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Let (G,X) be any Shimura datum, where G is a reductive algebraic group over
Q and X is a G(R)-conjugacy class of homomorphisms h : C× → G(R) satisfying
certain axioms. Given any neat open compact subgroup K of G(A∞), by results
of Baily–Borel and Borel, the double coset space Shan

K,C := G(Q)\
(
X×G(A∞)/K

)
can be identified with the complex analytification of a canonical quasi-projective
variety ShK,C over C. More precisely, the whole tower {ShK,C}K with its right
action by G(A∞) has a canonical algebraic structure. Furthermore, by results of
Shimura, Deligne, Borovoi, and Milne, among others, the whole tower {ShK,C}K
with its canonical right action by G(A∞) has a canonical model {ShK}K over the
reflex field E, which is a number field E depending only on (G,X) but not on K.
We shall call any of these varieties the Shimura varieties associated with (G,X).
For simplicity of exposition, we shall assume that E = Q in what follows.

Let Gc denote quotient of G by the maximal Q-anisotropic R-split subtorus
of the center of G. For any coefficient field F , we shall denote by RepF (Gc) the
category of algebraic representations of Gc over F .

Suppose V ∈ RepQ(Gc), with VC := V ⊗Q C. Then the local sections of

G(Q)\
(
(X×VC)×G(A∞)/K

)
→ G(Q)\

(
X×G(A∞)/K

)
defines a canonical Betti

local system BV C over Shan
K,C. There is also a canonical (algebraic) filtered regu-

lar connection (dRV C,∇,Fil•) over ShK,C (satisfying Griffiths transversality) such
that (dRV C,∇) corresponds to BV C under Deligne’s classical Riemann–Hilbert cor-
respondence [5], and such that Fil• is induced by the Hodge cocharacters µh given
by h ∈ X. Such local systems and filtered connections are well-known complex
analytically constructed objects over Shimura varieties.

On the other hand, for each prime number p > 0, consider VQp
:= V ⊗Q Qp,

together with the canonical p-adic étale local system (i.e., lisse p-adic étale sheaf)

étV Qp
over ShK defined using the tower of canonical models {ShK′}K′⊂K . By [11],

this p-adic étale local system is de Rham in the sense that its geometric stalks over
all classical points (defined by finite extensions of Qp) are de Rham as p-adic Galois
representations. As in the case above over C, but by using instead the algebraic p-
adic Riemann–Hilbert functor (over Qp) we constructed (in [7, §6]), we also obtain
a canonical (algebraic) filtered regular connection (p-dRV Qp

,∇,Fil•) over ShK,Qp
.

By base change under any field homomorphism from Qp to C, we obtain a filtered
regular connection (p-dRV C,∇,Fil•) over ShK,C.

Note that the above base change from Qp to C makes sense because we are
working with algebraic filtered connections! The constructions over the analytifi-
cation of ShK,Qp

as in [16] and [11] are insufficient because canonical extensions
and algebraizations generally do not exist in the rigid analytic world, unlike in the
complex analytic world. Rather, we constructed (in [7, §5]) an analytic logarith-
mic Riemann–Hilbert functor, by working with pro-Kummer étale sites and log de
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Rham period sheaves over suitable smooth compactifications, which provides the
desired canonical extensions to which GAGA applies. Crucially, we showed that
all the eigenvalues of residues are in Q ∩ [0, 1), and we made essential uses of the
finiteness of [k : Qp] and the theory of decompletions.

By the classical Riemann–Hilbert correspondence again (in the easier direc-
tion), (p-dRV C,∇) defines a Betti local system p-BV C over Shan

K,C. Such p-BV C
and (p-dRV C,∇,Fil•) are our new p-adic analytically constructed objects (with
coefficient field C!) over Shimura varieties. It is natural to ask how these objects
compare with their complex analytically constructed counterparts.

Our main result is that p-BV C and (p-dRV C,∇,Fil•) can be canonically identified
with BV C and (dRV C,∇,Fil•), respectively, in a way compatible with the Hecke
action of G(A∞), with morphisms of Shimura varieties induced by morphisms of
Shimura data, and with descent to canonical models of filtered connections (as in
Harris’s and Milne’s works; see [10] and [14]). (See [7, §7], where we treated more
general V ∈ RepQ(Gc).)

Our proof uses several of the most general results and techniques available for
Shimura varieties and their canonical models, from the (known) abelian case of
Fontaine–Mazur conjecture [9] to Deligne’s and Blasius’s results [6, 1] that Hodge
cycles on abelian varieties over number fields are absolute Hodge and de Rham,
and then from Margulis’s superrigidity theorem [12] and Borel’s density theorem
[2, 3] to a construction credited to Piatetski-Shapiro by Borovoi [4] and Milne [13].

Consequently, by the p-adic de Rham comparison results (for general smooth
varieties over Qp) in [7, §6], we know that Hi

ét(ShK,Qp
, étV Qp

) is de Rham as a

representation of Gal(Qp/Qp), and that the Hodge–Tate weights of this represen-
tation is determined by the dimensions of certain coherent cohomology (and hence
relative Lie algebra cohomology) given by Faltings’s dual BGG complexes (see [8]
and [10]). We also obtain a new proof of the degeneracy of the Hodge–de Rham
spectral sequence for Hi

dR(ShK,C, dRV C) on the E1 page, based on p-adic Hodge
theory instead of complex Hodge theory. (In particular, we have not used Saito’s
theory of mixed Hodge modules [15].) We will extend these results and treat the
compactly supported cohomology and interior cohomology in a forthcoming work.
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