LOGARITHMIC ADIC SPACES: SOME FOUNDATIONAL
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ABSTRACT. We develop a theory of log adic spaces by combining the theories
of adic spaces and log schemes, and study the Kummer étale and pro-Kummer
étale topology for such spaces. We also establish the primitive comparison the-
orem in this context, and deduce from it some related cohomological finiteness
or vanishing results.
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1. INTRODUCTION

There are two main goals of this paper. Firstly, we would like to adapt many
fundamental notions and features of the theory of log geometry for schemes, as in
[Kat89bl Kat21l Kat89al 102 [Ogull|, to the theory of adic spaces, as in [Hub94:
[Hub96]. For example, we would like to introduce the notion of log adic spaces,
which allow us to study the de Rham and étale cohomology of nonproper adic
spaces by introducing the log de Rham and Kummer étale cohomology of proper
adic spaces equipped with suitable log structures. Secondly, we would like to adapt
many foundational techniques in recent developments of p-adic geometry, as in
[Schi2l [Sch13al, [Sch16l [SW20], to the context of log geometry. For example,
we would like to introduce the pro-Kummer étale site, and show that log affinoid
perfectoid objects form a basis for such a site, under suitable assumptions. In
particular, we would like to establish the primitive comparison theorem and some
related cohomological finiteness or vanishing results in this context.

Although a general formalism of log topoi has been introduced in [GRI9] Sec.
12.1], there are nevertheless several special features (such as the integral structure
sheaves) or pathological issues (such as the lack of fiber products in general, or
the necessary lack of noetherian property when working with perfectoid spaces) in
the theory of adic spaces, which resulted in some complications in our adaption of
many “well-known arguments”; and we have chosen to spell out the modifications
of such arguments in some detail, for the sake of clarity. Moreover, this paper is
intended to serve as the foundation for our development of a p-adic analogue of
the Riemann—Hilbert correspondence in [DLLZ| (and forthcoming works such as
[LLZ]). Therefore, in addition to the above-mentioned goals, we have also included
some foundational treatment of quasi-unipotent nearby cycles, following (and re-
formulating) Beilinson’s ideas in [Bei8

Here is an outline of this paper.

In Section [2| we introduce log adic spaces and study their basic properties. In
Section [2.1] we review some basic terminologies of monoids. In Section we
introduce the definition and some basic notions of log adic spaces, and study some
important examples. In Section [2.3] we study the important notion of charts in the
context of log adic spaces, which are useful for defining the categories of coherent,
fine, and fs log adic spaces, and for constructing fiber products in them.

In Section 3] we study log smooth morphisms of log adic spaces, and their as-
sociated sheaves of log differentials. In Section [3.1] we introduce the notion of log
smooth and log étale morphisms, and show the existence of smooth toric charts
for smooth fs log adic spaces. In Sections [3.2] and [3.3] we develop a theory of log
differentials for homomorphisms of log Huber rings and morphisms of coherent log
adic spaces, and compare it with the theory in Section [3.1
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In Section [ we study the Kummer étale topology of locally noetherian fs log
adic spaces. In Section 4.1} we introduce the Kummer étale site and study its basic
properties. In Section[£.2] we establish an analogue of Abhyankar’s lemma for rigid
analytic varieties, and record some related general facts. In Section we study
the structure sheaves and analytic coherent sheaves on the Kummer étale site, and
show that their higher cohomology vanishes on affinoids. In Section [£:4] we show
that Kummer étale surjective morphisms satisfy effective descent in the category
of finite Kummer étale covers, and define Kummer étale fundamental groups with
desired properties. In Section we study certain direct and inverse images of
abelian sheaves on Kummer étale sites. In Section we establish some purity
results for torsion Kummer étale local systems.

In Section 5] we study the pro-Kummer étale topology of locally noetherian fs log
adic spaces. In Section based on the theory in Section [4] we introduce the pro-
Kummer étale site, by following Scholze’s ideas in [Sch13a] and [Schl6]. In Section
[6.2] we study certain direct and inverse images of abelian sheaves on pro-Kummer
étale sites. In Section[5.3] we introduce the log affinoid perfectoid objects, and show
that they form a basis for the pro-Kummer étale topology, for locally noetherian
fs log adic spaces over Spa(Qp,Z,). In Section we introduce the completed
structure sheaves and their integral and tilted variants on the pro-Kummer étale
site, and prove various almost vanishing results for them.

In Section [6 we study the Kummer étale cohomology of fs log adic spaces log
smooth over a nonarchimedean base field k. In Section [6.1] we start with some
preparations using the log affinoid perfectoid objects defined by towers over some
associated toric charts. In Section we establish the primitive comparison theo-
rem, generalizing the strategy in [Sch13al Sec. 5], and deduce from it some finiteness
results for the cohomology of torsion Kummer étale local systems. In Section [6.3
we introduce the notions of Z,-, Q,-, 21,—, and @p—local systems, and record some
finiteness results. In Section [6.4] as an application of the theory thus developed,
we reformulate Beilinson’s ideas in [Bei87] and define the unipotent and quasi-
unipotent nearby cycles in the rigid analytic setting.

In Appendix [A] we state a version of Tate’s sheaf property and Kiehl’s gluing
property for the analytic and étale sites of adic spaces that are either locally noether-
ian or analytic stably adic. This includes, in particular, a proof of Kiehl’s property
for coherent sheaves on (possibly nonanalytic) noetherian adic spaces which (as far
as we know) is not yet available in the literature.

Notation and conventions. By default, all monoids are assumed to be com-
mutative, and the monoid operations are written additively (rather than multi-
plicatively), unless otherwise specified. For a monoid P, let PP denote its group
completion. For any commutative ring R with unit and any monoid P, we denote
by R[P] the monoid algebra over R associated with P. The image of a € P in R[P]
will often be denoted by e®. Then we have e*® = e® . e* in R[P], for all a,b € P.

Group cohomology will always mean continuous group cohomology.

For each site C, the category of sheaves (resp. abelian sheaves) on C is denoted
by Sh(C) (resp. Shap(C)), although the associated topos is denoted by C™.

We shall follow [SW20, Lec. 2-7] for the general definitions and results of Huber
rings and pairs, adic spaces, and perfectoid spaces. Unless otherwise specified, all
Huber rings and pairs will be assumed to be complete.
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We say that an adic space is locally noetherian if it is locally isomorphic to
Spa(R, RT), where either R is analytic (see [SW20, Rem. 2.2.7 and Prop. 4.3.1])
and strongly noetherian—i.e., the rings

R, Ty ={ Y e T € RIT . T iy, — 0

are noetherian, for all n > 0; or R is (complete, by our convention on Huber pairs,
and) finitely generated over a noetherian ring of definition. We say that an adic
space is noetherian if it is locally noetherian and gcgs (i.e., quasi-compact and
quasi-separated).

We shall follow [Hub96l Def. 1.2.1] for the definition for morphisms of locally
noetherian adic spaces to be locally of finite type (Ift for short). A useful fact is
that a fiber product Y X x Z of locally noetherian adic spaces exists when the first
morphism Y — X is lft, in which case its base change (i.e., the second projection)
Y xx Z — Z is also 1ft (see [Hub96, (1.1.1), Prop. 1.2.2, and Cor. 1.2.3]).

An affinoid field (k, k™) is a Huber pair in which k is a (possibly trivial) nonar-
chimedean local field (i.e., a field complete with respect to a nonarchimedean
multiplicative norm | - | : & — Rxp), and k™ is an open valuation subring of
O :={z € k: |z| < 1} (see [SW20, Def. 4.2.4]). When k is a nontrivial nonar-
chimedean field (i.e., a field that is complete with respect to a nontrivial nonar-
chimedean multiplicative norm), we shall regard rigid analytic varieties over k as
adic spaces over (k, Oy), by virtue of [Hub96l (1.1.11)].

We shall follow [Hub96, Sec. 1.6 and 1.7] for the definition and basic properties
of unramified, smooth, and étale morphisms of locally noetherian adic spaces. More
generally, without the locally noetherian hypothesis, we say that a homomorphism
(R,RT) — (S,8T) of Huber pairs is finite étale if R — S is finite étale as a
ring homomorphism, and if ST is the integral closure of R™ in S. We say that a
morphism f : Y — X of adic spaces is finite étale if, for each x € X, there exists
an open affinoid neighborhood U of z in X such that V = f~1(U) is affinoid, and if
the induced homomorphism of Huber pairs (Ox (U), 0% (U)) = (Oy(V),05(V))
is finite étale. We say that a morphism f : Y — X of adic spaces is étale if, for
each y € Y, there exists open neighborhood V of y in Y such that the restriction of
f to V factors as the composition of an open immersion, a finite étale morphism,
and another open immersion.

Given any adic space X, we denote by X¢; the category of adic spaces étale over
X. If fiber products exist in Xg;, then Xg acquires a natural structure of a site.
We say that X is étale sheafy if X4 is a site and if the étale structure presheaf
Ox,, : U Oy(U) is a sheaf. Etale sheafiness is known when X is either locally
noetherian or a perfectoid space—see Appendix [A] for more information.

A geometric point of an adic space X is a morphism 7 : £ = Spa(l,it) — X,
where [ is a separably closed nonarchimedean field. For simplicity, we shall write
& — X, or even £, when the context is clear. The image of the unique closed point
&o of € under n : &€ — X is called the support of €. Given any z € X, we have a
geometric point T = Spa(r(z),%(z)*) above z (i.e., x is the support of T), as in
[Hub96, (2.5.2)], where %(z) is the completion of a separable closure of the residue
field k(z) of Ox . An étale neighborhood of n is a lifting of n to a composition

&E—-U % X in which ¢ is étale. For any sheaf F on Xg, the stalk of F at 7
is Fe == T(&n~!(F)) = lim F(V), where the direct limit runs through all étale
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neighborhoods V of €. (Recall that, by [Hub96, Prop. 2.5.5], when X is locally
noetherian, geometric points form a conservative family for Xgt.)

An adic space X = Spa(R, R™) is strictly local if R is a strictly local ring and if
X contains a unique closed point x such that the support of the valuation | - (z)]
is the maximal ideal of R. We shall denote by X (§) = Spa(Ox e, Ojﬂi) the strict
localization of a geometric point £ — X of a locally noetherian adic space X, as in
[Hub96l (2.5.9) and Lem. 2.5.10]. By the explicit description of the completion of
(Ox.e, (’)}75) as in [Hub96, Prop. 2.5.13], X (§) is a noetherian adic space, which is
canonically isomorphic to & when the support of ¢ is analytic.

As for almost mathematics, we shall adopt the following notation and conven-
tions. We shall denote by M® the almost module associated with a usual module
M, depending on the context. For usual modules M and NN, we shall say “there is
an almost isomorphism M = N” when there is an isomorphism M® = N® between
the associated almost modules. We shall write interchangeably both “M® = (0” and
“M 1is almost zero”, with exactly the same meaning.

Acknowledgements. This paper was initially based on a paper written by the
first author, and we would like to thank Christian Johansson, Kiran Kedlaya,
Teruhisa Koshikawa, Martin Olsson, Fucheng Tan, and Jilong Tong for helpful cor-
respondences and conversations during the preparation of that paper. We would
also like to thank David Sherman and an anonymous referee for their careful read-
ing and many helpful corrections, questions, and suggestions. Moreover, we would
like to thank the Beijing International Center for Mathematical Research and the
California Institute of Technology for their hospitality.

2. LOG ADIC SPACES

2.1. Recollection on monoids. In this subsection, we recollect some basics in
the theory of monoids. This is mainly to introduce the terminologies and fix the
notation. For more details, we refer the readers to [Ogulg].

Definition 2.1.1. (1) A monoid P is called finitely generated if there exists a
surjective homomorphism Z%, — P for some n.

(2) A monoid P is called integral if the natural homomorphism P — PSP is
injective.

(3) A monoid P is called fine if it is integral and finitely generated.

(4) A monoid P is called saturated if it is integral and, for every a € P8P such
that na € P for some integer n > 1, we have a € P. A monoid that is both
fine and saturated is called an fs monoid.

(5) For any monoid P, we denote by P the subgroup of invertible elements
in P, and write P := P/P™. A monoid P is called sharp if P™ = {0}.

(6) An sharp fs monoid is called a toric monoid.

Remark 2.1.2. Arbitrary direct and inverse limits exist in the category of monoids
(see [Ogul8| Sec. I.1.1]). In particular, for a homomorphism of monoids u : P —
Q, we have ker(u) = u~1(0), and coker(u) is determined by the conditions that
Q) — coker(u) is surjective and that two elements ¢1, g2 € @ have the same image
in coker(u) if and only if there exist p1,ps € P such that u(p1) + g1 = u(p2) + ¢2-
In general, the induced map P/ker(u) — im(u) is surjective, but not necessarily
injective. (For a typical example, consider the homomorphism w : Z2>o — Lo :
(z1,22) + o1 +2. Then ker(u) = 0 but u is not injective.) Therefore, the category
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of monoids is not abelian. Nevertheless, if P is a submonoid of @, and if u: P — Q
is the canonical inclusion, then we shall denote coker(u) by Q/P. Note that Q/P
can be zero even when P # Q.

Remark 2.1.3. It is not hard to show that a monoid P is finitely generated if and
only if PV is finitely generated (as a group) and P = P/P™ is finitely generated
(as amonoid). (See [Ogul8, Prop.1.2.1.1].) A deeper fact is that a finitely generated
(commutative) monoid P is always finitely presented; i.e., it is the coequalizer of
some homomorphisms ZZ, = Z2,,, for some m,n. (See [Ogul8, Thm. 1.2.1.7].) As
a result, if @ = li_I>1r1ie ; Q; is a filtered direct limit of monoids, then any injective
map P — @ lifts to an injective P — @Q;, for some i € I. (The opposite assertion,
that any surjective map @Q — P lifts to a surjective (); — P, for some ¢ € I, only
requires the finite generation of P.)

Definition 2.1.4. Given any two homomorphisms of monoids u; : P — (1 and
us : P — @2, the amalgamated sum Q1 &p Q2 is the coequalizer of P = Q1 & Q2,
with the two homomorphisms given by (u1,0) and (0, uz), respectively.

Lemma 2.1.5. In Definition suppose moreover that any of P, Q1, or Qo is
a group. Then the natural map Q1/P — (Q1 ®p Q2)/Q2 is an isomorphism.

Proof. The surjectivity is clear. As for the injectivity, by assumption and by
[Ogul8| Prop. 1.1.1.5], two elements (g1, g2), (¢}, ¢5) € Q1 Q2 have the same image
in Q1 ®p Q- if and only if there exist a,b € P such that ¢; +u1(a) = ¢} +u1(b) and
g2 + u2(b) = g5 + us(a). Therefore, for ¢1,q] € Q1, if they have the same image in
(Q1Dp Q2)/Qa—i.e., there exist go, g5 € Q2 such that (¢1,¢2) and (¢, ¢5) have the
same image in Q1 @ p Qo—then there exist a,b € P such that ¢; +u;(a) = ¢} +uq(b).
Thus, ¢; and ¢} have the same image in Q,/P. 0

Definition 2.1.6. For any monoid P, let P denote the image of the canonical
homomorphism P — P*P. For any integral monoid P, let

P5 .= {a € P# : na € P, for some n > 1}.
For a general monoid P not necessarily integral, we write Pt for (Pnt)sat,

Remark 2.1.7. The functor P — P is the left adjoint of the inclusion from the
category of integral monoids into the category of all monoids. Similarly, P — Psat
is the left adjoint of the inclusion from the category of saturated monoids into the
category of integral monoids.

Lemma 2.1.8. Let P — @1 and P — Q2 be homomorphisms of monoids. Then
(Q1©®pQ2)™ can be naturally identified with the image of Q1D pQ2 in QP ® per Q5.
Moreover, if P, Q1, and Qs are integral and if any of these monoids is a group,
then Q1 ®p Q2 is also integral.

Proof. See [Ogul8| Prop. 1.1.3.4]. O

Lemma 2.1.9. The quotient of an integral (resp. a saturated) monoid by a sub-
monoid is also integral (resp. saturated). In particular, for any fs monoid P, the
quotient P = P/P™ s a toric monoid.

Proof. Let @ be any submonoid of an integral monoid P. By [Ogul8, Prop. 1.1.3.3],
P/Q is also integral. Suppose moreover that P is saturated. For any @ € (P/Q)%*,
by definition, there exists some n > 1 such that na € P/Q. That is, there exist
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b€ P and ¢q1,q0 € Q such that na = b+ (¢1 — g2) in P8. Then n(a + ¢q2) =
b+ g1+ (n —1)g2, and hence a + g2 € P and @ € P/Q. Thus, P/Q = (P/Q)%*" is
also saturated. O

Lemma 2.1.10. Let P be an integral monoid, and u : P — Q a surjective homo-
morphism onto a toric monoid Q. Suppose that ker(usP) C P. Then u admits a
(noncanonical) section. In particular, for any fs monoid P, the canonical homo-
morphism P — P admits a (noncanonical) section.

Proof. For a € Q®P, if na = 0 for some n > 1, then a = 0, as @ is saturated
and sharp. Hence, Q8P is torsion-free, Q8P = Z" for some r, and the projection
u8P : P8P — (8P admits a section s : Q8P — P®&P. It remains to show that
s(Q) C P. For each ¢ € Q, choose any ¢q € P lifting g. Then s(q) — q € P®P lies in

ker(u8P) C P, and therefore s(q) € ¢+ P C P, as desired. O

Construction 2.1.11. Let P be a monoid, and S a subset of P. There exists
a monoid ST'P together with a homomorphism \ : P — S™'P sending ele-
ments of S to invertible elements of S™'P satisfying the universal property that
any homomorphism of monoids u : P — Q with the property that u(S) C Q™
uniquely factors through S™'P. The monoid S™'P is called the localization of
P with respect to S. Concretely, let T denote the submonoid of P generated by
S. Then, as a set, STLP consists of equivalence classes of pairs (a,t) € P x T,
where two such pairs (a,t) and (a',t") are equivalent if there exists some t"” € T
such that a +t' +t" = a +t+t". The monoid structure of this set is given by
(a,t) + (a/,t') = (a+ d,t +t'). The homomorphism X is given by A(a) = (a,0).

Remark 2.1.12. The localization of an integral (resp. saturated) monoid is still
integral (resp. saturated).

Remark 2.1.13. Let P — ); and P — ()2 be homomorphisms of monoids, and
let S be a subset of P. Let S7, S2, and S5 denote the images of S in @1, @2, and
Q1 ®p @2, respectively. Then the natural homomorphism

Q1®p Q2 — (S7'Q1) ®s-1p (S7'Q2)

factors through an isomorphism

S51Q1®p Q2) > (S7'Q1) Bs-1p (55'Q2),

by the universal properties of the objects.

Definition 2.1.14. Let v : P — @ be a homomorphism of monoids.

(1) We say it is local if P™ = u~1(Q™V).

(2) We say it is sharp if the induced homomorphism P™ — Q™Y is an isomor-
phism.

(3) We say it is strict if the induced homomorphism P — @ is an isomorphism.

(4) We say it is ezact if the induced homomorphism P — P8P Xge @Q is an
isomorphism. (When P and @ are integral and canonically identified as
submonoids of P8P and @Q#P, respectively, we simply need P = (u#?)~1(Q).)

2.2. Log adic spaces. In this subsection, we give the definition of log adic spaces,
introduce some basic notions, and study some important examples.

Convention 2.2.1. From now on, we shall only work with adic spaces that are
étale sheafy. (They include locally noetherian adic spaces and perfectoid spaces.)
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Definition 2.2.2. Let X be an (étale sheafy) adic space.

(1)

(2)

A pre-log structure on X is a pair (M x, ), where M x is a sheaf of monoids
on X¢; and a: Mx — Ox,, is a morphism of sheaves of monoids, called the
structure morphism. (Here Ox,, is equipped with the natural multiplicative
monoid structure.)

Let (M,a) and (N, ) be pre-log structures on X. A morphism from
(M, @) to (N, B) is a morphism M — N of sheaves of monoids that is
compatible with the structure morphisms o and S.

A pre-log structure (M x,a) on X is called a log structure if the morphism
a '(0%,,) — O, induced by « is an isomorphism. In this case, we call
the triple (X, Mx, «) a log adic space. We shall simply write (X, Mx) or
X when the context is clear.

We say that a sheaf of monoids M on Xg; is integral (resp. saturated) if it is
a sheaf of integral (resp. saturated) monoids. A pre-log structure (Mx, @)
on X is called integral (resp. saturated) if Mx is. We say that a log adic
space (X, Mx,a) is integral (resp. saturated) if Mx is.

For a log structure (Mx, ) on X, we set Mx := Mx/a~(0%, ), called
the characteristic of the log structure.

For a pre-log structure (M x, a) on X, we have the associated log structure
(*Mx,*a), where “Mx is the pushout of O, <+ o '(0%, ) = Mx in
the category of sheaves of monoids on Xg¢, and where “a : *Mx — Ox,,
is canonically induced by the natural morphism (’))X(ét — Ox,, and the
structure morphism « : Mx — Ox,, (cf. [GR19, Sec. 12.1.6]). Again, we
shall simply write * M x when the context is clear.

A morphism f: (Y, My,ay) = (X, Mx,ax) of log adic spaces is a mor-
phism f : Y — X of adic spaces together with a morphism of sheaves of
monoids f# : f~1{(Mx) — My compatible with f* : f~1(Ox,,) — Oy,,,
fHax): f1(Mx) = f71(Ox,.), and ay : My — Oy,,. In this case, we
have the log structure f*(Mx) on Y associated with the pre-log structure
TtMx) — f7Y(Ox,,) — Oy,,. The morphism f is called strict if the
induced morphism f*(Mx) — My is an isomorphism.

A morphism f: (Y, My) = (X, Mx) is called ezact if, at each geometric
7y of Y, the induced homomorphism ( f* (MX))y — My is exact.

A log adic space is called noetherian (resp. locally noetherian, resp. quasi-
compact, resp. quasi-separated, resp. affinoid, resp. perfectoid, resp. stably
uniform, resp. analytic) if its underlying adic space is.

A morphism of log adic spaces is called Ift (resp. quasi-compact, resp. quasi-
separated, resp. separated, resp. proper, resp. finite, resp. surjective) if the
underlying morphism of adic spaces is. As usual, a separated (resp. proper)
log adic space over Spa(k, k™) is a locally noetherian log adic space with a
separated (resp. proper) structure morphism to Spa(k, k™).

Remark 2.2.3. As explained in [GRI9, Sec. 12.1.6], the functor of taking associ-
ated log structures from the category of pre-log structures to the category of log
structures on X is the left adjoint of the natural inclusion functor from the category
of log structures to the category of pre-log structures on X.

Lemma 2.2.4. A sheaf of monoids M on an adic space Xg is integral (resp.
saturated) if and only if Mz is integral (resp. saturated) at each geometric point T
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of X. In particular, a log adic space (X, Mx, ) is integral (resp. saturated) if and
only if Mx z is integral (resp. saturated) at each geometric point T of X.

Proof. This follows from the proof of [GR19, Lem. 12.1.18(ii)]. |

Remark 2.2.5. For a log adic space (X, Mx,a) and a geometric point T of X,
it follows that MY = o~ 1 (0%, ) = O, 5 (ie., the homomorphism Mxz —
Ox 7 is local and sharp). Hence, My z & MX’E/a_l(O;((émj) is a sharp monoid. If
M x 7 is integral (which is the case when (X, Mx, ) is integral, by Lemma ,

TP~ _ - .
then My » = MY /a" (0%, 3), and Mxz = Mxz is exact.

Remark 2.2.6. Let f: (Y, My,ay) = (X, Mx,ax) be a morphism of log adic
spaces. At each geometric point 7 of Y, since fyﬂ : Oxgp@) — Oy y 1s local,
and since fg My = f “1(Mx)y — My is by definition compatible with
fyE : Oxp@ = 7 HOx, )7 = Oy, We see that fyE : Mx p) — Myg is local

as in Definition By Lemma (f*(MX))y = ﬂX’f@). Therefore, f is

strict if and only if Mx’f@ = My,y, ie., fgﬁ : Mx r) — My is strict, at each
geometric point 7 of Y.

Here are some basic examples of log adic spaces.

Example 2.2.7. Every (étale sheafy) adic space X has a natural log structure given
by a: Mx = 0%, 5 Ox,,. We call it the trivial log structure on X.

Example 2.2.8. A log point is a log adic space whose underlying adic space is
Spa(l,1T), where | is a nonarchimedean local field. We remark that the underlying
topological space may not be a single point.

Example 2.2.9. In Example if | is separably closed, then the étale topos
of Spa(l,1T) is equivalent to the category of sets (see [Hub96l, Cor. 1.7.3 and Prop.
2.3.10, and the paragraph after (2.5.2)]). In this case, a log structure of Spa(l, ")
is giwen by a homomorphism of monoids o : M — [ inducing an isomorphism
a~t (1) B 1%, For simplicity, by abuse of notation, we shall sometimes introduce
a log point by writing s = (Spa(l,iT), M). Also, we shall simply denote by s the
underlying adic space Spa(l,1T), when the context is clear.

Example 2.2.10. Let (X, Mx,ax) be a perfectoid log adic space; i.c., a log
adic space whose underlying adic space X is a perfectoid space (see Deﬁm'tion.
Let M x» := @MX, where the transition maps are given by sending a section to its
p-th multiple. Let X” be the tilt of X. Then there is a natural morphism of sheaves
of monoids ax, : Mxy, — Oth making (X°, My, axs) a perfectoid log adic space,
called the tilt of (X, Mx,ax). Note that the isomorphism oz)_(l((’))xfét) = 0%,
induces an isomorphism a; (O;Et) — O)X(Et by taking inverse limat.

We would like to study log adic spaces of the form Spa(R[P], RT[P]), whenever
(R, R™) is a Huber pair.

Lemma 2.2.11. Suppose that (R, R") is a Huber pair with a ring of definition
Ry C R, which is adic with respect to a finitely generated ideal I. Let us equip R[P]
with the topology determined by the ring of definition Ry[P] such that {I"™ Ro[P]}m>0
forms a basis of open neighborhoods of 0. Then (R[P], RT[P]) is also a Huber pair.
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Proof. Note that R*[P] is open in R[P] because RT is open in R. We only need
to check that RT[P] is integrally closed in R[P]. By writing P as the direct limit
of its finitely generated submonoids, we may assume that P is finitely generated.
But this case is standard (see, for example, [BG09, Thm. 4.42]). O

Remark 2.2.12. Let (R(P), RT (P)) denote the completion of (R[P], R*[P]). Since
taking completions of Huber pairs does not alter the associated adic spectra, we
can identify Spa(R[P], RT[P]) with Spa(R(P), RT(P)) (not just as adic spaces, but
also as log adic spaces) whenever it is convenient to do so.

Lemma 2.2.13. Let P be a finitely generated monoid. Suppose that R is either

(1) analytic and strongly noetherian; or
(2) (complete, by our convention, and) finitely generated over a noetherian ring
of definition.

Then so is R(P) (which is complete by definition). As a result, Spa(R(P), R*(P))
is a noetherian adic space when Spa(R,R") is, and Spa(R{(P), RT(P)) is étale
sheafy (see Corollary . Moreover, the formation of the canonical morphism
Spa(R(P), RT(P)) — Spa(R, RT) is compatible with rational localizations on the
target Spa(R, RT).

Proof. Suppose that R is analytic and strongly noetherian. Since P is finitely
generated, there is some surjection ZZ, — P, which induces a continuous surjection
R(Ty,...,T.) = R(ZL,) - R(P). In this case, R(P)(T1,...,T,) is a quotient of
R(ZE )Ty ..., Tn) = R(Th, ..., Tyryp), for each n > 0, which is noetherian as R is
strongly noetherian. Hence, R(P) is also analytic and strongly noetherian.

Alternatively, suppose that R is generated by some u, ..., u, over a noetherian
ring of definition Ry, with an ideal of definition I C Ry. Since Ry[P] is noetherian
as P is finitely generated, its IRg[P]-adic completion Ry(P) is also noetherian.
Then the image of Ro(P) is a noetherian ring of definition of R(P), over which
R(P) is generated by the images of uy, ..., u,, as desired.

In both cases, the formation of Spa(R(P), RT(P)) — Spa(R, R") is clearly com-
patible with rational localizations on Spa(R, R™). O

In a different direction, we would like to show that, under certain condition on
P, if (R,R") is a perfectoid affinoid algebra, then (R(P), RT(P)) also is. In this
case, (R{P), RT(P)) is étale sheafy (see Corollary |A.11} again).

Definition 2.2.14. For each integer n > 1, a monoid P is called n-divisible (resp.
uniquely n-divisible) if the n-th multiple map [n] : P — P is surjective (resp.
bijective).

Lemma 2.2.15. Suppose that (R, RT) is a perfectoid Huber pair. If a monoid P
is uniquely p-divisible, then (R(P), RT(P)) is also a perfectoid Huber pair. More-
over, the formation of the canonical morphism Spa(R(P), R*(P)) — Spa(R, R™)
is compatible with rational localizations on the target Spa(R, R™).

Proof. If pR = 0, then the unique p-divisibility of P implies that R [P] is perfect,
and so is its completion RT(P). Also, it is clear that (R(P))° = R°(P) in R(P).
Hence, R{P) is uniform, and (R{P), RT(P)) is a perfectoid Huber pair.

In general, let (R’, R"T) be the tilt of (R,R"). Let w € R be a pseudo-
uniformizer of R satisfying w?|p in R° and admitting a sequence of p-th power

e 1 . . . .
roots wr™, so that w’ = (w,w?r,...) € R’® is a pseudo-uniformizer of R’, as in
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[SW20, Lem. 6.2.2]. Let & be a generator of ker(f : W(R"T) — R*), which can be
written as & = p + [@’]a for some a € W(R’"), by [SW20, Lem. 6.2.8]. By the first
paragraph above and the tilting equivalence (see [SW20, Thm. 6.2.11]), it suffices
to show that

R (P) = W(R™(P))/(€).
For this purpose, note that there is a natural homomorphism

0 : W(R'*(P)) » R*(P)
induced by the surjective homomorphism

RT(P) = (R /=’)[P] = (RT /w)[P]

and the universal property of Witt vectors, and 6’ is surjective because both its
source and target are complete. Since & = p + [”]a, we have

W(RH(P))/ (& [@]) = W(R(P)/(p, [@"]) = (R /&")[P] = (RT [w)[P].
Since #'([ww"]) = w, by induction, we see that the homomorphism
W(R™(P))/ (& [@"]") = (RT/=")[P]

induced by ' is an isomorphism, for each n > 1. Thus, since W (R**(P))/(€) is

[w’]-adically complete and separated, ker(#’) is generated by £, as desired.
Finally, the formation of Spa(R(P), R*(P)) — Spa(R, R") is clearly compatible

with rational localizations on Spa(R, R1), as in Lemma O

Remark 2.2.16. In Lemma [2.:2.15] perfectoid Huber pairs are Tate by our con-
vention following [SW20, Lec. 6], but the statement of the lemma remains true for
more general analytic perfectoid Huber pairs as in [Ked19], by using [Ked19, Lem.
2.7.9] instead of [SW20, Thm. 6.2.11].

Definition 2.2.17. When X = Spa(R[P], R*[P]) = Spa(R(P), R"(P)) is étale
sheafy, we denote by Px the constant sheaf on X¢; defined by P. Then the natural
homomorphism P — R(P) of monoids induces a pre-log structure Px — Ox,, on
X, whose associated log structure we simply denote by P°g.

Convention 2.2.18. From now on, when Spa(R(P), RT(P)) is étale sheafy and
regarded as a log adic space, we shall endow it with the log structure P'°® as in
Definition [2.2.17] unless otherwise specified.

Let us continue with some more examples of log adic spaces.

Example 2.2.19. Given any locally noetherian adic space Y with trivial log struc-
ture as in Example and given any finitely generated monoid P, by gluing the
morphisms Spa(R(P), R*(P)) — Spa(R, R") as in Lemma over the noether-
ian affinoid open Spa(R, RT) in'Y', where each Spa(R{P), R (P)) is equipped with
the structure of a log adic space as in Definition and Convention 2.2.18] we
obtain a morphism X —'Y of log adic spaces, which we shall denote by Y{(P) — Y.
In this case, we shall also denote the log structure of X = Y (P) by P8,

Example 2.2.20. If P is a toric monoid as in Definition , then we say
that X = Spa(k(P), k™ (P)) is an affinoid toric log adic space. This is a special
case of Example with Y = Spa(k, k™), and is closely related to the the-
ory of toroidal embeddings and toric varieties (see, e.g., [KKMSDT3] and [Ful93]).
Roughly speaking, such affinoid toric log adic spaces provide affinoid open subspaces
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of the rigid analytification of toric varieties, which are then also useful for studying
local properties of more general varieties or rigid analytic varieties which are locally
modeled on toric varieties. Note that the underlying spaces of affinoid toric log adic
spaces are always normal, by [BGR84, Sec. 7.3.2, Prop. 8|, [GD67, IV-2, 7.8.3.1],
and [HocT2, Thm. 1] (cf. [Kat94, Thm. 4.1]).

Example 2.2.21. A special case of Example is when P = 72 for some
integer n > 0. In this case, we obtain

X = Spa(k(P),kt(P)) 2 D" := Spa(k(T\, ..., T,,), kT (T}, ..., Tp,)),

the n-dimensional unit disc, with the log structure of D™ associated with the
pre-log structure given by Z%, — k(T1,...,Ty) : (a1,...,an) = Ty -+ Tm.

The following proposition provides many more examples of log adic spaces com-
ing from locally noetherian log formal schemes.

Proposition 2.2.22. The canonical fully faithful functor from the category of lo-
cally noetherian formal schemes to the category of locally noetherian adic spaces
defined locally by Spf(A) — Spa(A, A) (as in [Hub94, Sec. 4.1]) canonically extends
to a fully faithful functor from the category of locally noetherian log formal schemes
(as in [GR19, Sec. 12.1]) to the category of locally noetherian log adic spaces (in-
troduced in this paper).

Proof. Given any locally noetherian log formal scheme (X, Mz), let X denote the
adic spaces associated with the formal scheme X, with a canonical morphism of sites
A Xg — Xe, as in [Hub96L Lem. 3.5.1]. By construction, we have a canonical
morphism A™'(Ox,,) — O;Eét. Let Mx be the log structure of X associated
with the pre-log structure A=*(Mzx) — A~ '(Ox,,) = 0%, — Ox,. Then the
assignment (X, Mx) — (X, Mx) gives the desired functor, which is fully faithful
by adjunction. O

Definition 2.2.23 (cf. [Ogul8] Def. IT1.2.3.1]). We say that a morphism f : Y — X
of log adic spaces is an open immersion (resp. a closed immersion) if the underlying
morphism of adic spaces is an open immersion (resp. a closed immersion) and if
the morphism f* : f~!(Mx) — My is an isomorphism (resp. a surjection). We
say that f is an immersion if it is a composition of a closed immersion of log adic
spaces followed by an open immersion of log adic spaces. We say that f is strict if
it is a strict morphism of log adic spaces.

Example 2.2.24. Let (X, Mx,ax) be a log adic space and v : Z — X an im-
mersion of adic spaces. Let (Z, Mz, az) be the log adic space associated with the
pre-log structure 15,'(Mx) — 15,'(Ox,,) — Ogz,. Then the induced morphism
(Z,Mz,az) - (X, Mx,ax) of log adic spaces is a strict immersion. It is an
open (resp. a closed) immersion exactly when the immersion v of adic spaces is.

Remark 2.2.25. More generally, by the same argument as in [Ogul8 the para-
graph after Def. I11.2.3.1], a closed immersion is strict when it is exact.

2.3. Charts and fiber products. In this subsection, we introduce the notion of
charts for log adic spaces. Compared with the corresponding notion for log schemes,
a notable difference is that the definition of charts for a log adic space X involves
not just Ox,, but also O;'(ét. Based on this notion, we also introduce the category
of coherent (resp. fine, resp. fs) log adic spaces and study the fiber products in it.
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Definition 2.3.1. Let (X, Mx,«) be a log adic space. Let P be a monoid, and
let Px denote the associated constant sheaf of monoids on Xg;. A (global) chart
of X modeled on P is a morphism of sheaves of monoids 6 : Px — M x such that
a(0(Px)) C O;ét and such that € canonically induces (by the universal property

of pushouts) an isomorphism *Px — M from the log structure Py associated
with the pre-log structure a0 6 : Py — Ox,,. We call the chart finitely generated
(resp. fine, resp. fs) if P is finitely generated (resp. fine, resp. fs).

Remark 2.3.2. Giving a morphism 6 : Px — M x such that a(@(PX)) C (’);gét as
in Deﬁnitionis equivalent to giving a homomorphism P — M x (X)) of monoids
whose composition with a(X) : Mx(X) = Ox,, (X) factors through O%_(X). If
the monoid P is finitely generated, and if the underlying adic space X is over some
affinoid adic space Spa(R, R"), then giving such a homomorphism P — M x (X)
whose composition with «(X) factors through O}ét (X) is equivalent to giving a
morphism f : (X, Mx) — (Spa(R(P), RT(P)), P') of log adic spaces, whenever
Spa(R(P), RT(P)) is an étale sheafy adic space. In this case, 6 is a chart if and
only if the morphism f is strict. We imposed the condition a(G(PX)) C O}ét in
Definition because we will make crucial use of morphisms f : (X, Mx) —
(Spa(R<P>, RT(P)), Plog) as above in this paper.

Remark 2.3.3. In Remark if the underlying adic space X is over some
locally noetherian adic space Y, then giving a morphism 6 : Px — M x such that
a(0(Px)) C (’)}Eét is also equivalent to giving a morphism g : X — Y(P) as in
Example 2:2.19] in which case 6 is a chart if and only if the morphism g is strict.
Moreover, if X is itself locally noetherian, then we can take Y = X, and obtain a
closed immersion h : X — X (P), in which case 6 is a chart if and only if & is a
strict closed immersion.

Remark 2.3.4. Let 6 : Px — Mx be a chart of a log adic space (X, Mx,a).
By Lemma and Remark for each geometric point T of X, we obtain
a canonical isomorphism P/(a 0 0)71(0% .) = Mxz/a 1 (O% ~ Mxz. In

ét,T ét@)

particular, the composition Px A Mx — Mx is surjective.

Definition 2.3.5. A quasi-coherent (resp. coherent, resp. fine, resp. fs) log adic
space is a log adic space X that étale locally admits some charts modeled on some
monoids (resp. finitely generated monoids, resp. fine monoids, resp. fs monoids).
(Quasi-coherent log adic spaces will not play any important role in this paper.)

Lemma 2.3.6. Let (X, Mx,«) be a log adic space, and 0 : Px — Mx a chart
modeled on some monoid P. Suppose that there is a finitely generated monoid P’

such that 0 factors as Px — P 4 Mx and such that a0 @' : Py, — Ox,, factors
through O}ét. Then, étale locally on X, there exists a chart 0" : P{ — Mx
modeled on some finitely generated monoid P” such that 6" factors through 6" .

Proof. The proof is similar to [Ogul8, Prop. 11.2.2.1], except that, when compared
with charts on log schemes, charts 6 on log adic spaces (X, Mx, a) are subject to
the additional requirement that « o 8 factors through O}ét.

Let {a’};cr be a finite set of generators of P’'. Since Px — Mx is surjective (by
Remark [2.3.4), étale locally on X, there exist some a; € P and f; € O%(X) such
that 6’(a}) = 6(a;) fi, for all i € I. By [Hub96, (1) in the proof of Prop. 2.5.13], for
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each geometric point T of X, we have
Oz =1{f € Ox7: |f(@)| <1}

in Ox,, 7. By Remark up to further étale localization on X, we may as-
sume that, for each i € I, at least one of f; and f[l is in O}(X). Consider the
homomorphism P’ @ leo — Mx(X) sending (a},0) — 6(a;) and sending

{(o,e,») > i, i fi € OL(X);

éts

(0,e;) = f;1, if fi € OF(X) but f;1 € OF(X),

where e; denotes the i-th standard basis element of ZIZO. Let 3 denote the homo-
morphism P — P’, and let P be the quotient of P’ & ZL, modulo the relations

(a‘;’O)N(ﬁ(az)vez)a if fleoj((X)7
(af,e;) ~ (B(a;),0), if f; ¢ OF(X) but f;' € OF(X).

By construction, P’ & ZL, — Mx(X) factors through an induced homomorphism
0" : P" — Mx(X), and a0 8" factors through 0%, as desired.

It remains to check that the log structure associated with the pre-log structure
aol . Py - Mx — Ox,, coincides with Mx; i.e., the natural morphism
*Px — *P¥% induced by P — P” is an isomorphism. It is injective because the
composition Py — “P{ — Mx is an isomorphism. It is also surjective, because
the induced morphism Px /(a0 0)~1(O%, ) = P¥ /(a0 0”)71(O%, ) is surjective,
since the target is generated by the images of a; which lift to the images of a; in
the source. O

Lemma 2.3.7. Let (X, Mx,«) be a locally noetherian coherent log adic space, P
a monoid, and Px — Myx a chart. Suppose that (X, Mx,a) is integral (resp.
saturated), in which case Px — Mx factors through P)i?t — Mx (resp. P)S(at —
Mx). Then P2 — Mx (resp. P¥* — Mx) is also a chart.

Proof. Suppose that (X, Mx,«) is integral. Since Px — Mx is a chart, the
composition *Pyxy — ‘LP}?t — M is an isomorphism, and hence the induced
morphism Py — Pt is injective. Since P — P is surjective, the composition
P — Mx — Oy, factors through (’)}ét, and the induced map *Px — @ P is
surjective and hence is an isomorphism.

Suppose that (X, Mx,«) is saturated. Then the chart Px — Mx factors as
a composition of Px — P* — Mx. Since O;ét is integrally closed in Oy, , the
composition P — Mx — Ogx,, factors through Oj}ét. It remains to show that
the induced morphism “ Py — %P5 is an isomorphism. By Remark it suffices
to show that, at each geometric point = of X, if we denote by 3: P - Mx z and
B P$* — M x 7 the induced homomorphisms, then the canonical homomorphism
(2.3.8) P/(aof) H0%, ) = P /(a0 /)10

Xet 75)

ét?

86,

is an isomorphism. Let 8 denote the composition of P — Mxz — MXE. Since
ker(MS . — M%?j) = M, = a1(0%,, 5), because Mx z is integral (see Re-
mark [2.2.4)), we obtain

ker(3%") = (8P) ! (a_l(o)xfét,f))'
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Since PP/ ker(B*") = ﬂ%ﬁi = pee/((ao B)7HO%, »))°", we obtain

Xet,T

((aoB)HOX, ) = (B*) (a0, 5)-

Since (o 8)71(O%,, ) C (a0 ) MO, z) C (B%°) (a1 (O%,, ), we obtain
(o B)HOX, )% = (B*) H(a  (0X, 5)-

By Lemma and the above, we see that the natural homomorphism

2.3.9 P (o B)"HOE ) — P8P/ ker ng

(2.3.9) X

ét5T

is injective, whose image is contained in (P/(a o B)~10%,, E))sat. Moreover, the
composition of (2.3.8]) and (2.3.9)) induces the canonical homomorphism

(2.3.10) P/(aoB)"H0%, ) = (P/(aoB) 10X, )™

By Lemmas [2.1.9 and 2.2.4|, P/(ao B)71(0%, ) = Mxz is saturated. Thus,
(2.3.10) is an isomorphism, and so is ([2.3.8]), as desired. O

Proposition 2.3.11. Let (X, Mx,«a) be a locally noetherian coherent log adic
space. Then it is fine (resp. fs) if and only if it is integral (resp. saturated).

Proof. If (X, Mx, ) is integral (resp. saturated), then it is fine (resp. fs) by Lemma
Conversely, if (X, M x, «) is fine, then it is integral by Lemma|2.1.8] Suppose
that (X, Mx,«) admits an fs chart § : Px — Myx. By Remark [2.3.4] we have
P/(ao8) (0%, z) = Mxz/a ' (0%, 7) = Mxz at each geometric point T of
X. By Lemma HX@ is saturated, because P is. By [Ogul8| Prop. 1.1.3.5],
Mx 7 is also saturated, because Mx 7 is integral and My z is saturated. Thus,
(X, Mx,a) is saturated, by Lemma m O

Lemma 2.3.12. Let (X, Mx,a) be a fine (resp. fs) log adic space. For any geo-
metric point T of X, the monoid WX@ is sharp fine (resp. toric—i.e., sharp fs),
and the canonical homomorphism M x z — ﬂxi admits a splitting s that factors
through the preimage of O%. _ in Mxz.

Proof. Let P := Mx z, which is finitely generated because X is fine. Under the

assumption that X is fine (resp. fs), by Proposition [2.3.11|and Lemma Mxz
is integral (resp. saturated), and so its sharp quotient P is sharp fine (resp. toric).

By Lemma[2.1.70} the surjective homomorphism f : Mx z — P admits a section sg.
We need to modify this into a section s : P — My z such that (aos)(P) C OF
By [Hub96, (1) in the proof of Prop. 2.5.13], we have

0%,z ={f €Ox.7: [f@| <1}

&6, T

é6,T "

and
{f€0x,z:1f@)|>1} CO%, =

in Ox,,z Let {a1,...,a,} be a finite set of generators of P. For each i, let
vi = |a(so(a;))(T)|. If v, < 1 for all ¢, then we set fy := 1 in Ox,, z. Otherwise,
there exists some ig such that v;,, > 1 and v;, > -, for all i. Then «(sp(as,))
admits an inverse fy in Ox,, 7, so that |fo(Z)| = %—01. By [Ogul§|, Cor. 1.2.2.7], we
can identify P with a submonoid of ZQ,O, for some 7’ > 0, so that we can describe
elements of P by r'-tuples of integers. Then the homomorphism

s:P—=Mxz:(n,...,ng)— (?IJF"'JF”T'SO((m,...,nr/))
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satisfies (a0 s)(P) C O% as desired. O

ét,T”
Proposition 2.3.13. Let (X, Mx, ) be an fine log adic space, and T any geomet-
ric point of X. Then X admits, étale locally at T, a chart modeled on Mx z.

Proof. By Lemma we have a splitting s : P := Mxz — Mxz such that
(az o s)(P) C O}éhi. Since P is fine because X is fine, by Remark up to
étale localization on X, the splitting s lifts to a morphism s : Px — Mx such
that (a05)(Px) C O}ét (see Remark . Then the composition of Px — Mx
with « is a pre-log structure, whose associated log structure * Px — Ox,, factors
through °s : *Px — Mx (and «). The induced *sz : “Pxz — Mxz is an
isomorphism, because the quotients of both sides by the isomorphic preimages of
O)X(ét@ induce the canonical isomorphism P = Mx z, by construction. Hence, up
to further étale localization on X, we may assume that *s : “*Px — Mx is an
isomorphism, because the quotients of both sides by the isomorphic preimages of
(D)X(ét induce the canonical morphism Py — M (again, see Remark . As a
result, s : Py — My is a chart modeled on P = Mx z, as desired. O

Example 2.3.14. An fs log point is a log point (as in Example that is
an fs log adic space. In the setting of Example by Remark a log point
s = (Spa(l,IT), M) with | separably closed is an fs log point exactly when M/1* is
toric (i.e., sharp fs). In this case, by Lemmas [2.1.10| and [2.3.12], there always exists
a homomorphism of monoids M/1* — M splitting the canonical homomorphism
M — M/l* and defining a chart of s modeled on M.

Example 2.3.15. A special case of Example [2.3.14] is a split fs log point i.c., a
log point of the form s = (X, Mx) = (Spa(l,IT), O)X(ét @ Px) for some (necessarily)
toric monoid P. This is equivalent to a log point (Spa(L,L™), M), where L is the
completion of a separable closure I°°P of I, with a Gal(I°P /l)-equivariant splitting
of the homomorphism M — M/L*. We also remark that this is the same as a
Gal(I*°P /1)-equivariant splitting of the homomorphism M&P — MS&P/L*.

Example 2.3.16. Let D be an effective Cartier divisor on a normal rigid analytic
variety X over a nonarchimedean field k, and let 1+ : D — X denote the associated
closed immersion. By viewing X as a noetherian adic space, we equip X with the
log structure o : Mx — Ox,, defined by setting

Mx(V)={f € Ox, (V) : f is invertible on the preimage of X — D},

for each object V.— X in Xet, with a(V) : Mx (V) — Ox,, (V) given by the natural
inclusion. This makes X a locally noetherian fs log adic space. (The normality of
X is necessary for showing that the log structure Mx is indeed saturated.) Then
X — D is the mazimal open subspace of X over which M x is trivial. Note that, in
Ezxample the log structure of X = D" can be defined alternatively as above
by the closed immersion v: D :={Ty---T, =0} — D".

The following special case is useful in many applications:

Example 2.3.17. Let X, D, and k be as in Example 2.3.16] Suppose moreover
that X is smooth. We say that D is a (reduced) normal crossings divisor of X
if, €étale locally on X —or equivalently (by [dJvdP96, Lem. 3.1.5]), analytic locally
on X, up to replacing the base field k with a finite separable extension—X and D
are of the form S x D™ and S x {1y ---T,, = 0}, where S is a smooth connected
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rigid analytic variety over k, and ¢ : D — X 1is the pullback of the canonical closed
immersion {Ty ---T,, = 0} < D™. (This definition is justified by [Kie67, Thm.
1.18].) Then we equip X with the fs log structure defined as in Example
which is compatible with the one of D™ as in Example [2.2.21] via pullback.

The following example will be useful when studying the geometric monodromy
and nearby cycles of étale local systems “along the boundary”:

Example 2.3.18. Let X, D, and k be as in Example . Suppose that {D;}jer
is the set of irreducible components of D (see [Con99]). For each J C I, as locally
closed subspaces of X, consider Xj := X N (ﬂjeJ Dj), Dy :=Ujcycr Xy, and
Uy := X;—Dj. By pulling back the log structure from X to Xy and Uy, respectively,
we obtain log adic spaces (X?,MX?) and (U?,MUg) (with strict immersions to
X). When X is also smooth and so Dy is a normal crossings divisor, we equip X j
with the fs log structure defined by Dy as in Example whose restriction to Uy
is then the trivial log structure. If we also consider D’ := Ujer—; Dj, and let X7
denote the same adic space X but equipped with the fs log structure defined by D’ as
in Example then Mx, and My, = O[}(J’ét are nothing but the log structures

pulled back from X”. Moreover, since D7 C D, there is a canonical morphism of
log adic spaces X — X7; and since Dy = D’ N X, this morphism induces a
canonical morphism of log adic spaces X? — X s, whose underlying morphism of
adic spaces is an isomorphism. Since X and D is étale locally of the form S x D™
and S x {Ty---T,, = 0} for some smooth S over k, it follows that X is étale
locally of the form S x D™~V in which case the log structures ng and Mx, are

associated with the pre-log structures ZZ, — Oxa ¢ and Zzl(;m — Ox, .6, and we

have a direct sum MX§ = Mx, @ (ZéO)XJ-

Definition 2.3.19. Let f : (Y, My,ay) — (X, Mx,ax) be a morphism of log
adic spaces. A chart of f consists of charts 6y : Px — Mx and Oy : Qy — My
and a homomorphism u : P — @ of monoids such that the diagram

Py ——Qy

-k

F (My) —L My

commutes. We say that the chart is finitely generated (resp. fine, resp. fs) if both
P and Q are finitely generated (resp. fine, resp. fs). When the context is clear, we
shall simply say that u: P — @ is the chart of f.

Example 2.3.20. Let P := 7" and let Q be a toric submonoid of =72 contain-
ing P, for some m > 1. Then the canonical homomorphism u : P — Q induces a
morphism f Y = Spa(k(Q),kT(Q)) — X := Spa(k(P),k*(P)) = D" of normal
adic spaces, whose source and target are equipped with canonical log structures as in
Examples 2.2.20] and 2.2.21], making f : Y — X a morphism of fs log adic spaces.
Moreover, these log structures on X andY coincide with those on X andY defined
by D ={Ty---T, = 0} — X and its pullback to Y, respectively, as in Ezxample
2.3.16] A chart of f:Y — X is given by the canonical charts P — Mx(X) and
Q — My (Y) and the above u : P — Q.
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Proposition 2.3.21. Let f : Y — X be a morphism of coherent log adic spaces,
and let P — Mx(X) be a chart modeled on a finitely generated monoid P. Then,
étale locally on'Y, there exist a chart Q — My (Y) modeled on a finitely generated
monoid Q and a homomorphism P — Q, which together provide a chart of f.

Proof. Up to étale localization on Y and X, we may assume that (X, Mx) and
(Y, My ) are modeled on some finitely generated monoids P and @', respectively.
Then the composition of Py 2 f~1(Py) — f~1(Mx) — My induces a morphism
Py - (P®Q')y — My. Note that P @ Q' is finitely generated, and that the
composition (P & Q')y — My — Oy, factors through O;ét. By applying Lemma
to Qy — (P& Q')y — My, we see that, étale locally, (P & Q')y — My
factors as (P & Q')y — Qy — My, where Qy — My is a chart modeled on a
finitely generated monoid Q. Thus, the composition P — P® Q" — Q gives a chart
of f, as desired. O

Proposition 2.3.22. Any morphism between fine (resp. fs) log adic spaces étale
locally admits fine (resp. fs) charts.

Proof. By Proposition étale locally, X admits a chart modeled on a fine
(resp. fs) monoid P. By Proposition f admits, étale locally on Y, a chart
P — @ with finitely generated Q). By Lemmam the induced Qi* — My (resp.
Q5" — My ) is also a chart of Y. Hence, the composition of P — Q — Q™" (resp.
P — Q — Q%) is a fine (resp. fs) chart of f. O

Proposition 2.3.23. (1) The inclusion from the category of noetherian (resp.
locally noetherian) fine log adic spaces to the category of noetherian (resp.
locally noetherian) coherent log adic spaces admits a right adjoint X
X' and the corresponding morphism of underlying adic spaces is a closed
1Mmersion.

(2) The inclusion from the category of noetherian (resp. locally noetherian) fs
log adic spaces to the category of noetherian (resp. locally noetherian) fine
log adic spaces admits a right adjoint X s X% and the corresponding
morphism of underlying adic spaces is finite and surjective.

Proof. In case (1) (resp.), let ? = int (resp. sat) in the following.

Suppose that X = Spa(R, RT) is noetherian affinoid and admits a global chart
modeled on a finitely generated (resp. fine) monoid P, so that we have a homo-
morphism P — R of monoids, inducing a homomorphism Z[P] — R of rings. Let
R" := R ®yp) Z[P"], and let R** denote the integral closure of R™ ®yp) Z[P’]
in R’. Since P is finitely generated, Z[P’] is a finite Z[P]-algebra, and (R?, R™")
is equipped with a unique topology extending that of (R, RT), which is not nec-
essarily complete. Let X” := Spa(R’, R’") (which, as usual, depends only on the
completion of (R’, R’T)), with the log structure induced by P’ — Ox:(X?) =
R®zp| Z[P"] : a — 1 ®e® (where e* denotes the image of a € P’ in Z[P"], by our
convention). Clearly, the natural projection X — X is a closed immersion (resp.
finite and surjective morphism) of log adic spaces. We claim that, if (Y, My) is
a fine (resp. fs) log adic space, then each morphism f : (Y, My) — (X, Mx) of
log adic spaces factors through X", yielding Mor(Y, X) = Mor(Y, X*). Indeed, by
Proposition [2.3.11] the induced morphism Py = f~}(Px) — f~1{(Mx) — My
factors through Py, and hence Y — X factors through ¥ — X 7 as desired.
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In general, there exists an étale covering of X by affinoids X; = Spa(R;, R]")
such that each X; admits a global chart modeled on a finitely generated (resp. fine)
monoid (see Definition . Consider X = II; X;. By the affinoid case treated
in the last paragraph, we obtain a finite morphism X' 5 X , which is equipped
with a descent datum. By étale descent of coherent sheaves (see Proposition ,
X? = X descends to a locally noetherian adic space X° — X. Also, the étale
sheaf of monoids descends (essentially by definition). Finally, by Proposition
and the local construction in the previous paragraph, the formation X — X°* is
functorial, as desired. |

Remark 2.3.24. For a noetherian (resp. locally noetherian) coherent log adic space
X, we shall simply denote by X** the fs log adic space (X1*)%at, By combining
the two cases in Proposition the functor X +— X®3 from the category of
noetherian (resp. locally noetherian) coherent log adic spaces to the category of
noetherian (resp. locally noetherian) fs log adic spaces is the right adjoint of the
inclusion from the category of noetherian (resp. locally noetherian) fs log adic spaces
to the category of noetherian (resp. locally noetherian) coherent log adic spaces.

Remark 2.3.25. By construction, both the functors X ++ X" and X +— X® send
strict and finite (resp. étale) morphisms to strict and finite (resp. étale) morphisms.

Remark 2.3.26. Again by construction, when X is a locally noetherian log adic
space over a locally noetherian fs log adic space Y and admits a global chart modeled
on a finitely generated (resp. fine) monoid P, for 7 = int (resp. sat), we have
X" = X xy(p, Y(P") as adic spaces, where Y(P) and Y (P’) are as in Example
2.2.190 (Note that the fiber product X xy (py Y (P”) exists because the morphism
Y(P") — Y(P) is lft when P is finitely generated.)

Now, let us study fiber products in the category of locally noetherian coherent
(resp. fine, resp. fs) log adic spaces:

Proposition 2.3.27. (1) Finite fiber products exist in the category of locally
noetherian log adic spaces when the corresponding fiber products of the un-
derlying adic spaces exist. Moveover, finite fiber products of locally noe-
therian coherent log adic spaces over locally moetherian coherent log adic
spaces are coherent (when defined). The forgetful functor from the category
of locally noetherian log adic spaces to the category of locally noetherian
adic spaces respects finite fiber products (when defined).

(2) Finite fiber products exist in the category of locally noetherian fine (resp.
fs) log adic spaces when the corresponding fiber products of the underlying
adic spaces exist.

Proof. As for , let Y - X and Z — X be morphisms of locally noetherian log
adic spaces such that the fiber product W :=Y X x Z of the underlying adic spaces
is defined. Let pry-, pry, and pry denote the natural projections from W to Y, Z,
and X, respectively, and equip W with the log structure associated with the pre-log
structure pry' (My) et (Mx) pr,'(Mz) — Ow,,. Then the log adic space thus
obtained clearly satisfies the desired universal property. Suppose moreover that X,
Y, and Z are all coherent. By Proposition 2:3:2] étale locally, Y — X and Z — X
admit charts P — @ and P — R, respectively, where P, @), and R are all finitely
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generated monoids, in which case W is (by construction) modeled on the finitely
generated monoid S := @ ®p R, and hence is coherent.

As for , let Y - X and Z — X be morphisms of locally noetherian fine
(resp. fs) log adic spaces such that the fiber product Y x x Z of the underlying adic
spaces is defined, in which case we equip it with the structure of a coherent log
adic space as in . Then, by Proposition Y xfire 7 .= (Y xx Z)"* (resp.
Y x§ 7 := (Y xx Z)%*) satisfies the desired universal property. O

Remark 2.3.28. Let P — @ and P — R be homomorphisms of finitely generated
(resp. fine, resp. fs) monoids, and let S* := (Q ®p R)*, where ? = ) (resp. int,
resp. sat). Let Y be a locally noetherian fs log adic space. By Remark
and Proposition (and the construction in its proof), Y(S”) is canonically
isomorphic to the fiber product of Y(Q) and Y(R) over Y(P) in the category of
noetherian coherent (resp. fine, resp. fs) log adic spaces.

Remark 2.3.29. Let P — @ and P — R be fine (resp. fs) charts of morphisms
Y — X and Z — X, respectively, of locally noetherian fine (resp. fs) log adic
spaces such that Y x x Z is defined. Then Y xif¢ Z (resp. Y x% Z) is modeled on

(Q ®p R)™ (resp. (Q ®p R)™).

Remark 2.3.30. The forgetful functor from the category of locally noetherian fine
(resp. fs) log adic spaces to the category of locally noetherian adic spaces does
not respect fiber products (when defined), because the underlying adic spaces may
change under the functor X +— X' (resp. X + X5at).

Convention 2.3.31. From now on, all fiber products of locally noetherian fs log
adic spaces are taken in the category of fs ones unless otherwise specified. For
simplicity, we shall omit the superscript “fs” from “x”.

We will need the following analogue of Nakayama’s Four Point Lemma [Nak97,
Prop. 2.2.2]:

Proposition 2.3.32. Let f :' Y — X and g : Z — X be two Ift morphisms of
locally noetherian fs log adic spaces, and assume that f is exact. Then, given any
two points y € Y and z € Z that are mapped to the same point x € X, there exists
some point w € W :=Y Xx Z that is mapped toy € Y and to z € Z.

In order to prove Proposition [2.3.32] it suffices to treat the case where X, Y,
and Z are geometric points, and where x, y and z are the respective unique closed
points. By [Hub96l Lem. 1.1.10], it suffices to prove the following:

Lemma 2.3.33. Let f :' Y — X and g : Z — X be morphisms of fs log adic
spaces such that the underlying adic spaces of X, Y, and Z are Spa(l,i*) for the
same complete separably closed nonarchimedean field I, and such that the underlying
morphisms of adic spaces of f and g are the identity morphism. Assume that f is
exact. Then W =Y Xx Z is nonempty.

Proof. Let T, 3, and Z be the unique closed points of X, Y, and Z, respectively,
and let P = Mxz, Q= Myg, and R=Mzz. Let u: P — Q and v: P — R be
the corresponding maps of monoids. By [Ogul8, Prop. 1.4.2.1], u is exact.

Consider the homomorphism ¢ : P8P — Q%P & REP : a — (utP(a), —v&P(a)).
Since u is exact and R is sharp, ¢~(Q & R) is trivial. By [Nak97, Lem. 2.2.6], the
sharp monoid S := Q ®p R is quasi-integral (i.e., if a4+ b = a, then b = 0), and the
natural homomorphism P — @Q @ p R is injective.
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Note that f and g admit charts modeled on v : P — @ and v : P — R, respec-
tively. This is because, by the proof of [Nak97, Lem. 2.2.3], there exist compatible
homomorphisms (Mx (X))gP — ¥, (My(Y))8? — I*, and (Mz(Z))® — I* such
that the compositions * — (Mx(X))8P — 1%, I* — (My(Y))8? — [*, and
I* = (Mz(2))8? — 1* are the identity homomorphisms. Therefore, the mor-
phisms f*(Mx) — My and g*(Mx) — Mz can be (noncanonically) identified
with Id®u: I* PP = 1* ®Q and IdPv : I* & P — [* @ R, respectively.

Consequently, W 22 Spa(l,17) Xgpaqu(sy,i+(sy) Spa(l{S%*),17(5%*)). The image
of Spa(l,IT) — Spa(l{S),IT(S)) consists of equivalence classes of valuations on
1{S) (bounded by 1 on [T) whose support contains the ideal I of I{(S) generated
by {e® : a € S, a # 0}. On the other hand, the kernel of I(S) — [(S%*"), which
is generated by {e® — e’ : a,b € S, a =0bin S™}, is contained in I because S is
quasi-integral. Thus, W is nonempty, as desired. O

3. LOG SMOOTHNESS AND LOG DIFFERENTIALS
3.1. Log smooth morphisms.

Definition 3.1.1. Let f : Y — X be a morphism between locally noetherian fs
log adic spaces. We say that f is log smooth (resp. log étale) if, étale locally on Y
and X, the morphism f admits an fs chart u : P — @ such that

(1) the kernel and the torsion part of the cokernel (resp. the kernel and cokernel)
of usP : P8P — Q&P are finite groups of order invertible in Ox; and

(2) f and u induce a morphism Y — X xx(py X(Q) of log adic spaces (cf.
Remark whose underlying morphism of adic spaces is étale.

Remark 3.1.2. In Definition the fiber product in exists and the mor-
phism f : Y — X is Ilft, because X(Q) — X(P) and hence the first projection
X xx(py X{(Q) — X is Ift when @ is finitely generated. Hence, fiber products
involving log smooth or log étale morphisms always exist.

Proposition 3.1.3. Base changes of log smooth (resp. log étale) morphisms (by
arbitrary morphisms between locally noetherian fs log adic spaces, which are justified
by Remark (3.1.2)) are still log smooth (resp. log étale).

Proof. Suppose that Y — X is a log smooth (resp. log étale) morphism of locally
noetherian fs log adic spaces, with a chart P — @ satisfying the conditions in
Definition Let Z — X be any morphism of locally noetherian fs log adic
spaces. By Proposition[2.3.22] up to étale localization, we may assume that Z — X
admits an fs chart P — R. By Remark Z xx Y is modeled on S :=
(R @p Q)*. By Remark Z xxpy X(Q) = Z Xz(r) Z(S). By Remark
the morphism Z xx Y — Z Xz Z(S) induces an étale morphism of
underlying adic spaces. It remains to note that R — ((Q ®p R)Sat)gp satisfies
the analogue of Definition 7 by the assumption on P8P — Q&P and the fact
that ((Q ®p R)**)®” = (Q ®p R)® = Q=P Gpe» REP. O

Proposition 3.1.4. Let f : Y — X be a log smooth (resp. log étale) morphism of
locally noetherian fs log adic spaces. Suppose that X is modeled on a global fs chart
P. Then, étale locally on'Y and X, there exists an injective fs chart u: P — @ of
[ satisfying the conditions in Definition 311 Moreover, if P is torsion-free, we
can choose Q to be torsion-free as well.
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Proof. This is an analogue of the smooth and étale cases of [Kat89al, Lem. 3.1.6].

Suppose that, étale locally, f admits a chart P, — () satisfying the conditions
in Definition We may assume that X = Spa(R, R") is a noetherian affinoid
log adic space. Let us begin with some preliminary reductions.

Firstly, we may assume that Px — Mx factors through (P1)x — Mx. Indeed,
by Lemma [2:3.6] étale locally, X admits an fs chart P, such that the canonically
induced morphism (P @ P1)x — Mx factors through (Py)x — Mx. Let Qo be
(P2 ©p, Q1)%*. Then Q5" = P3¥ @ pee Q5 (cf. the proof of Proposition
hence P, — @) is also an fs chart of f satisfying the conditions in Definition

Secondly, we may assume that P; — Q1 is injective. Indeed, since Pf® and Q5"
are finitely generated, and since K := ker(P;” — QfP) is finite, there exists some
finitely generated abelian group H; fitting into a cartesian diagram

PO H,
PPPJK—— Q5P
such that
coker(PyP — Hy) = coker(Py? /K — QF°),
and so that

K > ker(Pf® — PfP/K) = ker(H; — QfF).

For any geometric point 7 of Y, let Q2 be the preimage of Q1 under H; — Q%F.
Note that Q2 is fs, Q5" = Hy, and P, — Q2 is injective. We claim that P, — Q2 is
an fs chart of f, étale locally at 7 and f(y), satisfying the conditions in Definition
By Remark Q1 — My is surjective with kernel given by the preimage
of (’);,ét 7 Since Q2/K = @1, the induced homomorphism Q2 — My satisfies the
same properties, and P; — Q2 is an fs chart of f, étale locally at 7 and f(7y). By
construction, it satisfies the condition in Definition It also satisfies the
condition (2)) in Deﬁnition because Y — X X x(p,y X(Q2) is the composition
of Y = X xx(py X(Q1) =Y — X Xx(py X(Q2), and X(Q1) — X(Q2) is étale,
by [Hub96, Prop. 1.7.1], as |K| is invertible in Ox. Thus, the claim follows.

Thirdly, we claim that, up to further modifying P, — @)1, we can find H fitting
into a cartesian diagram of finitely generated abelian groups:

(3.1.5) P H

| ]

PR .

Given such an H, let @) be the preimage of Q1 via H — Q$’. Since P and P; are
both fs charts of X, the homomorphism P& — PP induces an isomorphism after
passing to quotients of the source and target by the preimages of O)X(éh @) Since
is Cartesian, and since 7 is an fs chart of Y, the analogous statement for
Q, @1, and O;ét,y is also true. Thus, u : P — @ is an injective fs chart of f, étale
locally at 7 and f(7), satisfying the conditions of Definition

Let us verify the claim by modifying the arguments in the proofs of [Kat89al
Lem. 3.1.6] and [Niz08| Lem. 2.8]. (We need to modify the arguments because our
requirement that charts induce morphisms to O}ét and OEt can be affected by
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localizations of monoids.) Let G := im(P® — PP), Gy := PPP/G, and W =
coker(Pp? — Q5P), and consider the pushout 0 — G; — T4 — W — 0 of the
extension 0 — PP — Q3 — W — 0 via Pf® — G. By assumption, there exists
some integer n > 1 invertible in Ox which annihilates the torsion part of W.
Since K; := ker(PfP — ﬂ%g f@)) is finitely generated, there exists some finitely
generated abelian group K5 such that K1 2 nKs = {nk : k € Ky}. Let Hy denote
the pushout of Q$* <+ K; — K,, which contains Q5" as a finite index subgroup.
Let P, := {a € Hy : na € Pi} and Q2 := {b € Hy : nb € @1}, which are fs
monoids because P; and ()1 are. Note that Py, P>, @1, and Q2 are all submonoids
of Hy. Let G := P§P /G, and let 0 — G — Ty — W — 0 be defined by pushout as
before. Since n is invertible in O, the induced homomorphism K; — O)X(ét’ @) lifts
to some homomorphism K, — O)X(éh 7@z Hence, up to further étale localization,
we may assume that P, — @ lifts to an fs chart P, — Q2 of f at ¥ and f(7),
which still satisfies the conditions in Definition |[3.1.1}] Given any torsion element
w of W of order m (which necessarily divides n), let t; € Ty be any lifting of w.
Then g; := mt; € G; = coker(Pe? — PP). Since P® — PfP/K; = ﬂ‘;’rgf@)
is surjective (by Remark again), g1 lifts to some ky € K3, which is the m-
th multiple of some ky € K5 with image go in Go. Then to := t; — g € T is
a lifting of w which satisfies mts = g1 — mgs = 0. Hence, Zty C T3 defines a
lifting of Zw C W. Since w is arbitrary, the homomorphism T, — W of finitely
generated abelian groups splits, and the preimage H of the split image of W in

5P is an extension 0 - G — H — W — 0 whose pushout via G — PfP recovers
0— PP — Q% — W — 0. Since H is finitely generated, there is some surjection
F — H from a finitely generated free abelian group, and the preimage E of G is
also finitely generated free and lifts to some E — P®P. Then the claim follows by
taking H to be the pushout of P8P +— E — F.

Finally, if P is torsion-free, let us show that we can take @) to be torsion-free as
well. We learned the following argument from [Nak98, Prop. A.2]. Consider the
torsion submonoid Qo of @, which is necessarily contained in @Q™¥; and choose
any splitting s of 7 : Q@ - Q' := Q/Qtor- Let n be any integer invertible in Ox
which annihilates the torsion in coker(u8P). Since P is torsion-free, the composition
uw =mou: P — Q is injective, and Qo is also annihilated by n. Let S be the
finite étale R-algebra obtained from R{(Qto,) by formally joining the n-th roots of
e, for all a € Qyor; and let ST be the integral closure of Rt (Qyo) in S. Then the
morphism Z := Spa(S, St) = X(Qor) = Spa(R{(Qtor), R (Qtor)) over X is finite
étale and surjective, with base change Z(Q') — X(Q). Consider the composition
v=somou: P — Q. Thenu—v: P — @ factors through P — Qio,, which extends
to some ¢ : Q' — S .; and a — ¢(a)a, for a € @', induces an isomorphism between
the two compositions g, h : Z(Q') = X{(Q) — X(P) induced by u, v, respectively.
Since u : P — Q is a chart of f, the induced morphism Y — X x x(py X(Q) is étale,
whose pullback is an étale morphism Y x x(q,..) Z = X X x(p),q Z(Q'). The target
is isomorphic to X X x(py,», Z(Q'), and hence is étale over X x x(py X(Q'), by the
above explanation. Consequently, the morphism ¥ — X X x(py X(Q') induced by
fand v’ : P — @' is étale, and so ¢’ is also an injective fs chart of f, as desired. O

Proposition 3.1.6. Compositions of log smooth (resp. log étale) morphisms are
still log smooth (resp. log étale).

Proof. This follows from Definition and Proposition (3.1.4 (I



24 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

Proposition 3.1.7. If f : Y — X is log smooth (resp. log étale) and strict, then
the underlying morphism of adic spaces is smooth (resp. étale).

Proof. Etale locally at geometric points 7 of Y and f(y) of X, by Propositions
[2.3.13] and [3.1.4] we may assume that f : ¥ — X admits an injective fs chart
u: P = ﬂx’f@ — @ as in Definition where the torsion part Kio of
K := coker(ugP : P8 — (Q8P) is a finite group of order invertible in Ox, and
where K itself is finite when f is log étale. Since f is strict, by Remark
P = Myt = Myy. Hence, we can identify K with ker(Q®" — ﬂ%%), so that
u8P(P8P) N K = 0 in @®P. Since K is a finitely generated abelian group, we have
a decomposition K, @ (@’Z-":lZa,;) 5 K, for some elements a; € K which are

necessarily mapped to (’)Sx,ét 7 Up to replacing a; with —a;, for each 1 <1i < r, we
may assume that a; is mapped to (92“?. Let Q" := u(P) ® Kior ® (81—, Z>0a;) in
Q8P. Then Q&P — M%% maps Q' to My g, the induced map Q" — Oy, 3 factors
through (’)Et@, and the induced map Q' — My 3 is surjective. In this case, up
to further étale localization, v’ : P — Q' is also an injective fs chart of f. Thus,
it suffices to show that X(Q') — X (P) is smooth (resp. étale) at the image of 7.
Since X(Q') = X(P) xx X (Kior) X x X(Z%,)) over X (P), it remains to note that,
by [Hub96l Cor. 1.6.10 and Prop. 1.7.1], X (Kyor) X x X (ZZ,) is smooth (resp. étale)
over X, because Ki,, is a finite groups of order invertible in O, and because r = 0
when K itself is finite (i.e., when f is log étale). O

Definition 3.1.8. If f satisfies the condition in Proposition [3.1.7] we say that f
is strictly smooth (resp. strictly étale), or simply smooth (resp. étale), when the
context is clear.

Definition 3.1.9. Let (k, k™) be an affinoid field. A locally noetherian fs log adic
space X is called log smooth over Spa(k, k™) if there is a log smooth morphism
X — Spa(k, k™), where Spa(k, k™) is endowed with the trivial log structure. When
X is log smooth (resp. smooth) over Spa(k, Oy ), we simply say that X is log smooth
(resp. smooth) over k.

Local structures of log smooth log adic spaces can be described by toric charts,
by the following proposition:

Proposition 3.1.10. Let X be an fs log adic space log smooth over Spa(k,k™),
where (k, k%) is an affinoid field. Then, étale locally on X, there exist a sharp fs
monoid P and a strictly étale morphism X — Spa(k(P), k™ (P)) that is a composi-
tion of rational localizations and finite étale morphisms.

Proof. By Proposition[3.1.4] étale locally on X, there exists a torsion-free fs monoid
Q and a strictly étale morphism X — Spa(k(Q), k" (Q)). We may further assume
that X — Spa(k(Q),k"(Q)) is a composition of rational localizations and finite
étale morphisms. By Lemma Q — Q@ splits, and hence there is a decom-
position Q@ = Q ® Q™ 5 Q @ Z", for some r. Let P := Q & Z.,, which is
a sharp fs monoid. Since P — @ is a localization of monoids, as in Construc-
tion [2.1.11] Spa(k(Q), kT(Q)) — Spa(k(P), k*(P)) is a rational localization, whose
pre-composition with X — Spa(k(Q), k™ (Q)) gives the desired morphism. O

Corollary 3.1.11. Let X and (k,k™) be as in Proposition |3.1.10l Suppose more-
over that underlying adic space of X is smooth over Spa(k, k™). Then, étale locally
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on X, there exists a strictly étale morphism X — D™ (see Example [2.2.21)) that is
a composition of rational localizations and finite étale morphisms.

Proof. As in the proof of Proposition[3.1.10] étale locally on X, there is a torsionfree
fs monoid @ and a strictly étale morphism X — Y := Spa(k(Q), k" (Q)) that is
a composition of rational localizations and finite étale morphisms. Consider the
canonical morphism Y — Z := Spec(k[Q]). Note that Z = Spec(k[Q]) admits a
stratification by locally closed subschemes of the form Zp := Spec(k[F8P]), where F'
are the faces of @ (see [Ogul8| Sec. I.1.4 and I1.3.4]), which is a closed subscheme of
the open subscheme Z(p) := Spec(k[QF]) of Z, where QFr denotes the localization
of @ with respect to F' (as in Construction . By [Ogul8] Sec. 1.3.6], given
any closed point z of Zr with residue field x(z), the completion Og,z of the local
ring Oy , is isomorphic to k(2)[[QF]].

For each F', let Yr :=Y Xz Zp and Y(p) := Y Xz Z(F). Then we have a canonical
open immersion of adic spaces Y(p) — Spa(k, k) XSpec(k) Z(F), by comparing the
construction of both sides using Lemma (For the construction of such fiber
products of adic spaces with schemes, see [Hub94, Prop. 3.8 and its proof].) For any
F such that Yp meets the image of X — Y, we claim that Qp = Z3 ,Z?, for some
s and t. Assuming this claim, then Z ) admits an open immersion into (PL)", for
n := s+ t, and we obtain an open immersion Y{py — Spa(k, k™) Xgpec(r) (P})™ of
log adic spaces, where the log structure on the target is defined (via fiber product)
by naturally covering each factor Spa(k, k™) X Spec(k) P} with two log adic spaces
Spa(k(T), k*(T)) and Spa(k(T'~'), k*(T~')) isomorphic to D (see Example[2.2.21)).
Therefore, up to further localization on X, we may assume that X — Y extends
to a strictly étale morphism X — D", which is still a composition of rational
localizations and finite étale morphisms. Thus, the corollary follows from the claim.

It remains to verify the claim. Since it only concerns monoids Qr as above, we
may base change to Spa(k, O), and assume that kT = O, so that X is a smooth
rigid analytic variety over k. For any F such that Yr meets the image of the
étale morphism X — Y| since X is smooth over k, and since the open immersion
Yy — Spa(k, k) Xspeck) Z(F) = Zfﬁ) maps Yp to Z3, we see that Z is smooth
over k at some closed point z of Zp, so that 07 , = x(2)[[QF]] (as explained above)
is regular. Since the localization Qg is torsionfree fs as @ is, by decomposing
Qr > Qr & Qiﬁv 5 Qr @ Z¢, for some t, as in the proof of Proposition
we obtain k(2)[[QF]] = k(2)[[QF))[[T1,-- ., Ty]]. Hence, the regularity of x(2)[[QF]]
implies that of k(2)[[QF]]. Since QF is fine and sharp, by [Ogul8, Lem. 1.1.11.7],
we have Qp = 7%, for some s, and the claim follows. (I

Definition 3.1.12. A strictly étale morphism X — Spa(k(P), k™ (P)) as in Propo-
sition [3.1.10] is called a toric chart. A strictly étale morphism X — D" as in
Corollary [3.1.11]is called a smooth toric chart.

Example 3.1.13. Let X, D, and k be as in Ezample 2.3.17. We claim that, étale
locally, X admits a smooth toric chart X — D", where n = dim(X). In order to
see this, we may assume that, up étale localization, X is S x D™ as in Fxample
and that there is a morphism (of adic spaces with trivial log structures)
S — T ™ = Spa(k(TE, ..., TE ), O(TE, ..., TE ) that is a composition of
finite étale morphisms and rational localizations. Then the composition of X =
SxD™ 5 TP ™ x D™ — D" ™ x D™ 2 D" is a desired smooth toric chart. In
particular, X is log smooth over k.
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3.2. Log differentials. In this subsection, we develop a theory of log differentials
from scratch. We first introduce log structures and log differentials for Huber rings.

Definition 3.2.1. (1) A pre-log Huber ring is a triple (A, M, ) consisting of
a (not necessarily complete) Huber ring A, a monoid M, and a homomor-
phism a : M — A of multiplicative monoids called a pre-log structure. We
sometimes denote a pre-log Huber ring just by (A, M), when the pre-log
structure « is clear from the context.

(2) A log Huber ring is a pre-log Huber ring (A, M, «) where A is complete and
where the induced homomorphism a~!(A4X) — A* is an isomorphism. In
this case, « is called a log structure.

(3) Given a pre-log Huber ring (A, M, «), let us still denote by « the com-
position of M % A % E, where A denotes the completion of A. Then
we define the associated log Huber ring to be (X, M, a), where “M is the
pushout of A% oz_l(gx) — M in the category of monoids, which is
equipped with the canonical homomorphism & : *M — A. In this case,
is called the associated log structure.

(4) A homomorphism f : (4, M, ) — (B, N, ) of pre-log Huber rings consists
of a continuous homomorphism f : A — B of Huber rings and a homomor-
phism of monoids f; : M — N such that So fy = foca. In this case, we have
a canonically induced morphism (B, M, Bo fy) — (B, N, 8) of pre-log Huber
rings, and we say that f is strict if the associated morphism of log Huber
rings is an isomorphism. In general, any homomorphism f : (A, M) —
(B, N) of log Huber rings factors as (A, M) — (B, f«(M)) — (B, N).

Definition 3.2.2. Let f : (A,M,«a) — (B, N, ) be a homomorphism of pre-
log Huber rings. Given any complete topological B-module L, a derivation from
(B,N,p) to L over (A, M, ) (or an (A, M, a)-derivation of (B, N, ) to L) consists
of a continuous A-linear derivation d : B — L and a homomorphism of monoids
6 : N — L such that 6(f;(m)) = 0 and d(B(n)) = B(n)d(n), for all m € M
and n € N. We denote the set of all (A, M, «a)-derivations from (B, N,f) to L
by Derfg(B,L). It has a natural B-module structure induced by that of L. If
M = o 1(AX) and N = B~1(BX), then Derlzg(B,L) is simply Dera (B, L), the
usual B-module of continuous A-derivations from B to L, and we shall omit the
superscript “log” from the notation.

Remark 3.2.3. In Definition (d,0) naturally extends to a log derivation
on (B,%N, ), and the B-module Derfg(B,L) remains unchanged if we replace
(B,N,p) with (B,%N, ). In addition, ¢ naturally extends to a group homomor-
phism 68P : (*N)&P — L.

Definition 3.2.4. A homomorphism f : (A, M,«a) — (B, N, ) of pre-log Hu-
ber rings is called topologically of finite type (or tft for short) if A and B are
complete, f : A — B is topologically of finite type (as in [Hub94, Sec. 3]), and
NeP/((f.(M))gPB~1(B>)) is a finitely generated abelian group.

Now, let f : (A, M,a) — (B, N, ) be tft, as in Definition Consider the
monoid algebra (B&®4B)[N] over B& 4B associated with the monoid N, and for
each n € N, its element e corresponding to n (by our convention). Let I be its
ideal generated by {e/*(™ —1},,cpr and {(B(n) ® 1) — (1 ® B(n)) "} nen. Note



LOGARITHMIC ADIC SPACES: SOME FOUNDATIONAL RESULTS 27

that, if n € 871(B>), then e" = (n) ® B(n)~! in ((B&4B)[N])/I. Let J be the
kernel of the homomorphism

(3.2.5) Alg : ((B®4B)[N])/I — B
sending b1 ® by to b1bs and all €™ to 1. We set
(3.2.6) Oty = /T,

and define dg/s : B — QIB‘)%A and g4 : N — Qg% by setting

dp/a(b) = (b®1) — (1®b)
and
dpja(n) =em — 1.

A short computation shows that dp,4 is an A-linear derivation, and that dp/4 is a
homomorphism of monoids satisfying the required properties in Definition [3.2.2

As observed in Remark [3.2.3] d5/4 naturally extends to a group homomorphism
Ofa : N&P — QE%A such that 8% , (ff*(M#P)) = 0. Then QB%A is generated as
a B-module by ker(B®4B — B) and {6}‘;/A(n)}, where n runs through a set of
representatives of generators of N&/((f.(M))8P3~1(B*)). More precisely,

(3.2.7) QIE‘;?A = (Qpya @ (B @z N®P))/R,

where Qp/4 is the usual B-module of continuous differentials (see [Hub96 Def.
1.6.1 and (1.6.2)]), and where R is the B-module generated by

(3.2.8) {(dB(n),=p(n) ®n) :ne N} U{(0,1® fs(m)):me M}.

In particular, ngf 4 1s a finite B-module. Therefore, QE% 4 1s complete with respect
to its natural B-module topology, and dp,4 is continuous.

Proposition 3.2.9. Under the above assumption, (QE%’ dp/a;0B/a) s a univer-
sal object among all (A, M, )-derivations of (B, N, ).

Proof. Let (d,d) be a derivation from (B, N, ) to some complete topological B-
module L over (A, M, «). We turn the B-module B& L into a complete topological
B-algebra, which we denote by B * L, with the multiplicative structure defined by
(b1, 1) (ba, x2) = (b1ba, bizo + boxy). Note that the A-linear derivation d gives rise
to a continuous homomorphism of topological B-algebras B& 4B — B x L sending
b1 ® by to (blbg, bld(bg)). This extends to a homomorphism (B@AB)[N] — Bx L
by sending e™ to (1, 5(71)), for each n € N. By the conditions in Definition
this homomorphism factors through ((B®4B)[N])/I, inducing a homomorphism
((B&4B)[N])/I — Bx L which we denote by ¢. By construction, the composition
of ¢ with the natural projection B+ L — B recovers . Therefore, ¢ induces a
continuous morphism of B-modules @ : ngf a=J/J 2 — L. Now, a careful chasing
of definitions verifies that Yo dp/s =d and G odp/s = 0, as desired. O

Given any complete topological B-module L, there is a natural forgetful functor
Derljg(B, L) — Der (B, L) defined by (d, d) — d. The following lemma is obvious:
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Lemma 3.2.10. If f : (A, M,«a) — (B, N,f) is a strict homomorphism of log
Huber rings, then the canonical morphism Derljg(B,L) — Dera(B, L) is an iso-
morphism, for every complete topological B-module L. Consequently, the canonical
morphism Qp/a — QIJ‘;?A 18 an isomorphism.

Definition 3.2.11. A homomorphism (D, T, u) — (D', T’, 1) of log Huber rings
is called a log thickening of first order if it satisfies the following conditions:

(1) The underlying homomorphism D — D’ of Huber rings is surjective, whose
kernel H is a closed ideal satisfying H? = 0.

(2) The log structure ' : T — D’ is canonically induced by u: T — D.

(3) The subgroup 1+ H of D* = T™" (via the log structure ;) acts freely on
T, and induces an isomorphism 7'/(1 + H) = T" of monoids.

Remark 3.2.12. The condition in Definition is automatic when T
acts freely on T'; or, equivalently, when TV — T®P is injective. (In this case, T is
u-integral, as in [Ogul8| Def. 1.1.3.1].) In particular, the condition is satisfied
when T is integral (i.e., T — T*®P is injective).

Consider the following commutative diagram

(3.2.13) (A, M, a) — (D, T, 1)

(B,N,B) —"— (D', T', ')

of solid arrows given by homomorphisms of log Huber rings, in which the arrow
(D, T,u) = (D', T, 1) is a log thickening of first order as in Definition [3.2.11

Definition 3.2.14. A homomorphism f : (4, M, «a) — (B, N, ) of log Huber rings
is called formally log smooth (resp. formally log unramified, resp. formally log étale)
if, for any diagram as in , there exists at least one (resp. at most one, resp.
exactly one) lifting g : (B, N, ) — (D,T,u) of g, as the dotted arrow in (3.2.13),
making the whole diagram commute. If M = a~1(A*) and N = 3~1(BX), then
we simply say that f: A — B (the underlying ring homomorphism of Huber rings)
is formally smooth (resp. formally unramified, resp. formally étale) (cf. the formal
lifting conditions in [Hub96) Def. 1.6.5]).

Remark 3.2.15. Let k be a nontrivial nonarchimedean field. By [Hub96, Prop.
1.7.11], a tft homomorphism f : A — B of Tate k-algebras is formally smooth
(resp. formally unramified, resp. formally étale) if and only if the induced morphism
Spa(B, B°) — Spa(A, A°) is smooth (resp. unramified, resp. étale) in the sense of
classical rigid analytic geometry.

Remark 3.2.16. It follows easily from the definition that we have the following:

(1) Formally log smooth (resp. formally unramified, resp. formally étale) ho-
momorphisms are stable under compositions and completed base changes.

(2) If a homomorphism f : (4, M,a) — (B, N, ) is formally log étale, then
a homomorphism ¢ : (B, N, ) — (C,0,~) is formally log smooth (resp.
formally log étale) if and only if go f: (A, M, ) — (C,O,~) is.

Lemma 3.2.17. If the homomorphism f : (A, M,«) — (B, N, ) is a strict ho-
momorphism of log Huber rings, then it is formally log smooth (resp. formally
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log unramified, resp. formally log étale) if the underlying homomorphism of
Huber rings f : A — B is formally smooth (resp. formally unramified, resp.
formally étale). If A = M™™ — MS8P is injective, then the converse is true.

Proof. Suppose we are given any diagram as in , with the top horizontal
row denoted by h : (4, M,a) — (D, T, u) in this proof. Since the homomorphism
f (A Ma) = (B,N,p) is strict, each n € N is of the form n = b+ fy(m)
for some b € B* and m € M, where m is uniquely determined by n up to an
element of A*. Hence, any homomorphism g : B — D of Huber rings lifting
g : B — D’ uniquely extends to a homomorphism g : (B, N, ) — (D, T, u) of log
Huber rings lifting ¢ : (B, N, ) — (D', T", 1), by setting gz(n) = g(b) + hy(m), for
each n = b+ fy(m) € N as above. Hence, the formal lifting properties without log
structures imply those with log structures.

Conversely, suppose we are given a diagram as in , but without any log

structures. Nevertheless, we can define yu: T — D and p/ : 7" — D’ to be the log

structures associated with M % A 5 D and N & B % D/ , respectively. Since

AX = MV s MEP is injective, AX acts freely on M. Therefore, by choosing any
set-theoretic section of M — M, we obtain a bijection AX x M — M compatible
with the actions of A% (on AX and M), which induces a bijection D* x M — T
compatible with the actions of D* (on D* and T'). As aresult, 1 +H C DX =TV
(via u) acts freely on T, and (D,T,u) — (D', T, ') is a log thickening of first
order, as in Definition Thus, we obtain a full diagram as in , with
log structures, and the formal lifting properties with log structures imply those
without, as desired. [l

We have the first fundamental exact sequence for log differentials, as follows:

Theorem 3.2.18. (1) A composition (A, M, «) EN (B,N,B) % (C,0,7) of tft
homomorphisms of log Huber rings leads to an exact sequence

C oS, = Q55 = Q5 =0

of finite topological C-modules (cf. [Hub96l Prop. 1.6.3]), where the first
map sends ¢ @ dpg4(b) and c @ 6g/a(n) to cdeya(g(b)) and cdcya(gs(n)),
respectively, and the second map sends dcya(c) and 6cya(l) to deyp(c) and
dcyB(l), respectively.

(2) If the homomorphism g : (B, N,a) — (C,0,~) is formally log smooth, then
C®p Qg% — QIC()%A is injective, and the short exact sequence

0—>C®BQI§§A—>QIC°§A—>QIC°§B—>O

is split in the category of topological C'-modules.
(3) If g is formally log unramified, then QIC()%B =0.
(4) If g is formally log étale, then ng% ~2(C®p QIB??A.
(5) If go f is formally log smooth, then the converses of , , and hold.

Proof. Since the homomorphisms of log Huber rings are all tft, C ®p QE% " Qlcof "

and ng’?B are finite C-modules. Thus, to prove the exactness in 1} it suffices to
show that, for any complete topological C-module H, the induced sequence

(32.19) 0 — Homq (5%, H) — Home (Q5%,, H) — Home(C @5 Q55 ,, H)

log
c/B» c/AY
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is exact. By Proposition [3:2.9] this sequence is nothing but
0 — Der'93(C, H) — Der'$8(C, H) — Der'$8(B, H),

whose exactness is obvious. Therefore, follows.

In the rest of the proof, let H be a complete topological C-module, and let
(d,d) : (B,N,) — H be an (A, M, a)-derivation. Let C * H be the C-algebra
defined as in the proof of Proposition equipped with the log structure (yxId) :
O®H — CxH : (a,b) — (v(a),v(a)b), and denote by (C,O,~) * H the log Huber
ring thus obtained. Note that (C,0,v)*« H — (C, 0, ) is a log thickening of first
order, as in Definition [3:2.11] because the action of 1+ H on O @ H is free.

We claim that there is a natural bijection between the set of extensions of (d, ¢)
to (A, M, o)-derivations (d,0) : (C,0,v) — H and the set of homomorphisms of
log Huber rings h : (C,0,v) — (C,0,~) * H making the diagram

(3.2.20) (B,N,B) —(C,0,7) «H
X

(Ca Oa 7) L (07 Oa 7)

commute. Here the upper horizontal map is a homomorphism of log Huber rings
sending (b,n) to ((g(b),d(b)), (g:(n),d(n))), and the right vertical one is the natural
projection. To justify the claim, for each map &' : (C,0) — (C « H,O ® H) lifting
the projection (C'« H,O ® H) — (C,O), let us write b’ = ((Id7 d), (1d, )) Then a
short computation shows that 4’ is a homomorphism of log Huber rings if and only if
d is a derivation and ¢ is a homomorphism of monoids such that d(y(x)) = v(x) §(x)
for all x € O, and the claim follows.

Thus, if (C,0,~) is formally log unramified over (B, N, (), then the natu-
ral map Derljg(C, H) — Derfg(B7H) is surjective for each finite C-module H.
(Since C ®@p Qg% n ngﬁ; 1 and QlcofB are finite C-modules, it suffices to con-
sider finite C-modules H in this paragraph.) In other words, the natural map
HomC(QlcofA, H) — Hom¢ (C®BQE§A7 H) is surjective, and therefore C®BQIB§)§A —
ngf 4 1s injective, yielding . Similarly, if (C,O,~) is formally log smooth over
(B, N, (), then Homc(QlcofA,H) — Homg(C ®p QIB??A,H) is surjective, and we
can justify by taking H = C ®p ngi 4» Which shows that the natural map
HomC(QIg‘}g g H) = HomC(ngf > H) is injective and admits a left inverse splitting

(13.2.19). By Combining and , we obtain .
(&)

Finally, let us prove (b)). Suppose we are given a commutative diagram

(3.2.21) (B,N,B) —— (D, T, )

(Ca 07’}/) L> (DlvT/7/J‘,)
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of solid arrows, with ¢ a log thickening of first order. If go f is formally log smooth,
then there exists some lifting w : (C,0,~) — (D, T, u) of v making the diagram

(A,M,Oé) u*Of)(DJTJ/’)

=
QOfl w Jz

(Ca 07’}/) $> (Dl’ Tlvp‘/)

commute. Note that this w might not satisfy u = ¢g o w, but u — g o w defines
a derivation (d,0) : (B,N,8) — H = ker(D — D’). Hence, we obtain a homo-
morphism ¢ : (B, N, ) — (C,0,7v) x H extending g : (B,N,8) — (C,0,7), as
before. Since H C D by definition, w canonically extends to a homomorphism
w: (C,0,v)« H— (D, T, u) sending H canonically into D. By combining these,
we can extend to a commutative diagram

(3.2.22) (A, M, ) wof

/| )

(B,N,B) —— (C,0,v)« H— (D, T, 1)
o
(

l £ _‘ “’v }

—
(C,0,7) —=— (C,0,7) —— (D', T", /)
of solid arrows, and any h : (C,0,v) — (C,0,~) * H making the diagram (3.2.22)

commute canonically induces v := woh : (C,0,v) — (D, T, u) making the diagrams
(3.2.21)) and (3.2.22) commute. Moreover, h is uniquely determined by v = w o h,
because if A’ is another such map such that v = woh = wo k', then wo(h—h') =0,
but (h — h')(C) C H and w|y : H — D is (by definition) the canonical injection.
Thus, if the conclusion in (resp., resp.) holds, then C®p QlofA — ngfA is

injective and splits (resp. is surjective, resp. is bijective), and so Homc(QC/A, H) —

Home(C ®p QE?A, H) is surjective (resp. injective, resp. bijective). By the first
three paragraphs of this proof, and by the relation between h and v explained
above, there exists at least one (resp. at most one, resp. exactly one) v making the
diagrams (3.2.21) and (3.2.22) commute. Since is arbitrary, g is formally
log smooth (resp. formally log unramified, resp. formally log étale), as desired. O

Lemma 3.2.23. In order to verify that a tft homomorphism of log Huber pairs f :
(A, M,a) — (B, N, ) is formally smooth (resp. formally unramified, resp. formally
étale), it suffices to verify the corresponding lifting condition in Definition
only for all commutative diagrams (3.2.13|) in which the underlying homomorphism
of Huber rings A — D’ is tft and in which H = ker(D — D') is a finite D'-module.

Proof. Given any diagram , since f : (A, M,a) — (B,N,() is tft, the
homomorphism B — D’ factors through a complete topological B-subalgebra D’
of D’ that is tft over A. By lifting the topological generators of D' over A, there
exists some complete topologlcal A-subalgebra D of D such that the compos1t1on of
the homomorphisms D — D — D' factors through a surjection D — D’ such that

.= ker(D — D’) C H is a finite D’-module. Let fi : T — D and i’ : T/ — D’
denote the pullbacks of  : T — D and p/ : T' — D', respectively. Note that



32 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

H? = 0 because H2 = 0, and 1 + H acts freely on T" because 1+ H acts freely on
T. Then (3.2.13) extends to a commutative diagram

(A,M,Oz)%(b )4)(D,T,,U,)

(B,N,8) —— (D", T, j{') —— (D', T", 1)

of solid arrows, in which (D, T, 1) — (D', T’, ) is a log thickening of first order.
Since any dotted arrow :(3 lifting g in the above diagram induces a dotted arrow g
lifting ¢ in , we obtain the formally log smooth case of this lemma.

It remains to establish the formally log unramified case of this lemma. Given
any liftings ¢ and g’ of g in (3.2.13), their difference g — g’ defines a derivation
(d,d0) : (B,N,B) - H = ker(D — D') over A, which corresponds to a morphism
Q1ogA — H of B-modules, by Proposition Since f is tft, ngg/A is a finite
B- module Thus, in order to show that f is formally log unramified, it suffices to
show that, when H is a finite B-module, all morphisms Qg% 4 — H as above are
zero. As in the proof of Theorem this can be verified using only diagrams
in which (D, T,u) — (D', T',u') is (B,N,8) « H — (B, N, ), where the
underlying homomorphism A — B is tft and H is a finite B-module. (I

Definition 3.2.24. Let v : P — @ be a homomorphism of fine monoids, and let R
be a Huber ring. Then we have the pre-log Huber ring P — R(P) : a + e® (resp.
Q — R(Q) : a— e%), with the topology given in Lemma In this case, we
say that R(P) is a pre-log Huber R-algebra. By abuse of notation, we shall still
denote by R(P) (resp. R{Q)) the log Huber R-algebras thus obtained.

Proposition 3.2.25. Let u : P — Q and R be as in Definition [3.2.24] If the
kernel and the torsion part of the cokernel (resp. the kernel and the cokernel) of
u8P : P8P — Q8P are finite groups of orders invertible in R, then R(Q) is formally
log smooth (resp. formally log étale) over R(P). In this case, the map § : Q%P —
Qll(;%@)/R(P) induces an isomorphism of finite free R{Q)-modules

ray/repy = R(Q) ®z (QFP /usP (PEP)).

Proof. Consider the commutative diagram

Qlo

(3.2.26) R(P) — (D, T, )
R(Q) —— (D", T", )

as in (3.2.13)), in which (D, T, u) — (D', T’, ') is a log thickening of first order as
in Definition [3.2.11] This gives rise to a commutative diagram of monoids

(3.2.27) P— T

!

QHTG
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which in turn induces a commutative diagram of abelian groups

(3.2.28) ps 5 Tep

L]

QP — (T")=»,

Note that there is a natural bijection between the set of homomorphisms of log Hu-
ber R-algebras R(Q) — (D, T, u) extending (3.2.26]) and the set of homomorphisms
of monoids @ — T extending (3.2.27). By using the cartesian diagram

T ——Tep

!

T — (T")eP,

and the fact that P and @ are fine monoids, we see that there is also a bijection
between the set of desired homomorphisms R{Q) — (D, T, u) and the set of group
homomorphisms Q8P — TP extending (3.2.28)).

Since (D, T, pu) — (D', T', 1) is a log thickening of first order as in Definition
we have ker(T® — (T7)8P) = = 1(1+ H) = H. Let G = Q8P /usP(P*P).
Since the kernel and the torsion part of the cokernel (resp. the kernel and the
cokernel) of u8P are finite groups of orders invertible in R, the set of desired ho-
momorphisms @Q® — TP is a torsor under Hom(G, H) = Hom(G/Gor, H), where
Gior is the torsion subgroup of G. This proves the first statement of the proposition.

On the other hand, for any finite R(Q)-module L, by the same argument as in
the proof of Theorem , there is a bijection between Derljgggm (R{(Q), L) and the

set of h: R(Q) — R{Q) * L extending the following commutative diagram

R(P) —— R(Q)* L

R(Q) —2— R(Q).

Then Hompq) (5o, /ripys L) = Derpfp (R(Q), L) 2= Hom(G/Ghor, L), by the
previous paragraph. The second statement of the proposition follows. O

Corollary 3.2.29. Let u : P — Q and R as in Definition such that the
kernel and the torsion part of the cokernel of udP : P8P — QB8P are finite groups of
orders invertible in R. Let Q' be any fine monoid, and let S denote the log Huber
ring associated with the pre-log Huber ring @ = QPR — R(Q) (mapping Q' —{0}
to 0), so that the surjective homomorphism R<©> — S of log Huber rings is strict.
Then the map 6 : @gp — Q?/gR(m induces an isomorphism

leo/gR<p> > R(Q) ®z (@gp/ugp(ng))-

If, in addition, the torsion part of (Q')8P is a finite group whose order is invertible
in R, then we also have

log ~ ~ log
Qs/rir) = BQ) Ori3) Uiy mipy
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Proof. By comparing the definitions of Qg}/gm py and Ql;%@ /R(p) @S in , we

. lo ~ Olo ~
obtain Qg7p py = Qpioy pipy ® (R(Q) ®z (Q')*P), because @ — S maps Q" — {0}
to zero. Since this isomorphism is compatible with the canonical maps Q8 —

1 1 1 .
QE%@/R(P), Q&P — Qg/gR(P>, and Q& — Q;<g§>/R<P> denotedbe §, we can finish
the proof by applying Proposition [3.2.25/to P — @ and P — Q. ]

3.3. Sheaves of log differentials. Our next step is to define sheaves of log differ-
entials for locally noetherian coherent log adic spaces, and show that their formation
is compatible with fiber products in the category of locally noetherian coherent, fine,
and fs log adic spaces. Then we shall globalize several results in Section [3.2] and
relate them to the definitions we made in Section [3.11

Definition 3.3.1. Let f: (Y, My,ay) — (X, Mx,ax) be a morphism of locally
noetherian log adic spaces, and let F be a sheaf of complete topological Oy,,-
modules. By a derivation of (Y, My, ay) over (X, Mx,ax) valued in F, we mean
a pair (d,d), where d : Oy,, — F is a continuous Ox,, -linear derivation and ¢ :
My — F is a morphism of sheaves of monoids such that 6(f~*(Mx)) = 0 and
d(ay (m)) = ay(m)é(m), for all sections m of My.

Construction 3.3.2. Let f : (Y, My,ay) = (X, Mx,ax) be a morphism of noe-
therian coherent log adic spaces, where X = Spa(A, AT) and Y = Spa(B, BT) are
affinoid. Suppose that f induces a tft homomorphism of log Huber rings (A, M, o) —
(B,N,p), where M := Mx(X) and N := My (Y), and where o :== ax(X): M —
Aand B :=ay(Y): N = B. Let Ql;ﬁ/gx denote the coherent sheaf on Ye asso-
ciated with QIB?%A (see (3.2.6)). For each Spa(C,C%) € Yy, by Theorem [3.2.18

the log differential ng% for (A, M,a) — (C,N, (B — C) o B) is naturally isomor-
phic to C ®p Ql]g% = Ql;,)fx (Spa(C,CT)); and the maps dcja : C — QlcofA and
dcja * N — ng‘%A naturally and compatibly extend to a continuous Ox,, -linear
derivation dy;x : Oy,, — QIYO/gX and a morphism 0y, x : Ny — Ql;/gx of sheaves of

monoids satisfying oy, x (f~'(Mx)) = 0 and dy,x (ay(n)) = ay(n) dy,x(n), for
sections n of Ny over objects of Ys. We may further extend dy,x to a morphism
Sy )x + My — Ql;/)/gx of sheaves of monoids satisfying dy,x (f~(Mx)) = 0 and
dy;x (ay (m)) = ay(m) dy,x(m), for sections m of My over objects of Y.

Lemma 3.3.3. In Construction the triple (Ql}?fx, dy;x,0y/x) is a universal

object among all derivations of (Y, My, ay) over (X, Mx,ax). Moreover, for any
affinoid objects V- € Y and U € Xg fitting into a commutative diagram

V—Y

||

U——X,
we have a canonical isomorphism (Qlf,)/gx, dy/x,0y;x)|v = (Ql‘c/’/gU, dvu,dviu)-

Proof. Let (d,d) be a derivation of (Y, My, ay) over (X, Mx,ax) valued in some
complete topological Oy, ,-module F. At each Spa(C,C™T) € Y, the evaluation of
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the derivation (d,d) defines a derivation
(C, My (Spa(C,CH)), ay (Spa(C,CT))) — F(Spa(C,CT))
over (A4, Mx(X),ax(X)), which restricts to a derivation
(C,N,(B = C)oB) — F(Spa(C,CT))
over (A, M,a). By the universal property of log differentials, it factors through

a continuous C-linear morphism Qlcof . — F(Spa(C,CT)). Moreover, we deduce
from the universal property of log differentials a commutative diagram

QFE, , — F(Spa(Ca, CF))

| |

QFE, 4 — F(Spa(Ci, 7)),

for any morphism Spa(Cy, Cj") — Spa(Cy, C5) in Yg. As a result, the morphisms

ngfA — F(Spa(C,CT)), for Spa(C, CT) € Y, are compatible with each other and
log

define a continuous Ox,,-linear morphism 2, Ix F, whose compositions with

dy,x and dy,x are equal to d and d, respectively. This proves the first assertion of
the lemma. The second then follows from Theorem [3.2.18] ([

Construction 3.3.4. Given any lft morphism f : Y — X of noetherian coherent
log adic spaces, by Proposition there exist a finite index set I and étale cov-
erings {X; = X}ier and {Y; = Y}ier, respectively, by affinoid log adic spaces such
that f induces a morphism Y; — X; which fits into the setting of Construction |3.3.2
for eachi € I. By Lemma the pullbacks of the triples (Qlﬁig/xi, dy,/x,0v,/x,)
are canonically isomorphic to each other over the fiber products of Y; over Y.
Thus, by Proposition we obtain a triple (Qlyofx,dy/x,éy/x) on Yz, where

(dy)x,0y;x) gives a derivation of Y over X wvalued in QI;,’/gX.
By Lemma we immediately obtain the following:
Lemma 3.3.5. In Construction m (Ql;,)ix,dy/x,éy/x) is a universal object

among all derivations of Y over X. As a result, (Ql}(,)/gX7 dy/x,0y)x) is well defined,
i.e., independent of the choice of étale coverings; and its definition extends to all
Ift morphisms f:Y — X of locally noetherian coherent log adic spaces.

Definition 3.3.6. We call the )%, in Lemmathe sheaf of log differentials of
f and (dy,x,dy/x) the associated universal log derivations. By abuse of notation,
we shall denote the pushforward of Q%??X to Yan by the same symbols. (When there
is any risk of confusion, we shall denote the sheaves of log differentials on Yg and
Y.n more precisely by Qlﬁ/gxét and Ql)(f)?x,am respectively.) If X = Spa(k, Oy), for
simplicity, we shall write Q%2 instead of QI}(,’?X.

Proposition 3.3.7. Let
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be a cartesian diagram in the category of locally noetherian coherent (resp. fine,

resp. fs) log adic spaces in which Y — X is Ift. Then f*(Qg?fX) = QIY"%/X,.

Proof. By the étale local construction of sheaves of log differentials, we may as-
sume that Y = Spa(B,BT), X = Spa(4,A"), X’ = Spa(4’,A'"), and Y’ =
Spa(B’, B'") are affinoid, and that Y — X and X’ — X admit charts P — Q and
P — P’ respectively, given by finitely generated (resp. fine, resp. fs) monoids. Let
Q' := Q ®p P'. By the proofs of Propositions [2.3.23| and [2.3.27] B’ is isomorphic
to B&aA" (vesp. (B&aA)Bz0nZ[(Q")™)], resp. (B&aA)BzgnZ[(Q)*]), and Y’
is modeled on Q' (resp. (Q")™, resp. (Q')**"). We need to show that

QIB?,g/A, o~ QE%A ®p B'.

Since we have
Homp (%), L) = Der's¥ (B', L)
and
Homp (2%, @p B, L) = Homp (5, L) ©p B' = Dery*(B, L) ®p B/,
for each complete topological B’-module L, it suffices to show that
Der'$8(B’, L) = Der'{8(B, L) @ B'.
In the case of coherent log adic spaces, by Remark[3.2.3] this follows from essentially
the same argument as in the proof of [Ogul8| Prop. IV.1.1.3] (in the log scheme
case). Since (Q')8P = ((Q')"*)8P = ((Q')*3")8P, by essentially the same argument
as in the proof of [Ogul8| Prop. IV.1.1.9], we also have
Der's¥(B', L) = Der'y} (B&AA', L) ® g, 4 B' = Der'{¥(B, L) @5 B,
yielding the desired isomorphism in the cases of fine and fs log adic spaces. (I

Definition 3.3.8 (cf. Deﬁnition. A morphism ¢ : Z' — Z of log adic spaces
is called a log thickening of first order if it satisfies the following conditions:
(1) Tt is a strict closed immersion (see Definition and Example
defined by an Oz-ideal T satisfying 72 = 0.
(2) The subsheaf 1+ Zg of (’);ét, where Zg denotes the natural pullback of 7
to Zg as a coherent ideal, acts freely on Mz, and induces an isomorphism
i (Mz /(14 Ze)) = My (of sheaves of monoids) over Zf,.
Remark 3.3.9 (cf. Remark . The condition in Definition is auto-
matic when O;ét acts freely on M z; or, equivalently, when the canonically induced
morphism 0421(0;&) — M% is injective. Hence, the condition is satisfied when Z
is integral. ‘

Definition 3.3.10 (cf. Definition [3.2.14). A morphism f : ¥ — X of log adic
spaces is called formally log smooth (resp. formally unramified, resp. formally log
étale) if, for each commutative diagram

(3.3.11) Z — Y

79 . x
of solid arrows in which i is a log thickening of first order as in Definition [3.3.8]
there exists, up to (strictly) étale localization on Z, at least one (resp. at most one,
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resp. exactly one) lifting g : Z — Y of g, as the dotted arrow in (3.2.13), making
the whole diagram commute.

Remark 3.3.12. It follows easily from the definition that we have the following:

(1) Formally log smooth (resp. formally log unramified, resp. formally log étale)
morphisms are stable under compositions and base changes (when defined).

(2) If a morphism g : X — S of log adic spaces is formally log étale, then
a morphism f : Y — X of log adic spaces is formally log smooth (resp.
formally log étale) if and only if go f : Y — S is.

Remark 3.3.13. By Lemmas [3.2.17] and [3.2.23] and by [Hub96l Prop. 1.7.1], in
order to show that an Ift morphism f : Y — X of locally noetherian fine log adic
spaces is formally log smooth (resp. formally log étale), it suffices to take locally
finite (strictly) étale coverings {X; — X}ier and {Y; — Y}ier by affinoid log
adic spaces such that f induces Ift morphisms f; : Y; — X;, and verify for each
such f; the corresponding formal lifting condition in Definition [3.3.10] only for all
commutative diagrams with affinoid log adic spaces Z.

Lemma 3.3.14. If f : Y — X is a strict Ift morphism of locally noetherian log
adic spaces, then it is formally log smooth (resp. formally log unramified,
resp. formally log étale) if the underlying morphism f : Y — X of adic spaces
is formally smooth (resp. formally unramified, resp. formally étale) in the
sense that it satisfies the formal lifting conditions in [Hub96l Def. 1.6.5]. If the
canonical morphism (’))X(ét — M%f 18 injective, then the converse is true.

Proof. In the notation of , when f satisfies the assumptions of this lemma,
and when Z is noetherian and affinoid, the formal lifting conditions in [Hub96,
Def. 1.6.5] of the underlying adic spaces can be verified étale locally on Z, as in
the theory for schemes in [Gro71l III], because any liftings over an étale covering
of Z defines a cohomology class in H'(Z},, Homo,, ((Z' < Y)*(Qy;x),I)) (by
working locally as in the proof of Theorem [3:2.18 and in Construction[3.3.2] ignoring
all log structures), which vanishes exactly when the liftings can be modified (up
to further étale localization) to descend to a global lifting on Z’; and because
HY(Z},, Homo,, (Z' < Y)*(Qy/x),Z)) = 0, by Proposition since Z and
hence Z’ are noetherian and affinoid, since the @ z-ideal Z can be identified with a
coherent Oz-module in this case, and since 2y x is a coherent Oy-module when f
is Ift. Thus, this lemma follows from essentially the same arguments as in the proof
of Lemma[3.2.17] (by working with sheaves of monoids and their stalks instead). [

Lemma 3.3.15. If f : Y — X is a formally log smooth Ift morphism of locally

noetherian fs log adic spaces, then Ql}?l/gx is a locally free Oy -module of finite rank.

Proof. Since X and Y are fs, up to étale localization, we may assume that X =
Spa(A, A*) and Y = Spa(B, BT) are affinoid, with log structures induced by some
homomorphisms P — AT — A and Q — BT — B from fs monoids P and Q,
respectively, and that there exists a surjection A(Ty,...,T,) — B, for some n > 0.
Moreover, since @ is fs, it contains the torsion part Q.. of @Q8P, which we may
assume to be embedded into B*. Hence, we may assume that Qo is a finite
subgroup of B* annihilated by an integer invertible in B, so that B ®z Q%P is a
finite free B-module. It suffices to show that Qgg , is a finite projective B-module.

Let us equip the Huber ring D := A(Ty,...,T,){Q) with the log structure
induced by the pre-hog structure P ® Q — D given by P — AT — A and
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Q — ATh,...,T,){(Q) : g — e, for all ¢ € Q. Then we obtain a strict surjec-
tion D — B of log Huber rings over A, whose kernel we denote by H, which factors
as a composition of strict surjections D — D’ := D/H? — B = D/H. Note that
D’ — B is a log thickening, as in Definition because the log structure of D
is integral (see Remark , as P and @ are fine. Since A — B is formally log
smooth, there exists some splitting B — D’ of log Huber rings over A.

By Theorem (applied to A — A(Ty,...,T,) — D), Lemma (applied
to the strict homomorphism A — A(T3,...,T,)), Proposition (applied to
AlTy,...,T,) - D withu: P — P ® Q), and Proposition we obtain a split
short exact sequence 0 — D" — ngf 4 — D ®z Q%P — 0 of finite D-modules,
which remains exact after base change to B. Therefore, since B ®z QFP is a finite
free B-module, so is B ®p Qb D / - By construction (see , we have canonical

surjections B®DQIOgA — B®D/QD, 4 QB/A of finite B- modules (This assertion
can be interpreted as a comparison between the second fundamental exact sequences
associated with the strict surjections D — B and D" — B via the strict surjection
D — D”.) The first morphism B ®p QloiA — B Q®p: QD//A is an isomorphism,
because its kernel is generated over B = D/H by 1®d(zy) = 2®dy+y®dx =0in

B®p QB%N forall xz,y € H, by li and ID On the other hand, any splitting

B — D' above induces a splitting of the second morphism B ®ps Q D“,; /A QE% "

which embeds Qg% as a direct summand of B ®p QE%A Thus, QB/A is a finite

projective B-module as B ®p QID/A is, as desired. [

Proposition 3.3.16. Let f : Y — X be a Ift morphism of locally noetherian fs log
adic spaces. Then f is formally log smooth (resp. formally log étale) as in Definition

3.3.10| if and only if it is log smooth (resp. log étale) as in Definition [3.1.1}

Proof. Suppose f is log smooth (resp. log étale). Then f admits étale locally an fs
chart u : P — @ as in Definition [3.1.1} and hence is formally log smooth (resp. log
3 L

étale) by Remarks [3.3.12(1)) and [3.3.13] and Proposition [3.2.25

Conversely, suppose f is formally log smooth (resp. formally log étale). Let
7 = Spa(l,IT) be a geometric point of Y, which is mapped to a geometric point
T = f(y) of X. By Proposition[2.3.13] up to étale localization at Z, we may assume
that X admits an fs chart x : Px — Mx, with P = Mx z. We need to show that,
up to further étale localization at T and ¥, there exists some fs chart u : P — Q
satisfying the conditions in Definition [3.1.1} (Note that f remains formally log
smooth (resp. formally log étale), by Remarks [3.3.12[ and [3.3.13])
Consider § := dy x5 : Myz — Qly/X (see Constructions|3.3.2|and|3.3.4[). Since
§(t) = t~'dt for every t € Myy that is mapped to Og, -, by (3.2.7) and (3.2.8), &
induces a surjection Oy,, 5 ®z M5, — Ql yyx g Since f is formally log smooth, by
Lemma [3.3.15 Ql Y/X is locally free of finite rank. Take %,,...,t, in Myy whose

images in QY /X5 form a basis over Oy,, 5. Consider the homomorphism of monoids
Z5y®P — ./\/lyy induced by sending the i-th basis element of ZZ, to d(t;), and by
the composition of P - Mx z (f (MX)) — My 5. By assumption, ./\/ly* ~

Myz/ayt (OXX,t 5) is a sharp fs monoid. Also, recall that 7 = Spa(l,it). By (3
and (3.2.8) again, the canonical homomorphism My3 — Myy /im(PeP) induces
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a surjection Q;D}CT’X,y — | @z (Myy/im(PeP)). Consequently, ZL, & P — Myg
induces a surjection | ®z (Z" & P%P) — | Qg ﬂ%%. Since m%% is a free abelian
group of finite rank, the cokernel of Z" & P8P — ﬂ%% is a finite group annihilated
by some integer n invertible in [, and hence in Oy,, 3. Since Oy, is n-divisible, we
can (noncanonically) extend Z" & P& — My y to some h : G — MFP, where G is
some free abelian group of finite rank containing Z" @ P8P such that G/(Z" @ P#P)
is annihilated by n, and such that the induced map G — ﬂ%% is surjective.

Let @1 := h™'(My3). By construction, P is a submonoid of Q1, the induced
map Q1 — My is strict, and the torsion part of Q" /P8P is annihilated by n. By
the same argument as in the proof of Lemma there is a finitely generated
submonoid Q2 of @ such that Q5” = QfP, the induced map Q2 — My 3 is still
strict, and the composition of Q2 —+ Myz — Oy,, 5 factors through OEt@. Let
Q@ be the saturation of the submonoid of Q)7 generated by Q2 and P, which is an
fs submonoid of @ with the same properties. Let u : P — @ denote the induced
map. By construction, u is injective and compatible with P — M x z — My and
@ — My, and the torsion part of Q8P /u(P#P) is annihilated by n. Since these
are all finitely generated monoids, because of the explanation in Remark [2.1.3]
up to étale localization at ¥ we may assume that @ — My y extends to a chart
Oy : Qy — My that 0x, 0y, and u : P — @ form an fs chart of f, as in Definition
2.3.19; that n is invertible in Oy; and that Oy g @z (Q2F /usP(PP)) = Q2% Tt
remains to show that u : P — @ satisfies the conditions in Definition after
these étale localizations.

We already know that ker(u®P) = 0 and the torsion part of Q&P /usP(P%P) is
annihilated by n. If f is formally log étale (and hence formally log unramified),

by Theorem 3.2.18 (and the construction of Ql;,)fx over affinoid coverings), we

have QIYOZ/gX@ = 0, in which case the whole Q8P /u8P(P%P) is torsion and therefore
annihilated by n. Thus, u satisfies the condition of Definition

Let g: Y =Y =X X X (P) X<Q> =X XSpa(k(P),k+(P)) Spa(k<Q>7 k+<Q>) be the
morphism induced by the chart 6x, 6y, and u. Note that g is strict. Since Ql}?/gxg
is locally free of finite rank, up to further localization at 7, we may assume that 6y
and Sy, x induce Oy ®z (Q&P/uP(PEP)) = Ql}?/gX. By Proposition (and the
construction of sheaves of log differentials over affinoid coverings), the canonical
morphism g*(Ql;E,g/X) — QI;,)gX is an isomorphism. Since f : Y — X is formally
smooth, by Theorem and Remark[3.3.13] g : Y — Y is formally log étale.
Since Y is integral, by Lemma [3.3.14] the underlying Ift morphism of g is formally
étale, and hence étale (see the definition and the equivalent formulations in [Hub96,
Sec. 1.6 and 1.7]). Thus, u also satisfies the condition (2 of Definition O

Theorem 3.3.17. (1) A composition of Ift morphisms Y hx 4% g of lo-
cally noetherian coherent log adic spaces naturally induces an exact sequence

f*(Ql)‘;%) — Ql;,)fs — Qlif/gx — 0 of coherent Oy -modules.

(2) If f is a log smooth morphism of locally noetherian fs log adic spaces, then
f*(Ql;is) — QI;,)/gS is injective, and Ql;)f;x is a locally free Oy -module of

finite rank. (Etale locally on X andY , when [ admits an fs chartu : P — Q
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as in Definition |3.1.1}, the rank of Qlﬁ/gx as a locally free Oy -module is equal

to the rank of QP /uBP(P%P) as a finitely generated abelian group.)

(3) If f is a log étale morphism of locally noetherian fs log adic spaces, then
[ Q5 ) = Q% and Q% = 0.

(4) If X, Y, and S are locally noetherian fs log adic spaces, and if g o f is log
smooth, then the converses of and hold.

(5) If X, Y, and S are locally noetherian fs log adic spaces, and if g is log étale,
then Ql;/)/gs = Ql;ﬁfX, and f is log smooth (resp. log étale) if and only if go f
is log smooth (resp. log étale).

Proof. By the construction of sheaves of log differentials, the assertion (|1)) follows

from Theorem [3.2.18|[1). The assertions (2) and (3) follow from Theorem
and (4]), and Propositions|3.2.25[and [3.3.7l The assertion (4] follows from Theorem
, Remark [3.3.13, and Proposition [3.3.16, The assertion follows from
the assertion , Remark , and Proposition 0

Corollary 3.3.18. Suppose that XL X %8 are morphisms of locally noetherian
fs log adic spaces such that g is log smooth; such that the underlying morphism of
adic spaces of f is an isomorphism; and such that the canonical homomorphism
Mxz — ./\/l;(j of fs monoids splits as a direct summand, with %5 mapping the
split image of (Mg o/ Mxz)—{0} to 0 in Og - = Ox,, z. at each geometric point

- 1 ~ Ol _
T of X. Then Q;g/&z o Q;ﬁsi@ (Oxét,i~®z (M%@/Mlgxp’f)) at each T. Moreover,
if there is a strict closed immersion 1 : X — Y to a log adic space Y log smooth

lo ~ % lo
over S, then we also have Q)?g/s =" (Qyys)-

Proof. This follows from Theorem [3.3.17] and Corollary [3.2:29] O

Definition 3.3.19. Let X — S be a log smooth morphism of locally noetherian fs

log adic spaces. Then Ql)‘ég/ 5 is a locally free O x-module of finite rank, by Theorem

, and we set Ql)‘;%::: NG Ql)?% o> for each integer a > 0. More generally, f0~r
any X over X such that X — X — S is as in Corollary |3.3.18] and such that X
admits a strict closed immersion to a log adic space Y log smooth over S, we also

set Ql)%g}sa = A? Ql)%g/s, which is canonically isomorphic to the pullback of Qlﬁf’s‘l, for

each integer a > 0. When S = Spa(k, k™), for some nonarchimedean field k with
k* = Oy, and when there is no risk of confusion in the context, we shall often omit
S and k from the notation, for the sake of simplicity. In particular, when X is log
smooth over k as in Definition [3.1.9) we shall simply write Ql)(;g and Ql)‘;g”.

Example 3.3.20. In Example the morphisms X < X? — Xy satisfy
the requirements of the morphisms Y < X — X in the second half of Corollary
3.3.18, and hence we have a canonical isomorphism Ql)(;%" =~ (X; — X)*(Q*)
?)an = X jan (depending on the choices of coordinates) some

isomorphisms Ql;ga = Qg‘;% ® O of vector bundles.
J

and étale locally on X

4. KUMMER ETALE TOPOLOGY

4.1. The Kummer étale site.
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Definition 4.1.1. A homomorphism u : P — @ of saturated monoids is called
Kummer if it is injective and if the following conditions hold:

(1) For any a € @, there exists some integer n > 1 such that na € u(P).
(2) The quotient Q8P /ugP(P%P) is a finite group.

Definition 4.1.2. (1) A morphism (resp. finite morphism) f : Y — X of lo-
cally noetherian fs log adic spaces is called Kummer (resp. finite Kummer)
if it admits, étale locally on X and Y (resp. étale locally on X), an fs chart
u: P — @ that is Kummer as in Definition Such a chart u is called
a Kummer chart of f.

(2) An f as above is called Kummer étale (resp. finite Kummer étale) if the
Kummer chart u above can be chosen such that |Q8P /u8P(P8P)| is invertible
in Oy, and such that f and u induce a morphism Y — X x x(py X(Q) of log
adic spaces (cf. Remark whose underlying morphism of adic spaces
is étale (resp. finite étale).

(3) A Kummer morphism is called a Kummer cover if it is surjective.

Remark 4.1.3. Definition can be extended beyond the case of locally noe-
therian fs log adic spaces, with suitable P and @), when all adic spaces involved are
étale sheafy. However, we will not pursue this generality in this paper.

Remark 4.1.4. Any Kummer homomorphism u : P — @ as in Definition
is exact. Accordingly, as we shall see in Lemma [{.1.11] any Kummer morphism
f Y — X as in Definition £.1.2] is exact. In particular, Proposition is
applicable to Kummer morphisms. (See also Lemma )

Definition 4.1.5. (1) For any saturated torsion-free monoid P and any pos-
itive integer n, let %P be the saturated torsion-free monoid such that the
inclusion P — %P is isomorphic to the n-th multiple map [n] : P — P.

(2) Let X be a locally noetherian log adic space modeled on a torsion-free fs
monoid P, and n any positive integer. Then we have the log adic space
Xw=X X x(P) X(%P)7 with a natural chart modeled on %P.

The structure morphism X % — X is a finite Kummer cover with a Kummer
chart given by the natural inclusion P < %P, which is finite Kummer étale when
n is invertible in Ox. Such morphisms will play an important role in Sections
and [£:4] More generally, we have the following:

Proposition 4.1.6. Let X be a locally noetherian log adic space with a chart
modeled on an fs monoid P. Let u : P — Q be a Kummer homomorphism of fs
monoids such that G := Q8P /usP(PEP) is a finite group. Consider

Y =X xx(py X(Q),
which is equipped with a canonical action of the group object
GY = X(G)
over X, which is an analogue of a diagonalizable group scheme that is Cartier dual
to the constant group scheme G. Then the following hold:

(1) The natural projection f : Y — X is a finite Kummer cover, which is finite
(see [Hub96, (1.4.4)]) and surjective.
(2) When X and therefore Y are affinoid, we have a canonical exact sequence

0— Ox(X) — Oy(Y) — OyXXy(Y X x Y)
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(8) The morphism GQ xxY =Y xxY induced by the action and the second
projection is an isomorphism.

(4) When G is annihilated by an integer m > 1 invertible in Ox, the group G
is étale over X (which is simply the constant group Hom(G,Ox(X)*)x
when Ox (X)) contains all the m-th roots of unity); and the cover f : Y — X
is a Galois finite Kummer étale cover with Galois group GQ, which is open.

For the proof of Proposition [£.1.6] we need the following general construction,
which will also be useful later in Section [£.4]

Lemma 4.1.7. Let Y = Spa(S,ST) — X = Spa(R, RT) be a finite morphism of
noetherian adic spaces, and let T’ be a finite group which acts on'Y by morphisms
over X. Then (T, T+) := (SV,(ST)T) is a Huber pair, and Z := Spa(T,T7) is a
noetherian adic space finite over X. Moreover, the canonical morphism Y — X
factors through a finite, open, and surjective morphism Y — Z, which induces a
homeomorphism Y/T' = Z of underlying topological spaces and identifies Z as the
categorical quotient Y/T' in the category of adic spaces.

Proof. For analytic adic spaces, and for any finite group I' such that |T'| is invert-
ible in S, this essentially follows from [Hanl6l Thm. 1.2] without the noetherian
hypothesis. Nevertheless, we have the noetherian hypothesis, but not the analytic
or invertibility assumptions here. Moreover, we have a base space X over which Y
is finite. Hence, we can resort to the following more direct arguments.

Since R is noetherian, and since S is a finite R-module, 7' = ST is also a finite
R-module, and T = (ST)! is the integral closure of Rt in T. Therefore, (T,T7)
has a canonical structure of a Huber pair such that Z := Spa(7T,T™") is a noetherian
adic space finite over X = Spa(R, RT). Moreover, Y — Z is also finite. By [Hub96],
(1.4.2) and (1.4.4)] and [Hub94l Sec. 2], if {s1,...,s,} is any set of generators of
S as an T-module, then the topology of S is generated by >_._, U; s;, where U;
runs through a basis of the topology of T, for all i. Suppose that w : T — T,
is any continuous valuation, and that v : S — T', is any valuation extending w.
Note that v and w factor through the domains S := S/v~1(0) and T := T'/w~*(0),
respectively, and Frac(S) is a finite extension of Frac(T'). Therefore, we may assume
that T, and T, are generated by v(S) and w(T), respectively, and that T, is a
finite index subgroup of I',. For each v € I',, the subgroup {s € S : v(s) <~} of §
is open because it contains Y., _; U;s;, where U; := {t € T : w(t) < v — v(s;)} is
open by the continuity of w. Consequently, Cont(S) — Cont(7T) is surjective. This
replaces the main argument in Step 1 of the proof of [Hanl6, Thm. 3.1] where the
Tate assumption is used. After this step, the remaining arguments in the proof of
[Han16l Thm. 3.1] work verbatim and show that Spa(S, S*) — Spa(T,T") induces
a homeomorphism Spa(S, S*)/T" — Spa(T,TT).

Since Y and Z are finite over X, and since T = S', by [Hub96l (1.4.4)] and
Proposition the canonical morphism Oz — (Y — Z).(Oy) factors through

an isomorphism Oz =((Y — Z)*(Oy))r. (This provides a replacement of [Han16l,
Thm. 3.2].) Thus, the canonical morphism Y — Z factors through an isomorphism
Y/T' = Z of adic spaces, as in [Hanl6, Thm. 1.2], as desired. O

Now we are ready for the following:

Proof of Proposition [£.1.6] Let us identify P as a submonoid of Q via the injection
u : P — Q. Since the assertions are local in nature on X, we may assume that
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X = Spa(R,R") and hence Y is affinoid. Then Ox(X) — Oy (Y) is injective,
because it is the base change of Z[P] — Z[Q] from Z[P] to R, and Z[P] is a direct
summand of Z[Q)] as Z[P]-modules, as explained in the proof of [INT13, Lem. 2.1].
Moreover, since Z[P] — Z[Q)] is finite because @ is finitely generated and u is
Kummer, its base change Ox(X) — Oy (Y) is also finite, and therefore follows.
Since the canonical sequence Ox(X) — Oy (Y) — Oy« v (Y xx Y) is exact by
[Niz08|, Lem. 3.28], () also follows.

By [I02, Lem. 3.3], (Q ®p Q)**" = Q & G. Accordingly, by Remark
X(G) xx X(Q) = X(Q) xx(py X(Q), and the action of G = X(G) on Y induces
X(G) xx Y =Y xx Y. This verifies .

As for , since it can be verified étale locally on X, we may assume that
Ox(X) = R contains all |G|-th roots of unity. In this case, X(G) = I'x, where
I' := Hom(G, Ox (X)*), and the action of G is induced by the canonical actions
of T on X (Q) and X {(Q#P), by sending g to v(q)g, for each ¢ € QP and v € T'. Note
that (R(Q))' = (R(Q®"))' N R(Q) = R(P%P) N R(Q) = R(P), where the last one
follows from the assumptions that v : P — @ is Kummer and that P is saturated;
and the formation of I'-invariants commutes with the base change from R(P) to
R, because |T'| is invertible in R. Thus, if Y = Spa(S,ST), then the morphism
Y — X = Spa(R,R") = Spa(S',(S%)') is open and induces an isomorphism
Y/T 5 X, by Lemma Moreover, for any subgroup IV of I' = Hom(G, R*),
which is of the form Hom(G’, R*) for some quotient G’ of G = Q#P /usP(P#P), we
have (R(Q))" = R(Q') and (R™(Q))T" = R*(Q’), where Q' is the preimage of
ker(G — G’) under the canonical homomorphism @ — G = Q%P /u8P(P*P), so that
Y/I" 2 X xxpy X(Q') = X is a finite Kummer étale. Consequently, f:Y — X
is a Galois finite Kummer étale cover with Galois group I', as desired. ([l

Definition 4.1.8. Kummer (resp. Kummer étale) covers f : Y — X as in Propo-
sition are called standard Kummer (resp. standard Kummer étale) covers.

Corollary 4.1.9. Kummer étale morphisms are open.

Proof. This is because, by definition, Kummer étale morphisms are, étale locally on
the source and target, compositions of standard Kummer étale covers and strictly
étale morphisms, both of which are open. ([

In the remainder of this subsection, let us study some general properties of
Kummer étale morphisms. Our goal is to introduce the Kummer étale site.

Lemma 4.1.10. Let f : Y — X be a Kummer étale morphism of locally noetherian
fs log adic spaces. Suppose that X is modeled on an fs monoid P. Then f admits,
étale locally on'Y and X, a Kummer chart P — Q as in Definition , with
the same prescribed P as above. Moreover, if P is torsion-free (resp. sharp), then
we can choose Q to be torsion-free (resp. sharp).

Proof. Etale locally on Y and X, let u; : P, — @1 be a Kummer chart of f as
in Definition (A priori, P; might be different from P.) As in the proof of
Proposition [3.1.4) up to further étale localization and modifying P, — @1, we can
find some group H fitting into the cartesian diagram . Let

Q :={a € H : na € P, for some n > 1 invertible in Oy },

so that u : P — Q is Kummer, as in Definition Let Q' be the preimage of
Q1 via H — QF, so that v/ : P — @’ is an fs chart of f satisfying the conditions
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of Definition as explained in the paragraph after (3.1.5). Since
Q1 ={a € Q% : na € uy(P,), for some n > 1 invertible in Oy},

by the assumption on u;, and since is cartesian, we can identify Q' with
the localization of @) with respect to ker(Q — Q7). Therefore, u : P — @ is an fs
chart of f as u’ is, which also satisfies the conditions of Definition [3.1.1] or rather
of Definition . By the proof of the last assertion of Proposition m if P
is torsion-free, then we may assume that () is torsion-free as well. Finally, suppose
that P is sharp and Q is torsion-free. For any q € Q™, there is some n > 1
such that ng and —ng are both in u(P) and hence in u(P™) = {0}. Since Q is
torsion-free, this forces ¢ = 0. Thus, @ is also sharp, as desired. O

Lemma 4.1.11. Let f : Y — X be a Kummer morphism of locally noetherian fs
log adic spaces. Then:

(1) The morphism f is exact.

(2) For any geometric point § of Y, the induced homomorphism of sharp fs
monoids fg : mxj@) — ﬂy@ is Kummer. Moreover, if f is Kummer
étale, then |coker((f§)gp)| is invertible in Oy .

(3) Suppose that f admits a Kummer chart u : P — Q. For any geometric
point § of Y, if K@) := ker(P — ﬂx,f@) and Ky := ker(Q — My3),
then K ¢y = u=*(Ky), and the induced homomorphism w : K yz) — Ky is
Kummer. Thus, if Ky@) = 0, then Ky is torsion, and is zero if Q) is sharp.

Proof. Let us start with . By Remark u and v = fg are compatible

with surjective homomorphisms 0 : P — ﬂx, f@) and Oy : Q — My 3, with

kernels Ky and K7 given by preimages of (’))X(,\t @) and O;ét 5 respectively. Since

fyE : OXét7f(y) — Oy, 3 is local, Kf@) = uil(Kg). Ifa e HXJ@) and v(a) = 0,
then @ = 0 (a), for some a € P such that u(a) € Ky. Hence, a € Ky, and
@ = O (a) = 0. This shows that v is injective. Since u : P — @ is Kummer,
if b € Ky C @Q, then nb = u(a) for some integer n > 1 and a € P, and v maps
Or)(a) to Oy(nb) = 0, and so Ofr)(a) = 0 by the injectivity of v. Therefore,
a € Kyy). It follows that the induced homomorphism w : Ky — Kz is Kummer,
with coker(w®P) given by a subgroup of coker(u8P), and follows.

Next, let us verify . By assumption, up to étale localization on Y and X, the
morphism f admits a Kummer chart u: P — Q. If b € My, then b = 65(b), for
some b € Q. Since u is Kummer, nb = wu(a), for some integer n > 1 and a € P.
Then v maps @ := 60 (a) to 5(nb) = nb. Furthermore, coker(veP) is a finite
group, because it is a quotient of coker(ufP). Thus, v is Kummer. By Lemma
4.1.10] if f is Kummer étale, then we may assume that the order of coker(u®P) is
invertible in Oy g, and the same is true for its quotient coker(vgP).

Finally, since any Kummer homomorphism of monoids is exact (see Remark

4.1.4), follows from (2)), [Ogul8, Prop. 1.4.2.1], and Remark O

Definition 4.1.12. In Lemma[4.1.11] the ramification index of f at 7 is defined to
be the smallest positive integer n that annihilates coker(ﬂ%ﬁ @ M@f’y). The
ramification inder of a Kummer étale morphism f is the least common multiple,
when defined, of the ramification indices among the geometric points 7 of Y. (The
ramification index is not always defined.) The ramification index of a Kummer
étale morphism is 1 if and only if f is strictly étale.
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Lemma 4.1.13. A morphism f: Y — X of locally noetherian fs log adic spaces
is Kummer étale if and only if it is log étale and Kummer, and if and only if it is
log étale and exact. It is finite Kummer étale if and only it is log étale and finite
Kummer.

Proof. If f is Kummer étale (resp. finite Kummer étale), then it is log étale and
Kummer (resp. finite Kummer) by definition, and it is exact by Lemma @
Conversely, assume that f is log étale and exact. By Propositions and [3.1.4]
f admits, étale locally at geometric points 7 of Y and T = f(7) of X, an injective
fs chart u : P = Mxz — Q satisfy the conditions in Definition , in which
case coker(u8P) is a finite group whose order is invertible in Oy . Since f is exact,
by [Ogul8| Prop. 1.4.2.1] and Remark fﬁy : Mxz — My is exact. Given
any b € @, since coker(u8P) is annihilated by n, we have nb = u9(a) for some

a € P®P. Since a is mapped to the image of nb in ﬂy@ by the exactness of 7%,
we have a € P = MX@. Hence, u : P — @ is a Kummer chart as in Definition
4.1.2)(2). Since 7 is arbitrary, f is Kummer étale, as desired.

Alternatively, assume that f is log étale and finite Kummer. Up to étale local-
ization on X, we may assume that it admits a Kummer chart v : P — @, and that
X has at most one positive residue characteristic £. When no such /¢ exists, we set
¢ = 0, for simplicity. Then we have a Kummer homomorphism

u:P—Q :={beQ:nbecu(P), for somen>1st. £{n}
such that £t ‘coker((u' )gp)‘. We claim that the morphism of adic spaces
Y = X xx(py X(Q')

induced by u’ is étale. Note that this can be verified up to étale localization on Y.
By the previous paragraph, f is Kummer étale. By Lemmas [4.1.10| and 4.1.11] f
admits, étale locally at geometric points 7 of Y and f(g) of X, another Kummer
chart uq : P, = @1, with P, & ﬂxyf@), Q1= MY@, and £ 1 | coker(ufP)|, such
that the morphism

Y - X XX(P1> X<Q1>

induced by u; is étale. Note that ¢ { |coker(u$P)| implies that Q' — My is
surjective as Q — Myy is, and so v’ is an fs chart as u is. Then v/ : P — @’
and u; : P — Q1 compatibly extend to a Kummer homomorphism wus : Po — Q2
of fs monoids, where P, (resp. ()2) is the localization of P @ Py (resp. Q' ® Q1)
with respect to the kernel of P & Py — Mx ¢ (resp. Q' @ Q1 — Myg). Since
PSS MXJ@ and Q; = ﬂy@, we have P, = P, & PQi“V, Q=01 P QiQm’, and
uy = uy ® ul, for some Kummer homomorphism vV : PV — HinV such that
1| coker(us™)]. In this case, the above morphism Y — X X x(py X(Q') induced
by u’ is the composition of the morphisms

Y- X X X(Py) X<Q2> — X X X(Py) (X<P2> X x(pP) X<Q/>) =X X x(P) X<QI>,

induced by us and the canonical homomorphisms among P, @', P, and Q3. Note
that the second morphism is the pullback of the canonical morphism

X(Q2) = X(P2) xx(py X(Q").
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Let Py + Q' be the submonoid of Q3" generated by the images of P, and Q’, and
G = coker((u’ )gp). Then we have an isomorphism of monoids

(Pep Q)™ =S (Pa+Q) &G :(a,b) = (a+b,b),

where @ € P, and b € Q’, and b € G’ denotes the image of b, as in the proof of
[[102, Lem. 3.3]. Moreover, we have an induced isomorphism of adic spaces

X(P2) xx(py X(Q') = X(Py + Q'> xx X(G"),

where X(G’> — X is étale, as in Proposition Since Q' — My 3 is surjective
and Q1 = My.z, we have Po+Q’' = P2+Q/+P2m" C P4Q'+QF = Q2 in Q5P, and
the monoid Q9 is generated by P, + @)’ and some finitely many invertible elements
of Q2 whose | coker(ul)|-th multiples are in P, + Q'. Since /£ { | coker(uiV)|, the
induced morphism X{Q2) — X (P, + Q') is étale, by [Hub96l Prop. 1.7.1], and so
is the above X (Q2) — X (Py) x x(py X(Q'). Therefore, in order to verify the above
claim, it suffices to show that the morphism

Yr—>)(><xp2 <Q2>

induced by us = u; @ ull is étale. Again since £ { | coker(ulV)|, this follows from

the known exactness of the morphism of adic spaces Y — X x x(p,y X (Q1) induced
by ui. Thus, f is finite Kummer étale because it admits, étale locally on X, an fs
chart v’ : P — Q' satisfying the conditions in Definition |4.1.2)(2). O

Proposition 4.1.14. Kummer étale (resp. finite Kummer étale) morphisms as in
Definition [I1.2] are stable under compositions and base changes under arbitrary
morphisms between locally noetherian fs log adic spaces (which are justified by Re-

mark and Proposition (3.1.3)).

Proof. The stability under compositions follows from Proposition [3.1.6] Lemma
and the stability of exactness under compositions (by definition). As for
the stability under base changes, it suffices to note that, if P — @ is a Kummer
homomorphism (of fs monoids), and if P — R is any homomorphism of fs monoids,
then the induced homomorphism R — (R ®@p Q)%*' is also Kummer, because it is
injective as the composition R — (R ®p Q)3 — RSP ®per Q2P is, and because it
satisfies the conditions in Definition [f.1.1]as P — @ does. O

Proposition 4.1.15. Suppose that f : Y — X and g : Z — X are Kummer étale
morphisms of locally noetherian fs log adic spaces. Then any morphism h:Y — Z
such that f = go h is also Kummer étale.

Proof. By Lemma it suffices to show that h is log étale and exact. By

Theorem [3.3.17] m. h is log étale because f = go h and g are. By Lemma [4.1.11
étale locally at each geometric point 7 of Y with Z = f(y) and Z = h(y), the

homomorphisms fﬁ Mxz — Myy and gz Mxz — Mgz are both Kummer.

Consequently, the homomorphism h% Mgz — My,y is also Kummer, and hence
exact. Thus, h is exact, by [Ogul8| Prop. 1.4.2.1] and Remark O

By Proposition [2.3.32] and Remark and by Propositions [4.1.14] and [4.1.15]
we are now ready for the following:

Definition 4.1.16. Let X be a locally noetherian fs log adic space. The Kummer
étale site Xy has as underlying category the full subcategory of the category of
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locally noetherian fs log adic spaces consisting of objects that are Kummer étale
over X, and has coverings given by the topological coverings.

Remark 4.1.17. Let X be as in Definition

(1) For each U € Xg, we can view U as a log adic space by restricting the
log structure o : Mx — Ox,, to Us. This gives rise to a strictly étale
morphism U — X of log adic spaces, which is Kummer étale by definition.
Therefore, we obtain a natural projection of sites g : Xket — Xet, which
is an isomorphism when the log structure of X is trivial.

(2) For any morphism f : Y — X of locally noetherian fs log adic spaces, we
have a natural morphism of sites fyest : Yiet — Xkeét, because base changes
of Kummer étale morphisms are still Kummer étale, by Proposition 4.1.14

Remark 4.1.18. By definition, the Kummer étale topology on X is generated by
surjective (strictly) étale morphisms and standard Kummer étale covers.

4.2. Abhyankar’s lemma. An important class of finite Kummer étale covers arise
in the following way:

Proposition 4.2.1 (rigid Abhyankar’s lemma). Let X be a smooth rigid analytic
variety over a nonarchimedean field k of characteristic zero, and let D be a normal
crossings divisor of X. We equip X with the fs log structure induced by D as in
Ezample [2.317 Suppose that h : V — U := X — D s a finite étale surjective mor-
phism of rigid analytic varieties over k. Then it extends to a finite surjective and
Kummer étale morphism of log adic spaces f:Y — X, where Y is a normal rigid
analytic variety with its log structures defined by the preimage of D. Consequently,
Yan has a basis consisting of affinoid W satisfying mo(W N f~H(U)) = mo(W).

Proof. By [Han20, Thm. 1.6] (which was based on [Lit93, Thm. 3.1 and its proof]),
h :V — U extends to a finite ramified cover f : Y — X, for some normal rigid
analytic variety Y (viewed as a noetherian adic space). Then Y, has a basis
consisting of affinoid open subspaces W satisfying mg (I/Vﬂf’1 (U)) = 7o(W), by the
unique existence of extensions of bounded functions (which include locally constant
functions, in particular) from W N f=1(U) to W, for any affinoid open subspaces
W of Y, by [Bar76l, Sec. 3] (see also [Han20, Thm. 2.6]). Just as X is equipped
with the log structure defined by D, we equip Y with the log structure defined by
the preimage of D. The question is whether the map f is Kummer étale (with
respect to the log structures on X and Y'), and such a question can be answered
analytic locally on X, up to replacing k£ with a finite extension. As in Example
we may assume that there is an affinoid smooth rigid analytic variety S
over k such that X = S x D" = S(ZL) (see Example for some r € Z>o,
with D =8 x {T} ---T, = 0}. Thus, we can finish the proof of this proposition by
combining the following Lemmas [£.2.2] and [£:2.3] O

For simplicity, let us introduce some notation for the following two lemmas. We
write P := Z%, and identify D" with Spa(k(P), k" (P)) as in Example For
each m € Z>1, we also write %P = %Z’;O. For each power p of p, we denote by D,
the (one-dimensional) disc of radius p, so that D = D, when p = 1. We also denote
by D} the punctured disc of radius p, and by D* the punctured unit disc. For any
rigid analytic variety with a canonical morphism to D", we denote with a subscript

[13pNh]

p” (resp. superscript “x”) its pullback under D, — D" (resp. (D*)" — D).
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Lemma 4.2.2. Suppose that X = S xD" = S(P), D, and U = X — D = S(P)*
are as in the proof of Proposition [£.2.1] Assume there is some p <1 such that, for
each connected component Y’ of Y,, there exist di,...,d, € Z>1 such that induced
coverY' — X' := X, is refined (i.e., admits a further cover) by some finite ramified
cover Z = S(P"), — X', where P’ = @1§i§r(diizzo). Then, up to replacing k
with a finite extension, we have Y' = S(Q),, for some sharp fs monoid Q such that
P CQCP. Consequently, Y, - X' = Xp is finite Kummer étale. Moreover,
if mQ C P for some m € Z>1, and if Xm = S( P), then the finite (a priori

ramified) cover Y X x X — Xp splits completely (i.e., the source is a disjoint
union of sections) and is therefore strictly étale.

Proof. Let V' (resp. W) be the preimage of U’ := U, = S(P)X in Y’ (resp. Z).
Up to replacing & with a finite extension containing all d;-th roots of unity for all
j, by Proposition the finite étale cover W — U’ is Galois with Galois group
G’ := Hom((P')®? /P k*), and V' is (by the usual arguments, as in [Gro71l
V]) the quotient of W by some subgroup G of G’ (as in Lemma , which
is isomorphic to S(Q) for some monoid @ such that P C @ C P’ and Q =
Q8PN P’. These conditions imply that @ is toric, and hence S(Q) is normal because
Spa(k(Q), kT(Q)) is (see Example and the references given there). Since Y’
and S(Q), are both normal and are both finite ramified covers of X’ extending the
same finite étale cover V' of U’, they are canonically isomorphic by [Han20, Thm.
1.6], as desired. Finally, for the last assertion of the lemma, it suffices to note that,
for any @ as above satisfying m@ C P, up to replacing k with a finite extension
containing all m-th roots of unity, the connected components of S{Q) x g(py S <%P>
are all of the form S(-LP), because (Q ®p (%P))Sat is the product of L P with a
finite group annihilated by m. 0

Lemma 4.2.3. The (cover-refinement) assumption in Lemma holds up to
replacing k with a finite extension and S with a strictly finite étale cover; and we
may assume that the positive integers dy, . . ., d, there (for various Y') are no greater
than the degree d of f:Y — X. Moreover, we can take p = p~b@P)  where b(d, p)
is defined as in [Lit93, Thm. 2.2], which depends on d and p but not on r; and we
can take m = d! in the last assertion of Lemma [4.2.2]

Proof. We shall proceed by induction on . When r = 0, the assumption in Lemma
4.2.2| means, for each connected component Y’ of Y, the strictly étale cover Y’ —
X = § splits completely. This can always be achieved up to replacing S with a
Galois strictly finite étale cover refining Y’ — S for all Y.

In the remainder of this proof, suppose that » > 1, and that the lemma has been
proved for all strictly smaller r. Let p = p~%(4P) be as above. Fix some a € k such
that |a| = p. We shall denote normalizations of fiber products by x (instead of x).

Let P; be the submonoid ZZ,' @ {0} of P = Z%. Let X; := S x D"'~1 = S(P),
which we identify with the subspace S x D™~ x {a} of X = § x D" = S(P). Let
Y: := YxxX;. Note that the degree of Y¥; — X; is also d. By induction, up
to replacing k with a finite extension and S with a strictly finite étale cover, for
each connected component Y{ of (Y7),, there exist 1 < dy,...,d,—1 < d such that
the induced finite ramified cover Y{ — (X1), is refined by S(P;), — (X1),, where

1
P = @1<i<r1(3:Z20). Let X" := S(gP1), with 7P, = 3Z1.
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1

= v

Let X = X" xx, X 2 X" xDand Y := X" xx,Y. Let f:Y — X denote
the induced finite ramified cover, which is also of degree d. Then the (strictly

finite étale) pullback of f to (Xf]%); x {a} can be identified with the pullback

of Y1 — X; to (de%);’ which splits completely, by the induction hypothesis and
the last assertion in Lemma Hence, since p = p~%(@P) for each connected
component Y’ of }N/p, by applying [Liit93, Lem. 3.2] to the morphism (}N/’)X — )?px
induced by f, we obtain a rigid analytic function T on (}7’ )* such that T =T,
where T, is the coordinate on the r-th factor of D". By [Bar76l Sec. 3] (see also

[Han20, Thm. 2.6]), T extends to a rigid analytic function on the normal Y’ , which
~ ~ 1 ~ ~ 1
still satisfies T4 = T,. Hence, we can view T as ;"7 , and Y’ — X, = (X' x D),
~ 1 ~
factors through S(P), — (X" x D),, where P := (5;P1) ® (5-Z>¢). Since these
are finite ramified covers of the same degree d, from connected and normal rigid
analytic varieties, we obtain an induced isomorphism Y’ = S(P),.

Since each connected component Y’ of Y, is covered by some connected com-
ponent Y’ of Y,, by Lemma up to replacing k with a finite extension,
Y’ = S(Q), for some mi)noid Q satisfyirgg PCQCP= (%Pl) o (iZzE),
for some 1 < d, < d and P determined by Y’ as above. By the construction of Y,
the monoid ((%Pl) @ep Q) *** is the product of P with a finite group, which forces
{0}t @(izzo) C Q. By the construction of Y7 and the induction hypothesis, the
projection P %Pl maps ( into @199—1(%220) for some 1 < dq,...,d_1 <d.
Thus, PC Q C P := @19'@(%220), as desired. O

Remark 4.2.4. Proposition can be regarded as the Abhyankar’s lemma (cf.
[Gro71l, XIII, 5.2]) in the rigid analytic setting, because of the last assertion in
Lemma [£2.2]

More generally, we have the following basic but useful facts:

Lemma 4.2.5. Let X be a noetherian fs log adic space modeled on a sharp fs
monoid P, and let f :' Y — X be a Kummer étale (resp. finite Kummer étale)
morphism. Then Y Xx X% — X= is étale (resp. finite étale) for some positive
integer n. If X has at most one positive residue characteristic, then we can take n
to be invertible on all of X.

Proof. Since X is noetherian, by taking the least common multiple of the positive
integers obtained on finitely many members in an étale covering, it suffices to work
étale locally on X. By Lemma up to étale localization on X, there exists
an étale covering {Y; — Y};er indexed by a finite set I such that each induced
Kummer étale morphism Y; — X admits a Kummer chart P — Q; with a sharp Q);.
Then there exists some positive integer n, which we may assume to be invertible
on all of X when X has at most one positive residue characteristic, such that
pP— %P factors as P — Q; =% %P for some injective u;, for all 4 € I. The induced

morphism Y; X x X — X7 is étale, for each i € I, because it admits a Kummer
chart P — (Q; ®p (%P))Sat = ((Qi ©p Qi) ®q; (%P))Sat = G; @ (5, P), where
G, = (Q;)®/uf®(PeP) has order invertible in Oy, by assumption. (Since G; is
a group, %P - G ® (%P) is strict, by definition. See also Remark ) By

Proposition [2.3.32] the étale map []..;Y; xx X7 =Y xx Xw is surjective as

i€l



50 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

[ic; Yi — Y is. Hence, by étale descent, Y xx X% — Xw is also étale. Finally,
by [Hub96, Lem. 1.4.5 i)], ¥ xx X% — X is finite when ¥ — X is. 0

Lemma 4.2.6. Let X be a noetherian fs log adic space modeled on a sharp fs
monoid P. Let {U; — X}icr be a Kummer étale covering indexed by a finite set
I. Then there exists a Kummer étale covering {V; — X}jey indexed by a finite
set J refining {U; — X }ier such that each V; — X admits a chart P — n%_P for

some integer n; invertible in Oy, and such that {Vj x x X — X%}jej s an €tale

covering ofX% for some integer n divided by all n;. If X has at most one positive
residue characteristic, then we may take n to be invertible in Ox.

Proof. Since X is noetherian, by Lemma 4.1.10, we may replace {U; — X };e5 with

a finite refinement {U; — X },c; such that each U; — X admits a Kummer chart

P — @Q; with a sharp ;. Then there exists some positive integer n; invertible

in Oy, such that P — %P factors as P — (@) =l %P for some injective u;,
J J

for each j € J. Therefore, each V; := U; Xy, q,) Uj(+P) — X is Kummer

’ 1
étale with a Kummer chart P — %P, and the induced morphism V; — X" =
X Xx(p) X(niP> is étale (as in Definition [4.1.2). In this case, if n is divisible by all

J

n;, then V; x x Xv 5 Xn=X X x(py X (; P) is also étale, and we can take n to be
invertible on X when X has at most one positive residue characteristic (cf. the proof
of Lemma [4.2.5). Since [[;.; U; — X is surjective by assumption, by Proposition

2.3.32, {V; xx X%}jeJ — X is an étale covering of X%, as desired. O

The following two propositions show that the properties of morphisms being
Kummer étale, log smooth, and log étale can be verified up to Kummer étale
localization on either the source or the target:

Proposition 4.2.7. Let Y Lx s S be lft morphisms of locally noetherian fs log
adic spaces such that f is Kummer étale and surjective. Then g is log smooth (resp.
log étale, resp. Kummer étale) if and only if go f is.

Proof. Since f is Kummer étale (and hence log étale), by Propositions and
4.1.14) if g is log smooth (resp. log étale, resp. Kummer étale), then so is g o f.
(The surjectivity of f is not needed in this direction of implication.)

Conversely, suppose that go f is log smooth (resp. log étale, resp. Kummer étale).
It suffices to show that X — S is log smooth (resp. log étale, resp. Kummer étale),
étale locally at geometric points T of X and 5= g(T) of S.

Up to étale localization at T, we may assume that X has at most one positive
residue characteristic. By Proposition [2.3.22] up to étale localization at T and s,
we may assume that X — S admits an fs chart u : L := Mgz — P’, inducing a
strict morphism ¢’ : X — X' := 8 x gy S(P'). Let U := g% : L — P:=Myz. By
Remark P’ — P is surjective with kernel given by the preimage of O)X(éhf.
Since L and P are sharp fs, we may assume that the order of the torsion part of
ker((P')8 — P#P) is invertible in Ox,, 7. Since f is Kummer étale, by Definition
[412] and Lemma [£.2.6] and by the first paragraph above, we are reduced to the
case where f : Y — X is of the form X m o X , for some integer m invertible in
Ox, which admits a global fs chart v : P — %P.
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Let § be any geometric point of Y such that f(g) = T, which exists because
f is surjective. By Lemma W4.1.11} 7 := fyE : Mxz — MY@ is also given by
v:P— iP. By the same argument as above, up to étale localization at 7, we may

assume that Y —> S admits an fs global chart w : L — @, and we have a surjection
Q — Myy = L P such that the order of the torsion part of ker(Q&P — L PeP) is

invertible in Ox,, z. By definition, @ := (g o f)ﬁf = Tow as homomorphisms from L

to —P If gofis log smooth (resp. log étale), then the kernel and the torsion part
of the cokernel (resp. the kernel and the cokernel) of w®P have orders invertible in
Ox,, 7, and so are U8 and u8P (cf. Definition [3.1.1). If go f is Kummer étale, then
w is Kummer, and so are @ and u (see Definitions [4.1.1] and 4.1.2) and Lemmas
[4.1.11] and [4.1.13)). Therefore, by the first paragraph above, X’ — S is log smooth
(resp. log étale, resp. Kummer étale) when g o f is. Thus, up to replacing g with
g : X — X', we are reduced to the case where g is strict, and it remains to show
that g : X — S is (strictly) étale when go f : Y = Xw — S is log étale. Up to
étale localization on S, we may assume that Og(S)* and hence Ox(X)* contain
all m-th roots of unity. Then ¥ = X m — X is a Galois finite Kummer étale cover
with Galois group I' := Hom (-5 P&P) /P&, Og(S)*), by Proposition

Let us write (Og(S), Ms(S)) = (4, M), (Ox(X),Mx(X)) = (B,N), and
(Oy(Y),My(Y)) = (C,0), for simplicity. Since X — S is strict, up to fur-
ther étale localization on X and S, we may assume that (A, M) — (B, N) is also
strict. By Lemma Remark and Proposition [3.3.16] it suffices to
show that (A, M) — (B, N) is formally log étale (as in Definition when
(A,M) = (C,0) is. Since Y = X x x(py X(LP), we have O = (N @p (%P))SaLt
and ¢ = (B‘X’Z[P]Z[EP])@Z[NGBP%P) [(N @P (s P))bat] = B®Z[N}Z[O]- Con-
sider any commutative diagram as in for (A,M) — (B,N) (with a,

sat

B, etc omitted here). For ? = @ and /, con81der T? = (T" ®p (£ P))™" and
D? = D?®Z[T7]Z[T?], so that (D',T") — (D', T") is the completion of the com-
mon pullback of (B,N) — (C,0) and (D,T) — (D,T) in the category of log
Huber rings with fs log structures. Moreover, we have (D”, T7) = ((5?)F, (f?)r),
for 7 = () and /, because the formation of I'-invariants is compatible with arbi-
trary base changes and completions when |T'| is invertible (as m is), and because
of Remark Thus, we have obtained an extended commutative diagram for
(A,M) — (C,0) and the base change (D,T) — (D',T") of (D,T) — (D', T").
Since (4, M) — (C,0) is formally log étale, (C,0) — (D', T') uniquely lifts to
(C,0) = (D,T), whose pre-composition with (B, N) — (C,0) is I-invariant and
hence factors through (D,T). This shows that (A, M) — (B, N) is also formally
log étale, as desired. O

Proposition 4.2.8. Let f : Y — X and g : X' — X be lft morphisms of locally
noetherian fs log adic spaces such that g is Kummer étale and surjective. Then

f is log smooth (resp. log étale, resp. Kummer étale) if and only if its pullback
Y =Y xx X' — X' under g is.
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Proof. By definition, we have the following commutative diagram

v L x

1l

Y — X

in which ¢’ is the pullback of g under f. If f is log smooth (resp. log étale, resp.
Kummer étale), then so is f’, by Proposition and Conversely, suppose
/! is log smooth (resp. log étale, resp. Kummer étale). Since g is Kummer étale
(and hence log étale), by Propositions and go f' = fog is also log
smooth (resp. log étale, resp. Kummer étale). By Propositions [4.1.14] and [2.3.32]
¢’ is Kummer étale and surjective as g is. Thus, by Propositions 4.2.7, f is log
smooth (resp. log étale, resp. Kummer étale), as desired. O

4.3. Coherent sheaves. In this subsection, we show that, when X is a locally
noetherian fs log adic space, the presheaf Ox,,, (resp. O}két) on Xye defined by

U+ Oy (U) (vesp. U = OF(U)) is indeed a sheaf, generalizing a well-known result
of Kato’s [Kat21] for log schemes. We also study some problems related to the
Kummer étale descent of coherent sheaves.
Theorem 4.3.1. Let X be a locally noetherian fs log adic space.

(1) The presheaves Ox,., and (’);r(két are sheaves.

(2) If X is affinoid, then H'(Xys, Ox,,.) =0, for all i > 0.

A key input is the following:

Lemma 4.3.2. Let X be an affinoid noetherian fs log adic spaces, endowed with a
chart modeled on_a _sharp fs monoid P. Let Y — X be a standard Kummer cover
(see Definition |4.1.8)). Then the Cech complex

C*Y/X): 05 0X)=0)) 20 xxY) >0 xxY xxY)— -
(where we omit the subscripts of the structure sheaf O for simplicity) is exact.
Proof. This is essentially [Niz08, Lem. 3.28], based on the idea in [Kat21l, Lem.
3.4.1]. Suppose that Y — X = Spa(R, RT) is associated with a Kummer homo-
morphism u : P — @ as in Proposition Then C*(Y/X) is already known to
be exact at the first three terms; and

O xxY xx - xxY)2O(Y)®g RG] ®r R[G] - ®r R[G],

where G = Q8P /u8P(P8P), in which case we can write the differentials of C*(Y/X)
explicitly and construct a contracting homotopy for C*(Y/X), by the same argu-
ment as in the proof of [Niz08|, Lem. 3.28]. O

We emphasize that Lemma [4.3.2] also works for standard Kummer covers that
are not necessarily Kummer étale.

Proof of Theorem [£.3.1] (1) It suffices to prove that Ox,,, is a sheaf, in which
case O}két also is, because
O}két(U) = OL'F(U) ={fe€0x.,U)=0yU):|f(x)] <1,forall x € U},

exactly as in [SW20l Prop. 3.1.7]. Since the sheafiness for the étale topol-
ogy is known for all locally noetherian adic spaces, by Lemma [£.2.6] the
statement is reduced to Lemma 3.2
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(2) By Propositions and we may reduce to the case where X is
affinoid with a global sharp fs chart P. By Lemma [4.2.6] any Kummer
étale covering {U; — X };c; of X admits some refinement {V; — X},c; as
finite Kummer étale covering such that {V; x x X — X };c; is an étale
covering, for some m, and such that each V; x x X m V; is a composition
of étale morphisms and standard Kummer étale covers. Thus, by Lemma

the Cech complex
O(X) = O(Xw) = O(Xm xx Xiw) = -
is exact. As a result, by Proposition the Cech complex
O(X) = @, O(V;) = &5, O(V; xx Vjr) = -
is also exact, as desired. (Il

Corollary 4.3.3. Let X be a locally noetherian fs log adic space. Consider the
natural projections of sites €an @ Xket — Xan and g : Xyxst — Xeot- Then we have
canonical isomorphisms Ox,, — Rean+(Ox,.,) and Ox, — Rea «(Ox,.,). As a
result, the pullback functor from the category of vector bundles on X, (resp. Xet)
to the category of Ox,,,-modules is fully faithful (cf. Proposition .

Proposition 4.3.4. Let X be a locally noetherian fs log adic space. Then the
presheaf Mx,,, assigning U — My (U) is a sheaf on Xygr. In particular, we also
have a canonical isomorphism s «(Mx,,,) — Mx.

Proof. The proof is similar to [Kat21, Lem. 3.5.1]. Since M x is already a sheaf on
the étale topology, by replacing X with its strict localization at a geometric point
T, it suffices to show the exactness of

0— Mx(X) — My(Y) = ./\/lyxxy(Y X x Y),

where X = Spa(R, R") admits a chart modeled on a sharp fs monoid P & Mx 7,
for some strictly local ring R (see Proposition ; and where ¥ — X is a
standard Kummer étale cover with a Kummer chart v : P — @ with a sharp @
such that the order of G := coker(ugP) is invertible in R (see Lemma [4.1.10). Note
that P is also sharp, because u is injective (see Definition [4.1.1)).

Let R := Oy(Y) and R" := Oy«,y(Y xx Y). By Definition and
Proposition 4.1.6L we have R’ & R®;, r(py. 1, R(Q), where f; : R(P) — R and
f2 : R(P) — R{Q) are induced by the charts. By Proposition we have

R'" = R&ppmR((Q ®p Q)*™) = RBppR(Q & G) = R'[G).

Let I (resp. I, resp. I'"") be the ideal of R (resp. R/, resp. R") generated by the
image of P\ {0} (resp. Q \ {0}, resp. @ \ {0}), which is a proper ideal because P
and @ are sharp. Since [ is contained in the maximal ideal of the strictly local
ring R, and since v : P — @ is Kummer, I’ must be contained in all maximal
ideals of R’. The canonical morphism R/I — R’/I’ is an isomorphism, because
it is induced by compatibly completing both sides of the canonical isomorphism
R®p, repy.ps B (R&y, rp).1 R(Q) @p5.1(Q).00 Ry where:

e f1: R(P)— R and fy: R(P) — R(Q) are given by the charts, as above;

e f3: R(P)— R and f;: R(Q) — R are R-algebra homomorphisms defined

by sending nonzero elements of P and @ to 0, respectively; and
o f5: R(Q) = R®y, r(py,s, R(Q) is the pullback of f; under f.
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Since I’ is contained in all maximal ideals of R’, this forces R’ to be local. Since
R — R’ is finite (by Proposition |4.1.6{(1])), R’ is strictly local as R is.

Let V (resp. V’, resp. V") be the subgroup of elements in R* (resp. (R')™, resp.
(R")*) congruent to 1 modulo I (resp. I’, resp. I"). Since R and R’ are strictly
local, and since R” = R'[G], where the order of G is invertible in R and hence in
R, we have compatible canonical isomorphisms

R*/V = (R/T)*,
(R V' 5 (B 1) = (R/D)",
and
(R")*/V" = (R'/1")* = (R'/T)[G])* = (R/D)]G])*.
By Lemma, we know that
0—->R—R =R'

is exact. Since the injection R — R’ is finite, we can identify R as a subring of R’
over which R’ is integral. Hence, it is elementary that R* = (R')* N R, and

0— R* — (R = (R")*
is exact. Moreover, we have I = I’ N R and V = V' N R*, and
0=V =V =V
is also exact. By some diagram chasing, it suffices to show the exactness of
0= Mx(X))V = MyY)/ V' = Myx,v(Y xxY)/V".
Since Mx (X) — R and My (Y) — R’ are associated with the pre-log structures

P — Rand Q — R/, since u : P — @ is a Kummer chart, and since P and ) are
sharp, we have compatible isomorphisms

Mx (X)) V=2 (R*/V)eP2(R/)*®P
and

My(YV)/V' = ((R)*/V)eQ=(R/)" Q.

Since the log structure My, v (Y xx Y) — R" is associated with the pre-log
structure Q & G — R” =2 R’[G] induced by the same @ — R’ as above and by the
identity map G — G, we have

My sy (Y xx Y)/V" = ((R/D[G)" & Q.
Accordingly, the above sequence can be identified with

0= (R/I)*®P— (R/) Q= (R/G)"&Q,
where the double arrows are (z,q) — (z,q) and (z,q) — (ze?, q), with g denoting
the image of ¢ in G = Q&P /usP(PeP). Thus, it suffices to note that the sequence
0=-P—=-0Q=3QadG,

where the double arrows are ¢ — (¢q,0) and ¢ — (g,q), is exact. O
As a byproduct, let us show that representable presheaves are sheaves on Xjgt.

The log scheme version can be found in [[I02, Thm. 2.6], which can be further
traced back to [Kat21, Thm. 3.1].

Proposition 4.3.5. Let Y — X be a morphism of locally noetherian fs log adic
spaces. Then the presheaf Morx(-,Y) on Xye is a sheaf.



LOGARITHMIC ADIC SPACES: SOME FOUNDATIONAL RESULTS 55

Proof. We follow the idea of [Kat21l Thm. 3.1]. It suffices to show that the presheaf
Mor(-,Y) on Xys is a sheaf, because Morx(-,Y) is just the sub-presheaf of
sections of Mor(-,Y) with compatible morphisms to X. We may assume that
Y = Spa(R, R") is affinoid with a chart modeled on a sharp fs monoid P.

We claim that the presheaves F : T +— Hom ((R, k"), (Or(T),0%(T))), G :
T — Hom (P,/\/IT(T))7 H : T — Hom (R OT(T)) on Xyst, where the first Hom
is in the category of Huber pairs, and where the latter two are in the category
of monoids, are all sheaves. As for the case of F, it suffices to show that F' :
T — Homeont (R, OT(T)) is a sheaf, where the homomorphisms are continuous
ring homomorphisms; or that 7’ : T +— Hom(R,Or(T)) is a sheaf, where we
consider all ring homomorphisms. Consider any presentation R = Z[T;];e1/(f;) et
of the ring R, so that F”(T) = ker(Or(T)! — Or(T)”). Then F” is a sheaf
on Xyt as T +— Orp(T) is (see Theorem . As for the cases of G and H,
consider any presentation ZL, = Z$, — P — 0 of the finitely generated monoid
P, which exists by [Ogul8, Thm. 1.2.1.7]. Then G(T) (resp. H(T)) is the equalizer
of Mp(T)* = Mrp(T)" (resp. Or(T)* = Op(T)"). Hence, both presheaves are
sheaves on Xy as T — Mrp(T) and T — Op(T) are (see Theorem and
Proposition .

By the claim just established, since Mor(-,Y") (when Y = Spa(R, RT) is modeled
on P as above) is the fiber product of the morphisms F — H and G — H induced
by P — R and My (T) — Op(T), respectively, it is also a sheaf, as desired. O

In the remainder of this subsection, we study coherent sheaves on the Kummer
étale site.

Definition 4.3.6. Let X be a locally noetherian fs log adic space.
(1) An Ox,,,-module F is called an analytic coherent sheaf if it is isomorphic
to the inverse image of a coherent sheaf on the analytic site of X.
(2) An Ox,,,-module F is called a coherent sheaf if there exists a Kummer étale
covering {U; — X }; such that each F|y, is an analytic coherent sheaf.

The following results are analogues of [Kat21 Prop. 6.5], the proof of which is
completed in [Niz08, Prop. 3.27].

Theorem 4.3.7. Suppose that X is an affinoid noetherian fs log adic space. Then
H(Xyet, F) =0, for all i > 0, in the following two situations:

(1) F is an analytic coherent Ox, ., -module.

(2) F is a coherent Ox,,, -module, and X is over an affinoid field (k, k™).

Proof. 1) As in the proof of Theorem by Lemma and Proposition
it suffices to show the exactness of the Cech complex
CrY/X): 0 F(X) > FY)=>FY xxY)— -,

where X is affinoid with a sharp fs chart P, and where Y — X is a standard
Kummer cover. By Proposition [£.1.6] the morphisms ¥ — X,V xx Y —
X, Y xxY xx Y — X, etc are finite, and hence

Cx(Y/X) = C*(Y/X) Qo (x) F(X),
where C*(Y/X) is as in Lemma Since the contracting homotopy used

in the proof of Lemma [£.3.2] (based on the proof of [Niz08| Lem. 3.28]) is
Ox (X)-linear, C%(Y/X) is also exact, as desired.
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(2) First assume that X is modeled on a sharp fs monoid P. By definition,
there exists a Kummer étale covering {U; — X}, such that each Fly, is
analytic coherent. By Lemma [4.2.6] and Proposition we may assume
that F|y is analytic coherent, where U = X # for some n invertible in k.
Let G := (1 P)er/Per. Since HI (U x x -+ X x U)xat, F) = 0, for all j > 0,
by , it suffices to show that H*(C%(U/X)) =0, for all i > 0. As in the
proof of Lemma [4:3.2] by Proposition [£.1.6]

Oxie (U Xx -+ Xx U) = Ox, (U) @ K[G] @, - - - @ K[G],
and we can identify the complex
FU)=»FUxxU)—=FUxxUxxU)—---

with the complex computing the group cohomology H'(G,F(U)). Since
|G| is invertible in k as n is, and since F(U) is a k-vector space, we have
H'(G,FU)) =0, for all i > 0.

Let e¢; @ Xket — Xeot denote the natural projection of sites. Then the
argument above shows that Rieg .(F) = 0, for all j > 0, and that eg; «(F)
is a coherent sheaf on X¢;. Since these statements are étale local in na-
ture, they extend to all X considered in the statement of the theorem, by
Proposition 2.3.131 Thus, we have H*( X4, F) = H' (Xc’t, 66':7*(.7)) =0, as
desired, by Proposition [A.10 (]

Kummer étale descent of objects (coherent sheaves, log adic spaces, etc) are
usually not effective, mainly because fiber products of Kummer étale covers do not
correspond to fiber products of structure rings. Here is a standard counterexample.

Example 4.3.8. Let k be a nonarchimedean field. As in Example consider
the unit disc D = Spa(k(T), Or(T)) equipped with the log structure modeled on the
chart Z>o — k(T) : 1 — T. By Proposition we have a Galois standard
Kummer étale cover f,, : D — D corresponding to the chart Z>o — Z>o : 1~ n,
where n is invertible in k, with Galois group p,. Then the ideal sheaf I of the
origin, a p,-invariant invertible sheaf on D, does not descend via f,.

Kummer étale descent of morphisms are more satisfactory.

Proposition 4.3.9. Let X be a locally noetherian fs log adic space, and let f :
Y — X be a Kummer étale cover. Let pri,pry : ¥ Xx Y — Y denote the two
projections. Suppose that £ and F are analytic coherent Ox,, -modules; and that
g X&) = f(F) is a morphism on'Y such that pri(g’) = pri(¢’) on Y xx Y.
Then there exists a unique morphism g : € — F such that f*(g) =¢'.

Proof. By Lemma [4.2.6] and Proposition we may assume that X is affinoid
and that Y — X is a standard Kummer cover. Let A := Ox(X), B := Ox,_, (Y),
C:=0x,Y xxY), M:=&(X), and N := F(X). We need to show that

0 — Homu(M,N) - Homp(B®4 M,B®4 N) = Homc(C ®4 M,C ®4 N)

is exact, and where the third arrow is the difference between two pullbacks as usual.
Equivalently, we need to show that

0 — Homu (M, N) — Homa(M,B ®4 N) — Homua(M,C @4 N)
is exact. By the left exactness of Homa (M, - ), we are reduced to showing that the

sequence 0 - N —- B®4 N — C ®4 N is exact. But this is just the first three
terms in the complex C%(Y/X) in the proof of Theorem [4.3.7||1). O
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To wrap up the subsection, let us introduce a convenient basis for the Kummer
étale topology.

Lemma 4.3.10. Let X be a locally noetherian fs log adic space. Let B be the full
subcategory of Xy consisting of affinoid adic spaces V' with fs global charts. Then
B is a basis for Xys, and we have an isomorphism of topoi X7y, — B~.

Proof. By [AGVT3, III, 4.1], it suffices to show that every object in Xyg has a
covering by objects in B. But this is clear. O

Lemma 4.3.11. Let X be a locally noetherian fs log adic space, and let B be as
in Lemma [£.3.10l Suppose that F is a rule that functorially assigns to each V € B
a finite Ox,,, (V)-module F(V) such that F(V) @o,, vy Ov: (V') = F(V') for all
V' — V that are either étale morphisms or standard Kummer étale covers. Then
F defines an analytic coherent sheaf on Xyet.

Proof. This follows from Propositions and and Lemma [4.3.170 O
4.4. Descent of Kummer étale covers.

Definition 4.4.1. Let X be a locally noetherian fs log adic space X. Let Xgygt
denote the full subcategory of Xys consisting of log adic spaces that are finite
Kummer étale over X. Let Fkét denote the fibered category over the category of
locally noetherian fs log adic spaces such that Fkét(X) = Xpeet.

The goal of this subsection is to show that Kummer étale covers satisfy effective
descent in Fkét. We first study Xget when X is as in Examples and

Definition 4.4.2. (1) A log geometric point is alog point ¢ = (Spa(l,1T), M, )
(cf. Examples and such that:
(a) 1 is a complete separably closed nonarchimedean field; and
(b) if M :=T(Spa(l,IT), M), then M = M/I* is uniquely n-divisible (see
Definition for all positive integers n invertible in [.
(2) Let X be a locally noetherian fs log adic space. A log geometric point of X
is a morphism of log adic spaces 1 : ( = X from a log geometric point (.
(3) Let X be a locally noetherian fs log adic space. A Kummer étale neighbor-
hood of a log geometric point 1 : { — X is a lifting of 1 to some composition

(—U % X in which ¢ is Kummer étale.

Construction 4.4.3. For each geometric point £ : Spa(l,IT) — X, let us con-
struct some log geometric point E above it (i.e., the morphism §~—> X of underlying
adic spaces factors through & — X) as follows. By Proposition up to étale
localization on X, we may assume that X admits a chart modeled on a sharp fs
monoid P, so that we have a strict closed immersion X — X(P) as in Remark
. We equip Spa(l,It) with the log structure P'°® associated with the pre-log
structure given by the composition of P — Ox(X) — 1, so that (Spa(l, (1), P'°8) is
an fs log point with a chart given by P — . We shall still denote this fs log point
by €. For each positive integer m, let P — %P be as in Definition . Consider

£Gi) = (Spa(l,I*) X x(py X (L P))red,
equipped with the natural log structure modeled on %P, Note that f(%) might differ
from the fﬁ in Definition because we are taking the reduced subspace, so that
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the underlying adic space of 5(#) is still isomorphic to Spa(l,l1T). Then
&= limelw)

where the inverse limit runs through all positive integers m invertible in 1, is a log
geometric point above €. The underlying adic space of £ is isomorphic to Spa(l,1T),
endowed with the natural log structure modeled on

PQZO = hﬂ %P,
m
where the direct limit runs through all positive integers m invertible in [.

Lemma 4.4.4. Let { — X be a log geometric point of a locally noetherian fs log
adic space. Then the functor Sh(Xys) — Sets : F — F¢ = li%m}"(U) from the
category of sheaves on Xygt to the category of sets, where the direct limit is over
Kummer étale neighborhoods U of C, is a fiber functor. The fiber functors defined
by log geometric points form a conservative system.

Proof. By Proposition and Remark the category of Kummer étale
neighborhood of ¢ is filtered, and hence the first statement follows. Since every
point of X admits some geometric point and hence some log geometric point above
it (see Construction , and since every object U in Xy¢; is covered by liftings
of log geometric points of X, the second statement also follows. O

Definition 4.4.5. For each profinite group G, let G-FSets denote the category of
finite sets (with discrete topology) with continuous actions of G.

Definition 4.4.6. Let [ be a separably closed field. For each positive integer m,
let p,, (1) denote the group of m-th roots of unity in . Let p (1) := lim w,, (1)

and Z’(l)(l) o= lim W, (1), where the limits run through all positive integers m

invertible in [. When char(l) = 0, we shall write 2(1)(1) instead of i’(l)(l). When
there is no risk of confusion in the context, we shall simply write w,,, p.,, and

7/(1), without the symbols ().

Proposition 4.4.7. Let £ = (Spa(l,11), M) be an fs log point with | complete (by
our convention) and separably closed. Let M = Mg and so M = M/I*. Let E
be a log geometric point constructed as in Construction [4.4.3] Then the functor
FeiY Homg(g, Y) induces an equivalence of categories

Eneer = Hom (M, Z/ (1)(1))-FSets.

Proof. For simplicity, we shall omit the symbols () as in Definition Let P :=
M, a sharp and fs monoid. By Lemma [2.1.10, we have some splitting M = [X & P
such that P '8¢ 1X @ P 3 M defines a chart for &. For each m invertible in [, the
cover £Gn) — € is given by M 31X @ P 18ml ® P 5 M. Note that any finite
Kummer étale cover of ¢ is a finite disjoint union of fs log adic spaces of the form
§q =& x¢(py §(Q),

where P — @) is a Kummer homomorphism of sharp fs monoids whose cokernel is
annihilated by some integer invertible in [. We have

Fz(£q) = More(€,&q) = Homyx o p(I* © Q, 1% @ Py.,) = Hom(Q® /P, ...
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The last group has a natural transitive action of
Autg(g) = Homp(Py.,, 1) = Hom((PQzD)gp/ng7 ,uoo)
v @Hom(ng ®z (LZ)Z), ) = Hom(ng,Z'(l)).

Hence, Fg is indeed a functor from &g to Hom (Mgp, 2’(1))—FSets.
Let us verify that F, 3 is fully faithful. By working with connected components,
it suffices to show that, for any @1 and @2, the natural map

(4.4.8) More (£q,,&q,) — Hom (Hom(Q$¥ /PP, ), Hom(Q5" / P#P, p,oo))

is bijective. Note that More(£q,,£q,) = Homp(Q2,1* ®Q1). Since Py, is uniquely
divisible, the sharp fs )1 and Q2 monoids can be viewed as submonoids of Py . If

Q2 ¢ Q1, then both sides of (4.4.8) are zero. Otherwise, Q2 C Q1, and (4.4.8) sends
the morphism induced by Q2 < @1 in Homp(Q2,1”* ® Q1) to the homomorphism

induced by restriction from Q$" /P8P to Q5" /P&P. Consequently, (4.4.8) is bijective,
because both sides of are principally homogeneous under compatible actions
of Aut (£Q2) = Hom (Qgp/ng’ ll’oo)'

Finally, let us verify that Fg is essentially surjective. Since any discrete finite
set S with a continuous action of Hom(ng,i’(l)) = Hom((Pg., )8 /P%, ) is
a disjoint union of orbits, we may assume the action on S is transitive. Then S
is a quotient space of H0111((PQ>0)gp / P8P, [1,00), which corresponds by Pontryagin
duality to a finite subgroup G C (Pg.,)"/P#. Let Q denote the preimage of G
in Py.,. Then Q& /P& = G and Fz(éq) = S, as desired. O

Proposition 4.4.9. Let (X, Mx) be a locally noetherian fs log adic space. Let
& = Spa(l,1%) be a geometric point of X, and let X () be the strict localization of
X at &, with its log structure pulled back from X. Without loss of generality, let us
assume that | =2 R(x), the completion of a separable closure of the residue field k(x)
of Ox.z, for some x € X. Let M := Mx ¢ and so M = M/I*. Let us view & and
X (&) as log adic spaces by equipping them with the log structures pulled back from
X. Let E be the log geometric point over & constructed as in Construction ,
Then the functor Hg: Y — Morx(g, Y) induces an equivalence of categories

X (€)frer = Hom (M*, Z/ (1)(1))-FSets.

In addition, we have Hg = Fgo L, where Fg is as in Proposition and
T X () pet — Erer 8 the natural pullback functor defined by o : € — X (€).

Note that, if = is an analytic point of X, then Proposition follows imme-
diately from Proposition because ¢ = X (&) in this case. Nevertheless, the
proof below works for non-analytic points as well.

Proof of Proposition 4.4.9, It suffices to show that ¢+~ ! is an equivalence of cate-
gories. Write P = M and X (£) = Spa(R, R"). By Lemma [2.1.10, we can choose

a splitting R* @ P = M such that P "9 RX @ P 5 M defines a chart for X(8).
Note that objects in X (§)gmet (resp. &met) are finite disjoint unions of fs log adic
spaces of the form

(4.4.10) X (&) = X(§) X X (&)(P) X((Q)
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(resp. £g), where P — @ is a Kummer homomorphism of sharp monoids. Then
¢! sends X (£)g to &, and hence is essentially surjective. To see that ! is fully
faithful, it suffices to show that the canonical map

(4.4.11) Mor x (¢)(X(§)q,, X (§)q,) — More(£q,,¢q.)

is bijective. By definition, we have X (&), = Spa(RQi,Rai)7 for i« = 1,2, where
Rq, = R®p(p) R(Q) = R®pp) R[Q)] are also strictly local rings with residue field
l. Therefore,

MOI‘X(g) (X(g)Ql ’ X(&)Qz) = HOI’IIP(QQ, Rél D Ql)
= HomP(Q27 e 2 Ql) = Mor§(€Q1a€Q2),
and hence the map (4.4.11)) is bijective, as desired. O

Now, we are ready to prove the main result of this subsection; i.e., Kummer étale
covers satisfy effective descent in the fibered category Fkét.

Theorem 4.4.12. Let X be a locally noetherian fs log adic space, and let f : Y — X
be a Kummer étale cover. Let pry,pry : Y Xx Y — Y denote the two projections.
Suppose that Y € Y and that there exists an isomorphism pry*(Y) = pry1(Y)
satisfying the usual cocycle condition. Then there exists a unique X € Xeat (up to
isomorphism) such that Y = X xx Y.

Proof. By étale descent (see Proposition , by étale localization on X, it suf-
fices to prove the theorem in the case where X is affinoid with a sharp fs chart P,
and where Y — X is a standard Kummer étale cover induced by a Kummer ho-
momorphism of sharp monoids u : P — @, with G := Q8P /u8P(P*P) a finite group
of order invertible in Ox. By Proposition [4.1.6] up to further étale localization on
X, we may assume that the morphism Y — X is a Galois cover with Galois group
I' := Hom(G, Ox (X)*); that |G| is invertible in Ox, and Ox(X)* contains all the
|G|-th roots of unity; and that Y X x Y 2 T'x x x Y. In this case, the descent datum
is equivalent to an action of I' on Y over X lifting the action of I' on Y over X. Let
us write X = (Spa(R, RT), Mx) and Y = (Spa(S,5t), M;). By Lemma m
(R, R*) := (S, (SM)F) is a Huber pair, and X := Spa(R, R") is a noetherian adic
space finite over X. Moreover, the morphism Y = X is finite, open, surjective,
and invariant under the -action on Y. The étale sheaf of monoids M  defined by

My (U) = (/\/IY(Y/ X ¢ U))F, for each U € Xg, is fine and saturated, and defines

a log structure of X. We claim that the log adic space X thus obtained gives the
desired descent.

Let us first verify that the canonical morphism Y = X xx Y induced by the
structure morphisms Y 5> Xand Y - Y is an isomorphism. Since the morphism
is between spaces that are finite over X, and since the formation of I'-invariants is
compatible with (strict) base change (as |I'| is invertible in Ox), we may assume
that X = X (&) is strictly local, and so is Y = X (§)q = X(§) xx(e)yp) X(£)(Q)
(as in the proof of Proposition . Without loss of generality, we may assume

v

that ¥V = X (&) g = X(&) xx(e)(py X(§)(Q) for some Kummer homomorphism of

fs monoids @ : P — Q (as in (4.4.10), but without assuming that Q is sharp),
which is the composition of u : P — @ with some homomorphism ¢ — ). Un-
der the equivalence of categories Hg : X (&)et = Hom(PsP,Z/(1)(1))-FSets as in
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Proposition Y — X corresponds to the set T' := Hom(Q2P /ugP(P&P), u_)
with a T-action; Y — X corresponds to I itself (with its canonical I-action); and

Y 5 Y corresponds to a surjective I'-equivariant map I' - I'. Since Y — X is
Kummer, we have (M})# = (M)", and hence X = X(£) for the fs monoid

P = QN P such that Hom(P%P /usP(P), u ) = I'/T, by explicitly computing
R=S8"~ (R ®R[P] R[Q]) using the identifications in the proof of Proposition
- In partlcular X — X is finite Kummer étale, and Y —» X corresponds
to the quotient I' — F/F under H~ Since I is an abelian group, the canonical

map I — (F /T') x T is bijective, and hence the corresponding canonical morphism
Y — X xx Y is indeed an isomorphism.

Consequently, Y = X xx ¥V = X ) X<Q> — X is finite Kummer étale.
By construction, X — X is also finite Kummer (firstly by assuming that X is
strictly local as above, and then by extending the identifications of charts over
étale neighborhoods of X in general). By Lemma it remains to show that
X = X is log étale. Since Y > Y is log étale, and since Y — X is a Kummer étale
covering, this follows from Proposition as desired. (Il

Corollary 4.4.13. Let X be a locally noetherian fs log adic space, and let f :Y —
X be a finite Kummer étale cover. Let I' be a finite group which acts on' Y by
morphisms over X. Then the canonical morphisms Y — Z :=Y/T' — X induced
by [ (by Lemma are both finite Kummer étale covers.

Proof. By Lemmal[4.1.7, both morphisms Y — Z and Z — X are finite, and Y — Z
is finite Kummer. By Lemma[£.1.13] and Proposition it suffices to show that
Z — X is finite Kummer étale. Then the first projection f : Y=Y xyY—oVYis
a pullback of Y — X, which inherits an action of I". By [Hub96, Lem. 1.7.6], under
the noetherian hypothesis, the formation of quotients by I' as in Lemma [4.1.7]
is compatible with base changes under étale morphisms of affinoid adic spaces.
By Proposition and Remark up to étale localization on X, we may
assume that Y — X is a composition of a ﬁnite étale morphism f; and a standard
Kummer étale cover fs as in PrOpOblthH . in which case Yisa disjoint union
of sections of f Then I' acts on YV by permutlng such sections, and we have a
quotient 7 = Y/I‘ — Y, which is clearly finite Kummer étale. Moreover, the
pullbacks of Z-YtoY along the two projections are isomorphic to each other
by interchanging the factors, and hence Z — Y descends to a finite Kummer étale
cover of X, by Theorem We claim that this cover is canonically isomorphic
to Z — X. Since the set of sectlons of f Y 5 Yisa disjoint union of subsets
formed by the sections of pullback of the finite étale morphism f;, we can reduce the
claim to the extremal cases where either f = f; is finite étale or f = f5 is standard
Kummer étale. In the former case, the claim follows from the usual theory for finite
étale covers of schemes, as in [Gro71l V]. In the latter case, the claim follows from

Proposition [.1.6][). O

Definition 4.4.14. Let X be a locally noetherian fs log adic space, and let A be
a commutative ring.

(1) A sheaf F on Xy is called a constant sheaf of sets (resp. constant sheaf of
A-modules) if it is the sheafification of a constant presheaf given by some
set S (resp. some A-module M).
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(2) A sheaf F on Xyt is called locally constant if there exists a Kummer étale
covering {U; };er — X such that all F|y, are constant sheaves. We denote
by Loc(Xyet) the category of locally constant sheaves of finite sets on Xye.

Theorem 4.4.15. Let X be a locally noetherian fs log adic space. The functor
¢ Xewet = Loc(Xyet) : Y = Morx(-,Y)

is an equivalence of categories. Moreover:

(1) Fiber products exist in X and Loc(Xyet), and ¢ preserves fiber products.
(2) Categorical quotients by finite groups exist in Xpgr and Loc(Xyst), and ¢
preserves such quotients.

Proof. By Proposition representable presheaves on Xy4 are sheaves. By
Proposition and Remark any Y € Xpe is Kummer étale locally (on
X) a disjoint union of finitely many copies of X. Hence, Morx(-,Y) is indeed a
locally constant sheaf of finite sets, and the functor ¢ is defined. The functor ¢
is fully faithful for formal reasons. Since any locally constant sheaf of finite set is
Kummer étale locally represented by objects in Xyig, these objects glue to a global
object Y by Theorem [£.4.12 and the full faithfulness of ¢. This shows that ¢ is also
essentially surjective, as desired. As for the statements and , by Kummer
étale localization, we just need to note that the statements become trivial after
replacing the source and target of the functor ¢ with the categories of finite disjoint
unions of copies of X and of constant sheaves of finite sets, respectively. O

Next, let us define the Kummer étale fundamental groups.

Lemma 4.4.16. Let X be a connected locally noetherian fs log adic space, and
n: ¢ — X a log geometric point. Let FSets denote the category of finite sets.
Consider the fiber functor

(4.4.17) F: Xpee = FSets : Y = Y := Morx (¢, Y).

Then Xt together with the fiber functor F is a Galois category.

Proof. We already know that the final object, fiber products (see Proposition

4.1.14), categorical quotients by finite groups (see Corollary |4.4.13)), and finite co-
products exist in Xpegt (and FSets). It remains to verify the following conditions:

(1) F preserves fiber products, finite coproducts, and quotients by finite groups.
(2) F reflexes isomorphisms (i.e., F(f) being an isomorphism implies f also
being an isomorphism).
(We refer to [Gro71l, V, 4] for the basics on Galois categories.)

As for condition , since F' is defined Kummer étale locally at the log geometric
point ¢, it suffices to verify the condition after restricting F' to the category of finite
disjoint unions of X, in which case the condition clearly holds.

As for condition , note that F' factors through the equivalence of categories ¢
in Theorem and induces the stalk functor

Loc(Xket) — FSets : F s Fe := lim F(U),

where the direct limit is over Kummer étale neighborhoods U of (. Since X is
connected, the stalk functors at any two log geometric points are isomorphic. Thus,
whether f is an isomorphism can be checked at just one stalk. [
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Corollary 4.4.18. Let X and ¢ — X be as in Lemma {416 Then the fiber
functor F in (4.4.17)) is prorepresentable. Let n5¢* (X, () be the automorphism group
of F'. Then F induces an equivalence of categories

(4.4.19) Xisr — 7€ (X, ¢)-FSets,

which is the composition of the equivalence of categories ¢ in Theorem with
the equivalence of categories

(4.4.20) Loc(Xier) = 7€ (X, ¢)-FSets

induced by the stalk functor F — F¢.

Remark 4.4.21. In Corollary [£.4.18] since stalk functors at any two log geometric
points ¢ and ¢’ are isomorphic, the fundamental groups m¢*(X,¢) and 7 (X, ¢')
are isomorphic. We shall omit ¢ from the notation when the context is clear.

Corollary 4.4.22. Let (X, Mx), & = Spa(l,I1), X(£), and M := Mx ¢ be as in

Proposition 4.4.9] In particular, the underlying adic spaces of & (resp. X (§)) is a
geometric point (resp. a strictly local adic space). Then we have

nE (X (9)) = () = Hom (3", Z/(1)(1).

Since M is sharp and fs, we have M ~ 77 for some r, and we obtain a non-
canonical isomorphism k¢t (¢) = (Z’(l)(l))r.

Remark 4.4.23. For any connected locally noetherian fs log adic space X and any
log geometric point £ of X, the natural inclusion from the category of finite étale
covers to that of finite Kummer étale covers is fully faithful, and hence induces a
canonical surjective homomorphism 77 (X, &) — 7¢*(X, €) (see [Gro71l V, 6.9]).

Example 4.4.24. Let (k, k%) be an affinoid field, and let s = (Spa(k,k™*), M) be
an fs log point as in Example . Lets = (Spa(K, K1), M) be a geometric point
over s, where K is the completion of a separable closure k*P of k, and let s be a

log geometric point over s. Then we have a canonical short exact sequence

1— 7T11(et (5,5) — 7T1fet

where T(3,3) = Hom(Mgp,z’(l)(ksep)) (as we have seen in Corollary (4.4.22))
and 7¢*(s,3) = Gal(k*P /k). If s is a split fs log point as in Evample then
any choice of a Gal(k*°P/k)-equivariant splitting of M — M = M/K* also splits
this exact sequence, inducing an isomorphism
¢ (5,3) = Hom (M, Z/ (1) (k**P)) » Gal(k*P /).

Example 4.4.25. Let (k, k™) be an affinoid field. Consider 0 = Spa(k, k™), the
point of Spa(k(Z>o), kT (Z>o)) = Spa(k(T), k™ (T)) defined by T = 0. Let us denote
by 07 the log adic space with underlying adic space 0 and with its log structure
pulled back from Spa(k(Z>o), k™ (Z>0)), which is the split fs log point (X, Mx) =

+ X . =0 ’Va
(Spa(k, k™), 0%, @ (Z>0)x) as in Example [2.3.15, Let 0" and 07 be defined over
09 as in Evample |4.4.24] (with s = 0° there). Then

T (07,07) = Z/(1)(K*P) x Gal(k**P /k).

For each n invertible in k, and each r > 1, we have a Z/n-local system J

(s,3) — W?(S,E) -1,

o 06
- rn OM Uygy
defined by the representation of wx¢t(09,0°) on (Z/n)" such that a topological gener-

ator of 7 (1)(Kk®P) acts as the standard upper triangular principal unipotent matrix
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Jr and Gal(k*P /k) acts diagonally on (Z/n)" and trivially on ker(J,. — 1). (The
local system thus defined is independent of the choice of the generator ofi'(1)(ksep)
up to isomorphism.) Moreover, for each m > 1 with m invertible in k, we also have
the Z/n-local system K2, = defined by the representation of wket(oa,ﬁa) induced
from the trivial representatwn of mZ'(1 ) (k5P) x Gal(kS°P/k) on Z/n. (These local
systems will be useful for defining quasi-unipotent nearby cycles in Section )

Example 4.4.26. Let s, 3, and s be as in Example |4.4.24, and let f : X — s be
any strict lft morphism of log adic spaces. Let § be a geometric point of X above
3, and let € be a log geometric point above & and S. Let X (&) denote the strict
localization of X at . Then, by Proposition [£.4.9] and Corollary [£.4.22 we have
€ P € ~/ g Se
(X (6.8 mEA (53 > Hom (315 (1) (7))

Lemma 4.4.27. Let (X, Mx), £ = Spa(l,I1), X(£), z, and M := Mx ¢ be as in
Proposition 4.4.9] Let e¢ : Xist — Xeo be the natural projection of sites, as before.
Then, for each sheaf F of finite abelian groups on Xye¢, we have

(Rieee -(F)), = H' (x(¢.8), F).

Proof. By definition, we have (Rigét’*(f))g = HﬂHl(Ukét,F), where the direct
limit is over the filtered category of étale neighborhoods iy : & — U in X. By
Proposition up to étale localization, we may assume that X admits a chart
modeled on P := M. Consider the morphism i~! : 1'_n>1Uket — Tkét, where the
dlrect limit of sites lgrl Uket 1s as in [AGV73, VI, 8.2.3], induced by the morphisms

: Ukgt — Tyet- Since each Kummer étale covering of € can be further covered by
some standard Kummer étale covers induced by n-th multiple maps [n] : P — P,
for some integers n > 1 invertible in [, and since coverings of the latter kind are
in the essential image of i~!, by Proposition |4.4.7] u we have an equivalence Erat
l&nUk . of the associated topoi. Consequently, we also have qu '(Uet, F)

H (&at, €H(F)) = HY (wFe (¢, o, F ) as desired.

Let (X, Mx) be a locally noetherian fs log adic space, and let Mx,,, be as i
Proposition For each positive integer n invertible in Oy, let

[l

O

=

[n]
B e = ker(Ox,, — 0%,
and
= ki OX [n] Ox
P = ker(O% DE
By Corollary we have canonical isomorphlsms
€&t (Hn,ét) = Ko két

and

Moy 6t = Eét,*(ﬂn,két)-
We shall omit the subscripts “két” and “ét”, and write simply p,,, when there is
no risk of confusion. Consider the sequence

L= p, > MY, — ]M%’két —1

on Xyst, which is exact by comparing stalks at log geometric points of X (cf.
Construction [4.4.3), whose pushforward under €4 : Xyxet — Xeot induces a long
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exact sequence
[n] 1
L= p, = ME, = ME, = Res(py,),
which is compatible with the Kummer exact sequence

1%“71%0;%@0;(@%1
and induces a canonical morphism
(4.4.28) M iM% — Rleeon(py)

on Xet, which is nothing but the inverse of the isomorphism in Lemma [£.4.27] by
comparing stalks at geometric points of X. Therefore, we obtain the following:

Lemma 4.4.29. The above morphism (4.4.28) is an isomorphism and, for each i,
the canonical morphism N (R'es . (p,)) — R'cet (@) is an isomorphism.

4.5. Localization and base change functors. In this subsection, we study the
behavior of sheaves on Kummer étale sites under certain direct image and inverse
image functors. (The readers are referred to [AGV73, IV] for general notions con-
cerning sites, topoi, and the functors and morphisms among them.)

For any morphism f : Y — X of locally noetherian fs log adic spaces, since
pulling back by f respects fiber products, we have a morphism of topoi

(Fret frere) = Vi = Xige-

Concretely, we have the direct image (or pushforward) functor
Jets : Sh(Yier) = Sh(Xier) = F = (U = frer(F)(U) := F(U xx Y)),

and the inverse image (or pullback) functor

et + Sh(Xier) — Sh(Yier)
sending G € Sh(Xye) to the sheafification of V +— lim, G(U), where U runs through
the objects in Yi¢; such that V — X factors through f~1(U) — Y. It is formal that
fet,« is the right adjoint of fk;% Moreover, fkfci is exact, and fies,« is left exact.

For any Kummer étale morphism f : Y — X, the functor fi¢s, . is also called the

base change functor, while the functor fk_e% is simply fk_e% (F)(U) := F(U), because
any object U of Yy gives an object in Xygy by composition with f. Moreover, we
have the localization functor

Jree,r : Sh(Yier) = Sh(Xuat)-
sending F € Sh(Yieét) to the sheafification of the presheaf

o (P I FW.h),
heMorx (U,Y)

where F (U, h) means the value of F on the object U My oof Xyst- We shall
also denote by fret, : Shan(Yier) — Shap(Xket) the induced functor between the
categories of abelian sheaves, in which case the above coproduct becomes a direct
sum. It is also formal that fies, is left adjoint to fk_e%, and that fiet, is right exact.

Lemma 4.5.1. Let f : V — W be a finite Kummer étale morphism in Xy . If
f has a section g : W — V| then there exists a finite Kummer étale morphism
W' — W and an isomorphism h : V. = W [[ W' such that the composition ho g is
the natural inclusion W — W [[W'.
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Proof. We may assume that W is connected. Let G := 7*(W) (see Remark
. Via the equivalence , the finite Kummer étale cover V- — W (resp.
W 5 W) corresponds to a finite set S (resp. a singleton Sp) with a continuous
G-action (resp. the trivial action), and the section g : W — V corresponds to a
G-equivariant map g, : So — S. This gives rise to a G-equivariant decomposition
S = g.(So) IS, and hence to the desired decomposition h : V' = W ][ W', by
Corollary O

Proposition 4.5.2. Given any finite Kummer étale morphism f 'Y — X of
locally noetherian fs log adic spaces, we have a natural isomorphism

fretn = frces  Shap(Yier) — Shap(Xket)-
Consequently, both functors are exact.

Proof. Let F be an abelian sheaf on Yyé. For any U € Xyg;, each morphism A in
Morx (U,Y) induces a section U — U X x Y of the natural projection U xx Y — U.
By Lemma we obtain a decomposition U x x Y 2 U] U’ identifying U —
UxxY with U < U[]U’, which gives rise to a canonical map F(U) — F(U xxY)
because F is a sheaf. By combining such maps, we obtain a map of presheaves

(flfét,!(‘F))(U) = EBhGMOFX(UvY) ‘F(Uv h) - (fkét,*(f))(U) = ]:(U Xx Y)v

which induces a canonical morphism fyst,1 — fist,« by sheafification.

By the above construction, it remains to show that, étale locally on U, there
exists a finite Kummer étale cover V' — U such that Morx (V,Y) is a finite set
and such that the sections V. — V xx Y given by h € Morx(V,Y) induces
HheMorx(V’Y) V 5 V xx Y. Note that this is true in the special case where
Y — X is strictly finite étale, because Y is étale locally on X a finite disjoint
union of copies of X. In general, up to étale localization on X, we may assume
that X is affinoid and modeled on a sharp fs monoid P; and that Y — X factors
as a composition ¥ — Xgq = X xx(py X(Q) — X, where the first morphism
is strictly finite étale, and where the second morphism is the standard Kummer
étale cover induced by a Kummer homomorphism u : P — @ of sharp fs monoids
such that the order of G = Q®P/usP(P®P) is invertible in Oy. By Proposition
Y xx Xg 2Y X Xo (XQ X x XQ) > Y xx X(G) — Xg is strictly fi-
nite étale. Hence, as explained above, there exists a finite Kummer étale cover
V — U xx Xg such that HhEMoer(V,YXXXQ) V 2V xx, (Y xx Xg). Since

Hherorxviyy V = HheMoer WVyxxxo) VEV xx, (Y xx Xg) =2V xx Y, the
composition of the finite Kummer étale covers V' — U x x Xg — U gives the desired
finite Kummer étale cover V — U. (Il

Lemma 4.5.3. Let X be a locally noetherian fs log adic space. Let 1 : Z — X be
a strict closed immersion of log adic spaces, and 73: W — X an open immersion of
log adic spaces, as in Definition [2.2.23), such that W = X — Z. For 7 = an, ét, or
két, let (2;1, 17,4) and (j;l,j?’*) denote the associated morphisms of topoi, and let
J2,1 denote the left adjoint of j;l (which is defined as explained above).

(1) For each abelian sheaf F on X+, we have the excision short exact sequence
0= 32125 "(F) = F = 1205 (F) = 0 in Shap(Xe).

(2) For each abelian sheaf G on Z3, the adjunction morphism Z?_l 12.(G) = G
is an isomorphism in Shay(Z2), and hence 17 . is exact and fully faithful.
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(8) For each abelian sheaf H on Wo, the adjunction morphism H =5 35" 32.1(H)
is an isomorphism in Sha,(We), and hence j1 4 is exact and fully faithful.

Proof. These follow easily from the definitions of the objects involved, by evaluating
them at points (resp. geometric points, resp. log geometric points) when ? = an
(resp. ét, resp. két). (See [Hub96, Prop. 2.5.5] and Lemma [4.4.4] ) O

Lemma 4.5.4. Let f: X — X and qg:Z— Z be morphisms of locally noetherian
fs log adic spaces whose underlymg morphisms of adic spaces are isomorphisms,
and letv:Z — X and 1 : Z — X be strict immersions compatible with f andg.
Then, for any abelian sheaf F on Xye, and for each i > 0, we have

(4.5.5) R giestn s (F) Z 0 R frege o (F).

This applies, in particular, to the case where X and Z are the underlying adic
spaces of X and Z, respectwely, equipped with their trivial log structures, in which
case Xket ~ Xy and Zket & Ze¢, and therefore frer : Xisy — Xket and gyet : Zxes —
Zkét can be identified with the natural morphisms Xyee — Xet and Zyee — Zgt,
respectively.

Proof. Up to compatibly replacing X and X with open subspaces, we may assume
that 2 and 7 are compatlble strict closed immersions. By Lemma [4.5.3|(2), and by
applying %kt « to , it suffices to show that we have

(456) Rifkét,* Tkét, * l;élt (f) cht * illzelt Rifkét,*(f)~
Let y: W —> X and j: W — X denote the complementary open immersions. By
Lemma [4.5.3(|1)), we have a long exact sequence

c = R fuct o It Jiae(F) = R frees(F) = R fistn et g (F) = -+ .
By the definition of jié,1 and Jiet,1, and by comparing stalks at log geometric points
as in Lemma 4.4.4L we obtain R fyet « jket 'jlzelt (F) = Jret,! jlzélt R fyst,«(F), which

induces the desired (4.5.6), by Lemma [4.5.3|() again. d

Lemma 4.5.7. Let1: Z — X be a strict closed immersion of locally noetherian fs
log adic spaces over Spa(Qp,Z,).

(1) For ? = an, ét, or két, the canonical morphism @2_’1,_,((’)}_7/17) — OF /pis
an isomorphism.
(2) For any F,-sheaf F on Zye, the canonical morphism

(1zxet,x(F)) © (0%, /D) = 1260, (F @ (OF _ /p))

18 an isomorphism.

Proof. The case where 7 = an or ét is already in [Schi3bl Lem. 3.14]. As for

= két, the proof is similar, which we explain as follows. At each log geometric
point ¢ = (Spa(l,I"), M) — X, the stalk of O}két /p at ¢ is isomorphic to {1 /p by
construction, because ker(O}kéhC — 1), which is the same as ker(Ox, ¢ — 1), is

p-divisible (as X is defined over Spa(Q,,Z,)). The analogous statement for O}, 2P
is true. Thus, we can finish the proof by comparing stalks, by Lemma [4.4.4] (Il

Lemma 4.5.8. Letg: Y — Z be a morphism of locally noetherian fs log adic spaces
over Spa(Qyp,Z,) such that its underlying morphism of adic spaces is an isomor-

phism. Suppose moreover that g% s Mz o) — Myg is injective and splits, for each
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geometric pointy of Y. Then, for any F,-sheaf F on Yis:, the canonical morphism
R giss,«(F) ®r, ((9}%t /p) = Rigues,«(F @, ((9;“;t /p)) is an isomorphism.

Proof. By Lemma [4.4.4] it suffices to show that, for each log geometric point z :
(Spa(l,iT), M) — Z as in Construction the induced morphism

(4.5.9) (R'guer«(Fp)) s ®r, (0F  /p)z = (R giet«(OF . /D))

is an isomorphism. Since g induces an isomorphism of the underlying adic spaces,
the underlying geometric point Z of z uniquely lifts to a geometric point . By
assumption, g% : Mgzz — Mygy is injective and splits, in which case we have
Myz = Mzz@® N, for some fs monoid N. Therefore, we can lift Z to some (satu-
rated by not necessarily fine) log point (Spa(l7 "), M’) — Y such that M’ =2 M@N.
By taking fiber products with Spa(l{(-L N), 1T (L N}) over Spa(l(N),IT(N)), by tak-
ing reduced subspaces, and by taking the limit with respect to m (cf. Construction
, we can further lift this log point to a log geometric point y of Y above 7.
Thus, by a limit argument similar to the one in the proof of Lemma [£.4.27] and by

Proposition and Lemma [4.5.7) we may identify (4.5.9) with
H'(T,F)®g, (I"/p) = HY(L, 1" /p),
where ) ) o
I := ker(75(7,9) — 7%(2,2)) = Hom (N, Z(1)(1)).
Since H'(I', F) is computed by some bounded complex of free F,-modules, and

since HY(T, 1" /p) is computed by the tensor product of this complex with the flat
F,-module It /p, we see that (4.5.9)) is an isomorphism, as desired. O

Proposition 4.5.10. Let f : Y — X be a morphism of locally noetherian fs log
adic spaces over Spa(Qp,Zy) such that its underlying morphism of adic spaces is
a closed immersion. Suppose moreover that (f*(Mx))_ — My is injective and
splits, for each geometric point y of Y. Then, for any F,-sheaf F on Yie, the
canonical morphism R’ fyes «(F) @, ((9}"(]“3t /p) = R frée (F ©F, (O;(ét /p)) is an
isomorphism.

Proof. In this case, let Z denote the underlying adic space of Y equipped with the
log structure pulled back from X. Then f :Y — X factors as the composition of

a morphism ¢ : Y — Z as in Lemma and a strict closed immersion 2 : Z — X
as in Lemma and we can combine Lemmas [4.5.9} [£.5.7 and £.5.8] O

4.6. Purity of torsion local systems. We have the following purity result for
torsion Kummer étale local systems.

Theorem 4.6.1. Let X, D, and k be as in Ezample 2317 Let U := X — D,
and let 3 : U — X denote the canonical open immersion. Suppose moreover that
char(k) = 0 and k™ = Ok. Let L be a torsion local system on Us. Then jiet (L)
is a torsion local system on Xys, and Rige (L) =0 for all i > 0.

Let us start with some preparations.
Lemma 4.6.2. In the setting of Theorem consider the commutative diagram:

Jkét

(4.6.3) Uket — Xkt

lz l

Jét
Usy — Xgt-
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Then the canonical morphism

(4.6.4) Reey «(Z/n) — Ryar «(Z/n)

is an isomorphism; and R'js «(Z/n) = (/\i(mil?/nﬂif))(fi), for every i > 0.

Proof. By Lemma [4.4.29] it suffices to show that the composition
(/\i(m‘?/nﬂ?))(—i) — Rlegy «(Z/n) — R'ys0.4(Z/n)

(induced by and ) is an isomorphism. Since this assertion is étale

local on X, we may assume that D C X is the analytification of a normal crossings
divisor on a smooth scheme over k, and further reduce the assertion to its classical
analogue for schemes by [Hub96, Prop. 2.1.4 and Thm. 3.8.1], which is known (see,
for example, [II02, Thm. 7.2]). O

Lemma 4.6.5. In the setting of Lemma [£.6.2], the canonical morphism
(4.6.6) Z/n — Rjyey,«(Z/n)
is an isomorphism.

Proof. Let C be the cone of (in the derived category). It suffices to show that
H* (Wyet, C) = 0, for each W — X that is the composition of an étale covering and
a standard Kummer étale cover of X. Note that the complement of U x x W in W
is a normal crossings divisor, which induces the fs log structure of W as in Example
Consider the diagram @ , with U — X replaced with U xx W — W.
Since the corresponding morphism (4.6.4)) for this new diagram is an isomorphism

by Lemma and since (4.6.4) is obtained from (4.6.6)) by applying €4 to both
sides, we have Reg; (Clw,,,) = 0 on Wy, and so H® (Wi, C) = 0, as desired. O

Proof of Theorem [£.6.1] Let V' — U be a finite étale cover trivializing L. By
Proposition [4.2.1] it extends to a finite Kummer étale cover f : Y — X, where Y
is a normal rigid analytic variety with its log structures defined by the preimage of
D. Moreover, if Y’ — Y is Kummer étale, then Y is locally a normal rigid analytic
variety, and any section of a finite torsion constant sheaf over the preimage of U
uniquely extends to a section of the constant sheaf with the same coeflicients over
Y’, by Example Proposition Corollary and Proposition
Thus, Jxet,«(L)|vi., is constant, and jket «(IL) is a torsion local system on Xiye.
Given this f : Y — X, up to étale localization on X, we have some X — X asin
Lemma Then the underlying adic space of Z :=Y x x X is a smooth rigid
analytic variety, its fs log structure is defined by some normal crossings divisor as
in Example and the induced morphism Z — X is Kummer étale, because
these are true for X . (Alternatively, we can construct Z — X, as in the proof
of Proposition by using Lemma and the last assertion of Lemma m)
Thus, in order to show that R'jxs; «(IL) = 0, for all i > 0, up to replacing X with Z,
we may assume that L = Z/n is constant, in which case Lemma applies. [

Corollary 4.6.7. Let k and 7: U — X be as in Theorem [£.6.1] Let L be an étale
Fp-local system on Ug. Then L = jis; (L) is a Kummer étale Fp-local system
extending .. Conversely, any étale Fp-local system L on Xust is of this form. In
either case, H'(Ug, L) = H'(Xysy, L), for all i > 0.
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Proof. This follows from Theorem [£.6.1] and the fact that, for any Kummer étale
F)-local system IL on X, the canonical adjunction morphism L — Rjiet,« ];éi(]L) is
an isomorphism because it is a morphism between local systems whose restriction

to the open dense U is the identity morphism of L. [

5. PRO-KUMMER ETALE TOPOLOGY

5.1. The pro-Kummer étale site. In this subsection, we define the pro-Kummer
étale site on log adic spaces, a log analogue of Scholze’s pro-étale site in [Sch13al.

For any category C, by [Sch13al, Prop. 3.2], the category pro-C is equivalent to
the category whose objects are functors F' : I — C from small cofiltered index
categories and whose morphisms are Mor(F,G) = lim  lim, Mor (F(i), G(j)), for
each F': I — C and G : J — C. We shall use this equivalent description in what
follows. For each F' : I — C as above, we shall denote F(i) by F;, for each i € I,
and denote the corresponding object in pro-C as @ie ! F;.

Let X be a locally noetherian fs log adic space, with the category pro-Xis; as
above. Then any object in pro-Xye is of the form U = @iel U;, where each
U; — X is Kummer étale, with underlying topological space |U| := Jm, |U;|.

Definition 5.1.1. (1) We say that a morphism U — V in pro- Xy is Kummer
étale (resp. finite Kummer étale, resp. étale, resp. finite étale) if it is the
pullback under some morphism V' — Vj in pro- Xy of some Kummer étale
(resp. finite Kummer étale, resp. strictly étale, resp. strictly finite étale)
morphism Uy — V in Xieg-

(2) We say that a morphism U — V in pro-Xyg is pro-Kummer étale if it
can be written as a cofiltered inverse limit U = @ie s U; of objects U; —
V' Kummer étale over V' such that U; — U; is finite Kummer étale and
surjective for all sufficiently large i (i.e., all ¢ > g, for some ig € I). Such a
presentation U = l'mi U; — V is called a pro-Kummer étale presentation.

(3) We say that a morphism U — V as in is pro-finite Kummer étale if all
U; — V there are finite Kummer étale.

Definition 5.1.2. The pro-Kummer étale site Xprokst has as underlying category
the full subcategory of pro-Xye consisting of objects that are pro-Kummer étale
over X, and each covering of an object U € Xp,okét is given by a family of pro-
Kummer étale morphisms {f; : U; — U }ier such that |U| = U;er fi(|U;]) and such
that f; : U; — U can be written as an inverse limit U; = @;KA U, — U satisfying
the following conditions (cf. [Sch16]), for each i € I:
(1) Each U, € Xprokst, and U = Uy is an initial object in the limit.
(2) The limit runs through the set of ordinals p less than some ordinal .
(3) For each pr < A, the morphism U, — U<, := I'&n#%# U, is the pullback
of a Kummer étale morphism in X4, and is the pullback of a surjective
finite Kummer étale morphism in Xy for all sufficiently large pu.

Remark 5.1.3. There is another version of pro-étale site introduced in [SW20].
But we will not try to introduce the corresponding version of pro-Kummer étale
site in this paper.

This definition is justified by the following analogue of [Sch13al Lem. 3.10]:
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Lemma 5.1.4. (1) Let U, V, and W be objets in pro-Xye. Suppose that U —
V is a Kummer étale (resp. finite Kummer étale, resp. étale, resp. finite
étale, resp. pro-Kummer étale, resp. pro-finite Kummer étale) morphism
and that W — V is any morphism. Then the fiber product U xy W exists
in pro-Xyet, and U xy W — W is Kummer étale (resp. finite Kummer
étale, resp. étale, resp. finite étale, resp. pro-Kummer étale, resp. pro-finite
Kummer étale). Moreover, the induced map |U xy W| — |U| Xy [W] is
surjective.

(2) A composition of two Kummer étale (resp. finite Kummer étale, resp. étale,
resp. finite étale) morphisms in pro-Xye is still Kummer étale (resp. finite
Kummer étale, resp. étale, resp. finite étale).

(8) Let U be an object in pro-Xyet, and let W C |U| be a quasi-compact open
subset. Then there exists an object V in pro-Xye with an étale morphism
V — U such that |V| — |U| induces a homeomorphism |V| = W. If, in
addition, U is an object in Xproket, then there exists V' as above that, for
any morphism V' — U in Xproker such that |V'| — |U| factors through W,
the morphism V' — U also factors through V.

(4) Pro-Kummer étale morphisms in pro-Xye: are open (i.e., they induce open
maps between the underlying topological spaces).

(5) Let V' be an object in Xproksr- A surjective Kummer étale (resp. surjective
finite Kummer étale) morphism U — V in pro-Xye is the pullback under
some morphism V. — Vy in pro-Xyet of a surjective Kummer étale (resp.
surjective finite Kummer étale) morphism Uy — Vi in Xyet-

(6) Let W be an object in Xproket, and let U — V' — W be pro-Kummer étale
(resp. pro-finite Kummer étale) morphisms in pro-Xyst. Then U and V are
also objects in Xproker, and the composition U — W is pro-Kummer étale
(resp. pro-finite Kummer étale).

(7) Arbitrary finite inverse limits exist in Xproket -

(8) Any base change of a covering in Xproket 15 also a covering.

Proof. The statements ,@ follow from essentially the same arguments as in
the proof of [Schl3al Lem. 3.10], with inputs from Propositions and
Corollary and Proposition here.

As for the remaining statement , suppose that {U; — U}ies is a covering
of U € Xprokes, and that V' — U is a morphism in Xpoket. We need to show
that {U; xy V' — V}er is also a covering. Firstly, if U; = @1“0\ U, — U is an
inverse limit satisfying the conditions in Definition then so is the pullback
U xyV 1'£1M<)\(Uu xy V) — V. As for the surjectivity, by working locally U,
we are reduced to the case where U is quasi-compact, in which case we may assume
that {U; — U}ier is a finite covering. By taking the disjoint union of U; — U, we
are further reduced the special case where I = {ip} is a singleton, in which case
Ui, xu V| — |V] is surjective, by (). O

Let us also record the following analogue of [Sch13al Prop. 3.12].

Proposition 5.1.5. Let X be a locally noetherian fs log adic space.
(1) Let U = 1£1Z Ui — X be a pro-Kummer étale presentation of U € Xproket
such that all U; are affinoid. Then U is quasi-compact and quasi-separated.
(2) Objects U as in generates Xprokét, and are stable under fiber products.
(3) The topos X 4 is algebraic.
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(4) An object U in Xprokst 1S quasi-compact (resp. quasi-separated) if and only
if |U| is quasi-compact (resp. quasi-separated).

(5) Suppose that U — V is an inverse limit of finite Kummer étale surjective
morphisms in Xproket- Then U is quasi-compact (resp. quasi-separated) if
and only if V is.

(6) A morphism U — V in Xpokst 15 quasi-compact (resp. quasi-separated) if
and only if |U| — |V is quasi-compact (resp. quasi-separated).

(7) The site Xproket @ quasi-separated (resp. coherent) if and only if | X| is
quasi-separated (resp. coherent).

Proof. By Lemma 5.1.4){4]), pro-Kummer étale morphisms are open. Hence, the
same arguments as in the proof of [Sch13al, Prop. 3.12] also work here. O

Let v : Xprokét — Xkt be the natural projection of sites. We have induced
functors v=! : Sh(Xyket) — Sh(Xprokst) and vy : Sh(Xproket) — Sh( Xkt )-

Proposition 5.1.6. Let F be any abelian sheaf on Xye, and let U = @Z U; be
any qcgs object in Xprokst- Then HY (Uprokét,v_l(]:)) = li_r)ni HI(U; xet, F), for all
Jj=0.

Proof. This follows from essentially the same argument as in the proof of [Schi3a),
Lem. 3.16], by using Proposition and here. O

Proposition 5.1.7. For any abelian sheaf F on Xyet, the canonical morphism
F — Ru,v~Y(F) is an isomorphism.

Proof. For each j > 0, the sheaf R7v, v~ (F) on Xy is associated with the presheaf
U — HI (Uproker, v (F)). If j = 0, then F = v,0~!(F), because HJ (Uge, F) —
H? (Uprokét, ’U_l(]:)), for all gqegs objects U in Xy, by Proposition If j >0,
essentially by definition, the cohomology H?(U, F) vanishes locally in the Kummer
étale topology, and hence the associated sheaf Riv,v~1(F) is zero, as desired. [J

Corollary 5.1.8. The functor v=' : Shap(Xket) — Shab(Xprokst) i8 fully faithful.
For technical purposes, let us also define the pro-finite Kummer étale site.

Definition 5.1.9. The pro-finite Kummer étale site Xprofket has as underlying
category the category pro-Xgst, and each covering of U € Xyomet is given by a
family of pro-finite Kummer étale morphisms {f; : U; — U}iecr such that |U| =
Uier fi(JUi]) and such that each f; : U; — U can be written as an inverse limit
U, = @;K N U,, — U satisfying the following conditions:
(1) Each U, € Xpromket, and U = Up is an initial object in the limit.
(2) The limit runs through the set of ordinals u less than some ordinal .
(3) For each pu < A, the morphism U, — U, := @1 U, is the pullback of
a finite Kummer étale morphism in Xyet, and is the pullback of a surjective
finite Kummer étale morphism for all sufficiently large .

<

Definition 5.1.10. For each profinite group G, the site G-PFSets has as underlying
category the category of profinite sets with continuous actions of G, and each
covering of S € G-PFSets is given by a family of continuous G-equivariant maps
{fi : Si = S}tier such that S = U;erfi(S;) and such that each f; : S; — S can be
written as an inverse limit S; = %iLan N S, — S satisfying the following conditions:
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(1) Each S, € G-PFESets, and S = Sp is an initial object in the limit.
(2) The limit runs through the set of ordinals y less than some ordinal .
(3) For each p < A, the map S, — S<, := @ S, is the pullback of a

surjective map of finite sets.

n<p

Remark 5.1.11. Since a profinite set with a continuous action of a profinite group
G is equivalent to an inverse limit of finite sets with continuous G-actions, we have
a canonical equivalence of categories G-PFSets = pro-(G-FSets).

Proposition 5.1.12. Let X be a connected locally noetherian fs log adic space, and

let ¢ be a log geometric point of X. Then there is an equivalence of categories
Xprofkét = ﬂ-ll(ét (Xa C)'M

sending U = lim U; — X to SU) := lim, Morx (¢, U;).

Proof. By Corollary 4.4.18, Xpss = 8¢ (X, ¢)-FSets, and hence the composition

of Xprofket = Pro-Xper = pro-(m¢* (X, ¢)-FSets) = ¥ (X, ()-PFSets sends U to

S(U), and gives the desired equivalence of categories. By comparing definitions,

the equivalence thus obtained also matches the coverings. (]

5.2. Localization and base change functors. For any morphism f:Y — X
of locally noetherian fs log adic spaces, by the same explanations as in Section [4.5]
we have a morphism of topoi

~ ~

(fp_r(l)két’ prokét,*) : Yprokét - Xprokét'

Proposition 5.2.1. Let f : Y — X be a qcgs morphism of locally noetherian fs
log adic spaces. Consider the natural functors U;(l : Sh(Xket) — Sh(Xproket) and
v{,l : Sh(Yiet) — Sh(Yproket). Then, for any abelian sheaf F on Yie, we have a
natural isomorphism U;(l R fiet« (F) = R forokét,« U{,l(}").
Proof. This is because, for each ¢ > 0, the i-th cohomology of both sides of the
morphism v)_(l R fust «(F) = Rfprokés « U;l(]-' ) (canonically defined by adjunction)
can be identified with the sheafification of the presheaf sending a qcgs object U =
@j Uj in Xprokét to ng Hl(Uj Xx Kf) [l

When Y € Xroket, let Xproket )y denote the localized site. Then we have the
following natural functors:

(1) The inverse image (or pullback) functor
];rcl)két ¢ Sh(Xproket) — Sh(Xprokét/y) :
Fir (U fy;})két(f)(U) = F(U)).

(2) The base change functor
fprokét,« : Sh(Xprokét/y) — Sh(Xproket) :
F = (U fproket«(F)(U) := F(U xx Y)).
(3) The localization functor
Joroket,t + Sh(Xproket /y) = Sh(Xproket)
sending F € Sh(Xproket /Y) to the sheafification of the presheaf

fpl))rokét,!(‘}-) U H ]:(U7 h)a
h:U—=Y
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where the coproduct is over all pro-Kummer étale morphisms h : U — Y
over X. We also denote by fproket,! : ShAb(Xprokét/Y) — Shap (Xprokes) the
induced functor between the categories of abelian sheaves, in which case
the above coproduct becomes a direct sum.

It is formal that foroket,! is left adjoint to fp;(ljkét, and hence fproket, is right exact.
Remark 5.2.2. If Y — X is Kummer étale, then naturally Xpmkét/y = Yorokét-

Lemma 5.2.3. Let f : V — W be a finite Kummer étale morphism between objects
in Xprokét- If f has a section g : W — V', then there exists a finite Kummer étale
morphism W’/ — W between objects in Xprokét, and an isomorphism h @V =
W I W' such that the composition h o g is the natural inclusion W — W[ W’.

Proof. By Lemma , we may assume that f : V. — W is the pullback of
some finite Kummer étale morphism Vy — Wy in Xyg. Let W = @i W; be a
pro-Kummer étale presentation. Without loss of generality, we may assume that all
transition morphisms W; — W; are finite Kummer étale, and that W — W factors
through W; — Wy for all 4, so that V = l&ll(Wl Xw, Vo). Then we may replace
Wy with some W; and assume that W — W, and hence V' — W are pro-finite
Kummer étale. We may also assume that Wy is connected. Let G := 7k (Wy) (see
Remark . Via the equivalence in Proposition V—=>Wyand W — W,
corresponds to profinite sets S and Sy with continuous G-actions, and the morphism
f:V — W and the splitting g : W — V gives rise to a G-equivariant decomposition
S 5 So]IS" and hence to the desired decomposition h : V' = W ][W’ (cf. the
proof of Lemma . O

Proposition 5.2.4. Given any finite Kummer étale morphism f 'Y — X of
locally noetherian fs log adic spaces, we have a natural isomorphism

fprokét,! :> fprokét,* : ShAb(Yprokét) — ShAb (Xprokét)-
Consequently, both functors are exact.

Proof. For each U € Xprokst, any pro-Kummer étale morphism h: U — Y over X
induces a splitting U — Y X x U of the finite Kummer étale morphism Y x x U — U,
and hence we have a decomposition Y x x U 2 U [[U’, by Lemma Then we
can finish the proof by the same arguments as in the proof of Proposition[4.5.2 [

5.3. Log affinoid perfectoid objects. Recall that affinoid perfectoid objects
form a basis for the pro-étale topology of any locally noetherian adic space over
Spa(Qp,Zy) (see [Schi3al Def. 4.3 and Prop. 4.8] and [Schl7, Lem. 15.3]). We
would like to establish a suitable log analogue of this fact.

Definition 5.3.1. Let X be an analytic locally noetherian fs log adic space over
Spa(Zy,Zy). An object U in Xproket is called log affinoid perfectoid if it admits a
pro-Kummer étale presentation
U =l U, = lim(Spa(Ry, R} ), Ms.2) = X
i€l i€l

satisfying the following conditions:

(1) There is an initial object 0 € I.

(2) Each U; admits a global sharp fs chart P; such that each transition mor-

phism U; — U; is modeled on a Kummer chart P; — P;.
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(3) The affinoid algebra (R, R*) := (liy, _ (RY, R""))", where each (RY, R4*)
is the uniformization of (R;, Rj") as in [KLI5, Def. 2.8.13] (i.e., R is the
completion of R; for the spectral seminorm and R;H' is the completion of
the image of R in RY) and where the completion is as in [KLI5, Def.
2.6.1], is a perfectoid affinoid algebra.

(4) The monoid P := lim, . P; is n-divisible, for all n > 1.

In this situation, we say that U = l'glie s U; is a perfectoid presentation of U.

The following remark provides an equivalent form of Definition [5.3.1{[3) when
X is defined over Spa(Q,,Z,), and explains the compatibility of the deﬁmtlons of
affinoid perfectoid objects in [Schi3al Def. 4.3] and [KL15l Def. 9.2.4].

Remark 5.3.2. In Definition suppose that X is defined over Spa(Q,,Zp).

In this case, p is invertible in ker(R;” — RYT). It follows that R} /p™ = R!* /p",
. . w put A s

for each n > 1. Then the completion (R, R") = (h_n)liel (RY,Ry™))" is simply the

p-adic completion of hﬂie] (Ri, Rf).

Remark 5.3.3. By Proposition[5.1.5] a log affinoid perfectoid object U as in Defi-
nition [5.3-1]is qcgs. By abuse of language, we shall sometimes say that U is modeled
on P. Since the transition morphisms F; — P; are Kummer and hence injective
(by Definition 7 P is sharp and saturated because each P; is (by assumption).
Therefore, the condition in Definition is equivalent to the condition that
P is uniquely n-divisible, for all n > 1. (The condition in Definition will
be useful in the proof of Lemma [5.3.8 below.)

Lemma 5.3.4. Let P be a sharp fs monoid. Suppose that X is an analytic locally
noetherian adic space over Spa(Z,,Z,) equipped with the trivial log structure as in
Ezxample and that Y = X(P) is as in Example 2.2.19] Suppose that l'gliel U,
is an affinoid perfectoid object in Xproket, Which exists by |Schl7, Lem. 15.3], where
all U; are equipped with the trivial log structures as well. Let us equip I x Z>1 with
the partial ordering such that (i,m) > (j,n) ezactly when i > j and n|m. Then
@(i,n)GIXZZl UA%P) is a log affinoid perfectoid object in Yprokst, which gives a
pro-Kummer étale (resp. pro-finite Kummer étale) cover of Y when yLniE[ U; is a
pro-étale (resp. pro-finite étale) cover of X.

Proof. This follows from Lemmas [2.2.15] and [5.1.4] and Definition [5.3.1] O

Remark 5.3.5. Let U € X,,;0k¢t be a log affinoid perfectoid object as in Definition
Then U = Spa(R, RT) is an affinoid perfectoid space, called the associated
ajﬁnoid perfectoid space, or simply the associated perfectoid space. In this case, we
write U ~ 1m U;. The assignment U U defines a functor from the category
of log affinoid perfect01d objects to the category of affinoid perfectoid spaces. We
emphasize that U does not live in Xprokét in general. Thanks to the following
Lemma we can identify the underlying topological spaces of U and limi U;.

Lemma 5.3.6. Let U = hm U; € Xorokés be a log affinoid perfectoid object, and let

U be the associated aﬂ?nozd perfectozd space, as in Remark - Then the natural
map of topological spaces |U| — Lz |U;| is a homeomorphism.
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Proof. The map is bijective because a continuous valuation on R is equivalent to a
compatible system of continuous valuations on R;’s. By [KLI5L Lem. 2.6.5], each
rational subset of U comes from the pullback of a rational subset of some U;, and
hence the topologies also agree, as desired. O

Lemma 5.3.7. Let1: Z — X be a strict closed immersion (see Definition [2.2.23)
of analytic locally noetherian fs log adic spaces over Spa(Z,,Z,). Then, for each
log affinoid perfectoid object U = 1&1 U; of Xprokest, the pullbackV :=U xx Z :=
L eI(U X x Z) is a log affinoid perfectozd object of Zyrokst- Moreover, the natural
morphism V — U is a closed immersion of adic spaces.

Proof. By definition and by Proposition m 4.1.14] the conditions (1), , and in
Definition are satisfied. It remains to verify the condition (3)). Let (R, RT) be
the completion of lim (R¥, R!'"), which is perfectoid by assumption. For each i €
I, write Spa(R;, ) x x Z = Spa(S;, S;"). Then the induced homomorphism RY —
Si* is surjective, because 2 : Z — X is strict and hence the underlying adic space
of the fiber product coincides with the fiber product of the underlying adic spaces.
Since R} and S}* are uniform, the quotient norm on S;* induced by the one on R} is
just the (spectral) norm on S¥. Let (S,S™) be the completion of lim, (S¥, Si).
Then S is uniform and admits a surjective bounded homomorphism R — S. In
this case, S is perfectoid, by [KL15, Thm. 3.6.17(b)], and the natural morphism
Spa(S, ST) — Spa(R, RT) is a closed immersion, as desired. O

Lemma 5.3.8. Let U = L eIU € Xprokét be a log affinoid perfectoid object,

with associated perfectoid space U as in Remark - Suppose that V. — U is a
Kummer étale (resp. finite Kummer étale) morphism in Xprower that is the pullback
of some Kummer étale (resp. finite Kummer étale) morphism Vo — Uy between
affinoid log adic spaces in Xyg. Then V — U is étale (resp. finite étale), and V is
log affinoid perfectoid. The induced morphism V — U is étale (resp. finite étale).
The construction V' YA/, for each log affinoid perfectoid object V' of Xprokét/U,

induces an equivalence of topoi U~ o = X7

proé prokét JU”

Proof. We may assume that 0 € I and that 0 is an initial object (up to replacing
1
I with a cofinal subcategory). Let U;* be as in Lemma for some m > 1
1 1
such that Vy xy, Ug® — U™ is strictly étale (resp. strictly finite étale). Since
P = ligiGIPi is m-~divisible, there is some i € I such that Py — P; factors as
Py — %PO — P;. Then Vy xy, U; — Uj is strictly étale (resp. strictly finite étale).
We may replace I with the cofinal full subcategory of objects that receive morphisms
from i. Then V := (Vo xy, U;) xy, U — U is strictly étale (resp. strictly finite
étale), and hence so is V' — U. This shows that we have a well-defined morphism of
sites Uprost — Xprokét U This induces an equivalence of topoi, because every étale
morphism W — U that is a composition of rational localizations and finite étale
morphisms arises in the above way, by [KL15, Lem. 2.6.5 and Prop. 2.6.8]. O

Corollary 5.3.9. Let U = @iel U; be an object in Xproket as in Definition
such that U; — X is a composition of rational localizations and finite Kummer étale

morphisms, for all sufficiently large ©. Then U xXx V is a log affinoid perfectoid of
Xprokét, for each log affinoid perfectoid object V' of Xprokst-
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Proof. By Lemma[5.3.8] U; x x V is log affinoid perfectoid, for all sufficiently large
i. Hence, U xx V = 'miel (U; xx V) is also log affinoid perfectoid, because the
p-adic completion of a direct limit of perfectoid affinoid algebras is again perfectoid,
and any direct limit of divisible monoids is still divisible. O

Lemma 5.3.10. Let U and V be log affinoid perfectoid objects as in Definition
5.3.1 with a morphism V. — U, in Xprokét- Suppose that U = @iel U; is a
i€l Pi
respectively. Then V admits a pro-Kummer étale presentation V = @jeJ V; with

pro-Kummer étale presentation with U; and U modeled on P; and P = lim.

each V; modeled on some P;, so that V is also modeled on P.

Proof. Let V = ythe " Vi, be a pro-Kummer étale presentation. For each i, the
morphism V — U in Xpoket factors through some morphism Vi, — U; in Xy, for
all sufficiently large h. For each such (i, h), by the argument in the proof of Lemma
there is some t;;, € I such that Vj, xy, Uy — Uy is étale for all ¢ > ¢; 5, in
which case V}, Xy, U; is modeled on P;. Hence, we obtain the desired presentation
V= anjeJ V; by considering the index category J formed by j = (4, h,t) such that
t > t; 5, with the partial ordering such that (i, h,t) > (¢, 1/,t') in J exactly when
i >4, h>h, andt >t'; and by taking V; := Vj, xy, U, for each j = (i, h,t) € J. O

Proposition 5.3.11. Suppose that X is an analytic locally noetherian fs log adic
space over Spa(Z,,Z,). Then the subcategory of log affinoid perfectoid objects in
Xprokét 45 stable under fiber products.

Proof. Let U, V, and W be log affinoid perfectoid objects in Xprokst, with mor-
phisms V- U and W — U. Let U = l&nz U; be as in Lemma [5.3.10] By Lemma

V admits a pro-Kummer étale presentation V = 1&1 V; such that each
V; is modeled on some P;, and the same is true for W. Consequently, V xy W
also admits a pro-Kummer étale presentation of this kind, and hence is log affinoid
perfectoid, with associated perfectoid space V?U\W ~ 7V X5 w. (The last fiber
product is indeed a perfectoid space, by [Sch12, Prop. 6.18].) |

Proposition 5.3.12. Suppose that X is an analytic locally noetherian fs log adic
space over Spa(Zy, Zy). Then the log affinoid perfectoid objects in Xproker form a
basis.

Proof. We need to show that, for each U = @ie ; U; € Xproket, €tale locally on
U and X, there exists a pro-Kummer étale cover of U by log affinoid perfectoid
objects; and we may assume that it has a final object Uy such that U; — Uy is
finite Kummer étale, for all i € I, and that Uy — X is a composition of rational
localizations and finite Kummer étale morphisms. By Lemma and [Sch13al,
Prop. 4.8], we may assume that X = Spa(R, R") is affinoid, and that its underlying
adic space admits a pro-étale cover by an affinoid perfectoid object Y&nje J U; in

Xproet- Also, we may assume that X admits a sharp fs chart Px — M, which
induces a strict closed immersion X — Y := X(P) as in Remark Consider
the pro-Kummer étale cover of Y, as in Lemma given by the log affinoid

perfectoid object %iLn(j JeIXE Uj<lP) in Yproket, whose pullback to X gives a
n >1 n

pro-Kummer étale cover of X by a log affinoid perfectoid object V' of Xprokst, by
Lemma [5.3.7] Thus, U xx V — U is a desired pro-Kummer étale cover of U by a
log affinoid perfectoid object in Xprokeét, by Lemma and Corollary (]
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Proposition 5.3.13. Suppose that X is an analytic locally noetherian fs log adic
space over Spa(Zy,Zy). Then Xproxer has a basis B such that

H' (Xprokét/V7 U_l(]L)) =0,
for all' V€ B, all p-torsion locally constant sheaf I on Xygt, and all i > 0.

Proof. Let U be a log affinoid perfectoid object of Xprokst, with U= Spa(A, A1)
the associated affinoid perfectoid space. By passing to a covering, we may as-
sume that A is integral. Let (A, AL) be a universal cover of A (i.e., Ay is
the union of all finite étale extensions A; of A in a fixed algebraic closure of
the fractional field of A, and AL is the integral closure of A* in A.). Let
(Ano, AL) = (H_r)nj(Aj,A;))/\. Then U, := Spa(As, AL) is affinoid perfec-
toid. By the argument in the proof of Lemma there is some V. — U in
Xprokét, with V' = 1£1]Vj log affinoid perfectoid, such that V ﬁoo over U.
Note that L]y is a trivial local system because, for any finite Kummer étale
cover ¥ — X trivializing L, the pullback W = Y xx V — V and the in-
duced morphism W — V are strictly finite étale by Lemma and therefore
W — V has a section, by the assumption on V (A]OO. Consequently, we have
H(Xprokst jy v H(L)) 2 H (Voross, v (1)) 22 H (Vey, L) = 0, for all i > 0, where
the first and second isomorphisms follow from Lemma and [Schi3a, Cor.
3.17(1)] (note that the locally noetherian assumption there on X is not needed), re-
spectively, and the last equality follows essentially verbatim from the last paragraph
of the proof of [Sch13a, Thm. 4.9]. a

5.4. Structure sheaves.
Definition 5.4.1. Suppose that X is a locally noetherian fs log adic space over
Spa(Qyp, Z,). We define the following sheaves on Xprokes-

(1) The integral structure sheaf is O}pm
sheaf is Ox,, e = U H(Oxpr)-

(2) The completed integral structure sheaf is (/’)\;Epmkét = @n(O}prokét/pn),

e = 1f1((9;2,két)7 and the structure

and the completed structure sheaf is (/D\Xprokét = A;Epmkét[%].
(3) The tilted structure sheaves are Og;:mkét i=lim O}pmkét = lim ((9}*}})@“3t /p)

and (7)\3(
by © — xP. When the context is clear, we shall simply write ((5",(5”)
instead of (O );; e O&pmkét).

(4) We have canonical morphisms « : My

okt = hmq) OX o> Where the transition morphisms @ are given

=0 Y (Mx,,,) = Ox and

prokét prokét
o M&pmkét = lim_ Mo = O&pmkét induced by the construc-
tions. When the context is clear, we shall simply write M and M? instead

of Mx,, e and M&pmkét, respectively.

Proposition 5.4.2. In Definition we have Mx, ... (U) = lim, My, (U;), for

any pro-Kummer étale presentation U = @i Ui € Xprokeét-

Proof. The proof is similar to the one of Proposition Note that, by definition,
v (Mx,,.s) Is the sheaf associated with the presheaf M sending U = %Lnj, U,
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to hglj, My, (U;). Also, quasi-compact objects form a basis of Xpoks. Hence, it
suffices to show that exactness of

0— MU) = [[TMV3) = T MV xu Vi),
h h,h!

for any quasi-compact U and any finite covering {V}, — U}, by quasi-compact
objects in Xpoket. By Proposition and the same argument as in the proof
of [Sch13al, Lem. 3.16], this is reduced to the case of a single Kummer étale cover
V — U, and therefore to the known exactness of

0— MXkét (UO) — MXkc’t (V0> = MXkét (Vb XUy VO)?
for some Kummer étale cover Vy — Uy in Xy¢;, by Proposition O

The following result is an analogue of [Sch13a, Thm. 4.10].

Theorem 5.4.3. Suppose that X is a locally noetherian fs log adic space over
Spa(Qp,Zy). Let U € Xpokst be a log affinoid perfectoid object, with associated
perfectoid space U = Spa(R, RY). Let (R’, R°%) be its tilt.
(1) For each n > 0, we have O}pmkét(U)/p" ~ Rt /p™, and it is canonically
almost isomorphic to ((Q)tpmkét /p™)(U).
(2) For each n > 0, we have H'(U,O%
quently, H' (U, (5}

/D) =0, for all i > 0. Conse-
)* =0, for all i > 0.

prokét

(8) We have @}pmkét(U) ~ R and @Xpmkét(U) ~ R, and the ring @}pmkét(U)
s canonically isomorphic to the p-adic completion of O;pmkét(U).
(4) We have @g;:mkét(U) ~ Rt and @.bXpmkét(U) ~ R,
(5) We have H (U, @g;;mkét)“ =0, for all i > 0.
Proof. Let us temporarily omit the subscripts “prokét” etc from O}pmkét etc.

Let us first prove and . By definition, O% (U)/p™ = R* /p". By Propo-
sition giving a sheaf on X,,oket 1S equivalent to giving a presheaf on the
full subcategory of log affinoid perfectoid objects U in X okst, satisfying the sheaf
property for pro-Kummer étale coverings by such objects. Consider such a presheaf
of almost R*-algebras JF given by assigning F(U) := (0% (U)/p")? to each such
U. We claim that F is a sheaf with cohomology vanishing above degree zero. By
Proposition and the same argument as in the proof of [Sch13al Lem. 3.16], it
suffices to verify the exactness of the Cech complex

0=>FU)=»FV)=>FVxyV)=>FVxyVxygV)—---

for some Kummer étale cover V' — U in Xj,oké that is the pullback of a Kummer
étale cover Vy — Uy in Xyig. Furthermore, we may assume that Vy — U is
a composition of finite Kummer étale morphisms and rational localizations. By
Lemma V is log affinoid perfectoid, and V is étale over U. Moreover,

F(U) = (0% (U)/p")" = (OL(T)/p")"
and

F(V xp - xu V) = (OF(V xy - xu V) /p")" = (OF(V xg - x5 V) /p")"
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Hence, and the first statement of follows from the almost exactness of
0— OF(U)/p" = OL(V)/p" = OL(V x5 V) /p" — -+,

by [Sch12l Thm. 7.13] and the p-torsionfreeness of (95. From these, by [Sch13al,
Lem. 3.18], the remaining statement of (2)) also follows.

As for , we first show that the image of (O%/p™)(U) — (0% /p™)(U) is
equal to RT/p™ (under the canonical isomorphisms), for any n > m. For each
f € (0% /p™)(U), by , there exists some g € RT such that p""™f = g in
(0% /p™)(U). Let h = g/p"~™ € R*. Since the multiplication by p"~™ induces
an injection (O%/p™)(U) — (O%/p™)(U), it follows that f = h in (OF /p™)(U).
Therefore, (0% /p™)(U) — (O%/p™)(U) maps f into R*/p™, and the assertion
follows. Consequently, OF (U) = ]gln(O;E/p")(U) = lim R*/p™ = RT, and
hence @Xpmkét(U) =R.

Next, let us prove 1D and an almost version of . Let G := O}pmkét /p. By
Proposition H (Uproket, G)* = 0, for all log affinoid perfectoid U € Xproket
and i > 0. Moreover, G(U)* = (O}pmkét(U)/p)“, for any such U. By definition,

@g;;mkét = 1(121(1) G. Let B be the basis of Xprokst formed by log affinoid perfectoid

objects. By applying [Sch13al Lem. 3.18] to the sheaf G and the basis B, we know
that R7 @@ G is almost zero, for all j > 0, and there are almost isomorphisms
0% e (U) = (lim G)(U) = lim_ (G(U)) = lim (R*/p) = R*. By [Schi3al Lem.
3.18] again, H'(Uproket, @ggmkét)a = H' (Uprokat, lim,, §)* = 0, for all i > 0.
Finally, let us prove . Consider the sheaf associated with the presheaf H on
Xprokey determined by H(U) = Ogb(ﬁb), for each U € B. It suffices to show that
‘H satisfies the sheaf property for coverings by objects in B. Let U and V be log
affinoid perfectoid objects in Xy okét, and let V' — U be a pro-Kummer étale cover.
Let R, S, and T be the perfectoid algebras associated with U, V and U xy U,
respectively. Then it suffices to show the exactness of 0 — Rt — S§°+ — TP+,
Note that this is the inverse limit (along Frobenius) of 0 — R /p — St /p — T /p,
and this last sequence is exact by the fact that O;JI is a sheaf and p-torsion free.

két

Thus, the desired exactness follows. ([l

prokét

The following proposition is an analogue of [KLI5, Thm. 9.2.15].

Theorem 5.4.4. Suppose that X is a locally noetherian fs log adic space over
Spa(Qp,Zy). Let U be a log affinoid perfectoid object of Xproksr- The functor

H— H:=HU)

is an equivalence from the category of finite locally free @X
X;rokét/U
inverse given by

|u-modules on

prokét

to the category of finite projective @X (U)-modules, with a quasi-

prokét

-~

HeosHV)=Hog, 1) 0xpa (V).

e (
prokét
for each log affinoid perfectoid object V in Xproksr over U. Moreover, for each finite

locally free Ox |o-module H, for all i > 0, we have

Hi(Xprokét/Uv H) = 0.

prokét
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Proof. By Lemma(5.3.8] the first statement follows from [KL15, Thm. 9.2.15]. The
proof of the second statement is similar to that of [LZ17, Prop. 2.3], with the input
of [KLI5 Lem. 2.6.5(a)] replaced with Lemma [5.1.4)(3) here. O

By combining Lemma, and Theorem we obtain the following:

Proposition 5.4.5. Let1: Z — X be a strict closed immersion of locally noether-
ian fs log adic spaces over Spa(Qp,Z,). Then the natural morphism Ox, .. —

Zprokét’*(@zprokét) is surjective. More precisely, its evaluation at every log affinoid
perfectoid object U in Xproret 15 surjective.

6. KUMMER ETALE COHOMOLOGY

6.1. Toric charts revisited. Let V = Spa(S1,S;") be a log smooth affinoid fs
log adic space over Spa(k, k™), where (k,k*) is as in Definition and where
k* = O, with a toric chart

V — E = Spa(k(P), k" (P)) = Spa(R1, R{),

as in Proposition [3.1.10 and Definition [3.1.12] where P is a sharp fs monoid. The
goal of this subsection is to prove the following:

Proposition 6.1.1. In the above setting, assume moreover that k is characteristic
zero and contains all roots of unity. Let V. — E be a toric chart as above, and let
L be an Fp-local system on Vig. Then we have the following:

(1) H' (Vies, L ®r, (O /p)) is almost zero, for all i > n = dim(V).

(2) Let V' C V be a rational subset such that V' is strictly contained in V (i.e.,
the closure V. of V' is contained in V). Then the image of the canonical
morphism H*(Vie, L @x, (O /p)) = H (Vig, L ®r, (O /p)) is an almost
finitely generated k*-module, for each i > 0.

In order to prove Proposition [6.1.1] we need some preparations. Let us first
introduce an explicit pro-finite Kummer étale cover of E. For each m > 1, consider

E, = Spa’(k< ! P>ak+< P>) = Spa(RmaR;;)

1 1
and the log affinoid perfectoid object
E = lglEm S Eprokéta

where the transition maps E,,, — E,, (for m|m') are induced by the natural in-

clusions 2P — L P Let Py, = hﬂ (L P) as before. Then the associated
> m\m

perfectoid space is

~

E := Spa(k(Pq.,), k' (Pg.,)) = Spa(R, R").
For each m > 1, let us write
Vi =V xg E,, = Spa(Sy,, S;h)
and N N
V=V Xg E € Vprokst-
Then V = @m Vim is also a log affinoid perfectoid object in Vprokst, with associated

perfectoid space V 2 Spa(S, ST), where (3, 1) = (h%rnm (S, SH)).
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Definition 6.1.2. Suppose that X is a locally noetherian fs log adic space over
Spa(k, k*), where (k, k™) is an affinoid field, and where k is of characteristic zero
and contains all roots of unity. Let G be a profinite group. A pro-Kummer étale
cover U — X is a Galois cover with (profinite) Galois group G if there exists a
pro-Kummer étale presentation U = @Z U; — X such that each U; — X is a
Galois finite Kummer étale cover with Galois group G; (as in Proposition m
where G; is a constant group object because contains all roots of unity), and such
that G =2 @1 G, in which case the group action and the second projection induces
a canonical isomorphism G x U 2 U x x U over X.

Since P is a sharp fs monoid, P*P is a finitely generated free abelian group. Let
Pép = (Pgs,)8” = P @7 Q. Then E,, — E and therefore V,,, — V are finite
Kummer étale covers with Galois group

613 T = Hom (£ P)= /P, 1. 0) = Hom(P% /mP*, )
(0:4:3) = Hom(P#®, p,,),

and V — V is a Galois pro-finite Kummer étale cover with Galois group

I:= LiLnF/m = Hom(ng,l'&npm) = Hom(ng,i(l))

6.1.4 "

where ., po, and Z(1) are as in Deﬁnitionm (with the symbols (k) omitted).
Consider the k*[P]-module decomposition

(6'1'5) k+[PQ20] = Dy (k+[PQ20]X)

according to the action of I', where the direct sum is over all finite-order characters
x of I'. Note that the set of finite-order characters of I' can be naturally identified
with P§P /P8P, via (6.1.4)). If we denote by 7 the natural map m : Py., — Pg"/P®P,

then we have the k™-module decomposition
k+[Pon]X = @GEPQZO,W(G):X (k’+6a).

Lemma 6.1.6. (1) k*[Pg.,)1 = kT [P] for the trivial character x = 1.
(2) Each direct summand k™ [Py, ]y is a finite k*[P]-module.

Proof. The assertion follows from the observation that Pg., N P®* = P as
subsets of P(Sp. As for the assertion , it suffices to show that, for each y in
PgP /PP, if x € (5, P)8P/P#® for some m > 1, and if P is generated as a monoid by

1
some finite subset {ay,...,a,}, then there exists some integer m’ > m (depending
on m) such that 7=*(x) C -5 P, so that 7~!(x) = Sy + P for the finite subset
Sy ={>i_1 Za; e (x):0<¢; <m'} of m*(x). Concretely, since P is sharp
by assumption, o := R>pa; +--- + Rx>ga, is a convex subset of P8P ®; R of the
form o0 = {a € P®* @z R : bj(a) > 0, for all j = 1,..., s} for some homomorphisms
bj : P& — Z (cf. [KKMSD73, Ch. I, Sec. 1, pp. 6-7]) such that Homgz(P®P,Q) =
>5-1Qbj. Tt follows that Homg (P8P, Z) C Y77, +Zb;, for some N > 1, and
hence {a € P% @z Q : bj(a) € Z, for all j =1,...,s} C +P% by duality. Thus,

' (x) C Py, N #ng = %P, for m’ = mN, as desired. O
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Lemma 6.1.7. Fizn > 0. Let M be any k™ /p™-module on which T acts via a
primitive character x : I' — m,,. Then HY(T', M) is annihilated by (., — 1, where
Cm € W, 18 any primitive m-th root of unity, for each i > 0. Moreover, if we have
a finite extension ko of Qp(p,,) in k with ring of integers ki, a finitely generated
kg /p"-algebra Ty, and a finite (and therefore finitely presented) Ty-module My such
thqt M = M, Byt /pn (kT /p™) as T-modules over T := Ty Byt /pm (kT /p™), then
H*(I', M) is a finitely presented T-module, for each i > 0.

~

Proof. By choosing a Z-basis of P8P, we have I' & Z(1)", where n = rky(P8P)
(see (6.1.4)). Then the lemma follows from a direct computation using the Koszul
complex of I (as in the proof of [Schl3al Lem. 5.5]) and (for the last assertion of
the lemma) using the flatness of k¥ /p™ over kg /p" (and the compatibility with flat
base change in the formation of Koszul complexes). (I

Remark 6.1.8. Since R /p = (k*/p)[P] and R /p = (k*/p)[Py.,], by Lem-
mas and the natural injection R /p — R*/p induces an injection
H'(T,(R{ /p)) — H(T', (R /p)), with cokernel annihilated by ¢, — 1, for each i >
0. Moreover, the R} /p-module H* (F, (RT/ p)) is almost finitely presented, because,
for each € > 0 such that p*-torsion makes sense, there are only finitely many x such
that the finitely presented R /p-module direct summand H' (T, (k™ /p)[Pg.,ly) is
nonzero and not p°-torsion. By the use of Koszul complexes as in the proof of

Lemma [6.1.7] for any composition of rational localizations and finite étale mor-
phisms Spa(Si,S) — Spa(Ri,Rf), we have H'(T, (S} /p) Drt /p (R /p)) =

(ST /p) @ps ) H' (T, R /p).

By the same argument as in the proof of [Schl3al Lem. 4.5], we obtain the
following:

Lemma 6.1.9. Let X be a locally noetherian fs log adic space over Spa(k, k™). Let

U = limU; = lim (Spa(R;, Rf), M;)

el el
be a log affinoid perfectoid object in Xproket, and let (R,RT) := (@Z (Ri,Rj))A,
so that U = Spa(R, R™T) is the associated affinoid perfectoid space.
Suppose that, for some i € I, there exists a strictly étale morphism
V;' = Spa(SZ,Sj) — UZ

that is a composition of rational localizations and strictly finite étale morphisms.
For each j > 1, let V; :=V; xy, U; = Spa(Sj,S;r), and let

V=V XU; U= @1‘/] € Xprokét-

J

Let (S,87) := (hglj (Sj,S;-r))/\. Let T be the p-adic completion of the p-torsion
free quotient of Sj‘-" ®@ g+ R*. Then we have the following:

(1) (S,ST) is a perfectoid affinoid (k,k™)-algebra, and V is a log affinoid per-
fectoid object in Xprorer with associated perfectoid space V- = Spa(S, S™).
Moreover, V.= V; xy, U in the category of adic spaces.

(2) For each j > i, we have S = Tj[%], and the cokernel of Tj — S* is

annihilated by some power of p.
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(3) For each e € Qs, there exists some j > i such that the cokernel of Tj — S+
18 annihilated by p°.

Remark 6.1.10. Lemma is applicable, in particular, to the log affinoid per-
fectoid object U = I'&nm> L E,, in Epoker and any strictly étale morphism V' =

Spa(S1,S{) — E (for m = 1) giving a toric chart.

Lemma 6.1.11. Let X be a locally noetherian fs log adic space over Spa(k,k™).
Suppose that U is a log affinoid perfectoid object of Xprokst, with associated perfec-
toid space U= Spa(R,R"). Let L be an Fy-local system on Uxs,. Then:
(1) Hi(Ukét7]L ®F, ((’)}/p)) is almost zero, for all i > 0.
(2) L(U) := H°(Uxet, L ®r, (0% /p)) is an almost finitely generated projective
R /p-module (see [GRO3, Def. 2.4.4]). In addition, for any morphism U’ —
U in Xprokst, where U’ is a log affinoid perfectoid object in Xprokst, with
associated perfectoid space U’ = Spa(R', R'"), we have a canonical almost
isomorphism L(U") = L(U) @+, (R /p).

Proof. By replacing X with its connected components, we may assume that X
is connected. Choose any Galois finite Kummer étale cover ¥ — X trivializing
LS Fy. By Lemma W :=U xx Y — U is finite étale, and W is log affinoid
perfectoid, with associated perfectoid space W = Spa(T,T*). For each j > 1,
let W7/U denote the J-fold fiber product of W over U. By Proposition and
Theorem Hi(WIZé/tU,L @, (OF,/p)) is almost zero, for all i > 0 and j, and
HC (WiétU, L ®r, (O /p)) is canonically almost isomorphic to (O, ., (W7/YV)/p)".
By the faithful flatness of T /p — R*%/p, the desired results follow from almost
faithfully flat descent (see [GRO3, Sec. 3.4]). O

Now we are ready for the following:

Proof of Proposition [6.1.1] Consider the Galois cover VoV= Spa(S1,S]) with

Galois group T, and with V = Spa($, ST), as above. Since V#/V 2V x V=1 is a
log affinoid perfectoid object in Vi oxet, for each j > 1, we have

H (VY L &g, (0F/p)) = Homeen (171, L),

két

where L := H° (Vké*m]]_a ®F, (O$ /p))a is an almost finitely generated projective

Ste /p-module, equipped with the discrete topology, by Propositions and
By Proposition [5.1.7] again, and by Lemma [6.1.11] and the Cartan—Leray spectral
sequence (see [AGVT73| V, 3.3]), we have an almost isomorphism

H' (Vier, L @g, (07 /p)) = H'({V - V},L &g, (0y/p)) = H'(T, L),
where the last isomorphism follows from Proposition [5.1.12| and [Sch13al Prop.
3.7(ii1)] (and the correction in [Schl6]). Hence, the statement of Proposition
follows from the fact that T' 2 Z(1)™ has cohomological dimension n.

As for the statement , write V' = Spa(S], $i*) and V' = Spa(5’, S'). We
need to show that the image of H(I', L) — H*(I', L ®g+,, (S'7/p)) is an almost
finitely generated kT-module. Since L is an almost finitely generated projective
Sta/p-module, it suffices to show that the image of

HY(T, ST /p) — H'(T',S"" /p)
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is an almost finitely generated k*-module. Choose rational subsets {V )}« cp, o
such that V(2 = v/ V() = V_and VUtD ig strictly contained in V), for
1<j<n+1. Write V,$3'> =V xg E,, = Spa(S,(,JL-),S%H), foralll1 <j<n+2
and m > 1. Then VO = mm V7$Lj) is a log affinoid perfectoid object in Vprokst,

with associated perfectoid space Vo) = Spa(SU), SU+). By Lemma and
Remark [6.1.10] it suffices to show that the image of

H'(L, (S5)* @ gy RY)/p) = H'(L, (SGH2F @ gy RY) /)

is almost finitely generated, for all m € Z>;. Note that mI" acts trivially on ng”,
and we have the Hochschild-Serre spectral sequence

H' (L, H2 (T, (S @y RY)/p)) = H' T2 (T, (S @y RT)/p).
By [Schl3al Lem. 5.4] and Remark it suffices to show that the image of
(S*/p) @ps p, H (mT, RY [p) — (8§ /p) @ e, H (T, R /)

is almost finitely generated, for all j =1,...,n+ 1 and m > 1. Since the image of
Sg”/p — Sr(gHH/p is an almost finitely generated kT-module, it suffices to note
that H'(mI', Rt /p) is almost finitely generated over R /p, by Remark (up
to replacing (Ry, R), T', etc with (R, R), ', etc). O

6.2. Primitive comparison theorem. The main goal of this subsection is to
prove the following primitive comparison theorem, with the finiteness of cohomology
as a byproduct, generalizing the strategy in [Sch13al Sec. 5]:

Theorem 6.2.1. Let (k, k™) be an affinoid field, where k is algebraically closed
and of characteristic zero, and let X be a proper log smooth fs log adic space over
Spa(k, k™) (see Definitions and . Let L be an Fp-local system on Xyes.
Then we have the following:
(1) H' (Xxet, L ®r, (O%/p)) is an almost finitely generated kT-module (see
[GRO3, Def. 2.3.8]) for each i > 0, and is almost zero for i > 0.
(2) There is a canonical almost isomorphism

H'(Xier, L) ®r, (k% /p) = H'(Xier, L @5, (0% /p))

of k*-modules, for each i > 0.

Consequently, H (X, L) is a finite-dimensional Fy-vector space for each i > 0,
and H (Xye, L) = 0 for i > 0. In addition, if X is as in Evample then
Hi(Xyer, L) = 0 for i > 2dim(X).

Remark 6.2.2. Recall that there is no general finiteness results for the étale coho-
mology of F)-local systems on non-proper rigid analytic varieties over k, as is well
known (via Artin-Schreier theory) that H!(D,F,) is infinite.

Nevertheless, we have the following:

Corollary 6.2.3. Let U be a smooth rigid analytic variety that is Zariski open
in a proper rigid analytic variety over k. Then H'(Us,1L) is a finite-dimensional
Fp-vector space, for each IFp-local system L on U and each i > 0. Moreover,
H'(Ug, L) =0 for i > 2dim(U).
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Proof. By resolution of singularities (as in [BM97]), we may assume that we have a
smooth compactification U < X such that U = X — D for some normal crossings

divisor D of X. Now apply Theorems and [l

Lemma 6.2.4. Let X be a proper log smooth fs log adic space over Spa(k,Oy).
For each integer N > 2, we can find N affinoid étale coverings of X

/A RN () Vi
satisfying the following properties:
° Vh(N) Cc---C Vh(l) is a chain of rational subsets, for each h=1,... m.
VO eI cvD forallh=1,... mandj=1,... N —1.
Vh(ll) X x Vh(;) — Vh(ll) is a composition of rational localizations and finite
étale morphisms, for 1 < hi,he < m.

Each V}fl) admits a toric chart Vh(l) — Spa(k(Pp), Or(Py)), for some sharp
fs monoid Pj.

Proof. By Proposition 3.1.10] and the same argument as in the proof of [Schi3al,
Lem. 5.3], there exist N affinoid analytic open coverings of X

N)ym 1
oMy oy

satisfying the following properties:

° U}(LN) Cc---C U}(Ll) is a chain of rational subsets, for each h =1,...,m.

° U,(ljﬂ) CUS—H) - U}(Lj), forall h=1,..mand j=1,...,N — 1.

° U,(i) N U,(li) C U}(Li) is a rational subset, for 1 < h1,hy < m.

e There exist finite étale covers V}fl) — U,(ll) such that each V}El) admits a
toric chart Vh(l) — E; = Spa(k(Pr), Ox(Py)) (which is, in particular, a
composition of rational localizations and finite étale morphisms) for some
sharp fs monoid Pj,.

Then it suffices to take V}fj) = V}fl) X U}(Lj), for all h and j. O

(1)
Uh

Proof of Theorem . Consider X" := X Xgpa(k,kt+) Spa(k,O) C X. Con-
sider any covering {Uy}, of X by log affinoid perfectoid objects in X oket, whose
pullback {U, xx X'} is a covering of X’ by log affinoid perfectoid objects in
X! By Lemma we have a canonical almost isomorphism

prokét -
H' (Unxét, L @r, (0% /p)) = H' (Upxes xx X', L ®g, (0% /p)),

for all # > 0 and all h. By Proposition|5.1.7|and by comparing the spectral sequences
associated with the coverings, we obtain an almost isomorphism

H' (Xyer, L @5, (0% /p)) = H' (Xis, L @r, (0% /),

for each ¢ > 0. Hence, for the purpose of this proof, up to replacing X with X', we
may assume that k™ = Oy, in what follows.

Let {V}L(N)}anl, cey {Vh(l) I, be affinoid étale coverings of X satisfying the same
properties as in Lemma For each subset H = {hy,...,hs} of {1,...,m}, let
V}(Ij) = V}ff) Xx o Xx V}fj). For each j =1,..., N, we have a spectral sequence

Eil(ﬁ = ®|H|=iy+1 H"? (Vf(lj,lfcéw]l‘ ®F, (0% /p)) = H" T (Xuer, L @5, (0% /).
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For 5 =1,...,N — 1, we also have natural morphisms between spectral sequences
Eil(;Z; — Eil(;zﬂ) Then the desired finiteness result follows from Proposition
and [Sch13al Lem. 5.4]. Moreover, by Proposition and the spectral sequence
for j =1, we have H'(Xyet, L ®p, (O}/p))a =0 for i > 0. O

Proof of Theorem [6.2.1J[2)). Consider the Artin-Schreier sequence

(6.2.5) 0>L—Les, O . >Les, Ok . —0,

prokét prokét

where 0 = Id ®(® — Id) and & is the Frobenius morphism (induced by z — aP).
The exactness of can be checked locally on log affinoid perfectoid objects
U € Xproket over which L is trivial, which then follows (by using Lemma
from the same argument in the proof of [Schi3al Thm.

5.1].
Choose any w € k” such that w? = p. By Theorem and [Sch13al Lem.

2.12], there exists some r > 0 such that we have

HY (Xprokst, L ®g, (0% Jw™)* = (0% Jw™)",

Xprokét

for all m, which are compatible with each other and with the Frobenius morphism.
By [Schl3al Lem. 3.18], we have

Rlim(L @, (0% /=™))* = (L er, O%)*,

and so
H (Xprora L @5, O ) = (OF)
and
H' (Xproket, L @, O ,.) = (k)

(by inverting ), which are still compatible with the Frobenius morphisms.
Thus, by considering the long exact sequence associated with (6.2.5), and by
Proposition [5.1.7] we see that

H' (X, L) = Hi(XprokémL ®F, @3( —ld o F,

proier)
and

H'(Xyst, L) @, (k7%/p) = H' (Xist, L @r, (O§két/p))a7
as desired. (]

Proof of the remaining statements of Theorem [6.2.1] It remains to show that, if X
is as in Example then H*(Xye, L) = 0 for i > 2dim(X). By Theorem
6.2.1{(2), it suffices to show that H'(Xye, L ®r, (0%, /p))* =0, for i > 2dim(X).
Note that, in Example [3.1.13] since k is algebraically closed, X analytic locally
admits smooth toric charts X — D™. Hence, by the same argument as in the proof
of [Schi3a, Lem. 5.3], all the étale coverings {Vj(l) 7, in Lemma can be
chosen to be analytic coverings. Let A : Xyt — Xan denote the natural projection
of sites. By Proposition RIX (L ®F, ((’)}két/p))a = 0, for all j > dim(X).
Since the cohomological dimension of X,, is bounded by dim(X), by
Prop. 2.5.8], the desired vanishing follows. (This is essentially the same argument
as in the proof of [Sch13al, Lem. 5.9].) O
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6.3. p-adic local systems.

Definition 6.3.1. Let X be a locally noetherian fs log adic space.

(1) A Zp-local system on Xyes, also called a lisse Zy-sheaf on Xies, is an inverse
system of Z/p™-modules L = (LL,,),,>1 on Xy, such that each L,, is a locally
constant sheaf which are locally (on Xyt ) associated with finitely generated
Z/p™-modules, and such that the inverse system is isomorphic in the pro-
category to an inverse system in which L, /p" 2 L,.

(2) A Qp-local system (or lisse Q,-sheaf) on Xie is an object of the stack
associated with the fibered category of isogeny lisse Z,-sheaves.

Definition 6.3.2. Let X be a locally noetherian fs log adic space. Let

— lim(Z/p")
as a sheaf of rings on X;oket, and let
B, = Z,[2).

A Zp—local system on Xprokes is a sheaf of zp—modules on Xproket that is locally (on
Xprokét) isomorphic to L ®Qz, Ly for some finitely generated Z,-modules L. The
notion of @p—local system on Xproket is defined similarly.

Lemma 6.3.3. Let X be a locally noetherian fs log adic space over Spa(Qyp,Zy).
Let v : Xprokst — Xkée denote the natural projection of sites.

(1) The functor
L= (Lp)ns1 + L= rgw—laun)

s an equivalence of categomes from the category of Zy-local systems on
Xyt to the category on -local systems on Xproker. Moreover, IL®Z @p 18

a Qp -local system.
(2) For alli >0, we have R Jm v (L,) =0.

Proof. Apply Proposition [5.3.13|and [Schi3al, Lem. 3.18]. O

Corollary 6.3.4. Let k, X, and U be as in Theorem [£.6.1] Let L be an étale
Zyp-local system on Ug,. Then L := Jxet«(L) is @ Kummer étale Z,-local system
extending L. Conversely, any étale Z,-local system L on Xy is of this form. In
either case, there are canonical isomorphisms

~

H{(U L)

k,ét>

L) & H(Xp . T) = Hi(X

k,prokét?
of finite Zy-modules, for each i > 0, where k denotes any algebraic closure of k.

Proof. The assertions on L and L in the first four sentences, together with the
first isomorphism (displayed above), follow from Corollary by taking limits of
Z,/p"-local systems over m € Zx1, which is justified by the finite-dimensionality of
the cohomology of F)-local systems on X7, ., shown in Theorem The second
isomorphism follows from Proposition and Lemma . The finiteness of
these isomorphic Z,-modules follows, again, from Theorem [
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Corollary 6.3.5. Let f : X — Y be a log smooth morphism of log adic spaces
whose log structures are defined by normal crossings divisors D and E of smooth
rigid analytic varieties X and Y, respectively, as in Ezample 2.3.17, Assume that
the underlying morphisms of adic spaces of f and f|x_p: X —D — Y — E are both
proper. Let I be any Z,-local system L on Xyg. Then Rifkét’*(L) is a Zp-local
system on Yig, for each i.

Proof. This follows from [SW20, Thm. 10.5.1] and Corollary O

The combination of pullbacks of @p—local systems and completed structure sheaves
under strict closed immersions can be described as follows:

Lemma 6.3.6. Let1: Z — X be a strict closed immersion of locally noetherian fs
log adic spaces over Spa(Qyp, Z,). Let L be a Qp-local system on Xproket. Then we
have a canonical isomorphism

(L5, Oxprure) (V) @5 17y Opuesee (U X x Z)

= (Z : (H/:) ®@p @mekéc)(U XX Z)?

}:rokét
for each log affinoid perfectoid object U of Xproket -

Proof. By Lemma Uxx Z is a log affinoid perfectoid object of Zokest, and the
natural morphism Ox_ ... — tprokét,« (07,0 ) induces a surjective homomorphism

@Xpmkét (U) = Oy (U xx Z). By Theorem it suffices to prove the lemma
by replacing U with some log affinoid perfectoid object V' of X kst over U such

prokét

that ]i|v is trivial, in which case the assertion is clear. g

Finally, let us define and study the notion of unipotent and quasi-unipotent
geometric monodromy actions along a normal crossings divisor. Let ¢ : D — X and
k be as in Example 2.3.17] with j : U := X — D — X the complementary open
immersion. Let L. be a Q,-local system on Xyg;.

Definition 6.3.7. With k, X, D, and L as above, we say that L|y,, has unipotent
(resp. quasi-unipotent) geometric monodromy along D if wf (X (€),€) acts unipo-

tently (resp. quasi-unipotently) on the stalk Lg, for each log geometric points & of
X lying above each geometric point & of D, where the log structure of the strict
localization X (&) is pulled back from X, as in Proposition By abuse of lan-
guage, when there is no risk of confusion, we shall also say that I has unipotent
(resp. quasi-unipotent) geometric monodromy along D, without writing L|,, .

Example 6.3.8. Suppose that {D;};cr is the set of irreducible components of D
(see [Con99]). For each J C I, suppose moreover that X; := X N (Njcs D;) is
smooth and geometrically connected, and consider the fs log adic spaces Uy and U?
introduced in FExample together with a canonical morphism 63 : U? — Uy
(whose underlying morphism of adic spaces is a canonical isomorphism) and a strict
immersion 19 : U9 — X. Note that the log structure of Uy is trivial, while the one
of U? is pulled back from X ;. We shall simply denote the underlying adic space of
Uf? by Ujy. By construction, X is set-theoretically the disjoint union of such locally
closed subspaces Uy. At each geometric point & = Spa(l,1%) of U; (and hence also
of U?), by projection to factors of polydiscs as in Ezamples [2.3.17| and [2.3.18| we
have locally a strict morphism from U9 to s = (Spa(k,Oy),ZZ,) as in Ezample
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[4:226], which is the restriction of a strict morphism from a neighborhood of & in X
to a neighborhood of s in D!’ (with its canonical log structure defined as in Example

. As result, by Corollary we have compatible isomorphisms
(6.3.9) 2Ly = Mxg = Mya ¢

and

T (UF(€)) = Hom (M ¢, Z/(1))

(6.3.10) Y R S
S (X () 2 Hom(My ¢, Z'(1)) S T7 = (Z/(1))

(with (1) omitted from the notation of Z'(1)(1), whose operations will be denoted
multiplicatively). Therefore, any Z,-local system on X (§)kes is equivalent to a Z,-
local system on U%(€)yer, which is in turn equivalent to a (trivial) Z,-local system
on Uj(&)es with T/ -action. (The analogous statement for Q,-local systems follows.)
Thus, in Definition the local system L on Xyg has unipotent (resp. quasi-
unipotent) geometric monodromy along D if and only if, for each J C I and each
geometric point & of Uy, the action of mf¢* (X(f)) > T on L¢ is unipotent (resp.
quasi-unipotent), and this property depends only the pullback of L to U9 ()ket-

Lemma 6.3.11. In Definition it suffices to verify the condition for geometric
points £ of X lying above the smooth locus of D. (That is, & does not lie on the
intersections, including self-intersections, of irreducible components of D.)

Proof. Since Definition [6.3.7] requires only strict localizations of X, we may replace
k with a complete algebraic closed extension. Moreover, up to étale localization,
we may assume that X is affinoid and admits a smooth toric chart X — D™ as in
Example(3.1.13) with the log structure induced by maps Z%; — Mx (X) = Ox(X)
sending the i-th standard basis element e; to the images of the i-th coordinate T;
of D™. Consider the tower --- — X,, — --- — X defined by the toric chart
X — D" as in Section (with P = Z%,), with Galois group I' = (2’(1))"
Up to further étale localization, we may assume that the subspace of X defined
by T; = 0 is either empty or irreducible. Then, in the setting of Example [6.3.8
we may identify I with a subset of {1,...,n}, with irreducible components D;
of D defined by T; = 0, for j € I. In this case, if J' C J C I, then we have
canonical projections Z%, —» ZL, — Zi/o which induce inclusions T'/" < T'/ < T,
by and .7 Let & and & be any geometric points of Uy and Uy,
respectively. By pulling back the tower above to X (§) and X (¢’), respectively, and
by Proposition we can identify the above inclusions I'V < I' and T/ "o T
with homomorphisms 7% (X (¢)) — I' and 7 (X(¢')) — I'. As a result, we
obtain an inclusion 7§¢ (X (¢)) < 7€ (X (£)), which can be canonically identified
with the above inclusion I'/" < I'/ above inclusion inside T, for any £ and ¢
as above. Since Uj; is contained in the closure X j of Uy, every Kummer étale
neighborhood of ¢ admits the lifting of some geometric point £’ of X ;.. Thus, since
each Zy,-local system is trivialized by some inverse system of such neighborhoods,
and since each Q,-local system is (by definition) an isogeny class of Z,-local systems,
if T1¢*(X(¢’)) acts unipotently (resp. quasi-unipotently) on Ll/, for all geometric
points & of Uy, then the subgroup I'Y" of T'/ = et (X(f)) acts unipotently (resp.
quasi-unipotently) on L¢. Since I'/ & HjeJ '} is generated by 17} for j € J; and
since the smooth locus of D is (set-theoretically) Ujer Uy;y, the lemma follows. [J



LOGARITHMIC ADIC SPACES: SOME FOUNDATIONAL RESULTS 91

Remark 6.3.12. Suppose that X, D, and L is the analytification of X, Dy, and
Lo, respectively, where Dy is a normal crossings divisor on a smooth algebraic
variety Xo over k, and where Lg is an étale Qp-local system on Xy. Since the
construction of standard Kummer étale covers are compatible with analytification,
by comparing the constructions in Proposition and [[1102, Prop. 3.2], we have

obvious analogues of Definition [6.3.7] Example [6.3.8 and Lemma in the
algebraic setting, which are all compatible with analytification.

Remark 6.3.13. In Remark for each irreducible component of Dy, its
generic point is a point of codimension one, and hence the strict localization
Xo(&) at any geometric point & = Spec(l) above such a generic point is the
spectrum of a strictly local ring R with residue field I. Let K := Frac(R), let
K be any algebraic closure of K, and let K% be the maximal tamely ramified
extension of K in K. Let 1y := Spec(K). Then Lyl|,, is naturally a represen-
tation of Gal(K/K). As explained in [[I02, Ex. 4.7(b)], 7¢*(Xo(&)) is canoni-
cally isomorphic to the tame inertia group, which is Gal(K'/K) = Z/(1) in this
case; and the induced isomorphism 7 (Xo(&)) = 7 (1) can be canonically iden-
tified with 7" (Xo(&)) = Hom(ﬂiéo,@(l)) =~ 7/(1), with the last isomor-
phism induced by MXO,EO & Z>o. Since L0|U0)ét extends over X ke, the ac-
tion of Gal(K/K) on Lyl|,, factors through Gal(K'/K). Note that, in the al-
gebraic setting, if & specializes to some geometric point &) of Xo, then we have
a canonical morphism Xy(&) — Xo(&)), and hence a canonical homomorphism
T (X0 (&) — mE(Xo(&))). When & does not lie on any other irreducible com-
ponent of Dy, this last homomorphism can be canonically identified with the iden-
tity homomorphism of A (1). Since every geometric point of the smooth locus of
Dy is some such &), by the algebraic analogue of Lemma we see that Lo
has unipotent (resp. quasi-unipotent) monodromy along Dy (by the algebraic ana-
logue of Definition if and only if, for each & as above, the induced action
of Gal(K"/K) = Z’(l) is unipotent (resp. quasi-unipotent). In fact, this last con-
dition is a more classical definition for schemes, whose formulation does not rely
on log geometry at all. Nevertheless, our Definition has the advantage of not
relying on the notion of generic points (or specializations).

6.4. Quasi-unipotent nearby cycles. In this subsection, as an application of
our results, we reformulate Beilinson’s ideas (see [Bei87]; cf. [Reil(]) and define the
unipotent and quasi-unipotent nearby cycles in the rigid analytic setting.

Let k be any field of characteristic zero, and let k be any algebraic closure of
k. Let G,, := Spec(k[z,271]) be the multiplicative group scheme over k. Let k be
any fixed algebraic closure of k. Then m1(Gy,,1) = m(G,, 3,1) x Gal(k/k), and

m(G,, 5 1) = 2(1) as Gal(k/k)-modules. For each r > 1, let J,. denote the rank r
unipotent étale Z-local system on G, defined by the representation of 71 (G, z,1)

on Z,, such that a topological generator v € m; (G 1) acts as a principal unipotent

m,k?
matrix J, and such that Gal(k/k) acts diagonally on Z7 and trivially on ker(J, —1).
(As in Example the local system thus defined is independent of the choice
of v up to isomorphism.) There is a natural inclusion J, < J,11, together with a
projection J,11 — J.(—1) such that the composition J, — J.(—1) is given by the
monodromy action. For each m > 1, let [m] denote the m-th power homomorphism
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[m] of G, and let K,, := [m].(Z,). When m | m/, there is a natural inclusion
K,, — K, (defined by adjunction).

Now let k be a nontrivial nonarchimedean field, and let k™ = O;. We shall
denote the analytifications of the above objects and morphisms to G2?, and their
further pullbacks to D* = D — {0}, by the same symbols.

Let X be a rigid analytic variety over k. Let f : X — D be a morphism
over k that induces an open immersion 7 : U := f~1(D*) — X and a closed
immersion 2 : f~1(0) — X such that D := f71(0).ea (the reduced subspace) is a
normal crossings divisor, so that X is equipped with the fs log structure defined
by D — X, as in Example Note that (f_l(()))ét = D¢ . Let U be equipped
with the trivial log structure, with an open immersion 7 : U — X. Let D? be the
adic space D equipped with the log structure pulled back from X, with a canonical
morphism €2 : D? — D and a strict closed immersion 22 : D? — X.

Definition 6.4.1. In the above setting, for any given Qp-local system L on Ug =2
Uyet, its sheaf of unipotent nearby cycles (with respect to f) is

RUH(L) = Red,, (tim ol peene (L @2, 12'(0)) )
and its sheaf of quasi-unipotent nearby cycles is

RUF(L) = Red, . (tim iy e (L @2, fir (Kn) @2, £ (31))).

Suppose that {D,},cr is the set of irreducible components of D (see [Con99]), so
that f=1(0) = > jer niDj (as Cartier divisors on X see [SW20, Lec. 5.3, especially
Prop. 5.3.4]), for some integers n; > 1 giving the multiplicities of D;. For each
JcC I let X;,¢9:U2 - Uy, and 1§ : U) — X be as in Example Given
any geometric point & = Spa(l,{T) of U; (and hence also of U?), let €9¢ " Ud€) —
U;(€) denote the pullback of €9 to Uj(¢). Let I'V = (Z(l))J be as in .
Then, by Lemma[4:4:27|and the explanations in Example[6.3.8] we have a canonical
isomorphism Rieg’g’ét,*(M) =~ H(T7,M), for each i > 0.

Let 02 and 07, and the (Z/n)-local systems J2, and K9, on 02, defined by

representations of 75¢¢(02,09) = Z(1) x Gal(k/k), be as in Example By
taking limits over n € p?>1, we obtain Z,-local systems J? and K9, on 0%,,, which
can be identified with the pullbacks of J, = jiet.«(J) and K, = gxer. (Kin),
respectively. By pulling back f : X — D (as a morphism of fs log adic spaces),
we obtain a canonical morphism f¢ : U?(f) — 09 for any ¢ and E as in the last
paragraph, and the induced homomorphism 75 (U2(¢),£) — 75¢(07,07) can be
identified with the composition of '/ = (Z(l))l — Z(l) t(@))jes & Xjes niT;
with the canonical homomorphism Z(l) — Z(l) x Gal(k/k). Let v; be any element
of the j-th factor of '’ = (Z(l))J that is mapped to n;v in Z(l) Then «; acts by
Ji? on the rank r local system (f_l(jr))|U§a(5) = fgl(J‘?).

For each Qp-local system M on U?(g)két, let us denote by W a formal variable
on which fyj_l acts by W — W + n;, and write M[W] = lim (M[W]<r=1), where
the superscript “< r — 1”7 means “up to degree r — 1”. Note that, by matching a

standard basis of J? with binomial monomials up to degree r — 1 in W, as in the
proof of [LZ17, Lem. 2.10], we have M[W]<"~! = M @y, f ' (J9).
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Lemma 6.4.2. Suppose there exists some jo € J such that v;, acts quasi-unipotently
(i.e., a positive power of vj, acts unipotently) on M. Then the local systems
HY(T7 M[W]="1) stabilize as r — oo, and hence the direct limit H'(T'/, M[W])
exists as a Qp-local system, for each i > 0. When J = {jo} is a singleton,
o (F{jO},M[W}) vanishes when i # 0,1; is canonically isomorphic to the maximal
subsheaf of Ml on which T190} acts unipotently, when i = 0; is finite-dimensional
when i = 1; and is zero when i = 1 and vy; acts unipotently.

Proof. By the Hochschild—Serre spectral sequence, by first considering the ac-
tion of [m](T'e}) for some m, and then the induced action of the finite quotient
o} /[m](TVo}) = Z/mZ, and then the induced action of '/ /T{io} 2= T/—{io} it
suffices to treat the special case where J = {jo} is a singleton and +;, acts unipo-
tently. Then the lemma is reduced to its last statement, which follows from the
same argument as in the proof of [LZ17, Lem. 2.10], by matching a basis of J, with
binomial monomials up to degree » — 1 in W. O

Lemma 6.4.3. Let L be a Qp-local system on Xy such that L|y,, has quasi-
unipotent geometric monodromy along D (as in Definition . For each integer
m > 1, consider the canonical morphism [m] : D — D induced by sending the
standard coordinate of D to its m-th power, whose pullback under f : X — D is

a finite Kummer étale cover g, : Xy — X, which induces fn, @ X, I x i> D
by composition. Let D,, denote the reduced subspace of X, x x D (in the category
of adic spaces), which is canonical isomorphic to D via the second projection, and
let Uy, := fr}(DX) = g} (U) = Xy, — Dy,. Then there exists mg > 1 such that
RV{“(L|y) = RYY (9m'(L)|v,,.) over De, whenever mo|m.

Proof. For each m > 1, let D2 denote the adic space D,, equipped with the log
structure pulled back from X,,. Let 7., : Upn — X, 121 : DgI — X, and
9 : DY — D, denote the canonical morphisms. Then

Ly ®z, f& (Km) 2 (gmlu,. e (Llu,,)
over Ug, and
Red s, ! s (Llv ®z, fo' (Km) ®z, fo' (Jr))
= Rem ét,x m ket((L|X ) ®Zp fk_e%(jr))

over Dg;, by Proposition 2] and Lemma Since L has quasi-unipotent
geometric monodromy along D there exists some mg > 1 such that L|y,, has
unipotent geometric monodromy along D,,, whenever mg|m.

We claim that, when mg|m, the canonical morphism

Rerano,et x U, ket (LleO) Xz, fket( )) - Rem ét,% Um, ) ét (H"|X ) 1z, fk_eé(jr))

induced by K,,, < K, is an isomorphism for all sufficiently large r (depending on
mgo and m). Given this claim, for all m divisible by mg, we have

RUY(L) = R, ,1p " gkens (Llv) @2z, fgﬁ(K ) ®z, fo (Tr))
m.) ®Z m,ét (JT>) R\I;Um (gm (L))

for all sufficiently large r, and the lemma follows.

) a,—1
= Rey, et U két Jm két,* ((]L



94 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

It remains to verify the claim. For this purpose, by (6.3.10)), we may pullback to
Uf?({), for all nonempty J C I and all geometric point £ of U?. By Lemmas
and and by (6.3.10]) again, it suffices to show that the canonical morphism

H' ([mo] (), Llya ) [W]) = H' ([m](T7), Llys )W)

is an isomorphism. By the Hochschild—Serre spectral sequence, we may first com-
pare the cohomology of [mg](T'170}) and [m](T'to}), for some jo € J, which is con-
centrated in degree zero and gives the full L| U2 (e) in both cases, because 7;”0 and
7j"* act unipotently, by assumption. Then we compare the cohomology groups of
[mo)(T/ =10}y and [m)(I7~¥o}), which coincide as they are related by a Hochschild—
Serre spectral sequence in terms of the cohomology of Q,-modules with unipotent
actions of the finite group [mo](I'/~40}) /[m](I/~%0}), and the claim follows. [

Proposition 6.4.4. Let L be a Qp-local system on Xye such that L|y,, has quasi-
unipotent geometric monodromy along D (as in Definition , Consider any
integer m > 1 such that L|y, has unipotent geometric monodromy along D,
where Uy, and D, are as in Lemma [6.4.3] Then, for each nonempty J C I and
each i > 0, and for each geometric point £ of Uf?, we have

Ri‘I’}L(MU”U?(g) = Hi(rJ,MU?(g)[W])
and
Ri‘l’?fu(L|U)|U§(g) = Hi([m](FJ)7L|U§(§) )
as Qp-local systems on Uj(&)et.

Consequently, if D = (f_l(O))red is smooth over k and if L|y has quasi-unipotent
monodromy along D, then R\I/?(]L|U) is concentrated in degree zero and can be

identified with the subsheaf ]L\;“;p of L|po whose pullback to D?(€) is the mazimal

subsheaf on which 75 (D?(¢), €) = Z(1) (as in Example acts unipotently, for
each log geometric point E of D? above each geometric point & of D; and R\I/;” (Lly)
(which is the same RV (L[y) as above when Ly has unipotent monodromy along
D) is also concentrated in degree zero and can be identified with the whole L|po.

Proof. Combine Lemmas [4.5.4] [6.4.2] and [6.4.3] O

APPENDIX A. KIEHL'S PROPERTY FOR COHERENT SHEAVES

In this appendix, by adapting the gluing argument in [KL15, Sec. 2.7] and by
using [Hub94, Thm. 2.5], we establish Kiehl’s property for coherent sheaves on
(possibly nonanalytic) noetherian adic spaces. By combining this with results in
[KL15, Sec. 8.2] and [Ked19l Sec. 1.3-1.4], we also state some versions of Tate’s
sheaf property and Kiehl’s gluing property for adic spaces that are either locally
noetherian, or analytic and stably adic. (We will review the definition below.)

Recall the following definition from [KL15, Def. 1.3.7]:

Definition A.1. By a gluing diagram, we will mean a commuting diagram of ring
homomorphisms

R—— Ry

| ]

Ry —— Ri»
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such that the R-module sequence
0—>R— R ®Ry— Ri2 —0,

in which the last nontrivial arrow is the difference between the given homomor-
phisms, is exact. By a gluing datum over this diagram, we mean a datum consisting
of modules M7y, M5, and My5 over Ry, Ry, and Rypo, respectively, equipped with
isomorphisms 1 : My QR,; Ris 5 Mo and v @ Mo QO Ry Ris 5 M. We say such
a gluing datum is finite if the modules are finite over the respective rings.

Given a gluing datum as above, let M := ker(¢; — 1) : My & My — Mja). There
are natural morphisms M — M7 and M — M, of R-modules, which induce maps
M ®pr Ry — My and M ®g Ry — Ms, respectively.

The following is [KLI5l Lem. 1.3.8]:

Lemma A.2. Consider a finite gluing datum for which M ® g Ry — M 1is surjec-
tive. Then the following are true.
(1) The morphism yn — g : My ® Mo — Mo is surjective.
(2) The morphism M ®p Ra — Ms is also surjective.
(8) There exists a finitely generated R-submodule My of M such that, for i =
1,2, the morphism My ®gr R; — M; is surjective.

Lemma A.3. In the above setting, suppose in addition that R; is noetherian and
that R; — Ry is flat, for « = 1,2. Suppose that, for every finite gluing datum,
the map M ®pr Ry — M is surjective. Then, for any finite gluing datum, M is a
finitely presented R-module, and M @ r R1 — My and M @ Ry — Ms are bijective.

Proof. Let My be as in Lemma Choose a surjection F' — My of R-modules,
with F' finite free. Let F} := FF ®r Ry, F5 := F ®r R, and Fis := F ®r Ris.
Let N := ker(F — M), Ny := ker(Fy — M), Ny := ker(Fy — Ms), and Npy =
ker(Fia — Mis). By Lemma we have a commutative diagram

(A.4) 0 0 0
0——N—>N; &Ny — Nyo >0
0——F —F & F Fio 0
0—— M —— M, &M, M2 0

0 0 0

with exact rows and columns, excluding the dotted arrows. Since Ri5 is flat over
R;, the sequence

0—)N¢®RiR12—>F12—>M12—>0
is exact, and hence N; ®p, Ri2 = Ni2. By hypothesis, R, is noetherian, and so
N, is finite over R;. Consequently, N1, No, and Njo form a finite gluing datum
as well. By Lemma again, the dotted horizontal arrow in is surjective.
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By diagram chasing, the dotted vertical arrow in is also surjective; that is,
we may add the dotted arrows to while preserving exactness of the rows and
columns. In particular, M is a finitely generated R-module. It follows that N is
finitely generated. This implies that M is finitely presented.

For i = 1,2, we obtain a commutative diagram

N®RR1*>F1*>M®RR1*>O

| |

0 N; E; M; 0
with exact rows—the first one is derived from the left column of (A.4)) by tensoring
with R; over R, while the second one is derived from the middle column of (A.4).

Since the left vertical arrow is surjective, by the five lemma, the right vertical arrow
is injective. It follows that the map M ®pgr R; — M; is a bijection, as desired. [

Definition A.5. We call a homomorphism of Huber rings f : A — B strict adic
if, for one (and hence every) choice of an ideal of definition I C A, the image f(I)
is an ideal of definition of B. It is clear that a strict adic morphism is adic.

The following is modeled on [KL15, Lem. 2.7.2].

Lemma A.6. Let Ry — S and Ry — S be homomorphisms of complete Huber
rings such that their sum ¥ : Ry @ Ry — S is strict adic. Then, for any ideal
of definition Is of S, there exists some integer I > 1 such that, for every n > 0,
every U € GL,(S) with U — 1 € M, (I}) is of the form % (Uy) ¥ (Us) for some
U; € GLn(Rl), fOTi =1,2.

Proof. Since 1) is strict adic, for any ideals of definition I; C Ry and Is C R, we
have an ideal of definition I := 1 (I; @ I3) C S. Choose [ > 0 such that I} C I%.
Then it suffices to show that every U € GL,(S) with U — 1 € M, (Ig) is of the
form ¢(Uy) ¥ (Us) for some U; € GL,(R;), for i = 1,2. Given U € GL,(S5) with
U—1¢eM,(Ig") for some m > 0, put V =U — 1. By assumption, we may lift V'
to a pair (X,Y) € M,,(I7") x M, (I3*). Then it is straightforward that the matrix
U =¢(1—X)Uy(1—Y) satisfies U' — 1 € M,,(I&™). Hence, we may construct
the desired matrices by iterating this construction. (I

The following is modeled on [KL15, Lem. 2.7.4].

Lemma A.7. In the context of Definition and the paragraph following it,
suppose in addition that

(1) the Huber rings Ry1, Ry and Rio are complete;

(2) R1 ® Ry — Rqg is strict adic; and

(3) the map Ro — Ri2 has a dense image.
Then, fori=1,2, the natural map M ®gr R; — M; is surjective.

Proof. Choose sets of generators {my 1,...,mp1} and {m2,..., My 2} of M; and
My, respectively, of the same cardinality. Then there exist A, B € M, (R;2) such
that Z/)g(ij) = Zl Aij wl(m¢72) and wl(mjg) = Zi Bij 1/)2(777,171), for all j Since
Ry — Rjs has a dense image, by Lemma there exists B’ € M,,(Rz) such that
1+ A(B' — B) = C,Cy " for some C; € GL,,(R;), for i = 1,2. For j =1,...,n, let

Tj = (J?j,l,l‘j,g) = (Z (Cl)ij mm,z (B/CQ)ij mi72) S Ml X Mg.

A %
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Then z; € M, because

(1) = a(wj0) = Y (Cr — AB'Cy)ij 1 (mi 1)

%

= Z (<1 - AB)CQ)U wl(mi,g) = 0.

For ¢ = 1,2, since C; € GL,(R;), we see that {xj,i}?zl generates M; over R; as
well. Thus, M ®g R; — M, is surjective, as desired. [

Theorem A.8. Let X = Spa(R,R™) be a noetherian affinoid adic space. The
categories of coherent sheaves on X and finitely generated R-modules are equivalent
via the global sections functor.

Proof. By [KL15, Lem. 2.4.20], it suffices to verify Kiehl’s gluing property for
any simple Laurent covering {Spa(R;, Rj") — X}i—12. In this case, let us write
Spa(R12, Rf,) = Spa(R1, R}) xx Spa(Ra, R ), with all Huber pairs completed by
our convention. By the noetherian hypothesis, and by [Hub94, Thm. 2.5], R, R;,
and Ris form a gluing diagram. Also, R; — Rjo is flat with dense image, for
1 =1,2. Hence, we can finish the proof by applying Lemmas and (]

Thus, we have the following version of Tate’s sheaf property and Kiehl’s gluing
property (see [KL15L Def. 2.7.6]) over certain affinoid adic spaces:
Proposition A.9. Let X = Spa(R, R") be a noetherian (resp. analytic) affinoid

adic space, and let M be a finite (resp. finite projective) R-module. Let M denote
the presheaf on X defined by setting M(U) =M ®pr Ox(U), for each open subset
U C X. Then the following are true:
(1) The presheafﬂ s a sheaf. Moreover, the shean is acyclic in the sense
that H' (U, M) = 0 for every rational subset U C X and every i > 0.

(2) The functor M — M defines an equivalence of categories from the cat-
egory of finite (resp. finite projective) R-modules to the category of co-
herent sheaves (resp. vector bundles) on X, with a quasi-inverse given by

F = F(X).
Proof. When X is noetherian, is [Hub94, Thm. 2.5], while is Theorem [A.8
When X is analytic, these follow from [Ked19, Thm. 1.4.2 and 1.3.4]. O

Recall that an adic space X is called stably adic (as in [KL15, Def. 8.2.19]) if X
is a site with a stable basis B; i.e., a basis stable under fiber products such that, for
any morphism Y’ — Y in X that is either finite étale or a rational localization,
if Y € B, then Y’ € B as well. We know X is stably adic if X is locally noetherian
(see [Hub96l (1.1.1) and Sec. 1.7]) or a perfectoid space (see [SW20, Lec. 7]).

By [KL15, Prop. 8.2.20], we have the following analogue of Proposition for
the étale topology:

Proposition A.10. Let X = Spa(R, RT) be a noetherian (resp. analytic stably
adic) affinoid adic space. Let B be a stable basis of Xe as above, which exists
because X is stably adic. Let M be a finite (resp. finite projective) R-module. Let
M denote the presheaf on Xe, defined by setting M(U) =M ®gr Ox(U), for each
U € X¢. Then the following are true:
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(1) The preshean is a sheaf. Moreover, M is acyclic on B; i.e., for every
Y € B, we have HO(Y,M) = M(U) and H'(Y,M) =0, for all i > 0.

(2) The functor M M defines an equivalence of categories from the cate-
gory of finite (resp. finite projective) R-modules to the category of coher-
ent sheaves (resp. vector bundles) on Xg, with a quasi-inverse given by
F — F(X).

Corollary A.11. For any X in Proposition @ the presheaf Ox,, 1s a sheaf.
Therefore, X is étale sheafy.
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