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Abstract. We develop a theory of log adic spaces by combining the theories

of adic spaces and log schemes, and study the Kummer étale and pro-Kummer
étale topology for such spaces. We also establish the primitive comparison the-

orem in this context, and deduce from it some related cohomological finiteness

or vanishing results.
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1. Introduction

There are two main goals of this paper. Firstly, we would like to adapt many
fundamental notions and features of the theory of log geometry for schemes, as in
[Kat89b, Kat21, Kat89a, Ill02, Ogu18], to the theory of adic spaces, as in [Hub94,
Hub96]. For example, we would like to introduce the notion of log adic spaces,
which allow us to study the de Rham and étale cohomology of nonproper adic
spaces by introducing the log de Rham and Kummer étale cohomology of proper
adic spaces equipped with suitable log structures. Secondly, we would like to adapt
many foundational techniques in recent developments of p-adic geometry, as in
[Sch12, KL15, Sch13a, Sch16, SW20], to the context of log geometry. For example,
we would like to introduce the pro-Kummer étale site, and show that log affinoid
perfectoid objects form a basis for such a site, under suitable assumptions. In
particular, we would like to establish the primitive comparison theorem and some
related cohomological finiteness or vanishing results in this context.

Although a general formalism of log topoi has been introduced in [GR19, Sec.
12.1], there are nevertheless several special features (such as the integral structure
sheaves) or pathological issues (such as the lack of fiber products in general, or
the necessary lack of noetherian property when working with perfectoid spaces) in
the theory of adic spaces, which resulted in some complications in our adaption of
many “well-known arguments”; and we have chosen to spell out the modifications
of such arguments in some detail, for the sake of clarity. Moreover, this paper is
intended to serve as the foundation for our development of a p-adic analogue of
the Riemann–Hilbert correspondence in [DLLZ] (and forthcoming works such as
[LLZ]). Therefore, in addition to the above-mentioned goals, we have also included
some foundational treatment of quasi-unipotent nearby cycles, following (and re-
formulating) Beilinson’s ideas in [Bei87].

Here is an outline of this paper.
In Section 2, we introduce log adic spaces and study their basic properties. In

Section 2.1, we review some basic terminologies of monoids. In Section 2.2, we
introduce the definition and some basic notions of log adic spaces, and study some
important examples. In Section 2.3, we study the important notion of charts in the
context of log adic spaces, which are useful for defining the categories of coherent,
fine, and fs log adic spaces, and for constructing fiber products in them.

In Section 3, we study log smooth morphisms of log adic spaces, and their as-
sociated sheaves of log differentials. In Section 3.1, we introduce the notion of log
smooth and log étale morphisms, and show the existence of smooth toric charts
for smooth fs log adic spaces. In Sections 3.2 and 3.3, we develop a theory of log
differentials for homomorphisms of log Huber rings and morphisms of coherent log
adic spaces, and compare it with the theory in Section 3.1.
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In Section 4, we study the Kummer étale topology of locally noetherian fs log
adic spaces. In Section 4.1, we introduce the Kummer étale site and study its basic
properties. In Section 4.2, we establish an analogue of Abhyankar’s lemma for rigid
analytic varieties, and record some related general facts. In Section 4.3, we study
the structure sheaves and analytic coherent sheaves on the Kummer étale site, and
show that their higher cohomology vanishes on affinoids. In Section 4.4, we show
that Kummer étale surjective morphisms satisfy effective descent in the category
of finite Kummer étale covers, and define Kummer étale fundamental groups with
desired properties. In Section 4.5, we study certain direct and inverse images of
abelian sheaves on Kummer étale sites. In Section 4.6, we establish some purity
results for torsion Kummer étale local systems.

In Section 5, we study the pro-Kummer étale topology of locally noetherian fs log
adic spaces. In Section 5.1, based on the theory in Section 4, we introduce the pro-
Kummer étale site, by following Scholze’s ideas in [Sch13a] and [Sch16]. In Section
5.2, we study certain direct and inverse images of abelian sheaves on pro-Kummer
étale sites. In Section 5.3, we introduce the log affinoid perfectoid objects, and show
that they form a basis for the pro-Kummer étale topology, for locally noetherian
fs log adic spaces over Spa(Qp,Zp). In Section 5.4, we introduce the completed
structure sheaves and their integral and tilted variants on the pro-Kummer étale
site, and prove various almost vanishing results for them.

In Section 6, we study the Kummer étale cohomology of fs log adic spaces log
smooth over a nonarchimedean base field k. In Section 6.1, we start with some
preparations using the log affinoid perfectoid objects defined by towers over some
associated toric charts. In Section 6.2, we establish the primitive comparison theo-
rem, generalizing the strategy in [Sch13a, Sec. 5], and deduce from it some finiteness
results for the cohomology of torsion Kummer étale local systems. In Section 6.3,

we introduce the notions of Zp-, Qp-, Ẑp-, and Q̂p-local systems, and record some
finiteness results. In Section 6.4, as an application of the theory thus developed,
we reformulate Beilinson’s ideas in [Bei87] and define the unipotent and quasi-
unipotent nearby cycles in the rigid analytic setting.

In Appendix A, we state a version of Tate’s sheaf property and Kiehl’s gluing
property for the analytic and étale sites of adic spaces that are either locally noether-
ian or analytic stably adic. This includes, in particular, a proof of Kiehl’s property
for coherent sheaves on (possibly nonanalytic) noetherian adic spaces which (as far
as we know) is not yet available in the literature.

Notation and conventions. By default, all monoids are assumed to be com-
mutative, and the monoid operations are written additively (rather than multi-
plicatively), unless otherwise specified. For a monoid P , let P gp denote its group
completion. For any commutative ring R with unit and any monoid P , we denote
by R[P ] the monoid algebra over R associated with P . The image of a ∈ P in R[P ]
will often be denoted by ea. Then we have ea+b = ea · eb in R[P ], for all a, b ∈ P .

Group cohomology will always mean continuous group cohomology.
For each site C, the category of sheaves (resp. abelian sheaves) on C is denoted

by Sh(C) (resp. ShAb(C)), although the associated topos is denoted by C∼.
We shall follow [SW20, Lec. 2–7] for the general definitions and results of Huber

rings and pairs, adic spaces, and perfectoid spaces. Unless otherwise specified, all
Huber rings and pairs will be assumed to be complete.
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We say that an adic space is locally noetherian if it is locally isomorphic to
Spa(R,R+), where either R is analytic (see [SW20, Rem. 2.2.7 and Prop. 4.3.1])
and strongly noetherian—i.e., the rings

R〈T1, . . . , Tn〉 =
{ ∑
i1,...,in≥0

ai1,...,inT
i1
1 · · ·T inn ∈ R[[T1, . . . , Tn]] : ai1,...,in → 0

}
are noetherian, for all n ≥ 0; or R is (complete, by our convention on Huber pairs,
and) finitely generated over a noetherian ring of definition. We say that an adic
space is noetherian if it is locally noetherian and qcqs (i.e., quasi-compact and
quasi-separated).

We shall follow [Hub96, Def. 1.2.1] for the definition for morphisms of locally
noetherian adic spaces to be locally of finite type (lft for short). A useful fact is
that a fiber product Y ×X Z of locally noetherian adic spaces exists when the first
morphism Y → X is lft, in which case its base change (i.e., the second projection)
Y ×X Z → Z is also lft (see [Hub96, (1.1.1), Prop. 1.2.2, and Cor. 1.2.3]).

An affinoid field (k, k+) is a Huber pair in which k is a (possibly trivial) nonar-
chimedean local field (i.e., a field complete with respect to a nonarchimedean
multiplicative norm | · | : k → R≥0), and k+ is an open valuation subring of
Ok := {x ∈ k : |x| ≤ 1} (see [SW20, Def. 4.2.4]). When k is a nontrivial nonar-
chimedean field (i.e., a field that is complete with respect to a nontrivial nonar-
chimedean multiplicative norm), we shall regard rigid analytic varieties over k as
adic spaces over (k,Ok), by virtue of [Hub96, (1.1.11)].

We shall follow [Hub96, Sec. 1.6 and 1.7] for the definition and basic properties
of unramified, smooth, and étale morphisms of locally noetherian adic spaces. More
generally, without the locally noetherian hypothesis, we say that a homomorphism
(R,R+) → (S, S+) of Huber pairs is finite étale if R → S is finite étale as a
ring homomorphism, and if S+ is the integral closure of R+ in S. We say that a
morphism f : Y → X of adic spaces is finite étale if, for each x ∈ X, there exists
an open affinoid neighborhood U of x in X such that V = f−1(U) is affinoid, and if
the induced homomorphism of Huber pairs

(
OX(U),O+

X(U)
)
→
(
OY (V ),O+

Y (V )
)

is finite étale. We say that a morphism f : Y → X of adic spaces is étale if, for
each y ∈ Y , there exists open neighborhood V of y in Y such that the restriction of
f to V factors as the composition of an open immersion, a finite étale morphism,
and another open immersion.

Given any adic space X, we denote by Xét the category of adic spaces étale over
X. If fiber products exist in Xét, then Xét acquires a natural structure of a site.
We say that X is étale sheafy if Xét is a site and if the étale structure presheaf
OXét

: U 7→ OU (U) is a sheaf. Étale sheafiness is known when X is either locally
noetherian or a perfectoid space—see Appendix A for more information.

A geometric point of an adic space X is a morphism η : ξ = Spa(l, l+) → X,
where l is a separably closed nonarchimedean field. For simplicity, we shall write
ξ → X, or even ξ, when the context is clear. The image of the unique closed point
ξ0 of ξ under η : ξ → X is called the support of ξ. Given any x ∈ X, we have a
geometric point x = Spa(κ(x), κ(x)+) above x (i.e., x is the support of x), as in
[Hub96, (2.5.2)], where κ(x) is the completion of a separable closure of the residue
field κ(x) of OX,x. An étale neighborhood of η is a lifting of η to a composition

ξ → U
φ→ X in which φ is étale. For any sheaf F on Xét, the stalk of F at η

is Fξ := Γ
(
ξ, η−1(F)

) ∼= lim−→F(V ), where the direct limit runs through all étale
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neighborhoods V of ξ. (Recall that, by [Hub96, Prop. 2.5.5], when X is locally
noetherian, geometric points form a conservative family for Xét.)

An adic space X = Spa(R,R+) is strictly local if R is a strictly local ring and if
X contains a unique closed point x such that the support of the valuation | · (x)|
is the maximal ideal of R. We shall denote by X(ξ) = Spa(OX,ξ,O+

X,ξ) the strict
localization of a geometric point ξ → X of a locally noetherian adic space X, as in
[Hub96, (2.5.9) and Lem. 2.5.10]. By the explicit description of the completion of
(OX,ξ,O+

X,ξ) as in [Hub96, Prop. 2.5.13], X(ξ) is a noetherian adic space, which is
canonically isomorphic to ξ when the support of ξ is analytic.

As for almost mathematics, we shall adopt the following notation and conven-
tions. We shall denote by Ma the almost module associated with a usual module
M , depending on the context. For usual modules M and N , we shall say “there is
an almost isomorphism M

∼→ N” when there is an isomorphism Ma ∼→ Na between
the associated almost modules. We shall write interchangeably both “Ma = 0” and
“M is almost zero”, with exactly the same meaning.

Acknowledgements. This paper was initially based on a paper written by the
first author, and we would like to thank Christian Johansson, Kiran Kedlaya,
Teruhisa Koshikawa, Martin Olsson, Fucheng Tan, and Jilong Tong for helpful cor-
respondences and conversations during the preparation of that paper. We would
also like to thank David Sherman and an anonymous referee for their careful read-
ing and many helpful corrections, questions, and suggestions. Moreover, we would
like to thank the Beijing International Center for Mathematical Research and the
California Institute of Technology for their hospitality.

2. Log adic spaces

2.1. Recollection on monoids. In this subsection, we recollect some basics in
the theory of monoids. This is mainly to introduce the terminologies and fix the
notation. For more details, we refer the readers to [Ogu18].

Definition 2.1.1. (1) A monoid P is called finitely generated if there exists a
surjective homomorphism Zn≥0 � P for some n.

(2) A monoid P is called integral if the natural homomorphism P → P gp is
injective.

(3) A monoid P is called fine if it is integral and finitely generated.
(4) A monoid P is called saturated if it is integral and, for every a ∈ P gp such

that na ∈ P for some integer n ≥ 1, we have a ∈ P . A monoid that is both
fine and saturated is called an fs monoid.

(5) For any monoid P , we denote by P inv the subgroup of invertible elements
in P , and write P := P/P inv. A monoid P is called sharp if P inv = {0}.

(6) An sharp fs monoid is called a toric monoid.

Remark 2.1.2. Arbitrary direct and inverse limits exist in the category of monoids
(see [Ogu18, Sec. I.1.1]). In particular, for a homomorphism of monoids u : P →
Q, we have ker(u) = u−1(0), and coker(u) is determined by the conditions that
Q → coker(u) is surjective and that two elements q1, q2 ∈ Q have the same image
in coker(u) if and only if there exist p1, p2 ∈ P such that u(p1) + q1 = u(p2) + q2.
In general, the induced map P/ ker(u) → im(u) is surjective, but not necessarily
injective. (For a typical example, consider the homomorphism u : Z2

≥0 → Z≥0 :

(x1, x2) 7→ x1 +x2. Then ker(u) = 0 but u is not injective.) Therefore, the category
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of monoids is not abelian. Nevertheless, if P is a submonoid of Q, and if u : P → Q
is the canonical inclusion, then we shall denote coker(u) by Q/P . Note that Q/P
can be zero even when P 6= Q.

Remark 2.1.3. It is not hard to show that a monoid P is finitely generated if and
only if P inv is finitely generated (as a group) and P = P/P inv is finitely generated
(as a monoid). (See [Ogu18, Prop. I.2.1.1].) A deeper fact is that a finitely generated
(commutative) monoid P is always finitely presented ; i.e., it is the coequalizer of
some homomorphisms Zm≥0 ⇒ Zn≥0, for some m,n. (See [Ogu18, Thm. I.2.1.7].) As
a result, if Q = lim−→i∈I Qi is a filtered direct limit of monoids, then any injective

map P → Q lifts to an injective P → Qi, for some i ∈ I. (The opposite assertion,
that any surjective map Q → P lifts to a surjective Qi → P , for some i ∈ I, only
requires the finite generation of P .)

Definition 2.1.4. Given any two homomorphisms of monoids u1 : P → Q1 and
u2 : P → Q2, the amalgamated sum Q1 ⊕P Q2 is the coequalizer of P ⇒ Q1 ⊕Q2,
with the two homomorphisms given by (u1, 0) and (0, u2), respectively.

Lemma 2.1.5. In Definition 2.1.4, suppose moreover that any of P , Q1, or Q2 is
a group. Then the natural map Q1/P → (Q1 ⊕P Q2)/Q2 is an isomorphism.

Proof. The surjectivity is clear. As for the injectivity, by assumption and by
[Ogu18, Prop. I.1.1.5], two elements (q1, q2), (q′1, q

′
2) ∈ Q1⊕Q2 have the same image

in Q1⊕P Q2 if and only if there exist a, b ∈ P such that q1 +u1(a) = q′1 +u1(b) and
q2 + u2(b) = q′2 + u2(a). Therefore, for q1, q

′
1 ∈ Q1, if they have the same image in

(Q1⊕P Q2)/Q2—i.e., there exist q2, q
′
2 ∈ Q2 such that (q1, q2) and (q′1, q

′
2) have the

same image in Q1⊕PQ2—then there exist a, b ∈ P such that q1+u1(a) = q′1+u1(b).
Thus, q1 and q′1 have the same image in Q1/P . �

Definition 2.1.6. For any monoid P , let P int denote the image of the canonical
homomorphism P → P gp. For any integral monoid P , let

P sat := {a ∈ P gp : na ∈ P , for some n ≥ 1}.
For a general monoid P not necessarily integral, we write P sat for (P int)sat.

Remark 2.1.7. The functor P 7→ P int is the left adjoint of the inclusion from the
category of integral monoids into the category of all monoids. Similarly, P → P sat

is the left adjoint of the inclusion from the category of saturated monoids into the
category of integral monoids.

Lemma 2.1.8. Let P → Q1 and P → Q2 be homomorphisms of monoids. Then
(Q1⊕PQ2)int can be naturally identified with the image of Q1⊕PQ2 in Qgp

1 ⊕P gpQgp
2 .

Moreover, if P , Q1, and Q2 are integral and if any of these monoids is a group,
then Q1 ⊕P Q2 is also integral.

Proof. See [Ogu18, Prop. I.1.3.4]. �

Lemma 2.1.9. The quotient of an integral (resp. a saturated) monoid by a sub-
monoid is also integral (resp. saturated). In particular, for any fs monoid P , the
quotient P = P/P inv is a toric monoid.

Proof. Let Q be any submonoid of an integral monoid P . By [Ogu18, Prop. I.1.3.3],
P/Q is also integral. Suppose moreover that P is saturated. For any a ∈ (P/Q)sat,
by definition, there exists some n ≥ 1 such that na ∈ P/Q. That is, there exist
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b ∈ P and q1, q2 ∈ Q such that na = b + (q1 − q2) in P gp. Then n(a + q2) =
b + q1 + (n − 1)q2, and hence a + q2 ∈ P and a ∈ P/Q. Thus, P/Q = (P/Q)sat is
also saturated. �

Lemma 2.1.10. Let P be an integral monoid, and u : P → Q a surjective homo-
morphism onto a toric monoid Q. Suppose that ker(ugp) ⊂ P . Then u admits a
(noncanonical) section. In particular, for any fs monoid P , the canonical homo-
morphism P → P admits a (noncanonical) section.

Proof. For a ∈ Qgp, if na = 0 for some n ≥ 1, then a = 0, as Q is saturated
and sharp. Hence, Qgp is torsion-free, Qgp ∼= Zr for some r, and the projection
ugp : P gp → Qgp admits a section s : Qgp → P gp. It remains to show that
s(Q) ⊂ P . For each q ∈ Q, choose any q̃ ∈ P lifting q. Then s(q)− q̃ ∈ P gp lies in
ker(ugp) ⊂ P , and therefore s(q) ∈ q̃ + P ⊂ P , as desired. �

Construction 2.1.11. Let P be a monoid, and S a subset of P . There exists
a monoid S−1P together with a homomorphism λ : P → S−1P sending ele-
ments of S to invertible elements of S−1P satisfying the universal property that
any homomorphism of monoids u : P → Q with the property that u(S) ⊂ Qinv

uniquely factors through S−1P . The monoid S−1P is called the localization of
P with respect to S. Concretely, let T denote the submonoid of P generated by
S. Then, as a set, S−1P consists of equivalence classes of pairs (a, t) ∈ P × T ,
where two such pairs (a, t) and (a′, t′) are equivalent if there exists some t′′ ∈ T
such that a + t′ + t′′ = a′ + t + t′′. The monoid structure of this set is given by
(a, t) + (a′, t′) = (a+ a′, t+ t′). The homomorphism λ is given by λ(a) = (a, 0).

Remark 2.1.12. The localization of an integral (resp. saturated) monoid is still
integral (resp. saturated).

Remark 2.1.13. Let P → Q1 and P → Q2 be homomorphisms of monoids, and
let S be a subset of P . Let S1, S2, and S3 denote the images of S in Q1, Q2, and
Q1 ⊕P Q2, respectively. Then the natural homomorphism

Q1 ⊕P Q2 → (S−1
1 Q1)⊕S−1P (S−1

1 Q2)

factors through an isomorphism

S−1
3 (Q1 ⊕P Q2)

∼→ (S−1
1 Q1)⊕S−1P (S−1

2 Q2),

by the universal properties of the objects.

Definition 2.1.14. Let u : P → Q be a homomorphism of monoids.

(1) We say it is local if P inv = u−1(Qinv).
(2) We say it is sharp if the induced homomorphism P inv → Qinv is an isomor-

phism.
(3) We say it is strict if the induced homomorphism P → Q is an isomorphism.
(4) We say it is exact if the induced homomorphism P → P gp ×Qgp Q is an

isomorphism. (When P and Q are integral and canonically identified as
submonoids of P gp and Qgp, respectively, we simply need P = (ugp)−1(Q).)

2.2. Log adic spaces. In this subsection, we give the definition of log adic spaces,
introduce some basic notions, and study some important examples.

Convention 2.2.1. From now on, we shall only work with adic spaces that are
étale sheafy. (They include locally noetherian adic spaces and perfectoid spaces.)
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Definition 2.2.2. Let X be an (étale sheafy) adic space.

(1) A pre-log structure on X is a pair (MX , α), whereMX is a sheaf of monoids
on Xét and α :MX → OXét

is a morphism of sheaves of monoids, called the
structure morphism. (HereOXét

is equipped with the natural multiplicative
monoid structure.)

(2) Let (M, α) and (N , β) be pre-log structures on X. A morphism from
(M, α) to (N , β) is a morphism M → N of sheaves of monoids that is
compatible with the structure morphisms α and β.

(3) A pre-log structure (MX , α) on X is called a log structure if the morphism
α−1(O×Xét

) → O×Xét
induced by α is an isomorphism. In this case, we call

the triple (X,MX , α) a log adic space. We shall simply write (X,MX) or
X when the context is clear.

(4) We say that a sheaf of monoidsM on Xét is integral (resp. saturated) if it is
a sheaf of integral (resp. saturated) monoids. A pre-log structure (MX , α)
on X is called integral (resp. saturated) if MX is. We say that a log adic
space (X,MX , α) is integral (resp. saturated) if MX is.

(5) For a log structure (MX , α) on X, we set MX :=MX/α
−1(O×Xét

), called
the characteristic of the log structure.

(6) For a pre-log structure (MX , α) on X, we have the associated log structure
(aMX ,

aα), where aMX is the pushout of O×Xét
← α−1(O×Xét

) → MX in
the category of sheaves of monoids on Xét, and where aα : aMX → OXét

is canonically induced by the natural morphism O×Xét
→ OXét

and the

structure morphism α : MX → OXét
(cf. [GR19, Sec. 12.1.6]). Again, we

shall simply write aMX when the context is clear.
(7) A morphism f : (Y,MY , αY ) → (X,MX , αX) of log adic spaces is a mor-

phism f : Y → X of adic spaces together with a morphism of sheaves of
monoids f ] : f−1(MX) → MY compatible with f ] : f−1(OXét

) → OYét
,

f−1(αX) : f−1(MX)→ f−1(OXét
), and αY :MY → OYét

. In this case, we
have the log structure f∗(MX) on Y associated with the pre-log structure
f−1(MX) → f−1(OXét

) → OYét
. The morphism f is called strict if the

induced morphism f∗(MX)→MY is an isomorphism.
(8) A morphism f : (Y,MY ) → (X,MX) is called exact if, at each geometric

y of Y , the induced homomorphism
(
f∗(MX)

)
y
→MY,y is exact.

(9) A log adic space is called noetherian (resp. locally noetherian, resp. quasi-
compact, resp. quasi-separated, resp. affinoid, resp. perfectoid, resp. stably
uniform, resp. analytic) if its underlying adic space is.

(10) A morphism of log adic spaces is called lft (resp. quasi-compact, resp. quasi-
separated, resp. separated, resp. proper, resp. finite, resp. surjective) if the
underlying morphism of adic spaces is. As usual, a separated (resp. proper)
log adic space over Spa(k, k+) is a locally noetherian log adic space with a
separated (resp. proper) structure morphism to Spa(k, k+).

Remark 2.2.3. As explained in [GR19, Sec. 12.1.6], the functor of taking associ-
ated log structures from the category of pre-log structures to the category of log
structures on X is the left adjoint of the natural inclusion functor from the category
of log structures to the category of pre-log structures on X.

Lemma 2.2.4. A sheaf of monoids M on an adic space Xét is integral (resp.
saturated) if and only if Mx is integral (resp. saturated) at each geometric point x
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of X. In particular, a log adic space (X,MX , α) is integral (resp. saturated) if and
only if MX,x is integral (resp. saturated) at each geometric point x of X.

Proof. This follows from the proof of [GR19, Lem. 12.1.18(ii)]. �

Remark 2.2.5. For a log adic space (X,MX , α) and a geometric point x of X,

it follows that Minv
X,x = α−1(O×Xét,x

)
∼→ O×Xét,x

(i.e., the homomorphism MX,x →
OX,x is local and sharp). Hence,MX,x

∼=MX,x/α
−1(O×Xét,x

) is a sharp monoid. If

MX,x is integral (which is the case when (X,MX , α) is integral, by Lemma 2.2.4),

then Mgp

X,x
∼=Mgp

X,x/α
−1(O×Xét,x

), and MX,x →MX,x is exact.

Remark 2.2.6. Let f : (Y,MY , αY ) → (X,MX , αX) be a morphism of log adic

spaces. At each geometric point y of Y , since f ]y : OXét,f(y) → OYét,y is local,

and since f ]y : MX,f(y)
∼= f−1(MX)y → MY,y is by definition compatible with

f ]y : OXét,f(y)
∼= f−1(OXét

)y → OYét,y, we see that f ]y : MX,f(y) → MY,y is local

as in Definition 2.1.14. By Lemma 2.1.5,
(
f∗(MX)

)
y
∼= MX,f(y). Therefore, f is

strict if and only if MX,f(y)
∼→MY,y, i.e., f ]y :MX,f(y) →MY,y is strict, at each

geometric point y of Y .

Here are some basic examples of log adic spaces.

Example 2.2.7. Every (étale sheafy) adic space X has a natural log structure given

by α :MX = O×Xét

can.→ OXét
. We call it the trivial log structure on X.

Example 2.2.8. A log point is a log adic space whose underlying adic space is
Spa(l, l+), where l is a nonarchimedean local field. We remark that the underlying
topological space may not be a single point.

Example 2.2.9. In Example 2.2.8, if l is separably closed, then the étale topos
of Spa(l, l+) is equivalent to the category of sets (see [Hub96, Cor. 1.7.3 and Prop.
2.3.10, and the paragraph after (2.5.2)]). In this case, a log structure of Spa(l, l+)
is given by a homomorphism of monoids α : M → l inducing an isomorphism
α−1(l×)

∼→ l×. For simplicity, by abuse of notation, we shall sometimes introduce
a log point by writing s = (Spa(l, l+),M). Also, we shall simply denote by s the
underlying adic space Spa(l, l+), when the context is clear.

Example 2.2.10. Let (X,MX , αX) be a perfectoid log adic space; i.e., a log
adic space whose underlying adic space X is a perfectoid space (see Definition 2.2.2).
LetMX[ := lim←−MX , where the transition maps are given by sending a section to its

p-th multiple. Let X[ be the tilt of X. Then there is a natural morphism of sheaves
of monoids αX[ :MX[ → OX[ét

making (X[,MX[ , αX[) a perfectoid log adic space,

called the tilt of (X,MX , αX). Note that the isomorphism α−1
X (O×Xét

)
∼→ O×Xét

induces an isomorphism α−1
X[

(O×
X[ét

)→ O×
X[ét

by taking inverse limit.

We would like to study log adic spaces of the form Spa(R[P ], R+[P ]), whenever
(R,R+) is a Huber pair.

Lemma 2.2.11. Suppose that (R,R+) is a Huber pair with a ring of definition
R0 ⊂ R, which is adic with respect to a finitely generated ideal I. Let us equip R[P ]
with the topology determined by the ring of definition R0[P ] such that {ImR0[P ]}m≥0

forms a basis of open neighborhoods of 0. Then (R[P ], R+[P ]) is also a Huber pair.
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Proof. Note that R+[P ] is open in R[P ] because R+ is open in R. We only need
to check that R+[P ] is integrally closed in R[P ]. By writing P as the direct limit
of its finitely generated submonoids, we may assume that P is finitely generated.
But this case is standard (see, for example, [BG09, Thm. 4.42]). �

Remark 2.2.12. Let (R〈P 〉, R+〈P 〉) denote the completion of (R[P ], R+[P ]). Since
taking completions of Huber pairs does not alter the associated adic spectra, we
can identify Spa(R[P ], R+[P ]) with Spa(R〈P 〉, R+〈P 〉) (not just as adic spaces, but
also as log adic spaces) whenever it is convenient to do so.

Lemma 2.2.13. Let P be a finitely generated monoid. Suppose that R is either

(1) analytic and strongly noetherian; or
(2) (complete, by our convention, and) finitely generated over a noetherian ring

of definition.

Then so is R〈P 〉 (which is complete by definition). As a result, Spa(R〈P 〉, R+〈P 〉)
is a noetherian adic space when Spa(R,R+) is, and Spa(R〈P 〉, R+〈P 〉) is étale
sheafy (see Corollary A.11). Moreover, the formation of the canonical morphism
Spa(R〈P 〉, R+〈P 〉) → Spa(R,R+) is compatible with rational localizations on the
target Spa(R,R+).

Proof. Suppose that R is analytic and strongly noetherian. Since P is finitely
generated, there is some surjection Zr≥0 � P , which induces a continuous surjection

R〈T1, . . . , Tr〉 ∼= R〈Zr≥0〉 � R〈P 〉. In this case, R〈P 〉〈T1, . . . , Tn〉 is a quotient of

R〈Zr≥0〉〈T1, . . . , Tn〉 ∼= R〈T1, . . . , Tr+n〉, for each n ≥ 0, which is noetherian as R is

strongly noetherian. Hence, R〈P 〉 is also analytic and strongly noetherian.
Alternatively, suppose that R is generated by some u1, . . . , un over a noetherian

ring of definition R0, with an ideal of definition I ⊂ R0. Since R0[P ] is noetherian
as P is finitely generated, its IR0[P ]-adic completion R0〈P 〉 is also noetherian.
Then the image of R0〈P 〉 is a noetherian ring of definition of R〈P 〉, over which
R〈P 〉 is generated by the images of u1, . . . , un, as desired.

In both cases, the formation of Spa(R〈P 〉, R+〈P 〉)→ Spa(R,R+) is clearly com-
patible with rational localizations on Spa(R,R+). �

In a different direction, we would like to show that, under certain condition on
P , if (R,R+) is a perfectoid affinoid algebra, then (R〈P 〉, R+〈P 〉) also is. In this
case, (R〈P 〉, R+〈P 〉) is étale sheafy (see Corollary A.11, again).

Definition 2.2.14. For each integer n ≥ 1, a monoid P is called n-divisible (resp.
uniquely n-divisible) if the n-th multiple map [n] : P → P is surjective (resp.
bijective).

Lemma 2.2.15. Suppose that (R,R+) is a perfectoid Huber pair. If a monoid P
is uniquely p-divisible, then (R〈P 〉, R+〈P 〉) is also a perfectoid Huber pair. More-
over, the formation of the canonical morphism Spa(R〈P 〉, R+〈P 〉) → Spa(R,R+)
is compatible with rational localizations on the target Spa(R,R+).

Proof. If pR = 0, then the unique p-divisibility of P implies that R+[P ] is perfect,
and so is its completion R+〈P 〉. Also, it is clear that (R〈P 〉)◦ = R◦〈P 〉 in R〈P 〉.
Hence, R〈P 〉 is uniform, and (R〈P 〉, R+〈P 〉) is a perfectoid Huber pair.

In general, let (R[, R[+) be the tilt of (R,R+). Let $ ∈ R be a pseudo-
uniformizer of R satisfying $p|p in R◦ and admitting a sequence of p-th power

roots $
1
pn , so that $[ = ($,$

1
p , . . .) ∈ R[◦ is a pseudo-uniformizer of R[, as in
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[SW20, Lem. 6.2.2]. Let ξ be a generator of ker(θ : W (R[+)→ R+), which can be
written as ξ = p+ [$[]a for some a ∈W (R[+), by [SW20, Lem. 6.2.8]. By the first
paragraph above and the tilting equivalence (see [SW20, Thm. 6.2.11]), it suffices
to show that

R+〈P 〉 ∼= W (R[+〈P 〉)/(ξ).
For this purpose, note that there is a natural homomorphism

θ′ : W (R[+〈P 〉)→ R+〈P 〉
induced by the surjective homomorphism

R[+〈P 〉 → (R[+/$[)[P ] ∼= (R+/$)[P ]

and the universal property of Witt vectors, and θ′ is surjective because both its
source and target are complete. Since ξ = p+ [$[]a, we have

W (R[+〈P 〉)/(ξ, [$[]) = W (R[+〈P 〉)/(p, [$[]) ∼= (R[+/$[)[P ] ∼= (R+/$)[P ].

Since θ′([$[]) = $, by induction, we see that the homomorphism

W (R[+〈P 〉)/(ξ, [$[]n)→ (R+/$n)[P ]

induced by θ′ is an isomorphism, for each n ≥ 1. Thus, since W (R[+〈P 〉)/(ξ) is
[$[]-adically complete and separated, ker(θ′) is generated by ξ, as desired.

Finally, the formation of Spa(R〈P 〉, R+〈P 〉)→ Spa(R,R+) is clearly compatible
with rational localizations on Spa(R,R+), as in Lemma 2.2.13. �

Remark 2.2.16. In Lemma 2.2.15, perfectoid Huber pairs are Tate by our con-
vention following [SW20, Lec. 6], but the statement of the lemma remains true for
more general analytic perfectoid Huber pairs as in [Ked19], by using [Ked19, Lem.
2.7.9] instead of [SW20, Thm. 6.2.11].

Definition 2.2.17. When X = Spa(R[P ], R+[P ]) ∼= Spa(R〈P 〉, R+〈P 〉) is étale
sheafy, we denote by PX the constant sheaf on Xét defined by P . Then the natural
homomorphism P → R〈P 〉 of monoids induces a pre-log structure PX → OXét

on
X, whose associated log structure we simply denote by P log.

Convention 2.2.18. From now on, when Spa(R〈P 〉, R+〈P 〉) is étale sheafy and
regarded as a log adic space, we shall endow it with the log structure P log as in
Definition 2.2.17, unless otherwise specified.

Let us continue with some more examples of log adic spaces.

Example 2.2.19. Given any locally noetherian adic space Y with trivial log struc-
ture as in Example 2.2.7, and given any finitely generated monoid P , by gluing the
morphisms Spa(R〈P 〉, R+〈P 〉)→ Spa(R,R+) as in Lemma 2.2.13 over the noether-
ian affinoid open Spa(R,R+) in Y , where each Spa(R〈P 〉, R+〈P 〉) is equipped with
the structure of a log adic space as in Definition 2.2.17 and Convention 2.2.18, we
obtain a morphism X → Y of log adic spaces, which we shall denote by Y 〈P 〉 → Y .
In this case, we shall also denote the log structure of X = Y 〈P 〉 by P log.

Example 2.2.20. If P is a toric monoid as in Definition 2.1.1(6), then we say
that X = Spa(k〈P 〉, k+〈P 〉) is an affinoid toric log adic space. This is a special
case of Example 2.2.19 with Y = Spa(k, k+), and is closely related to the the-
ory of toroidal embeddings and toric varieties (see, e.g., [KKMSD73] and [Ful93]).
Roughly speaking, such affinoid toric log adic spaces provide affinoid open subspaces
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of the rigid analytification of toric varieties, which are then also useful for studying
local properties of more general varieties or rigid analytic varieties which are locally
modeled on toric varieties. Note that the underlying spaces of affinoid toric log adic
spaces are always normal, by [BGR84, Sec. 7.3.2, Prop. 8], [GD67, IV-2, 7.8.3.1],
and [Hoc72, Thm. 1] (cf. [Kat94, Thm. 4.1]).

Example 2.2.21. A special case of Example 2.2.20 is when P ∼= Zn≥0 for some
integer n ≥ 0. In this case, we obtain

X = Spa(k〈P 〉, k+〈P 〉) ∼= Dn := Spa(k〈T1, . . . , Tn〉, k+〈T1, . . . , Tn〉),
the n-dimensional unit disc, with the log structure of Dn associated with the
pre-log structure given by Zn≥0 → k〈T1, . . . , Tn〉 : (a1, . . . , an) 7→ T a1

1 · · ·T ann .

The following proposition provides many more examples of log adic spaces com-
ing from locally noetherian log formal schemes.

Proposition 2.2.22. The canonical fully faithful functor from the category of lo-
cally noetherian formal schemes to the category of locally noetherian adic spaces
defined locally by Spf(A) 7→ Spa(A,A) (as in [Hub94, Sec. 4.1]) canonically extends
to a fully faithful functor from the category of locally noetherian log formal schemes
(as in [GR19, Sec. 12.1]) to the category of locally noetherian log adic spaces (in-
troduced in this paper).

Proof. Given any locally noetherian log formal scheme (X,MX), let X denote the
adic spaces associated with the formal scheme X, with a canonical morphism of sites
λ : Xét → Xét, as in [Hub96, Lem. 3.5.1]. By construction, we have a canonical
morphism λ−1(OXét

) → O+
Xét

. Let MX be the log structure of X associated

with the pre-log structure λ−1(MX) → λ−1(OXét
) → O+

Xét
→ OXét

. Then the

assignment (X,MX) 7→ (X,MX) gives the desired functor, which is fully faithful
by adjunction. �

Definition 2.2.23 (cf. [Ogu18, Def. III.2.3.1]). We say that a morphism f : Y → X
of log adic spaces is an open immersion (resp. a closed immersion) if the underlying
morphism of adic spaces is an open immersion (resp. a closed immersion) and if
the morphism f ] : f−1(MX) → MY is an isomorphism (resp. a surjection). We
say that f is an immersion if it is a composition of a closed immersion of log adic
spaces followed by an open immersion of log adic spaces. We say that f is strict if
it is a strict morphism of log adic spaces.

Example 2.2.24. Let (X,MX , αX) be a log adic space and ı : Z → X an im-
mersion of adic spaces. Let (Z,MZ , αZ) be the log adic space associated with the
pre-log structure ı−1

ét (MX) → ı−1
ét (OXét

) → OZét
. Then the induced morphism

(Z,MZ , αZ) → (X,MX , αX) of log adic spaces is a strict immersion. It is an
open (resp. a closed) immersion exactly when the immersion ı of adic spaces is.

Remark 2.2.25. More generally, by the same argument as in [Ogu18, the para-
graph after Def. III.2.3.1], a closed immersion is strict when it is exact.

2.3. Charts and fiber products. In this subsection, we introduce the notion of
charts for log adic spaces. Compared with the corresponding notion for log schemes,
a notable difference is that the definition of charts for a log adic space X involves
not just OXét

but also O+
Xét

. Based on this notion, we also introduce the category

of coherent (resp. fine, resp. fs) log adic spaces and study the fiber products in it.
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Definition 2.3.1. Let (X,MX , α) be a log adic space. Let P be a monoid, and
let PX denote the associated constant sheaf of monoids on Xét. A (global) chart
of X modeled on P is a morphism of sheaves of monoids θ : PX →MX such that
α
(
θ(PX)

)
⊂ O+

Xét
and such that θ canonically induces (by the universal property

of pushouts) an isomorphism aPX
∼→ MX from the log structure aPX associated

with the pre-log structure α ◦ θ : PX → OXét
. We call the chart finitely generated

(resp. fine, resp. fs) if P is finitely generated (resp. fine, resp. fs).

Remark 2.3.2. Giving a morphism θ : PX →MX such that α
(
θ(PX)

)
⊂ O+

Xét
as

in Definition 2.3.1 is equivalent to giving a homomorphism P →MX(X) of monoids
whose composition with α(X) : MX(X) → OXét

(X) factors through O+
Xét

(X). If
the monoid P is finitely generated, and if the underlying adic space X is over some
affinoid adic space Spa(R,R+), then giving such a homomorphism P → MX(X)
whose composition with α(X) factors through O+

Xét
(X) is equivalent to giving a

morphism f : (X,MX) → (Spa(R〈P 〉, R+〈P 〉), P log) of log adic spaces, whenever
Spa(R〈P 〉, R+〈P 〉) is an étale sheafy adic space. In this case, θ is a chart if and
only if the morphism f is strict. We imposed the condition α

(
θ(PX)

)
⊂ O+

Xét
in

Definition 2.3.1 because we will make crucial use of morphisms f : (X,MX) →(
Spa(R〈P 〉, R+〈P 〉), P log

)
as above in this paper.

Remark 2.3.3. In Remark 2.3.2, if the underlying adic space X is over some
locally noetherian adic space Y , then giving a morphism θ : PX →MX such that
α
(
θ(PX)

)
⊂ O+

Xét
is also equivalent to giving a morphism g : X → Y 〈P 〉 as in

Example 2.2.19, in which case θ is a chart if and only if the morphism g is strict.
Moreover, if X is itself locally noetherian, then we can take Y = X, and obtain a
closed immersion h : X → X〈P 〉, in which case θ is a chart if and only if h is a
strict closed immersion.

Remark 2.3.4. Let θ : PX → MX be a chart of a log adic space (X,MX , α).
By Lemma 2.1.5 and Remark 2.2.5, for each geometric point x of X, we obtain
a canonical isomorphism P/(α ◦ θ)−1(O×Xét,x

)
∼→ MX,x/α

−1(O×Xét,x
) ∼= MX,x. In

particular, the composition PX
θ→MX →MX is surjective.

Definition 2.3.5. A quasi-coherent (resp. coherent, resp. fine, resp. fs) log adic
space is a log adic space X that étale locally admits some charts modeled on some
monoids (resp. finitely generated monoids, resp. fine monoids, resp. fs monoids).
(Quasi-coherent log adic spaces will not play any important role in this paper.)

Lemma 2.3.6. Let (X,MX , α) be a log adic space, and θ : PX → MX a chart
modeled on some monoid P . Suppose that there is a finitely generated monoid P ′

such that θ factors as PX → P ′X
θ′→MX and such that α ◦ θ′ : P ′X → OXét

factors
through O+

Xét
. Then, étale locally on X, there exists a chart θ′′ : P ′′X → MX

modeled on some finitely generated monoid P ′′ such that θ′ factors through θ′′.

Proof. The proof is similar to [Ogu18, Prop. II.2.2.1], except that, when compared
with charts on log schemes, charts θ on log adic spaces (X,MX , α) are subject to
the additional requirement that α ◦ θ factors through O+

Xét
.

Let {a′i}i∈I be a finite set of generators of P ′. Since PX →MX is surjective (by
Remark 2.3.4), étale locally on X, there exist some ai ∈ P and fi ∈ O×X(X) such
that θ′(a′i) = θ(ai) fi, for all i ∈ I. By [Hub96, (1) in the proof of Prop. 2.5.13], for
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each geometric point x of X, we have

O+
Xét,x

= {f ∈ OXét,x : |f(x)| ≤ 1}

in OXét,x. By Remark 2.1.3, up to further étale localization on X, we may as-

sume that, for each i ∈ I, at least one of fi and f−1
i is in O+

X(X). Consider the
homomorphism P ′ ⊕ ZI≥0 →MX(X) sending (a′i, 0) 7→ θ(ai) and sending{

(0, ei) 7→ fi, if fi ∈ O+
X(X);

(0, ei) 7→ f−1
i , if fi 6∈ O+

X(X) but f−1
i ∈ O+

X(X),

where ei denotes the i-th standard basis element of ZI≥0. Let β denote the homo-

morphism P → P ′, and let P ′′ be the quotient of P ′ ⊕ ZI≥0 modulo the relations{
(a′i, 0) ∼ (β(ai), ei), if fi ∈ O+

X(X);

(a′i, ei) ∼ (β(ai), 0), if fi 6∈ O+
X(X) but f−1

i ∈ O+
X(X).

By construction, P ′ ⊕ ZI≥0 →MX(X) factors through an induced homomorphism

θ′′ : P ′′ →MX(X), and α ◦ θ′′ factors through O+
X , as desired.

It remains to check that the log structure associated with the pre-log structure
α ◦ θ′′ : P ′′X → MX → OXét

coincides with MX ; i.e., the natural morphism
aPX → aP ′′X induced by P → P ′′ is an isomorphism. It is injective because the
composition aPX → aP ′′X →MX is an isomorphism. It is also surjective, because
the induced morphism PX/(α ◦ θ)−1(O×Xét

) → P ′′X/(α ◦ θ′′)−1(O×Xét
) is surjective,

since the target is generated by the images of a′i which lift to the images of ai in
the source. �

Lemma 2.3.7. Let (X,MX , α) be a locally noetherian coherent log adic space, P
a monoid, and PX → MX a chart. Suppose that (X,MX , α) is integral (resp.
saturated), in which case PX → MX factors through P int

X → MX (resp. P sat
X →

MX). Then P int
X →MX (resp. P sat

X →MX) is also a chart.

Proof. Suppose that (X,MX , α) is integral. Since PX → MX is a chart, the
composition aPX → aP int

X → MX is an isomorphism, and hence the induced
morphism aPX → aP int

X is injective. Since P → P int is surjective, the composition
P int
X →MX → OXét

factors through O+
Xét

, and the induced map aPX → aP int
X is

surjective and hence is an isomorphism.
Suppose that (X,MX , α) is saturated. Then the chart PX → MX factors as

a composition of PX → P sat
X →MX . Since O+

Xét
is integrally closed in OXét

, the

composition P sat
X → MX → OXét

factors through O+
Xét

. It remains to show that

the induced morphism aPX → aP sat
X is an isomorphism. By Remark 2.3.4, it suffices

to show that, at each geometric point x of X, if we denote by β : P →MX,x and
β′ : P sat →MX,x the induced homomorphisms, then the canonical homomorphism

(2.3.8) P/(α ◦ β)−1(O×Xét,x
)→ P sat/(α ◦ β′)−1(O×Xét,x

)

is an isomorphism. Let β denote the composition of P → MX,x → MX,x. Since

ker(Mgp
X,x → M

gp

X,x) = Minv
X,x = α−1(O×Xét,x

), because MX,x is integral (see Re-

mark 2.2.4), we obtain

ker(β
gp

) = (βgp)−1
(
α−1(O×Xét,x

)
)
.
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Since P gp/ ker(β
gp

) ∼=M
gp

X,x
∼= P gp/

(
(α ◦ β)−1(O×Xét,x

)
)gp

, we obtain(
(α ◦ β)−1(O×Xét,x

)
)gp

= (βgp)−1
(
α−1(O×Xét,x

)
)
.

Since (α ◦ β)−1(O×Xét,x
) ⊂ (α ◦ β′)−1(O×Xét,x

) ⊂ (βgp)−1
(
α−1(O×Xét,x

)
)
, we obtain(

(α ◦ β′)−1(O×Xét,x
)
)gp

= (βgp)−1
(
α−1(O×Xét,x

)
)
.

By Lemma 2.1.9 and the above, we see that the natural homomorphism

(2.3.9) P sat/(α ◦ β′)−1(O×Xét,x
)→ P gp/ ker(β

gp
)

is injective, whose image is contained in
(
P/(α ◦ β)−1(O×Xét,x

)
)sat

. Moreover, the

composition of (2.3.8) and (2.3.9) induces the canonical homomorphism

(2.3.10) P/(α ◦ β)−1(O×Xét,x
)→

(
P/(α ◦ β)−1(O×Xét,x

)
)sat

.

By Lemmas 2.1.9 and 2.2.4, P/(α ◦ β)−1(O×Xét,x
) ∼= MX,x is saturated. Thus,

(2.3.10) is an isomorphism, and so is (2.3.8), as desired. �

Proposition 2.3.11. Let (X,MX , α) be a locally noetherian coherent log adic
space. Then it is fine (resp. fs) if and only if it is integral (resp. saturated).

Proof. If (X,MX , α) is integral (resp. saturated), then it is fine (resp. fs) by Lemma
2.3.7. Conversely, if (X,MX , α) is fine, then it is integral by Lemma 2.1.8. Suppose
that (X,MX , α) admits an fs chart θ : PX → MX . By Remark 2.3.4, we have

P/(α ◦ θ)−1(O×Xét,x
)
∼→ MX,x/α

−1(O×Xét,x
) ∼= MX,x at each geometric point x of

X. By Lemma 2.1.9, MX,x is saturated, because P is. By [Ogu18, Prop. I.1.3.5],

MX,x is also saturated, because MX,x is integral and MX,x is saturated. Thus,
(X,MX , α) is saturated, by Lemma 2.2.4. �

Lemma 2.3.12. Let (X,MX , α) be a fine (resp. fs) log adic space. For any geo-
metric point x of X, the monoid MX,x is sharp fine (resp. toric—i.e., sharp fs),

and the canonical homomorphism MX,x →MX,x admits a splitting s that factors
through the preimage of O+

Xét,x
in MX,x.

Proof. Let P := MX,x, which is finitely generated because X is fine. Under the
assumption that X is fine (resp. fs), by Proposition 2.3.11 and Lemma 2.2.4,MX,x

is integral (resp. saturated), and so its sharp quotient P is sharp fine (resp. toric).
By Lemma 2.1.10, the surjective homomorphism f :MX,x → P admits a section s0.
We need to modify this into a section s : P →MX,x such that (α◦s)(P ) ⊂ O+

Xét,x
.

By [Hub96, (1) in the proof of Prop. 2.5.13], we have

O+
Xét,x

= {f ∈ OXét,x : |f(x)| ≤ 1}
and

{f ∈ OXét,x : |f(x)| > 1} ⊂ O×Xét,x

in OXét,x. Let {a1, . . . , ar} be a finite set of generators of P . For each i, let
γi := |α(s0(ai))(x)|. If γi ≤ 1 for all i, then we set f0 := 1 in OXét,x. Otherwise,
there exists some i0 such that γi0 > 1 and γi0 ≥ γi, for all i. Then α(s0(ai0))
admits an inverse f0 in OXét,x, so that |f0(x)| = γ−1

i0
. By [Ogu18, Cor. I.2.2.7], we

can identify P with a submonoid of Zr′≥0, for some r′ ≥ 0, so that we can describe

elements of P by r′-tuples of integers. Then the homomorphism

s : P →MX,x : (n1, . . . , nr′) 7→ f
n1+···+nr′
0 s0

(
(n1, . . . , nr′)

)
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satisfies (α ◦ s)(P ) ⊂ O+
Xét,x

, as desired. �

Proposition 2.3.13. Let (X,MX , α) be an fine log adic space, and x any geomet-
ric point of X. Then X admits, étale locally at x, a chart modeled on MX,x.

Proof. By Lemma 2.3.12, we have a splitting s : P := MX,x → MX,x such that
(αx ◦ s)(P ) ⊂ O+

Xét,x
. Since P is fine because X is fine, by Remark 2.1.3, up to

étale localization on X, the splitting s lifts to a morphism s̃ : PX → MX such
that (α ◦ s̃)(PX) ⊂ O+

Xét
(see Remark 2.1.3). Then the composition of PX →MX

with α is a pre-log structure, whose associated log structure aPX → OXét
factors

through as̃ : aPX → MX (and α). The induced as̃x : aPX,x → MX,x is an
isomorphism, because the quotients of both sides by the isomorphic preimages of
O×Xét,x

induce the canonical isomorphism P
∼→MX,x, by construction. Hence, up

to further étale localization on X, we may assume that as̃ : aPX → MX is an
isomorphism, because the quotients of both sides by the isomorphic preimages of
O×Xét

induce the canonical morphism PX →MX (again, see Remark 2.1.3). As a

result, s̃ : PX →MX is a chart modeled on P =MX,x, as desired. �

Example 2.3.14. An fs log point is a log point (as in Example 2.2.8) that is
an fs log adic space. In the setting of Example 2.2.9, by Remark 2.2.5, a log point
s = (Spa(l, l+),M) with l separably closed is an fs log point exactly when M/l× is
toric (i.e., sharp fs). In this case, by Lemmas 2.1.10 and 2.3.12, there always exists
a homomorphism of monoids M/l× → M splitting the canonical homomorphism
M →M/l× and defining a chart of s modeled on M .

Example 2.3.15. A special case of Example 2.3.14 is a split fs log point i.e., a
log point of the form s = (X,MX) ∼= (Spa(l, l+),O×Xét

⊕PX) for some (necessarily)

toric monoid P . This is equivalent to a log point (Spa(L,L+),M), where L is the
completion of a separable closure lsep of l, with a Gal(lsep/l)-equivariant splitting
of the homomorphism M → M/L×. We also remark that this is the same as a
Gal(lsep/l)-equivariant splitting of the homomorphism Mgp →Mgp/L×.

Example 2.3.16. Let D be an effective Cartier divisor on a normal rigid analytic
variety X over a nonarchimedean field k, and let ı : D ↪→ X denote the associated
closed immersion. By viewing X as a noetherian adic space, we equip X with the
log structure α :MX → OXét

defined by setting

MX(V ) = {f ∈ OXét
(V ) : f is invertible on the preimage of X −D},

for each object V → X in Xét, with α(V ) :MX(V )→ OXét
(V ) given by the natural

inclusion. This makes X a locally noetherian fs log adic space. (The normality of
X is necessary for showing that the log structure MX is indeed saturated.) Then
X −D is the maximal open subspace of X over which MX is trivial. Note that, in
Example 2.2.21, the log structure of X ∼= Dn can be defined alternatively as above
by the closed immersion ı : D := {T1 · · ·Tn = 0} ↪→ Dn.

The following special case is useful in many applications:

Example 2.3.17. Let X, D, and k be as in Example 2.3.16. Suppose moreover
that X is smooth. We say that D is a (reduced) normal crossings divisor of X
if, étale locally on X—or equivalently (by [dJvdP96, Lem. 3.1.5]), analytic locally
on X, up to replacing the base field k with a finite separable extension—X and D
are of the form S × Dm and S × {T1 · · ·Tm = 0}, where S is a smooth connected
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rigid analytic variety over k, and ι : D ↪→ X is the pullback of the canonical closed
immersion {T1 · · ·Tm = 0} ↪→ Dm. (This definition is justified by [Kie67, Thm.
1.18].) Then we equip X with the fs log structure defined as in Example 2.3.16,
which is compatible with the one of Dm as in Example 2.2.21 via pullback.

The following example will be useful when studying the geometric monodromy
and nearby cycles of étale local systems “along the boundary”:

Example 2.3.18. Let X, D, and k be as in Example 2.3.17. Suppose that {Dj}j∈I
is the set of irreducible components of D (see [Con99]). For each J ⊂ I, as locally
closed subspaces of X, consider XJ := X ∩

(
∩j∈J Dj

)
, DJ := ∪J(J′⊂I XJ′ , and

UJ := XJ−DJ . By pulling back the log structure from X to XJ and UJ , respectively,
we obtain log adic spaces (X∂

J ,MX∂J
) and (U∂J ,MU∂J

) (with strict immersions to

X). When XJ is also smooth and so DJ is a normal crossings divisor, we equip XJ

with the fs log structure defined by DJ as in Example 2.3.16, whose restriction to UJ
is then the trivial log structure. If we also consider DJ := ∪j∈I−J Dj, and let XJ

denote the same adic space X but equipped with the fs log structure defined by DJ as
in Example 2.3.16, thenMXJ andMUJ = O×UJ ,ét are nothing but the log structures

pulled back from XJ . Moreover, since DJ ⊂ D, there is a canonical morphism of
log adic spaces X → XJ ; and since DJ = DJ ∩ XJ , this morphism induces a
canonical morphism of log adic spaces X∂

J → XJ , whose underlying morphism of
adic spaces is an isomorphism. Since X and D is étale locally of the form S ×Dm
and S × {T1 · · ·Tm = 0} for some smooth S over k, it follows that XJ is étale
locally of the form S×Dm−|J|, in which case the log structures MX∂J

and MXJ are

associated with the pre-log structures Zm≥0 → OX∂J ,ét and Zm−|J|≥0 → OXJ ,ét, and we

have a direct sum MX∂J
∼=MXJ ⊕ (ZJ≥0)XJ .

Definition 2.3.19. Let f : (Y,MY , αY ) → (X,MX , αX) be a morphism of log
adic spaces. A chart of f consists of charts θX : PX →MX and θY : QY →MY

and a homomorphism u : P → Q of monoids such that the diagram

PY
u //

θX

��

QY

θY

��

f−1(MX)
f]
//MY

commutes. We say that the chart is finitely generated (resp. fine, resp. fs) if both
P and Q are finitely generated (resp. fine, resp. fs). When the context is clear, we
shall simply say that u : P → Q is the chart of f .

Example 2.3.20. Let P := Zn≥0 and let Q be a toric submonoid of 1
mZn≥0 contain-

ing P , for some m ≥ 1. Then the canonical homomorphism u : P → Q induces a
morphism f : Y := Spa(k〈Q〉, k+〈Q〉) → X := Spa(k〈P 〉, k+〈P 〉) ∼= Dn of normal
adic spaces, whose source and target are equipped with canonical log structures as in
Examples 2.2.20 and 2.2.21, making f : Y → X a morphism of fs log adic spaces.
Moreover, these log structures on X and Y coincide with those on X and Y defined
by D = {T1 · · ·Tn = 0} ↪→ X and its pullback to Y , respectively, as in Example
2.3.16. A chart of f : Y → X is given by the canonical charts P → MX(X) and
Q→MY (Y ) and the above u : P → Q.
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Proposition 2.3.21. Let f : Y → X be a morphism of coherent log adic spaces,
and let P →MX(X) be a chart modeled on a finitely generated monoid P . Then,
étale locally on Y , there exist a chart Q→MY (Y ) modeled on a finitely generated
monoid Q and a homomorphism P → Q, which together provide a chart of f .

Proof. Up to étale localization on Y and X, we may assume that (X,MX) and
(Y,MY ) are modeled on some finitely generated monoids P and Q′, respectively.
Then the composition of PY ∼= f−1(PX)→ f−1(MX)→MY induces a morphism
PY → (P ⊕ Q′)Y → MY . Note that P ⊕ Q′ is finitely generated, and that the
composition (P ⊕Q′)Y →MY → OYét

factors through O+
Yét

. By applying Lemma

2.3.6 to Q′Y → (P ⊕ Q′)Y → MY , we see that, étale locally, (P ⊕ Q′)Y → MY

factors as (P ⊕ Q′)Y → QY → MY , where QY → MY is a chart modeled on a
finitely generated monoid Q. Thus, the composition P → P ⊕Q′ → Q gives a chart
of f , as desired. �

Proposition 2.3.22. Any morphism between fine (resp. fs) log adic spaces étale
locally admits fine (resp. fs) charts.

Proof. By Proposition 2.3.13, étale locally, X admits a chart modeled on a fine
(resp. fs) monoid P . By Proposition 2.3.21, f admits, étale locally on Y , a chart
P → Q with finitely generated Q. By Lemma 2.3.7, the induced Qint

Y →MY (resp.
Qsat
Y →MY ) is also a chart of Y . Hence, the composition of P → Q→ Qint (resp.

P → Q→ Qsat) is a fine (resp. fs) chart of f . �

Proposition 2.3.23. (1) The inclusion from the category of noetherian (resp.
locally noetherian) fine log adic spaces to the category of noetherian (resp.
locally noetherian) coherent log adic spaces admits a right adjoint X 7→
X int, and the corresponding morphism of underlying adic spaces is a closed
immersion.

(2) The inclusion from the category of noetherian (resp. locally noetherian) fs
log adic spaces to the category of noetherian (resp. locally noetherian) fine
log adic spaces admits a right adjoint X 7→ Xsat, and the corresponding
morphism of underlying adic spaces is finite and surjective.

Proof. In case (1) (resp.(2)), let ? = int (resp. sat) in the following.
Suppose that X = Spa(R,R+) is noetherian affinoid and admits a global chart

modeled on a finitely generated (resp. fine) monoid P , so that we have a homo-
morphism P → R of monoids, inducing a homomorphism Z[P ] → R of rings. Let
R? := R ⊗Z[P ] Z[P ?], and let R?+ denote the integral closure of R+ ⊗Z[P ] Z[P ?]

in R?. Since P is finitely generated, Z[P ?] is a finite Z[P ]-algebra, and (R?, R?+)
is equipped with a unique topology extending that of (R,R+), which is not nec-
essarily complete. Let X? := Spa(R?, R?+) (which, as usual, depends only on the
completion of (R?, R?+)), with the log structure induced by P ? → OX?(X?) =
R⊗Z[P ] Z[P ?] : a 7→ 1⊗ ea (where ea denotes the image of a ∈ P ? in Z[P ?], by our

convention). Clearly, the natural projection X? → X is a closed immersion (resp.
finite and surjective morphism) of log adic spaces. We claim that, if (Y,MY ) is
a fine (resp. fs) log adic space, then each morphism f : (Y,MY ) → (X,MX) of
log adic spaces factors through X?, yielding Mor(Y,X) ∼= Mor(Y,X?). Indeed, by
Proposition 2.3.11, the induced morphism PY ∼= f−1(PX) → f−1(MX) → MY

factors through P ?
Y , and hence Y → X factors through Y → X?, as desired.
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In general, there exists an étale covering of X by affinoids Xi = Spa(Ri, R
+
i )

such that each Xi admits a global chart modeled on a finitely generated (resp. fine)

monoid (see Definition 2.3.5). Consider X̃ =
∐
i Xi. By the affinoid case treated

in the last paragraph, we obtain a finite morphism X̃? → X̃, which is equipped
with a descent datum. By étale descent of coherent sheaves (see Proposition A.10),

X̃? → X̃ descends to a locally noetherian adic space X? → X. Also, the étale
sheaf of monoids descends (essentially by definition). Finally, by Proposition 2.3.22
and the local construction in the previous paragraph, the formation X 7→ X? is
functorial, as desired. �

Remark 2.3.24. For a noetherian (resp. locally noetherian) coherent log adic space
X, we shall simply denote by Xsat the fs log adic space (X int)sat. By combining
the two cases in Proposition 2.3.23, the functor X 7→ Xsat from the category of
noetherian (resp. locally noetherian) coherent log adic spaces to the category of
noetherian (resp. locally noetherian) fs log adic spaces is the right adjoint of the
inclusion from the category of noetherian (resp. locally noetherian) fs log adic spaces
to the category of noetherian (resp. locally noetherian) coherent log adic spaces.

Remark 2.3.25. By construction, both the functorsX 7→ X int andX 7→ Xsat send
strict and finite (resp. étale) morphisms to strict and finite (resp. étale) morphisms.

Remark 2.3.26. Again by construction, when X is a locally noetherian log adic
space over a locally noetherian fs log adic space Y and admits a global chart modeled
on a finitely generated (resp. fine) monoid P , for ? = int (resp. sat), we have
X? ∼= X ×Y 〈P 〉 Y 〈P ?〉 as adic spaces, where Y 〈P 〉 and Y 〈P ?〉 are as in Example

2.2.19. (Note that the fiber product X ×Y 〈P 〉 Y 〈P ?〉 exists because the morphism

Y 〈P ?〉 → Y 〈P 〉 is lft when P is finitely generated.)

Now, let us study fiber products in the category of locally noetherian coherent
(resp. fine, resp. fs) log adic spaces:

Proposition 2.3.27. (1) Finite fiber products exist in the category of locally
noetherian log adic spaces when the corresponding fiber products of the un-
derlying adic spaces exist. Moveover, finite fiber products of locally noe-
therian coherent log adic spaces over locally noetherian coherent log adic
spaces are coherent (when defined). The forgetful functor from the category
of locally noetherian log adic spaces to the category of locally noetherian
adic spaces respects finite fiber products (when defined).

(2) Finite fiber products exist in the category of locally noetherian fine (resp.
fs) log adic spaces when the corresponding fiber products of the underlying
adic spaces exist.

Proof. As for (1), let Y → X and Z → X be morphisms of locally noetherian log
adic spaces such that the fiber product W := Y ×X Z of the underlying adic spaces
is defined. Let prY , prZ , and prX denote the natural projections from W to Y , Z,
and X, respectively, and equip W with the log structure associated with the pre-log
structure pr−1

Y (MY )⊕pr−1
X (MX) pr−1

Z (MZ)→ OWét
. Then the log adic space thus

obtained clearly satisfies the desired universal property. Suppose moreover that X,
Y , and Z are all coherent. By Proposition 2.3.21, étale locally, Y → X and Z → X
admit charts P → Q and P → R, respectively, where P , Q, and R are all finitely
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generated monoids, in which case W is (by construction) modeled on the finitely
generated monoid S := Q⊕P R, and hence is coherent.

As for (2), let Y → X and Z → X be morphisms of locally noetherian fine
(resp. fs) log adic spaces such that the fiber product Y ×X Z of the underlying adic
spaces is defined, in which case we equip it with the structure of a coherent log
adic space as in (1). Then, by Proposition 2.3.23, Y ×fine

X Z := (Y ×X Z)int (resp.
Y ×fs

X Z := (Y ×X Z)sat) satisfies the desired universal property. �

Remark 2.3.28. Let P → Q and P → R be homomorphisms of finitely generated
(resp. fine, resp. fs) monoids, and let S? := (Q ⊕P R)?, where ? = ∅ (resp. int,
resp. sat). Let Y be a locally noetherian fs log adic space. By Remark 2.3.2
and Proposition 2.3.27 (and the construction in its proof), Y 〈S?〉 is canonically
isomorphic to the fiber product of Y 〈Q〉 and Y 〈R〉 over Y 〈P 〉 in the category of
noetherian coherent (resp. fine, resp. fs) log adic spaces.

Remark 2.3.29. Let P → Q and P → R be fine (resp. fs) charts of morphisms
Y → X and Z → X, respectively, of locally noetherian fine (resp. fs) log adic
spaces such that Y ×X Z is defined. Then Y ×fine

X Z (resp. Y ×fs
X Z) is modeled on

(Q⊕P R)int (resp. (Q⊕P R)sat).

Remark 2.3.30. The forgetful functor from the category of locally noetherian fine
(resp. fs) log adic spaces to the category of locally noetherian adic spaces does
not respect fiber products (when defined), because the underlying adic spaces may
change under the functor X 7→ X int (resp. X 7→ Xsat).

Convention 2.3.31. From now on, all fiber products of locally noetherian fs log
adic spaces are taken in the category of fs ones unless otherwise specified. For
simplicity, we shall omit the superscript “fs” from “×”.

We will need the following analogue of Nakayama’s Four Point Lemma [Nak97,
Prop. 2.2.2]:

Proposition 2.3.32. Let f : Y → X and g : Z → X be two lft morphisms of
locally noetherian fs log adic spaces, and assume that f is exact. Then, given any
two points y ∈ Y and z ∈ Z that are mapped to the same point x ∈ X, there exists
some point w ∈W := Y ×X Z that is mapped to y ∈ Y and to z ∈ Z.

In order to prove Proposition 2.3.32, it suffices to treat the case where X, Y ,
and Z are geometric points, and where x, y and z are the respective unique closed
points. By [Hub96, Lem. 1.1.10], it suffices to prove the following:

Lemma 2.3.33. Let f : Y → X and g : Z → X be morphisms of fs log adic
spaces such that the underlying adic spaces of X, Y , and Z are Spa(l, l+) for the
same complete separably closed nonarchimedean field l, and such that the underlying
morphisms of adic spaces of f and g are the identity morphism. Assume that f is
exact. Then W = Y ×X Z is nonempty.

Proof. Let x, y, and z be the unique closed points of X, Y , and Z, respectively,
and let P =MX,x, Q =MY,y, and R =MZ,z. Let u : P → Q and v : P → R be
the corresponding maps of monoids. By [Ogu18, Prop. I.4.2.1], u is exact.

Consider the homomorphism φ : P gp → Qgp ⊕ Rgp : a 7→
(
ugp(a),−vgp(a)

)
.

Since u is exact and R is sharp, φ−1(Q⊕R) is trivial. By [Nak97, Lem. 2.2.6], the
sharp monoid S := Q⊕P R is quasi-integral (i.e., if a+ b = a, then b = 0), and the
natural homomorphism P → Q⊕P R is injective.
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Note that f and g admit charts modeled on u : P → Q and v : P → R, respec-
tively. This is because, by the proof of [Nak97, Lem. 2.2.3], there exist compatible
homomorphisms (MX(X))gp → l×, (MY (Y ))gp → l×, and (MZ(Z))gp → l× such
that the compositions l× → (MX(X))gp → l×, l× → (MY (Y ))gp → l×, and
l× → (MZ(Z))gp → l× are the identity homomorphisms. Therefore, the mor-
phisms f∗(MX) → MY and g∗(MX) → MZ can be (noncanonically) identified
with Id⊕u : l× ⊕ P → l× ⊕Q and Id⊕v : l× ⊕ P → l× ⊕R, respectively.

Consequently, W ∼= Spa(l, l+) ×Spa(l〈S〉,l+〈S〉) Spa(l〈Ssat〉, l+〈Ssat〉). The image

of Spa(l, l+) → Spa(l〈S〉, l+〈S〉) consists of equivalence classes of valuations on
l〈S〉 (bounded by 1 on l+) whose support contains the ideal I of l〈S〉 generated
by {ea : a ∈ S, a 6= 0}. On the other hand, the kernel of l〈S〉 → l〈Ssat〉, which
is generated by {ea − eb : a, b ∈ S, a = b in Sint}, is contained in I because S is
quasi-integral. Thus, W is nonempty, as desired. �

3. Log smoothness and log differentials

3.1. Log smooth morphisms.

Definition 3.1.1. Let f : Y → X be a morphism between locally noetherian fs
log adic spaces. We say that f is log smooth (resp. log étale) if, étale locally on Y
and X, the morphism f admits an fs chart u : P → Q such that

(1) the kernel and the torsion part of the cokernel (resp. the kernel and cokernel)
of ugp : P gp → Qgp are finite groups of order invertible in OX ; and

(2) f and u induce a morphism Y → X ×X〈P 〉 X〈Q〉 of log adic spaces (cf.
Remark 2.3.3) whose underlying morphism of adic spaces is étale.

Remark 3.1.2. In Definition 3.1.1, the fiber product in (2) exists and the mor-
phism f : Y → X is lft, because X〈Q〉 → X〈P 〉 and hence the first projection
X ×X〈P 〉 X〈Q〉 → X is lft when Q is finitely generated. Hence, fiber products
involving log smooth or log étale morphisms always exist.

Proposition 3.1.3. Base changes of log smooth (resp. log étale) morphisms (by
arbitrary morphisms between locally noetherian fs log adic spaces, which are justified
by Remark 3.1.2) are still log smooth (resp. log étale).

Proof. Suppose that Y → X is a log smooth (resp. log étale) morphism of locally
noetherian fs log adic spaces, with a chart P → Q satisfying the conditions in
Definition 3.1.1. Let Z → X be any morphism of locally noetherian fs log adic
spaces. By Proposition 2.3.22, up to étale localization, we may assume that Z → X
admits an fs chart P → R. By Remark 2.3.29, Z ×X Y is modeled on S :=
(R ⊕P Q)sat. By Remark 2.3.26, Z ×X〈P 〉 X〈Q〉 ∼= Z ×Z〈R〉 Z〈S〉. By Remark
2.3.25, the morphism Z ×X Y → Z ×Z〈R〉 Z〈S〉 induces an étale morphism of

underlying adic spaces. It remains to note that Rgp →
(
(Q ⊕P R)sat

)gp
satisfies

the analogue of Definition 3.1.1(1), by the assumption on P gp → Qgp and the fact

that
(
(Q⊕P R)sat

)gp ∼= (Q⊕P R)gp ∼= Qgp ⊕P gp Rgp. �

Proposition 3.1.4. Let f : Y → X be a log smooth (resp. log étale) morphism of
locally noetherian fs log adic spaces. Suppose that X is modeled on a global fs chart
P . Then, étale locally on Y and X, there exists an injective fs chart u : P → Q of
f satisfying the conditions in Definition 3.1.1. Moreover, if P is torsion-free, we
can choose Q to be torsion-free as well.
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Proof. This is an analogue of the smooth and étale cases of [Kat89a, Lem. 3.1.6].
Suppose that, étale locally, f admits a chart P1 → Q1 satisfying the conditions

in Definition 3.1.1. We may assume that X = Spa(R,R+) is a noetherian affinoid
log adic space. Let us begin with some preliminary reductions.

Firstly, we may assume that PX →MX factors through (P1)X →MX . Indeed,
by Lemma 2.3.6, étale locally, X admits an fs chart P2 such that the canonically
induced morphism (P ⊕ P1)X → MX factors through (P2)X → MX . Let Q2 be
(P2 ⊕P1 Q1)sat. Then Qgp

2
∼= P gp

2 ⊕P gp
1
Qgp

1 (cf. the proof of Proposition 3.1.3) and
hence P2 → Q2 is also an fs chart of f satisfying the conditions in Definition 3.1.1.

Secondly, we may assume that P1 → Q1 is injective. Indeed, since P gp
1 and Qgp

1

are finitely generated, and since K := ker(P gp
1 → Qgp

1 ) is finite, there exists some
finitely generated abelian group H1 fitting into a cartesian diagram

P gp
1
� � //

����

H1

����

P gp
1 /K

� � // Qgp
1

such that

coker(P gp
1 ↪→ H1) ∼= coker(P gp

1 /K ↪→ Qgp
1 ),

and so that

K ∼= ker(P gp
1 � P gp

1 /K) ∼= ker(H1 � Qgp
1 ).

For any geometric point y of Y , let Q2 be the preimage of Q1 under H1 → Qgp
1 .

Note that Q2 is fs, Qgp
2 = H1, and P1 → Q2 is injective. We claim that P1 → Q2 is

an fs chart of f , étale locally at y and f(y), satisfying the conditions in Definition
3.1.1. By Remark 2.3.4, Q1 →MY,y is surjective with kernel given by the preimage

of O×Yét,y
. Since Q2/K ∼= Q1, the induced homomorphism Q2 →MY,y satisfies the

same properties, and P1 → Q2 is an fs chart of f , étale locally at y and f(y). By
construction, it satisfies the condition (1) in Definition 3.1.1. It also satisfies the
condition (2) in Definition 3.1.1, because Y → X ×X〈P1〉X〈Q2〉 is the composition
of Y → X ×X〈P1〉 X〈Q1〉 → Y → X ×X〈P1〉 X〈Q2〉, and X〈Q1〉 → X〈Q2〉 is étale,
by [Hub96, Prop. 1.7.1], as |K| is invertible in OX . Thus, the claim follows.

Thirdly, we claim that, up to further modifying P1 → Q1, we can find H fitting
into a cartesian diagram of finitely generated abelian groups:

(3.1.5) P gp �
�

//

��

H

��

P gp
1
� � // Qgp

1 .

Given such an H, let Q be the preimage of Q1 via H → Qgp
1 . Since P and P1 are

both fs charts of X, the homomorphism P gp → P gp
1 induces an isomorphism after

passing to quotients of the source and target by the preimages of O×Xét,f(y). Since

(3.1.5) is Cartesian, and since Q1 is an fs chart of Y , the analogous statement for
Q, Q1, and O×Yét,y

is also true. Thus, u : P → Q is an injective fs chart of f , étale

locally at y and f(y), satisfying the conditions of Definition 3.1.1.
Let us verify the claim by modifying the arguments in the proofs of [Kat89a,

Lem. 3.1.6] and [Niz08, Lem. 2.8]. (We need to modify the arguments because our
requirement that charts induce morphisms to O+

Xét
and O+

Yét
can be affected by
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localizations of monoids.) Let G := im(P gp → P gp
1 ), G1 := P gp

1 /G, and W :=
coker(P gp

1 → Qgp
1 ), and consider the pushout 0 → G1 → T1 → W → 0 of the

extension 0 → P gp
1 → Qgp

1 → W → 0 via P gp
1 → G. By assumption, there exists

some integer n ≥ 1 invertible in OX which annihilates the torsion part of W .
Since K1 := ker(P gp

1 → Mgp

X,f(y)) is finitely generated, there exists some finitely

generated abelian group K2 such that K1
∼= nK2 = {nk : k ∈ K2}. Let H2 denote

the pushout of Qgp
1 ← K1 → K2, which contains Qgp

1 as a finite index subgroup.
Let P2 := {a ∈ H2 : na ∈ P1} and Q2 := {b ∈ H2 : nb ∈ Q1}, which are fs
monoids because P1 and Q1 are. Note that P1, P2, Q1, and Q2 are all submonoids
of H2. Let G2 := P gp

2 /G, and let 0→ G2 → T2 →W → 0 be defined by pushout as
before. Since n is invertible in OX , the induced homomorphism K1 → O×Xét,f(y) lifts

to some homomorphism K2 → O×Xét,f(y). Hence, up to further étale localization,

we may assume that P1 → Q1 lifts to an fs chart P2 → Q2 of f at y and f(y),
which still satisfies the conditions in Definition 3.1.1. Given any torsion element
w of W of order m (which necessarily divides n), let t1 ∈ T1 be any lifting of w.

Then g1 := mt1 ∈ G1 = coker(P gp → P gp
1 ). Since P gp → P gp

1 /K1
∼→ Mgp

X,f(y)

is surjective (by Remark 2.3.4 again), g1 lifts to some k1 ∈ K1, which is the m-
th multiple of some k2 ∈ K2 with image g2 in G2. Then t2 := t1 − g2 ∈ T2 is
a lifting of w which satisfies mt2 = g1 − mg2 = 0. Hence, Zt2 ⊂ T2 defines a
lifting of Zw ⊂ W . Since w is arbitrary, the homomorphism T2 → W of finitely
generated abelian groups splits, and the preimage H of the split image of W in
Qgp

2 is an extension 0 → G → H → W → 0 whose pushout via G → P gp
1 recovers

0→ P gp
1 → Qgp

1 → W → 0. Since H is finitely generated, there is some surjection

F � H from a finitely generated free abelian group, and the preimage E of G is
also finitely generated free and lifts to some E → P gp. Then the claim follows by
taking H to be the pushout of P gp ← E → F .

Finally, if P is torsion-free, let us show that we can take Q to be torsion-free as
well. We learned the following argument from [Nak98, Prop. A.2]. Consider the
torsion submonoid Qtor of Q, which is necessarily contained in Qinv; and choose
any splitting s of π : Q � Q′ := Q/Qtor. Let n be any integer invertible in OX
which annihilates the torsion in coker(ugp). Since P is torsion-free, the composition
u′ = π ◦ u : P → Q′ is injective, and Qtor is also annihilated by n. Let S be the
finite étale R-algebra obtained from R〈Qtor〉 by formally joining the n-th roots of
ea, for all a ∈ Qtor; and let S+ be the integral closure of R+〈Qtor〉 in S. Then the
morphism Z := Spa(S, S+) → X〈Qtor〉 = Spa(R〈Qtor〉, R+〈Qtor〉) over X is finite
étale and surjective, with base change Z〈Q′〉 → X〈Q〉. Consider the composition
v = s◦π◦u : P → Q. Then u−v : P → Q factors through P → Qtor, which extends
to some φ : Q′ → S×tor; and a 7→ φ(a)a, for a ∈ Q′, induces an isomorphism between
the two compositions g, h : Z〈Q′〉 → X〈Q〉 → X〈P 〉 induced by u, v, respectively.
Since u : P → Q is a chart of f , the induced morphism Y → X×X〈P 〉X〈Q〉 is étale,
whose pullback is an étale morphism Y ×X〈Qtor〉 Z → X ×X〈P 〉,g Z〈Q′〉. The target
is isomorphic to X ×X〈P 〉,h Z〈Q′〉, and hence is étale over X ×X〈P 〉 X〈Q′〉, by the
above explanation. Consequently, the morphism Y → X ×X〈P 〉 X〈Q′〉 induced by
f and u′ : P → Q′ is étale, and so u′ is also an injective fs chart of f , as desired. �

Proposition 3.1.6. Compositions of log smooth (resp. log étale) morphisms are
still log smooth (resp. log étale).

Proof. This follows from Definition 3.1.1 and Proposition 3.1.4. �
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Proposition 3.1.7. If f : Y → X is log smooth (resp. log étale) and strict, then
the underlying morphism of adic spaces is smooth (resp. étale).

Proof. Étale locally at geometric points y of Y and f(y) of X, by Propositions
2.3.13 and 3.1.4, we may assume that f : Y → X admits an injective fs chart
u : P = MX,f(y) → Q as in Definition 3.1.1, where the torsion part Ktor of
K := coker(ugp : P gp → Qgp) is a finite group of order invertible in OX , and
where K itself is finite when f is log étale. Since f is strict, by Remark 2.2.6,
P =MX,f(y)

∼=MY,y. Hence, we can identify K with ker(Qgp →Mgp

Y,y), so that
ugp(P gp) ∩K = 0 in Qgp. Since K is a finitely generated abelian group, we have

a decomposition Ktor ⊕
(
⊕ri=1Zai

) ∼→ K, for some elements ai ∈ K which are

necessarily mapped to O×Yét,y
. Up to replacing ai with −ai, for each 1 ≤ i ≤ r, we

may assume that ai is mapped to O+
Yét,y

. Let Q′ := u(P )⊕Ktor ⊕
(
⊕ri=1Z≥0ai

)
in

Qgp. Then Qgp →Mgp
Y,y maps Q′ to MY,y, the induced map Q′ → OYét,y factors

through O+
Yét,y

, and the induced map Q′ → MY,y is surjective. In this case, up

to further étale localization, u′ : P → Q′ is also an injective fs chart of f . Thus,
it suffices to show that X〈Q′〉 → X〈P 〉 is smooth (resp. étale) at the image of y.
Since X〈Q′〉 ∼= X〈P 〉 ×X X〈Ktor〉 ×X X〈Zr≥0〉 over X〈P 〉, it remains to note that,

by [Hub96, Cor. 1.6.10 and Prop. 1.7.1], X〈Ktor〉×XX〈Zr≥0〉 is smooth (resp. étale)
over X, because Ktor is a finite groups of order invertible in OX , and because r = 0
when K itself is finite (i.e., when f is log étale). �

Definition 3.1.8. If f satisfies the condition in Proposition 3.1.7, we say that f
is strictly smooth (resp. strictly étale), or simply smooth (resp. étale), when the
context is clear.

Definition 3.1.9. Let (k, k+) be an affinoid field. A locally noetherian fs log adic
space X is called log smooth over Spa(k, k+) if there is a log smooth morphism
X → Spa(k, k+), where Spa(k, k+) is endowed with the trivial log structure. When
X is log smooth (resp. smooth) over Spa(k,Ok), we simply say that X is log smooth
(resp. smooth) over k.

Local structures of log smooth log adic spaces can be described by toric charts,
by the following proposition:

Proposition 3.1.10. Let X be an fs log adic space log smooth over Spa(k, k+),
where (k, k+) is an affinoid field. Then, étale locally on X, there exist a sharp fs
monoid P and a strictly étale morphism X → Spa(k〈P 〉, k+〈P 〉) that is a composi-
tion of rational localizations and finite étale morphisms.

Proof. By Proposition 3.1.4, étale locally on X, there exists a torsion-free fs monoid
Q and a strictly étale morphism X → Spa(k〈Q〉, k+〈Q〉). We may further assume
that X → Spa(k〈Q〉, k+〈Q〉) is a composition of rational localizations and finite
étale morphisms. By Lemma 2.1.10, Q → Q splits, and hence there is a decom-
position Q

∼→ Q ⊕ Qinv ∼→ Q ⊕ Zr, for some r. Let P := Q ⊕ Zr≥0, which is
a sharp fs monoid. Since P → Q is a localization of monoids, as in Construc-
tion 2.1.11, Spa(k〈Q〉, k+〈Q〉)→ Spa(k〈P 〉, k+〈P 〉) is a rational localization, whose
pre-composition with X → Spa(k〈Q〉, k+〈Q〉) gives the desired morphism. �

Corollary 3.1.11. Let X and (k, k+) be as in Proposition 3.1.10. Suppose more-
over that underlying adic space of X is smooth over Spa(k, k+). Then, étale locally
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on X, there exists a strictly étale morphism X → Dn (see Example 2.2.21) that is
a composition of rational localizations and finite étale morphisms.

Proof. As in the proof of Proposition 3.1.10, étale locally on X, there is a torsionfree
fs monoid Q and a strictly étale morphism X → Y := Spa(k〈Q〉, k+〈Q〉) that is
a composition of rational localizations and finite étale morphisms. Consider the
canonical morphism Y → Z := Spec(k[Q]). Note that Z = Spec(k[Q]) admits a
stratification by locally closed subschemes of the form ZF := Spec(k[F gp]), where F
are the faces of Q (see [Ogu18, Sec. I.1.4 and I.3.4]), which is a closed subscheme of
the open subscheme Z(F ) := Spec(k[QF ]) of Z, where QF denotes the localization
of Q with respect to F (as in Construction 2.1.11). By [Ogu18, Sec. I.3.6], given
any closed point z of ZF with residue field κ(z), the completion O∧Z,z of the local

ring OZ,z is isomorphic to κ(z)[[QF ]].
For each F , let YF := Y ×ZZF and Y(F ) := Y ×ZZ(F ). Then we have a canonical

open immersion of adic spaces Y(F ) → Spa(k, k+)×Spec(k) Z(F ), by comparing the
construction of both sides using Lemma 2.2.11. (For the construction of such fiber
products of adic spaces with schemes, see [Hub94, Prop. 3.8 and its proof].) For any
F such that YF meets the image of X → Y , we claim that QF ∼= Zs≥0⊕Zt, for some

s and t. Assuming this claim, then Z(F ) admits an open immersion into (P1
k)n, for

n := s + t, and we obtain an open immersion Y(F ) → Spa(k, k+) ×Spec(k) (P1
k)n of

log adic spaces, where the log structure on the target is defined (via fiber product)
by naturally covering each factor Spa(k, k+) ×Spec(k) P1

k with two log adic spaces

Spa(k〈T 〉, k+〈T 〉) and Spa(k〈T−1〉, k+〈T−1〉) isomorphic to D (see Example 2.2.21).
Therefore, up to further localization on X, we may assume that X → Y extends
to a strictly étale morphism X → Dn, which is still a composition of rational
localizations and finite étale morphisms. Thus, the corollary follows from the claim.

It remains to verify the claim. Since it only concerns monoids QF as above, we
may base change to Spa(k,Ok), and assume that k+ = Ok, so that X is a smooth
rigid analytic variety over k. For any F such that YF meets the image of the
étale morphism X → Y , since X is smooth over k, and since the open immersion
Y(F ) → Spa(k, k+)×Spec(k) Z(F )

∼= Zan
(F ) maps YF to Zan

F , we see that Z is smooth

over k at some closed point z of ZF , so that O∧Z,z ∼= κ(z)[[QF ]] (as explained above)
is regular. Since the localization QF is torsionfree fs as Q is, by decomposing
QF

∼→ QF ⊕ Qinv
F

∼→ QF ⊕ Zt, for some t, as in the proof of Proposition 3.1.10,

we obtain κ(z)[[QF ]]
∼→ κ(z)[[QF ]][[T1, . . . , Tt]]. Hence, the regularity of κ(z)[[QF ]]

implies that of κ(z)[[QF ]]. Since QF is fine and sharp, by [Ogu18, Lem. I.1.11.7],
we have QF ∼= Zs≥0, for some s, and the claim follows. �

Definition 3.1.12. A strictly étale morphism X → Spa(k〈P 〉, k+〈P 〉) as in Propo-
sition 3.1.10 is called a toric chart. A strictly étale morphism X → Dn as in
Corollary 3.1.11 is called a smooth toric chart.

Example 3.1.13. Let X, D, and k be as in Example 2.3.17. We claim that, étale
locally, X admits a smooth toric chart X → Dn, where n = dim(X). In order to
see this, we may assume that, up étale localization, X is S × Dm as in Example
2.3.17, and that there is a morphism (of adic spaces with trivial log structures)
S → Tn−m = Spa(k〈T±1 , . . . , T

±
n−m〉,Ok〈T±1 , . . . , T

±
n−m〉) that is a composition of

finite étale morphisms and rational localizations. Then the composition of X =
S × Dm → Tn−m × Dm ↪→ Dn−m × Dm ∼= Dn is a desired smooth toric chart. In
particular, X is log smooth over k.
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3.2. Log differentials. In this subsection, we develop a theory of log differentials
from scratch. We first introduce log structures and log differentials for Huber rings.

Definition 3.2.1. (1) A pre-log Huber ring is a triple (A,M,α) consisting of
a (not necessarily complete) Huber ring A, a monoid M , and a homomor-
phism α : M → A of multiplicative monoids called a pre-log structure. We
sometimes denote a pre-log Huber ring just by (A,M), when the pre-log
structure α is clear from the context.

(2) A log Huber ring is a pre-log Huber ring (A,M,α) where A is complete and
where the induced homomorphism α−1(A×) → A× is an isomorphism. In
this case, α is called a log structure.

(3) Given a pre-log Huber ring (A,M,α), let us still denote by α the com-

position of M
α→ A

can.→ Â, where Â denotes the completion of A. Then

we define the associated log Huber ring to be (Â, aM, α̂), where aM is the

pushout of Â× ← α−1(Â×) → M in the category of monoids, which is

equipped with the canonical homomorphism α̂ : aM → Â. In this case, α̂
is called the associated log structure.

(4) A homomorphism f : (A,M,α)→ (B,N, β) of pre-log Huber rings consists
of a continuous homomorphism f : A→ B of Huber rings and a homomor-
phism of monoids f] : M → N such that β◦f] = f ◦α. In this case, we have
a canonically induced morphism (B,M, β◦f])→ (B,N, β) of pre-log Huber
rings, and we say that f is strict if the associated morphism of log Huber
rings is an isomorphism. In general, any homomorphism f : (A,M) →
(B,N) of log Huber rings factors as (A,M)→

(
B, f∗(M)

)
→ (B,N).

Definition 3.2.2. Let f : (A,M,α) → (B,N, β) be a homomorphism of pre-
log Huber rings. Given any complete topological B-module L, a derivation from
(B,N, β) to L over (A,M,α) (or an (A,M,α)-derivation of (B,N, β) to L) consists
of a continuous A-linear derivation d : B → L and a homomorphism of monoids
δ : N → L such that δ

(
f](m)

)
= 0 and d

(
β(n)

)
= β(n) δ(n), for all m ∈ M

and n ∈ N . We denote the set of all (A,M,α)-derivations from (B,N, β) to L

by Derlog
A (B,L). It has a natural B-module structure induced by that of L. If

M = α−1(A×) and N = β−1(B×), then Derlog
A (B,L) is simply DerA(B,L), the

usual B-module of continuous A-derivations from B to L, and we shall omit the
superscript “log” from the notation.

Remark 3.2.3. In Definition 3.2.2, (d, δ) naturally extends to a log derivation

on (B, aN, β), and the B-module Derlog
A (B,L) remains unchanged if we replace

(B,N, β) with (B, aN, β). In addition, δ naturally extends to a group homomor-
phism δgp : (aN)gp → L.

Definition 3.2.4. A homomorphism f : (A,M,α) → (B,N, β) of pre-log Hu-
ber rings is called topologically of finite type (or tft for short) if A and B are
complete, f : A → B is topologically of finite type (as in [Hub94, Sec. 3]), and
Ngp/

(
(f∗(M))gpβ−1(B×)

)
is a finitely generated abelian group.

Now, let f : (A,M,α) → (B,N, β) be tft, as in Definition 3.2.4. Consider the
monoid algebra (B⊗̂AB)[N ] over B⊗̂AB associated with the monoid N , and for
each n ∈ N , its element en corresponding to n (by our convention). Let I be its
ideal generated by {ef](m) − 1}m∈M and {(β(n) ⊗ 1) − (1 ⊗ β(n)) en}n∈N . Note
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that, if n ∈ β−1(B×), then en = β(n) ⊗ β(n)−1 in
(
(B⊗̂AB)[N ]

)
/I. Let J be the

kernel of the homomorphism

(3.2.5) ∆log :
(
(B⊗̂AB)[N ]

)
/I → B

sending b1 ⊗ b2 to b1b2 and all en to 1. We set

(3.2.6) Ωlog
B/A := J/J2,

and define dB/A : B → Ωlog
B/A and δB/A : N → Ωlog

B/A by setting

dB/A(b) = (b⊗ 1)− (1⊗ b)

and

δB/A(n) = en − 1.

A short computation shows that dB/A is an A-linear derivation, and that δB/A is a
homomorphism of monoids satisfying the required properties in Definition 3.2.2.

As observed in Remark 3.2.3, δB/A naturally extends to a group homomorphism

δgp
B/A : Ngp → Ωlog

B/A such that δgp
B/A

(
fgp
] (Mgp)

)
= 0. Then Ωlog

B/A is generated as

a B-module by ker(B⊗̂AB → B) and {δgp
B/A(n)}, where n runs through a set of

representatives of generators of Ngp/
(
(f∗(M))gpβ−1(B×)

)
. More precisely,

(3.2.7) Ωlog
B/A
∼=
(
ΩB/A ⊕ (B ⊗Z N

gp)
)/
R,

where ΩB/A is the usual B-module of continuous differentials (see [Hub96, Def.
1.6.1 and (1.6.2)]), and where R is the B-module generated by

(3.2.8) {(dβ(n),−β(n)⊗ n) : n ∈ N} ∪ {(0, 1⊗ f](m)) : m ∈M}.

In particular, Ωlog
B/A is a finite B-module. Therefore, Ωlog

B/A is complete with respect

to its natural B-module topology, and dB/A is continuous.

Proposition 3.2.9. Under the above assumption, (Ωlog
B/A, dB/A, δB/A) is a univer-

sal object among all (A,M,α)-derivations of (B,N, β).

Proof. Let (d, δ) be a derivation from (B,N, β) to some complete topological B-
module L over (A,M,α). We turn the B-module B⊕L into a complete topological
B-algebra, which we denote by B ∗ L, with the multiplicative structure defined by
(b1, x1) (b2, x2) = (b1b2, b1x2 + b2x1). Note that the A-linear derivation d gives rise
to a continuous homomorphism of topological B-algebras B⊗̂AB → B ∗ L sending
b1 ⊗ b2 to

(
b1b2, b1d(b2)

)
. This extends to a homomorphism (B⊗̂AB)[N ] → B ∗ L

by sending en to
(
1, δ(n)

)
, for each n ∈ N . By the conditions in Definition 3.2.2,

this homomorphism factors through
(
(B⊗̂AB)[N ]

)
/I, inducing a homomorphism(

(B⊗̂AB)[N ]
)
/I → B ∗L which we denote by ϕ. By construction, the composition

of ϕ with the natural projection B ∗L→ B recovers (3.2.5). Therefore, ϕ induces a

continuous morphism of B-modules ϕ : Ωlog
B/A = J/J2 → L. Now, a careful chasing

of definitions verifies that ϕ ◦ dB/A = d and ϕ ◦ δB/A = δ, as desired. �

Given any complete topological B-module L, there is a natural forgetful functor

Derlog
A (B,L)→ DerA(B,L) defined by (d, δ) 7→ d. The following lemma is obvious:
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Lemma 3.2.10. If f : (A,M,α) → (B,N, β) is a strict homomorphism of log

Huber rings, then the canonical morphism Derlog
A (B,L) → DerA(B,L) is an iso-

morphism, for every complete topological B-module L. Consequently, the canonical

morphism ΩB/A → Ωlog
B/A is an isomorphism.

Definition 3.2.11. A homomorphism (D,T, µ) → (D′, T ′, µ′) of log Huber rings
is called a log thickening of first order if it satisfies the following conditions:

(1) The underlying homomorphism D → D′ of Huber rings is surjective, whose
kernel H is a closed ideal satisfying H2 = 0.

(2) The log structure µ′ : T ′ → D′ is canonically induced by µ : T → D.
(3) The subgroup 1 +H of D× ∼= T inv (via the log structure µ) acts freely on

T , and induces an isomorphism T/(1 +H)
∼→ T ′ of monoids.

Remark 3.2.12. The condition (3) in Definition 3.2.11 is automatic when T inv

acts freely on T ; or, equivalently, when T inv → T gp is injective. (In this case, T is
u-integral, as in [Ogu18, Def. I.1.3.1].) In particular, the condition (3) is satisfied
when T is integral (i.e., T → T gp is injective).

Consider the following commutative diagram

(3.2.13) (A,M,α)

f

��

// (D,T, µ)

��

(B,N, β)
g
//

g̃

88

(D′, T ′, µ′)

of solid arrows given by homomorphisms of log Huber rings, in which the arrow
(D,T, µ)→ (D′, T ′, µ′) is a log thickening of first order as in Definition 3.2.11.

Definition 3.2.14. A homomorphism f : (A,M,α)→ (B,N, β) of log Huber rings
is called formally log smooth (resp. formally log unramified, resp. formally log étale)
if, for any diagram as in (3.2.13), there exists at least one (resp. at most one, resp.
exactly one) lifting g̃ : (B,N, β) → (D,T, µ) of g, as the dotted arrow in (3.2.13),
making the whole diagram commute. If M = α−1(A×) and N = β−1(B×), then
we simply say that f : A→ B (the underlying ring homomorphism of Huber rings)
is formally smooth (resp. formally unramified, resp. formally étale) (cf. the formal
lifting conditions in [Hub96, Def. 1.6.5]).

Remark 3.2.15. Let k be a nontrivial nonarchimedean field. By [Hub96, Prop.
1.7.11], a tft homomorphism f : A → B of Tate k-algebras is formally smooth
(resp. formally unramified, resp. formally étale) if and only if the induced morphism
Spa(B,B◦) → Spa(A,A◦) is smooth (resp. unramified, resp. étale) in the sense of
classical rigid analytic geometry.

Remark 3.2.16. It follows easily from the definition that we have the following:

(1) Formally log smooth (resp. formally unramified, resp. formally étale) ho-
momorphisms are stable under compositions and completed base changes.

(2) If a homomorphism f : (A,M,α) → (B,N, β) is formally log étale, then
a homomorphism g : (B,N, β) → (C,O, γ) is formally log smooth (resp.
formally log étale) if and only if g ◦ f : (A,M,α)→ (C,O, γ) is.

Lemma 3.2.17. If the homomorphism f : (A,M,α) → (B,N, β) is a strict ho-
momorphism of log Huber rings, then it is formally log smooth (resp. formally
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log unramified, resp. formally log étale) if the underlying homomorphism of
Huber rings f : A → B is formally smooth (resp. formally unramified, resp.
formally étale). If A× ∼= M inv →Mgp is injective, then the converse is true.

Proof. Suppose we are given any diagram as in (3.2.13), with the top horizontal
row denoted by h : (A,M,α) → (D,T, µ) in this proof. Since the homomorphism
f : (A,M,α) → (B,N, β) is strict, each n ∈ N is of the form n = b + f](m)
for some b ∈ B× and m ∈ M , where m is uniquely determined by n up to an
element of A×. Hence, any homomorphism g̃ : B → D of Huber rings lifting
g : B → D′ uniquely extends to a homomorphism g̃ : (B,N, β) → (D,T, µ) of log
Huber rings lifting g : (B,N, β)→ (D′, T ′, µ′), by setting g̃](n) = g̃(b) + h](m), for
each n = b+ f](m) ∈ N as above. Hence, the formal lifting properties without log
structures imply those with log structures.

Conversely, suppose we are given a diagram as in (3.2.13), but without any log
structures. Nevertheless, we can define µ : T → D and µ′ : T ′ → D′ to be the log

structures associated with M
α→ A

f→ D and N
β→ B

g→ D′, respectively. Since
A× ∼= M inv → Mgp is injective, A× acts freely on M . Therefore, by choosing any
set-theoretic section of M → M , we obtain a bijection A× ×M → M compatible
with the actions of A× (on A× and M), which induces a bijection D× ×M → T
compatible with the actions of D× (on D× and T ). As a result, 1+H ⊂ D× ∼= T inv

(via µ) acts freely on T , and (D,T, µ) → (D′, T ′, µ′) is a log thickening of first
order, as in Definition 3.2.11. Thus, we obtain a full diagram as in (3.2.13), with
log structures, and the formal lifting properties with log structures imply those
without, as desired. �

We have the first fundamental exact sequence for log differentials, as follows:

Theorem 3.2.18. (1) A composition (A,M,α)
f→ (B,N, β)

g→ (C,O, γ) of tft
homomorphisms of log Huber rings leads to an exact sequence

C ⊗B Ωlog
B/A → Ωlog

C/A → Ωlog
C/B → 0

of finite topological C-modules (cf. [Hub96, Prop. 1.6.3]), where the first
map sends c⊗ dB/A(b) and c⊗ δB/A(n) to c dC/A

(
g(b)

)
and c δC/A

(
g](n)

)
,

respectively, and the second map sends dC/A(c) and δC/A(l) to dC/B(c) and
δC/B(l), respectively.

(2) If the homomorphism g : (B,N, α)→ (C,O, γ) is formally log smooth, then

C ⊗B Ωlog
B/A → Ωlog

C/A is injective, and the short exact sequence

0→ C ⊗B Ωlog
B/A → Ωlog

C/A → Ωlog
C/B → 0

is split in the category of topological C-modules.

(3) If g is formally log unramified, then Ωlog
C/B = 0.

(4) If g is formally log étale, then Ωlog
C/A
∼= C ⊗B Ωlog

B/A.

(5) If g ◦ f is formally log smooth, then the converses of (2), (3), and (4) hold.

Proof. Since the homomorphisms of log Huber rings are all tft, C ⊗B Ωlog
B/A, Ωlog

C/A,

and Ωlog
C/B are finite C-modules. Thus, to prove the exactness in (1), it suffices to

show that, for any complete topological C-module H, the induced sequence

(3.2.19) 0→ HomC(Ωlog
C/B , H)→ HomC(Ωlog

C/A, H)→ HomC(C ⊗B Ωlog
B/A, H)
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is exact. By Proposition 3.2.9, this sequence is nothing but

0→ Derlog
B (C,H)→ Derlog

A (C,H)→ Derlog
A (B,H),

whose exactness is obvious. Therefore, (1) follows.
In the rest of the proof, let H be a complete topological C-module, and let

(d, δ) : (B,N, β) → H be an (A,M,α)-derivation. Let C ∗ H be the C-algebra
defined as in the proof of Proposition 3.2.9, equipped with the log structure (γ∗Id) :
O⊕H → C ∗H : (a, b) 7→ (γ(a), γ(a) b), and denote by (C,O, γ) ∗H the log Huber
ring thus obtained. Note that (C,O, γ) ∗H → (C,O, γ) is a log thickening of first
order, as in Definition 3.2.11, because the action of 1 +H on O ⊕H is free.

We claim that there is a natural bijection between the set of extensions of (d, δ)

to (A,M,α)-derivations (d̃, δ̃) : (C,O, γ) → H and the set of homomorphisms of
log Huber rings h : (C,O, γ)→ (C,O, γ) ∗H making the diagram

(3.2.20) (B,N, β) //

g

��

(C,O, γ) ∗H

��

(C,O, γ)

h

77

Id // (C,O, γ)

commute. Here the upper horizontal map is a homomorphism of log Huber rings
sending (b, n) to

(
(g(b), d(b)), (g](n), δ(n))

)
, and the right vertical one is the natural

projection. To justify the claim, for each map h′ : (C,O)→ (C ∗H,O ⊕H) lifting

the projection (C ∗H,O ⊕H)→ (C,O), let us write h′ =
(
(Id, d̃), (Id, δ̃)

)
. Then a

short computation shows that h′ is a homomorphism of log Huber rings if and only if

d̃ is a derivation and δ̃ is a homomorphism of monoids such that d̃(γ(x)) = γ(x) δ̃(x)
for all x ∈ O, and the claim follows.

Thus, if (C,O, γ) is formally log unramified over (B,N, β), then the natu-

ral map Derlog
A (C,H) → Derlog

A (B,H) is surjective for each finite C-module H.

(Since C ⊗B Ωlog
B/A, Ωlog

C/A, and Ωlog
C/B are finite C-modules, it suffices to con-

sider finite C-modules H in this paragraph.) In other words, the natural map

HomC(Ωlog
C/A, H)→ HomC(C⊗BΩlog

B/A, H) is surjective, and therefore C⊗BΩlog
B/A →

Ωlog
C/A is injective, yielding (3). Similarly, if (C,O, γ) is formally log smooth over

(B,N, β), then HomC(Ωlog
C/A, H) → HomC(C ⊗B Ωlog

B/A, H) is surjective, and we

can justify (2) by taking H = C ⊗B Ωlog
B/A, which shows that the natural map

HomC(Ωlog
C/B , H)→ HomC(Ωlog

C/A, H) is injective and admits a left inverse splitting

(3.2.19). By combining (2) and (3), we obtain (4).
Finally, let us prove (5). Suppose we are given a commutative diagram

(3.2.21) (B,N, β)

g

��

u // (D,T, µ)

i

��

(C,O, γ)
v //

ṽ

88

(D′, T ′, µ′)
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of solid arrows, with i a log thickening of first order. If g ◦f is formally log smooth,
then there exists some lifting w : (C,O, γ)→ (D,T, µ) of v making the diagram

(A,M,α)

g◦f
��

u◦f
// (D,T, µ)

i

��

(C,O, γ)
v //

w

88

(D′, T ′, µ′)

commute. Note that this w might not satisfy u = g ◦ w, but u − g ◦ w defines
a derivation (d, δ) : (B,N, β) → H = ker(D → D′). Hence, we obtain a homo-
morphism g̃ : (B,N, β) → (C,O, γ) ∗ H extending g : (B,N, β) → (C,O, γ), as
before. Since H ⊂ D by definition, w canonically extends to a homomorphism
w̃ : (C,O, γ) ∗H → (D,T, µ) sending H canonically into D. By combining these,
we can extend (3.2.21) to a commutative diagram

(3.2.22) (A,M,α)

f

��

u◦f

''

(B,N, β)

g

��

g̃
//

u

++

(C,O, γ) ∗H

��

w̃
// (D,T, µ)

i

��

(C,O, γ)
Id //

h

77

(C,O, γ)
v //

ṽ

77

(D′, T ′, µ′)

of solid arrows, and any h : (C,O, γ)→ (C,O, γ) ∗H making the diagram (3.2.22)
commute canonically induces ṽ := w̃◦h : (C,O, γ)→ (D,T, µ) making the diagrams
(3.2.21) and (3.2.22) commute. Moreover, h is uniquely determined by ṽ = w̃ ◦ h,
because if h′ is another such map such that ṽ = w̃◦h = w̃◦h′, then w̃◦(h−h′) = 0,
but (h − h′)(C) ⊂ H and w̃|H : H → D is (by definition) the canonical injection.

Thus, if the conclusion in (2) (resp.(3), resp.(4)) holds, then C⊗B Ωlog
B/A → Ωlog

C/A is

injective and splits (resp. is surjective, resp. is bijective), and so HomC(Ωlog
C/A, H)→

HomC(C ⊗B Ωlog
B/A, H) is surjective (resp. injective, resp. bijective). By the first

three paragraphs of this proof, and by the relation between h and ṽ explained
above, there exists at least one (resp. at most one, resp. exactly one) ṽ making the
diagrams (3.2.21) and (3.2.22) commute. Since (3.2.21) is arbitrary, g is formally
log smooth (resp. formally log unramified, resp. formally log étale), as desired. �

Lemma 3.2.23. In order to verify that a tft homomorphism of log Huber pairs f :
(A,M,α)→ (B,N, β) is formally smooth (resp. formally unramified, resp. formally
étale), it suffices to verify the corresponding lifting condition in Definition 3.2.14
only for all commutative diagrams (3.2.13) in which the underlying homomorphism
of Huber rings A→ D′ is tft and in which H = ker(D → D′) is a finite D′-module.

Proof. Given any diagram (3.2.13), since f : (A,M,α) → (B,N, β) is tft, the

homomorphism B → D′ factors through a complete topological B-subalgebra D̆′

of D′ that is tft over A. By lifting the topological generators of D′ over A, there
exists some complete topological A-subalgebra D̆ of D such that the composition of
the homomorphisms D̆ → D → D′ factors through a surjection D̆ → D̆′ such that
H̆ := ker(D̆ → D̆′) ⊂ H is a finite D̆′-module. Let µ̆ : T̆ → D̆ and µ̆′ : T̆ ′ → D̆′

denote the pullbacks of µ : T → D and µ′ : T ′ → D′, respectively. Note that
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H̆2 = 0 because H2 = 0, and 1 + H̆ acts freely on T̆ because 1 +H acts freely on
T . Then (3.2.13) extends to a commutative diagram

(A,M,α)

f

��

// (D̆, T̆ , µ̆)

��

// (D,T, µ)

��

(B,N, β)
ğ
//

˜̆g 88

g 33
(D̆′, T̆ ′, µ̆′) // (D′, T ′, µ′)

of solid arrows, in which (D̆, T̆ , µ̆) → (D̆′, T̆ ′, µ̆′) is a log thickening of first order.

Since any dotted arrow ˜̆g lifting ğ in the above diagram induces a dotted arrow g̃
lifting g in (3.2.13), we obtain the formally log smooth case of this lemma.

It remains to establish the formally log unramified case of this lemma. Given
any liftings g̃ and g̃′ of g in (3.2.13), their difference g̃ − g̃′ defines a derivation
(d, δ) : (B,N, β) → H = ker(D → D′) over A, which corresponds to a morphism

Ωlog
B/A → H of B-modules, by Proposition 3.2.9. Since f is tft, Ωlog

B/A is a finite

B-module. Thus, in order to show that f is formally log unramified, it suffices to

show that, when H is a finite B-module, all morphisms Ωlog
B/A → H as above are

zero. As in the proof of Theorem 3.2.18, this can be verified using only diagrams
(3.2.13) in which (D,T, µ) → (D′, T ′, µ′) is (B,N, β) ∗ H → (B,N, β), where the
underlying homomorphism A→ B is tft and H is a finite B-module. �

Definition 3.2.24. Let u : P → Q be a homomorphism of fine monoids, and let R
be a Huber ring. Then we have the pre-log Huber ring P → R〈P 〉 : a 7→ ea (resp.
Q → R〈Q〉 : a 7→ ea), with the topology given in Lemma 2.2.11. In this case, we
say that R〈P 〉 is a pre-log Huber R-algebra. By abuse of notation, we shall still
denote by R〈P 〉 (resp. R〈Q〉) the log Huber R-algebras thus obtained.

Proposition 3.2.25. Let u : P → Q and R be as in Definition 3.2.24. If the
kernel and the torsion part of the cokernel (resp. the kernel and the cokernel) of
ugp : P gp → Qgp are finite groups of orders invertible in R, then R〈Q〉 is formally
log smooth (resp. formally log étale) over R〈P 〉. In this case, the map δ : Qgp →
Ωlog
R〈Q〉/R〈P 〉 induces an isomorphism of finite free R〈Q〉-modules

Ωlog
R〈Q〉/R〈P 〉

∼= R〈Q〉 ⊗Z
(
Qgp/ugp(P gp)

)
.

Proof. Consider the commutative diagram

(3.2.26) R〈P 〉

��

// (D,T, µ)

��

R〈Q〉 // (D′, T ′, µ′)

as in (3.2.13), in which (D,T, µ) → (D′, T ′, µ′) is a log thickening of first order as
in Definition 3.2.11. This gives rise to a commutative diagram of monoids

(3.2.27) P

��

// T

��

Q // T ′,
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which in turn induces a commutative diagram of abelian groups

(3.2.28) P gp

��

// T gp

��

Qgp // (T ′)gp.

Note that there is a natural bijection between the set of homomorphisms of log Hu-
ber R-algebras R〈Q〉 → (D,T, µ) extending (3.2.26) and the set of homomorphisms
of monoids Q→ T extending (3.2.27). By using the cartesian diagram

T

��

// T gp

��

T ′ // (T ′)gp,

and the fact that P and Q are fine monoids, we see that there is also a bijection
between the set of desired homomorphisms R〈Q〉 → (D,T, µ) and the set of group
homomorphisms Qgp → T gp extending (3.2.28).

Since (D,T, µ) → (D′, T ′, µ′) is a log thickening of first order as in Definition
3.2.11, we have ker(T gp → (T ′)gp) = µ−1(1 + H) ∼= H. Let G = Qgp/ugp(P gp).
Since the kernel and the torsion part of the cokernel (resp. the kernel and the
cokernel) of ugp are finite groups of orders invertible in R, the set of desired ho-
momorphisms Qgp → T gp is a torsor under Hom(G,H) ∼= Hom(G/Gtor, H), where
Gtor is the torsion subgroup of G. This proves the first statement of the proposition.

On the other hand, for any finite R〈Q〉-module L, by the same argument as in

the proof of Theorem 3.2.18, there is a bijection between Derlog
R〈P 〉(R〈Q〉, L) and the

set of h : R〈Q〉 → R〈Q〉 ∗ L extending the following commutative diagram

R〈P 〉

��

// R〈Q〉 ∗ L

��

R〈Q〉

h

99

Id // R〈Q〉.

Then HomR〈Q〉(Ω
log
R〈Q〉/R〈P 〉, L) ∼= Derlog

R〈P 〉(R〈Q〉, L) ∼= Hom(G/Gtor, L), by the

previous paragraph. The second statement of the proposition follows. �

Corollary 3.2.29. Let u : P → Q and R as in Definition 3.2.24 such that the
kernel and the torsion part of the cokernel of ugp : P gp → Qgp are finite groups of
orders invertible in R. Let Q′ be any fine monoid, and let S denote the log Huber

ring associated with the pre-log Huber ring Q̃ := Q⊕Q′ → R〈Q〉 (mapping Q′−{0}
to 0), so that the surjective homomorphism R〈Q̃〉 → S of log Huber rings is strict.

Then the map δ : Q̃gp → Ωlog
S/R〈P 〉 induces an isomorphism

Ωlog
S/R〈P 〉

∼= R〈Q〉 ⊗Z
(
Q̃gp/ugp(P gp)

)
.

If, in addition, the torsion part of (Q′)gp is a finite group whose order is invertible
in R, then we also have

Ωlog
S/R〈P 〉

∼= R〈Q〉 ⊗R〈Q̃〉 Ωlog

R〈Q̃〉/R〈P 〉
.
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Proof. By comparing the definitions of Ωlog
S/R〈P 〉 and Ωlog

R〈Q〉/R〈P 〉 as in (3.2.6), we

obtain Ωlog
S/R〈P 〉

∼= Ωlog
R〈Q〉/R〈P 〉 ⊕ (R〈Q〉 ⊗Z (Q′)gp), because Q̃→ S maps Q′ − {0}

to zero. Since this isomorphism is compatible with the canonical maps Qgp →
Ωlog
R〈Q〉/R〈P 〉, Q̃

gp → Ωlog
S/R〈P 〉, and Q̃gp → Ωlog

R〈Q̃〉/R〈P 〉
denoted by δ, we can finish

the proof by applying Proposition 3.2.25 to P → Q and P → Q̃. �

3.3. Sheaves of log differentials. Our next step is to define sheaves of log differ-
entials for locally noetherian coherent log adic spaces, and show that their formation
is compatible with fiber products in the category of locally noetherian coherent, fine,
and fs log adic spaces. Then we shall globalize several results in Section 3.2 and
relate them to the definitions we made in Section 3.1.

Definition 3.3.1. Let f : (Y,MY , αY )→ (X,MX , αX) be a morphism of locally
noetherian log adic spaces, and let F be a sheaf of complete topological OYét

-
modules. By a derivation of (Y,MY , αY ) over (X,MX , αX) valued in F , we mean
a pair (d, δ), where d : OYét

→ F is a continuous OXét
-linear derivation and δ :

MY → F is a morphism of sheaves of monoids such that δ
(
f−1(MX)

)
= 0 and

d
(
αY (m)

)
= αY (m) δ(m), for all sections m of MY .

Construction 3.3.2. Let f : (Y,MY , αY )→ (X,MX , αX) be a morphism of noe-
therian coherent log adic spaces, where X = Spa(A,A+) and Y = Spa(B,B+) are
affinoid. Suppose that f induces a tft homomorphism of log Huber rings (A,M,α)→
(B,N, β), where M :=MX(X) and N :=MY (Y ), and where α := αX(X) : M →
A and β := αY (Y ) : N → B. Let Ωlog

Y/X denote the coherent sheaf on Yét asso-

ciated with Ωlog
B/A (see (3.2.6)). For each Spa(C,C+) ∈ Yét, by Theorem 3.2.18,

the log differential Ωlog
C/A for (A,M,α)→ (C,N, (B → C) ◦ β) is naturally isomor-

phic to C ⊗B Ωlog
B/A = Ωlog

Y/X

(
Spa(C,C+)

)
; and the maps dC/A : C → Ωlog

C/A and

δC/A : N → Ωlog
C/A naturally and compatibly extend to a continuous OXét

-linear

derivation dY/X : OYét
→ Ωlog

Y/X and a morphism δY/X : NY → Ωlog
Y/X of sheaves of

monoids satisfying δY/X
(
f−1(MX)

)
= 0 and dY/X

(
αY (n)

)
= αY (n) δY/X(n), for

sections n of NY over objects of Yét. We may further extend δY/X to a morphism

δY/X : MY → Ωlog
Y/X of sheaves of monoids satisfying δY/X

(
f−1(MX)

)
= 0 and

dY/X
(
αY (m)

)
= αY (m) δY/X(m), for sections m of MY over objects of Yét.

Lemma 3.3.3. In Construction 3.3.2, the triple (Ωlog
Y/X , dY/X , δY/X) is a universal

object among all derivations of (Y,MY , αY ) over (X,MX , αX). Moreover, for any
affinoid objects V ∈ Yét and U ∈ Xét fitting into a commutative diagram

V

��

// Y

��

U // X,

we have a canonical isomorphism (Ωlog
Y/X , dY/X , δY/X)|V ∼= (Ωlog

V/U , dV/U , δV/U ).

Proof. Let (d, δ) be a derivation of (Y,MY , αY ) over (X,MX , αX) valued in some
complete topological OYét

-module F . At each Spa(C,C+) ∈ Yét, the evaluation of
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the derivation (d, δ) defines a derivation(
C,MY (Spa(C,C+)), αY (Spa(C,C+))

)
→ F

(
Spa(C,C+)

)
over

(
A,MX(X), αX(X)

)
, which restricts to a derivation(

C,N, (B → C) ◦ β
)
→ F

(
Spa(C,C+)

)
over (A,M,α). By the universal property of log differentials, it factors through

a continuous C-linear morphism Ωlog
C/A → F

(
Spa(C,C+)

)
. Moreover, we deduce

from the universal property of log differentials a commutative diagram

Ωlog
C2/A

��

// F
(
Spa(C2, C

+
2 )
)

��

Ωlog
C1/A

// F
(
Spa(C1, C

+
1 )
)
,

for any morphism Spa(C1, C
+
1 )→ Spa(C2, C

+
2 ) in Yét. As a result, the morphisms

Ωlog
C/A → F(Spa(C,C+)), for Spa(C,C+) ∈ Yét, are compatible with each other and

define a continuous OXét
-linear morphism Ωlog

Y/X → F , whose compositions with

dY/X and δY/X are equal to d and δ, respectively. This proves the first assertion of
the lemma. The second then follows from Theorem 3.2.18. �

Construction 3.3.4. Given any lft morphism f : Y → X of noetherian coherent
log adic spaces, by Proposition 2.3.21, there exist a finite index set I and étale cov-
erings {Xi → X}i∈I and {Yi → Y }i∈I , respectively, by affinoid log adic spaces such
that f induces a morphism Yi → Xi which fits into the setting of Construction 3.3.2,

for each i ∈ I. By Lemma 3.3.3, the pullbacks of the triples (Ωlog
Yi/Xi

, dYi/Xi , δYi/Xi)

are canonically isomorphic to each other over the fiber products of Yi over Y .

Thus, by Proposition A.10, we obtain a triple (Ωlog
Y/X , dY/X , δY/X) on Yét, where

(dY/X , δY/X) gives a derivation of Y over X valued in Ωlog
Y/X .

By Lemma 3.3.3, we immediately obtain the following:

Lemma 3.3.5. In Construction 3.3.4, (Ωlog
Y/X , dY/X , δY/X) is a universal object

among all derivations of Y over X. As a result, (Ωlog
Y/X , dY/X , δY/X) is well defined,

i.e., independent of the choice of étale coverings; and its definition extends to all
lft morphisms f : Y → X of locally noetherian coherent log adic spaces.

Definition 3.3.6. We call the Ωlog
Y/X in Lemma 3.3.5 the sheaf of log differentials of

f and (dY/X , δY/X) the associated universal log derivations. By abuse of notation,

we shall denote the pushforward of Ωlog
Y/X to Yan by the same symbols. (When there

is any risk of confusion, we shall denote the sheaves of log differentials on Yét and

Yan more precisely by Ωlog
Y/X,ét and Ωlog

Y/X,an, respectively.) If X = Spa(k,Ok), for

simplicity, we shall write Ωlog
Y instead of Ωlog

Y/X .

Proposition 3.3.7. Let

Y ′

f

��

// X ′

��

Y // X
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be a cartesian diagram in the category of locally noetherian coherent (resp. fine,

resp. fs) log adic spaces in which Y → X is lft. Then f∗(Ωlog
Y/X) ∼= Ωlog

Y ′/X′ .

Proof. By the étale local construction of sheaves of log differentials, we may as-
sume that Y = Spa(B,B+), X = Spa(A,A+), X ′ = Spa(A′, A′+), and Y ′ =
Spa(B′, B′+) are affinoid, and that Y → X and X ′ → X admit charts P → Q and
P → P ′, respectively, given by finitely generated (resp. fine, resp. fs) monoids. Let
Q′ := Q ⊕P P ′. By the proofs of Propositions 2.3.23 and 2.3.27, B′ is isomorphic
to B⊗̂AA′ (resp. (B⊗̂AA′)⊗̂Z[Q′]Z[(Q′)int], resp. (B⊗̂AA′)⊗̂Z[Q′]Z[(Q′)sat]), and Y ′

is modeled on Q′ (resp. (Q′)int, resp. (Q′)sat). We need to show that

Ωlog
B′/A′

∼= Ωlog
B/A ⊗B B

′.

Since we have
HomB′(Ω

log
B′/A′ , L) ∼= Derlog

A′ (B
′, L)

and

HomB′(Ω
log
B/A ⊗B B

′, L) ∼= HomB(Ωlog
B/A, L)⊗B B′ ∼= Derlog

A (B,L)⊗B B′,

for each complete topological B′-module L, it suffices to show that

Derlog
A′ (B

′, L) ∼= Derlog
A (B,L)⊗B B′.

In the case of coherent log adic spaces, by Remark 3.2.3, this follows from essentially
the same argument as in the proof of [Ogu18, Prop. IV.1.1.3] (in the log scheme
case). Since (Q′)gp ∼= ((Q′)int)gp ∼= ((Q′)sat)gp, by essentially the same argument
as in the proof of [Ogu18, Prop. IV.1.1.9], we also have

Derlog
A′ (B

′, L) ∼= Derlog
A′ (B⊗̂AA

′, L)⊗B⊗̂AA′ B
′ ∼= Derlog

A (B,L)⊗B B′,
yielding the desired isomorphism in the cases of fine and fs log adic spaces. �

Definition 3.3.8 (cf. Definition 3.2.11). A morphism i : Z ′ → Z of log adic spaces
is called a log thickening of first order if it satisfies the following conditions:

(1) It is a strict closed immersion (see Definition 2.2.23 and Example 2.2.24)
defined by an OZ-ideal I satisfying I2 = 0.

(2) The subsheaf 1 + Iét of O×Zét
, where Iét denotes the natural pullback of I

to Zét as a coherent ideal, acts freely onMZ , and induces an isomorphism
i−1
(
MZ/(1 + Iét)

) ∼→MZ′ (of sheaves of monoids) over Z ′ét.

Remark 3.3.9 (cf. Remark 3.2.12). The condition (2) in Definition 3.3.8 is auto-
matic when O×Zét

acts freely onMZ ; or, equivalently, when the canonically induced

morphism α−1
Z (O×Zét

)→Mgp
Z is injective. Hence, the condition is satisfied when Z

is integral.

Definition 3.3.10 (cf. Definition 3.2.14). A morphism f : Y → X of log adic
spaces is called formally log smooth (resp. formally unramified, resp. formally log
étale) if, for each commutative diagram

(3.3.11) Z ′� _

i

��

// Y

f

��

Z
g
//

g̃

>>

X

of solid arrows in which i is a log thickening of first order as in Definition 3.3.8,
there exists, up to (strictly) étale localization on Z, at least one (resp. at most one,
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resp. exactly one) lifting g̃ : Z → Y of g, as the dotted arrow in (3.2.13), making
the whole diagram commute.

Remark 3.3.12. It follows easily from the definition that we have the following:

(1) Formally log smooth (resp. formally log unramified, resp. formally log étale)
morphisms are stable under compositions and base changes (when defined).

(2) If a morphism g : X → S of log adic spaces is formally log étale, then
a morphism f : Y → X of log adic spaces is formally log smooth (resp.
formally log étale) if and only if g ◦ f : Y → S is.

Remark 3.3.13. By Lemmas 3.2.17 and 3.2.23, and by [Hub96, Prop. 1.7.1], in
order to show that an lft morphism f : Y → X of locally noetherian fine log adic
spaces is formally log smooth (resp. formally log étale), it suffices to take locally
finite (strictly) étale coverings {Xi → X}i∈I and {Yi → Y }i∈I by affinoid log
adic spaces such that f induces lft morphisms fi : Yi → Xi, and verify for each
such fi the corresponding formal lifting condition in Definition 3.3.10 only for all
commutative diagrams (3.3.11) with affinoid log adic spaces Z.

Lemma 3.3.14. If f : Y → X is a strict lft morphism of locally noetherian log
adic spaces, then it is formally log smooth (resp. formally log unramified,
resp. formally log étale) if the underlying morphism f : Y → X of adic spaces
is formally smooth (resp. formally unramified, resp. formally étale) in the
sense that it satisfies the formal lifting conditions in [Hub96, Def. 1.6.5]. If the
canonical morphism O×Xét

→Mgp
X is injective, then the converse is true.

Proof. In the notation of (3.3.11), when f satisfies the assumptions of this lemma,
and when Z is noetherian and affinoid, the formal lifting conditions in [Hub96,
Def. 1.6.5] of the underlying adic spaces can be verified étale locally on Z, as in
the theory for schemes in [Gro71, III], because any liftings over an étale covering
of Z defines a cohomology class in H1

(
Z ′ét,HomOZ′ ((Z

′ ↪→ Y )∗(ΩY/X), I)
)

(by
working locally as in the proof of Theorem 3.2.18 and in Construction 3.3.2, ignoring
all log structures), which vanishes exactly when the liftings can be modified (up
to further étale localization) to descend to a global lifting on Z ′; and because
H1
(
Z ′ét,HomOZ′ ((Z

′ ↪→ Y )∗(ΩY/X), I)
)

= 0, by Proposition A.10, since Z and
hence Z ′ are noetherian and affinoid, since the OZ-ideal I can be identified with a
coherent OZ′ -module in this case, and since ΩY/X is a coherent OY -module when f
is lft. Thus, this lemma follows from essentially the same arguments as in the proof
of Lemma 3.2.17 (by working with sheaves of monoids and their stalks instead). �

Lemma 3.3.15. If f : Y → X is a formally log smooth lft morphism of locally

noetherian fs log adic spaces, then Ωlog
Y/X is a locally free OY -module of finite rank.

Proof. Since X and Y are fs, up to étale localization, we may assume that X =
Spa(A,A+) and Y = Spa(B,B+) are affinoid, with log structures induced by some
homomorphisms P → A+ → A and Q → B+ → B from fs monoids P and Q,
respectively, and that there exists a surjection A〈T1, . . . , Tn〉� B, for some n ≥ 0.
Moreover, since Q is fs, it contains the torsion part Qtor of Qgp, which we may
assume to be embedded into B×. Hence, we may assume that Qtor is a finite
subgroup of B× annihilated by an integer invertible in B, so that B ⊗Z Q

gp is a

finite free B-module. It suffices to show that Ωlog
B/A is a finite projective B-module.

Let us equip the Huber ring D := A〈T1, . . . , Tn〉〈Q〉 with the log structure
induced by the pre-hog structure P ⊕ Q → D given by P → A+ → A and
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Q → A〈T1, . . . , Tn〉〈Q〉 : q 7→ eq, for all q ∈ Q. Then we obtain a strict surjec-
tion D � B of log Huber rings over A, whose kernel we denote by H, which factors
as a composition of strict surjections D � D′ := D/H2 � B ∼= D/H. Note that
D′ → B is a log thickening, as in Definition 3.2.11, because the log structure of D
is integral (see Remark 3.2.13), as P and Q are fine. Since A → B is formally log
smooth, there exists some splitting B → D′ of log Huber rings over A.

By Theorem 3.2.18 (applied to A→ A〈T1, . . . , Tn〉 → D), Lemma 3.2.10 (applied
to the strict homomorphism A → A〈T1, . . . , Tn〉), Proposition 3.2.25 (applied to
A〈T1, . . . , Tn〉 → D with u : P → P ⊕Q), and Proposition 3.3.7, we obtain a split

short exact sequence 0 → Dn → Ωlog
D/A → D ⊗Z Q

gp → 0 of finite D-modules,

which remains exact after base change to B. Therefore, since B ⊗Z Q
gp is a finite

free B-module, so is B ⊗D Ωlog
D/A. By construction (see (3.2.6)), we have canonical

surjections B⊗DΩlog
D/A → B⊗D′Ωlog

D′/A → Ωlog
B/A of finite B-modules. (This assertion

can be interpreted as a comparison between the second fundamental exact sequences
associated with the strict surjections D � B and D′′ � B via the strict surjection

D � D′′.) The first morphism B ⊗D Ωlog
D/A → B ⊗D′ Ωlog

D′/A is an isomorphism,

because its kernel is generated over B ∼= D/H by 1⊗d(xy) = x⊗dy+y⊗dx = 0 in

B⊗DΩlog
D/A, for all x, y ∈ H, by (3.2.7) and (3.2.8). On the other hand, any splitting

B → D′ above induces a splitting of the second morphism B ⊗D′ Ωlog
D′/A → Ωlog

B/A,

which embeds Ωlog
B/A as a direct summand of B ⊗D Ωlog

D′/A. Thus, Ωlog
B/A is a finite

projective B-module as B ⊗D Ωlog
D/A is, as desired. �

Proposition 3.3.16. Let f : Y → X be a lft morphism of locally noetherian fs log
adic spaces. Then f is formally log smooth (resp. formally log étale) as in Definition
3.3.10 if and only if it is log smooth (resp. log étale) as in Definition 3.1.1.

Proof. Suppose f is log smooth (resp. log étale). Then f admits étale locally an fs
chart u : P → Q as in Definition 3.1.1, and hence is formally log smooth (resp. log
étale) by Remarks 3.3.12(1) and 3.3.13, and Proposition 3.2.25.

Conversely, suppose f is formally log smooth (resp. formally log étale). Let
y = Spa(l, l+) be a geometric point of Y , which is mapped to a geometric point
x = f(y) of X. By Proposition 2.3.13, up to étale localization at x, we may assume
that X admits an fs chart θX : PX →MX , with P =MX,x. We need to show that,
up to further étale localization at x and y, there exists some fs chart u : P → Q
satisfying the conditions in Definition 3.1.1. (Note that f remains formally log
smooth (resp. formally log étale), by Remarks 3.3.12 and 3.3.13.)

Consider δ := δY/X,y :MY,y → Ωlog
Y/X,y (see Constructions 3.3.2 and 3.3.4). Since

δ(t) = t−1dt for every t ∈MY,y that is mapped to O×Yét,y
, by (3.2.7) and (3.2.8), δ

induces a surjection OYét,y ⊗ZMgp
Y,y → Ωlog

Y/X,y. Since f is formally log smooth, by

Lemma 3.3.15, Ωlog
Y/X is locally free of finite rank. Take t1, . . . , tr in MY,y whose

images in Ωlog
Y/X,y form a basis over OYét,y. Consider the homomorphism of monoids

Zr≥0⊕P →MY,y induced by sending the i-th basis element of Zr≥0 to δ(ti), and by

the composition of P →MX,x
∼=
(
f−1(MX)

)
y
→MY,y. By assumption, MY,y

∼=
MY,y/α

−1
Y,y(O×Yét,y

) is a sharp fs monoid. Also, recall that y = Spa(l, l+). By (3.2.7)

and (3.2.8) again, the canonical homomorphism MY,y → M
gp

Y,y/ im(P gp) induces
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a surjection Ωlog
Y/X,y � l ⊗Z

(
Mgp

Y,y/ im(P gp)
)
. Consequently, Zr≥0 ⊕ P → MY,y

induces a surjection l ⊗Z (Zr ⊕ P gp) � l ⊗ZM
gp

Y,y. Since Mgp

Y,y is a free abelian

group of finite rank, the cokernel of Zr ⊕P gp →Mgp

Y,y is a finite group annihilated

by some integer n invertible in l, and hence in OYét,y. Since O×Yét,y
is n-divisible, we

can (noncanonically) extend Zr ⊕P gp →Mgp

Y,y to some h : G→Mgp
Y,y, where G is

some free abelian group of finite rank containing Zr ⊕P gp such that G/(Zr ⊕P gp)

is annihilated by n, and such that the induced map G→Mgp

Y,y is surjective.

Let Q1 := h−1(MY,y). By construction, P is a submonoid of Q1, the induced
map Q1 →MY,y is strict, and the torsion part of Qgp

1 /P gp is annihilated by n. By
the same argument as in the proof of Lemma 2.3.12, there is a finitely generated
submonoid Q2 of Q1 such that Qgp

2 = Qgp
1 , the induced map Q2 → MY,y is still

strict, and the composition of Q2 → MY,y → OYét,y factors through O+
Yét,y

. Let
Q be the saturation of the submonoid of Q1 generated by Q2 and P , which is an
fs submonoid of Q1 with the same properties. Let u : P → Q denote the induced
map. By construction, u is injective and compatible with P →MX,x →MY,y and
Q → MY,y, and the torsion part of Qgp/u(P gp) is annihilated by n. Since these
are all finitely generated monoids, because of the explanation in Remark 2.1.3,
up to étale localization at y we may assume that Q → MY,y extends to a chart
θY : QY →MY ; that θX , θY , and u : P → Q form an fs chart of f , as in Definition

2.3.19; that n is invertible in OY ; and that OY,y ⊗Z
(
Qgp/ugp(P gp)

) ∼= Ωlog
Y/X,y. It

remains to show that u : P → Q satisfies the conditions in Definition 3.1.1 after
these étale localizations.

We already know that ker(ugp) = 0 and the torsion part of Qgp/ugp(P gp) is
annihilated by n. If f is formally log étale (and hence formally log unramified),

by Theorem 3.2.18(3) (and the construction of Ωlog
Y/X over affinoid coverings), we

have Ωlog
Y/X,y = 0, in which case the whole Qgp/ugp(P gp) is torsion and therefore

annihilated by n. Thus, u satisfies the condition (1) of Definition 3.1.1.
Let g : Y → Y ′ := X×X〈P 〉X〈Q〉 ∼= X×Spa(k〈P 〉,k+〈P 〉) Spa(k〈Q〉, k+〈Q〉) be the

morphism induced by the chart θX , θY , and u. Note that g is strict. Since Ωlog
Y/X,y

is locally free of finite rank, up to further localization at y, we may assume that θY
and δY/X induce OY ⊗Z

(
Qgp/ugp(P gp)

) ∼= Ωlog
Y/X . By Proposition 3.3.7 (and the

construction of sheaves of log differentials over affinoid coverings), the canonical

morphism g∗(Ωlog
Y ′/X) → Ωlog

Y/X is an isomorphism. Since f : Y → X is formally

smooth, by Theorem 3.2.18(5) and Remark 3.3.13, g : Y → Y ′ is formally log étale.
Since Y ′ is integral, by Lemma 3.3.14, the underlying lft morphism of g is formally
étale, and hence étale (see the definition and the equivalent formulations in [Hub96,
Sec. 1.6 and 1.7]). Thus, u also satisfies the condition (2) of Definition 3.1.1. �

Theorem 3.3.17. (1) A composition of lft morphisms Y
f→ X

g→ S of lo-
cally noetherian coherent log adic spaces naturally induces an exact sequence

f∗(Ωlog
X/S)→ Ωlog

Y/S → Ωlog
Y/X → 0 of coherent OY -modules.

(2) If f is a log smooth morphism of locally noetherian fs log adic spaces, then

f∗(Ωlog
X/S) → Ωlog

Y/S is injective, and Ωlog
Y/X is a locally free OY -module of

finite rank. (Étale locally on X and Y , when f admits an fs chart u : P → Q
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as in Definition 3.1.1, the rank of Ωlog
Y/X as a locally free OY -module is equal

to the rank of Qgp/ugp(P gp) as a finitely generated abelian group.)
(3) If f is a log étale morphism of locally noetherian fs log adic spaces, then

f∗(Ωlog
X/S) ∼= Ωlog

Y/S and Ωlog
Y/X = 0.

(4) If X, Y , and S are locally noetherian fs log adic spaces, and if g ◦ f is log
smooth, then the converses of (2) and (3) hold.

(5) If X, Y , and S are locally noetherian fs log adic spaces, and if g is log étale,

then Ωlog
Y/S

∼→ Ωlog
Y/X , and f is log smooth (resp. log étale) if and only if g ◦f

is log smooth (resp. log étale).

Proof. By the construction of sheaves of log differentials, the assertion (1) follows
from Theorem 3.2.18(1). The assertions (2) and (3) follow from Theorem 3.2.18 (2)
and (4), and Propositions 3.2.25 and 3.3.7. The assertion (4) follows from Theorem
3.2.18(5), Remark 3.3.13, and Proposition 3.3.16. The assertion (5) follows from
the assertion (1), Remark 3.3.12(2), and Proposition 3.3.16. �

Corollary 3.3.18. Suppose that X̃
f→ X

g→ S are morphisms of locally noetherian
fs log adic spaces such that g is log smooth; such that the underlying morphism of
adic spaces of f is an isomorphism; and such that the canonical homomorphism
MX,x →MX̃,x of fs monoids splits as a direct summand, with αX̃,x mapping the

split image of (MX̃,x/MX,x)−{0} to 0 in OX̃ét,x
∼= OXét,x, at each geometric point

x of X. Then Ωlog

X̃/S,x
∼= Ωlog

X/S,x⊕
(
OXét,x⊗Z (Mgp

X̃,x
/Mgp

X,x)
)

at each x. Moreover,

if there is a strict closed immersion ı : X̃ → Y to a log adic space Y log smooth

over S, then we also have Ωlog

X̃/S
∼= ı∗(Ωlog

Y/S).

Proof. This follows from Theorem 3.3.17 and Corollary 3.2.29. �

Definition 3.3.19. Let X → S be a log smooth morphism of locally noetherian fs

log adic spaces. Then Ωlog
X/S is a locally free OX -module of finite rank, by Theorem

3.3.17(2), and we set Ωlog,•
X/S := ∧a Ωlog

X/S , for each integer a ≥ 0. More generally, for

any X̃ over X such that X̃ → X → S is as in Corollary 3.3.18, and such that X̃
admits a strict closed immersion to a log adic space Y log smooth over S, we also

set Ωlog,a

X̃/S
:= ∧a Ωlog

X̃/S
, which is canonically isomorphic to the pullback of Ωlog,a

Y/S , for

each integer a ≥ 0. When S = Spa(k, k+), for some nonarchimedean field k with
k+ = Ok, and when there is no risk of confusion in the context, we shall often omit
S and k from the notation, for the sake of simplicity. In particular, when X is log

smooth over k as in Definition 3.1.9, we shall simply write Ωlog
X and Ωlog,•

X .

Example 3.3.20. In Example 2.3.18, the morphisms X ← X∂
J → XJ satisfy

the requirements of the morphisms Y ← X̃ → X in the second half of Corollary

3.3.18, and hence we have a canonical isomorphism Ωlog,•
X∂J

∼= (XJ → X)∗(Ωlog,•
X )

and étale locally on X∂
J,an
∼= XJ,an (depending on the choices of coordinates) some

isomorphisms Ωlog

X∂J

∼= Ωlog
XJ
⊕OJX of vector bundles.

4. Kummer étale topology

4.1. The Kummer étale site.
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Definition 4.1.1. A homomorphism u : P → Q of saturated monoids is called
Kummer if it is injective and if the following conditions hold:

(1) For any a ∈ Q, there exists some integer n ≥ 1 such that na ∈ u(P ).
(2) The quotient Qgp/ugp(P gp) is a finite group.

Definition 4.1.2. (1) A morphism (resp. finite morphism) f : Y → X of lo-
cally noetherian fs log adic spaces is called Kummer (resp. finite Kummer)
if it admits, étale locally on X and Y (resp. étale locally on X), an fs chart
u : P → Q that is Kummer as in Definition 4.1.1. Such a chart u is called
a Kummer chart of f .

(2) An f as above is called Kummer étale (resp. finite Kummer étale) if the
Kummer chart u above can be chosen such that |Qgp/ugp(P gp)| is invertible
in OY , and such that f and u induce a morphism Y → X×X〈P 〉X〈Q〉 of log
adic spaces (cf. Remark 2.3.3) whose underlying morphism of adic spaces
is étale (resp. finite étale).

(3) A Kummer morphism is called a Kummer cover if it is surjective.

Remark 4.1.3. Definition 4.1.2 can be extended beyond the case of locally noe-
therian fs log adic spaces, with suitable P and Q, when all adic spaces involved are
étale sheafy. However, we will not pursue this generality in this paper.

Remark 4.1.4. Any Kummer homomorphism u : P → Q as in Definition 4.1.1
is exact. Accordingly, as we shall see in Lemma 4.1.11, any Kummer morphism
f : Y → X as in Definition 4.1.2 is exact. In particular, Proposition 2.3.32 is
applicable to Kummer morphisms. (See also Lemma 4.1.13.)

Definition 4.1.5. (1) For any saturated torsion-free monoid P and any pos-
itive integer n, let 1

nP be the saturated torsion-free monoid such that the

inclusion P ↪→ 1
nP is isomorphic to the n-th multiple map [n] : P → P .

(2) Let X be a locally noetherian log adic space modeled on a torsion-free fs
monoid P , and n any positive integer. Then we have the log adic space
X

1
n := X ×X〈P 〉 X〈 1

nP 〉, with a natural chart modeled on 1
nP .

The structure morphism X
1
n → X is a finite Kummer cover with a Kummer

chart given by the natural inclusion P ↪→ 1
nP , which is finite Kummer étale when

n is invertible in OX . Such morphisms will play an important role in Sections 4.3
and 4.4. More generally, we have the following:

Proposition 4.1.6. Let X be a locally noetherian log adic space with a chart
modeled on an fs monoid P . Let u : P → Q be a Kummer homomorphism of fs
monoids such that G := Qgp/ugp(P gp) is a finite group. Consider

Y := X ×X〈P 〉 X〈Q〉,
which is equipped with a canonical action of the group object

GDX := X〈G〉
over X, which is an analogue of a diagonalizable group scheme that is Cartier dual
to the constant group scheme G. Then the following hold:

(1) The natural projection f : Y → X is a finite Kummer cover, which is finite
(see [Hub96, (1.4.4)]) and surjective.

(2) When X and therefore Y are affinoid, we have a canonical exact sequence
0→ OX(X)→ OY (Y )→ OY×XY (Y ×X Y ).
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(3) The morphism GDX ×X Y → Y ×X Y induced by the action and the second
projection is an isomorphism.

(4) When G is annihilated by an integer m ≥ 1 invertible in OX , the group GDX
is étale over X (which is simply the constant group Hom(G,OX(X)×)X
when OX(X) contains all the m-th roots of unity); and the cover f : Y → X
is a Galois finite Kummer étale cover with Galois group GDX , which is open.

For the proof of Proposition 4.1.6, we need the following general construction,
which will also be useful later in Section 4.4.

Lemma 4.1.7. Let Y = Spa(S, S+) → X = Spa(R,R+) be a finite morphism of
noetherian adic spaces, and let Γ be a finite group which acts on Y by morphisms
over X. Then (T, T+) := (SΓ, (S+)Γ) is a Huber pair, and Z := Spa(T, T+) is a
noetherian adic space finite over X. Moreover, the canonical morphism Y → X
factors through a finite, open, and surjective morphism Y → Z, which induces a
homeomorphism Y/Γ

∼→ Z of underlying topological spaces and identifies Z as the
categorical quotient Y/Γ in the category of adic spaces.

Proof. For analytic adic spaces, and for any finite group Γ such that |Γ| is invert-
ible in S, this essentially follows from [Han16, Thm. 1.2] without the noetherian
hypothesis. Nevertheless, we have the noetherian hypothesis, but not the analytic
or invertibility assumptions here. Moreover, we have a base space X over which Y
is finite. Hence, we can resort to the following more direct arguments.

Since R is noetherian, and since S is a finite R-module, T = SΓ is also a finite
R-module, and T+ = (S+)Γ is the integral closure of R+ in T . Therefore, (T, T+)
has a canonical structure of a Huber pair such that Z := Spa(T, T+) is a noetherian
adic space finite over X = Spa(R,R+). Moreover, Y → Z is also finite. By [Hub96,
(1.4.2) and (1.4.4)] and [Hub94, Sec. 2], if {s1, . . . , sr} is any set of generators of
S as an T -module, then the topology of S is generated by

∑r
i=1 Ui si, where Ui

runs through a basis of the topology of T , for all i. Suppose that w : T → Γw
is any continuous valuation, and that v : S → Γv is any valuation extending w.
Note that v and w factor through the domains S := S/v−1(0) and T := T/w−1(0),
respectively, and Frac(S) is a finite extension of Frac(T ). Therefore, we may assume
that Γv and Γw are generated by v(S) and w(T ), respectively, and that Γw is a
finite index subgroup of Γv. For each γ ∈ Γv, the subgroup {s ∈ S : v(s) < γ} of S
is open because it contains

∑r
i=1 Ui si, where Ui := {t ∈ T : w(t) < γ − v(si)} is

open by the continuity of w. Consequently, Cont(S)→ Cont(T ) is surjective. This
replaces the main argument in Step 1 of the proof of [Han16, Thm. 3.1] where the
Tate assumption is used. After this step, the remaining arguments in the proof of
[Han16, Thm. 3.1] work verbatim and show that Spa(S, S+)→ Spa(T, T+) induces
a homeomorphism Spa(S, S+)/Γ→ Spa(T, T+).

Since Y and Z are finite over X, and since T = SΓ, by [Hub96, (1.4.4)] and
Proposition A.9, the canonical morphism OZ → (Y → Z)∗(OY ) factors through

an isomorphism OZ
∼→
(
(Y → Z)∗(OY )

)Γ
. (This provides a replacement of [Han16,

Thm. 3.2].) Thus, the canonical morphism Y → Z factors through an isomorphism

Y/Γ
∼→ Z of adic spaces, as in [Han16, Thm. 1.2], as desired. �

Now we are ready for the following:

Proof of Proposition 4.1.6. Let us identify P as a submonoid of Q via the injection
u : P → Q. Since the assertions are local in nature on X, we may assume that
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X = Spa(R,R+) and hence Y is affinoid. Then OX(X) → OY (Y ) is injective,
because it is the base change of Z[P ]→ Z[Q] from Z[P ] to R, and Z[P ] is a direct
summand of Z[Q] as Z[P ]-modules, as explained in the proof of [INT13, Lem. 2.1].
Moreover, since Z[P ] → Z[Q] is finite because Q is finitely generated and u is
Kummer, its base change OX(X)→ OY (Y ) is also finite, and therefore (1) follows.
Since the canonical sequence OX(X) → OY (Y ) → OY×XY (Y ×X Y ) is exact by
[Niz08, Lem. 3.28], (2) also follows.

By [Ill02, Lem. 3.3], (Q ⊕P Q)sat ∼= Q ⊕ G. Accordingly, by Remark 2.3.28,
X〈G〉 ×X X〈Q〉 ∼= X〈Q〉 ×X〈P 〉X〈Q〉, and the action of GDX = X〈G〉 on Y induces

X〈G〉 ×X Y
∼→ Y ×X Y . This verifies (3).

As for (4), since it can be verified étale locally on X, we may assume that
OX(X) = R contains all |G|-th roots of unity. In this case, X〈G〉 ∼= ΓX , where
Γ := Hom(G,OX(X)×), and the action of GDX is induced by the canonical actions
of Γ on X〈Q〉 and X〈Qgp〉, by sending q to γ(q)q, for each q ∈ Qgp and γ ∈ Γ. Note
that (R〈Q〉)Γ = (R〈Qgp〉)Γ ∩ R〈Q〉 = R〈P gp〉 ∩ R〈Q〉 = R〈P 〉, where the last one
follows from the assumptions that u : P → Q is Kummer and that P is saturated;
and the formation of Γ-invariants commutes with the base change from R〈P 〉 to
R, because |Γ| is invertible in R. Thus, if Y = Spa(S, S+), then the morphism
Y → X = Spa(R,R+) ∼= Spa(SΓ, (S+)Γ) is open and induces an isomorphism

Y/Γ
∼→ X, by Lemma 4.1.7. Moreover, for any subgroup Γ′ of Γ = Hom(G,R×),

which is of the form Hom(G′, R×) for some quotient G′ of G = Qgp/ugp(P gp), we

have (R〈Q〉)Γ′ ∼= R〈Q′〉 and (R+〈Q〉)Γ′ ∼= R+〈Q′〉, where Q′ is the preimage of
ker(G→ G′) under the canonical homomorphism Q→ G = Qgp/ugp(P gp), so that
Y/Γ′ ∼= X ×X〈P 〉 X〈Q′〉 → X is a finite Kummer étale. Consequently, f : Y → X
is a Galois finite Kummer étale cover with Galois group Γ, as desired. �

Definition 4.1.8. Kummer (resp. Kummer étale) covers f : Y → X as in Propo-
sition 4.1.6 are called standard Kummer (resp. standard Kummer étale) covers.

Corollary 4.1.9. Kummer étale morphisms are open.

Proof. This is because, by definition, Kummer étale morphisms are, étale locally on
the source and target, compositions of standard Kummer étale covers and strictly
étale morphisms, both of which are open. �

In the remainder of this subsection, let us study some general properties of
Kummer étale morphisms. Our goal is to introduce the Kummer étale site.

Lemma 4.1.10. Let f : Y → X be a Kummer étale morphism of locally noetherian
fs log adic spaces. Suppose that X is modeled on an fs monoid P . Then f admits,
étale locally on Y and X, a Kummer chart P → Q as in Definition 4.1.2(2), with
the same prescribed P as above. Moreover, if P is torsion-free (resp. sharp), then
we can choose Q to be torsion-free (resp. sharp).

Proof. Étale locally on Y and X, let u1 : P1 → Q1 be a Kummer chart of f as
in Definition 4.1.2. (A priori, P1 might be different from P .) As in the proof of
Proposition 3.1.4, up to further étale localization and modifying P1 → Q1, we can
find some group H fitting into the cartesian diagram (3.1.5). Let

Q := {a ∈ H : na ∈ P , for some n ≥ 1 invertible in OY },
so that u : P → Q is Kummer, as in Definition 4.1.1. Let Q′ be the preimage of
Q1 via H → Qgp

1 , so that u′ : P → Q′ is an fs chart of f satisfying the conditions
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of Definition 3.1.1, as explained in the paragraph after (3.1.5). Since

Q1 = {a ∈ Qgp
1 : na ∈ u1(P1), for some n ≥ 1 invertible in OY },

by the assumption on u1, and since (3.1.5) is cartesian, we can identify Q′ with
the localization of Q with respect to ker(Q → Q1). Therefore, u : P → Q is an fs
chart of f as u′ is, which also satisfies the conditions of Definition 3.1.1, or rather
of Definition 4.1.2(2). By the proof of the last assertion of Proposition 3.1.4, if P
is torsion-free, then we may assume that Q is torsion-free as well. Finally, suppose
that P is sharp and Q is torsion-free. For any q ∈ Qinv, there is some n ≥ 1
such that nq and −nq are both in u(P ) and hence in u(P inv) = {0}. Since Q is
torsion-free, this forces q = 0. Thus, Q is also sharp, as desired. �

Lemma 4.1.11. Let f : Y → X be a Kummer morphism of locally noetherian fs
log adic spaces. Then:

(1) The morphism f is exact.
(2) For any geometric point y of Y , the induced homomorphism of sharp fs

monoids f ]y : MX,f(y) → MY,y is Kummer. Moreover, if f is Kummer

étale, then
∣∣coker

(
(f ]y)gp

)∣∣ is invertible in OY,y.

(3) Suppose that f admits a Kummer chart u : P → Q. For any geometric
point y of Y , if Kf(y) := ker(P → MX,f(y)) and Ky := ker(Q → MY,y),

then Kf(y) = u−1(Ky), and the induced homomorphism w : Kf(y) → Ky is
Kummer. Thus, if Kf(y) = 0, then Ky is torsion, and is zero if Q is sharp.

Proof. Let us start with (3). By Remark 2.3.4, u and v := f ]y are compatible

with surjective homomorphisms θf(y) : P → MX,f(y) and θy : Q → MY,y, with

kernels Kf(y) and Ky given by preimages of O×Xét,f(y) and O×Yét,y
, respectively. Since

f ]y : OXét,f(y) → OYét,y is local, Kf(y) = u−1(Ky). If a ∈ MX,f(y) and v(a) = 0,

then a = θf(y)(a), for some a ∈ P such that u(a) ∈ Ky. Hence, a ∈ Kf(y), and
a = θf(y)(a) = 0. This shows that v is injective. Since u : P → Q is Kummer,
if b ∈ Ky ⊂ Q, then nb = u(a) for some integer n ≥ 1 and a ∈ P , and v maps
θf(y)(a) to θy(nb) = 0, and so θf(y)(a) = 0 by the injectivity of v. Therefore,
a ∈ Kf(y). It follows that the induced homomorphism w : Kf(y) → Ky is Kummer,
with coker(wgp) given by a subgroup of coker(ugp), and (3) follows.

Next, let us verify (2). By assumption, up to étale localization on Y and X, the
morphism f admits a Kummer chart u : P → Q. If b ∈ MY,y, then b = θy(b), for
some b ∈ Q. Since u is Kummer, nb = u(a), for some integer n ≥ 1 and a ∈ P .
Then v maps a := θf(y)(a) to θy(nb) = nb. Furthermore, coker(vgp) is a finite
group, because it is a quotient of coker(ugp). Thus, v is Kummer. By Lemma
4.1.10, if f is Kummer étale, then we may assume that the order of coker(ugp) is
invertible in OY,y, and the same is true for its quotient coker(vgp).

Finally, since any Kummer homomorphism of monoids is exact (see Remark
4.1.4), (1) follows from (2), [Ogu18, Prop. I.4.2.1], and Remark 2.2.5. �

Definition 4.1.12. In Lemma 4.1.11, the ramification index of f at y is defined to
be the smallest positive integer n that annihilates coker(Mgp

X,f(y) → M
gp

Y,y). The
ramification index of a Kummer étale morphism f is the least common multiple,
when defined, of the ramification indices among the geometric points y of Y . (The
ramification index is not always defined.) The ramification index of a Kummer
étale morphism is 1 if and only if f is strictly étale.
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Lemma 4.1.13. A morphism f : Y → X of locally noetherian fs log adic spaces
is Kummer étale if and only if it is log étale and Kummer, and if and only if it is
log étale and exact. It is finite Kummer étale if and only it is log étale and finite
Kummer.

Proof. If f is Kummer étale (resp. finite Kummer étale), then it is log étale and
Kummer (resp. finite Kummer) by definition, and it is exact by Lemma 4.1.11.
Conversely, assume that f is log étale and exact. By Propositions 2.3.13 and 3.1.4,
f admits, étale locally at geometric points y of Y and x = f(y) of X, an injective
fs chart u : P =MX,x → Q satisfy the conditions in Definition 3.1.1(2), in which
case coker(ugp) is a finite group whose order is invertible in OY . Since f is exact,

by [Ogu18, Prop. I.4.2.1] and Remark 2.2.5, f
]

y : MX,x → MY,y is exact. Given
any b ∈ Q, since coker(ugp) is annihilated by n, we have nb = ugp(a) for some

a ∈ P gp. Since a is mapped to the image of nb in MY,y, by the exactness of f
]

y,

we have a ∈ P = MX,x. Hence, u : P → Q is a Kummer chart as in Definition
4.1.2(2). Since y is arbitrary, f is Kummer étale, as desired.

Alternatively, assume that f is log étale and finite Kummer. Up to étale local-
ization on X, we may assume that it admits a Kummer chart u : P → Q, and that
X has at most one positive residue characteristic `. When no such ` exists, we set
` = 0, for simplicity. Then we have a Kummer homomorphism

u′ : P → Q′ := {b ∈ Q : nb ∈ u(P ), for some n ≥ 1 s.t. ` - n}

such that ` -
∣∣coker

(
(u′)gp

)∣∣. We claim that the morphism of adic spaces

Y → X ×X〈P 〉 X〈Q′〉

induced by u′ is étale. Note that this can be verified up to étale localization on Y .
By the previous paragraph, f is Kummer étale. By Lemmas 4.1.10 and 4.1.11, f
admits, étale locally at geometric points y of Y and f(y) of X, another Kummer

chart u1 : P1 → Q1, with P1
∼→ MX,f(y), Q1

∼→ MY,y, and ` - | coker(ugp
1 )|, such

that the morphism

Y → X ×X〈P1〉 X〈Q1〉

induced by u1 is étale. Note that ` - | coker(ugp
1 )| implies that Q′ → MY,y is

surjective as Q → MY,y is, and so u′ is an fs chart as u is. Then u′ : P → Q′

and u1 : P1 → Q1 compatibly extend to a Kummer homomorphism u2 : P2 → Q2

of fs monoids, where P2 (resp. Q2) is the localization of P ⊕ P1 (resp. Q′ ⊕ Q1)
with respect to the kernel of P ⊕ P1 → MX,f(y) (resp. Q′ ⊕ Q1 → MY,y). Since

P1
∼→ MX,f(y) and Q1

∼→ MY,y, we have P2 = P1 ⊕ P inv
2 , Q2 = Q1 ⊕ Qinv

2 , and

u2 = u1 ⊕ uinv
2 , for some Kummer homomorphism uinv

2 : P inv
1 → H inv

1 such that
` - | coker(uinv

2 )|. In this case, the above morphism Y → X ×X〈P 〉 X〈Q′〉 induced
by u′ is the composition of the morphisms

Y → X ×X〈P2〉 X〈Q2〉 → X ×X〈P2〉 (X〈P2〉 ×X〈P 〉 X〈Q′〉) ∼= X ×X〈P 〉 X〈Q′〉,

induced by u2 and the canonical homomorphisms among P , Q′, P2, and Q2. Note
that the second morphism is the pullback of the canonical morphism

X〈Q2〉 → X〈P2〉 ×X〈P 〉 X〈Q′〉.
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Let P2 + Q′ be the submonoid of Qgp
2 generated by the images of P2 and Q′, and

G′ := coker
(
(u′)gp

)
. Then we have an isomorphism of monoids

(P2 ⊕P Q′)sat ∼→ (P2 +Q′)⊕G′ : (a, b) 7→ (a+ b, b),

where a ∈ P2 and b ∈ Q′, and b ∈ G′ denotes the image of b, as in the proof of
[Ill02, Lem. 3.3]. Moreover, we have an induced isomorphism of adic spaces

X〈P2〉 ×X〈P 〉 X〈Q′〉
∼→ X〈P2 +Q′〉 ×X X〈G′〉,

where X〈G′〉 → X is étale, as in Proposition 4.1.6. Since Q′ →MY,y is surjective

and Q1
∼→MY,y, we have P2+Q′ = P2+Q′+P inv

2 ⊂ P2+Q′+Qinv
2 = Q2 in Qgp

2 , and
the monoid Q2 is generated by P2 +Q′ and some finitely many invertible elements
of Q2 whose | coker(uinv

2 )|-th multiples are in P2 + Q′. Since ` - | coker(uinv
2 )|, the

induced morphism X〈Q2〉 → X〈P2 +Q′〉 is étale, by [Hub96, Prop. 1.7.1], and so
is the above X〈Q2〉 → X〈P2〉×X〈P 〉X〈Q′〉. Therefore, in order to verify the above
claim, it suffices to show that the morphism

Y → X ×X〈P2〉 X〈Q2〉

induced by u2 = u1 ⊕ uinv
2 is étale. Again since ` - | coker(uinv

2 )|, this follows from
the known exactness of the morphism of adic spaces Y → X×X〈P1〉X〈Q1〉 induced
by u1. Thus, f is finite Kummer étale because it admits, étale locally on X, an fs
chart u′ : P → Q′ satisfying the conditions in Definition 4.1.2(2). �

Proposition 4.1.14. Kummer étale (resp. finite Kummer étale) morphisms as in
Definition 4.1.2 are stable under compositions and base changes under arbitrary
morphisms between locally noetherian fs log adic spaces (which are justified by Re-
mark 3.1.2 and Proposition 3.1.3).

Proof. The stability under compositions follows from Proposition 3.1.6, Lemma
4.1.13, and the stability of exactness under compositions (by definition). As for
the stability under base changes, it suffices to note that, if P → Q is a Kummer
homomorphism (of fs monoids), and if P → R is any homomorphism of fs monoids,
then the induced homomorphism R → (R ⊕P Q)sat is also Kummer, because it is
injective as the composition R → (R ⊕P Q)sat → Rgp ⊕P gp Qgp is, and because it
satisfies the conditions in Definition 4.1.1 as P → Q does. �

Proposition 4.1.15. Suppose that f : Y → X and g : Z → X are Kummer étale
morphisms of locally noetherian fs log adic spaces. Then any morphism h : Y → Z
such that f = g ◦ h is also Kummer étale.

Proof. By Lemma 4.1.13, it suffices to show that h is log étale and exact. By
Theorem 3.3.17(5), h is log étale because f = g ◦ h and g are. By Lemma 4.1.11,
étale locally at each geometric point y of Y , with x = f(y) and z = h(y), the

homomorphisms f ]y : MX,x → MY,y and g]z : MX,x → MZ,z are both Kummer.

Consequently, the homomorphism h]y :MZ,z →MY,y is also Kummer, and hence

exact. Thus, h is exact, by [Ogu18, Prop. I.4.2.1] and Remark 2.2.5. �

By Proposition 2.3.32 and Remark 4.1.4, and by Propositions 4.1.14 and 4.1.15,
we are now ready for the following:

Definition 4.1.16. Let X be a locally noetherian fs log adic space. The Kummer
étale site Xkét has as underlying category the full subcategory of the category of
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locally noetherian fs log adic spaces consisting of objects that are Kummer étale
over X, and has coverings given by the topological coverings.

Remark 4.1.17. Let X be as in Definition 4.1.16.

(1) For each U ∈ Xét, we can view U as a log adic space by restricting the
log structure α : MX → OXét

to Uét. This gives rise to a strictly étale
morphism U → X of log adic spaces, which is Kummer étale by definition.
Therefore, we obtain a natural projection of sites εét : Xkét → Xét, which
is an isomorphism when the log structure of X is trivial.

(2) For any morphism f : Y → X of locally noetherian fs log adic spaces, we
have a natural morphism of sites fkét : Ykét → Xkét, because base changes
of Kummer étale morphisms are still Kummer étale, by Proposition 4.1.14.

Remark 4.1.18. By definition, the Kummer étale topology on X is generated by
surjective (strictly) étale morphisms and standard Kummer étale covers.

4.2. Abhyankar’s lemma. An important class of finite Kummer étale covers arise
in the following way:

Proposition 4.2.1 (rigid Abhyankar’s lemma). Let X be a smooth rigid analytic
variety over a nonarchimedean field k of characteristic zero, and let D be a normal
crossings divisor of X. We equip X with the fs log structure induced by D as in
Example 2.3.17. Suppose that h : V → U := X −D is a finite étale surjective mor-
phism of rigid analytic varieties over k. Then it extends to a finite surjective and
Kummer étale morphism of log adic spaces f : Y → X, where Y is a normal rigid
analytic variety with its log structures defined by the preimage of D. Consequently,
Yan has a basis consisting of affinoid W satisfying π0

(
W ∩ f−1(U)

)
= π0(W ).

Proof. By [Han20, Thm. 1.6] (which was based on [Lüt93, Thm. 3.1 and its proof]),
h : V → U extends to a finite ramified cover f : Y → X, for some normal rigid
analytic variety Y (viewed as a noetherian adic space). Then Yan has a basis
consisting of affinoid open subspaces W satisfying π0

(
W∩f−1(U)

)
= π0(W ), by the

unique existence of extensions of bounded functions (which include locally constant
functions, in particular) from W ∩ f−1(U) to W , for any affinoid open subspaces
W of Y , by [Bar76, Sec. 3] (see also [Han20, Thm. 2.6]). Just as X is equipped
with the log structure defined by D, we equip Y with the log structure defined by
the preimage of D. The question is whether the map f is Kummer étale (with
respect to the log structures on X and Y ), and such a question can be answered
analytic locally on X, up to replacing k with a finite extension. As in Example
2.3.17, we may assume that there is an affinoid smooth rigid analytic variety S
over k such that X = S × Dr ∼= S〈Zr≥0〉 (see Example 2.2.19) for some r ∈ Z≥0,

with D = S × {T1 · · ·Tr = 0}. Thus, we can finish the proof of this proposition by
combining the following Lemmas 4.2.2 and 4.2.3. �

For simplicity, let us introduce some notation for the following two lemmas. We
write P := Zr≥0 and identify Dr with Spa(k〈P 〉, k+〈P 〉) as in Example 2.2.21. For

each m ∈ Z≥1, we also write 1
mP = 1

mZr≥0. For each power ρ of p, we denote by Dρ
the (one-dimensional) disc of radius ρ, so that D = Dρ when ρ = 1. We also denote
by D×ρ the punctured disc of radius ρ, and by D× the punctured unit disc. For any
rigid analytic variety with a canonical morphism to Dr, we denote with a subscript
“ρ” (resp. superscript “×”) its pullback under Drρ → Dr (resp. (D×)r → Dr).
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Lemma 4.2.2. Suppose that X = S × Dr ∼= S〈P 〉, D, and U = X −D ∼= S〈P 〉×
are as in the proof of Proposition 4.2.1. Assume there is some ρ ≤ 1 such that, for
each connected component Y ′ of Yρ, there exist d1, . . . , dr ∈ Z≥1 such that induced
cover Y ′ → X ′ := Xρ is refined (i.e., admits a further cover) by some finite ramified
cover Z := S〈P ′〉ρ → X ′, where P ′ = ⊕1≤i≤r

(
1
di
Z≥0

)
. Then, up to replacing k

with a finite extension, we have Y ′ ∼= S〈Q〉ρ, for some sharp fs monoid Q such that
P ⊂ Q ⊂ P ′. Consequently, Yρ → X ′ = Xρ is finite Kummer étale. Moreover,

if mQ ⊂ P for some m ∈ Z≥1, and if X
1
m := S〈 1

mP 〉, then the finite (a priori

ramified) cover Y ×X X
1
m
ρ → X

1
m
ρ splits completely (i.e., the source is a disjoint

union of sections) and is therefore strictly étale.

Proof. Let V ′ (resp. W ) be the preimage of U ′ := Uρ ∼= S〈P 〉×ρ in Y ′ (resp. Z).
Up to replacing k with a finite extension containing all dj-th roots of unity for all
j, by Proposition 4.1.6, the finite étale cover W → U ′ is Galois with Galois group
G′ := Hom

(
(P ′)gp/P gp, k×

)
, and V ′ is (by the usual arguments, as in [Gro71,

V]) the quotient of W by some subgroup G of G′ (as in Lemma 4.1.7), which
is isomorphic to S〈Q〉×ρ for some monoid Q such that P ⊂ Q ⊂ P ′ and Q =
Qgp∩P ′. These conditions imply that Q is toric, and hence S〈Q〉 is normal because
Spa(k〈Q〉, k+〈Q〉) is (see Example 2.2.20 and the references given there). Since Y ′

and S〈Q〉ρ are both normal and are both finite ramified covers of X ′ extending the
same finite étale cover V ′ of U ′, they are canonically isomorphic by [Han20, Thm.
1.6], as desired. Finally, for the last assertion of the lemma, it suffices to note that,
for any Q as above satisfying mQ ⊂ P , up to replacing k with a finite extension
containing all m-th roots of unity, the connected components of S〈Q〉×S〈P 〉S〈 1

mP 〉
are all of the form S〈 1

mP 〉, because
(
Q⊕P ( 1

mP )
)sat

is the product of 1
mP with a

finite group annihilated by m. �

Lemma 4.2.3. The (cover-refinement) assumption in Lemma 4.2.2 holds up to
replacing k with a finite extension and S with a strictly finite étale cover; and we
may assume that the positive integers d1, . . . , dr there (for various Y ′) are no greater
than the degree d of f : Y → X. Moreover, we can take ρ = p−b(d,p), where b(d, p)
is defined as in [Lüt93, Thm. 2.2], which depends on d and p but not on r; and we
can take m = d! in the last assertion of Lemma 4.2.2.

Proof. We shall proceed by induction on r. When r = 0, the assumption in Lemma
4.2.2 means, for each connected component Y ′ of Y , the strictly étale cover Y ′ →
X = S splits completely. This can always be achieved up to replacing S with a
Galois strictly finite étale cover refining Y ′ → S for all Y ′.

In the remainder of this proof, suppose that r ≥ 1, and that the lemma has been
proved for all strictly smaller r. Let ρ = p−b(d,p) be as above. Fix some a ∈ k such
that |a| = ρ. We shall denote normalizations of fiber products by ×̆ (instead of ×).

Let P1 be the submonoid Zr−1
≥0 ⊕{0} of P = Zr≥0. Let X1 := S ×Dr−1 ∼= S〈P1〉,

which we identify with the subspace S × Dr−1 × {a} of X = S × Dr ∼= S〈P 〉. Let
Y1 := Y ×̆XX1. Note that the degree of Y1 → X1 is also d. By induction, up
to replacing k with a finite extension and S with a strictly finite étale cover, for
each connected component Y ′1 of (Y1)ρ, there exist 1 ≤ d1, . . . , dr−1 ≤ d such that
the induced finite ramified cover Y ′1 → (X1)ρ is refined by S〈P ′1〉ρ → (X1)ρ, where

P ′1 := ⊕1≤i≤r−1( 1
di
Z≥0). Let X

1
d!
1 := S〈 1

d!P1〉, with 1
d!P1 = 1

d!Z
r−1
≥0 .
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Let X̃ := X
1
d!
1 ×X1

X ∼= X
1
d!
1 × D and Ỹ := X

1
d!
1 ×̆X1

Y . Let f̃ : Ỹ → X̃ denote
the induced finite ramified cover, which is also of degree d. Then the (strictly

finite étale) pullback of f̃ to (X
1
d!
1 )×ρ × {a} can be identified with the pullback

of Y1 → X1 to (X
1
d!
1 )×ρ , which splits completely, by the induction hypothesis and

the last assertion in Lemma 4.2.2. Hence, since ρ = p−b(d,p), for each connected

component Ỹ ′ of Ỹρ, by applying [Lüt93, Lem. 3.2] to the morphism (Ỹ ′)× → X̃×ρ
induced by f̃ , we obtain a rigid analytic function T̃ on (Ỹ ′)× such that T̃ dr = Tr,
where Tr is the coordinate on the r-th factor of Dr. By [Bar76, Sec. 3] (see also

[Han20, Thm. 2.6]), T̃ extends to a rigid analytic function on the normal Ỹ ′, which

still satisfies T̃ dr = Tr. Hence, we can view T̃ as T
1
dr
r , and Ỹ ′ → X̃ρ

∼= (X
1
d!
1 × D)ρ

factors through S〈P̃ 〉ρ → (X
1
d!
1 × D)ρ, where P̃ := ( 1

d!P1) ⊕ ( 1
dr
Z≥0). Since these

are finite ramified covers of the same degree dr from connected and normal rigid

analytic varieties, we obtain an induced isomorphism Ỹ ′ ∼= S〈P̃ 〉ρ.
Since each connected component Y ′ of Yρ is covered by some connected com-

ponent Ỹ ′ of Ỹρ, by Lemma 4.2.2, up to replacing k with a finite extension,

Y ′ ∼= S〈Q〉ρ for some monoid Q satisfying P ⊂ Q ⊂ P̃ = ( 1
d!P1) ⊕ ( 1

dr
Z≥0),

for some 1 ≤ dr ≤ d and P̃ determined by Ỹ ′ as above. By the construction of Ỹ ′,

the monoid
(
( 1
d!P1)⊕P1 Q

)sat
is the product of P̃ with a finite group, which forces

{0}r−1⊕( 1
dr
Z≥0) ⊂ Q. By the construction of Y ′1 and the induction hypothesis, the

projection P̃ → 1
d!P1 maps Q into ⊕1≤i≤r−1( 1

di
Z≥0) for some 1 ≤ d1, . . . , dr−1 ≤ d.

Thus, P ⊂ Q ⊂ P ′ := ⊕1≤i≤r(
1
di
Z≥0), as desired. �

Remark 4.2.4. Proposition 4.2.1 can be regarded as the Abhyankar’s lemma (cf.
[Gro71, XIII, 5.2]) in the rigid analytic setting, because of the last assertion in
Lemma 4.2.2.

More generally, we have the following basic but useful facts:

Lemma 4.2.5. Let X be a noetherian fs log adic space modeled on a sharp fs
monoid P , and let f : Y → X be a Kummer étale (resp. finite Kummer étale)

morphism. Then Y ×X X
1
n → X

1
n is étale (resp. finite étale) for some positive

integer n. If X has at most one positive residue characteristic, then we can take n
to be invertible on all of X.

Proof. Since X is noetherian, by taking the least common multiple of the positive
integers obtained on finitely many members in an étale covering, it suffices to work
étale locally on X. By Lemma 4.1.10, up to étale localization on X, there exists
an étale covering {Yi → Y }i∈I indexed by a finite set I such that each induced
Kummer étale morphism Yi → X admits a Kummer chart P → Qi with a sharp Qi.
Then there exists some positive integer n, which we may assume to be invertible
on all of X when X has at most one positive residue characteristic, such that

P → 1
nP factors as P → Qi

ui→ 1
nP for some injective ui, for all i ∈ I. The induced

morphism Yi ×X X
1
n → X

1
n is étale, for each i ∈ I, because it admits a Kummer

chart 1
nP →

(
Qi ⊕P ( 1

nP )
)sat ∼=

(
(Qi ⊕P Qi) ⊕Qi ( 1

nP )
)sat ∼= Gi ⊕ ( 1

nP ), where
Gi := (Qi)

gp/ugp
i (P gp) has order invertible in OYi by assumption. (Since Gi is

a group, 1
nP → Gi ⊕ ( 1

nP ) is strict, by definition. See also Remark 2.2.6.) By

Proposition 2.3.32, the étale map
∐
i∈I Yi ×X X

1
n → Y ×X X

1
n is surjective as
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i∈I Yi → Y is. Hence, by étale descent, Y ×X X

1
n → X

1
n is also étale. Finally,

by [Hub96, Lem. 1.4.5 i)], Y ×X X
1
n → X

1
n is finite when Y → X is. �

Lemma 4.2.6. Let X be a noetherian fs log adic space modeled on a sharp fs
monoid P . Let {Ui → X}i∈I be a Kummer étale covering indexed by a finite set
I. Then there exists a Kummer étale covering {Vj → X}j∈J indexed by a finite
set J refining {Ui → X}i∈I such that each Vj → X admits a chart P → 1

nj
P for

some integer nj invertible in OVj , and such that {Vj×XX
1
n → X

1
n }j∈J is an étale

covering of X
1
n for some integer n divided by all nj. If X has at most one positive

residue characteristic, then we may take n to be invertible in OX .

Proof. Since X is noetherian, by Lemma 4.1.10, we may replace {Ui → X}i∈I with
a finite refinement {Uj → X}j∈J such that each Uj → X admits a Kummer chart
P → Qj with a sharp Qj . Then there exists some positive integer nj invertible

in OUj such that P → 1
nj
P factors as P → Qj

uj→ 1
nj
P for some injective uj ,

for each j ∈ J . Therefore, each Vj := Uj ×Uj〈Qj〉 Uj〈 1
nj
P 〉 → X is Kummer

étale with a Kummer chart P → 1
nj
P , and the induced morphism Vj → X

1
nj =

X×X〈P 〉X〈 1
nj
P 〉 is étale (as in Definition 4.1.2). In this case, if n is divisible by all

nj , then Vj×XX
1
n → X

1
n = X×X〈P 〉X〈 1

nP 〉 is also étale, and we can take n to be
invertible on X when X has at most one positive residue characteristic (cf. the proof
of Lemma 4.2.5). Since

∐
j∈J Uj → X is surjective by assumption, by Proposition

2.3.32, {Vj ×X X
1
n }j∈J → X

1
n is an étale covering of X

1
n , as desired. �

The following two propositions show that the properties of morphisms being
Kummer étale, log smooth, and log étale can be verified up to Kummer étale
localization on either the source or the target:

Proposition 4.2.7. Let Y
f→ X

g→ S be lft morphisms of locally noetherian fs log
adic spaces such that f is Kummer étale and surjective. Then g is log smooth (resp.
log étale, resp. Kummer étale) if and only if g ◦ f is.

Proof. Since f is Kummer étale (and hence log étale), by Propositions 3.1.6 and
4.1.14, if g is log smooth (resp. log étale, resp. Kummer étale), then so is g ◦ f .
(The surjectivity of f is not needed in this direction of implication.)

Conversely, suppose that g◦f is log smooth (resp. log étale, resp. Kummer étale).
It suffices to show that X → S is log smooth (resp. log étale, resp. Kummer étale),
étale locally at geometric points x of X and s = g(x) of S.

Up to étale localization at x, we may assume that X has at most one positive
residue characteristic. By Proposition 2.3.22, up to étale localization at x and s,
we may assume that X → S admits an fs chart u : L := MS,s → P ′, inducing a

strict morphism g′ : X → X ′ := S ×S〈L〉 S〈P ′〉. Let u := g]x : L→ P :=MX,x. By

Remark 2.3.4, P ′ → P is surjective with kernel given by the preimage of O×Xét,x
.

Since L and P are sharp fs, we may assume that the order of the torsion part of
ker
(
(P ′)gp → P gp

)
is invertible in OXét,x. Since f is Kummer étale, by Definition

4.1.2 and Lemma 4.2.6, and by the first paragraph above, we are reduced to the
case where f : Y → X is of the form X

1
m → X, for some integer m invertible in

OX , which admits a global fs chart v : P → 1
mP .
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Let y be any geometric point of Y such that f(y) = x, which exists because

f is surjective. By Lemma 4.1.11, v := f ]y : MX,x → MY,y is also given by

v : P → 1
mP . By the same argument as above, up to étale localization at y, we may

assume that Y → S admits an fs global chart w : L→ Q, and we have a surjection
Q →MY,y

∼= 1
mP such that the order of the torsion part of ker

(
Qgp → 1

mP
gp
)

is

invertible in OXét,x. By definition, w := (g ◦ f)
]

y = v ◦u as homomorphisms from L

to 1
mP . If g ◦ f is log smooth (resp. log étale), then the kernel and the torsion part

of the cokernel (resp. the kernel and the cokernel) of wgp have orders invertible in
OXét,x, and so are ugp and ugp (cf. Definition 3.1.1). If g ◦ f is Kummer étale, then
w is Kummer, and so are u and u (see Definitions 4.1.1 and 4.1.2, and Lemmas
4.1.11 and 4.1.13). Therefore, by the first paragraph above, X ′ → S is log smooth
(resp. log étale, resp. Kummer étale) when g ◦ f is. Thus, up to replacing g with
g′ : X → X ′, we are reduced to the case where g is strict, and it remains to show
that g : X → S is (strictly) étale when g ◦ f : Y = X

1
m → S is log étale. Up to

étale localization on S, we may assume that OS(S)× and hence OX(X)× contain

all m-th roots of unity. Then Y = X
1
m → X is a Galois finite Kummer étale cover

with Galois group Γ := Hom
(
( 1
mP

gp)/P gp,OS(S)×
)
, by Proposition 4.1.6.

Let us write
(
OS(S),MS(S)

)
= (A,M),

(
OX(X),MX(X)

)
= (B,N), and(

OY (Y ),MY (Y )
)

= (C,O), for simplicity. Since X → S is strict, up to fur-
ther étale localization on X and S, we may assume that (A,M) → (B,N) is also
strict. By Lemma 3.3.14, Remark 3.3.13, and Proposition 3.3.16, it suffices to
show that (A,M) → (B,N) is formally log étale (as in Definition 3.2.14) when

(A,M) → (C,O) is. Since Y ∼= X ×X〈P 〉 X〈 1
mP 〉, we have O ∼=

(
N ⊕P ( 1

mP )
)sat

and C ∼= (B⊗̂Z[P ]Z[ 1
mP ])⊗̂Z[N⊕P ( 1

mP )]Z[
(
N ⊕P ( 1

mP )
)sat

] ∼= B⊗̂Z[N ]Z[O]. Con-

sider any commutative diagram as in (3.2.13) for (A,M) → (B,N) (with α,

β, etc omitted here). For ? = ∅ and ′, consider T̃ ? :=
(
T ? ⊕P ( 1

mP )
)sat

and

D̃? := D?⊗̂Z[T ?]Z[T̃ ?], so that (D′, T ′) → (D̃′, T̃ ′) is the completion of the com-

mon pullback of (B,N) → (C,O) and (D,T ) → (D̃, T̃ ) in the category of log

Huber rings with fs log structures. Moreover, we have (D?, T ?)
∼→
(
(D̃?)Γ, (T̃ ?)Γ

)
,

for ? = ∅ and ′, because the formation of Γ-invariants is compatible with arbi-
trary base changes and completions when |Γ| is invertible (as m is), and because
of Remark 2.1.7. Thus, we have obtained an extended commutative diagram for

(A,M) → (C,O) and the base change (D̃, T̃ ) → (D̃′, T̃ ′) of (D,T ) → (D′, T ′).

Since (A,M) → (C,O) is formally log étale, (C,O) → (D̃′, T̃ ′) uniquely lifts to

(C,O) → (D̃, T̃ ), whose pre-composition with (B,N) → (C,O) is Γ-invariant and
hence factors through (D,T ). This shows that (A,M) → (B,N) is also formally
log étale, as desired. �

Proposition 4.2.8. Let f : Y → X and g : X ′ → X be lft morphisms of locally
noetherian fs log adic spaces such that g is Kummer étale and surjective. Then
f is log smooth (resp. log étale, resp. Kummer étale) if and only if its pullback
f ′ : Y ′ := Y ×X X ′ → X ′ under g is.
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Proof. By definition, we have the following commutative diagram

Y ′
f ′
//

g′

��

X ′

g

��

Y
f
// X

in which g′ is the pullback of g under f . If f is log smooth (resp. log étale, resp.
Kummer étale), then so is f ′, by Proposition 3.1.3 and 4.1.14. Conversely, suppose
f ′ is log smooth (resp. log étale, resp. Kummer étale). Since g is Kummer étale
(and hence log étale), by Propositions 3.1.6 and 4.1.14, g ◦ f ′ = f ◦ g′ is also log
smooth (resp. log étale, resp. Kummer étale). By Propositions 4.1.14 and 2.3.32,
g′ is Kummer étale and surjective as g is. Thus, by Propositions 4.2.7, f is log
smooth (resp. log étale, resp. Kummer étale), as desired. �

4.3. Coherent sheaves. In this subsection, we show that, when X is a locally
noetherian fs log adic space, the presheaf OXkét

(resp. O+
Xkét

) on Xkét defined by

U 7→ OU (U) (resp. U 7→ O+
U (U)) is indeed a sheaf, generalizing a well-known result

of Kato’s [Kat21] for log schemes. We also study some problems related to the
Kummer étale descent of coherent sheaves.

Theorem 4.3.1. Let X be a locally noetherian fs log adic space.

(1) The presheaves OXkét
and O+

Xkét
are sheaves.

(2) If X is affinoid, then Hi(Xkét,OXkét
) = 0, for all i > 0.

A key input is the following:

Lemma 4.3.2. Let X be an affinoid noetherian fs log adic spaces, endowed with a
chart modeled on a sharp fs monoid P . Let Y → X be a standard Kummer cover
(see Definition 4.1.8). Then the Čech complex

C•(Y/X) : 0→ O(X)→ O(Y )→ O(Y ×X Y )→ O(Y ×X Y ×X Y )→ · · ·
(where we omit the subscripts of the structure sheaf O for simplicity) is exact.

Proof. This is essentially [Niz08, Lem. 3.28], based on the idea in [Kat21, Lem.
3.4.1]. Suppose that Y → X = Spa(R,R+) is associated with a Kummer homo-
morphism u : P → Q as in Proposition 4.1.6. Then C•(Y/X) is already known to
be exact at the first three terms; and

O(Y ×X Y ×X · · · ×X Y ) ∼= O(Y )⊗R R[G]⊗R R[G] · · · ⊗R R[G],

where G = Qgp/ugp(P gp), in which case we can write the differentials of C•(Y/X)
explicitly and construct a contracting homotopy for C•(Y/X), by the same argu-
ment as in the proof of [Niz08, Lem. 3.28]. �

We emphasize that Lemma 4.3.2 also works for standard Kummer covers that
are not necessarily Kummer étale.

Proof of Theorem 4.3.1. (1) It suffices to prove that OXkét
is a sheaf, in which

case O+
Xkét

also is, because

O+
Xkét

(U) = O+
U (U) = {f ∈ OXkét

(U) = OU (U) : |f(x)| ≤ 1, for all x ∈ U},
exactly as in [SW20, Prop. 3.1.7]. Since the sheafiness for the étale topol-
ogy is known for all locally noetherian adic spaces, by Lemma 4.2.6, the
statement is reduced to Lemma 4.3.2.



LOGARITHMIC ADIC SPACES: SOME FOUNDATIONAL RESULTS 53

(2) By Propositions 2.3.13 and A.10, we may reduce to the case where X is
affinoid with a global sharp fs chart P . By Lemma 4.2.6, any Kummer
étale covering {Ui → X}i∈I of X admits some refinement {Vj → X}j∈J as

finite Kummer étale covering such that {Vj ×X X
1
m → X

1
m }j∈J is an étale

covering, for some m, and such that each Vj×XX
1
m → Vj is a composition

of étale morphisms and standard Kummer étale covers. Thus, by Lemma
4.3.2, the Čech complex

O(X)→ O(X
1
m )→ O(X

1
m ×X X

1
m )→ · · ·

is exact. As a result, by Proposition A.10, the Čech complex

O(X)→ ⊕j O(Vj)→ ⊕j,j′ O(Vj ×X Vj′)→ · · ·
is also exact, as desired. �

Corollary 4.3.3. Let X be a locally noetherian fs log adic space. Consider the
natural projections of sites εan : Xkét → Xan and εét : Xkét → Xét. Then we have
canonical isomorphisms OXan

∼→ Rεan,∗(OXkét
) and OXét

∼→ Rεét,∗(OXkét
). As a

result, the pullback functor from the category of vector bundles on Xan (resp. Xét)
to the category of OXkét

-modules is fully faithful (cf. Proposition A.10).

Proposition 4.3.4. Let X be a locally noetherian fs log adic space. Then the
presheaf MXkét

assigning U 7→ MU (U) is a sheaf on Xkét. In particular, we also

have a canonical isomorphism εét,∗(MXkét
)
∼→MX .

Proof. The proof is similar to [Kat21, Lem. 3.5.1]. SinceMX is already a sheaf on
the étale topology, by replacing X with its strict localization at a geometric point
x, it suffices to show the exactness of

0→MX(X)→MY (Y ) ⇒MY×XY (Y ×X Y ),

where X = Spa(R,R+) admits a chart modeled on a sharp fs monoid P ∼=MX,x,
for some strictly local ring R (see Proposition 2.3.13); and where Y → X is a
standard Kummer étale cover with a Kummer chart u : P → Q with a sharp Q
such that the order of G := coker(ugp) is invertible in R (see Lemma 4.1.10). Note
that P is also sharp, because u is injective (see Definition 4.1.1).

Let R′ := OY (Y ) and R′′ := OY×XY (Y ×X Y ). By Definition 4.1.8 and
Proposition 4.1.6, we have R′ ∼= R⊗̂f1,R〈P 〉,f2

R〈Q〉, where f1 : R〈P 〉 → R and
f2 : R〈P 〉 → R〈Q〉 are induced by the charts. By Proposition 4.1.6, we have

R′′ ∼= R⊗̂R〈P 〉R〈(Q⊕P Q)sat〉 ∼= R⊗̂R〈P 〉R〈Q⊕G〉 ∼= R′[G].

Let I (resp. I ′, resp. I ′′) be the ideal of R (resp. R′, resp. R′′) generated by the
image of P \ {0} (resp. Q \ {0}, resp. Q \ {0}), which is a proper ideal because P
and Q are sharp. Since I is contained in the maximal ideal of the strictly local
ring R, and since u : P → Q is Kummer, I ′ must be contained in all maximal
ideals of R′. The canonical morphism R/I → R′/I ′ is an isomorphism, because
it is induced by compatibly completing both sides of the canonical isomorphism
R⊗f1,R〈P 〉,f3

R
∼→ (R⊗f1,R〈P 〉,f2

R〈Q〉)⊗f5,R〈Q〉,f4
R, where:

• f1 : R〈P 〉 → R and f2 : R〈P 〉 → R〈Q〉 are given by the charts, as above;
• f3 : R〈P 〉 → R and f4 : R〈Q〉 → R are R-algebra homomorphisms defined

by sending nonzero elements of P and Q to 0, respectively; and
• f5 : R〈Q〉 → R⊗f1,R〈P 〉,f2

R〈Q〉 is the pullback of f1 under f2.
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Since I ′ is contained in all maximal ideals of R′, this forces R′ to be local. Since
R→ R′ is finite (by Proposition 4.1.6(1)), R′ is strictly local as R is.

Let V (resp. V ′, resp. V ′′) be the subgroup of elements in R× (resp. (R′)×, resp.
(R′′)×) congruent to 1 modulo I (resp. I ′, resp. I ′′). Since R and R′ are strictly
local, and since R′′ ∼= R′[G], where the order of G is invertible in R and hence in
R′, we have compatible canonical isomorphisms

R×/V
∼→ (R/I)×,

(R′)×/V ′
∼→ (R′/I ′)× ∼= (R/I)×,

and
(R′′)×/V ′′

∼→ (R′′/I ′′)× ∼= ((R′/I ′)[G])× ∼= ((R/I)[G])×.

By Lemma 4.3.2, we know that

0→ R→ R′ ⇒ R′′

is exact. Since the injection R→ R′ is finite, we can identify R as a subring of R′

over which R′ is integral. Hence, it is elementary that R× = (R′)× ∩R, and

0→ R× → (R′)× ⇒ (R′′)×

is exact. Moreover, we have I = I ′ ∩R and V = V ′ ∩R×, and

0→ V → V ′ ⇒ V ′′

is also exact. By some diagram chasing, it suffices to show the exactness of

0→MX(X)/V →MY (Y )/V ′ ⇒MY×XY (Y ×X Y )/V ′′.

SinceMX(X)→ R andMY (Y )→ R′ are associated with the pre-log structures
P → R and Q → R′, since u : P → Q is a Kummer chart, and since P and Q are
sharp, we have compatible isomorphisms

MX(X)/V ∼= (R×/V )⊕ P ∼= (R/I)× ⊕ P
and

MY (Y )/V ′ ∼= ((R′)×/V ′)⊕Q ∼= (R/I)× ⊕Q.
Since the log structure MY×XY (Y ×X Y ) → R′′ is associated with the pre-log
structure Q⊕G→ R′′ ∼= R′[G] induced by the same Q→ R′ as above and by the
identity map G→ G, we have

MY×XY (Y ×X Y )/V ′′ ∼= ((R/I)[G])× ⊕Q.
Accordingly, the above sequence can be identified with

0→ (R/I)× ⊕ P → (R/I)× ⊕Q⇒ ((R/I)[G])× ⊕Q,
where the double arrows are (x, q) 7→ (x, q) and (x, q) 7→ (xeq, q), with q denoting
the image of q in G = Qgp/ugp(P gp). Thus, it suffices to note that the sequence

0→ P → Q⇒ Q⊕G,
where the double arrows are q 7→ (q, 0) and q 7→ (q, q), is exact. �

As a byproduct, let us show that representable presheaves are sheaves on Xkét.
The log scheme version can be found in [Ill02, Thm. 2.6], which can be further
traced back to [Kat21, Thm. 3.1].

Proposition 4.3.5. Let Y → X be a morphism of locally noetherian fs log adic
spaces. Then the presheaf MorX( · , Y ) on Xkét is a sheaf.
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Proof. We follow the idea of [Kat21, Thm. 3.1]. It suffices to show that the presheaf
Mor( · , Y ) on Xkét is a sheaf, because MorX( · , Y ) is just the sub-presheaf of
sections of Mor( · , Y ) with compatible morphisms to X. We may assume that
Y = Spa(R,R+) is affinoid with a chart modeled on a sharp fs monoid P .

We claim that the presheaves F : T 7→ Hom
(
(R,R+

)
, (OT (T ),O+

T (T ))
)
, G :

T 7→ Hom
(
P,MT (T )

)
, H : T 7→ Hom

(
P,OT (T )

)
on Xkét, where the first Hom

is in the category of Huber pairs, and where the latter two are in the category
of monoids, are all sheaves. As for the case of F , it suffices to show that F ′ :
T 7→ Homcont

(
R,OT (T )

)
is a sheaf, where the homomorphisms are continuous

ring homomorphisms; or that F ′′ : T 7→ Hom
(
R,OT (T )

)
is a sheaf, where we

consider all ring homomorphisms. Consider any presentation R ∼= Z[Ti]i∈I/(fj)j∈J
of the ring R, so that F ′′(T ) ∼= ker(OT (T )I → OT (T )J). Then F ′′ is a sheaf
on Xkét as T 7→ OT (T ) is (see Theorem 4.3.1). As for the cases of G and H,
consider any presentation Zr≥0 ⇒ Zs≥0 → P → 0 of the finitely generated monoid

P , which exists by [Ogu18, Thm. I.2.1.7]. Then G(T ) (resp. H(T )) is the equalizer
of MT (T )s ⇒ MT (T )r (resp. OT (T )s ⇒ OT (T )r). Hence, both presheaves are
sheaves on Xkét as T 7→ MT (T ) and T 7→ OT (T ) are (see Theorem 4.3.1 and
Proposition 4.3.4).

By the claim just established, since Mor( · , Y ) (when Y = Spa(R,R+) is modeled
on P as above) is the fiber product of the morphisms F → H and G → H induced
by P → R and MT (T )→ OT (T ), respectively, it is also a sheaf, as desired. �

In the remainder of this subsection, we study coherent sheaves on the Kummer
étale site.

Definition 4.3.6. Let X be a locally noetherian fs log adic space.

(1) An OXkét
-module F is called an analytic coherent sheaf if it is isomorphic

to the inverse image of a coherent sheaf on the analytic site of X.
(2) AnOXkét

-module F is called a coherent sheaf if there exists a Kummer étale
covering {Ui → X}i such that each F|Ui is an analytic coherent sheaf.

The following results are analogues of [Kat21, Prop. 6.5], the proof of which is
completed in [Niz08, Prop. 3.27].

Theorem 4.3.7. Suppose that X is an affinoid noetherian fs log adic space. Then
Hi(Xkét,F) = 0, for all i > 0, in the following two situations:

(1) F is an analytic coherent OXkét
-module.

(2) F is a coherent OXkét
-module, and X is over an affinoid field (k, k+).

Proof. (1) As in the proof of Theorem 4.3.1, by Lemma 4.2.6 and Proposition
A.10, it suffices to show the exactness of the Čech complex

C•F (Y/X) : 0→ F(X)→ F(Y )→ F(Y ×X Y )→ · · · ,
where X is affinoid with a sharp fs chart P , and where Y → X is a standard
Kummer cover. By Proposition 4.1.6, the morphisms Y → X, Y ×X Y →
X, Y ×X Y ×X Y → X, etc are finite, and hence

C•F (Y/X) ∼= C•(Y/X)⊗OX(X) F(X),

where C•(Y/X) is as in Lemma 4.3.2. Since the contracting homotopy used
in the proof of Lemma 4.3.2 (based on the proof of [Niz08, Lem. 3.28]) is
OX(X)-linear, C•F (Y/X) is also exact, as desired.
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(2) First assume that X is modeled on a sharp fs monoid P . By definition,
there exists a Kummer étale covering {Ui → X}i such that each F|Ui is
analytic coherent. By Lemma 4.2.6 and Proposition A.10, we may assume
that F|U is analytic coherent, where U = X

1
n for some n invertible in k.

Let G := ( 1
nP )gp/P gp. Since Hj

(
(U ×X · · ·×X U)két,F

)
= 0, for all j > 0,

by (1), it suffices to show that Hi
(
C•F (U/X)

)
= 0, for all i > 0. As in the

proof of Lemma 4.3.2, by Proposition 4.1.6,

OXkét
(U ×X · · · ×X U) ∼= OXkét

(U)⊗k k[G]⊗k · · · ⊗k k[G],

and we can identify the complex

F(U)→ F(U ×X U)→ F(U ×X U ×X U)→ · · ·
with the complex computing the group cohomology Hi

(
G,F(U)

)
. Since

|G| is invertible in k as n is, and since F(U) is a k-vector space, we have
Hi
(
G,F(U)

)
= 0, for all i > 0.

Let εét : Xkét → Xét denote the natural projection of sites. Then the
argument above shows that Rjεét,∗(F) = 0, for all j > 0, and that εét,∗(F)
is a coherent sheaf on Xét. Since these statements are étale local in na-
ture, they extend to all X considered in the statement of the theorem, by
Proposition 2.3.13. Thus, we have Hi(Xkét,F) ∼= Hi

(
Xét, εét,∗(F)

)
= 0, as

desired, by Proposition A.10. �

Kummer étale descent of objects (coherent sheaves, log adic spaces, etc) are
usually not effective, mainly because fiber products of Kummer étale covers do not
correspond to fiber products of structure rings. Here is a standard counterexample.

Example 4.3.8. Let k be a nonarchimedean field. As in Example 2.2.21, consider
the unit disc D = Spa(k〈T 〉,Ok〈T 〉) equipped with the log structure modeled on the
chart Z≥0 → k〈T 〉 : 1 7→ T . By Proposition 4.1.6, we have a Galois standard
Kummer étale cover fn : D → D corresponding to the chart Z≥0 → Z≥0 : 1 7→ n,
where n is invertible in k, with Galois group µn. Then the ideal sheaf I of the
origin, a µn-invariant invertible sheaf on D, does not descend via fn.

Kummer étale descent of morphisms are more satisfactory.

Proposition 4.3.9. Let X be a locally noetherian fs log adic space, and let f :
Y → X be a Kummer étale cover. Let pr1,pr2 : Y ×X Y → Y denote the two
projections. Suppose that E and F are analytic coherent OXkét

-modules; and that
g′ : f∗(E) → f∗(F) is a morphism on Y such that pr∗1(g′) = pr∗2(g′) on Y ×X Y .
Then there exists a unique morphism g : E → F such that f∗(g) = g′.

Proof. By Lemma 4.2.6 and Proposition A.10, we may assume that X is affinoid
and that Y → X is a standard Kummer cover. Let A := OX(X), B := OXkét

(Y ),
C := OXkét

(Y ×X Y ), M := E(X), and N := F(X). We need to show that

0→ HomA(M,N)→ HomB(B ⊗AM,B ⊗A N)→ HomC(C ⊗AM,C ⊗A N)

is exact, and where the third arrow is the difference between two pullbacks as usual.
Equivalently, we need to show that

0→ HomA(M,N)→ HomA(M,B ⊗A N)→ HomA(M,C ⊗A N)

is exact. By the left exactness of HomA(M, · ), we are reduced to showing that the
sequence 0 → N → B ⊗A N → C ⊗A N is exact. But this is just the first three
terms in the complex C•F (Y/X) in the proof of Theorem 4.3.7(1). �
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To wrap up the subsection, let us introduce a convenient basis for the Kummer
étale topology.

Lemma 4.3.10. Let X be a locally noetherian fs log adic space. Let B be the full
subcategory of Xkét consisting of affinoid adic spaces V with fs global charts. Then
B is a basis for Xkét, and we have an isomorphism of topoi X∼két

∼→ B∼.

Proof. By [AGV73, III, 4.1], it suffices to show that every object in Xkét has a
covering by objects in B. But this is clear. �

Lemma 4.3.11. Let X be a locally noetherian fs log adic space, and let B be as
in Lemma 4.3.10. Suppose that F is a rule that functorially assigns to each V ∈ B
a finite OXkét

(V )-module F(V ) such that F(V ) ⊗OV (V ) OV ′(V ′)
∼→ F(V ′) for all

V ′ → V that are either étale morphisms or standard Kummer étale covers. Then
F defines an analytic coherent sheaf on Xkét.

Proof. This follows from Propositions 4.3.9 and A.10, and Lemma 4.3.10. �

4.4. Descent of Kummer étale covers.

Definition 4.4.1. Let X be a locally noetherian fs log adic space X. Let Xfkét

denote the full subcategory of Xkét consisting of log adic spaces that are finite
Kummer étale over X. Let Fkét denote the fibered category over the category of
locally noetherian fs log adic spaces such that Fkét(X) = Xfkét.

The goal of this subsection is to show that Kummer étale covers satisfy effective
descent in Fkét. We first study Xfkét when X is as in Examples 2.2.8 and 2.2.9.

Definition 4.4.2. (1) A log geometric point is a log point ζ = (Spa(l, l+),M, α)
(cf. Examples 2.2.8 and 2.2.9) such that:
(a) l is a complete separably closed nonarchimedean field; and
(b) if M := Γ(Spa(l, l+),M), then M = M/l× is uniquely n-divisible (see

Definition 2.2.14) for all positive integers n invertible in l.
(2) Let X be a locally noetherian fs log adic space. A log geometric point of X

is a morphism of log adic spaces η : ζ → X from a log geometric point ζ.
(3) Let X be a locally noetherian fs log adic space. A Kummer étale neighbor-

hood of a log geometric point η : ζ → X is a lifting of η to some composition

ζ → U
φ→ X in which φ is Kummer étale.

Construction 4.4.3. For each geometric point ξ : Spa(l, l+) → X, let us con-

struct some log geometric point ξ̃ above it (i.e., the morphism ξ̃ → X of underlying
adic spaces factors through ξ → X) as follows. By Proposition 2.3.13, up to étale
localization on X, we may assume that X admits a chart modeled on a sharp fs
monoid P , so that we have a strict closed immersion X → X〈P 〉 as in Remark
2.3.3. We equip Spa(l, l+) with the log structure P log associated with the pre-log
structure given by the composition of P → OX(X)→ l, so that (Spa(l, l+), P log) is
an fs log point with a chart given by P → l. We shall still denote this fs log point
by ξ. For each positive integer m, let P ↪→ 1

mP be as in Definition 4.1.5. Consider

ξ( 1
m ) := (Spa(l, l+)×X〈P 〉 X〈 1

mP 〉)red,

equipped with the natural log structure modeled on 1
mP . Note that ξ( 1

m ) might differ

from the ξ
1
m in Definition 4.1.5, because we are taking the reduced subspace, so that
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the underlying adic space of ξ( 1
m ) is still isomorphic to Spa(l, l+). Then

ξ̃ := lim←−
m

ξ( 1
m )

where the inverse limit runs through all positive integers m invertible in l, is a log

geometric point above ξ. The underlying adic space of ξ̃ is isomorphic to Spa(l, l+),
endowed with the natural log structure modeled on

PQ≥0
:= lim−→

m

1
mP,

where the direct limit runs through all positive integers m invertible in l.

Lemma 4.4.4. Let ζ → X be a log geometric point of a locally noetherian fs log
adic space. Then the functor Sh(Xkét) → Sets : F 7→ Fζ := lim−→F(U) from the
category of sheaves on Xkét to the category of sets, where the direct limit is over
Kummer étale neighborhoods U of ζ, is a fiber functor. The fiber functors defined
by log geometric points form a conservative system.

Proof. By Proposition 2.3.32 and Remark 4.1.4, the category of Kummer étale
neighborhood of ζ is filtered, and hence the first statement follows. Since every
point of X admits some geometric point and hence some log geometric point above
it (see Construction 4.4.3), and since every object U in Xkét is covered by liftings
of log geometric points of X, the second statement also follows. �

Definition 4.4.5. For each profinite group G, let G-FSets denote the category of
finite sets (with discrete topology) with continuous actions of G.

Definition 4.4.6. Let l be a separably closed field. For each positive integer m,
let µm(l) denote the group of m-th roots of unity in l. Let µ∞(l) := lim−→m

µm(l)

and Ẑ′(1)(l) := lim←−m µm(l), where the limits run through all positive integers m

invertible in l. When char(l) = 0, we shall write Ẑ(1)(l) instead of Ẑ′(1)(l). When
there is no risk of confusion in the context, we shall simply write µm, µ∞, and

Ẑ′(1), without the symbols (l).

Proposition 4.4.7. Let ξ = (Spa(l, l+),M) be an fs log point with l complete (by

our convention) and separably closed. Let M := Mξ and so M ∼= M/l×. Let ξ̃
be a log geometric point constructed as in Construction 4.4.3. Then the functor

Fξ̃ : Y 7→ Homξ(ξ̃, Y ) induces an equivalence of categories

ξfkét
∼= Hom

(
M

gp
, Ẑ′(1)(l)

)
-FSets.

Proof. For simplicity, we shall omit the symbols (l) as in Definition 4.4.6. Let P :=

M , a sharp and fs monoid. By Lemma 2.1.10, we have some splitting M
∼→ l×⊕P

such that P
1⊕Id→ l× ⊕ P ∼→M defines a chart for ξ. For each m invertible in l, the

cover ξ( 1
m ) → ξ is given by M

∼→ l× ⊕ P Id⊕[m]→ l× ⊕ P ∼→M . Note that any finite
Kummer étale cover of ξ is a finite disjoint union of fs log adic spaces of the form

ξQ := ξ ×ξ〈P 〉 ξ〈Q〉,
where P → Q is a Kummer homomorphism of sharp fs monoids whose cokernel is
annihilated by some integer invertible in l. We have

Fξ̃(ξQ) = Morξ(ξ̃, ξQ) ∼= Homl×⊕P (l× ⊕Q, l× ⊕ PQ≥0
) ∼= Hom(Qgp/P gp,µ∞).
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The last group has a natural transitive action of

Autξ(ξ̃) ∼= HomP (PQ≥0
, l×) ∼= Hom

(
(PQ≥0

)gp/P gp,µ∞
)

∼= lim←−
m

Hom
(
P gp ⊗Z ( 1

mZ/Z),µm
) ∼= Hom

(
P gp, Ẑ′(1)

)
.

Hence, Fξ̃ is indeed a functor from ξfkét to Hom
(
M

gp
, Ẑ′(1)

)
-FSets.

Let us verify that Fξ̃ is fully faithful. By working with connected components,

it suffices to show that, for any Q1 and Q2, the natural map

(4.4.8) Morξ(ξQ1
, ξQ2

)→ Hom
(
Hom(Qgp

1 /P gp,µ∞),Hom(Qgp
2 /P gp,µ∞)

)
is bijective. Note that Morξ(ξQ1

, ξQ2
) ∼= HomP (Q2, l

×⊕Q1). Since PQ≥0
is uniquely

divisible, the sharp fs Q1 and Q2 monoids can be viewed as submonoids of PQ≥0
. If

Q2 6⊂ Q1, then both sides of (4.4.8) are zero. Otherwise, Q2 ⊂ Q1, and (4.4.8) sends
the morphism induced by Q2 ↪→ Q1 in HomP (Q2, l

× ⊕Q1) to the homomorphism
induced by restriction from Qgp

1 /P gp to Qgp
2 /P gp. Consequently, (4.4.8) is bijective,

because both sides of (4.4.8) are principally homogeneous under compatible actions
of Autξ(ξQ2) ∼= Hom

(
Qgp

2 /P gp,µ∞
)
.

Finally, let us verify that Fξ̃ is essentially surjective. Since any discrete finite

set S with a continuous action of Hom
(
P gp, Ẑ′(1)

) ∼= Hom
(
(PQ≥0

)gp/P gp,µ∞
)

is
a disjoint union of orbits, we may assume the action on S is transitive. Then S
is a quotient space of Hom

(
(PQ≥0

)gp/P gp,µ∞
)
, which corresponds by Pontryagin

duality to a finite subgroup G ⊂ (PQ≥0
)gp/P gp. Let Q denote the preimage of G

in PQ≥0
. Then Qgp/P gp ∼= G and Fξ̃(ξQ) ∼= S, as desired. �

Proposition 4.4.9. Let (X,MX) be a locally noetherian fs log adic space. Let
ξ = Spa(l, l+) be a geometric point of X, and let X(ξ) be the strict localization of
X at ξ, with its log structure pulled back from X. Without loss of generality, let us
assume that l ∼= κ(x), the completion of a separable closure of the residue field κ(x)
of OX,x, for some x ∈ X. Let M :=MX,ξ and so M ∼= M/l×. Let us view ξ and
X(ξ) as log adic spaces by equipping them with the log structures pulled back from

X. Let ξ̃ be the log geometric point over ξ constructed as in Construction 4.4.3.

Then the functor Hξ̃ : Y 7→ MorX(ξ̃, Y ) induces an equivalence of categories

X(ξ)fkét
∼= Hom

(
M

gp
, Ẑ′(1)(l)

)
-FSets.

In addition, we have Hξ̃ = Fξ̃ ◦ ι
−1, where Fξ̃ is as in Proposition 4.4.7, and

ι−1 : X(ξ)fkét → ξfkét is the natural pullback functor defined by ι : ξ → X(ξ).

Note that, if x is an analytic point of X, then Proposition 4.4.9 follows imme-
diately from Proposition 4.4.7, because ξ ∼= X(ξ) in this case. Nevertheless, the
proof below works for non-analytic points as well.

Proof of Proposition 4.4.9. It suffices to show that ι−1 is an equivalence of cate-
gories. Write P = M and X(ξ) = Spa(R,R+). By Lemma 2.1.10, we can choose

a splitting R× ⊕ P ∼→ M such that P
1⊕Id→ R× ⊕ P ∼→ M defines a chart for X(ξ).

Note that objects in X(ξ)fkét (resp. ξfkét) are finite disjoint unions of fs log adic
spaces of the form

(4.4.10) X(ξ)Q := X(ξ)×X(ξ)〈P 〉 X(ξ)〈Q〉
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(resp. ξQ), where P → Q is a Kummer homomorphism of sharp monoids. Then
ι−1 sends X(ξ)Q to ξQ, and hence is essentially surjective. To see that ι−1 is fully
faithful, it suffices to show that the canonical map

(4.4.11) MorX(ξ)(X(ξ)Q1
, X(ξ)Q2

)→ Morξ(ξQ1
, ξQ2

)

is bijective. By definition, we have X(ξ)Qi
∼= Spa(RQi , R

+
Qi

), for i = 1, 2, where

RQi = R⊗R〈P 〉 R〈Q〉 ∼= R⊗R[P ] R[Q] are also strictly local rings with residue field
l. Therefore,

MorX(ξ)(X(ξ)Q1
, X(ξ)Q2

) ∼= HomP (Q2, R
×
Q1
⊕Q1)

∼= HomP (Q2, l
× ⊕Q1) ∼= Morξ(ξQ1 , ξQ2),

and hence the map (4.4.11) is bijective, as desired. �

Now, we are ready to prove the main result of this subsection; i.e., Kummer étale
covers satisfy effective descent in the fibered category Fkét.

Theorem 4.4.12. Let X be a locally noetherian fs log adic space, and let f : Y → X
be a Kummer étale cover. Let pr1,pr2 : Y ×X Y → Y denote the two projections.

Suppose that Y̆ ∈ Yfkét and that there exists an isomorphism pr−1
1 (Y̆ )

∼→ pr−1
2 (Y̆ )

satisfying the usual cocycle condition. Then there exists a unique X̆ ∈ Xfkét (up to

isomorphism) such that Y̆ ∼= X̆ ×X Y .

Proof. By étale descent (see Proposition A.10), by étale localization on X, it suf-
fices to prove the theorem in the case where X is affinoid with a sharp fs chart P ,
and where Y → X is a standard Kummer étale cover induced by a Kummer ho-
momorphism of sharp monoids u : P → Q, with G := Qgp/ugp(P gp) a finite group
of order invertible in OX . By Proposition 4.1.6, up to further étale localization on
X, we may assume that the morphism Y → X is a Galois cover with Galois group
Γ := Hom(G,OX(X)×); that |G| is invertible in OX , and OX(X)× contains all the
|G|-th roots of unity; and that Y ×X Y ∼= ΓX×X Y . In this case, the descent datum

is equivalent to an action of Γ on Y̆ over X lifting the action of Γ on Y over X. Let
us write X = (Spa(R,R+),MX) and Y̆ = (Spa(S̆, S̆+),MY̆ ). By Lemma 4.1.7,

(R̆, R̆+) := (S̆Γ, (S̆+)Γ) is a Huber pair, and X̆ := Spa(R̆, R̆+) is a noetherian adic

space finite over X. Moreover, the morphism Y̆ → X̆ is finite, open, surjective,
and invariant under the Γ-action on Y̆ . The étale sheaf of monoidsMX̆ defined by

MX̆(U) :=
(
MY̆ (Y̆ ×X̆ U)

)Γ
, for each U ∈ X̆ét, is fine and saturated, and defines

a log structure of X̆. We claim that the log adic space X̆ thus obtained gives the
desired descent.

Let us first verify that the canonical morphism Y̆ → X̆ ×X Y induced by the
structure morphisms Y̆ → X̆ and Y̆ → Y is an isomorphism. Since the morphism
is between spaces that are finite over X, and since the formation of Γ-invariants is
compatible with (strict) base change (as |Γ| is invertible in OX), we may assume
that X = X(ξ) is strictly local, and so is Y ∼= X(ξ)Q = X(ξ) ×X(ξ)〈P 〉 X(ξ)〈Q〉
(as in the proof of Proposition 4.4.9). Without loss of generality, we may assume

that Y̆ ∼= X(ξ)Q̆ := X(ξ) ×X(ξ)〈P 〉 X(ξ)〈Q̆〉 for some Kummer homomorphism of

fs monoids ŭ : P → Q̆ (as in (4.4.10), but without assuming that Q̆ is sharp),

which is the composition of u : P → Q with some homomorphism Q → Q̆. Un-

der the equivalence of categories Hξ̃ : X(ξ)fkét
∼= Hom

(
P gp, Ẑ′(1)(l)

)
-FSets as in
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Proposition 4.4.9, Y̆ → X corresponds to the set Γ̆ := Hom(Q̆gp/ŭgp(P gp),µ∞)
with a Γ-action; Y → X corresponds to Γ itself (with its canonical Γ-action); and

Y̆ → Y corresponds to a surjective Γ-equivariant map Γ̆ � Γ. Since Y̆ → X is
Kummer, we have (MΓ

Y̆
)gp = (Mgp

Y̆
)Γ, and hence X̆ ∼= X(ξ)P̆ for the fs monoid

P̆ = Q̆ ∩ P̆ gp such that Hom(P̆ gp/ŭgp(P ),µ∞) ∼= Γ̆/Γ, by explicitly computing

R̆ = S̆Γ ∼= (R ⊗R[P ] R[Q̆])Γ using the identifications in the proof of Proposition

4.4.9. In particular, X̆ → X is finite Kummer étale, and Y̆ → X̆ corresponds
to the quotient Γ̆ → Γ̆/Γ under Hξ̃. Since Γ̆ is an abelian group, the canonical

map Γ̆→ (Γ̆/Γ)× Γ is bijective, and hence the corresponding canonical morphism

Y̆ → X̆ ×X Y is indeed an isomorphism.
Consequently, Y̆ ∼= X̆ ×X Y ∼= X̆ ×X̆〈P 〉 X̆〈Q〉 → X̆ is finite Kummer étale.

By construction, X̆ → X is also finite Kummer (firstly by assuming that X is
strictly local as above, and then by extending the identifications of charts over
étale neighborhoods of X in general). By Lemma 4.1.13, it remains to show that

X̆ → X is log étale. Since Y̆ → Y is log étale, and since Y → X is a Kummer étale
covering, this follows from Proposition 4.2.8, as desired. �

Corollary 4.4.13. Let X be a locally noetherian fs log adic space, and let f : Y →
X be a finite Kummer étale cover. Let Γ be a finite group which acts on Y by
morphisms over X. Then the canonical morphisms Y → Z := Y/Γ → X induced
by f (by Lemma 4.1.7) are both finite Kummer étale covers.

Proof. By Lemma 4.1.7, both morphisms Y → Z and Z → X are finite, and Y → Z
is finite Kummer. By Lemma 4.1.13 and Proposition 4.1.15, it suffices to show that

Z → X is finite Kummer étale. Then the first projection f̆ : Y̆ := Y ×X Y → Y is
a pullback of Y → X, which inherits an action of Γ. By [Hub96, Lem. 1.7.6], under
the noetherian hypothesis, the formation of quotients by Γ as in Lemma 4.1.7
is compatible with base changes under étale morphisms of affinoid adic spaces.
By Proposition 4.1.6 and Remark 4.1.18, up to étale localization on X, we may
assume that Y → X is a composition of a finite étale morphism f1 and a standard
Kummer étale cover f2 as in Proposition 4.1.6, in which case Y̆ is a disjoint union

of sections of f̆ . Then Γ acts on Y̆ by permuting such sections, and we have a
quotient Z̆ := Y̆ /Γ → Y , which is clearly finite Kummer étale. Moreover, the

pullbacks of Z̆ → Y to Y̆ along the two projections are isomorphic to each other
by interchanging the factors, and hence Z̆ → Y descends to a finite Kummer étale
cover of X, by Theorem 4.4.12. We claim that this cover is canonically isomorphic

to Z → X. Since the set of sections of f̆ : Y̆ → Y is a disjoint union of subsets
formed by the sections of pullback of the finite étale morphism f1, we can reduce the
claim to the extremal cases where either f = f1 is finite étale or f = f2 is standard
Kummer étale. In the former case, the claim follows from the usual theory for finite
étale covers of schemes, as in [Gro71, V]. In the latter case, the claim follows from
Proposition 4.1.6(4). �

Definition 4.4.14. Let X be a locally noetherian fs log adic space, and let Λ be
a commutative ring.

(1) A sheaf F on Xkét is called a constant sheaf of sets (resp. constant sheaf of
Λ-modules) if it is the sheafification of a constant presheaf given by some
set S (resp. some Λ-module M).
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(2) A sheaf F on Xkét is called locally constant if there exists a Kummer étale
covering {Ui}i∈I → X such that all F|Ui are constant sheaves. We denote
by Loc(Xkét) the category of locally constant sheaves of finite sets on Xkét.

Theorem 4.4.15. Let X be a locally noetherian fs log adic space. The functor

φ : Xfkét → Loc(Xkét) : Y 7→ MorX( · , Y )

is an equivalence of categories. Moreover:

(1) Fiber products exist in Xfkét and Loc(Xkét), and φ preserves fiber products.
(2) Categorical quotients by finite groups exist in Xfkét and Loc(Xkét), and φ

preserves such quotients.

Proof. By Proposition 4.3.5, representable presheaves on Xkét are sheaves. By
Proposition 4.1.6 and Remark 4.1.18, any Y ∈ Xfkét is Kummer étale locally (on
X) a disjoint union of finitely many copies of X. Hence, MorX( · , Y ) is indeed a
locally constant sheaf of finite sets, and the functor φ is defined. The functor φ
is fully faithful for formal reasons. Since any locally constant sheaf of finite set is
Kummer étale locally represented by objects in Xfkét, these objects glue to a global
object Y by Theorem 4.4.12 and the full faithfulness of φ. This shows that φ is also
essentially surjective, as desired. As for the statements (1) and (2), by Kummer
étale localization, we just need to note that the statements become trivial after
replacing the source and target of the functor φ with the categories of finite disjoint
unions of copies of X and of constant sheaves of finite sets, respectively. �

Next, let us define the Kummer étale fundamental groups.

Lemma 4.4.16. Let X be a connected locally noetherian fs log adic space, and
η : ζ → X a log geometric point. Let FSets denote the category of finite sets.
Consider the fiber functor

(4.4.17) F : Xfkét → FSets : Y 7→ Yζ := MorX(ζ, Y ).

Then Xfkét together with the fiber functor F is a Galois category.

Proof. We already know that the final object, fiber products (see Proposition
4.1.14), categorical quotients by finite groups (see Corollary 4.4.13), and finite co-
products exist in Xfkét (and FSets). It remains to verify the following conditions:

(1) F preserves fiber products, finite coproducts, and quotients by finite groups.
(2) F reflexes isomorphisms (i.e., F (f) being an isomorphism implies f also

being an isomorphism).

(We refer to [Gro71, V, 4] for the basics on Galois categories.)
As for condition (1), since F is defined Kummer étale locally at the log geometric

point ζ, it suffices to verify the condition after restricting F to the category of finite
disjoint unions of X, in which case the condition clearly holds.

As for condition (2), note that F factors through the equivalence of categories φ
in Theorem 4.4.15 and induces the stalk functor

Loc(Xkét)→ FSets : F 7→ Fζ := lim−→F(U),

where the direct limit is over Kummer étale neighborhoods U of ζ. Since X is
connected, the stalk functors at any two log geometric points are isomorphic. Thus,
whether f is an isomorphism can be checked at just one stalk. �
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Corollary 4.4.18. Let X and ζ → X be as in Lemma 4.4.16. Then the fiber
functor F in (4.4.17) is prorepresentable. Let πkét

1 (X, ζ) be the automorphism group
of F . Then F induces an equivalence of categories

(4.4.19) Xfkét
∼→ πkét

1 (X, ζ)-FSets,

which is the composition of the equivalence of categories φ in Theorem 4.4.15 with
the equivalence of categories

(4.4.20) Loc(Xkét)
∼→ πkét

1 (X, ζ)-FSets

induced by the stalk functor F 7→ Fζ .

Remark 4.4.21. In Corollary 4.4.18, since stalk functors at any two log geometric
points ζ and ζ ′ are isomorphic, the fundamental groups πkét

1 (X, ζ) and πkét
1 (X, ζ ′)

are isomorphic. We shall omit ζ from the notation when the context is clear.

Corollary 4.4.22. Let (X,MX), ξ = Spa(l, l+), X(ξ), and M :=MX,ξ be as in
Proposition 4.4.9. In particular, the underlying adic spaces of ξ (resp. X(ξ)) is a
geometric point (resp. a strictly local adic space). Then we have

πkét
1

(
X(ξ)

) ∼= πkét
1 (ξ) ∼= Hom

(
M

gp
, Ẑ′(1)(l)

)
.

Since M is sharp and fs, we have M
gp ∼= Zr for some r, and we obtain a non-

canonical isomorphism πkét
1 (ξ) ∼=

(
Ẑ′(1)(l)

)r
.

Remark 4.4.23. For any connected locally noetherian fs log adic space X and any
log geometric point ξ of X, the natural inclusion from the category of finite étale
covers to that of finite Kummer étale covers is fully faithful, and hence induces a
canonical surjective homomorphism πkét

1 (X, ξ)→ πét
1 (X, ξ) (see [Gro71, V, 6.9]).

Example 4.4.24. Let (k, k+) be an affinoid field, and let s = (Spa(k, k+),M) be
an fs log point as in Example 2.3.14. Let s = (Spa(K,K+),M) be a geometric point
over s, where K is the completion of a separable closure ksep of k, and let s̃ be a
log geometric point over s. Then we have a canonical short exact sequence

1→ πkét
1 (s, s̃)→ πkét

1 (s, s̃)→ πét
1 (s, s)→ 1,

where πkét
1 (s, s̃) ∼= Hom

(
M

gp
, Ẑ′(1)(ksep)

)
(as we have seen in Corollary 4.4.22)

and πét
1 (s, s) ∼= Gal(ksep/k). If s is a split fs log point as in Example 2.3.15, then

any choice of a Gal(ksep/k)-equivariant splitting of M → M ∼= M/K× also splits
this exact sequence, inducing an isomorphism

πkét
1 (s, s̃)

∼→ Hom
(
M

gp
, Ẑ′(1)(ksep)

)
o Gal(ksep/k).

Example 4.4.25. Let (k, k+) be an affinoid field. Consider 0 = Spa(k, k+), the
point of Spa(k〈Z≥0〉, k+〈Z≥0〉) ∼= Spa(k〈T 〉, k+〈T 〉) defined by T = 0. Let us denote
by 0∂ the log adic space with underlying adic space 0 and with its log structure
pulled back from Spa(k〈Z≥0〉, k+〈Z≥0〉), which is the split fs log point (X,MX) =

(Spa(k, k+),O×Xét
⊕ (Z≥0)X) as in Example 2.3.15. Let 0

∂
and 0̃∂ be defined over

0∂ as in Example 4.4.24 (with s = 0∂ there). Then

πkét
1 (0∂ , 0̃∂) ∼= Ẑ′(1)(ksep) o Gal(ksep/k).

For each n invertible in k, and each r ≥ 1, we have a Z/n-local system J∂r,n on 0∂két

defined by the representation of πkét
1 (0∂ , 0̃∂) on (Z/n)r such that a topological gener-

ator of Ẑ′(1)(ksep) acts as the standard upper triangular principal unipotent matrix
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Jr and Gal(ksep/k) acts diagonally on (Z/n)r and trivially on ker(Jr − 1). (The

local system thus defined is independent of the choice of the generator of Ẑ′(1)(ksep)
up to isomorphism.) Moreover, for each m ≥ 1 with m invertible in k, we also have

the Z/n-local system K∂m,n defined by the representation of πkét
1 (0∂ , 0̃∂) induced

from the trivial representation of mẐ′(1)(ksep) o Gal(ksep/k) on Z/n. (These local
systems will be useful for defining quasi-unipotent nearby cycles in Section 6.4.)

Example 4.4.26. Let s, s, and s̃ be as in Example 4.4.24, and let f : X → s be
any strict lft morphism of log adic spaces. Let ξ be a geometric point of X above

s, and let ξ̃ be a log geometric point above ξ and s̃. Let X(ξ) denote the strict
localization of X at ξ. Then, by Proposition 4.4.9 and Corollary 4.4.22, we have

πkét
1 (X(ξ), ξ̃) ∼= πkét

1 (s, s̃) ∼= Hom
(
M

gp
, Ẑ′(1)(ksep)

)
.

Lemma 4.4.27. Let (X,MX), ξ = Spa(l, l+), X(ξ), x, and M :=MX,ξ be as in
Proposition 4.4.9. Let εét : Xkét → Xét be the natural projection of sites, as before.
Then, for each sheaf F of finite abelian groups on Xkét, we have(

Riεét,∗(F)
)
ξ
∼= Hi

(
πkét

1 (ξ, ξ̃),Fξ̃
)
.

Proof. By definition, we have
(
Riεét,∗(F)

)
ξ
∼= lim−→Hi(Ukét,F), where the direct

limit is over the filtered category of étale neighborhoods iU : ξ → U in X. By
Proposition 2.3.13, up to étale localization, we may assume that X admits a chart
modeled on P := M . Consider the morphism i−1 : lim−→Ukét → xkét, where the

direct limit of sites lim−→Ukét is as in [AGV73, VI, 8.2.3], induced by the morphisms

i−1
U : Ukét → xkét. Since each Kummer étale covering of ξ can be further covered by

some standard Kummer étale covers induced by n-th multiple maps [n] : P → P ,
for some integers n ≥ 1 invertible in l, and since coverings of the latter kind are
in the essential image of i−1, by Proposition 4.4.7, we have an equivalence ξ∼két

∼=
lim←−U

∼
két of the associated topoi. Consequently, we also have lim−→Hi(Ukét,F) ∼=

Hi
(
ξkét, ξ

−1(F)
) ∼= Hi

(
πkét

1 (ξ, ξ̃),Fξ̃
)
, as desired. �

Let (X,MX) be a locally noetherian fs log adic space, and let MXkét
be as in

Proposition 4.3.4. For each positive integer n invertible in OX , let

µn,két := ker(O×Xkét

[n]→ O×Xkét
)

and

µn,ét := ker(O×Xét

[n]→ O×Xét
).

By Corollary 4.3.3, we have canonical isomorphisms

ε∗ét(µn,ét)
∼→ µn,két

and

µn,ét
∼→ εét,∗(µn,két).

We shall omit the subscripts “két” and “ét”, and write simply µn, when there is
no risk of confusion. Consider the sequence

1→ µn →M
gp
Xkét

[n]→Mgp
Xkét
→ 1

on Xkét, which is exact by comparing stalks at log geometric points of X (cf.
Construction 4.4.3), whose pushforward under εét : Xkét → Xét induces a long
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exact sequence

1→ µn →M
gp
Xét

[n]→Mgp
Xét
→ R1εét,∗(µn),

which is compatible with the Kummer exact sequence

1→ µn → O×Xét

[n]→ O×Xét
→ 1

and induces a canonical morphism

(4.4.28) Mgp

X

/
nMgp

X → R1εét,∗(µn)

on Xét, which is nothing but the inverse of the isomorphism in Lemma 4.4.27, by
comparing stalks at geometric points of X. Therefore, we obtain the following:

Lemma 4.4.29. The above morphism (4.4.28) is an isomorphism and, for each i,
the canonical morphism ∧i

(
R1εét,∗(µn)

)
→ Riεét,∗(µn) is an isomorphism.

4.5. Localization and base change functors. In this subsection, we study the
behavior of sheaves on Kummer étale sites under certain direct image and inverse
image functors. (The readers are referred to [AGV73, IV] for general notions con-
cerning sites, topoi, and the functors and morphisms among them.)

For any morphism f : Y → X of locally noetherian fs log adic spaces, since
pulling back by f respects fiber products, we have a morphism of topoi

(f−1
két , fkét,∗) : Y ∼két → X∼két.

Concretely, we have the direct image (or pushforward) functor

fkét,∗ : Sh(Ykét)→ Sh(Xkét) : F →
(
U 7→ fkét,∗(F)(U) := F(U ×X Y )

)
,

and the inverse image (or pullback) functor

f−1
két : Sh(Xkét)→ Sh(Ykét)

sending G ∈ Sh(Xkét) to the sheafification of V 7→ lim−→U
G(U), where U runs through

the objects in Ykét such that V → X factors through f−1(U)→ Y . It is formal that
fkét,∗ is the right adjoint of f−1

két . Moreover, f−1
két is exact, and fkét,∗ is left exact.

For any Kummer étale morphism f : Y → X, the functor fkét,∗ is also called the

base change functor, while the functor f−1
két is simply f−1

két(F)(U) := F(U), because
any object U of Ykét gives an object in Xkét by composition with f . Moreover, we
have the localization functor

fkét,! : Sh(Ykét)→ Sh(Xkét).

sending F ∈ Sh(Ykét) to the sheafification of the presheaf

fpkét,!(F) : U 7→
∐

h∈MorX(U,Y )

F(U, h),

where F(U, h) means the value of F on the object U
h→ Y of Xkét. We shall

also denote by fkét,! : ShAb(Ykét) → ShAb(Xkét) the induced functor between the
categories of abelian sheaves, in which case the above coproduct becomes a direct
sum. It is also formal that fkét,! is left adjoint to f−1

két , and that fkét,! is right exact.

Lemma 4.5.1. Let f : V → W be a finite Kummer étale morphism in Xkét. If
f has a section g : W → V , then there exists a finite Kummer étale morphism
W ′ →W and an isomorphism h : V

∼→W
∐
W ′ such that the composition h ◦ g is

the natural inclusion W ↪→W
∐
W ′.
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Proof. We may assume that W is connected. Let G := πkét
1 (W ) (see Remark

4.4.21). Via the equivalence (4.4.19), the finite Kummer étale cover V →W (resp.

W
∼→ W ) corresponds to a finite set S (resp. a singleton S0) with a continuous

G-action (resp. the trivial action), and the section g : W → V corresponds to a
G-equivariant map g∗ : S0 → S. This gives rise to a G-equivariant decomposition
S = g∗(S0)

∐
S′, and hence to the desired decomposition h : V

∼→ W
∐
W ′, by

Corollary 4.4.18. �

Proposition 4.5.2. Given any finite Kummer étale morphism f : Y → X of
locally noetherian fs log adic spaces, we have a natural isomorphism

fkét,!
∼→ fkét,∗ : ShAb(Ykét)→ ShAb(Xkét).

Consequently, both functors are exact.

Proof. Let F be an abelian sheaf on Ykét. For any U ∈ Xkét, each morphism h in
MorX(U, Y ) induces a section U → U×X Y of the natural projection U×X Y → U .
By Lemma 4.5.1, we obtain a decomposition U ×X Y ∼= U

∐
U ′ identifying U →

U×X Y with U ↪→ U
∐
U ′, which gives rise to a canonical map F(U)→ F(U×X Y )

because F is a sheaf. By combining such maps, we obtain a map of presheaves(
fpkét,!(F)

)
(U) = ⊕h∈MorX(U,Y ) F(U, h)→

(
fkét,∗(F)

)
(U) = F(U ×X Y ),

which induces a canonical morphism fkét,! → fkét,∗ by sheafification.
By the above construction, it remains to show that, étale locally on U , there

exists a finite Kummer étale cover V → U such that MorX(V, Y ) is a finite set
and such that the sections V → V ×X Y given by h ∈ MorX(V, Y ) induces∐
h∈MorX(V,Y ) V

∼→ V ×X Y . Note that this is true in the special case where

Y → X is strictly finite étale, because Y is étale locally on X a finite disjoint
union of copies of X. In general, up to étale localization on X, we may assume
that X is affinoid and modeled on a sharp fs monoid P ; and that Y → X factors
as a composition Y → XQ := X ×X〈P 〉 X〈Q〉 → X, where the first morphism
is strictly finite étale, and where the second morphism is the standard Kummer
étale cover induced by a Kummer homomorphism u : P → Q of sharp fs monoids
such that the order of G = Qgp/ugp(P gp) is invertible in OY . By Proposition
4.1.6, Y ×X XQ

∼= Y ×XQ (XQ ×X XQ) ∼= Y ×X X〈G〉 → XQ is strictly fi-
nite étale. Hence, as explained above, there exists a finite Kummer étale cover
V → U ×X XQ such that

∐
h∈MorXQ (V,Y×XXQ) V

∼= V ×XQ (Y ×X XQ). Since∐
h∈MorX(V,Y ) V

∼=
∐
h∈MorXQ (V,Y×XXQ) V

∼= V ×XQ (Y ×X XQ) ∼= V ×X Y , the

composition of the finite Kummer étale covers V → U×XXQ → U gives the desired
finite Kummer étale cover V → U . �

Lemma 4.5.3. Let X be a locally noetherian fs log adic space. Let ı : Z → X be
a strict closed immersion of log adic spaces, and  : W → X an open immersion of
log adic spaces, as in Definition 2.2.23, such that W = X − Z. For ? = an, ét, or
két, let (ı−1

? , ı?,∗) and (−1
? , ?,∗) denote the associated morphisms of topoi, and let

?,! denote the left adjoint of −1
? (which is defined as explained above).

(1) For each abelian sheaf F on X?, we have the excision short exact sequence
0→ ?,! 

−1
? (F)→ F → ı?,∗ ı

−1
? (F)→ 0 in ShAb(X?).

(2) For each abelian sheaf G on Z?, the adjunction morphism ı−1
? ı?,∗(G) → G

is an isomorphism in ShAb(Z?), and hence ı?,∗ is exact and fully faithful.
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(3) For each abelian sheaf H on W?, the adjunction morphism H ∼→ −1
? ?,!(H)

is an isomorphism in ShAb(W?), and hence !,∗ is exact and fully faithful.

Proof. These follow easily from the definitions of the objects involved, by evaluating
them at points (resp. geometric points, resp. log geometric points) when ? = an
(resp. ét, resp. két). (See [Hub96, Prop. 2.5.5] and Lemma 4.4.4.) �

Lemma 4.5.4. Let f : X → X̆ and g : Z → Z̆ be morphisms of locally noetherian
fs log adic spaces whose underlying morphisms of adic spaces are isomorphisms,
and let ı : Z → X and ı̆ : Z̆ → X̆ be strict immersions compatible with f and g.
Then, for any abelian sheaf F on Xkét, and for each i ≥ 0, we have

(4.5.5) Rigkét,∗ ı
−1
két(F) ∼= ı̆−1

kétR
ifkét,∗(F).

This applies, in particular, to the case where X̆ and Z̆ are the underlying adic
spaces of X and Z, respectively, equipped with their trivial log structures, in which
case X̆két

∼= Xét and Z̆két
∼= Zét, and therefore fkét : Xkét → X̆két and gkét : Zkét →

Z̆két can be identified with the natural morphisms Xkét → Xét and Zkét → Zét,
respectively.

Proof. Up to compatibly replacing X and X̆ with open subspaces, we may assume
that ı and ı̆ are compatible strict closed immersions. By Lemma 4.5.3(2), and by
applying ı̆két,∗ to (4.5.5), it suffices to show that we have

(4.5.6) Rifkét,∗ ıkét,∗ ı
−1
két(F) ∼= ı̆két,∗ ı̆

−1
kétR

ifkét,∗(F).

Let  : W → X and ̆ : W̆ → X̆ denote the complementary open immersions. By
Lemma 4.5.3(1), we have a long exact sequence

· · · → Rifkét,∗ két,! 
−1
két(F)→ Rifkét,∗(F)→ Rifkét,∗ ıkét,∗ ı

−1
két(F)→ · · · .

By the definition of két,! and ̆két,!, and by comparing stalks at log geometric points

as in Lemma 4.4.4, we obtain Rifkét,∗ két,! 
−1
két(F) ∼= ̆két,! ̆

−1
kétR

ifkét,∗(F), which
induces the desired (4.5.6), by Lemma 4.5.3(1) again. �

Lemma 4.5.7. Let ı : Z → X be a strict closed immersion of locally noetherian fs
log adic spaces over Spa(Qp,Zp).

(1) For ? = an, ét, or két, the canonical morphism ı−1
Z,?(O+

X?
/p) → O+

Z?
/p is

an isomorphism.
(2) For any Fp-sheaf F on Zkét, the canonical morphism(

ıZ,két,∗(F)
)
⊗ (O+

Xkét
/p)→ ıZ,két,∗

(
F ⊗ (O+

Zkét
/p)
)

is an isomorphism.

Proof. The case where ? = an or ét is already in [Sch13b, Lem. 3.14]. As for
? = két, the proof is similar, which we explain as follows. At each log geometric
point ζ =

(
Spa(l, l+),M

)
→ X, the stalk of O+

Xkét
/p at ζ is isomorphic to l+/p by

construction, because ker(O+
Xkét,ζ

→ l+), which is the same as ker(OXζ ,ζ → l), is

p-divisible (as X is defined over Spa(Qp,Zp)). The analogous statement for O+
Zkét

/p
is true. Thus, we can finish the proof by comparing stalks, by Lemma 4.4.4. �

Lemma 4.5.8. Let g : Y → Z be a morphism of locally noetherian fs log adic spaces
over Spa(Qp,Zp) such that its underlying morphism of adic spaces is an isomor-

phism. Suppose moreover that g]y :MZ,g(y) →MY,y is injective and splits, for each
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geometric point y of Y . Then, for any Fp-sheaf F on Ykét, the canonical morphism
Rigkét,∗(F)⊗Fp (O+

Zkét
/p)→ Rigkét,∗

(
F ⊗Fp (O+

Ykét
/p)
)

is an isomorphism.

Proof. By Lemma 4.4.4, it suffices to show that, for each log geometric point z̃ :
(Spa(l, l+),M)→ Z as in Construction 4.4.3, the induced morphism

(4.5.9)
(
Rigkét,∗(Fp)

)
z̃
⊗Fp (O+

Zkét
/p)z̃ →

(
Rigkét,∗(O+

Ykét
/p)
)
z̃

is an isomorphism. Since g induces an isomorphism of the underlying adic spaces,
the underlying geometric point z of z̃ uniquely lifts to a geometric point y. By

assumption, g]y : MZ,z → MY,y is injective and splits, in which case we have

MY,y
∼=MZ,z ⊕N , for some fs monoid N . Therefore, we can lift z̃ to some (satu-

rated by not necessarily fine) log point
(
Spa(l, l+),M ′

)
→ Y such thatM ′ ∼= M⊕N .

By taking fiber products with Spa(l〈 1
mN〉, l

+〈 1
mN〉) over Spa(l〈N〉, l+〈N〉), by tak-

ing reduced subspaces, and by taking the limit with respect to m (cf. Construction
4.4.3), we can further lift this log point to a log geometric point ỹ of Y above y.
Thus, by a limit argument similar to the one in the proof of Lemma 4.4.27, and by
Proposition 4.4.7 and Lemma 4.5.7, we may identify (4.5.9) with

Hi(Γ,F)⊗Fp (l+/p)→ Hi(Γ, l+/p),

where
Γ := ker

(
πkét

1 (y, ỹ)→ πkét
1 (z, z̃)

) ∼= Hom
(
N

gp
, Ẑ(1)(l)

)
.

Since Hi(Γ,F) is computed by some bounded complex of free Fp-modules, and
since Hi(Γ, l+/p) is computed by the tensor product of this complex with the flat
Fp-module l+/p, we see that (4.5.9) is an isomorphism, as desired. �

Proposition 4.5.10. Let f : Y → X be a morphism of locally noetherian fs log
adic spaces over Spa(Qp,Zp) such that its underlying morphism of adic spaces is
a closed immersion. Suppose moreover that

(
f∗(MX)

)
y
→ MY,y is injective and

splits, for each geometric point y of Y . Then, for any Fp-sheaf F on Ykét, the
canonical morphism Rifkét,∗(F) ⊗Fp (O+

Xkét
/p) → Rifkét,∗

(
F ⊗Fp (O+

Ykét
/p)
)

is an
isomorphism.

Proof. In this case, let Z denote the underlying adic space of Y equipped with the
log structure pulled back from X. Then f : Y → X factors as the composition of
a morphism g : Y → Z as in Lemma 4.5.8 and a strict closed immersion ı : Z → X
as in Lemma 4.5.7, and we can combine Lemmas 4.5.3, 4.5.7, and 4.5.8. �

4.6. Purity of torsion local systems. We have the following purity result for
torsion Kummer étale local systems.

Theorem 4.6.1. Let X, D, and k be as in Example 2.3.17. Let U := X − D,
and let  : U → X denote the canonical open immersion. Suppose moreover that
char(k) = 0 and k+ = Ok. Let L be a torsion local system on Uét. Then két,∗(L)
is a torsion local system on Xkét, and Rikét,∗(L) = 0 for all i > 0.

Let us start with some preparations.

Lemma 4.6.2. In the setting of Theorem 4.6.1, consider the commutative diagram:

(4.6.3) Ukét

∼=
��

két // Xkét

εét

��

Uét
ét // Xét.
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Then the canonical morphism

(4.6.4) Rεét,∗(Z/n)→ Rét,∗(Z/n)

is an isomorphism; and Riét,∗(Z/n) ∼=
(
∧i(Mgp

X /nM
gp

X )
)
(−i), for every i ≥ 0.

Proof. By Lemma 4.4.29, it suffices to show that the composition(
∧i(Mgp

X /nM
gp

X )
)
(−i)→ Riεét,∗(Z/n)→ Riét,∗(Z/n)

(induced by (4.4.28) and (4.6.4)) is an isomorphism. Since this assertion is étale
local on X, we may assume that D ⊂ X is the analytification of a normal crossings
divisor on a smooth scheme over k, and further reduce the assertion to its classical
analogue for schemes by [Hub96, Prop. 2.1.4 and Thm. 3.8.1], which is known (see,
for example, [Ill02, Thm. 7.2]). �

Lemma 4.6.5. In the setting of Lemma 4.6.2, the canonical morphism

(4.6.6) Z/n→ Rkét,∗(Z/n)

is an isomorphism.

Proof. Let C be the cone of (4.6.6) (in the derived category). It suffices to show that
H•(Wkét, C) = 0, for each W → X that is the composition of an étale covering and
a standard Kummer étale cover of X. Note that the complement of U ×XW in W
is a normal crossings divisor, which induces the fs log structure of W as in Example
2.3.17. Consider the diagram (4.6.3), with U → X replaced with U ×X W → W .
Since the corresponding morphism (4.6.4) for this new diagram is an isomorphism
by Lemma 4.6.2, and since (4.6.4) is obtained from (4.6.6) by applying εét to both
sides, we have Rεét,∗(C|Wkét

) = 0 on Wét, and so H•(Wkét, C) = 0, as desired. �

Proof of Theorem 4.6.1. Let V → U be a finite étale cover trivializing L. By
Proposition 4.2.1, it extends to a finite Kummer étale cover f : Y → X, where Y
is a normal rigid analytic variety with its log structures defined by the preimage of
D. Moreover, if Y ′ → Y is Kummer étale, then Y ′ is locally a normal rigid analytic
variety, and any section of a finite torsion constant sheaf over the preimage of U
uniquely extends to a section of the constant sheaf with the same coefficients over
Y ′, by Example 2.2.20, Proposition 4.1.6, Corollary 4.1.9, and Proposition 4.2.1.
Thus, két,∗(L)|Ykét

is constant, and két,∗(L) is a torsion local system on Xkét.

Given this f : Y → X, up to étale localization on X, we have some X
1
m → X as in

Lemma 4.2.5. Then the underlying adic space of Z := Y ×X X
1
m is a smooth rigid

analytic variety, its fs log structure is defined by some normal crossings divisor as
in Example 2.3.17, and the induced morphism Z → X is Kummer étale, because
these are true for X

1
m . (Alternatively, we can construct Z → X, as in the proof

of Proposition 4.2.1, by using Lemma 4.2.3 and the last assertion of Lemma 4.2.2.)
Thus, in order to show that Rikét,∗(L) = 0, for all i > 0, up to replacing X with Z,
we may assume that L = Z/n is constant, in which case Lemma 4.6.5 applies. �

Corollary 4.6.7. Let k and  : U ↪→ X be as in Theorem 4.6.1. Let L be an étale
Fp-local system on Uét. Then L := két,∗(L) is a Kummer étale Fp-local system

extending L. Conversely, any étale Fp-local system L on Xkét is of this form. In

either case, Hi(Uét,L) ∼= Hi(Xkét,L), for all i ≥ 0.
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Proof. This follows from Theorem 4.6.1 and the fact that, for any Kummer étale
Fp-local system L on X, the canonical adjunction morphism L→ Rkét,∗ 

−1
két(L) is

an isomorphism because it is a morphism between local systems whose restriction
to the open dense U is the identity morphism of L. �

5. Pro-Kummer étale topology

5.1. The pro-Kummer étale site. In this subsection, we define the pro-Kummer
étale site on log adic spaces, a log analogue of Scholze’s pro-étale site in [Sch13a].

For any category C, by [Sch13a, Prop. 3.2], the category pro-C is equivalent to
the category whose objects are functors F : I → C from small cofiltered index
categories and whose morphisms are Mor(F,G) = lim←−J lim−→I

Mor
(
F (i), G(j)

)
, for

each F : I → C and G : J → C. We shall use this equivalent description in what
follows. For each F : I → C as above, we shall denote F (i) by Fi, for each i ∈ I,
and denote the corresponding object in pro-C as lim←−i∈I Fi.

Let X be a locally noetherian fs log adic space, with the category pro-Xkét as
above. Then any object in pro-Xkét is of the form U = lim←−i∈I Ui, where each

Ui → X is Kummer étale, with underlying topological space |U | := lim←−i |Ui|.

Definition 5.1.1. (1) We say that a morphism U → V in pro-Xkét is Kummer
étale (resp. finite Kummer étale, resp. étale, resp. finite étale) if it is the
pullback under some morphism V → V0 in pro-Xkét of some Kummer étale
(resp. finite Kummer étale, resp. strictly étale, resp. strictly finite étale)
morphism U0 → V0 in Xkét.

(2) We say that a morphism U → V in pro-Xkét is pro-Kummer étale if it
can be written as a cofiltered inverse limit U = lim←−i∈I Ui of objects Ui →
V Kummer étale over V such that Uj → Ui is finite Kummer étale and
surjective for all sufficiently large i (i.e., all i ≥ i0, for some i0 ∈ I). Such a
presentation U = lim←−i Ui → V is called a pro-Kummer étale presentation.

(3) We say that a morphism U → V as in (2) is pro-finite Kummer étale if all
Ui → V there are finite Kummer étale.

Definition 5.1.2. The pro-Kummer étale site Xprokét has as underlying category
the full subcategory of pro-Xkét consisting of objects that are pro-Kummer étale
over X, and each covering of an object U ∈ Xprokét is given by a family of pro-
Kummer étale morphisms {fi : Ui → U}i∈I such that |U | = ∪i∈Ifi(|Ui|) and such
that fi : Ui → U can be written as an inverse limit Ui = lim←−µ<λ Uµ → U satisfying

the following conditions (cf. [Sch16]), for each i ∈ I:

(1) Each Uµ ∈ Xprokét, and U = U0 is an initial object in the limit.
(2) The limit runs through the set of ordinals µ less than some ordinal λ.
(3) For each µ < λ, the morphism Uµ → U<µ := lim←−µ′<µ Uµ′ is the pullback

of a Kummer étale morphism in Xkét, and is the pullback of a surjective
finite Kummer étale morphism in Xkét for all sufficiently large µ.

Remark 5.1.3. There is another version of pro-étale site introduced in [SW20].
But we will not try to introduce the corresponding version of pro-Kummer étale
site in this paper.

This definition is justified by the following analogue of [Sch13a, Lem. 3.10]:
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Lemma 5.1.4. (1) Let U , V , and W be objets in pro-Xkét. Suppose that U →
V is a Kummer étale (resp. finite Kummer étale, resp. étale, resp. finite
étale, resp. pro-Kummer étale, resp. pro-finite Kummer étale) morphism
and that W → V is any morphism. Then the fiber product U ×V W exists
in pro-Xkét, and U ×V W → W is Kummer étale (resp. finite Kummer
étale, resp. étale, resp. finite étale, resp. pro-Kummer étale, resp. pro-finite
Kummer étale). Moreover, the induced map |U ×V W | → |U | ×|V | |W | is
surjective.

(2) A composition of two Kummer étale (resp. finite Kummer étale, resp. étale,
resp. finite étale) morphisms in pro-Xkét is still Kummer étale (resp. finite
Kummer étale, resp. étale, resp. finite étale).

(3) Let U be an object in pro-Xkét, and let W ⊂ |U | be a quasi-compact open
subset. Then there exists an object V in pro-Xkét with an étale morphism
V → U such that |V | → |U | induces a homeomorphism |V | ∼→ W . If, in
addition, U is an object in Xprokét, then there exists V as above that, for
any morphism V ′ → U in Xprokét such that |V ′| → |U | factors through W ,
the morphism V ′ → U also factors through V .

(4) Pro-Kummer étale morphisms in pro-Xket are open (i.e., they induce open
maps between the underlying topological spaces).

(5) Let V be an object in Xprokét. A surjective Kummer étale (resp. surjective
finite Kummer étale) morphism U → V in pro-Xkét is the pullback under
some morphism V → V0 in pro-Xkét of a surjective Kummer étale (resp.
surjective finite Kummer étale) morphism U0 → V0 in Xkét.

(6) Let W be an object in Xprokét, and let U → V → W be pro-Kummer étale
(resp. pro-finite Kummer étale) morphisms in pro-Xkét. Then U and V are
also objects in Xprokét, and the composition U → W is pro-Kummer étale
(resp. pro-finite Kummer étale).

(7) Arbitrary finite inverse limits exist in Xprokét.
(8) Any base change of a covering in Xprokét is also a covering.

Proof. The statements (1)–(7) follow from essentially the same arguments as in
the proof of [Sch13a, Lem. 3.10], with inputs from Propositions 2.3.32, 2.3.23, and
2.3.27, Corollary 4.1.9, and Proposition 4.1.14 here.

As for the remaining statement (8), suppose that {Ui → U}i∈I is a covering
of U ∈ Xprokét, and that V → U is a morphism in Xprokét. We need to show
that {Ui ×U V → V }i∈I is also a covering. Firstly, if Ui = lim←−µ<λ Uµ → U is an

inverse limit satisfying the conditions in Definition 5.1.2, then so is the pullback
Ui ×U V ∼= lim←−µ<λ(Uµ ×U V ) → V . As for the surjectivity, by working locally U ,

we are reduced to the case where U is quasi-compact, in which case we may assume
that {Ui → U}i∈I is a finite covering. By taking the disjoint union of Ui → U , we
are further reduced the special case where I = {i0} is a singleton, in which case
|Ui0 ×U V | → |V | is surjective, by (1). �

Let us also record the following analogue of [Sch13a, Prop. 3.12].

Proposition 5.1.5. Let X be a locally noetherian fs log adic space.

(1) Let U = lim←−i Ui → X be a pro-Kummer étale presentation of U ∈ Xprokét

such that all Ui are affinoid. Then U is quasi-compact and quasi-separated.
(2) Objects U as in (1) generates Xprokét, and are stable under fiber products.
(3) The topos X∼prokét is algebraic.
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(4) An object U in Xprokét is quasi-compact (resp. quasi-separated) if and only
if |U | is quasi-compact (resp. quasi-separated).

(5) Suppose that U → V is an inverse limit of finite Kummer étale surjective
morphisms in Xprokét. Then U is quasi-compact (resp. quasi-separated) if
and only if V is.

(6) A morphism U → V in Xprokét is quasi-compact (resp. quasi-separated) if
and only if |U | → |V | is quasi-compact (resp. quasi-separated).

(7) The site Xprokét is quasi-separated (resp. coherent) if and only if |X| is
quasi-separated (resp. coherent).

Proof. By Lemma 5.1.4(4), pro-Kummer étale morphisms are open. Hence, the
same arguments as in the proof of [Sch13a, Prop. 3.12] also work here. �

Let υ : Xprokét → Xkét be the natural projection of sites. We have induced
functors υ−1 : Sh(Xkét)→ Sh(Xprokét) and υ∗ : Sh(Xprokét)→ Sh(Xkét).

Proposition 5.1.6. Let F be any abelian sheaf on Xkét, and let U = lim←−i Ui be

any qcqs object in Xprokét. Then Hj
(
Uprokét, υ

−1(F)
)

= lim−→i
Hj(Ui,két,F), for all

j ≥ 0.

Proof. This follows from essentially the same argument as in the proof of [Sch13a,
Lem. 3.16], by using Proposition 5.1.5 (1) and (2) here. �

Proposition 5.1.7. For any abelian sheaf F on Xkét, the canonical morphism
F → Rυ∗υ

−1(F) is an isomorphism.

Proof. For each j ≥ 0, the sheaf Rjυ∗υ
−1(F) on Xkét is associated with the presheaf

U 7→ Hj
(
Uprokét, υ

−1(F)
)
. If j = 0, then F ∼→ υ∗υ

−1(F), because Hj(Ukét,F)
∼→

Hi
(
Uprokét, υ

−1(F)
)
, for all qcqs objects U in Xkét, by Proposition 5.1.6. If j > 0,

essentially by definition, the cohomology Hj(U,F) vanishes locally in the Kummer
étale topology, and hence the associated sheaf Rjυ∗υ

−1(F) is zero, as desired. �

Corollary 5.1.8. The functor υ−1 : ShAb(Xkét)→ ShAb(Xprokét) is fully faithful.

For technical purposes, let us also define the pro-finite Kummer étale site.

Definition 5.1.9. The pro-finite Kummer étale site Xprofkét has as underlying
category the category pro-Xfkét, and each covering of U ∈ Xprofkét is given by a
family of pro-finite Kummer étale morphisms {fi : Ui → U}i∈I such that |U | =
∪i∈I fi(|Ui|) and such that each fi : Ui → U can be written as an inverse limit
Ui = lim←−µ<λ Uµ → U satisfying the following conditions:

(1) Each Uµ ∈ Xprofkét, and U = U0 is an initial object in the limit.
(2) The limit runs through the set of ordinals µ less than some ordinal λ.
(3) For each µ < λ, the morphism Uµ → U<µ := lim←−µ′<µ Uµ′ is the pullback of

a finite Kummer étale morphism in Xfkét, and is the pullback of a surjective
finite Kummer étale morphism for all sufficiently large µ.

Definition 5.1.10. For each profinite group G, the site G-PFSets has as underlying
category the category of profinite sets with continuous actions of G, and each
covering of S ∈ G-PFSets is given by a family of continuous G-equivariant maps
{fi : Si → S}i∈I such that S = ∪i∈Ifi(Si) and such that each fi : Si → S can be
written as an inverse limit Si = lim←−µ<λ Sµ → S satisfying the following conditions:
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(1) Each Sµ ∈ G-PFSets, and S = S0 is an initial object in the limit.
(2) The limit runs through the set of ordinals µ less than some ordinal λ.
(3) For each µ < λ, the map Sµ → S<µ := lim←−µ′<µ Sµ′ is the pullback of a

surjective map of finite sets.

Remark 5.1.11. Since a profinite set with a continuous action of a profinite group
G is equivalent to an inverse limit of finite sets with continuous G-actions, we have
a canonical equivalence of categories G-PFSets ∼= pro-(G-FSets).

Proposition 5.1.12. Let X be a connected locally noetherian fs log adic space, and
let ζ be a log geometric point of X. Then there is an equivalence of categories

Xprofkét
∼= πkét

1 (X, ζ)-PFSets

sending U = lim←−i Ui → X to S(U) := lim←−i MorX(ζ, Ui).

Proof. By Corollary 4.4.18, Xfkét
∼= πkét

1 (X, ζ)-FSets, and hence the composition
of Xprofkét = pro-Xfkét

∼= pro-(πkét
1 (X, ζ)-FSets) ∼= πkét

1 (X, ζ)-PFSets sends U to
S(U), and gives the desired equivalence of categories. By comparing definitions,
the equivalence thus obtained also matches the coverings. �

5.2. Localization and base change functors. For any morphism f : Y → X
of locally noetherian fs log adic spaces, by the same explanations as in Section 4.5,
we have a morphism of topoi

(f−1
prokét, fprokét,∗) : Y ∼prokét → X∼prokét.

Proposition 5.2.1. Let f : Y → X be a qcqs morphism of locally noetherian fs
log adic spaces. Consider the natural functors υ−1

X : Sh(Xkét) → Sh(Xprokét) and

υ−1
Y : Sh(Ykét) → Sh(Yprokét). Then, for any abelian sheaf F on Ykét, we have a

natural isomorphism υ−1
X Rfkét,∗(F)

∼→ Rfprokét,∗ υ
−1
Y (F).

Proof. This is because, for each i ≥ 0, the i-th cohomology of both sides of the
morphism υ−1

X Rfkét,∗(F)→ Rfprokét,∗ υ
−1
Y (F) (canonically defined by adjunction)

can be identified with the sheafification of the presheaf sending a qcqs object U =
lim←−j Uj in Xprokét to lim−→j

Hi(Uj ×X Y,F). �

When Y ∈ Xprokét, let Xprokét/Y denote the localized site. Then we have the

following natural functors:

(1) The inverse image (or pullback) functor

f−1
prokét : Sh(Xprokét)→ Sh(Xprokét/Y ) :

F 7→
(
U 7→ f−1

prokét(F)(U) := F(U)
)
.

(2) The base change functor

fprokét,∗ : Sh(Xprokét/Y )→ Sh(Xprokét) :

F 7→
(
U 7→ fprokét,∗(F)(U) := F(U ×X Y )

)
.

(3) The localization functor

fprokét,! : Sh(Xprokét/Y )→ Sh(Xprokét)

sending F ∈ Sh(Xprokét/Y ) to the sheafification of the presheaf

fpprokét,!(F) : U 7→
∐

h:U→Y

F(U, h),
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where the coproduct is over all pro-Kummer étale morphisms h : U → Y
over X. We also denote by fprokét,! : ShAb(Xprokét/Y )→ ShAb(Xprokét) the

induced functor between the categories of abelian sheaves, in which case
the above coproduct becomes a direct sum.

It is formal that fprokét,! is left adjoint to f−1
prokét, and hence fprokét,! is right exact.

Remark 5.2.2. If Y → X is Kummer étale, then naturally Xprokét/Y
∼= Yprokét.

Lemma 5.2.3. Let f : V →W be a finite Kummer étale morphism between objects
in Xprokét. If f has a section g : W → V , then there exists a finite Kummer étale

morphism W ′ → W between objects in Xprokét, and an isomorphism h : V
∼→

W
∐
W ′ such that the composition h ◦ g is the natural inclusion W ↪→W

∐
W ′.

Proof. By Lemma 5.1.4(5), we may assume that f : V → W is the pullback of
some finite Kummer étale morphism V0 → W0 in Xkét. Let W = lim←−iWi be a

pro-Kummer étale presentation. Without loss of generality, we may assume that all
transition morphisms Wj →Wi are finite Kummer étale, and that W →W0 factors
through Wi → W0 for all i, so that V ∼= lim←−i(Wi ×W0 V0). Then we may replace

W0 with some Wi and assume that W → W0 and hence V → W0 are pro-finite
Kummer étale. We may also assume that W0 is connected. Let G := πkét

1 (W0) (see
Remark 4.4.21). Via the equivalence in Proposition 5.1.12, V →W0 and W →W0

corresponds to profinite sets S and S0 with continuous G-actions, and the morphism
f : V →W and the splitting g : W → V gives rise to a G-equivariant decomposition
S
∼→ S0

∐
S′ and hence to the desired decomposition h : V

∼→ W
∐
W ′ (cf. the

proof of Lemma 4.5.1). �

Proposition 5.2.4. Given any finite Kummer étale morphism f : Y → X of
locally noetherian fs log adic spaces, we have a natural isomorphism

fprokét,!
∼→ fprokét,∗ : ShAb(Yprokét)→ ShAb(Xprokét).

Consequently, both functors are exact.

Proof. For each U ∈ Xprokét, any pro-Kummer étale morphism h : U → Y over X
induces a splitting U → Y ×XU of the finite Kummer étale morphism Y ×XU → U ,
and hence we have a decomposition Y ×X U ∼= U

∐
U ′, by Lemma 5.2.3. Then we

can finish the proof by the same arguments as in the proof of Proposition 4.5.2. �

5.3. Log affinoid perfectoid objects. Recall that affinoid perfectoid objects
form a basis for the pro-étale topology of any locally noetherian adic space over
Spa(Qp,Zp) (see [Sch13a, Def. 4.3 and Prop. 4.8] and [Sch17, Lem. 15.3]). We
would like to establish a suitable log analogue of this fact.

Definition 5.3.1. Let X be an analytic locally noetherian fs log adic space over
Spa(Zp,Zp). An object U in Xprokét is called log affinoid perfectoid if it admits a
pro-Kummer étale presentation

U = lim←−
i∈I

Ui = lim←−
i∈I

(Spa(Ri, R
+
i ),Mi, αi)→ X

satisfying the following conditions:

(1) There is an initial object 0 ∈ I.
(2) Each Ui admits a global sharp fs chart Pi such that each transition mor-

phism Uj → Ui is modeled on a Kummer chart Pi → Pj .
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(3) The affinoid algebra (R,R+) :=
(
lim−→i∈I (Rui , R

u+
i )
)∧

, where each (Rui , R
u+
i )

is the uniformization of (Ri, R
+
i ) as in [KL15, Def. 2.8.13] (i.e., Rui is the

completion of Ri for the spectral seminorm and Ru+
i is the completion of

the image of R+
i in Rui ) and where the completion is as in [KL15, Def.

2.6.1], is a perfectoid affinoid algebra.
(4) The monoid P := lim−→i∈I Pi is n-divisible, for all n ≥ 1.

In this situation, we say that U = lim←−i∈I Ui is a perfectoid presentation of U .

The following remark provides an equivalent form of Definition 5.3.1(3) when
X is defined over Spa(Qp,Zp), and explains the compatibility of the definitions of
affinoid perfectoid objects in [Sch13a, Def. 4.3] and [KL15, Def. 9.2.4].

Remark 5.3.2. In Definition 5.3.1, suppose that X is defined over Spa(Qp,Zp).
In this case, p is invertible in ker(R+

i → Ru+
i ). It follows that R+

i /p
n ∼= Ru+

i /pn,

for each n ≥ 1. Then the completion (R,R+) =
(
lim−→i∈I (Rui , R

u+
i )
)∧

is simply the

p-adic completion of lim−→i∈I (Ri, R
+
i ).

Remark 5.3.3. By Proposition 5.1.5, a log affinoid perfectoid object U as in Defi-
nition 5.3.1 is qcqs. By abuse of language, we shall sometimes say that U is modeled
on P . Since the transition morphisms Pi → Pj are Kummer and hence injective
(by Definition 4.1.1), P is sharp and saturated because each Pi is (by assumption).
Therefore, the condition (4) in Definition 5.3.1 is equivalent to the condition that
P is uniquely n-divisible, for all n ≥ 1. (The condition (4) in Definition 5.3.1 will
be useful in the proof of Lemma 5.3.8 below.)

Lemma 5.3.4. Let P be a sharp fs monoid. Suppose that X is an analytic locally
noetherian adic space over Spa(Zp,Zp) equipped with the trivial log structure as in
Example 2.2.7, and that Y = X〈P 〉 is as in Example 2.2.19. Suppose that lim←−i∈I Ui
is an affinoid perfectoid object in Xprokét, which exists by [Sch17, Lem. 15.3], where
all Ui are equipped with the trivial log structures as well. Let us equip I ×Z≥1 with
the partial ordering such that (i,m) ≥ (j, n) exactly when i ≥ j and n|m. Then
lim←−(i,n)∈I×Z≥1

Ui〈 1
nP 〉 is a log affinoid perfectoid object in Yprokét, which gives a

pro-Kummer étale (resp. pro-finite Kummer étale) cover of Y when lim←−i∈I Ui is a

pro-étale (resp. pro-finite étale) cover of X.

Proof. This follows from Lemmas 2.2.15 and 5.1.4, and Definition 5.3.1. �

Remark 5.3.5. Let U ∈ Xprokét be a log affinoid perfectoid object as in Definition

5.3.1. Then Û = Spa(R,R+) is an affinoid perfectoid space, called the associated
affinoid perfectoid space, or simply the associated perfectoid space. In this case, we

write Û ∼ lim←−i Ui. The assignment U 7→ Û defines a functor from the category

of log affinoid perfectoid objects to the category of affinoid perfectoid spaces. We

emphasize that Û does not live in Xprokét in general. Thanks to the following

Lemma 5.3.6, we can identify the underlying topological spaces of Û and lim←−i Ui.

Lemma 5.3.6. Let U = lim←−i Ui ∈ Xprokét be a log affinoid perfectoid object, and let

Û be the associated affinoid perfectoid space, as in Remark 5.3.5. Then the natural

map of topological spaces |Û | → lim←−i |Ui| is a homeomorphism.
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Proof. The map is bijective because a continuous valuation on R is equivalent to a
compatible system of continuous valuations on Ri’s. By [KL15, Lem. 2.6.5], each

rational subset of Û comes from the pullback of a rational subset of some Ui, and
hence the topologies also agree, as desired. �

Lemma 5.3.7. Let ı : Z → X be a strict closed immersion (see Definition 2.2.23)
of analytic locally noetherian fs log adic spaces over Spa(Zp,Zp). Then, for each
log affinoid perfectoid object U = lim←−i∈I Ui of Xprokét, the pullback V := U ×X Z :=

lim←−i∈I(Ui×X Z) is a log affinoid perfectoid object of Zprokét. Moreover, the natural

morphism V̂ → Û is a closed immersion of adic spaces.

Proof. By definition and by Proposition 4.1.14, the conditions (1), (2), and (4) in
Definition 5.3.1 are satisfied. It remains to verify the condition (3). Let (R,R+) be
the completion of lim−→i∈I (Rui , R

u+
i ), which is perfectoid by assumption. For each i ∈

I, write Spa(Ri, R
+
i )×XZ = Spa(Si, S

+
i ). Then the induced homomorphism Rui →

Sui is surjective, because ı : Z → X is strict and hence the underlying adic space
of the fiber product coincides with the fiber product of the underlying adic spaces.
Since Rui and Sui are uniform, the quotient norm on Sui induced by the one on Rui is
just the (spectral) norm on Sui . Let (S, S+) be the completion of lim−→i∈I (Sui , S

u+
i ).

Then S is uniform and admits a surjective bounded homomorphism R → S. In
this case, S is perfectoid, by [KL15, Thm. 3.6.17(b)], and the natural morphism
Spa(S, S+)→ Spa(R,R+) is a closed immersion, as desired. �

Lemma 5.3.8. Let U = lim←−i∈I Ui ∈ Xprokét be a log affinoid perfectoid object,

with associated perfectoid space Û , as in Remark 5.3.5. Suppose that V → U is a
Kummer étale (resp. finite Kummer étale) morphism in Xprokét that is the pullback
of some Kummer étale (resp. finite Kummer étale) morphism V0 → U0 between
affinoid log adic spaces in Xkét. Then V → U is étale (resp. finite étale), and V is

log affinoid perfectoid. The induced morphism V̂ → Û is étale (resp. finite étale).

The construction V 7→ V̂ , for each log affinoid perfectoid object V of Xprokét/U ,

induces an equivalence of topoi Û∼proét
∼= X∼prokét/U

.

Proof. We may assume that 0 ∈ I and that 0 is an initial object (up to replacing

I with a cofinal subcategory). Let U
1
m

0 be as in Lemma 4.2.5, for some m ≥ 1

such that V0 ×U0
U

1
m

0 → U
1
m

0 is strictly étale (resp. strictly finite étale). Since
P = lim−→i∈I Pi is m-divisible, there is some i ∈ I such that P0 → Pi factors as

P0 → 1
mP0 → Pi. Then V0 ×U0 Ui → Ui is strictly étale (resp. strictly finite étale).

We may replace I with the cofinal full subcategory of objects that receive morphisms
from i. Then V := (V0 ×U0

Ui) ×Ui U → U is strictly étale (resp. strictly finite

étale), and hence so is V̂ → Û . This shows that we have a well-defined morphism of

sites Ûproét → Xprokét/U . This induces an equivalence of topoi, because every étale

morphism W → Û that is a composition of rational localizations and finite étale
morphisms arises in the above way, by [KL15, Lem. 2.6.5 and Prop. 2.6.8]. �

Corollary 5.3.9. Let U = lim←−i∈I Ui be an object in Xprokét as in Definition 5.3.1

such that Ui → X is a composition of rational localizations and finite Kummer étale
morphisms, for all sufficiently large i. Then U ×X V is a log affinoid perfectoid of
Xprokét, for each log affinoid perfectoid object V of Xprokét.
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Proof. By Lemma 5.3.8, Ui ×X V is log affinoid perfectoid, for all sufficiently large
i. Hence, U ×X V ∼= lim←−i∈I (Ui ×X V ) is also log affinoid perfectoid, because the

p-adic completion of a direct limit of perfectoid affinoid algebras is again perfectoid,
and any direct limit of divisible monoids is still divisible. �

Lemma 5.3.10. Let U and V be log affinoid perfectoid objects as in Definition
5.3.1, with a morphism V → U , in Xprokét. Suppose that U = lim←−i∈I Ui is a

pro-Kummer étale presentation with Ui and U modeled on Pi and P = lim−→i∈I Pi,

respectively. Then V admits a pro-Kummer étale presentation V = lim←−j∈J Vj with

each Vj modeled on some Pi, so that V is also modeled on P .

Proof. Let V = lim←−h∈H Vh be a pro-Kummer étale presentation. For each i, the

morphism V → U in Xprokét factors through some morphism Vh → Ui in Xkét, for
all sufficiently large h. For each such (i, h), by the argument in the proof of Lemma
5.3.8, there is some ti,h ∈ I such that Vh ×Ui Ut → Ut is étale for all t ≥ ti,h, in
which case Vh ×Ui Ut is modeled on Pt. Hence, we obtain the desired presentation
V = lim←−j∈J Vj by considering the index category J formed by j = (i, h, t) such that

t ≥ ti,h, with the partial ordering such that (i, h, t) ≥ (i′, h′, t′) in J exactly when
i ≥ i′, h ≥ h′, and t ≥ t′; and by taking Vj := Vh×UiUt for each j = (i, h, t) ∈ J . �

Proposition 5.3.11. Suppose that X is an analytic locally noetherian fs log adic
space over Spa(Zp,Zp). Then the subcategory of log affinoid perfectoid objects in
Xprokét is stable under fiber products.

Proof. Let U , V , and W be log affinoid perfectoid objects in Xprokét, with mor-
phisms V → U and W → U . Let U = lim←−i Ui be as in Lemma 5.3.10. By Lemma

5.3.10, V admits a pro-Kummer étale presentation V = lim←−j Vj such that each

Vj is modeled on some Pi, and the same is true for W . Consequently, V ×U W
also admits a pro-Kummer étale presentation of this kind, and hence is log affinoid

perfectoid, with associated perfectoid space ̂V ×U W ∼= V̂ ×Û Ŵ . (The last fiber
product is indeed a perfectoid space, by [Sch12, Prop. 6.18].) �

Proposition 5.3.12. Suppose that X is an analytic locally noetherian fs log adic
space over Spa(Zp,Zp). Then the log affinoid perfectoid objects in Xprokét form a
basis.

Proof. We need to show that, for each U = lim←−i∈I Ui ∈ Xprokét, étale locally on

U and X, there exists a pro-Kummer étale cover of U by log affinoid perfectoid
objects; and we may assume that it has a final object U0 such that Ui → U0 is
finite Kummer étale, for all i ∈ I, and that U0 → X is a composition of rational
localizations and finite Kummer étale morphisms. By Lemma 5.1.4 and [Sch13a,
Prop. 4.8], we may assume that X = Spa(R,R+) is affinoid, and that its underlying
adic space admits a pro-étale cover by an affinoid perfectoid object lim←−j∈J Uj in

Xproét. Also, we may assume that X admits a sharp fs chart PX → M, which
induces a strict closed immersion X ↪→ Y := X〈P 〉 as in Remark 2.3.3. Consider
the pro-Kummer étale cover of Y , as in Lemma 5.3.4, given by the log affinoid
perfectoid object lim←−(j,n)∈J×Z≥1

Uj〈 1
nP 〉 in Yprokét, whose pullback to X gives a

pro-Kummer étale cover of X by a log affinoid perfectoid object V of Xprokét, by
Lemma 5.3.7. Thus, U ×X V → U is a desired pro-Kummer étale cover of U by a
log affinoid perfectoid object in Xprokét, by Lemma 5.1.4 and Corollary 5.3.9. �



78 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

Proposition 5.3.13. Suppose that X is an analytic locally noetherian fs log adic
space over Spa(Zp,Zp). Then Xprokét has a basis B such that

Hi
(
Xprokét/V , υ

−1(L)
)

= 0,

for all V ∈ B, all p-torsion locally constant sheaf L on Xkét, and all i > 0.

Proof. Let U be a log affinoid perfectoid object of Xprokét, with Û = Spa(A,A+)
the associated affinoid perfectoid space. By passing to a covering, we may as-
sume that A is integral. Let (A∞, A

+
∞) be a universal cover of A (i.e., A∞ is

the union of all finite étale extensions Aj of A in a fixed algebraic closure of
the fractional field of A, and A+

∞ is the integral closure of A+ in A∞). Let

(Â∞, Â
+
∞) :=

(
lim−→j

(Aj , A
+
j )
)∧

. Then Û∞ := Spa(Â∞, Â
+
∞) is affinoid perfec-

toid. By the argument in the proof of Lemma 5.3.8, there is some V → U in

Xprokét, with V = lim←−j Vj log affinoid perfectoid, such that V̂ ∼= Û∞ over Û .

Note that L|V is a trivial local system because, for any finite Kummer étale
cover Y → X trivializing L, the pullback W := Y ×X V → V and the in-

duced morphism Ŵ → V̂ are strictly finite étale by Lemma 5.3.8, and therefore

Ŵ → V̂ has a section, by the assumption on V̂ ∼= Û∞. Consequently, we have

Hi
(
Xprokét/V , υ

−1(L)
) ∼= Hi

(
V̂proét, υ

−1(L)
) ∼= Hi

(
V̂ét,L

)
= 0, for all i > 0, where

the first and second isomorphisms follow from Lemma 5.3.8 and [Sch13a, Cor.
3.17(i)] (note that the locally noetherian assumption there on X is not needed), re-
spectively, and the last equality follows essentially verbatim from the last paragraph
of the proof of [Sch13a, Thm. 4.9]. �

5.4. Structure sheaves.

Definition 5.4.1. Suppose that X is a locally noetherian fs log adic space over
Spa(Qp,Zp). We define the following sheaves on Xprokét.

(1) The integral structure sheaf is O+
Xprokét

:= υ−1(O+
Xkét

), and the structure

sheaf is OXprokét
:= υ−1(OXkét

).

(2) The completed integral structure sheaf is Ô+
Xprokét

:= lim←−n
(
O+
Xprokét

/pn
)
,

and the completed structure sheaf is ÔXprokét
:= Ô+

Xprokét
[ 1
p ].

(3) The tilted structure sheaves are Ô[+Xprokét
:= lim←−Φ

Ô+
Xprokét

∼= lim←−Φ

(
O+
Xprokét

/p
)

and Ô[Xprokét
:= lim←−Φ

ÔXprokét
, where the transition morphisms Φ are given

by x 7→ xp. When the context is clear, we shall simply write (Ô[, Ô[+)

instead of (Ô[+Xprokét
, Ô[Xprokét

).

(4) We have canonical morphisms α :MXprokét
:= υ−1(MXkét

)→ OXprokét
and

α[ : M[
Xprokét

:= lim←−a 7→apMXprokét
→ Ô[Xprokét

induced by the construc-

tions. When the context is clear, we shall simply writeM andM[ instead
of MXprokét

and M[
Xprokét

, respectively.

Proposition 5.4.2. In Definition 5.4.1, we haveMXprokét
(U) = lim−→i

MUi(Ui), for

any pro-Kummer étale presentation U = lim←−i Ui ∈ Xprokét.

Proof. The proof is similar to the one of Proposition 5.1.6. Note that, by definition,

υ−1(MXprokét
) is the sheaf associated with the presheaf M̃ sending U = lim←−j Uj
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to lim−→j
MUj (Uj). Also, quasi-compact objects form a basis of Xprokét. Hence, it

suffices to show that exactness of

0→ M̃(U)→
∏
h

M̃(Vh) ⇒
∏
h,h′

M̃(Vh ×U Vh′),

for any quasi-compact U and any finite covering {Vh → U}h by quasi-compact
objects in Xprokét. By Proposition 5.1.5 and the same argument as in the proof
of [Sch13a, Lem. 3.16], this is reduced to the case of a single Kummer étale cover
V → U , and therefore to the known exactness of

0→MXkét
(U0)→MXkét

(V0) ⇒MXkét
(V0 ×U0 V0),

for some Kummer étale cover V0 → U0 in Xkét, by Proposition 4.3.4. �

The following result is an analogue of [Sch13a, Thm. 4.10].

Theorem 5.4.3. Suppose that X is a locally noetherian fs log adic space over
Spa(Qp,Zp). Let U ∈ Xprokét be a log affinoid perfectoid object, with associated

perfectoid space Û = Spa(R,R+). Let (R[, R[+) be its tilt.

(1) For each n > 0, we have O+
Xprokét

(U)/pn ∼= R+/pn, and it is canonically

almost isomorphic to (O+
Xprokét

/pn)(U).

(2) For each n > 0, we have Hi(U,O+
Xprokét

/pn)a = 0, for all i > 0. Conse-

quently, Hi(U, Ô+
Xprokét

)a = 0, for all i > 0.

(3) We have Ô+
Xprokét

(U) ∼= R+ and ÔXprokét
(U) ∼= R, and the ring Ô+

Xprokét
(U)

is canonically isomorphic to the p-adic completion of O+
Xprokét

(U).

(4) We have Ô[+Xprokét
(U) ∼= R[+ and Ô[Xprokét

(U) ∼= R[.

(5) We have Hi(U, Ô[+Xprokét
)a = 0, for all i > 0.

Proof. Let us temporarily omit the subscripts “prokét” etc from O+
Xprokét

etc.

Let us first prove (1) and (2). By definition, O+
X(U)/pn ∼= R+/pn. By Propo-

sition 5.3.12, giving a sheaf on Xprokét is equivalent to giving a presheaf on the
full subcategory of log affinoid perfectoid objects U in Xprokét, satisfying the sheaf
property for pro-Kummer étale coverings by such objects. Consider such a presheaf
of almost R+-algebras F given by assigning F(U) := (O+

X(U)/pn)a to each such
U . We claim that F is a sheaf with cohomology vanishing above degree zero. By
Proposition 5.1.5 and the same argument as in the proof of [Sch13a, Lem. 3.16], it
suffices to verify the exactness of the Čech complex

0→ F(U)→ F(V )→ F(V ×U V )→ F(V ×U V ×U V )→ · · ·

for some Kummer étale cover V → U in Xprokét that is the pullback of a Kummer
étale cover V0 → U0 in Xkét. Furthermore, we may assume that V0 → U0 is
a composition of finite Kummer étale morphisms and rational localizations. By

Lemma 5.3.8, V is log affinoid perfectoid, and V̂ is étale over Û . Moreover,

F(U) = (O+
X(U)/pn)a ∼= (O+

Û
(Û)/pn)a

and

F(V ×U · · · ×U V ) = (O+
X(V ×U · · · ×U V )/pn)a ∼= (O+

Û
(V̂ ×Û · · · ×Û V̂ )/pn)a.
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Hence, (1) and the first statement of (2) follows from the almost exactness of

0→ O+

Û
(Û)/pn → O+

Û
(V̂ )/pn → O+

Û
(V̂ ×Û V̂ )/pn → · · · ,

by [Sch12, Thm. 7.13] and the p-torsionfreeness of O+

Û
. From these, by [Sch13a,

Lem. 3.18], the remaining statement of (2) also follows.
As for (3), we first show that the image of (O+

X/p
n)(U) → (O+

X/p
m)(U) is

equal to R+/pm (under the canonical isomorphisms), for any n > m. For each
f ∈ (O+

X/p
n)(U), by (1), there exists some g ∈ R+ such that pn−mf = g in

(O+
X/p

n)(U). Let h = g/pn−m ∈ R+. Since the multiplication by pn−m induces

an injection (O+
X/p

m)(U) → (O+
X/p

n)(U), it follows that f = h in (O+
X/p

m)(U).

Therefore, (O+
X/p

n)(U) → (O+
X/p

m)(U) maps f into R+/pm, and the assertion

follows. Consequently, Ô+
Xprokét

(U) ∼= lim←−n(O+
X/p

n)(U) = lim←−nR
+/pn ∼= R+, and

hence ÔXprokét
(U) = R.

Next, let us prove (5) and an almost version of (4). Let G := O+
Xprokét

/p. By

Proposition 5.4.3, Hi(Uprokét,G)a = 0, for all log affinoid perfectoid U ∈ Xprokét

and i > 0. Moreover, G(U)a ∼= (O+
Xprokét

(U)/p)a, for any such U . By definition,

Ô[+Xprokét

∼= lim←−Φ
G. Let B be the basis of Xprokét formed by log affinoid perfectoid

objects. By applying [Sch13a, Lem. 3.18] to the sheaf G and the basis B, we know
that Rj lim←−Φ

G is almost zero, for all j > 0, and there are almost isomorphisms

Ô[+Xprokét
(U) ∼= (lim←−Φ

G)(U) ∼= lim←−Φ

(
G(U)

) ∼= lim←−Φ
(R+/p) ∼= R[+. By [Sch13a, Lem.

3.18] again, Hi(Uprokét, Ô[+Xprokét
)a ∼= Hi(Uprokét, lim←−Φ

G)a = 0, for all i > 0.

Finally, let us prove (4). Consider the sheaf associated with the presheaf H on

Xprokét determined by H(U) = O+

Û[
(Û [), for each U ∈ B. It suffices to show that

H satisfies the sheaf property for coverings by objects in B. Let U and V be log
affinoid perfectoid objects in Xprokét, and let V → U be a pro-Kummer étale cover.
Let R, S, and T be the perfectoid algebras associated with U , V and U ×V U ,
respectively. Then it suffices to show the exactness of 0 → R[+ → S[+ → T [+.
Note that this is the inverse limit (along Frobenius) of 0→ R+/p→ S+/p→ T+/p,
and this last sequence is exact by the fact that O+

Ûkét
is a sheaf and p-torsion free.

Thus, the desired exactness follows. �

The following proposition is an analogue of [KL15, Thm. 9.2.15].

Theorem 5.4.4. Suppose that X is a locally noetherian fs log adic space over
Spa(Qp,Zp). Let U be a log affinoid perfectoid object of Xprokét. The functor

H 7→ H := H(U)

is an equivalence from the category of finite locally free ÔXprokét
|U -modules on

X∼prokét/U
to the category of finite projective ÔXprokét

(U)-modules, with a quasi-

inverse given by

H 7→ H(V ) := H ⊗ÔXprokét
(U) ÔXprokét

(V ),

for each log affinoid perfectoid object V in Xprokét over U . Moreover, for each finite

locally free ÔXprokét
|U -module H, for all i > 0, we have

Hi(Xprokét/U ,H) = 0.
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Proof. By Lemma 5.3.8, the first statement follows from [KL15, Thm. 9.2.15]. The
proof of the second statement is similar to that of [LZ17, Prop. 2.3], with the input
of [KL15, Lem. 2.6.5(a)] replaced with Lemma 5.1.4(3) here. �

By combining Lemma 5.3.7 and Theorem 5.4.3, we obtain the following:

Proposition 5.4.5. Let ı : Z → X be a strict closed immersion of locally noether-

ian fs log adic spaces over Spa(Qp,Zp). Then the natural morphism ÔXprokét
→

ıprokét,∗(ÔZprokét
) is surjective. More precisely, its evaluation at every log affinoid

perfectoid object U in Xprokét is surjective.

6. Kummer étale cohomology

6.1. Toric charts revisited. Let V = Spa(S1, S
+
1 ) be a log smooth affinoid fs

log adic space over Spa(k, k+), where (k, k+) is as in Definition 3.1.9 and where
k+ = Ok, with a toric chart

V → E = Spa(k〈P 〉, k+〈P 〉) = Spa(R1, R
+
1 ),

as in Proposition 3.1.10 and Definition 3.1.12, where P is a sharp fs monoid. The
goal of this subsection is to prove the following:

Proposition 6.1.1. In the above setting, assume moreover that k is characteristic
zero and contains all roots of unity. Let V → E be a toric chart as above, and let
L be an Fp-local system on Vkét. Then we have the following:

(1) Hi
(
Vkét,L⊗Fp (O+

V /p)
)

is almost zero, for all i > n = dim(V ).
(2) Let V ′ ⊂ V be a rational subset such that V ′ is strictly contained in V (i.e.,

the closure V
′

of V ′ is contained in V ). Then the image of the canonical
morphism Hi

(
Vkét,L⊗Fp (O+

V /p)
)
→ Hi

(
V ′két,L⊗Fp (O+

V /p)
)

is an almost
finitely generated k+-module, for each i ≥ 0.

In order to prove Proposition 6.1.1, we need some preparations. Let us first
introduce an explicit pro-finite Kummer étale cover of E. For each m ≥ 1, consider

Em := Spa(k〈 1
mP 〉, k

+〈 1
mP 〉) = Spa(Rm, R

+
m)

and the log affinoid perfectoid object

Ẽ := lim←−
m

Em ∈ Eprokét,

where the transition maps Em′ → Em (for m|m′) are induced by the natural in-
clusions 1

mP ↪→ 1
m′P . Let PQ≥0

:= lim−→m

(
1
mP

)
as before. Then the associated

perfectoid space is ̂̃E := Spa(k〈PQ≥0
〉, k+〈PQ≥0

〉) = Spa(R,R+).

For each m ≥ 1, let us write

Vm := V ×E Em = Spa(Sm, S
+
m)

and

Ṽ := V ×E Ẽ ∈ Vprokét.

Then Ṽ ∼= lim←−m Vm is also a log affinoid perfectoid object in Vprokét, with associated

perfectoid space
̂̃
V ∼= Spa(S, S+), where (S, S+) =

(
lim−→m

(Sm, S
+
m)
)
.
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Definition 6.1.2. Suppose that X is a locally noetherian fs log adic space over
Spa(k, k+), where (k, k+) is an affinoid field, and where k is of characteristic zero
and contains all roots of unity. Let G be a profinite group. A pro-Kummer étale
cover U → X is a Galois cover with (profinite) Galois group G if there exists a
pro-Kummer étale presentation U = lim←−i Ui → X such that each Ui → X is a

Galois finite Kummer étale cover with Galois group Gi (as in Proposition 4.1.6,
where Gi is a constant group object because contains all roots of unity), and such
that G ∼= lim←−iGi, in which case the group action and the second projection induces

a canonical isomorphism G× U ∼= U ×X U over X.

Since P is a sharp fs monoid, P gp is a finitely generated free abelian group. Let
P gp
Q := (PQ≥0

)gp ∼= P gp ⊗Z Q. Then Em → E and therefore Vm → V are finite
Kummer étale covers with Galois group

Γ/m := Hom
(
( 1
mP )gp/P gp,µ∞

) ∼= Hom(P gp/mP gp,µm)

∼= Hom(P gp,µm),
(6.1.3)

and Ṽ → V is a Galois pro-finite Kummer étale cover with Galois group

Γ := lim←−
m

Γ/m ∼= Hom
(
P gp, lim←−

m

µm
) ∼= Hom

(
P gp, Ẑ(1)

)
∼= Hom

(
lim−→
m

( 1
mP )gp/P gp,µ∞

) ∼= Hom(P gp
Q /P gp,µ∞),

(6.1.4)

where µm, µ∞, and Ẑ(1) are as in Definition 4.4.6 (with the symbols (k) omitted).
Consider the k+[P ]-module decomposition

(6.1.5) k+[PQ≥0
] = ⊕χ

(
k+[PQ≥0

]χ
)

according to the action of Γ, where the direct sum is over all finite-order characters
χ of Γ. Note that the set of finite-order characters of Γ can be naturally identified
with P gp

Q /P gp, via (6.1.4). If we denote by π the natural map π : PQ≥0
→ P gp

Q /P gp,

then we have the k+-module decomposition

k+[PQ≥0
]χ = ⊕a∈PQ≥0

, π(a)=χ

(
k+ea

)
.

Lemma 6.1.6. (1) k+[PQ≥0
]1 = k+[P ] for the trivial character χ = 1.

(2) Each direct summand k+[PQ≥0
]χ is a finite k+[P ]-module.

Proof. The assertion (1) follows from the observation that PQ≥0
∩ P gp = P as

subsets of P gp
Q . As for the assertion (2), it suffices to show that, for each χ in

P gp
Q /P gp, if χ ∈ ( 1

mP )gp/P gp for some m ≥ 1, and if P is generated as a monoid by

some finite subset {a1, . . . , ar}, then there exists some integer m′ ≥ m (depending
on m) such that π−1(χ) ⊂ 1

m′P , so that π−1(χ) = Sχ + P for the finite subset

Sχ := {
∑r
i=1

ci
m′ ai ∈ π

−1(χ) : 0 ≤ ci < m′} of π−1(χ). Concretely, since P is sharp
by assumption, σ := R≥0 a1 + · · · + R≥0 ar is a convex subset of P gp ⊗Z R of the
form σ = {a ∈ P gp ⊗Z R : bj(a) ≥ 0, for all j = 1, . . . , s} for some homomorphisms
bj : P gp → Z (cf. [KKMSD73, Ch. I, Sec. 1, pp. 6–7]) such that HomZ(P gp,Q) =∑s
j=1 Q bj . It follows that HomZ(P gp,Z) ⊂

∑s
j=1

1
NZ bj , for some N ≥ 1, and

hence {a ∈ P gp ⊗Z Q : bj(a) ∈ Z, for all j = 1, . . . , s} ⊂ 1
N P

gp by duality. Thus,

π−1(χ) ⊂ PQ≥0
∩ 1
m′P

gp = 1
m′P , for m′ = mN , as desired. �
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Lemma 6.1.7. Fix n ≥ 0. Let M be any k+/pn-module on which Γ acts via a
primitive character χ : Γ → µm. Then Hi(Γ,M) is annihilated by ζm − 1, where
ζm ∈ µm is any primitive m-th root of unity, for each i ≥ 0. Moreover, if we have
a finite extension k0 of Qp(µm) in k with ring of integers k+

0 , a finitely generated
k+

0 /p
n-algebra T0, and a finite (and therefore finitely presented) T0-module M0 such

that M ∼= M0 ⊗k+
0 /p

n (k+/pn) as Γ-modules over T := T0 ⊗k+
0 /p

n (k+/pn), then

Hi(Γ,M) is a finitely presented T -module, for each i ≥ 0.

Proof. By choosing a Z-basis of P gp, we have Γ ∼= Ẑ(1)n, where n = rkZ(P gp)
(see (6.1.4)). Then the lemma follows from a direct computation using the Koszul
complex of Γ (as in the proof of [Sch13a, Lem. 5.5]) and (for the last assertion of
the lemma) using the flatness of k+/pn over k+

0 /p
n (and the compatibility with flat

base change in the formation of Koszul complexes). �

Remark 6.1.8. Since R+
1 /p

∼= (k+/p)[P ] and R+/p ∼= (k+/p)[PQ≥0
], by Lem-

mas 6.1.6 and 6.1.7, the natural injection R+
1 /p ↪→ R+/p induces an injection

Hi
(
Γ, (R+

1 /p)
)
↪→ Hi

(
Γ, (R+/p)

)
, with cokernel annihilated by ζp− 1, for each i ≥

0. Moreover, the R+
1 /p-module Hi

(
Γ, (R+/p)

)
is almost finitely presented, because,

for each ε > 0 such that pε-torsion makes sense, there are only finitely many χ such
that the finitely presented R+/p-module direct summand Hi

(
Γ, (k+/p)[PQ≥0

]χ
)

is
nonzero and not pε-torsion. By the use of Koszul complexes as in the proof of
Lemma 6.1.7, for any composition of rational localizations and finite étale mor-
phisms Spa(S1, S

+
1 ) → Spa(R1, R

+
1 ), we have Hi

(
Γ, (S+

1 /p) ⊗R+
1 /p

(R+/p)
) ∼=

(S+
1 /p)⊗R+

1 /p
Hi(Γ, R+/p).

By the same argument as in the proof of [Sch13a, Lem. 4.5], we obtain the
following:

Lemma 6.1.9. Let X be a locally noetherian fs log adic space over Spa(k, k+). Let

U = lim←−
i∈I

Ui = lim←−
i∈I

(Spa(Ri, R
+
i ),Mi)

be a log affinoid perfectoid object in Xprokét, and let (R,R+) :=
(
lim−→i

(Ri, R
+
i )
)∧

,

so that Û = Spa(R,R+) is the associated affinoid perfectoid space.
Suppose that, for some i ∈ I, there exists a strictly étale morphism

Vi = Spa(Si, S
+
i )→ Ui

that is a composition of rational localizations and strictly finite étale morphisms.
For each j ≥ i, let Vj := Vi ×Ui Uj = Spa(Sj , S

+
j ), and let

V := Vi ×Ui U ∼= lim←−
j

Vj ∈ Xprokét.

Let (S, S+) :=
(
lim−→j

(Sj , S
+
j )
)∧

. Let Tj be the p-adic completion of the p-torsion

free quotient of S+
j ⊗R+

j
R+. Then we have the following:

(1) (S, S+) is a perfectoid affinoid (k, k+)-algebra, and V is a log affinoid per-

fectoid object in Xprokét with associated perfectoid space V̂ = Spa(S, S+).

Moreover, V̂ = Vj ×Uj Û in the category of adic spaces.

(2) For each j ≥ i, we have S ∼= Tj [
1
p ], and the cokernel of Tj → S+ is

annihilated by some power of p.
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(3) For each ε ∈ Q>0, there exists some j ≥ i such that the cokernel of Tj → S+

is annihilated by pε.

Remark 6.1.10. Lemma 6.1.9 is applicable, in particular, to the log affinoid per-
fectoid object U = lim←−m≥1

Em in Eprokét and any strictly étale morphism V =

Spa(S1, S
+
1 )→ E (for m = 1) giving a toric chart.

Lemma 6.1.11. Let X be a locally noetherian fs log adic space over Spa(k, k+).
Suppose that U is a log affinoid perfectoid object of Xprokét, with associated perfec-

toid space Û = Spa(R,R+). Let L be an Fp-local system on Ukét. Then:

(1) Hi
(
Ukét,L⊗Fp (O+

X/p)
)

is almost zero, for all i > 0.

(2) L(U) := H0
(
Ukét,L⊗Fp (O+

X/p)
)

is an almost finitely generated projective
R+/p-module (see [GR03, Def. 2.4.4]). In addition, for any morphism U ′ →
U in Xprokét, where U ′ is a log affinoid perfectoid object in Xprokét, with

associated perfectoid space Û ′ = Spa(R′, R′+), we have a canonical almost
isomorphism L(U ′) ∼= L(U)⊗R+/p (R′+/p).

Proof. By replacing X with its connected components, we may assume that X
is connected. Choose any Galois finite Kummer étale cover Y → X trivializing
L ∼→ Frp. By Lemma 5.3.8, W := U ×X Y → U is finite étale, and W is log affinoid

perfectoid, with associated perfectoid space Ŵ = Spa(T, T+). For each j ≥ 1,
let W j/U denote the j-fold fiber product of W over U . By Proposition 5.1.7 and

Theorem 5.4.3, Hi
(
W

j/U
két ,L ⊗Fp (O+

W /p)
)

is almost zero, for all i > 0 and j, and

H0
(
W

j/U
két ,L⊗Fp (O+

V /p)
)

is canonically almost isomorphic to (O+
W j/U (W j/U )/p)r.

By the faithful flatness of T+a/p → R+a/p, the desired results follow from almost
faithfully flat descent (see [GR03, Sec. 3.4]). �

Now we are ready for the following:

Proof of Proposition 6.1.1. Consider the Galois cover Ṽ → V = Spa(S1, S
+
1 ) with

Galois group Γ, and with
̂̃
V = Spa(S, S+), as above. Since Ṽ j/V ∼= Ṽ × Γj−1 is a

log affinoid perfectoid object in Vprokét, for each j ≥ 1, we have

Hi
(
Ṽ
j/V
két ,L⊗Fp (O+

V /p)
) ∼= Homcont

(
Γj−1, L

)
,

where L := H0
(
Ṽkét,L ⊗Fp (O+

V /p)
)a

is an almost finitely generated projective
S+a/p-module, equipped with the discrete topology, by Propositions 5.1.6 and 5.1.7.
By Proposition 5.1.7 again, and by Lemma 6.1.11 and the Cartan–Leray spectral
sequence (see [AGV73, V, 3.3]), we have an almost isomorphism

Hi
(
Vkét,L⊗Fp (O+

V /p)
) ∼= Ȟi

(
{Ṽ → V },L⊗Fp (O+

V /p)
) ∼= Hi(Γ, L),

where the last isomorphism follows from Proposition 5.1.12 and [Sch13a, Prop.
3.7(iii)] (and the correction in [Sch16]). Hence, the statement (1) of Proposition

6.1.1 follows from the fact that Γ ∼= Ẑ(1)n has cohomological dimension n.

As for the statement (2), write V ′ = Spa(S′1, S
′+
1 ) and

̂̃
V ′ = Spa(S′, S′+). We

need to show that the image of Hi(Γ, L) → Hi
(
Γ, L ⊗S+/p (S′+/p)

)
is an almost

finitely generated k+-module. Since L is an almost finitely generated projective
S+a/p-module, it suffices to show that the image of

Hi(Γ, S+/p)→ Hi(Γ, S′+/p)
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is an almost finitely generated k+-module. Choose rational subsets {V (j)}1≤j≤n+2

such that V (n+2) = V ′, V (1) = V , and V (j+1) is strictly contained in V (j), for

1 ≤ j ≤ n+ 1. Write V
(j)
m := V (j) ×E Em = Spa(S

(j)
m , S

(j)+
m ), for all 1 ≤ j ≤ n+ 2

and m ≥ 1. Then Ṽ (j) := lim←−m V
(j)
m is a log affinoid perfectoid object in Vprokét,

with associated perfectoid space
̂̃
V (j) = Spa(S(j), S(j)+). By Lemma 6.1.9 and

Remark 6.1.10, it suffices to show that the image of

Hi(Γ, (S(1)+
m ⊗R+

m
R+)/p)→ Hi(Γ, (S(n+2)+

m ⊗R+
m
R+)/p)

is almost finitely generated, for all m ∈ Z≥1. Note that mΓ acts trivially on S
(j)+
m ,

and we have the Hochschild–Serre spectral sequence

Hi1
(
Γ/m, H

i2(mΓ, (S(j)+
m ⊗R+

m
R+)/p)

)
⇒ Hi1+i2(Γ, (S(j)+

m ⊗R+
m
R+)/p).

By [Sch13a, Lem. 5.4] and Remark 6.1.8, it suffices to show that the image of

(S(j)+
m /p)⊗R+

m/p
Hi(mΓ, R+/p)→ (S(j+1)+

m /p)⊗R+
m/p

Hi(mΓ, R+/p)

is almost finitely generated, for all j = 1, . . . , n+ 1 and m ≥ 1. Since the image of

S
(j)+
m /p→ S

(j+1)+
m /p is an almost finitely generated k+-module, it suffices to note

that Hi(mΓ, R+/p) is almost finitely generated over R+
m/p, by Remark 6.1.8 (up

to replacing (R1, R
+
1 ), Γ, etc with (Rm, R

+
m), Γm, etc). �

6.2. Primitive comparison theorem. The main goal of this subsection is to
prove the following primitive comparison theorem, with the finiteness of cohomology
as a byproduct, generalizing the strategy in [Sch13a, Sec. 5]:

Theorem 6.2.1. Let (k, k+) be an affinoid field, where k is algebraically closed
and of characteristic zero, and let X be a proper log smooth fs log adic space over
Spa(k, k+) (see Definitions 2.2.2 and 3.1.1). Let L be an Fp-local system on Xkét.
Then we have the following:

(1) Hi
(
Xkét,L ⊗Fp (O+

X/p)
)

is an almost finitely generated k+-module (see
[GR03, Def. 2.3.8]) for each i ≥ 0, and is almost zero for i� 0.

(2) There is a canonical almost isomorphism

Hi(Xkét,L)⊗Fp (k+/p)
∼→ Hi

(
Xkét,L⊗Fp (O+

X/p)
)

of k+-modules, for each i ≥ 0.

Consequently, Hi(Xkét,L) is a finite-dimensional Fp-vector space for each i ≥ 0,
and Hi(Xkét,L) = 0 for i � 0. In addition, if X is as in Example 2.3.17, then
Hi(Xkét,L) = 0 for i > 2 dim(X).

Remark 6.2.2. Recall that there is no general finiteness results for the étale coho-
mology of Fp-local systems on non-proper rigid analytic varieties over k, as is well
known (via Artin–Schreier theory) that H1(D,Fp) is infinite.

Nevertheless, we have the following:

Corollary 6.2.3. Let U be a smooth rigid analytic variety that is Zariski open
in a proper rigid analytic variety over k. Then Hi(Uét,L) is a finite-dimensional
Fp-vector space, for each Fp-local system L on Uét and each i ≥ 0. Moreover,
Hi(Uét,L) = 0 for i > 2 dim(U).
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Proof. By resolution of singularities (as in [BM97]), we may assume that we have a
smooth compactification U ↪→ X such that U = X −D for some normal crossings
divisor D of X. Now apply Theorems 4.6.1 and 6.2.1. �

Lemma 6.2.4. Let X be a proper log smooth fs log adic space over Spa(k,Ok).
For each integer N ≥ 2, we can find N affinoid étale coverings of X

{V (N)
h }mh=1, . . . , {V

(1)
h }

m
h=1

satisfying the following properties:

• V (N)
h ⊂ · · · ⊂ V (1)

h is a chain of rational subsets, for each h = 1, . . . ,m.

• V (j+1)
h ⊂ V (j+1)

h ⊂ V (j)
h , for all h = 1, . . . ,m and j = 1, . . . , N − 1.

• V (1)
h1
×X V

(1)
h2
→ V

(1)
h1

is a composition of rational localizations and finite
étale morphisms, for 1 ≤ h1, h2 ≤ m.

• Each V
(1)
h admits a toric chart V

(1)
h → Spa(k〈Ph〉,Ok〈Ph〉), for some sharp

fs monoid Ph.

Proof. By Proposition 3.1.10 and the same argument as in the proof of [Sch13a,
Lem. 5.3], there exist N affinoid analytic open coverings of X

{U (N)
h }mh=1, . . . , {U

(1)
h }

m
h=1

satisfying the following properties:

• U (N)
h ⊂ · · · ⊂ U (1)

h is a chain of rational subsets, for each h = 1, . . . ,m.

• U (j+1)
h ⊂ U (j+1)

h ⊂ U (j)
h , for all h = 1, . . .m and j = 1, . . . , N − 1.

• U (1)
h1
∩ U (1)

h2
⊂ U (1)

h1
is a rational subset, for 1 ≤ h1, h2 ≤ m.

• There exist finite étale covers V
(1)
h → U

(1)
h such that each V

(1)
h admits a

toric chart V
(1)
h → Ej = Spa(k〈Ph〉,Ok〈Ph〉) (which is, in particular, a

composition of rational localizations and finite étale morphisms) for some
sharp fs monoid Ph.

Then it suffices to take V
(j)
h := V

(1)
h ×

U
(1)
h

U
(j)
h , for all h and j. �

Proof of Theorem 6.2.1(1). Consider X ′ := X ×Spa(k,k+) Spa(k,Ok) ⊂ X. Con-
sider any covering {Uh}h of X by log affinoid perfectoid objects in Xprokét, whose
pullback {Uh ×X X ′}h is a covering of X ′ by log affinoid perfectoid objects in
X ′prokét. By Lemma 6.1.11, we have a canonical almost isomorphism

Hi
(
Uh,két,L⊗Fp (O+

X/p)
) ∼→ Hi

(
Uk,két ×X X ′,L⊗Fp (O+

X/p)
)
,

for all i ≥ 0 and all h. By Proposition 5.1.7 and by comparing the spectral sequences
associated with the coverings, we obtain an almost isomorphism

Hi
(
Xkét,L⊗Fp (O+

X/p)
) ∼→ Hi

(
X ′két,L⊗Fp (O+

X/p)
)
,

for each i ≥ 0. Hence, for the purpose of this proof, up to replacing X with X ′, we
may assume that k+ = Ok in what follows.

Let {V (N)
h }mh=1, . . . , {V

(1)
h }mh=1 be affinoid étale coverings ofX satisfying the same

properties as in Lemma 6.2.4. For each subset H = {h1, . . . , hs} of {1, . . . ,m}, let

V
(j)
H := V

(j)
h1
×X · · · ×X V

(j)
hs

. For each j = 1, . . . , N , we have a spectral sequence

Ei1,i21,(j) = ⊕|H|=i1+1H
i2
(
V

(j)
H,két,L⊗Fp (O+

X/p)
)
⇒ Hi1+i2

(
Xkét,L⊗Fp (O+

X/p)
)
.
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For j = 1, . . . , N − 1, we also have natural morphisms between spectral sequences
Ei1,i2∗,(j) → Ei1,i2∗,(j+1). Then the desired finiteness result follows from Proposition 6.1.1

and [Sch13a, Lem. 5.4]. Moreover, by Proposition 6.1.1 and the spectral sequence

for j = 1, we have Hi
(
Xkét,L⊗Fp (O+

X/p)
)a

= 0 for i� 0. �

Proof of Theorem 6.2.1(2). Consider the Artin–Schreier sequence

(6.2.5) 0→ L→ L⊗Fp Ô[Xprokét

σ→ L⊗Fp Ô[Xprokét
→ 0,

where σ = Id⊗(Φ − Id) and Φ is the Frobenius morphism (induced by x 7→ xp).
The exactness of (6.2.5) can be checked locally on log affinoid perfectoid objects
U ∈ Xprokét over which L is trivial, which then follows (by using Lemma 5.3.8)
from the same argument in the proof of [Sch13a, Thm. 5.1].

Choose any $ ∈ k[ such that $] = p. By Theorem 6.2.1(1) and [Sch13a, Lem.
2.12], there exists some r ≥ 0 such that we have

Hi
(
Xprokét,L⊗Fp (Ô[+Xprokét

/$m)
)a ∼= (Oak[/$

m)r,

for all m, which are compatible with each other and with the Frobenius morphism.
By [Sch13a, Lem. 3.18], we have

R lim←−
m

(
L⊗Fp (Ô[+X /$m)

)a ∼= (L⊗Fp Ô[+X )a,

and so

Hi(Xprokét,L⊗Fp Ô[+Xprokét
)a ∼= (Oak[)

r

and

Hi(Xprokét,L⊗Fp Ô[Xprokét
) ∼= (k[)r

(by inverting $), which are still compatible with the Frobenius morphisms.
Thus, by considering the long exact sequence associated with (6.2.5), and by

Proposition 5.1.7, we see that

Hi(Xkét,L) ∼= Hi(Xprokét,L⊗Fp Ô[Xprokét
)Φ−Id ∼= Frp

and

Hi(Xkét,L)⊗Fp (k+a/p) ∼= Hi
(
Xkét,L⊗Fp (O+

Xkét
/p)
)a
,

as desired. �

Proof of the remaining statements of Theorem 6.2.1. It remains to show that, if X
is as in Example 2.3.17, then Hi(Xkét,L) = 0 for i > 2 dim(X). By Theorem

6.2.1(2), it suffices to show that Hi
(
Xkét,L⊗Fp (O+

Xkét
/p)
)a

= 0, for i > 2 dim(X).
Note that, in Example 3.1.13, since k is algebraically closed, X analytic locally
admits smooth toric charts X → Dn. Hence, by the same argument as in the proof

of [Sch13a, Lem. 5.3], all the étale coverings {V (1)
j }mj=1 in Lemma 6.2.4 can be

chosen to be analytic coverings. Let λ : Xkét → Xan denote the natural projection
of sites. By Proposition 6.1.1, Rjλ∗

(
L ⊗Fp (O+

Xkét
/p)
)a

= 0, for all j > dim(X).

Since the cohomological dimension of Xan is bounded by dim(X), by [dJvdP96,
Prop. 2.5.8], the desired vanishing follows. (This is essentially the same argument
as in the proof of [Sch13a, Lem. 5.9].) �
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6.3. p-adic local systems.

Definition 6.3.1. Let X be a locally noetherian fs log adic space.

(1) A Zp-local system on Xkét, also called a lisse Zp-sheaf on Xkét, is an inverse
system of Z/pn-modules L = (Ln)n≥1 on Xkét such that each Ln is a locally
constant sheaf which are locally (on Xkét) associated with finitely generated
Z/pn-modules, and such that the inverse system is isomorphic in the pro-
category to an inverse system in which Ln+1/p

n ∼= Ln.
(2) A Qp-local system (or lisse Qp-sheaf ) on Xkét is an object of the stack

associated with the fibered category of isogeny lisse Zp-sheaves.

Definition 6.3.2. Let X be a locally noetherian fs log adic space. Let

Ẑp := lim←−
n

(Z/pn)

as a sheaf of rings on Xprokét, and let

Q̂p := Ẑp[ 1
p ].

A Ẑp-local system on Xprokét is a sheaf of Ẑp-modules on Xprokét that is locally (on

Xprokét) isomorphic to L ⊗Zp Ẑp for some finitely generated Zp-modules L. The

notion of Q̂p-local system on Xprokét is defined similarly.

Lemma 6.3.3. Let X be a locally noetherian fs log adic space over Spa(Qp,Zp).
Let υ : Xprokét → Xkét denote the natural projection of sites.

(1) The functor

L = (Ln)n≥1 7→ L̂ := lim←−
n

υ−1(Ln)

is an equivalence of categories from the category of Zp-local systems on

Xkét to the category of Ẑp-local systems on Xprokét. Moreover, L̂⊗Ẑp Q̂p is

a Q̂p-local system.
(2) For all i > 0, we have Ri lim←−n υ

−1(Ln) = 0.

Proof. Apply Proposition 5.3.13 and [Sch13a, Lem. 3.18]. �

Corollary 6.3.4. Let k, X, and U be as in Theorem 4.6.1. Let L be an étale
Zp-local system on Uét. Then L := két,∗(L) is a Kummer étale Zp-local system

extending L. Conversely, any étale Zp-local system L on Xkét is of this form. In
either case, there are canonical isomorphisms

Hi(Uk,ét,L) ∼= Hi(Xk,két,L) ∼= Hi(Xk,prokét, L̂)

of finite Zp-modules, for each i ≥ 0, where k denotes any algebraic closure of k.

Proof. The assertions on L and L in the first four sentences, together with the
first isomorphism (displayed above), follow from Corollary 4.6.7 by taking limits of
Zp/pm-local systems over m ∈ Z≥1, which is justified by the finite-dimensionality of
the cohomology of Fp-local systems on Xk,két shown in Theorem 6.2.1. The second

isomorphism follows from Proposition 5.1.7 and Lemma 6.3.3(2). The finiteness of
these isomorphic Zp-modules follows, again, from Theorem 6.2.1. �
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Corollary 6.3.5. Let f : X → Y be a log smooth morphism of log adic spaces
whose log structures are defined by normal crossings divisors D and E of smooth
rigid analytic varieties X and Y , respectively, as in Example 2.3.17. Assume that
the underlying morphisms of adic spaces of f and f |X−D : X−D → Y −E are both
proper. Let L be any Zp-local system L on Xkét. Then Rifkét,∗(L) is a Zp-local
system on Ykét, for each i.

Proof. This follows from [SW20, Thm. 10.5.1] and Corollary 6.3.4. �

The combination of pullbacks of Q̂p-local systems and completed structure sheaves
under strict closed immersions can be described as follows:

Lemma 6.3.6. Let ı : Z → X be a strict closed immersion of locally noetherian fs

log adic spaces over Spa(Qp,Zp). Let L̂ be a Q̂p-local system on Xprokét. Then we
have a canonical isomorphism

(L̂⊗Q̂p ÔXprokét
)(U)⊗ÔXprokét

(U) ÔZprokét
(U ×X Z)

∼→
(
ı−1
prokét(L̂)⊗Q̂p ÔZprokét

)
(U ×X Z),

for each log affinoid perfectoid object U of Xprokét.

Proof. By Lemma 5.3.7, U×XZ is a log affinoid perfectoid object of Zprokét, and the

natural morphism ÔXprokét
→ ıprokét,∗(ÔZprokét

) induces a surjective homomorphism

ÔXprokét
(U)→ ÔZprokét

(U ×X Z). By Theorem 5.4.4, it suffices to prove the lemma
by replacing U with some log affinoid perfectoid object V of Xprokét over U such

that L̂|V is trivial, in which case the assertion is clear. �

Finally, let us define and study the notion of unipotent and quasi-unipotent
geometric monodromy actions along a normal crossings divisor. Let ı : D → X and
k be as in Example 2.3.17, with  : U := X − D → X the complementary open
immersion. Let L be a Qp-local system on Xkét.

Definition 6.3.7. With k, X, D, and L as above, we say that L|Uét
has unipotent

(resp. quasi-unipotent) geometric monodromy along D if πkét
1

(
X(ξ), ξ̃

)
acts unipo-

tently (resp. quasi-unipotently) on the stalk Lξ̃, for each log geometric points ξ̃ of

X lying above each geometric point ξ of D, where the log structure of the strict
localization X(ξ) is pulled back from X, as in Proposition 4.4.9. By abuse of lan-
guage, when there is no risk of confusion, we shall also say that L has unipotent
(resp. quasi-unipotent) geometric monodromy along D, without writing L|Uét

.

Example 6.3.8. Suppose that {Dj}j∈I is the set of irreducible components of D
(see [Con99]). For each J ⊂ I, suppose moreover that XJ := X ∩

(
∩j∈J Dj

)
is

smooth and geometrically connected, and consider the fs log adic spaces UJ and U∂J
introduced in Example 2.3.18, together with a canonical morphism ε∂J : U∂J → UJ
(whose underlying morphism of adic spaces is a canonical isomorphism) and a strict
immersion ı∂J : U∂J → X. Note that the log structure of UJ is trivial, while the one
of U∂J is pulled back from XJ . We shall simply denote the underlying adic space of
U∂J by UJ . By construction, X is set-theoretically the disjoint union of such locally
closed subspaces UJ . At each geometric point ξ = Spa(l, l+) of UJ (and hence also
of U∂J ), by projection to factors of polydiscs as in Examples 2.3.17 and 2.3.18, we
have locally a strict morphism from U∂J to s = (Spa(k,Ok),ZJ≥0) as in Example
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4.4.26, which is the restriction of a strict morphism from a neighborhood of ξ in X
to a neighborhood of s in D|J| (with its canonical log structure defined as in Example
2.2.21). As result, by Corollary 4.4.22, we have compatible isomorphisms

(6.3.9) ZJ≥0
∼→MX,ξ

∼→MU∂J ,ξ

and

πkét
1

(
U∂J (ξ)

) ∼= Hom
(
Mgp

U∂J ,ξ
, Ẑ′(1)

)
∼→ πkét

1

(
X(ξ)

) ∼= Hom
(
Mgp

X,ξ, Ẑ′(1)
) ∼→ ΓJ :=

(
Ẑ′(1)

)J(6.3.10)

(with (l) omitted from the notation of Ẑ′(1)(l), whose operations will be denoted
multiplicatively). Therefore, any Zp-local system on X(ξ)két is equivalent to a Zp-
local system on U∂J (ξ)két, which is in turn equivalent to a (trivial) Zp-local system
on UJ(ξ)ét with ΓJ -action. (The analogous statement for Qp-local systems follows.)
Thus, in Definition 6.3.7, the local system L on Xkét has unipotent (resp. quasi-
unipotent) geometric monodromy along D if and only if, for each J ⊂ I and each
geometric point ξ of UJ , the action of πkét

1

(
X(ξ)

) ∼= ΓJ on Lξ is unipotent (resp.

quasi-unipotent), and this property depends only the pullback of L to U∂J (ξ)két.

Lemma 6.3.11. In Definition 6.3.7, it suffices to verify the condition for geometric
points ξ of X lying above the smooth locus of D. (That is, ξ does not lie on the
intersections, including self-intersections, of irreducible components of D.)

Proof. Since Definition 6.3.7 requires only strict localizations of X, we may replace
k with a complete algebraic closed extension. Moreover, up to étale localization,
we may assume that X is affinoid and admits a smooth toric chart X → Dn as in
Example 3.1.13, with the log structure induced by maps Zn≥0 →MX(X)→ OX(X)
sending the i-th standard basis element ei to the images of the i-th coordinate Ti
of Dn. Consider the tower · · · → Xm → · · · → X defined by the toric chart

X → Dn as in Section 6.1 (with P = Zn≥0), with Galois group Γ ∼=
(
Ẑ′(1)

)n
.

Up to further étale localization, we may assume that the subspace of X defined
by Ti = 0 is either empty or irreducible. Then, in the setting of Example 6.3.8,
we may identify I with a subset of {1, . . . , n}, with irreducible components Dj

of D defined by Tj = 0, for j ∈ I. In this case, if J ′ ⊂ J ⊂ I, then we have

canonical projections Zn≥0 � ZJ≥0 � ZJ′≥0 which induce inclusions ΓJ
′
↪→ ΓJ ↪→ Γ,

by (6.3.9) and (6.3.10). Let ξ and ξ′ be any geometric points of UJ and UJ′ ,
respectively. By pulling back the tower above to X(ξ) and X(ξ′), respectively, and

by Proposition 4.4.9, we can identify the above inclusions ΓJ ↪→ Γ and ΓJ
′
↪→ Γ

with homomorphisms πkét
1

(
X(ξ)

)
→ Γ and πkét

1

(
X(ξ′)

)
→ Γ. As a result, we

obtain an inclusion πkét
1

(
X(ξ′)

)
↪→ πkét

1

(
X(ξ)

)
, which can be canonically identified

with the above inclusion ΓJ
′
↪→ ΓJ above inclusion inside Γ, for any ξ and ξ′

as above. Since UJ is contained in the closure XJ′ of UJ′ , every Kummer étale
neighborhood of ξ admits the lifting of some geometric point ξ′ of XJ′ . Thus, since
each Zp-local system is trivialized by some inverse system of such neighborhoods,
and since each Qp-local system is (by definition) an isogeny class of Zp-local systems,
if πkét

1

(
X(ξ′)

)
acts unipotently (resp. quasi-unipotently) on L|ξ′ , for all geometric

points ξ′ of UJ′ , then the subgroup ΓJ
′

of ΓJ ∼= πkét
1

(
X(ξ)

)
acts unipotently (resp.

quasi-unipotently) on Lξ. Since ΓJ ∼=
∏
j∈J Γ{j} is generated by Γ{j}, for j ∈ J ; and

since the smooth locus of D is (set-theoretically) ∪j∈I U{j}, the lemma follows. �
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Remark 6.3.12. Suppose that X, D, and L is the analytification of X0, D0, and
L0, respectively, where D0 is a normal crossings divisor on a smooth algebraic
variety X0 over k, and where L0 is an étale Qp-local system on X0. Since the
construction of standard Kummer étale covers are compatible with analytification,
by comparing the constructions in Proposition 4.1.6 and [Ill02, Prop. 3.2], we have
obvious analogues of Definition 6.3.7, Example 6.3.8, and Lemma 6.3.11 in the
algebraic setting, which are all compatible with analytification.

Remark 6.3.13. In Remark 6.3.12, for each irreducible component of D0, its
generic point is a point of codimension one, and hence the strict localization
X0(ξ0) at any geometric point ξ0 = Spec(l) above such a generic point is the
spectrum of a strictly local ring R with residue field l. Let K := Frac(R), let
K be any algebraic closure of K, and let Ktr be the maximal tamely ramified
extension of K in K. Let η0 := Spec(K). Then L0|η0

is naturally a represen-

tation of Gal(K/K). As explained in [Ill02, Ex. 4.7(b)], πkét
1

(
X0(ξ0)

)
is canoni-

cally isomorphic to the tame inertia group, which is Gal(Ktr/K) ∼= Ẑ′(1) in this

case; and the induced isomorphism πkét
1

(
X0(ξ0)

) ∼= Ẑ′(1) can be canonically iden-

tified with πkét
1

(
X0(ξ0)

) ∼= Hom
(
Mgp

X0,ξ0 , Ẑ
′(1)
) ∼= Ẑ′(1), with the last isomor-

phism induced by MX0,ξ0
∼= Z≥0. Since L0|U0,ét

extends over X0,két, the ac-

tion of Gal(K/K) on L0|η0
factors through Gal(Ktr/K). Note that, in the al-

gebraic setting, if ξ0 specializes to some geometric point ξ′0 of X0, then we have
a canonical morphism X0(ξ0) → X0(ξ′0), and hence a canonical homomorphism
πkét

1

(
X0(ξ0)

)
→ πkét

1

(
X0(ξ′0)

)
. When ξ′0 does not lie on any other irreducible com-

ponent of D0, this last homomorphism can be canonically identified with the iden-

tity homomorphism of Ẑ′(1). Since every geometric point of the smooth locus of
D0 is some such ξ′0, by the algebraic analogue of Lemma 6.3.11, we see that L0

has unipotent (resp. quasi-unipotent) monodromy along D0 (by the algebraic ana-
logue of Definition 6.3.7) if and only if, for each ξ0 as above, the induced action

of Gal(Ktr/K) ∼= Ẑ′(1) is unipotent (resp. quasi-unipotent). In fact, this last con-
dition is a more classical definition for schemes, whose formulation does not rely
on log geometry at all. Nevertheless, our Definition 6.3.7 has the advantage of not
relying on the notion of generic points (or specializations).

6.4. Quasi-unipotent nearby cycles. In this subsection, as an application of
our results, we reformulate Beilinson’s ideas (see [Bei87]; cf. [Rei10]) and define the
unipotent and quasi-unipotent nearby cycles in the rigid analytic setting.

Let k be any field of characteristic zero, and let k be any algebraic closure of
k. Let Gm := Spec(k[z, z−1]) be the multiplicative group scheme over k. Let k be
any fixed algebraic closure of k. Then π1(Gm, 1) ∼= π1(Gm,k, 1) o Gal(k/k), and

π1(Gm,k, 1) ∼= Ẑ(1) as Gal(k/k)-modules. For each r ≥ 1, let Jr denote the rank r

unipotent étale Zp-local system on Gm defined by the representation of π1(Gm,k, 1)

on Zrp such that a topological generator γ ∈ π1(Gm,k, 1) acts as a principal unipotent

matrix Jr and such that Gal(k/k) acts diagonally on Zrp and trivially on ker(Jr−1).
(As in Example 4.4.25, the local system thus defined is independent of the choice
of γ up to isomorphism.) There is a natural inclusion Jr ↪→ Jr+1, together with a
projection Jr+1 → Jr(−1) such that the composition Jr → Jr(−1) is given by the
monodromy action. For each m ≥ 1, let [m] denote the m-th power homomorphism



92 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

[m] of Gm, and let Km := [m]∗(Zp). When m | m′, there is a natural inclusion
Km ↪→ Km′ (defined by adjunction).

Now let k be a nontrivial nonarchimedean field, and let k+ = Ok. We shall
denote the analytifications of the above objects and morphisms to Gan

m , and their
further pullbacks to D× = D− {0}, by the same symbols.

Let X be a rigid analytic variety over k. Let f : X → D be a morphism
over k that induces an open immersion  : U := f−1(D×) → X and a closed
immersion ı : f−1(0) → X such that D := f−1(0)red (the reduced subspace) is a
normal crossings divisor, so that X is equipped with the fs log structure defined
by D ↪→ X, as in Example 2.3.17. Note that

(
f−1(0)

)
ét
∼= Dét. Let U be equipped

with the trivial log structure, with an open immersion  : U → X. Let D∂ be the
adic space D equipped with the log structure pulled back from X, with a canonical
morphism ε∂ : D∂ → D and a strict closed immersion ı∂ : D∂ → X.

Definition 6.4.1. In the above setting, for any given Qp-local system L on Uét
∼=

Ukét, its sheaf of unipotent nearby cycles (with respect to f) is

RΨu
f (L) := Rε∂ét,∗

(
lim−→
r

ı∂,−1
két két,∗

(
L⊗Zp f

−1
ét (Jr)

))
,

and its sheaf of quasi-unipotent nearby cycles is

RΨqu
f (L) := Rε∂ét,∗

(
lim−→
m,r

ı∂,−1
két két,∗

(
L⊗Zp f

−1
ét (Km)⊗Zp f

−1
ét (Jr)

))
.

Suppose that {Dj}j∈I is the set of irreducible components of D (see [Con99]), so
that f−1(0) =

∑
j∈I njDj (as Cartier divisors on X; see [SW20, Lec. 5.3, especially

Prop. 5.3.4]), for some integers nj ≥ 1 giving the multiplicities of Dj . For each
J ⊂ I, let XJ , ε∂J : U∂J → UJ , and ı∂J : U∂J → X be as in Example 6.3.8. Given
any geometric point ξ = Spa(l, l+) of UJ (and hence also of U∂J ), let ε∂J,ξ : U∂J (ξ)→
UJ(ξ) denote the pullback of ε∂J to UJ(ξ). Let ΓJ ∼=

(
Ẑ(1)

)J
be as in (6.3.10).

Then, by Lemma 4.4.27 and the explanations in Example 6.3.8, we have a canonical
isomorphism Riε∂J,ξ,ét,∗(M) ∼= Hi(ΓJ ,M), for each i ≥ 0.

Let 0∂ and 0̃∂ , and the (Z/n)-local systems J∂r,n and K∂m,n on 0∂két defined by

representations of πkét
1 (0∂ , 0̃∂) ∼= Ẑ(1) o Gal(k/k), be as in Example 4.4.25. By

taking limits over n ∈ pZ≥1 , we obtain Zp-local systems J∂r and K∂m on 0∂két, which

can be identified with the pullbacks of Jr := két,∗(Jr) and Km := két,∗(Km),
respectively. By pulling back f : X → D (as a morphism of fs log adic spaces),

we obtain a canonical morphism fξ : U∂J (ξ) → 0∂ for any ξ and ξ̃ as in the last

paragraph, and the induced homomorphism πkét
1 (U∂J (ξ), ξ̃) → πkét

1 (0∂ , 0̃∂) can be

identified with the composition of ΓJ ∼=
(
Ẑ(1)

)J → Ẑ(1) : (xj)j∈J 7→
∑
j∈J njxj

with the canonical homomorphism Ẑ(1) ↪→ Ẑ(1)oGal(k/k). Let γj be any element

of the j-th factor of ΓJ ∼=
(
Ẑ(1)

)J
that is mapped to njγ in Ẑ(1). Then γj acts by

J
nj
r on the rank r local system

(
f−1(Jr)

)
|U∂J (ξ)

∼= f−1
ξ (J∂r ).

For each Qp-local system M on U∂J (ξ)két, let us denote by W a formal variable

on which γ−1
j acts by W 7→ W + nj , and write M[W ] = lim−→r

(
M[W ]≤r−1

)
, where

the superscript “≤ r − 1” means “up to degree r − 1”. Note that, by matching a
standard basis of J∂r with binomial monomials up to degree r − 1 in W , as in the
proof of [LZ17, Lem. 2.10], we have M[W ]≤r−1 ∼= M⊗Zp f

−1
ξ (J∂r ).
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Lemma 6.4.2. Suppose there exists some j0 ∈ J such that γj0 acts quasi-unipotently
(i.e., a positive power of γj0 acts unipotently) on M. Then the local systems
Hi
(
ΓJ ,M[W ]≤r−1

)
stabilize as r → ∞, and hence the direct limit Hi

(
ΓJ ,M[W ])

exists as a Qp-local system, for each i ≥ 0. When J = {j0} is a singleton,

Hi
(
Γ{j0},M[W ]) vanishes when i 6= 0, 1; is canonically isomorphic to the maximal

subsheaf of M on which Γ{j0} acts unipotently, when i = 0; is finite-dimensional
when i = 1; and is zero when i = 1 and γj acts unipotently.

Proof. By the Hochschild–Serre spectral sequence, by first considering the ac-
tion of [m](Γ{j0}) for some m, and then the induced action of the finite quotient
Γ{j0}/[m](Γ{j0}) ∼= Z/mZ, and then the induced action of ΓJ/Γ{j0} ∼= ΓJ−{j0}, it
suffices to treat the special case where J = {j0} is a singleton and γj0 acts unipo-
tently. Then the lemma is reduced to its last statement, which follows from the
same argument as in the proof of [LZ17, Lem. 2.10], by matching a basis of Jr with
binomial monomials up to degree r − 1 in W . �

Lemma 6.4.3. Let L be a Qp-local system on Xkét such that L|Uét
has quasi-

unipotent geometric monodromy along D (as in Definition 6.3.7). For each integer
m ≥ 1, consider the canonical morphism [m] : D → D induced by sending the
standard coordinate of D to its m-th power, whose pullback under f : X → D is

a finite Kummer étale cover gm : Xm → X, which induces fm : Xm
gm→ X

f→ D
by composition. Let Dm denote the reduced subspace of Xm ×X D (in the category
of adic spaces), which is canonical isomorphic to D via the second projection, and
let Um := f−1

m (D×) = g−1
m (U) = Xm − Dm. Then there exists m0 ≥ 1 such that

RΨqu
f (L|U ) ∼= RΨu

fm

(
g−1
m (L)|Um

)
over Dét, whenever m0|m.

Proof. For each m ≥ 1, let D∂
m denote the adic space Dm equipped with the log

structure pulled back from Xm. Let m : Um → Xm, ı∂m : D∂
m → Xm, and

ε∂m : D∂
m → Dm denote the canonical morphisms. Then

L|U ⊗Zp f
−1
ét (Km) ∼= (gm|Um)ét,∗(L|Um)

over Uét, and

Rε∂ét,∗ ı
∂,−1
két két,∗

(
L|U ⊗Zp f

−1
ét (Km)⊗Zp f

−1
ét (Jr)

)
∼= Rε∂m,ét,∗ ı

∂,−1
m,két

(
(L|Xm)⊗Zp f

−1
két(Jr)

)
over Dét, by Proposition 4.5.2 and Lemma 4.5.4. Since L has quasi-unipotent
geometric monodromy along D, there exists some m0 ≥ 1 such that L|Um has
unipotent geometric monodromy along Dm, whenever m0|m.

We claim that, when m0|m, the canonical morphism

Rε∂m0,ét,∗ ı
∂,−1
m0,két

(
L|Xm0

)⊗Zp f
−1
két(Jr)

)
→ Rε∂m,ét,∗ ı

∂,−1
m,két

(
L|Xm)⊗Zp f

−1
két(Jr)

)
induced by Km0 ↪→ Km is an isomorphism for all sufficiently large r (depending on
m0 and m). Given this claim, for all m divisible by m0, we have

RΨqu
f (L) ∼= Rε∂ét,∗ ı

∂,−1
két két,∗

(
(L|U )⊗Zp f

−1
ét (Km)⊗Zp f

−1
ét (Jr)

)
∼= Rε∂m,ét,∗ ı

∂,−1
m,két m,két,∗

(
(L|Um)⊗Zp f

−1
m,ét(Jr)

) ∼= RΨu
fm

(
g−1
m (L)

)
for all sufficiently large r, and the lemma follows.
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It remains to verify the claim. For this purpose, by (6.3.10), we may pullback to
U∂J (ξ), for all nonempty J ⊂ I and all geometric point ξ of U∂J . By Lemmas 4.5.4
and 6.4.2, and by (6.3.10) again, it suffices to show that the canonical morphism

Hi
(
[m0](ΓJ),L|U∂J (ξ)[W ]

)
→ Hi

(
[m](ΓJ),L|U∂J (ξ)[W ]

)
is an isomorphism. By the Hochschild–Serre spectral sequence, we may first com-
pare the cohomology of [m0](Γ{j0}) and [m](Γ{j0}), for some j0 ∈ J , which is con-
centrated in degree zero and gives the full L|U∂J (ξ) in both cases, because γm0

j and

γmj act unipotently, by assumption. Then we compare the cohomology groups of

[m0](ΓJ−{j0}) and [m](ΓJ−{j0}), which coincide as they are related by a Hochschild–
Serre spectral sequence in terms of the cohomology of Qp-modules with unipotent

actions of the finite group [m0](ΓJ−{j0})/[m](ΓJ−{j0}), and the claim follows. �

Proposition 6.4.4. Let L be a Qp-local system on Xkét such that L|Uét
has quasi-

unipotent geometric monodromy along D (as in Definition 6.3.7). Consider any
integer m ≥ 1 such that L|Um has unipotent geometric monodromy along Dm,
where Um and Dm are as in Lemma 6.4.3. Then, for each nonempty J ⊂ I and
each i ≥ 0, and for each geometric point ξ of U∂J , we have

RiΨu
f (L|U )|U∂J (ξ)

∼= Hi
(
ΓJ ,L|U∂J (ξ)[W ]

)
and

RiΨqu
f (L|U )|U∂J (ξ)

∼= Hi
(
[m](ΓJ),L|U∂J (ξ)[W ]

)
as Qp-local systems on UJ(ξ)ét.

Consequently, if D =
(
f−1(0)

)
red

is smooth over k and if L|U has quasi-unipotent

monodromy along D, then RΨu
f (L|U ) is concentrated in degree zero and can be

identified with the subsheaf L|unip
D∂

of L|D∂ whose pullback to D∂(ξ) is the maximal

subsheaf on which πkét
1 (D∂(ξ), ξ̃) ∼= Ẑ(1) (as in Example 4.4.26) acts unipotently, for

each log geometric point ξ̃ of D∂ above each geometric point ξ of D; and RΨqu
f (L|U )

(which is the same RΨu
f (L|U ) as above when L|U has unipotent monodromy along

D) is also concentrated in degree zero and can be identified with the whole L|D∂ .

Proof. Combine Lemmas 4.5.4, 6.4.2, and 6.4.3. �

Appendix A. Kiehl’s property for coherent sheaves

In this appendix, by adapting the gluing argument in [KL15, Sec. 2.7] and by
using [Hub94, Thm. 2.5], we establish Kiehl’s property for coherent sheaves on
(possibly nonanalytic) noetherian adic spaces. By combining this with results in
[KL15, Sec. 8.2] and [Ked19, Sec. 1.3–1.4], we also state some versions of Tate’s
sheaf property and Kiehl’s gluing property for adic spaces that are either locally
noetherian, or analytic and stably adic. (We will review the definition below.)

Recall the following definition from [KL15, Def. 1.3.7]:

Definition A.1. By a gluing diagram, we will mean a commuting diagram of ring
homomorphisms

R //

��

R1

��

R2
// R12
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such that the R-module sequence

0→ R→ R1 ⊕R2 → R12 → 0,

in which the last nontrivial arrow is the difference between the given homomor-
phisms, is exact. By a gluing datum over this diagram, we mean a datum consisting
of modules M1, M2, and M12 over R1, R2, and R12, respectively, equipped with
isomorphisms ψ1 : M1 ⊗R1

R12
∼→ M12 and ψ2 : M2 ⊗R2

R12
∼→ M12. We say such

a gluing datum is finite if the modules are finite over the respective rings.

Given a gluing datum as above, let M := ker(ψ1−ψ2 : M1⊕M2 →M12). There
are natural morphisms M → M1 and M → M2 of R-modules, which induce maps
M ⊗R R1 →M1 and M ⊗R R2 →M2, respectively.

The following is [KL15, Lem. 1.3.8]:

Lemma A.2. Consider a finite gluing datum for which M ⊗R R1 →M1 is surjec-
tive. Then the following are true.

(1) The morphism ψ1 − ψ2 : M1 ⊕M2 →M12 is surjective.
(2) The morphism M ⊗R R2 →M2 is also surjective.
(3) There exists a finitely generated R-submodule M0 of M such that, for i =

1, 2, the morphism M0 ⊗R Ri →Mi is surjective.

Lemma A.3. In the above setting, suppose in addition that Ri is noetherian and
that Ri → R12 is flat, for i = 1, 2. Suppose that, for every finite gluing datum,
the map M ⊗R R1 → M1 is surjective. Then, for any finite gluing datum, M is a
finitely presented R-module, and M⊗RR1 →M1 and M⊗RR2 →M2 are bijective.

Proof. Let M0 be as in Lemma A.2. Choose a surjection F → M0 of R-modules,
with F finite free. Let F1 := F ⊗R R1, F2 := F ⊗R R2, and F12 := F ⊗R R12.
Let N := ker(F → M), N1 := ker(F1 → M1), N2 := ker(F2 → M2), and N12 :=
ker(F12 →M12). By Lemma A.2, we have a commutative diagram

(A.4) 0

��

0

��

0

��

0 // N //

��

N1 ⊕N2
//

��

N12
//

��

0

0 // F //

��

F1 ⊕ F2
//

��

F12
//

��

0

0 // M //

��

M1 ⊕M2
//

��

M12

��

// 0

0 0 0

with exact rows and columns, excluding the dotted arrows. Since R12 is flat over
Ri, the sequence

0→ Ni ⊗Ri R12 → F12 →M12 → 0

is exact, and hence Ni ⊗Ri R12
∼= N12. By hypothesis, Ri is noetherian, and so

Ni is finite over Ri. Consequently, N1, N2, and N12 form a finite gluing datum
as well. By Lemma A.2 again, the dotted horizontal arrow in (A.4) is surjective.
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By diagram chasing, the dotted vertical arrow in (A.4) is also surjective; that is,
we may add the dotted arrows to (A.4) while preserving exactness of the rows and
columns. In particular, M is a finitely generated R-module. It follows that N is
finitely generated. This implies that M is finitely presented.

For i = 1, 2, we obtain a commutative diagram

N ⊗R Ri //

��

Fi // M ⊗R Ri //

��

0

0 // Ni // Fi // Mi
// 0

with exact rows—the first one is derived from the left column of (A.4) by tensoring
with Ri over R, while the second one is derived from the middle column of (A.4).
Since the left vertical arrow is surjective, by the five lemma, the right vertical arrow
is injective. It follows that the map M ⊗R Ri →Mi is a bijection, as desired. �

Definition A.5. We call a homomorphism of Huber rings f : A → B strict adic
if, for one (and hence every) choice of an ideal of definition I ⊂ A, the image f(I)
is an ideal of definition of B. It is clear that a strict adic morphism is adic.

The following is modeled on [KL15, Lem. 2.7.2].

Lemma A.6. Let R1 → S and R2 → S be homomorphisms of complete Huber
rings such that their sum ψ : R1 ⊕ R2 → S is strict adic. Then, for any ideal
of definition IS of S, there exists some integer l ≥ 1 such that, for every n > 0,
every U ∈ GLn(S) with U − 1 ∈ Mn(I lS) is of the form ψ(U1)ψ(U2) for some
Ui ∈ GLn(Ri), for i = 1, 2.

Proof. Since ψ is strict adic, for any ideals of definition I1 ⊂ R1 and I2 ⊂ R2, we
have an ideal of definition I ′S := ψ(I1 ⊕ I2) ⊂ S. Choose l > 0 such that I lS ⊂ I ′S .
Then it suffices to show that every U ∈ GLn(S) with U − 1 ∈ Mn(I ′S) is of the
form ψ(U1)ψ(U2) for some Ui ∈ GLn(Ri), for i = 1, 2. Given U ∈ GLn(S) with
U − 1 ∈ Mn(I ′mS ) for some m > 0, put V = U − 1. By assumption, we may lift V
to a pair (X,Y ) ∈ Mn(Im1 ) ×Mn(Im2 ). Then it is straightforward that the matrix
U ′ = ψ(1 −X)U ψ(1 − Y ) satisfies U ′ − 1 ∈ Mn(I ′2mS ). Hence, we may construct
the desired matrices by iterating this construction. �

The following is modeled on [KL15, Lem. 2.7.4].

Lemma A.7. In the context of Definition A.1 and the paragraph following it,
suppose in addition that

(1) the Huber rings R1, R2 and R12 are complete;
(2) R1 ⊕R2 → R12 is strict adic; and
(3) the map R2 → R12 has a dense image.

Then, for i = 1, 2, the natural map M ⊗R Ri →Mi is surjective.

Proof. Choose sets of generators {m1,1, . . . ,mn,1} and {m1,2, . . . ,mn,2} of M1 and
M2, respectively, of the same cardinality. Then there exist A,B ∈ Mn(R12) such
that ψ2(mj,1) =

∑
i Aij ψ1(mi,2) and ψ1(mj,2) =

∑
i Bij ψ2(mi,1), for all j. Since

R2 → R12 has a dense image, by Lemma A.6, there exists B′ ∈ Mn(R2) such that
1 +A(B′ −B) = C1C

−1
2 for some Ci ∈ GLn(Ri), for i = 1, 2. For j = 1, . . . , n, let

xj := (xj,1, xj,2) =
(∑

i

(C1)ijmi,1,
∑
i

(B′C2)ijmi,2

)
∈M1 ×M2.
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Then xj ∈M , because

ψ1(xj,1)− ψ2(xj,2) =
∑
i

(C1 −AB′C2)ij ψ1(mi,1)

=
∑
i

(
(1−AB)C2

)
ij ψ1(mi,2) = 0.

For i = 1, 2, since Ci ∈ GLn(Ri), we see that {xj,i}nj=1 generates Mi over Ri as
well. Thus, M ⊗R Ri →Mi is surjective, as desired. �

Theorem A.8. Let X = Spa(R,R+) be a noetherian affinoid adic space. The
categories of coherent sheaves on X and finitely generated R-modules are equivalent
via the global sections functor.

Proof. By [KL15, Lem. 2.4.20], it suffices to verify Kiehl’s gluing property for
any simple Laurent covering {Spa(Ri, R

+
i ) → X}i=1,2. In this case, let us write

Spa(R12, R
+
12) = Spa(R1, R

+
1 )×X Spa(R2, R

+
2 ), with all Huber pairs completed by

our convention. By the noetherian hypothesis, and by [Hub94, Thm. 2.5], R, Ri,
and R12 form a gluing diagram. Also, Ri → R12 is flat with dense image, for
i = 1, 2. Hence, we can finish the proof by applying Lemmas A.3 and A.7. �

Thus, we have the following version of Tate’s sheaf property and Kiehl’s gluing
property (see [KL15, Def. 2.7.6]) over certain affinoid adic spaces:

Proposition A.9. Let X = Spa(R,R+) be a noetherian (resp. analytic) affinoid

adic space, and let M be a finite (resp. finite projective) R-module. Let M̃ denote

the presheaf on X defined by setting M̃(U) = M ⊗R OX(U), for each open subset
U ⊂ X. Then the following are true:

(1) The presheaf M̃ is a sheaf. Moreover, the sheaf M̃ is acyclic in the sense

that Hi(U, M̃) = 0 for every rational subset U ⊂ X and every i > 0.

(2) The functor M 7→ M̃ defines an equivalence of categories from the cat-
egory of finite (resp. finite projective) R-modules to the category of co-
herent sheaves (resp. vector bundles) on X, with a quasi-inverse given by
F 7→ F(X).

Proof. When X is noetherian, (1) is [Hub94, Thm. 2.5], while (2) is Theorem A.8.
When X is analytic, these follow from [Ked19, Thm. 1.4.2 and 1.3.4]. �

Recall that an adic space X is called stably adic (as in [KL15, Def. 8.2.19]) if Xét

is a site with a stable basis B; i.e., a basis stable under fiber products such that, for
any morphism Y ′ → Y in Xét that is either finite étale or a rational localization,
if Y ∈ B, then Y ′ ∈ B as well. We know X is stably adic if X is locally noetherian
(see [Hub96, (1.1.1) and Sec. 1.7]) or a perfectoid space (see [SW20, Lec. 7]).

By [KL15, Prop. 8.2.20], we have the following analogue of Proposition A.9 for
the étale topology:

Proposition A.10. Let X = Spa(R,R+) be a noetherian (resp. analytic stably
adic) affinoid adic space. Let B be a stable basis of Xét as above, which exists
because X is stably adic. Let M be a finite (resp. finite projective) R-module. Let

M̃ denote the presheaf on Xét defined by setting M̃(U) = M ⊗R OX(U), for each
U ∈ Xét. Then the following are true:
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(1) The presheaf M̃ is a sheaf. Moreover, M̃ is acyclic on B; i.e., for every

Y ∈ B, we have H0(Y, M̃) = M̃(U) and Hi(Y, M̃) = 0, for all i > 0.

(2) The functor M 7→ M̃ defines an equivalence of categories from the cate-
gory of finite (resp. finite projective) R-modules to the category of coher-
ent sheaves (resp. vector bundles) on Xét, with a quasi-inverse given by
F 7→ F(X).

Corollary A.11. For any X in Proposition A.10, the presheaf OXét
is a sheaf.

Therefore, X is étale sheafy.
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