σord in the sense that

each ρ̂ ∈ Σ̂Φ̆Ĥ
is mapped into some σ ∈ ΣΦH (see condition 7.1.1.17 and definition

7.1.1.19 of [La4]) is denoted Kord,?
Q,H,Σord . This notion of compatibility agrees with the

one in this paper (see section 5.2).

Each such κ = (Ĥ, Σ̂ord) in Kord,++
Q,H induces a pair

(Up(N1),Σ)
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in J (m),tor,ord
n (with Up(N1, N2) = Ĥ) in section 5.2 of this paper, because, in order to

define (Up(N1),Σ) as in section 5.2, it suffices to define the admissible cone decom-

position Σ(g)0 for X∗(S(m),ord,+

n,(i),(gUpg−1∩P (m),+
n,(i)

(A∞,p))(N1)
)�0
R , for each g ∈ G(m)

n (A∞)ord,× =

Ĝ(A∞,p) × P̂ord
D (Zp), which can be taken to be the pull-back of the subcollection

{Σ̂Φ̆Ĥ
}[(Φ̆Ĥ,δ̆Ĥ)] of Σ̂ord indexed by the ordinary cusp labels [(Φ̆Ĥ, δ̆Ĥ)] with underly-

ing Z̆Ĥ equal to Z̆
(i,g)

Ĥ
. In fact, J (m),tor,ord

n is exactly the set of such induced pairs (as

Up(N1, N2) = Ĥ varies). (As before, it is hard to explicitly describe the set J (m),tor,ord
n

when m > 0, because they are induced by auxiliary choices of compatible collections

Σ̃ord for ~Mord
H̃ . Nevertheless, this is unnecessary for our purpose.)

Each Σ̂Φ̆Ĥ
defines an affine toroidal embedding

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
↪→ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ
=
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
=

⋃
ρ̂∈Σ̂Φ̆Ĥ

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂) =

∐
ρ̂∈Σ̂Φ̆Ĥ

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂

over
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
. The formal completion of

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
along the union of the ρ̂-strata

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
for all ρ̂ ∈ Σ̂Φ̆Ĥ

such that ρ̂ ∩ P̂+

Φ̆Ĥ
6= ∅ is denoted

~̂
X

ord

Φ̆Ĥ,δ̆Ĥ
=
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

(see (7.1.2.12), (7.1.2.13), (7.1.2.14), and (7.1.2.16) of [La4]). The schemes

T (m),ord,+

n,(i),Up,′g (N1,N2),Σ(g)0
→ A(m),ord,+

n,(i),Up,′g (N1,N2)

of this paper (see section 4.4) are identified with∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

~̂
Ξ

ord

Φ̆
(i,hg)

Ĥ
,δ̆Ĥ
→

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

~̂
C

ord

Φ̆
(i,hg)

Ĥ
,δ̆Ĥ
.

Moreover, T (m),ord,+,∧
n,(i),Up,′g (N1,N2),Σ(g)0

is identified with

∐
h∈L(m)

n,(i),lin
(A∞)ord,×/Up,′g (N1)

~̂
X

ord

Φ̆
(i,hg)

Ĥ
,δ̆Ĥ

and T (m),ord,\,∧
n,(i),Up,′g (N1),Σ(g)0

is identified with

∐
h∈L(m)

n,(i),lin
(Z(p))\L

(m)
n,(i),lin

(A∞)ord,×/Up,′g (N1)

(
~̂
X

ord

Φ̆
(i,hg)

Ĥ
,δ̆Ĥ
/Γ

Φ̆
(i,hg)

Ĥ
) =

∐
[(Φ̆Ĥ,δ̆Ĥ)]

(
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ
/ΓΦ̆Ĥ

),
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where the second disjoint union is over cusp labels with underlying Z̆Ĥ equal to Z̆
(i,ĝ)

Ĥ
for a fixed ĝ in Ĝ(A∞,p) × P̂ord

D (Zp) corresponding to g ∈ G
(m)
n (A∞)ord,×. (Again

Ĥ = Up(N1, N2).)

For each κ = (Ĥ, Σ̂ord) ∈ Kord,++
Q,H , we have a smooth quasi-projective scheme

~Nord,tor
κ

containing ~Nord (of section B.14, which we will henceforth write as ~Nord
κ to empha-

size the dependence on Ĥ) as an open fiberwise dense subscheme. The scheme
~Nord,tor
κ is called a partial toroidal compactification of ~Nord

κ (see theorem 7.1.4.1 of

[La4]). Its characteristic zero fiber ~Nord,tor
κ ⊗Z Q is an open subscheme of ~Ntor

κ′ for any

κ′ = (Ĥ, Σ̂) ∈ K++
Q,H extending κ = (Ĥ, Σ̂ord) ∈ Kord,++

Q,H , which is identified with the

union of the strata Ẑ[(Φ̆Ĥ,δ̆Ĥ,ρ̂)] indexed by equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] whose un-

derlying cusp labels [(Φ̆Ĥ, δ̆Ĥ)] are ordinary (see theorem 7.1.4.1(6) of [La4]). When

Up(N1, N2) = Ĥ, and when (Up(N1, N2),Σ) ∈ J (m),tor
n is induced by κ′ = (Ĥ, Σ̂) as

in section B.7, the partial toroidal compactification

~Nord
κ ↪→ ~Nord,tor

κ ∪ Ntor
κ′

(by gluing along their common open subscheme described above) is the

A(m),ord
n,Up(N1,N2) ↪→ A

(m),ord
n,Up(N1,N2),Σ

in this paper (see section 5.3). In this case, the (Up(N1),Σord) ∈ J (m),tor,ord
n induced

by (Up(N1, N2),Σ) is induced by the κ = (Ĥ, Σ̂ord) induced by κ′ = (Ĥ, Σ̂). The

partial toroidal compactifications ~Nord
κ ↪→ ~Nord,tor

κ ∪ Ntor
κ′ are compatible with the ac-

tions of Ĝ(A∞,p)× P̂ord
D (Zp) and of the element of P̂ord

D (Qp) corresponding to ςp (see
theorem 7.1.4.1, (4) and (6), of [La4]), and they are compatible with the actions of

G
(m)
n (A∞)ord on the partial toroidal compactifications A(m),ord

n,Up(N1,N2) ↪→ A
(m),ord
n,Up(N1,N2),Σ.

The partial toroidal compactification ~Nord,tor
κ admits a stratification by locally

closed subschemes

~Nord,tor
κ =

∐
[(Φ̆Ĥ,δ̆Ĥ,ρ̂)]

~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,ρ̂)]

(see theorem 7.1.4.1(1) of [La4]) indexed by equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] as in

lemma 1.2.4.42 of [La4] whose underlying cusp labels [(Φ̆Ĥ, δ̆Ĥ)] are ordinary. Each

stratum
~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,ρ̂)] is canonically isomorphic to
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
, and the formal completion

of ~Nord,tor
κ along the union of the strata

~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,ρ̂)] labeled by equivalence classes

[(Φ̆Ĥ, δ̆Ĥ, ρ̂)] with the same underlying ordinary cusp label [(Φ̆Ĥ, δ̆Ĥ)] is canonically

isomorphic to
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ
/ΓΦ̆Ĥ

(see theorem 7.1.4.1(1) of [La4]).
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When Up(N1, N2) = Ĥ, and when (Up(N1),Σ) ∈ J (m),tor,ord
n is induced by κ =

(Ĥ, Σ̂ord) as above, the formal completion of ~Nord,tor
κ along the union of all strata

~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,ρ̂)] labeled by equivalence classes [(Φ̆Ĥ, δ̆Ĥ, ρ̂)] with underlying Z̆Ĥ equal to

Z̆
(i,ĝ)

Ĥ
for some ĝ ∈ Ĝ(A∞,p)× P̂ord

D (Zp) is

A(m),ord,∧
n,Up(N1,N2),Σ,i

∼=
∐
g

T (m),ord,\,∧
n,(i),(gUpg−1∩P (m),+

n,(i)
(A∞,p))(N1,N2),Σ(g)0

∼=
∐
g

∐
h

(
~̂
X

ord

Φ̆
(i,hg)

Ĥ
,δ̆Ĥ
/Γ

Φ̆
(i,hg)

Ĥ
),

where the indices g and h run over P
(m),+
n,(i) (A∞)ord,×\G(m)

n (A∞)ord,×/Up(N1, N2) and

L
(m)
n,(i),lin(Z(p))\L(m)

n,(i),lin(A∞)ord,×/Up,′
g (N1), respectively, in this paper (see section 5.3).

If κ ∈ Kord,++
Q,H,Σord , then the canonical morphism

~Nord
κ → ~Mord

H

extends to a canonical log smooth morphism

~Nord,tor
κ → ~Mord,tor

H,Σord

(see theorem 7.1.4.1(2) of [La4]). When Up(N1, N2) = Ĥ and (U ′)p(N ′1, N
′
2) = H, and

when (Up(N1, N2),Σ) ∈ J (m),tor
n and ((U ′)p(N ′1, N

′
2),∆) ∈ J tor

n are induced by some

κ′ = (Ĥ, Σ̂) and (H,Σ) extending κ = (Ĥ, Σ̂ord) and (H,Σord), respectively, we have

(Up(N1, N2),Σ) ≥ ((U ′)p(N ′1, N
′
2),∆)

(see section 5.2 in this paper) and the union of the above morphism with

Ntor
κ′ → Mtor

H,Σ

(see section B.7) is the log smooth morphism

A(m),ord
n,Up(N1,N2),Σ → X

ord
n,(U ′)p(N ′1,N

′
2),∆

in this paper (see section 5.3).
These identifications are all Hecke equivariant (see theorem 7.1.4.1(4) of [La4]).

The formal completion of ~Nord,tor
κ along

~Nord,tor
κ ⊗Z Fp

is denoted
~Nord,tor
κ

in [La4] (see definition 3.4.4.2). When Up(N1, N2) = Ĥ, and when (Up(N1),Σ) ∈
J (m),tor,ord
n is induced by κ = (Ĥ, Σ̂ord), these are the

A
(m),ord

n,Up(N1),Σ

and

Aord
n,Up(N1),Σ,
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respectively, in this paper (see section 5.3). (Their independence of N2 = r0 is
explained in theorem 7.1.4.1(4h) of [La4].) For the Hecke actions on these formal
schemes, see theorem 7.1.4.1, (4g)–(4j), of [La4].

B.16. Automorphic bundles in mixed characteristics. We first recall how some
of the notation of [La4] specializes in our case. In the beginning of section 8.1.1 of
[La4], we can take:

(1) R0 = Z(p) and R̃0 = Zp.
(2) Gr−1

D,0 = Gr−1
D#,0

= OnF,(p) with its canonical O ⊗Z Z(p)-module structure, with

φ−1
D,0 : Gr−1

D,0
∼→ Gr−1

D#,0
given by the identity morphism.

Then we have
Gr0

D,0 := HomR0(Gr−1
D#,0

, R0) ∼= (Diff−1
OF,(p)/Z(p)

)n,

and, for each Z(p)-algebra R,

Mord
D,0 (R) := GLO⊗ZR(Gr−1

D,0⊗Z(p)
R)×Gm(R) ∼= GLO⊗ZR(Gr0

D,0⊗Z(p)
R)×Gm(R),

which is canonically isomorphic to the one in definition 8.1.1.1 of [La4] because of
the simpler setting here. (We will not need the other groups Gord

D,0 (R) and Pord
D,0 (R) in

this paper.) This can be canonically identified with the group Ln,(n)(R) in this paper
(see section 1.2). If R is a Q-algebra, then Mord

D,0 (R) ∼= M0(R) (see section B.8).

Let H be any open compact subgroup of G(Ẑ) of the form H = HpHp, where

Hp is a neat open compact subgroup of G(Ẑp), and where Hp = Up,1,0(pr1 , pr0) for

some integers 0 ≤ r1 ≤ r0, so that ~Mord
H and ~Mord,min

H are defined over SpecZ(p) as in

sections B.10 and B.12. Then the tautological abelian scheme A over ~Mord
H defines a

locally free sheaf
Lie∨

A/~Mord
H

:= e∗AΩ1
A/~Mord

H

(where eA denotes the identity section), which is the

Ωord
n,Up(N1,N2)

in this paper (see section 3.4.3), with Up(N1, N2) = H. We can similarly define
Lie∨

A∨/~Mord
H

. The action of G(A∞,p) × Pord
D (Zp) (resp. of the element of Pord

D (Qp)

corresponding to ςp) on {~Mord
H }H is defined by respecting their tautological abelian

schemes up to canonical Z×(p)-isogenies (resp. Q×-isogenies). Therefore, such an action

induces actions on {Lie∨
A/~Mord

H
}H and {Lie∨A∨/MH}H covering the one on {~Mord

H }H, which

are compatible with the isomorphisms

λ∗ : Lie∨
A∨/~Mord

H
(1)

∼→ Lie∨
A/~Mord

H

induced by the tautological polarizations λ : A → A∨. Here the formal Tate twist
requires (as before) the Hecke action to be twisted by the similitude character ν,
which corresponds to the tensor product with

Ξord
n,U = OX ord

n,U
(‖ν‖)

in this paper (see section 3.4.3).
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Let Σord be a compatible collection of admissible projective smooth rational poly-

hedral cone decompositions for ~Mord
H , so that ~Mord,tor

H,Σord is defined over SpecZ(p) as in

section B.13. Then the tautological semi-abelian scheme G over ~Mord,tor
H,Σord defines a

locally free sheaf
Lie∨

G/~Mord,tor

H,Σord

:= e∗GΩ1

G/~Mord,tor

H,Σord

(where eG denotes the identity section), which is

Ωord
n,U,∆|~Mord,tor

H,Σord

in this paper (see section 5.4), with Up(N1, N2) = H, and with ∆ induced by any
extension Σ of Σord as in section B.13. We can similarly define Lie∨

G∨/~Mord,tor

H,Σord

, where

G∨ denotes the tautological dual semi-abelian scheme over ~Mord,tor
H,Σord extending A∨.

The action of G(A∞,p) × Pord
D (Zp) (resp. of the element of Pord

D (Qp) corresponding

to ςp) on {~Mord,tor
H,Σord}(H,Σord) is defined by respecting their tautological semi-abelian

schemes up to canonical Z×(p)-isogenies (resp. Q×-isogenies). Therefore, such an

action induces actions on {Lie∨
G/~Mord,tor

H,Σord

}(H,Σord) and {Lie∨
G∨/~Mord,tor

H,Σord

}(H,Σord) covering

the one on {~Mord,tor
H,Σord}(H,Σord), which are compatible with the isomorphisms

λ∗ : Lie∨
G∨/~Mord,tor

H,Σord

(1)
∼→ Lie∨

G/~Mord,tor

H,Σord

induced by the tautological polarizations λ : G → G∨. Here the formal Tate twist
requires (as before) the Hecke action to be twisted by the similitude character ν,
which corresponds to the tensor product with the dual of

Ξord
n,U,∆ = OX ord

n,U,∆
(‖ν‖)

in this paper (see section 5.4).
Then we have the principal Mord

D,0 -bundle

~Eord
Mord

D,0
:= IsomO⊗ZO~Mord

H
((Lie∨

A∨/~Mord
H

(1),O~Mord
H

(1)), (Gr0
D,0⊗Z(p)

O~Mord
H
,O~Mord

H
(1))),

which is an Mord
D,0 -torsor over ~Mord

H (see definition 8.1.2.4 and lemma 8.1.2.6 of [La4]),

which canonically extends (as an Mord
D,0 -torsor) to a principal Mord

D,0 -bundle

~Eord,can
M0

:=

IsomO⊗ZO
~M

ord,tor

H,Σord

((Lie∨
G∨/~Mord,tor

H,Σord

(1),O~Mord,tor

H,Σord
(1)), (Gr0

D,0⊗Z(p)
O~Mord,tor

H,Σord
,O~Mord,tor

H,Σord
(1)))

over ~Mord,tor
H,Σord (see (8.1.3.11) and lemma 8.1.3.12 of [La4]). These are the restrictions

(to ~Mord
H and ~Mord,tor

H,Σord , respectively) of the

Eord
Up(N1,N2) and Eord,can

Up(N1,N2),∆

in this paper (see sections 3.4.3 and 5.4), with Up(N1, N2) = H, and with ∆ induced
by some extension Σ of Σord as in section B.13.
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For each Z(p)-algebra R, we denote by RepR(Mord
D,0 ) the category of R-modules with

algebraic actions of Mord
D,0 ⊗Z(p)

R (see definition 8.1.2.7 of [La4]). Then we also define,

for each W ∈ RepR(Mord
D,0 ) that is locally free of finite rank as an R-module, the

automorphic bundle

~Eord
Mord

D,0 ,R
(W ) := (~Eord

Mord
D,0
⊗Z(p)

R)×(Mord
D,0⊗Z(p)

R)
W

over ~Mord
H ⊗Z(p)

R (see definition 8.1.2.8 of [La4]), which extends to the canonical
extension

~Eord,can

Mord
D,0 ,R

(W ) := (~Eord,can

Mord
D,0
⊗Z(p)

R)×(Mord
D,0⊗Z(p)

R)
W

and the subcanonical extension

~Eord,sub

Mord
D,0 ,R

(W ) := ~Eord,can

Mord
D,0 ,R

(W )⊗O
~M

ord,tor

H,Σord

I~Dord
∞

over ~Mord,tor
H,Σord⊗Z(p)

R (see definition 8.1.3.13 of [La4]), where I~Dord
∞

is the O~Mord,tor

H,Σord
-ideal

defining the boundary divisor ~Dord
∞ := ~Mord,tor

H,Σord − ~Mord
H (with its canonical reduced

subscheme structure). These are restrictions of the vector bundles

Eord
Up(N1,N2),ρ, Eord,can

Up(N1,N2),∆,ρ, and Eord,sub
Up(N1,N2),∆,ρ

in this paper (see sections 3.4.3 and 5.4), with Up(N1, N2) = H, and with ∆ in-

duced by some extension Σ of Σord as in section B.13. The bundles ~Eord
Mord

D,0 ,R
(W )

and ~Eord,can

Mord
D,0 ,R

(W ) admit compatible actions of G(A∞,p) × Pord
D (Zp) (see proposition

8.1.4.1 of [La4]), which are compatible with the compatible actions of Gn(A∞)ord,×

on Eord
Up(N1,N2),ρ and Eord,can

Up(N1,N2),∆,ρ, covering the ones on their respective base schemes.

The base extensions of these bundles from Z(p) to Q are canonically isomorphic to
restrictions of the corresponding bundles introduced in section B.8.

Beyond the ordinary loci, we still have the tautological abelian scheme ~A and the

principal polarization ~λ : ~A
∼→ ~A∨ over ~MH (see proposition 2.2.1.1 of [La4]). Hence,

we can still define the principal bundle

~EMord
D,0

:= IsomO⊗ZO~MH
((Lie∨

A∨/~MH
(1),O~MH

(1)), (Gr0
D,0⊗Z(p)

O~MH
,O~MH

(1)))

(see (8.3.1.2) and lemma 8.3.1.4 of [La4]), for anyH, and accordingly the automorphic
bundle

~EMord
D,0 ,R

(W ) := (~EMord
D,0
⊗Z(p)

R)×(Mord
D,0⊗Z(p)

R)
W

over ~MH (see definition 8.3.2.1 of [La4]), for any W ∈ RepR(Mord
D,0 ) that is locally free

of finite rank as an R-module.
For simplicity, assume that R is just Z(p). Then we can still define some canonical

and subcanonical extensions

~Ecan,min

Mord
D,0 ,R

(W ) and ~E sub,min

Mord
D,0 ,R

(W )
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over ~Mmin
H , which are O~Mmin

H
-torsion free coherent sheaves extending ~EMord

D,0 ,R
(W ), whose

pull-backs to Mmin
H (resp. ~Mord,min

H ) are canonically isomorphic to the pushforwards

from Mtor
H,Σ (resp. ~Mord,tor

H,Σord) (for any Σ inducing Σord) of the corresponding canonical

and subcanonical extensions for the automorphic bundle associated with W ⊗Z Q
(resp. W ). (See definition 8.3.5.1, lemma 8.3.5.2, corollary 8.3.5.4, lemma 8.3.5.7,

and corollary 8.3.5.8 of [La4].) The above ~E sub,min

Mord
D,0 ,R

(W ) is the

E sub
Up(N1,N2),ρ

in lemma 5.5 of this paper, with Up(N1, N2) = H, with R = Z(p), and with Wρ = W .
Such coherent sheaves admit compatible actions of G(A∞,p)×G(Zp) (see proposition
8.3.6.5 of [La4]), and the identifications in this paragraph are all Hecke equivariant.
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Ẽord,+
(i),Up(N1,N2), 129

Eρ, 19
EU,ρ, 110
Eρ, 25
[η], 85
[η], 85
(ηp0, η

p
1, C, ηp), 85

‖ηp0‖, 86
‖η0‖, 85
e, 16

F †, 201
f †, 203

G̃univ, 129
(Guniv, iuniv, juniv, λuniv, [ηuniv]), 99
γ(G, i, j, λ, [(ηp0, η

p
1, C,D, ηp)]), 99

γ(G, i, j, λ, [(η0, η1)]), 93
Gn, 13



298 INDEX OF NOTATIONS

G1
n, 29

GF , 9
GS
F , 9

(G, i, j), 92
(G, i, j), 96
(G, i, j, λ, [(ηp0, η

p
1, C,D, ηp)])g, 98

(G, i, j, λ, [(ηp0, η
p
1, C,D, ηp)])ςp, 98

(G, i, j, λ, [(η0, η1)])g, 93

G
(m)
n , 14

(G
(m)
n (A∞)× π0(Gn(R))× C

(m)
=i )ord, 35

(G
(m)
n (A∞)× π0(Gn(R))× C(m))ord, 35

G
(m)
n (A∞)ord,×, 28

G̃
(m)
n (A∞)ord,×, 28

G̃
(m)
n (A∞)ord, 28

G̃
(m)
n , 17

Gn(A∞)ord,×, 28
[(Guniv, iuniv, juniv, λuniv, [ηuniv])], 94

G̃univ/A+
n,(i),U , 127

≥, 165
≥, 166
≥, 166

Hom, 8
H±n , 19
H(R)+, 18
HasseM,U , 192
HasseM,Up(N), 192
HasseU , 161
Herm>0

X , 32

Herm≥0
X , 32

Herm(m), 15
HermX , 15
H i

Int, 36

H i
Int(T

(m)
(n) ,Qp), 36

H i
Int(T

(m),ord
=n ,Qp), 36

H i
Int(T(n),Lρ), 41

Hom (m)
n , 14

H0(X ord,min
n , Eord,sub

ρ ⊗ Z/prZ), 185

H0(X ord,min,†
Up(N) , E sub,†

Up(N),ρ)Qp,≤a, 214

H0(X ord,†, E sub
ρ ), 205

H0(X ord,min,†, E sub
ρ )Qp,≤a, 214

H0(Xord,min, Eord,sub
ρ )Qp , 185

H0(Xord,min
n , Eord,sub

ρ ), 185

H i(A(m),ord,†,Ωj(log∞)⊗ I), 205
H i(∂(s)A(m),ord,†,Ωj), 205

H i
c−∂(A

(m),ord
), 218

H i
c−∂(A

(m),ord
)≤a, 218

H i
c−∂(A

(m),ord

Up(N),Σ), 218

H i
rig(Y ), 201

H i(Xmin
n , E sub

ρ ), 185

H0(X ord,min,†, E sub
ρ )Qp , 211

H i(A(m),ord,†,Ωs(log∞)⊗
I∂A(m),ord,†)≤a, 217

I∂Σ0
TΣ

, 57
I∂TΣ

, 57

I(m),\+,∧
∂,n,(i),U,Σ0

, 148

I(m),\+,∧
∂,n,(i),U,Σ0

, 148

I(m),ord,\+,∧
∂,n,(i),Up(N1,N2),Σ0

, 148

I(m),ord,+,∧
∂,n,(i),Up(N1,N2),Σ0

, 148
I
∂A

(m)
U,Σ×SpecR0

, 179

I∧∂,Σ0
, 65, 80

I∂TΣ
, 79

I∂Xn,U,∆ , 179
I
∂A

(m)
U,Σ

, 179

I∂Xmin
n,U×SpecR0

, 179

I∂Xn,U,∆×SpecR0 , 179
IT∧Σ0

, 65, 80

I∂Xmin
n,U

, 179

Ind , 9
i(s), 203

i
(m)

Auniv , 95

i
(m)

Auniv , 101

i
(m)
λ , 96, 102

[∞], 8
[∞p], 8

J (m),tor,ord
n , 167

J (m),tor
n , 167

Jn, 13
jmin
U , 158



INDEX OF NOTATIONS 299

j
(m)
U,Σ , 171

j
(m),ord
Up(N1,N2),Σ, 173

jmin
Up(N1,N2), 158

KS, 27
k(v), 9

Lρ,U , 41

L(m)

n,Ũ
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Schr. Math. Inst. Univ. Münster (2) Heft 7 (1974)
[Ko] R. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5

(1992), no. 2, 373–444.
[Ku] E. Kunz, Kähler differentials, Viehweg 1986.
[La1] K.-W. Lan, Arithmetic compactifications of PEL-type Shimura varieties, London Math-

ematical Society Monographs, vol. 36, PUP 2013.
[La2] K.-W. Lan, Toroidal compactifications of PEL-type Kuga families, Algebra Number The-

ory 6 (2012), no. 5, 885–966.
[La3] K.-W. Lan, Comparison between analytic and algebraic constructions of toroidal compact-

ifications of PEL-type Shimura varieties, J. Reine Angew. Math. 664 (2012), 163–228.
[La4] K.-W. Lan, Compactifications of PEL-type Shimura varieties and Kuga families with

ordinary loci, preprint available at http://www.math.umn.edu/~kwlan/academic.html
[La5] K.-W. Lan, Boundary strata of connected components in positive characteristics (an ap-

pendix to the article Families of nearly ordinary Eisenstein series on unitary groups by
Xin Wan), Algebra Number Theory 9 (2015), no. 9, 1955–2054.

[LeS] B. Le Stum, Rigid cohomology, Cambridge Tracts in Math. 172, CUP, 2007
[M] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Math-

ematics 5, OUP, 1970.
[MW] C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. École Norm.
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