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Abstract. On any smooth algebraic variety over a p-adic local field, we con-

struct a tensor functor from the category of de Rham p-adic étale local systems
to the category of filtered algebraic vector bundles with integrable connections

satisfying the Griffiths transversality, which we view as a p-adic analogue of

Deligne’s classical Riemann–Hilbert correspondence. A crucial step is to con-
struct canonical extensions of the desired connections to suitable compactifi-

cations of the algebraic variety with logarithmic poles along the boundary, in a

precise sense characterized by the eigenvalues of residues; hence the title of the
paper. As an application, we show that this p-adic Riemann–Hilbert functor is

compatible with the classical one over all Shimura varieties, for local systems

attached to representations of the associated reductive algebraic groups.
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1. Introduction

Let X be a connected smooth complex algebraic variety, Xan the associated
analytic space and Xtop the underlying topological space. The classical Riemann–
Hilbert correspondence establishes (tensor) equivalences among the following:

• the category of finite-dimensional complex representations of π1(Xtop, x)
(where x is a chosen based point), which by a well-known topological con-
struction, is equivalent to the category of local systems (i.e., locally constant
sheaves) of finite-dimensional C-vector spaces on Xtop;
• the category of vector bundles with integrable connections on Xan; and
• the category of vector bundles with integrable connections on X, with reg-

ular singularities at infinity (which we shall simply call regular integrable
connections, in what follows).

The equivalence of the first and second categories is a simple consequence of the
Frobenius theorem: for a local system L on Xtop, the associated vector bundle
with an integrable connection is (L ⊗C OXan , 1 ⊗ d); and conversely, for a vector
bundle with an integrable connection on Xan, its sheaf of horizontal sections is a
local system on Xtop. The equivalence of the second and third categories, however,
is a deep theorem due to Deligne [Del70].

An analogous Riemann–Hilbert correspondence for varieties over a p-adic field
is long desired but remains rather mysterious until recently. The situation is far
more complicated. Let X be a smooth algebraic variety over Qp, for example. In
this setting, the second and third categories remain meaningful, and it is natural
to replace the first with the category of p-adic étale local systems on X. However,
after this replacement, one cannot expect an equivalence between the first and the
second categories, as can already be seen when X is a point. Moreover, in general,
the natural analytification functor from the third to the second category is not an
equivalence either. Nevertheless, one of the main goals of this paper is to prove the
following result (as one step towards the p-adic Riemann–Hilbert correspondence):
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Theorem 1.1. Let X be a smooth algebraic variety over a p-adic field k (see Nota-

tion and Conventions). Then there is a tensor functor Dalg
dR from the category of de

Rham p-adic étale local systems L on X to the category of algebraic vector bundles
on X with regular integrable connections and decreasing filtrations satisfying the
Griffiths transversality. In addition, there is a canonical comparison isomorphism

(1.2) Hi
ét

(
Xk,L

)
⊗Qp BdR

∼= Hi
dR

(
X,Dalg

dR(L)
)
⊗k BdR

compatible with the canonical filtrations and the actions of Gal(k/k) on both sides.

Here BdR is Fontaine’s p-adic period ring, and HdR is the algebraic de Rham
cohomology. The notion of de Rham p-adic étale local systems was first introduced
by Scholze in [Sch13, Def. 8.3] (generalizing earlier work of Brinon [Bri08]) using
some relative de Rham period sheaf. However, it turns out that this notion satisfies
a rather surprising rigidity property: by [LZ17, Thm. 3.9], a p-adic étale local
system L on Xan is de Rham if and only if, on each connected component of X,
there exists some classical point x such that, for some (and hence every) geometric
point x over x, the corresponding p-adic representation Lx of the absolute Galois
group of the residue field of x is de Rham in the classical sense. In this situation,
it follows that the same is also true at every classical point x of X. Note that the

functor denoted by DdR in [LZ17, Thm. 3.9] is the composition of the functor Dalg
dR

in Theorem 1.1 with the analytification functor. Compared with [Sch13] and [LZ17],
the algebraicity of the integrable connection is an important new contribution of
this paper. In particular, this allows us to go further to compare the p-adic theory
with Deligne’s complex theory mentioned above, as we shall see shortly.

Theorem 1.1 also includes a new de Rham comparison isomorphism for smooth
algebraic varieties over k with nontrivial coefficients, which implies that Hi

ét

(
Xk,L

)
is a de Rham representation of Gal(k/k). The de Rham comparison for smooth
varieties has a long history, which we shall not attempt to review—see, for exam-
ple, [Fal89, Fal02, Tsu99, Kis02, Niz08, Niz09, Yam11, Bei12, AI13, Sch13, Sch16,
CN17, LP19]. All these earlier works either imposed some strong assumption on
the coefficient L (and in fact most works assumed that L is trivial) or assumed
that the variety X is proper. But we require neither. In this generality, without

first constructing the corresponding Dalg
dR(L) as in Theorem 1.1, it was not even

clear how to formulate the comparison isomorphism! Once Dalg
dR(L) is constructed,

we can adapt Scholze’s approach in [Sch13] and obtain the desired comparison for
arbitrary nontrivial coefficients on arbitrary smooth varieties.

Besides taking cohomology, the functor Dalg
dR is compatible with many other

operations of sheaves. For example, it commutes with taking nearby cycles in the
simplest situation where our formulation is available.

Theorem 1.3. Let f : X → A1 be a smooth morphism and let D := f−1(0). Let
L be a de Rham p-adic étale local systems on X − D. Then there is a canonical
isomorphism of vector bundles with integrable connections

Dalg
dR

(
RΨf (L)

) ∼= RΨf

(
Dalg

dR(L)
)

on D, compatible with the filtrations on both sides. (Here RΨf at the two sides
of the isomorphism denotes the nearby cycle functors in the étale and D-module
settings, respectively.) In particular, RΨf (L) is a de Rham local system on Dét.
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See Theorem 4.3.2 for a slightly more general statement, and see Corollary 4.3.4
for a concrete interpretation when X is a smooth curve over k. These results suggest
a strong relation between our work and classical Hodge theory, such as Schmid’s
theorem on limit Hodge structures [Sch73]. Another manifestation of this relation is
that we prove some cohomology vanishing results for p-adic algebraic varieties (see
Theorem 4.2.1), similar to those that can be obtained from complex Hodge theory.
In particular, we obtain a new proof of the Kodaira–Akizuki–Nakano vanishing
theorem (together with some generalizations) by p-adic Hodge-theoretic methods.

We shall call the functor Dalg
dR in Theorem 1.1 the (algebraic) p-adic Riemann–

Hilbert functor. It is natural to ask whether this functor is compatible with Deligne’s
classical Riemann–Hilbert correspondence in a suitable sense. We shall formulate
our expectation in the Conjecture 1.4 below. Let us begin with some preparations.

Let X be a smooth algebraic variety over a number field E. We fix an isomor-
phism ι : Qp

∼→ C and a homomorphism σ : E → C, and write σX = X ⊗E,σ C.
There is a tensor functor from the category of p-adic étale local systems L on X
to the category of (vector bundles with) regular integrable connections on σX as
follows. Note that L|σX is an étale local system on σX, corresponding to a p-adic
representation of the étale fundamental group of each connected component of σX,
which is the profinite completion of the fundamental group of the corresponding
connected component of (σX)top. Then L|σX ⊗Qp,ιC can be regarded as a classical
local system on (σX)top, denoted by ιLσ. By Deligne’s Riemann–Hilbert corre-
spondence, we obtain a regular integrable connection on σX. On the other hand,
ι−1 ◦ σ : E → Qp determines a p-adic place v. Let Ev be the completion of E

with respect to v, and assume that L|XEv is de Rham. Then Dalg
dR(L|XEv )⊗Ev,ι C

is another regular integrable connection, with an additional decreasing filtration
Fil• satisfying the Griffiths transversality. We would like to compare the above two
constructions. In order to do so, we need to impose a further restriction on L.

We say that L is geometric if, at each geometric point x above a closed point
x of X, the p-adic representation Lx of Gal

(
k(x)/k(x)

)
is geometric in the sense

of Fontaine–Mazur (see [FM97, Part I, §1]). Note that geometric p-adic étale
local systems on X form a full tensor subcategory of the category of all étale local
systems. If L is geometric, then L|XEv is de Rham (by [LZ17, Thm. 3.9]).

Conjecture 1.4. The above two tensor functors from the category of geometric
p-adic étale local systems on X to the category of regular integrable connections

on σX are canonically isomorphic. In addition, (Dalg
dR(L|XEv ) ⊗Ev,ι C,Fil•) is a

complex variation of Hodge structures.

This is closely related to a relative version of the Fontaine–Mazur conjecture
proposed in [LZ17], but it might be more approachable because it is stated purely
in terms of sheaves. Even so, it seems to be currently out of reach. Nevertheless, in
the case of Shimura varieties, we can partially verify this conjecture. Let (G,X) be a
Shimura datum, K ⊂ G(Af ) a neat open compact subgroup, and ShK = ShK(G,X)
the associated Shimura variety, defined over the reflex field E = E(G,X). Let Gc

be the quotient of G by the minimal subtorus Zs(G) of the center Z(G) of G such
that the torus Z(G)◦/Zs(G) has the same split ranks over Q and R. Recall that
there is a tensor functor from the category RepQp(Gc) of algebraic representations

of Gc over Qp to the category of p-adic étale local systems on ShK (see, for example,
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[LS18b, Sec. 3] or [LZ17, Sec. 4.2]), whose essential image consists of only certain
geometric p-adic étale local systems (see [LZ17, Thm. 1.2]).

Theorem 1.5. The conjecture holds for the (p-adic) étale local systems on ShK
coming from RepQp(Gc) as above.

Note that this theorem applies to all Shimura varieties, on which étale local
systems are not (yet) known to be related to motives in general. Crucial ingredients
in our proof include Margulis’s superrigidity theorem [Mar91], and a construction
credited to Piatetski-Shapiro by Borovoi [Bor84] and Milne [Mil83]. This theorem
itself has applications to the arithmetic of Shimura varieties, such as the following:

Corollary 1.6. The Grothendieck–Messing period map for ShK is étale.

This implies that the local geometry of Shimura varieties is controlled by the
moduli spaces of p-adic shtukas constructed by Scholze (see [SW20, Sec. 23.3]).
(From the definitions, it was not clear how these moduli spaces are related to
Shimura varieties.) Some other applications of Theorem 1.5 will appear in [LLZ].

Now let us explain our strategy for proving Theorem 1.1. As mentioned above,
in [LZ17, Thm. 3.9], a tensor functor Dan

dR was constructed from the category of de
Rham p-adic étale local systems on Xan to the category of filtered vector bundles
on Xan with integrable connections satisfying the Griffiths transversality. In order
to prove Theorem 1.1, a natural idea is to fix a smooth compactification X of X
with a normal crossings boundary divisor, and extend the filtered vector bundles
with integrable connections in loc. cit. to filtered vector bundles on X

an
with

integrable log connections (i.e., connections with log poles along the boundary
divisor). However, rather unlike the complex analytic situation in [Del70], not every
integrable connection on Xan is extendable and hence algebraizable (see [AB01, Ch.
4, Rem. 6.8.3] or [ABC20, Rem. 34.6.3] for some counter-example).

Instead, we shall directly construct a functor from the category of de Rham p-adic
étale local systems on Xan to the category of filtered vector bundles with integrable
log connections on X

an
. We shall work in the realm of log analytic geometry as

in [DLLZ], and construct a log Riemann–Hilbert correspondence, which is a crucial
step in this paper. Compared with [LZ17], many new ingredients and essential
new ideas are needed for this construction, and many new difficulties have to be
overcome. Let us begin with a rough summary. Based on [DLLZ], the starting
point is the construction of the log de Rham period sheaf OBdR,log, generalizing
the de Rham period sheaf OBdR as in [Sch13] and [LZ17]. Then we define the log
Riemann–Hilbert functors in a way similar to [LZ17]. However, for our purpose, we
also need to develop a very general formalism of decompletion systems, generalizing
the one introduced in [KL16, Sec. 5] and many other classical works. After these,
the major divergence of the methods from [LZ17] occurs. One of the key facts used
in loc. cit., that a coherent module with an integrable connection is automatically
locally free, completely breaks down for log connections in general. Our new idea
is to study a collection of important invariants attached to a log connection—i.e.,
the residues along the irreducible components of the boundary, using the above-
mentioned decompletion formalism. This allows us to prove a lot of favorable
properties of the log connections constructed from the de Rham local systems. In
particular, we can canonically extend the filtration on the integrable connection (as
constructed in [Sch13] and [LZ17]) to the boundary. Moreover, the residues play
an essential role in our study of nearby cycles, as in Theorem 1.3.
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Let us also mention that, in the classical setting over C, Illusie–Kato–Nakayama
[IKN05, IKN07] developed a theory of quasi-unipotent log Riemann–Hilbert corre-
spondence, which obtained as a byproduct Deligne’s Riemann–Hilbert correspon-
dence for local systems with quasi-unipotent monodromy at infinity.

We now explain our construction in more details. We will work over a smooth
rigid analytic variety Y over k (viewed as an adic space over Spa(k,Ok)), together
with a normal crossings divisor D ⊂ Y , and view Y as a log adic space by equipping
it with the natural log structure defined by D. (For applications to our previous

setup, we take Y = X
an

, and take D to be the analytification of the boundary
divisor X −X with its reduced subscheme structure.) Any Kummer étale Zp-local

system L on Y induces a Ẑp-local system L̂ on Yprokét. Let µ : Yprokét → Yan

denote the natural projection from the pro-Kummer étale site to the analytic site.
(Note that as a subscript “an” means the analytic site, while as a superscript it
means the analytification of an algebraic object.) Let Ω1

Y (logD) denote the sheaf
of differentials with log poles along D, as usual. The following theorem is an
abbreviated version of Theorem 3.2.7, from which Theorem 1.1 will be deduced.

Theorem 1.7. Let Y and µ be as above. Consider the functor DdR,log, which sends
a Kummer étale Zp-local system L on Y to

DdR,log(L) := µ∗(L̂⊗Ẑp OBdR,log).

Then DdR,log(L) is a vector bundle on Yan equipped with an integrable log connection

∇L : DdR,log(L)→ DdR,log(L)⊗OY Ω1
Y (logD)

and a decreasing filtration (by coherent subsheaves) satisfying the Griffiths transver-
sality, which extends the vector bundle DdR(L) with its integrable connection in
[LZ17, Thm. 3.9]. Moreover, all eigenvalues of the residues of DdR,log(L) along
the irreducible components of D are rational numbers in [0, 1). In particular,
(DdR,log(L),∇L) is the canonical extension of the (DdR(L),∇L); i.e., the unique
(if existent) extension of (DdR(L),∇L) with such eigenvalues of residues.

If L|Y−D is a de Rham étale Zp-local system, then grDdR,log(L) is a vector
bundle on Yan of rank rkZp(L), and we have the de Rham (resp. Hodge–Tate) com-
parison isomorphism between the Kummer étale cohomology of L and the log de
Rham (resp. log Hodge) cohomology of DdR,log(L).

Note that, unlike the functors Dalg
dR and DdR in Theorem 1.1 and [LZ17, Thm.

3.9], the functor DdR,log fails to be a tensor functor in general, as the eigenvalues of
the residues of DdR,log(L1)⊗OY DdR,log(L2) might be outside [0, 1), and therefore
DdR,log(L1)⊗OY DdR,log(L2) might not be isomorphic to DdR,log(L1 ⊗Ẑp L2). This

failure is caused by the failure of the surjectivity of the canonical morphism

(1.8) µ−1
(
DdR,log(L)

)
⊗OYprokét

OBdR,log → L̂⊗Ẑp OBdR,log

in general, even when rkOY (DdR,log(L)) = rkZp(L). This phenomenon is not present
in the usual comparison theorems in p-adic Hodge theory, but is consistent with the
complex Riemann–Hilbert correspondence. Nevertheless, we will see in Theorem
3.2.12 that DdR,log restricts to a tensor functor from the subcategory of de Rham
local systems with unipotent geometric monodromy along the boundary to the sub-
category of integrable log connections with nilpotent residues along the boundary.

We will deduce Theorem 1.7 from a geometric log Riemann–Hilbert correspon-
dence. Let Y be as above, let K be a perfectoid field over k containing all roots
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of unity, and let Gal(K/k) abusively denote the group of continuous field auto-
morphisms of K over k. Let B+

dR = B+
dR(K,OK) and BdR = BdR(K,OK) (as

in [LZ17, Sec. 3.1]), and consider the ringed spaces Y+ = (Yan,OY ⊗̂kB+
dR) and

Y = (Yan,OY ⊗̂kBdR), where OY ⊗̂kB+
dR and OY ⊗̂kBdR are sheaves on Yan which

we interpret as the rings of functions on the not-yet-defined base changes “Y ⊗̂kB+
dR”

and “Y ⊗̂kBdR”, respectively. Let µ′ : Yprokét/YK
→ Yan denote the natural mor-

phism of sites. The following theorem is an abbreviated version of Theorem 3.2.3.

Theorem 1.9. The functor

RHlog(L) := Rµ′∗(L̂⊗Ẑp OBdR,log)

is an exact functor from the category of Kummer étale Zp-local systems on Y to the
category of Gal(K/k)-equivariant vector bundles on Y, equipped with an integrable
log connection ∇L : RHlog(L)→ RHlog(L)⊗OY Ω1

Y (logD), and a decreasing filtra-

tion (by locally free OY ⊗̂kB+
dR-submodules) satisfying the Griffiths transversality.

Moreover, we have Hi
két

(
Yk,L

)
⊗Zp BdR

∼= Hi
log dR

(
Y,RHlog(L)

)
when K = k̂.

Let RH+
log(L) := Rµ′∗(L̂ ⊗Ẑp Fil0OBdR,log), which is an OY ⊗̂kB+

dR-lattice in

RHlog(L) equipped (as in [LZ17, Rem. 3.2]) with the t-connection ∇+
L := t∇L :

RH+
log(L) → RH+

log(L) ⊗OY Ω1
Y (logD)(1), where t ∈ BdR is an element on which

Gal(K/k) acts via the cyclotomic character. By reduction modulo t, we obtain the
log p-adic Simpson functor Hlog, constructed in much greater generality by Faltings
[Fal05] and Abbes–Gros–Tsuji [AGT16]. See Theorem 3.2.4 for more details.

Compared with the situation in [LZ17], the proof of Theorem 1.9 requires some
decompletion statement beyond the scope of [KL16]. We have therefore developed
a general formalism in Appendix A, which might be of some independent interest.

Now we explain how to deduce Theorem 1.7 from Theorem 1.9, where some es-
sential new ideas of this paper appear. By using the above-mentioned decompletion
statement and an argument similar to the one in [LZ17], it is not difficult to show
that DdR,log(L) ∼= (RHlog(L))Gal(K/k) is a coherent sheaf on Yan. However, unlike
the situation in [LZ17], the existence of a log connection does not guarantee the
local freeness of DdR,log(L). A priori, only its reflexivity is clear. Nevertheless,
there is a collection of important invariants attached to a log connection; i.e., the
residues along the irreducible components of D. Somewhat surprisingly, by using
the decompletion formalism again, we find that all the eigenvalues of the residues
are rational numbers in [0, 1). Together with the reflexivity and a general fact
about log connections, this allows us to conclude that DdR,log(L) is indeed locally
free. We remark that residues also plays a vital role in deducing the comparison of
cohomology in Theorem 1.7 from the comparison of cohomology in Theorem 1.9.

Finally, our results on residues also allow us to define V -filtrations and study
nearby cycles in the p-adic setting, which in turn allows us to deduce Theorem 1.3.

Outline of this paper. Let us briefly describe the organization of this paper, and
highlight the main themes in each section.

In Section 2, we study the log de Rham period sheaves, generalizing the usual ones
studied in [Bri08, Sec. 5], [Sch13, Sec. 6], and [Sch16], with a subtle difference—see
Remark 2.2.11. In Section 2.1, we recall some notation and basic results for log
adic spaces developed in [DLLZ]. In Section 2.2, we present the general definitions
of these log de Rham period sheaves. In Section 2.3, we describe their structures
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in detail, when there are good local coordinates. In Section 2.4, we record some
consequences, including the Poincaré lemma. We note that results of this section
hold for a class of log adic spaces larger than those considered in Theorems 1.7 and
1.9. This extra generality is useful for many applications (see, e.g., [LLZ]).

In Section 3, we establish the geometric and arithmetic versions of log p-adic
Riemann–Hilbert correspondences, as well as the log p-adic Simpson correspondence,
as explained above. We introduce some general terminologies for filtered vector
bundles with log connections “relative to BdR” in Section 3.1, and state the main
results in Section 3.2, which are more detailed versions of Theorems 1.7 and 1.9.
The proofs are given in the following subsections. In Section 3.3, we show that we
obtain coherent sheaves in the various constructions. In Section 3.4, we calculate the
eigenvalues of residues of the connections along the boundary. This is the technical
heart of this paper. In particular, it justifies the local freeness of the above coherent
sheaves. In Section 3.5, we show that our correspondences are compatible with
certain pullbacks and pushforwards, by using our results on residues and the known
compatibilities in [Sch13] and [LZ17]. In Section 3.6, we establish the comparisons
of cohomology in our main theorems. In Section 3.7, we show that the formation of
quasi-unipotent nearby cycles (in the rigid analytic setting, as introduced in [DLLZ,
Sec. 6.4.1]) is compatible with the log Riemann–Hilbert functors.

In Section 4, we present our main results for algebraic varieties. In Section 4.1,
we construct the p-adic Riemann–Hilbert functor and prove Theorem 1.1. We also
establish the corresponding log Hodge–Tate comparison and the degeneration of
(log) Hodge–de Rham spectral sequences, and record the latter results in Theorem
4.1.4. In Section 4.2, we present some vanishing theorem for p-adic algebraic vari-
eties, by adapting complex Hodge-theoretic arguments in [Suh18] using our p-adic
results. In Section 4.3, we show that the formation of algebraic (quasi-unipotent)
nearby cycles is compatible with our p-adic Riemann–Hilbert functor.

In Section 5, we compare two constructions of filtered vector bundles with reg-
ular connections on Shimura varieties, and deduce Theorem 1.5 and Corollary 1.6.
In Section 5.1, we begin with the overall setup. In Section 5.2, we explain the two
constructions, one complex analytic and the other p-adic. In Section 5.3, we state
our main comparison theorem on these two constructions, and record some conse-
quences. In Section 5.4, we reduce the theorem to a technical statement concerning
representations of fundamental groups, which are then verified in the remaining two
subsections. This section can be read largely independent of the rest of the paper.

In Appendix A, we generalize the decompletion formalism in [KL16, Sec. 5].
In Appendix A.1, we introduce and study the notions of decompletion systems and
decompleting triples. In Appendix A.2, we present three examples which play crucial
roles in Section 3 (in the proof of coherence and the calculation of residues). The
appendix can also be read largely independent of the rest of the paper.
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Notation and conventions. Unless otherwise specified, we always denote by k a
nonarchimedean local field (i.e., a field complete with respect to a nontrivial nonar-
chimedean multiplicative norm | · | : k → R≥0) with residue field κ of characteristic
p > 0, and Ok denotes the ring of integers in k. We also denote by k+ ⊂ Ok an
open valuation ring, whose choice depends on the context. Sometimes, we choose
a pseudo-uniformizer (i.e., a topological nilpotent unit) $ of k contained in k+.

By a locally noetherian adic space over k, we mean an adic space X over
Spa(k, k+) that admits an open covering by affinoids Ui = Spa(Ai, A

+
i ) where each

Ai is strongly noetherian. A noetherian adic space over k is a qcqs locally noether-
ian adic space over k. If X is locally noetherian, we denote by Xan its analytic site,
by Xét its associated étale site, and by λ : Xét → Xan the natural projection of
sites. We shall regard rigid analytic varieties as adic spaces topologically of finite
type over Spa(k,Ok) (as in [Hub96]), in which case we will work with k+ = Ok.

By default, monoids are assumed to be commutative, and the monoid operations
are written additively (rather than multiplicatively), unless otherwise specified. For
a monoid P , let P gp denote its group completion. If R is a commutative ring with
unit and P is a monoid, we denote by R[P ] the monoid algebra over R associated
with P . The image of a ∈ P in R[P ] will be denoted by ea.

Group cohomology will always mean continuous group cohomology.
As in [Sch13], many of our results will be over nonarchimedean local fields k that

are discrete valuation fields of mixed characteristic (0, p) with perfect residue fields.
For the sake of simplicity, we will abusively call such fields p-adic fields. The main
results of [LZ17] work over such fields.

2. Log de Rham period sheaves

In this section, we define and study the log de Rham period sheaves, generalizing
the usual ones studied in [Bri08, Sec. 5], [Sch13, Sec. 6], and [Sch16]. We shall
assume that k is of characteristic zero and residue characteristic p > 0.

2.1. Basics of log adic spaces. We begin with a summary of some notation
and basic results for log adic spaces developed in the companion paper [DLLZ], in
slightly less generality than the one in loc. cit., for the sake of simplicity.

Let X be any étale sheafy adic space; i.e., X admits a well-defined étale site
Xét and the étale structure presheaf OXét

: U 7→ OU (U) is a sheaf. A pre-log
structure on X is a pair (MX , α) consisting of a sheafMX of monoids on Xét and
a morphism α :MX → OXét

of sheaves of monoids (for the natural multiplicative
monoid structure ofOXét

). Such a pair is a log structure if α induces an isomorphism

α−1(O×Xét
)
∼→ O×Xét

, in which case (X,MX , α) is a log adic space. The log structure

is trivial when α−1(O×Xét
) =MX . For simplicity, we shall often write (X,MX) or

X, when the context is clear. Moreover, we have the notions of morphisms between
log structures and between log adic spaces, of the log structure associated with a
pre-log structure, and of pullbacks of log structures. These are analogous to the
similar notions for schemes—see [DLLZ, Def. 2.2.2] for more details. A log adic
space is noetherian (resp. locally noetherian) if its underlying adic space is.

For example, when P is a monoid such that either P is finitely generated,
or that k is perfectoid and P is uniquely p-divisible, then we know that Y :=
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Spa(k[P ], k+[P ]) ∼= Spa(k〈P 〉, k+〈P 〉) is an étale sheafy adic space over Spa(k, k+)
(see [DLLZ, Lem. 2.2.13 and 2.2.15]). By abuse of notation, we shall sometimes
denote by simply P the constant sheaf PY on Y associated with the monoid P .
Then we have the canonical log structure P log on Y associated with the pre-log
structure P → OYét

induced by a 7→ ea ∈ k〈P 〉 (see [DLLZ, Def. 2.2.17]).

Example 2.1.1. When P ∼= Zn≥0 for some n ≥ 0, we have Spa(k〈P 〉, k+〈P 〉) ∼=
Dn := Spa(k〈T1, . . . , Tn〉, k+〈T1, . . . , Tn〉), the n-dimensional unit disc, with the
log structure on Dn induced by Zn≥0 → k〈T1, . . . , Tn〉 : (a1, . . . , an) 7→ T a1

1 · · ·T ann .

Given any log adic space X and any monoid P , a chart of X modeled on P is a
morphism of sheaves of monoids θ : PX → MX such that α

(
θ(PX)

)
⊂ O+

Xét
and

such that the log structure associated with the pre-log structure α ◦ θ : PX → OXét

is isomorphic to MX (see [DLLZ, Def. 2.3.1]). When X is defined over Spa(k, k+)
and when Spa(k〈P 〉, k+〈P 〉) is defined as a log adic space as above, this is equivalent
to having a strict morphism (see [DLLZ, Rem. 2.3.2]) from X to Spa(k〈P 〉, k+〈P 〉).
We say a log adic space is fs if it étale locally admits charts models on monoids
that are fs, i.e., finitely generated, integral, and saturated (see [DLLZ, Def. 2.1.1 and
2.3.5]). We also have the notion of fs charts of morphisms between fs log adic spaces
(see [DLLZ, Prop. 2.3.21 and 2.3.22]). By [DLLZ, Prop. 2.3.27], fiber products exist
in the category of locally noetherian fs log adic spaces whenever the fiber products
of underlying adic spaces exist (although the underlying adic spaces of the fiber
products of fs log adic spaces might differ from the latter).

We say that a morphism of locally noetherian fs log adic spaces is strictly étale if
the underlying morphism of adic spaces is étale. By using the notion of charts, we
can define log smooth and log étale morphisms of locally noetherian fs adic spaces
(see [DLLZ, Def. 3.1.1]). When X is log smooth over Spa(k,Ok), where the latter is
equipped with the trivial log structure, we simply say that X is log smooth over k
(see [DLLZ, Def. 3.1.9]). By [DLLZ, Prop. 3.1.10], a log smooth fs log adic space X
over k étale locally admits strictly étale morphisms X → Spa(k〈P 〉, k+〈P 〉) which
provide charts modeled on toric monoids P , i.e., fs monoids that are sharp in the
sense that the subgroups P inv of invertible elements of P are trivial. When the
underlying adic space of X is smooth, we may assume in the above that P ∼= Zn≥0

for some n ≥ 0, so that Spa(k〈P 〉, k+〈P 〉) ∼= Dn (see [DLLZ, Cor. 3.1.11]). We call
any strictly étale morphism X → Spa(k〈P 〉, k+〈P 〉) (resp. X → Dn) as above a
toric chart (resp. smooth toric chart) (see [DLLZ, Def. 3.1.12]).

We will mostly apply the general theory to the following class of fs log adic spaces
(see [DLLZ, Ex. 2.3.17 and 3.1.13] for more details):

Example 2.1.2. Let X be a smooth rigid analytic variety over k. A (reduced)
normal crossings divisor D of X is given by a closed immersion ı : D ↪→ X over
k that is étale locally—or equivalently, analytic locally, up to replacing k with a finite
extension—of the form S × {T1 · · ·Tr = 0} ↪→ S × Dr, for some smooth S over k.
We equip X with the log structure MX := {f ∈ OXét

: f is invertible on X −D},
where α :MX → OXét

is the natural inclusion, which makes (X,MX) a log smooth

noetherian fs adic space over k. Étale locally, when X ∼= S × Dr, the log structure
on X is the pullback of the one on Dr (see Example 2.1.1), and we have smooth
toric charts X → Dn such that ı : D ↪→ X is the pullback of {T1 · · ·Tr = 0} ↪→ Dn,
where T1, . . . , Tn are the coordinates of Dn, for some 0 ≤ r ≤ n.
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For each locally noetherian fs log adic space X, we have the Kummer étale
site Xkét, as in [DLLZ, Sec. 4.1], whose objects are fs log adic spaces Kummer
étale over X. A typical example of Kummer étale morphisms is, for each inte-

ger m ≥ 1, the ramified cover Dnm := Spa(k〈T
1
m

1 , . . . , T
1
m
n 〉, k+〈T

1
m

1 , . . . , T
1
m
n 〉) →

Dn = Spa(k〈T1, . . . , Tn〉, k+〈T1, . . . , Tn〉). We also have the pro-Kummer étale site
Xprokét, as in [DLLZ, Def. 5.1.2] (which generalizes [Sch16]). Then we have natural
projections of sites υX : Xprokét → Xkét, εX,ét : Xkét → Xét, and νX = εX,ét ◦ υX :
Xprokét → Xét, where εX,ét is an isomorphism when the log structure is trivial. For
any morphism f : X → Y of locally noetherian fs log adic spaces, we have compat-
ible canonical morphisms of sites fkét : Xkét → Ykét and fprokét : Xprokét → Yprokét.

We can naturally define locally constant sheaves and torsion local systems on
Xkét (see [DLLZ, Def. 4.4.14]). We define a Zp-local system (or lisse Zp-sheaf )
on Xkét to be an inverse system of Z/pn-modules L = (Ln)n≥1 on Xkét such that
each Ln is a locally constant sheaf which are locally (on Xkét) associated with
finitely generated Z/pn-modules, and such that the inverse system is isomorphic
in the pro-category to an inverse system in which Ln+1/p

n ∼= Ln. We define a
Qp-local system (or lisse Qp-sheaf ) on Xkét to be an object of the stack associated
with the fibered category of isogeny lisse Zp-sheaves. (See [DLLZ, Def. 6.3.1].) Let

Ẑp := lim←−n(Z/pn) as a sheaf of rings on Xprokét, and let Q̂p := Ẑp[ 1
p ]. A Ẑp-local

system on Xprokét is a sheaf of Ẑp-modules on Xprokét that is locally isomorphic to

L⊗Zp Ẑp for some finitely generated Zp-modules L. The notion of Q̂p-local systems
on Xprokét is defined similarly. (See [DLLZ, Def. 6.3.2 and Lem. 6.3.3]). Functors

on Qp- (resp. Q̂p-) local systems naturally extend to functors on Zp- (resp. Ẑp-)
local systems, which we shall abusively denote by the same symbols, for simplicity.

2.2. Definitions of period sheaves. Let (R,R+) be a perfectoid affinoid algebra
over k, with (R[, R[+) its tilt. Recall that there are the period rings

Ainf(R,R
+) := W (R[+) and Binf(R,R

+) := Ainf(R,R
+)[ 1

p ].

It is well known that there is a natural surjective map

(2.2.1) θ : Ainf(R,R
+)→ R+,

whose kernel is a principal ideal generated by some ξ ∈ Ainf(R,R
+), which is not

a zero divisor (see, for example, [KL15, Lem. 3.6.3]). We define

B+
dR(R,R+) := lim←−

r

(
Binf(R,R

+)/ξr
)

and BdR(R,R+) := B+
dR(R,R+)[ξ−1].

We shall equip BdR(R,R+) with the filtration FilrBdR(R,R+) := ξrB+
dR(R,R+),

for all r ∈ Z. This filtration is separated, complete, and independent of the choice
of ξ. Therefore, for all r ∈ Z, we have a canonical isomorphism

(2.2.2) grr BdR(R,R+) ∼= ξrR.

Now let X be a locally noetherian fs log adic space over Spa(Qp,Zp). As in
[DLLZ, Def. 5.4.1] (which generalizes [Sch13, Def. 4.1 and 5.10]), we have:

• O?
Xprokét

= υ−1(O?
Xkét

), where ? = ∅ or +;

• Ô+
Xprokét

= lim←−n
(
O+
Xprokét

/pn
)

and ÔXprokét
= Ô+

Xprokét
[ 1
p ];

• Ô[?Xprokét
= lim←−Φ

Ô?
Xprokét

, where ? = ∅ or +;

• α :MXprokét
:= υ−1(MXkét

)→ OXprokét
; and
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• α[ :M[
Xprokét

:= lim←−a 7→apMXprokét
→ Ô[Xprokét

.

We shall sometimes omit the subscripts “prokét” or “Xprokét”.

Definition 2.2.3. We define the following sheaves on Xprokét:

(1) Let Ainf,X := W (Ô+
X[prokét

) and Binf,X := Ainf,X [ 1
p ], where the latter is

equipped with a natural map θ : Binf,X → ÔXprokét
.

(2) Let B+
dR,X := lim←−r

(
Binf,X/(ker θ)r

)
, and BdR,X := B+

dR,X [t−1], where t is

any generator of (ker θ)B+
dR,X . (We will choose some t in (2.3.2) below.)

(3) The filtration on B+
dR,X is given by FilrB+

dR,X := (ker θ)rB+
dR,X . It induces

a filtration on BdR,X given by FilrBdR,X :=
∑
s≥−r t

−sFilr+sB+
dR,X .

We shall omit the subscript X in the notation when the context is clear.

Proposition 2.2.4. Suppose that U ∈ Xprokét is log affinoid perfectoid, with asso-

ciated perfectoid space Û = Spa(R,R+), as in [DLLZ, Def. 5.3.1 and Rem. 5.3.5].

(1) We have a canonical isomorphism Ainf(U) ∼= Ainf(R,R
+), and similar iso-

morphisms for Binf , B+
dR, and BdR.

(2) Hj(U,B+
dR) = 0 and Hj(U,BdR) = 0 for all j > 0.

Proof. The proof is essentially the same as in the one of [Sch13, Thm. 6.5], with
the input [Sch13, Lem. 5.10] there replaced with [DLLZ, Prop. 5.4.3]. �

Remark 2.2.5. By the previous discussion and Proposition 2.2.4(1) (for Ainf), the
element t in Definition 2.2.3(2) exists locally on Xprokét and is not a zero divisor.
Therefore, the sheaf BdR and its filtration are indeed well defined.

Corollary 2.2.6. If X is over a perfectoid field k (over Qp) containing all roots

of unity, then gr• BdR
∼= ⊕r∈Z

(
ÔXprokét

(r)
)
.

Proof. This follows from (2.2.2) and Proposition 2.2.4, as in [Sch13, Cor. 6.4]. �

Corollary 2.2.7. Suppose that ı : Z → X is a strict closed immersion, as in
[DLLZ, Def. 2.2.23]. Then BdR,X → ıprokét,∗(BdR,Z) is surjective. More precisely,
its evaluation at every log affinoid perfectoid object U in Xprokét is surjective.

Proof. This follows from [DLLZ, Prop. 5.4.5] and Proposition 2.2.4. �

Now let X be a locally noetherian fs log adic space over Spa(k, k+). We shall con-
struct OB+

dR,log,X , a log version of the geometric de Rham period sheaves OB+
dR,X

introduced in [Bri08, Sch13, Sch16]. As log affinoid perfectoid objects form a basis
B of Xprokét (see [DLLZ, Prop. 5.3.12]), it suffices to define OB+

dR,log,X as a sheaf
associated with a presheaf on B.

We adopt the notation in [DLLZ, Sec. 5.3 and 5.4]. Let U = lim←−i∈I Ui ∈ Xprokét

be a log affinoid perfectoid object, with Ui = (Spa(Ri, R
+
i ),Mi, αi), for each i ∈ I,

and with associated perfectoid space Û = Spa(R,R+), where (R,R+) is the p-
adic completion of lim−→i∈I(Ri, R

+
i ), which is perfectoid. By [DLLZ, Thm. 5.4.3],(

Ô(U), Ô+(U)
)

= (R,R+), and
(
Ô[(U), Ô[+(U)

)
is its tilt (R[, R[+). Let us write:

• Mi :=Mi(Ui), for each i ∈ I;
• M :=MXprokét

(U) = lim−→i∈IMi; and

• M [ :=MX[prokét
(U) = lim←−a 7→apM .
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Recall that we have αi : Mi → Ri, for each i ∈ I, and α[ : M [ → R[ (see
Section 2.1 and [DLLZ, Def. 5.4.1]). For each r ≥ 1, we have a multiplicative map
R[ →W (R[+)[ 1

p ]/ξr induced by R[+ →W (R[+), which we still denote by f 7→ [f ].

Then the composition of this map with α[ : M [ → R[ induces a map

α̃i,r : Mi ×M M [ →
(
Ri⊗̂W (κ)(W (R[+)/ξr)

)
[Mi ×M M []

a = (a′, a′′) 7→
(
αi(a

′)⊗ 1
)
−
(
1⊗ [α[(a′′)]

)
ea,

where ea denotes (in boldface, unlike in our convention) the element of the monoid
algebra corresponding to a = (a′, a′′) ∈Mi ×M M [. Let

(2.2.8) Si,r :=
(
Ri⊗̂W (κ)(W (R[+)/ξr)

)
[Mi ×M M []

/(
α̃i,r(a)

)
a∈Mi×MM[ .

By abuse of notation, we shall sometimes drop tensor products with 1 in the nota-
tion, and write αi(a

′) = [α[(a′′)] ea in Si,r. There is a natural map

(2.2.9) θlog : Si,r → R

induced by the natural maps Ri → R and (2.2.1) such that θlog(ea) = 1, which is

well defined because θ([α[(a′′)]) = αi(a
′) in R, for all (a′, a′′) ∈Mi ×M M [. Let

Ŝi := lim←−
r,s

(
Si,r/(ker θlog)s

)
,

equipped with a canonically induced map θlog : Ŝi → R. Note that lim−→i∈I Ŝi
depends only on U ∈ Xprokét, but not on the presentation U = lim←−i∈I Ui.

Definition 2.2.10. (1) The geometric de Rham period sheaf OB+
dR,log,X on

Xprokét is the sheaf associated with the presheaf sending U to lim−→i∈I Ŝi,

equipped with the filtration FilrOB+
dR,log,X := (ker θlog)rOB+

dR,log,X .

(2) We define the filtration on OB+
dR,log,X [t−1], where t is the same as in Defi-

nition 2.2.3(2), by Filr(OB+
dR,log,X [t−1]) :=

∑
s≥−r t

−sFilr+sOB+
dR,log,X .

(3) Let OBdR,log,X be the completion of OB+
dR,log,X [t−1] with respect to the

above filtration, equipped with the induced filtration. Then we have

FilrOBdR,log,X = lim←−
s≥0

(
Filr(OB+

dR,log,X [t−1])/Filr+s(OB+
dR,log,X [t−1])

)
,

and OBdR,log,X = ∪r∈Z FilrOBdR,log,X . Let OClog,X := gr0OBdR,log,X .
We shall omit the subscript X in the notation when the context is clear.

Note that Fil0OBdR,log is a sheaf of rings and OBdR,log = (Fil0OBdR,log)[t−1].
(However, OBdR,log 6= OB+

dR,log[t−1] in general.)

Remark 2.2.11. Even if the log structure is trivial, the definition of OBdR,log given
here is slightly different from the definitions of OBdR in [Bri08, Sec. 5], [Sch13,
Sec. 6], and [Sch16], as we perform an additional completion with respect to the
filtration. This modification is necessary because the sheaves OBdR defined in
loc. cit. are not complete with respect to the filtrations—we thank Koji Shimizu
for pointing out this. We will see in Corollary 2.4.2 below that the Poincaré lemma
still holds and, with the new definition of OBdR, all the previous arguments in
loc. cit. (and also those in [LZ17]) remain essentially unchanged.
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Remark 2.2.12. Although OBdR,log is defined for any locally noetherian fs log adic
space X over Spa(k, k+), we shall only use it for log smooth ones over p-adic fields,
or some of their closed subspaces with induced log structures.

The period sheaf OB+
dR,log is equipped with a natural log connection. Let Ωlog

X

be the sheaf of log differentials, as in [DLLZ, Def. 3.3.6]. By abuse of notation, its
pullbacks to Xét, Xkét, and Xprokét will still be denoted by the same symbols.

Note that there is a unique B+
dR(U)/ξr-linear log connection

(2.2.13) ∇ : Si,r → Si,r ⊗Ri Ωlog
X (Ui)

extending d : Ri → Ωlog
X (Ui) and δ : Mi → Ωlog

X (Ui) such that

(2.2.14) ∇(ea) = ea δ(a′),

for all a = (a′, a′′) ∈Mi ×M M [. Essentially by definition, we have

∇
(
(ker θlog)s

)
⊂ (ker θlog)s−1 ⊗Ri Ωlog

X (Ui)

for all s ≥ 1. By taking ker(θlog)-adic completion, inverse limit over r, and direct
limit over i, the above log connection (2.2.13) extends to a B+

dR-linear log connection

(2.2.15) ∇ : OB+
dR,log → OB

+
dR,log ⊗OXprokét

Ωlog
X .

Since t ∈ B+
dR, (2.2.15) further extends to a BdR-linear log connection

(2.2.16) ∇ : OB+
dR,log[t−1]→ OB+

dR,log[t−1]⊗OXprokét
Ωlog
X ,

satisfying ∇
(
Filr(OB+

dR,log[t−1])
)
⊂
(
Filr−1(OB+

dR,log[t−1])
)
⊗OXprokét

Ωlog
X , for all

r ∈ Z. Therefore, (2.2.16) also extends to a BdR-linear log connection

(2.2.17) ∇ : OBdR,log → OBdR,log ⊗OXprokét
Ωlog
X ,

satisfying ∇(FilrOBdR,log) ⊂ (Filr−1OBdR,log)⊗OXprokét
Ωlog
X , for all r ∈ Z.

2.3. Local study of BdR and OBdR,log. In this subsection, we study BdR and
OBdR,log when there are good local coordinates. These results are similar to [Bri08,

Sec. 5], [Sch13, Sec. 6], and [Sch16]. We assume that k is a p-adic field, and let k be
a fixed algebraic closure. For each m ≥ 1, we denote by µm (resp. µ∞ = ∪m µm)
the group of m-th (resp. all) roots of unity in k. Let km = k(µm) ⊂ k, for all

m ≥ 1; let k∞ = k(µ∞) = ∪m km in k; and let k̂∞ be the p-adic completion of k∞.

Then k̂∞ is a perfectoid field. Let k̂[∞ denote its tilt. We shall denote by k+
m, k̂+

∞,

and k̂[+∞ the rings of integers in km, k̂∞, and k̂[∞, respectively. Let

Ainf := Ainf(k̂∞, k̂
+
∞).

Fix an isomorphism of abelian groups

(2.3.1) ζ : Q/Z ∼→ µ∞,

and write ζn := ζ( 1
n ), for all n ∈ Z≥1. Then ζ(mn ) = ζmn , for all mn ∈ Q. Define

ε : Q→ (k̂[+∞ )× : y 7→ (ζ(y), ζ(yp ), ζ( yp2 ), . . .).

We shall also write ζy = ζ(y) and εy = ε(y). (In particular, ε = ε(1).) Note that

$[ := (ε− 1)/(ε
1
p − 1) is a pseudo-uniformizer of k̂[∞, and

ξ := ([ε]− 1)/([ε
1
p ]− 1)
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generates the kernel of θ : Ainf → k̂+
∞. Consider

(2.3.2) t := log([ε]) ∈ B+
dR := B+

dR(k̂∞, k̂
+
∞) = lim←−

r

(
Ainf [

1
p ]/ξr

)
.

Let k → B+
dR be the unique embedding such that the composition of k → B+

dR → k̂∞
is the natural homomorphism k → k̂∞.

Let P be a toric monoid which decomposes as a direct sum P = P ⊕Q of toric
monoids. (Here P means P/Q as in [DLLZ, Rem. 2.1.2], rather than the sharp
quotient of P as in [DLLZ, Def. 2.1.1].) We shall denote by (Q − {0}) the ideal
of k〈P 〉 (and other similar algebras) generated by {ea}a∈Q−{0}. The surjection

k〈P 〉� k〈P 〉/(Q− {0}) ∼= k〈P 〉 induces a strict closed immersion

E := Spa(k〈P 〉, k+〈P 〉) ↪→ Spa(k〈P 〉, k+〈P 〉),

where E is equipped with the log structure pulled back from Spa(k〈P 〉, k+〈P 〉) (see
[DLLZ, Def. 2.2.17]). For each m ∈ Z≥1, let 1

mP be the toric monoid such that

P ↪→ 1
mP can be identified with the m-th multiple map [m] : P → P , and let

1
mQ and 1

mP be defined similarly. Let PQ≥0
:= lim−→m

(
1
mP

)
and P gp

Q := (PQ≥0
)gp ∼=

P gp⊗Z Q, and let QQ≥0
, Qgp

Q , PQ≥0
, and P

gp

Q be defined similarly. By pulling back

a standard toric tower over Spa(k〈P 〉, k+〈P 〉) (cf. [DLLZ, Sec. 6.1]), we obtain a

pro-Kummer étale cover Ẽ := lim←−m Em → E, with strict closed immersions

Em := E×Spa(k〈P 〉,k+〈P 〉) Spa(km〈 1
mP 〉, k

+
m〈 1

mP 〉) ↪→ Spa(km〈 1
mP 〉, k

+
m〈 1

mP 〉)

and transition morphisms Em′ → Em (for m|m′) induced by the natural inclusions
1
mP ↪→ 1

m′P . Note that Em ∼= Spa(km〈 1
mP 〉, k

+
m〈 1

mP 〉) as adic spaces, because all

nilpotent elements of km〈 1
mP 〉/(Q−{0}) are integral over k+

m〈 1
mP 〉/(Q−{0}) and

hence p-divisible. Then Ẽ is log affinoid perfectoid with associated perfectoid spacễE = Spa(k̂∞〈PQ≥0
〉, k̂+
∞〈PQ≥0

〉).

For a ∈ PQ≥0
, we denote by T a ∈ k+〈PQ≥0

〉 the corresponding element (as

opposed to ea as usual). Let T
a

denote the image of T a in k+〈PQ≥0
〉. Note

that T
a

= 0 when a 6∈ PQ≥0
. Moreover, we denote by 1

ma the unique element

in PQ≥0
such that m( 1

ma) = a, so that
(
T

1
ma
)m

= T a in k+〈PQ≥0
〉. Let T a[ :=

(T a, T
1
pa, . . .) ∈ (k̂+

∞〈PQ≥0
〉)[, and let T

a[
denote its image in (k̂+

∞〈PQ≥0
〉)[. Again,

note that T
a[

= 0 when a 6∈ PQ≥0
. The Galois group Γ = Aut(Ẽ/Ek̂∞) has a

natural action on k̂+
∞〈PQ≥0

〉 given by

(2.3.3) γ(T
a
) = γ(a)T

a
,

for all γ ∈ Γ and a ∈ PQ≥0
⊂ P

gp

Q ⊂ P gp
Q , where γ(a) is the element of µ∞ given

by Aut(Ẽ/Ek̂∞) ∼= Hom(P gp
Q /P gp,µ∞) (cf. [DLLZ, (6.1.4)]).

For each r ≥ 1, we view B+
dR/ξ

r as a Tate k-algebra (in the sense of [Sch12, Def.
2.6]) with a ring of definition Ainf/ξ

r (with its p-adic topology), and view

(B+
dR/ξ

r)〈 1
mP 〉/(Q− {0}) = (B+

dR/ξ
r)⊗̂k

(
k〈 1

mP 〉/(Q− {0})
)

as a Tate algebra as well. The completed direct limit (over m) of these algebras is
canonically isomorphic to the completed direct limit of (B+

dR/ξ
r)〈 1

mP 〉, which we
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denote by (B+
dR/ξ

r)〈PQ≥0
〉. By (2.2.2), there is a canonical isomorphism

(2.3.4) (B+
dR/ξ

r)〈PQ≥0
〉 ∼→ B+

dR(k̂∞〈PQ≥0
〉, k̂+
∞〈PQ≥0

〉)/ξr

sending ea to [T
a[

], for all a ∈ PQ≥0
. Then (2.3.4) is Γ-equivariant if we equip

(B+
dR/ξ

r)〈PQ≥0
〉 with the action of Γ defined by

(2.3.5) γ(ea) = [(γ(a), γ( 1
pa), . . .)] ea,

for all γ ∈ Γ and a ∈ PQ≥0
, which reduces modulo ξ to the action (2.3.3).

Now suppose that X = Spa(A,A+) is an affinoid fs log adic space with a strictly

étale morphism X → E. Let X̃ be the pullback of Ẽ under X → E. Then

X̃ ∈ Xprokét is also log affinoid perfectoid with
̂̃
X = Spa(Â∞, Â

+
∞) the associated

perfectoid space, and X̃ → Xk̂∞
is a Galois cover with Galois group Γ.

Consider the sheaf of monoid algebras B+
dR|X̃ [P ]. Let M ⊂ B+

dR|X̃ [P ] denote the
sheaf of ideals generated by {ea − 1}a∈P , and let

B+
dR|X̃ [[P − 1]] := lim←−

r

(
B+

dR|X̃ [P ]/Mr
)
.

Note that ea ∈ 1 + M ⊂
(
B+

dR|X̃ [[P − 1]]
)×

, for all a ∈ P . Therefore, we have a

monoid homomorphism PQ≥0
→
(
B+

dR|X̃ [[P − 1]]
)× ⊂ B+

dR|X̃ [[P − 1]] (with respect

to the multiplicative structure on B+
dR|X̃ [[P − 1]]) defined by sending 1

ma, where

m ∈ Z≥1 and a ∈ P , to the formal power series of
(
1+(ea−1)

) 1
m , which we abusively

still denote by e
1
ma. On the other hand, consider the monoid homomorphism

P → B+
dR|X̃ [[P − 1]] : a 7→ log(ea) :=

∞∑
l=1

(−1)l−1 1
l (e

a − 1)l

(with respect to the additive structure on B+
dR|X̃ [[P − 1]]), which uniquely extends

to a group homomorphism P gp → B+
dR|X̃ [[P − 1]] : a 7→ ya such that

ya = log(ea
+

)− log(ea
−

)

when a = a+ − a− for some a+, a− ∈ P . Then the above homomorphism further
extends linearly to a Q-vector space homomorphism P gp

Q → B+
dR|X̃ [[P−1]] : a 7→ ya.

Since ya − (ea − 1) ∈M2 for all a ∈ P , if we choose a Z-basis {a1, . . . , an} of P gp,
and write yj = yaj , for each j = 1, . . . , n, then we have a canonical isomorphism

(2.3.6) B+
dR|X̃ [[y1, . . . , yn]]

∼→ B+
dR|X̃ [[P − 1]] : yj 7→ yj

of B+
dR|X̃ -algebras, matching the ideals (y1, . . . , yn)r and (ξ, y1, . . . , yn)r of the

source with the ideals Mr and (ξ,M)r of the target, respectively, for all r ∈ Z≥0.

We similarly define B+
dR|X̃ [[P−1]] and B+

dR|X̃ [[P−1]][[Q−1]], and the decomposition

P = P⊕Q induces a canonical isomorphism B+
dR|X̃ [[P−1]] ∼= B+

dR|X̃ [[P−1]][[Q−1]].

Lemma 2.3.7. There is a unique morphism of sheaves

(2.3.8) v : OXprokét
|X̃ → B+

dR|X̃ [[P − 1]]

satisfying the following conditions:

(1) The composition OXprokét
|X̃

v−→ B+
dR|X̃ [[P − 1]]

ea 7→1, ξ 7→0−−−−−−−→ ÔXprokét
|X̃ is the

natural map.
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(2) The composition PQ≥0,Xprokét
|X̃ → OXprokét

|X̃
v−→ B+

dR|X̃ [[P − 1]] is induced

by a 7→ [T
a[

] ea, where PQ≥0,Xprokét
denotes the constant sheaf of monoids

on Xprokét associated with PQ≥0
, and where a denotes the image of a in P .

Proof. Consider any log affinoid perfectoid object U = lim←−i∈I Ui ∈ Xprokét/X̃ , as in

[DLLZ, Def. 5.3.1], with Ui = (Spa(Ri, R
+
i ),Mi, αi). We would like to construct a

compatible family of maps

(2.3.9) vi : Ri → B+
dR(U)[[P − 1]],

indexed by i ∈ I. For each i ∈ I, by [DLLZ, Lem. 4.2.5], Ui ×E Emi → Emi
is strictly étale for some mi. Given U → X̃, some Ui′ → Ui factors through
Ui′ → Ui ×E Emi , so that Ri → Ri′ factors as Ri → B := O(Ui ×E Emi) → Ri′ .
We have a structure homomorphism kmi [

1
mi
P ]/(Q − {0}) → B induced by the

second projection Ui ×E Emi → Emi , and a canonical kmi-algebra homomorphism

kmi [
1
mi
P ]/(Q− {0})→ B+

dR(U)[[P − 1]] sending the image of ea to [T
a[

] ea, for all

a ∈ 1
mi
P , which fit into the following commutative diagram of solid arrows

kmi [
1
mi
P ]/(Q− {0}) //

��

B+
dR(U)[[P − 1]]

ea 7→1, ξ 7→0

��

Ri // B //

44

Ri′ // ÔXprokét
(U).

By [Hub96, Cor. 1.7.3(iii)], there is a finitely generated k+[ 1
mi
P ]/(Q−{0})-algebra

B+
0 such that B0 := B+

0 [ 1
p ] is étale over k[ 1

mi
P ]/(Q−{0}) and such that B is the p-

adic completion of B0. Then it follows from [Sch13, Lem. 6.11] that there is a unique
continuous lifting B → B+

dR(U)[[P−1]], denoted by the dotted arrow above, making

the whole diagram commute. Then the composition of Ri → B → B+
dR(U)[[P − 1]]

gives the desired (2.3.9). It is clear that such vi’s, for all i ∈ I, are independent of
the choices, compatible with each other, and define the desired (2.3.8). �

The following lemma generalizes the isomorphism (2.3.4) for X = Spa(A,A+).

Note that (2.3.8) induces a map A → (B+
dR(X̃)/ξr)[[P − 1]]

ea 7→1−−−→ B+
dR(X̃)/ξr.

Together with (2.3.4), it induces a canonical map

(2.3.10)
(
A⊗̂k(B+

dR/ξ
r)
)
⊗̂(B+

dR/ξ
r)〈P 〉(B

+
dR/ξ

r)〈PQ≥0
〉 → B+

dR(X̃)/ξr.

Lemma 2.3.11. The map (2.3.10) is an isomorphism. Furthermore, the Γ-action
on (B+

dR/ξ
r)〈P 〉 defined in (2.3.5) uniquely extends to a continuous Γ-action on

A⊗̂k(B+
dR/ξ

r), which is trivial modulo ξ and makes (2.3.10) Γ-equivariant.

Proof. Since (2.3.10) is compatible with the filtrations induced by multiplication
by the powers of ξ, by considering the associated graded pieces, it suffices to show

that (A⊗̂kk̂∞)⊗̂k̂∞〈P 〉k̂∞〈PQ≥0
〉 ∼= Â∞. Then the same argument as in the proof of

[Sch13, Lem. 6.18] applies, with its input [Sch13, Lem. 4.5] for the tower T̃n → Tn
replaced with [DLLZ, Lem. 6.1.9] for the tower lim←−m Spa(km〈 1

mP 〉, k
+
m〈 1

mP 〉 → E.

The unique existence of a continuous Γ-action on A⊗̂k(B+
dR/ξ

r) extending the

Γ-action on (B+
dR/ξ

r)〈P 〉 follows from an argument similar to the one in the proof of

Lemma 2.3.7. Concretely, since the map k〈P 〉 → A arises as the p-adic completion
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of an étale morphism k[P ]→ A0 of finite type, the Γ-action on (B+
dR/ξ

r)[P ] uniquely

extends to a continuous Γ-action on A0⊗k (B+
dR/ξ

r), and further uniquely extends
to a continuous Γ-action after p-adic completion, with desired properties. �

Lemma 2.3.12. There exists a map of sheaves of monoids

(2.3.13) β :M[|X̃ → (B+
dR|X̃ [[P − 1]])×

satisfying the following conditions:

(1) For all a ∈ M[, we have v
(
α(a])

)
= [α[(a)]β(a), where we denote by

a 7→ a] the natural projection M[ →M.

(2) The composition of β with the canonical map B+
dR|X̃ [[P − 1]]

ea 7→1, ξ 7→0−−−−−−−→
ÔXprokét

|X̃ is the constant 1.
(3) The restriction of β to QQ≥0

(as a constant sheaf) is given by a 7→ ea.

Proof. The sheafM[|X̃ is generated by PQ≥0
∼= PQ≥0

⊕QQ≥0
(as constant sheaves)

and lim←−
f 7→fp

O×Xprokét
|X̃ . We need to define the map for a ∈ PQ≥0

. If we write (locally)

α[(a) = hT
a0[

, for some section h of lim←−
f 7→fp

O×Xprokét
|X̃ ⊂ Ô

×
X[prokét

and a0 ∈ PQ≥0
,

then α(a]) =
(
α[(a)

)]
= h] T

a0
, and the conditions of the lemma are satisfied by the

local section β(a) := v(h])
[h] e

a0 of (B+
dR[[P − 1]])×|X̃ . This expression is independent

of the local choices, and hence globalizes and defines the desired map β. �

Next, we give an explicit description of OB+
dR,log on the localized site Xprokét/X̃ .

Let U = lim←−i∈I Ui ∈ Xprokét/X̃ be a log affinoid perfectoid object, with Ui =

(Spa(Ri, R
+
i ),Mi, αi), as in the proof of Lemma 2.3.7. Let Si,r be as in (2.2.8).

Note that, for a = (a′, a′′) with a′′ ∈ QQ≥0
−{0}, we have α[(a′′) = 0 and hence the

relation αi(a
′) = [α[(a′′)] ea reduces to simply αi(a

′) = 0 in Si,r, with no constraint
on ea, in which case we can view ea as a free variable. Consider the map

(B+
dR(U)/ξr)[P ]→ Si,r : ea 7→ e(a,a), for all a ∈ P ,

which sends (ξ,M) to ker θlog, and therefore induces a map B+
dR(U)[[P − 1]]→ Ŝi.

By taking completion and sheafification, we obtain a map

(2.3.14) B+
dR|X̃ [[P − 1]]→ OB+

dR,log|X̃
on Xprokét/X̃ . If we define FilrB+

dR|X̃ [[P−1]] := (ξ,M)rB+
dR|X̃ [[P−1]], then (2.3.14)

is compatible with the filtrations on both sides (see Definition 2.2.10).
The following is a log analogue of [Bri08, Prop. 5.2.2] and [Sch13, Prop. 6.10],

formulated in terms of charts and monoids:

Proposition 2.3.15. The map (2.3.14) is an isomorphism of filtered sheaves.

Proof. Let U = lim←−i∈I Ui ∈ Xprokét/X̃ be a log affinoid perfectoid object, with

Ui = (Spa(Ri, R
+
i ),Mi, αi), as in Lemma 2.3.7. For i ∈ I and r ≥ 1, the map

(2.3.8) induces a natural map Ri → (B+
dR(U)/ξr)[[P − 1]]. Together with the map

(2.3.13), these maps induce a ring homomorphism

(2.3.16)
(
Ri⊗̂W (κ)(B+

dR(U)/ξr)
)
[Mi ×M M []→ (B+

dR(U)/ξr)[[P − 1]],
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sending ea to β(a′′), for all a = (a′, a′′) ∈Mi×MM [. By Lemmas 2.3.7 and 2.3.12,
this map factors through Si,r → (B+

dR(U)/ξr)[[P − 1]], and its composition with

(B+
dR(U)/ξr)[[P − 1]]

ea 7→1, ξ 7→0−−−−−−−→ R̂∞ is the map θlog, where Si,r and θlog are as
in (2.2.8) and (2.2.9), respectively. Therefore, this map sends ker θlog to (ξ,M).
By taking ker θlog-adic completion, inverse limit over r ≥ 1, and direct limit over
i ∈ I, we obtain a map OB+

dR,log(U) → B+
dR(U)[[P − 1]], whose pre-composition

with the map B+
dR(U)[[P − 1]] → OB+

dR,log(U) given by (2.3.14) is the identity

map, because it is B+
dR(U)-linear and sends ea to ea, for all a ∈ P . On the other

hand, the post-composition of (2.3.9) with B+
dR(U)[[P − 1]] → OB+

dR,log(U) is the

natural map Ri → OB+
dR,log(U), because k[PQ≥0

] → B+
dR(U)[[P − 1]] → Ŝi sends

ea 7→ [T
a[

] ea 7→ [T
a[

] e(a,a) = T
a

and the map k[ 1
mi
P ]/(Q − {0}) → B0 in the

proof of Lemma 2.3.7 is étale. Consequently, the map Si,r → Ŝi/ξ
r induced by

the composition of (2.3.16) with (B+
dR(U)/ξr)[[P − 1]] → Ŝi/ξ

r coincides with the
natural map, because both maps send the image of ea in Si,r to the same further

image in Ŝi/ξ
r, for all a ∈ Mi ×M M [. Thus, the composition of OB+

dR,log(U) →
B+

dR(U)[[P − 1]]→ OB+
dR,log(U) is also the identity map, as desired. �

As a byproduct of the proof, we see that, as in [Sch16], for U = lim←−i∈I Ui as

above, the natural map Ŝi → OB+
dR,log(U) (as in Definition 2.2.10) is already an

isomorphism, for each i.
Now, as before, let us fix a Z-basis {a1, . . . , an} of P gp, and write yj = yaj , for

each j = 1, . . . , n, so that we have B+
dR|X̃ [[P −1]] ∼= B+

dR|X̃ [[y1, . . . , yn]] as in (2.3.6).

Corollary 2.3.17. The isomorphism (2.3.14) induces isomorphisms

FilrOBdR,log
∼= trB+

dR{W1, . . . ,Wn}

:=
{
tr
∑

Λ∈Zn≥0

bΛW
Λ ∈ B+

dR[[W1, . . . ,Wn]] : bΛ → 0, t-adically, as |Λ| → ∞
}

over Xprokét/X̃ , for all r ∈ Z, where we have the variable

(2.3.18) Wj := t−1yj ,

for each 1 ≤ j ≤ n, and the monomial

(2.3.19) WΛ := WΛ1
1 · · ·WΛn

n ,

with |Λ| := |Λ1|+ · · ·+ |Λn| = Λ1 + · · ·+ Λn, for each exponent Λ = (Λ1, . . . ,Λn) ∈
Zn≥0. (Here we denote by {W1, . . . ,Wn} the ring of power series that are t-adically

convergent, which is similar to the notation 〈W1, . . . ,Wn〉 for the ring of power se-

ries that are p-adically convergent.) Thus, grrOBdR,log
∼= trÔXprokét

[W1, . . . ,Wn],

for all r ∈ Z, and gr•OBdR,log
∼= ÔXprokét

[t±,W1, . . . ,Wn].

By comparing the constructions, we obtain the following:

Corollary 2.3.20. Suppose that ı : Z → X is a strict closed immersion of log
adic spaces such that the underlying morphism of adic spaces is the pullback of
the closed immersion Spa(k〈P/Q′〉, k+〈P/Q′〉) ↪→ E = Spa(k〈P 〉, k+〈P 〉) induced
by k〈P 〉 � k〈P 〉/(Q′ − {0}) ∼= k〈P/Q′〉, for some direct summand Q′ of P . Let

Z̃ := X̃×XZ. Suppose that U ∈ Xprokét/X̃ is log affinoid perfectoid, whose pullback



20 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

V := U ×X Z is log affinoid perfectoid in Zprokét/Z̃ . Then, for each r ≥ 1, the

canonical surjection B+
dR,X(U)/ξr � B+

dR,Z(V )/ξr (cf. Corollary 2.2.7) induces

(2.3.21)
(
B+

dR,X(U)
/
ξr
)/

([T sa[])∧s∈Q>0,a∈Q′−{0}
∼→
(
B+

dR,Z(V )
/
ξr
)
,

where ([T sa[])∧s∈Q>0,a∈Q′−{0} denotes the p-adic completion of the ideal generated by

{[T sa[]}s∈Q>0,a∈Q′−{0}. In addition, the canonical isomorphisms B+
dR,Z |Z̃ [[P−1]] ∼=

OB+
dR,log,Z |Z̃ and B+

dR,X |X̃ [[P − 1]] ∼= OB+
dR,log,X |X̃ given by Proposition 2.3.15 are

compatible with each other via pullback and pushforward.

2.4. Consequences.

Remark 2.4.1. Let k be a p-adic field. We may apply the calculations in Section
2.3 in the following two cases:

(1) When X is log smooth over k, étale locally there are toric charts X → E =
Spa(k〈P 〉, k+〈P 〉) (with Q = 0), as in [DLLZ, Def. 3.1.12].

(2) Let Y be smooth over k, with log structure defined by a normal crossings
divisor E ↪→ Y as in Example 2.1.2, and let X be a smooth intersection
of irreducible components of E, equipped with the log structure pulled
back from Y , as in [DLLZ, Ex. 2.3.18]. Then, étale locally, there is a
toric chart of Y as above inducing a strictly étale morphism X → E =
Spa(k〈P/Q〉, k+〈P/Q〉) (for some direct summand Q of P ).

In both cases, the sheaves of log differentials Ωlog
X and Ωlog,•

X = ∧•Ωlog
X are defined

as in [DLLZ, Def. 3.3.6 and 3.3.19], and are known to be vector bundles on X,
by [DLLZ, Thm. 3.3.17 and Cor. 3.3.18]. (As before, by abuse of notation, their
pullbacks to Xét, Xkét, and Xprokét will still be denoted by the same symbols.)

In particular, we have the following Poincaré lemma for OB+
dR,log and OBdR,log,

with the log connections defined at the end of Section 2.2:

Corollary 2.4.2. Let X be as in Remark 2.4.1.

(1) We have an exact complex 0 → B+
dR → OB

+
dR,log

∇→ OB+
dR,log ⊗ Ωlog,1

X
∇→

OB+
dR,log ⊗ Ωlog,2

X → · · · .
(2) The above statement holds with B+

dR and OB+
dR,log replaced with BdR and

OBdR,log, respectively.

(3) The subcomplex 0→ FilrBdR → FilrOBdR,log
∇→ (Filr−1OBdR,log)⊗Ωlog,1

X
∇→

(Filr−2OBdR,log) ⊗ Ωlog,2
X · · · of the complex for BdR and OBdR,log is also

exact, for each r ∈ Z.

(4) For each r ∈ Z, the quotient complex 0 → grr BdR → grrOBdR,log
∇→

(grr−1OBdR,log) ⊗ Ωlog,1
X

∇→ (grr−2OBdR,log) ⊗ Ωlog,2
X · · · of the previous

complex is exact, and can be identified with the complex 0→ OXprokét
(r)→

OClog(r)
∇→ (OClog(r))⊗ Ωlog,1

X (−1)
∇→ (OClog(r))⊗ Ωlog,2

X (−2) · · · .
(All the above tensor products are over OXprokét

, which we omitted for simplicity.)

Proof. In both cases of Remark 2.4.1, up to étale localization on X, we may assume
that there exists a strictly étale morphism X → E = Spa(k〈P 〉, k+〈P 〉), and then

pass to X̃ pro-Kummer étale locally, as in Section 2.3. Choose a Z-basis {a1, . . . , an}
of P gp, and write aj = a+

j − a−j for some a+
j , a

−
j ∈ P , for each j = 1, . . . , n.



LOGARITHMIC RIEMANN–HILBERT CORRESPONDENCES FOR RIGID VARIETIES 21

By Proposition 2.3.15 and Corollary 2.3.17, it suffices to prove the exactness of
the complexes by using B+

dR|X̃ [[y1, . . . , yn]] and BdR|X̃{W1, . . . ,Wn} in place of

OB+
dR,log and OBdR,log, respectively. Note that the isomorphism (2.3.14) matches

yj with log(e(a+
j ,a

+
j )) − log(e(a−j ,a

−
j )). By [DLLZ, Thm. 3.3.17, Cor. 3.3.18, Prop.

3.2.25, and Cor. 3.2.29], Ωlog
X = ⊕nj=1

(
OX δ(aj)

)
, and hence (because of (2.2.14))

(2.4.3) ∇(yj) = ∇
(
log(e(a+

j ,a
+
j ))
)
−∇

(
log(e(a−j ,a

−
j ))
)

= δ(a+
j )− δ(a−j ) = δ(aj)

and (because of (2.3.18))

(2.4.4) ∇(Wj) = t−1δ(aj).

The exactness then follows from a straightforward calculation. (Note that the t-adic
convergence condition on power series is not affected by taking anti-derivatives.) �

By combining Corollaries 2.2.6 and 2.4.2, we obtain the log Faltings’s extension:

Corollary 2.4.5. We have a short exact sequence of sheaves of ÔXprokét
-modules

0→ ÔXprokét
(1)→ gr1OB+

dR,log → ÔXprokét
⊗OXprokét

Ωlog
X → 0.

Finally, suppose that X and X ′ are both as in Remark 2.4.1, and that f : X →
X ′ is a log smooth morphism. Then we have a canonical short exact sequence

0 → f∗(Ωlog
X′ ) → Ωlog

X → Ωlog
X/X′ → 0 of vector bundles on X, by [DLLZ, Thm.

3.3.17 and Cor. 3.3.18]; and we shall write Ωlog,•
X/Y = ∧•Ωlog

X/Y , as in [DLLZ, Def.

3.3.19]. In this case, the log de Rham complex (Ωlog,•
X ,∇) induces the relative log

de Rham complex (Ωlog,•
X/X′ ,∇), and we have the following relative Poincaré lemma:

Corollary 2.4.6. With f : X → X ′ as above, we have an exact complex 0 →
B+

dR,X ⊗f−1
prokét(B

+

dR,X′ )
f−1

prokét(OB
+
dR,log,X′)→ OB

+
dR,log,X

∇→ OB+
dR,log,X ⊗ Ωlog,1

X/X′
∇→

OB+
dR,log,X ⊗ Ωlog,2

X/X′ → · · · . Similarly, we have an exact complex with B+
dR,X ,

B+
dR,X′ , OB

+
dR,log,X , and OB+

dR,log,X′ replaced with BdR,X , BdR,X′ , OBdR,log,X , and
OBdR,log,X′ , respectively, which is strictly compatible with all the filtrations.

Proof. By [DLLZ, Prop. 3.1.4 and 3.1.10], up to étale localization on X and X ′,
we may assume that f : X → X ′ admits an injective sharp fs chart P ′ ↪→ P . Then

we can compatibly define log affinoid perfectoid objects X̃ → X and X̃ ′ → X ′, as

in Section 2.3, with a morphism X̃ → X̃ ′ lifting f : X → X ′. Let {a1, . . . , an} and
{a′1, . . . , a′n′} be Z-bases of P gp and (P ′)gp, respectively, and define {y1, . . . , yn},
{y′1, . . . , y′n′}, {W1, . . . ,Wn}, and {W ′1, . . . ,W ′n′}, as in the proof of Corollary 2.4.2.
Hence, it suffices to prove the exactness of the complex 0→ B+

dR,X |X̃ [[y′1, . . . , y
′
n]]→

B+
dR,X |X̃ [[y1, . . . , yn]]→ B+

dR,X |X̃ [[y1, . . . , yn]]⊗ Ωlog,1
X/X′ |X̃ → · · · and the analogous

one for BdR,X |X̃{W
′
1, . . . ,W

′
n′} and BdR,X |X̃{W1, . . . ,Wn}⊗Ωlog,•

X/X′ |X̃ . Since (P ′)gp

and P gp are both finitely generated free abelian groups, (P ′)gp
Q is noncanonically a

direct factor of P gp
Q . Hence, there exist elements a′n′+1, . . . , a

′
n of P whose images

in P gp
Q /(P ′)gp

Q form a Q-basis. By [DLLZ, Thm. 3.3.17, Cor. 3.3.18, Prop. 3.2.25,

and Cor. 3.2.29], we have Ωlog
X = ⊕nj=1

(
OX δ(aj)

)
, f∗(Ωlog

X′ ) = ⊕n′j=1

(
OX δ(a′j)

)
,

and Ωlog
X/X′ = ⊕nj=n′+1

(
OX δ(a′j)

)
; and a Q-linear combination of y1, . . . , yn is an-

nihilated by ∇ : B+
dR,X |X̃ [[y1, . . . , yn]] → B+

dR,X |X̃ [[y1, . . . , yn]] ⊗ Ωlog
X/X′ |X̃ exactly
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when it lies in the Q-linear span of y′1, . . . , y
′
n′ . We have a similar statement for

BdR,X |X̃{W1, . . . ,Wn} and W ′1, . . . ,W
′
n′ . Thus, the exactness of the complexes

follows from a straightforward calculation, as in the proof of Corollary 2.4.2. �

3. Log Riemann–Hilbert Correspondences

In this section, we establish our log p-adic Riemann–Hilbert and Simpson cor-
respondences. Let k be a p-adic field, with a fixed algebraic closure k. Let K be
a perfectoid field containing k∞ = k(µ∞) ⊂ k, and let Gal(K/k) abusively denote
the group of continuous field automorphisms of K over k.

3.1. Filtered log connections “relative to BdR”. Let us begin with a few
definitions and constructions for a general locally noetherian adic space X over k.

Definition 3.1.1. (1) As in [LZ17, Sec. 3.1], let

(3.1.2) B+
dR = B+

dR(K,OK) and BdR = BdR(K,OK)

(the first replacing (2.3.2) from now on). Let t = log([ε]) ∈ B+
dR, as in

(2.3.2). Then the homomorphism k → K lifts uniquely to k → B+
dR.

(2) For each integer r ≥ 1, we define OX⊗̂k(B+
dR/t

r) to be the sheaf on Xan

associated with the presheaf which assigns to each affinoid open subset
U = Spa(A,A+) ⊂ X the ring A⊗̂k(B+

dR/t
r). Then we define

OX⊗̂kB+
dR = lim←−

r

(
OX⊗̂k(B+

dR/t
r)
)

and OX⊗̂kBdR = (OX⊗̂kB+
dR)[t−1].

(3) The filtrations on OX⊗̂kB+
dR and OX⊗̂kBdR are defined by setting

Filr(OX⊗̂kB+
dR) = tr(OX⊗̂kB+

dR) and Filr(OX⊗̂kBdR) = t−sFilr+s(OX⊗̂kB+
dR)

for some (and hence every) s ≥ −r. Then we define

(OX⊗̂kBdR)[a,b] = Fila(OX⊗̂kBdR)/Filb+1(OX⊗̂kBdR),

for any−∞ ≤ a ≤ b ≤ ∞. In particular, grr(OX⊗̂kBdR) = (OX⊗̂kBdR)[r,r].
(4) By replacing affinoid open subsets U ⊂ X in (2) with general étale mor-

phisms U → X from affinoid adic spaces, we similarly define the sheaves
OXét

⊗̂k(B+
dR/t

r), for all integers r ≥ 1; OXét
⊗̂kB+

dR; and OXét
⊗̂kBdR on

Xét. They are equipped with similarly defined filtrations.

Remark 3.1.3. These sheaves were introduced slightly differently in [LZ17, Sec. 3.1]
as sheaves on XK,an and XK,ét. But since XK,an (resp. XK,ét) is generated by
base changes of objects of Xk′,an (resp. Xk′,ét), for all finite extensions k′ of k (see,

e.g., [LZ17, Lem. 2.5]), the categories of finite locally free OX⊗̂k(B+
dR/t

r)-modules,

OX⊗̂kB+
dR-modules, OXét

⊗̂k(B+
dR/t

r)-modules, and OXét
⊗̂kB+

dR-modules are nat-
urally equivalent to the corresponding categories introduced in [LZ17, Def. 3.5]. For
example, the category of finite locally free OX⊗̂kK-modules (i.e., gr0(OX⊗̂kB+

dR)-
modules) on Xan is equivalent to the category of vector bundles on XK,an.

Thanks to Remark 3.1.3, the arguments in the proofs of [LZ17, Lem. 3.1 and 3.2,
Prop. 3.3, and Cor. 3.4] also apply in the current setting and give the following:

Lemma 3.1.4. Recall that λ : Xét → Xan denotes the natural projection of sites.
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(1) If X = Spa(A,A+) is affinoid, then

Hi
(
Xét,OXét

⊗̂k(B+
dR/t

r)
)

=

{
A⊗̂k(B+

dR/t
r), if i = 0;

0, if i > 0.

(2) There is a canonical isomorphism grr(OXét
⊗̂kBdR) ∼= OXét

⊗̂kK(r).
(3) There are canonical isomorphisms

OX⊗̂k(B+
dR/t

r) ∼= λ∗
(
OXét

⊗̂k(B+
dR/t

r)
) ∼= Rλ∗

(
OXét

⊗̂k(B+
dR/t

r)
)
,

which in turn induce, for ? = ∅ and +, isomorphisms

OX⊗̂kB?
dR
∼= λ∗(OXét

⊗̂kB?
dR) ∼= Rλ∗(OXét

⊗̂kB?
dR).

(4) If X = Spa(A,A+) is affinoid, then we have canonical equivalences among
the categories of finite projective A⊗̂kB+

dR-modules; of finite locally free

OX⊗̂kB+
dR-modules; and of finite locally free OXét

⊗̂kB+
dR-modules.

(5) The pushforward λ∗ induces an equivalence from the category of finite locally
free OXét

⊗̂k(B+
dR/t

r)-modules (resp. OXét
⊗̂kB+

dR-modules) to the category

of finite locally free OX⊗̂k(B+
dR/t

r)-modules (resp. OX⊗̂kB+
dR-modules).

As in [LZ17, Sec. 3.1], for ? = ∅ or +, we can define the ringed space

(3.1.5) X ? = (Xan,OX⊗̂kB?
dR),

where OX⊗̂kB+
dR and OX⊗̂kBdR are as in Definition 3.1.1(2). They should be

interpreted as the (not-yet-defined) base changes of X under k → B+
dR and k →

BdR, respectively. Then we have OX+ = OX⊗̂kB+
dR and OX = OX⊗̂kBdR.

Following [LZ17, Def. 3.5], we call a finite locally free OX⊗̂kB+
dR-module a vector

bundle on X+. By considering such objects over open subspaces of X, these objects
form a stack on Xan. By passing to the t-isogeny category, we obtain the stack of
vector bundles on open subspaces of X . Then the category of vector bundles on X
is the groupoid of global sections of this stack. Note that, unlike in [LZ17, Def. 3.5],
we do not require that a vector bundle on X comes from a vector bundle on X+

via a global extension of scalars (although this extra generality will not be needed
in the following). Clearly, there is a faithful functor from the category of vector
bundles on X to the category of OX⊗̂kBdR-modules.

Hence, for each vector bundle E on Xan, the sheaf E⊗̂kB+
dR (resp. E⊗̂kBdR) (with

its obvious meaning) is a vector bundle on X+ (resp. X ). More generally, if E is a
vector bundle on Xan, and if M is a vector bundle on X+ (resp. X ), then we may
regard E ⊗OX M as a vector bundle on X+ (resp. X ).

Now let X be a log smooth fs log adic space over k. Let Ωlog
X and Ωlog,•

X = ∧•Ωlog
X

be the sheaves of log differentials on Xan, as in [DLLZ, Def. 3.3.6 and 3.3.19].

Definition 3.1.6. For ? = ∅ or +, let Ωlog

X ?/B?
dR

:= Ωlog
X ⊗̂kB?

dR and Ωlog,•
X ?/B?

dR

:=

Ωlog,•
X ⊗̂kB?

dR, called the sheaves of relative log differentials on X ? over B?
dR.

For ? = ∅ or +, there is a natural B?
dR-linear differential map d : OX ? → Ωlog

X ?/B?
dR

inducing differential maps on Ωlog,•
X ?/B?

dR

, extending the ones on OX and Ωlog,•
X .

Definition 3.1.7. (1) A log connection on a vector bundle E on X is a BdR-

linear map of sheaves ∇ : E → E ⊗OX Ωlog
X/BdR

satisfying the usual Leibniz

rule. We say that ∇ is integrable if ∇2 = 0, in which case we have the log
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de Rham complex DRlog(E) = (E ⊗OX Ωlog,•
X/BdR

,∇) and the log de Rham

cohomology Hi
log dR(X , E) := Hi(X ,DRlog(E)).

(2) Let t = log([ε]) ∈ B+
dR be as in (2.3.2). A log t-connection on a vector bun-

dle E+ on X+ is a B+
dR-linear map of sheaves ∇+ : E+ → E+⊗OX+ Ωlog

X+/B+
dR

satisfying the (modified) Leibniz rule ∇+(fe) = (te)⊗ df + f∇+(e), for all
f ∈ OX+ and e ∈ E+. We say ∇+ is integrable if (∇+)2 = 0, in which case
we have a similar log de Rham complex (as above).

(3) A log Higgs bundle on XK is a vector bundle E on XK,an equipped with an

OXK -linear map of sheaves θ : E → E⊗OXK Ωlog
XK

(−1) such that θ∧ θ = 0.

(We shall often omit the subscript “an” in the following, when there is
no risk of confusion.) Then we have the log Higgs complex Higgs log(E) =

(E ⊗OXK Ωlog,•
XK

(−•), θ) (where the two • are equal to each other) and the

log Higgs cohomology Hi
log Higgs(XK , E) := Hi(XK ,Higgs log(E)).

(4) A log connection on a coherent sheaf E on X is a k-linear map of sheaves

∇ : E → E ⊗OX Ωlog
X satisfying the usual Leibniz rule. We say that ∇

is integrable if ∇2 = 0, in which case we have the log de Rham com-

plex DRlog(E) = (E ⊗OX Ωlog,•
X ,∇) and the log de Rham cohomology

Hi
log dR(X,E) := Hi(X,DRlog(E)).
Suppose that E is equipped with a decreasing filtration by coherent

subsheaves Fil•E satisfying the (usual) Griffiths transversality condition

∇(FilrE) ⊂ (Filr−1E) ⊗OX Ωlog
X , for all r. Then the complex DRlog(E)

admits a filtration defined by FilrDRlog(E) :=
(
(Filr−•E) ⊗OX Ωlog,•

X ,∇
)
,

with the two • equal to each other, and with ∇ respecting the filtration
and inducing OX -linear morphisms on the graded pieces. The graded pieces
form a complex gr DRlog(E) with OX -linear differentials, and we also have

the log Hodge cohomology Ha,b
log Hodge

(
X,E

)
:= Ha+b

(
X, gra DRlog(E)

)
.

The log de Rham cohomology and the log Hodge cohomology are related
by the (log) Hodge–de Rham spectral sequence (associated with the filtration

Fil•DRlog(E) above) Ea,b1 = Ha,b
log Hodge

(
X,E

)
⇒ Ha+b

log dR

(
X,E

)
.

The following two lemmas are clear.

Lemma 3.1.8. The functor

(E+,∇+) 7→ (E ,∇, {Filr}r≥0) := (E+ ⊗B+
dR
BdR, t

−1∇+, {trE+}r≥0)

is an equivalence of categories from the category of vector bundles with integrable log
t-connections on X+ to the category of vector bundles with integrable log connections
(E ,∇) on X that are equipped with filtrations {Filr}r≥0 by locally free OX⊗̂kB+

dR-

submodules satisfying, for all r ≥ 1, the condition FilrE = t(Filr−1E) and the

Griffiths transversality condition ∇(FilrE) ⊂ (Filr−1E)⊗OX+ Ωlog

X+/B+
dR

.

Lemma 3.1.9. The functor (E+,∇+) 7→ (E+/t,∇+), where ∇+ abusively also
denotes its induced map on E+/t, is a functor from the category of vector bundles
with integrable log t-connections on X+ to the category of log Higgs bundles on XK .

3.2. Statements of theorems. Let us now state the main theorems of this sec-
tion. Let k, k, k∞, and K be as in the beginning of this Section 3, and let X be
any log adic space over k as in Example 2.1.2, with its log structure induced by a
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normal crossings divisor D. Let U := X −D. Given any Qp-local system L, recall
that we say L|Uét

has unipotent geometric monodromy along D (see [DLLZ, Def.

6.3.7 and Rem. 6.3.13]) when πkét
1

(
X(ξ), ξ̃

)
acts unipotently on the stalk Lξ̃, for

each log geometric points ξ of X lying above each geometric point ξ of D, where
the log structure of the strict localization X(ξ) is pulled back from X. Let

(3.2.1) µ′ : Xprokét/XK
→ Xan.

be the natural projection of sites. For a Qp-local system L on Xkét, let L̂ be the

corresponding Q̂p-local system on Xprokét, as in [DLLZ, Lem. 6.3.3], and consider

(3.2.2) RHlog(L) := Rµ′∗(L̂⊗Q̂p OBdR,log).

Theorem 3.2.3. (1) The assignment L 7→ RHlog(L) is an exact functor from
the category of Qp-local systems on Xkét to the category of Gal(K/k)-
equivariant vector bundles on X equipped with integrable log connections

∇L : RHlog(L) → RHlog(L) ⊗OX Ωlog
X/BdR

and decreasing filtrations (by

locally free OX⊗̂kB+
dR-submodules) satisfying the Griffiths transversality,

defined by FilrRHlog(L) := µ′∗(L̂⊗Q̂p FilrOBdR,log), for all r ∈ Z.

(2) For each irreducible component Z (defined as in [Con99]) of the normal
crossings divisor D, let ResZ(∇L) denote the residue of the log connection
∇L along Z (see Section 3.4 below for details on the definition of residues).
If Zk is irreducible (which we may always assume, up to replacing k with a
finite extension), then all the eigenvalues of ResZ(∇L) are in Q ∩ [0, 1).

(3) Assume that X is proper over k, and that K = k̂. Let L be a Zp-local system
on Xkét. Then there is a canonical Gal(K/k)-equivariant isomorphism

Hi
(
XK,két,L

)
⊗Zp BdR

∼= Hi
log dR

(
X ,RHlog(L)

)
,

for each i ≥ 0, compatible with the filtrations on both sides, where the right-
hand side is as in Definition 3.1.7(1).

(4) Suppose that Y is another log adic space whose log structure is defined by
some normal crossings divisor E as in Example 2.1.2, and that h : Y → X
is a morphism of log adic spaces. For any pair of irreducible components
Z and W of D and E, respectively, let mWZ ∈ Z≥0 denote the multi-
plicity of W in the divisor h−1(Z); and let nZ be 0 (resp. 1) if L|Uét

has
(resp. does not have) unipotent geometric monodromy along Z. Assume
that, for each irreducible component W of E, we have

∑
Z mWZ nZ ≤ 1,

where the sum is over all irreducible components Z of D. Then there
is a canonical Gal(K/k)-equivariant isomorphism h∗

(
RHlog(L),∇L

) ∼→(
RHlog(h−1(L)),∇h−1(L)

)
, compatible with the filtrations on both sides.

As a byproduct, we obtain the log p-adic Simpson functor in our setting. We
refer to [Fal05, AGT16] for more general and thorough treatments.

Theorem 3.2.4. (1) There is a natural functor Hlog from the category of Qp-
local systems L on Xkét to the category of Gal(K/k)-equivariant log Higgs

bundles θL : Hlog(L) → Hlog(L) ⊗OXK Ωlog
XK

(−1) on XK,an. Concretely,

by Lemma 3.1.8, RH+
log := Fil0RHlog is a functor from the category of

Qp-local systems on Xkét to the category of Gal(K/k)-equivariant vector
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bundles with integrable log t-connections on X+. Then, by Lemma 3.1.9,
Hlog := gr0RHlog = RH+

log/t is the desired functor.

(2) Under the same assumption as in Theorem 3.2.3(3), there is a canonical
Gal(K/k)-equivariant isomorphism

Hi
(
XK,két,L

)
⊗Zp K

∼= Hi
log Higgs

(
XK,an,Hlog(L)

)
,

for each i ≥ 0, where Hi
log Higgs

(
XK,an,Hlog(L)

)
is as in Definition 3.1.7(3).

(3) Under the same assumption as in Theorem 3.2.3(4), there is a canonical
Gal(K/k)-equivariant isomorphism

h∗
(
Hlog(L), θL

) ∼→ (
Hlog(h−1(L)), θh−1(L)

)
.

We also have an arithmetic log p-adic Riemann–Hilbert functor. Consider the
natural projection of sites

(3.2.5) µ : Xprokét → Xan.

For any Qp-local system L on Xkét, consider

(3.2.6) DdR,log(L) := µ∗(L̂⊗Q̂p OBdR,log).

Theorem 3.2.7. (1) The assignment L 7→ DdR,log(L) defines a functor from
the category of Qp-local systems on Xkét to the category of vector bundles on

Xan with integrable log connections ∇L : DdR,log(L)→ DdR,log(L)⊗OX Ωlog
X

and decreasing filtrations Fil•DdR,log(L) (by coherent subsheaves) satisfying
the (usual) Griffiths transversality.

(2) For each irreducible component Z (defined as in [Con99]) of the normal
crossings divisor D, all eigenvalues of the residue ResZ(∇L) are in Q∩[0, 1).
If the restriction of L to Ukét

∼= Uét is de Rham (as reviewed in the
introduction), then grDdR,log(L) is a vector bundle on X of rank rkQp(L).

(3) Assume that X is proper over k, that K = k̂, and that L is a Zp-local system
on Xkét whose restriction to Uét is de Rham. Then, for each i ≥ 0, there
is a canonical Gal(K/k)-equivariant isomorphism

(3.2.8) Hi
(
XK,két,L

)
⊗Zp BdR

∼= Hi
log dR

(
Xan, DdR,log(L)

)
⊗k BdR

compatible with the filtrations on both sides. Moreover, the (log) Hodge–
de Rham spectral sequence for DdR,log(L) degenerates on the E1 page, and
there is also a canonical Gal(K/k)-equivariant isomorphism

(3.2.9) Hi
(
XK,két,L

)
⊗Zp K

∼= ⊕a+b=i

(
Ha,b

log Hodge

(
Xan, DdR,log(L)

)
⊗k K(−a)

)
,

for each i ≥ 0, which can be identified with the 0-th graded piece of the
isomorphism (3.2.8), giving the (log) Hodge–Tate decomposition.

(4) Under the same assumption as in Theorem 3.2.3(4), there is a canonical

isomorphism h∗
(
DdR,log(L),∇L

) ∼→ (
DdR,log(h−1(L)),∇h−1(L)

)
, compati-

ble with the filtrations on both sides.
(5) Suppose that Y is another log adic space with its log structure defined by

a normal crossings divisor E ↪→ Y as in Example 2.1.2. Let V = Y − E.
Let f : X → Y be a proper log smooth morphism that restricts to a proper
smooth morphism f |U : U → V . Let L be a Zp-local system on Xkét that
is de Rham when restricted to Ukét

∼= Uét. Then Rifkét,∗(L) is a Zp-local
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system on Ykét that is de Rham when restricted to Vkét
∼= Vét, for each

i ≥ 0. Moreover, we have a canonical isomorphism(
DdR,log(Rifkét,∗(L)),∇Rifkét,∗(L)

) ∼= (Riflog dR,∗(DdR,log(L),∇L)
)

free
,

compatible with the filtrations on both sides, where Riflog dR,∗ denotes the
usual relative analogue of the log de Rham cohomology, and where the sub-
script “free” denotes the OY -torsion-free quotient.

By Theorem 3.2.7(3) and [DLLZ, Cor. 6.3.4], we obtain the following:

Corollary 3.2.10. Let Y be a smooth rigid analytic variety over k, and let K = k̂.
Assume that Y admits a proper smooth compactification Y ↪→ Y such that Y − Y
is a normal crossings divisor. Let L be a de Rham Zp-local system on Yét, with

its extension L := két,∗(L) to a Zp-local system on Y két. Then Hi
(
YK,ét,L

)
is a

finite Zp-module, and there is a canonical Gal(K/k)-equivariant isomorphism

(3.2.11) Hi
(
YK,ét,L

)
⊗Zp BdR

∼= Hi
log dR

(
Y an, DdR,log(L)

)
⊗k BdR,

compatible with the filtrations on both sides. Moreover, the (log) Hodge–de Rham
spectral sequence for DdR,log(L) degenerates on the E1 page, and the 0-th graded
piece of (3.2.11) is also a canonical Gal(K/k)-equivariant isomorphism

Hi
(
YK,ét,L

)
⊗Zp K

∼= ⊕a+b=i

(
Ha,b

log Hodge

(
Y an, DdR,log(L)

)
⊗k K(−a)

)
.

Note that, as explained in [DLLZ, Rem. 6.2.2], the finiteness of Hi
(
YK,ét,L

)
as

a Zp-module does not hold in general for an arbitrary smooth rigid analytic variety
Y (that is not Zariski open in some proper rigid analytic variety).

As mentioned in the introduction, due to the failure of the surjectivity of (1.8),
DdR,log is not a tensor functor in general, and we have similar failures for RHlog

and Hlog. Nevertheless, we still have the following:

Theorem 3.2.12. (1) The functor RHlog (resp. Hlog) restricts to a tensor
functor from the category of Qp-local systems on Xkét whose restrictions to
Uét have unipotent geometric monodromy along D to the category of fil-
tered Gal(K/k)-equivariant vector bundles on X equipped with integrable
log connections with nilpotent residues along D (resp. the category of
Gal(K/k)-equivariant log Higgs bundles on XK,an).

(2) The functor DdR,log restricts to a tensor functor from the category of Qp-
local systems on Xkét whose restrictions to Uét are de Rham and have
unipotent geometric monodromy along D to the category of filtered vector
bundles on Xan equipped with integrable log connections with nilpotent
residues along D.

3.3. Coherence. In this subsection, we prove Theorems 3.2.3(1) and 3.2.4(1), and
show that DdR,log(L) is a torsion-free reflexive coherent sheaf on Xan.

By factoring µ′ as Xprokét/XK
∼= XK,prokét → XK,ét → XK,an → Xan, we

see that RHlog(L) admits a natural Gal(K/k)-action. We need to show that

Rµ′∗(L̂ ⊗Q̂p FilrOBdR,log) is a locally free OX⊗̂kB+
dR-module of rank rkQp(L), for

every r. Assuming this, it follows that

RHlog(L) = Rµ′∗(L̂⊗Q̂p OBdR,log) ∼= Rµ′∗(L̂⊗Q̂p Fil0OBdR,log)[t−1]
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is a vector bundle of rank rkQp(L) on X , equipped with the filtration

FilrRHlog(L) := µ′∗(L̂⊗Q̂p FilrOBdR,log).

by locally free OX⊗̂kB+
dR-submodules. Consider the integrable log connection

∇ : L̂⊗Q̂p OBdR,log → L̂⊗Q̂p OBdR,log ⊗OXprokét
Ωlog
X

formed by tensoring the one on OBdR,log with L̂. By the projection formula

(3.3.1) Rµ′∗(L̂⊗Q̂p OBdR,log ⊗OXprokét
Ωlog,•
X ) ∼= Rµ′∗(L̂⊗Q̂p OBdR,log)⊗OX Ωlog,•

X ,

we obtain a log connection ∇L : RHlog(L)→ RHlog(L)⊗OX Ωlog
X . The integrability

of ∇L and the Griffiths transversality with respect to the filtration Fil•RHlog(L)
follow from the corresponding properties of the connection (2.2.17).

In what follows, we shall denote by Z either the whole X or an open subspace
of a smooth intersection of irreducible components of D, equipped with the log
structure pulled back from X, which fits into the second case of Remark 2.4.1.

Lemma 3.3.2. Let Z be as above. For any −∞ ≤ a < b ≤ ∞, there is a natural

isomorphism (OZ⊗̂kBdR)[a,b] ∼= Rµ′Z,∗(OB
[a,b]
dR,log,Z).

Proof. By Lemma 3.1.4(3), it suffices to prove the analogue for the morphism ν′Z :
Zprokét/ZK

→ Zét (instead of µ′Z). By using Corollary 2.3.17, the argument is

similar to the ones in the proofs of [Sch13, Prop. 6.16(i)] and [LZ17, Lem. 3.7]. �

By the same arguments as in the proofs of [LZ17, Thm. 2.1(i) and 3.8(i)], in

order to show that Rµ′∗(L̂⊗Q̂p FilrOBdR,log) is a locally free OX⊗̂kB+
dR-module of

rank rkQp(L), for every r, it suffices to prove the following:

Proposition 3.3.3. Let L be a Qp-local system on Xkét. Let Z be as above, and

let L̂Z denote the pullback of L̂ under Zprokét → Xprokét.

(1) Riµ′Z,∗(L̂Z ⊗Q̂p OClog,Z) = 0, for all i > 0.

(2) µ′Z,∗(L̂Z ⊗Q̂p OClog,Z) is a finite locally free gr0(OX⊗̂kBdR)-module, whose

rank is equal to rkQp(L) if Z = X.

For simplicity, we may assume that K = k̂∞, so that Gal(K/k) is identified with

an open subgroup of Ẑ× via the cyclotomic character χ. (The assertions for larger
perfectoid fields then follow by base change.) By Lemma 3.1.4(5), it suffices to
prove similar statements for the projection of sites ν′Z : Zprokét/ZK

→ Zét (instead

of µ′Z : Zprokét/ZK
→ Zan). Since such statements are étale local in nature, we may

assume that X = Spa(R,R+) is an affinoid log adic space over Spa(k, k+), where
k+ = Ok, with a smooth toric chart X → E := Spa(k〈P 〉, k+〈P 〉) (see [DLLZ, Cor.
3.1.11 and Def. 3.1.12]), where P = Zn≥0 = ⊕nj=1(Z≥0 aj). We shall write Tj = eaj ,
for each j. Note that this fits into the setup in Section 2.3, with Q = 0 there, and
we may assume that Z is defined by T1 = · · · = Tl = 0, for some l ≤ n. Therefore,

we have a log affinoid perfectoid object X̃ in Xprokét (resp. Z̃ in Zprokét) obtained

by pulling back Ẽ := lim←−m Em → E, where Em := Spa(km〈 1
mP 〉, k

+
m〈 1

mP 〉), and we

shall write T
1
m
j = e

1
maj , for each j. Then X̃ → Xk∞ is a Galois pro-Kummer étale
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cover with Galois group Γgeom
∼= (Ẑ(1))n, and X̃ → X is also a Galois pro-Kummer

étale cover, whose Galois group Γ fits into a short exact sequence

(3.3.4) 1→ Γgeom → Γ→ Gal(k∞/k)→ 1,

with Gal(k∞/k) acting on Γgeom
∼= (Ẑ(1))n via the cyclotomic character χ :

Gal(k∞/k)→ Ẑ×. The same is true for the pullbacks Z̃ → Zk∞ and Z̃ → Z.
Let RK := R⊗̂kK. Also, let R := R/(T1, . . . , Tl) and RK := R⊗̂kK. By Corol-

lary 2.3.17, we have OClog,Z |Z̃ ∼= ÔZprokét
|Z̃ [W1, . . . ,Wn], where Wj = t−1yj =

t−1 log(eaj ) in the notation there, for all j = 1, . . . , n. Let

LZ := L̂Z ⊗Q̂p ÔZprokét
,

which is a locally free ÔZprokét
-module of rank rkQp(L). Then

(L̂Z ⊗Q̂p OClog,Z)|Z̃ ∼= LZ |Z̃ [W1, . . . ,Wn].

Note that Riν′Z,∗(L̂Z⊗Q̂pOClog,Z) is the sheaf on Zét associated with the presheaf

Y 7→ Hi(Zprokét/YK
, L̂Z ⊗Q̂p OClog,Z).

In order to prove Proposition 3.3.3, it suffices to prove the following two statements:

(a) H0(Zprokét/ZK
, L̂Z ⊗Q̂p OClog,Z) is a finite projective RK-module, of rank

rkQp(L) if Z = X; and Hi(Zprokét/ZK
, L̂Z ⊗Q̂p OClog,Z) = 0, for all i > 0.

(b) Let Y = Spa(S, S+) → Z be a composition of rational embeddings and fi-

nite étale morphisms, and let L̂Y denote the pullback of L̂Z under Yprokét →
Zprokét. Then we have a canonical isomorphism of SK-modules

H0(Zprokét/ZK
, L̂Z ⊗Q̂p OClog,Z)⊗RK SK

∼→ H0(Yprokét/YK
, L̂Y ⊗Q̂p OClog,Y ).

Our approach to proving (a) and (b) is similar to the one in the proof of [LZ17,
Thm. 2.1]. We will only explain the new ingredients here, and refer to [LZ17] for
more details. For any Y as in (b), we endow it with the induced log structure.

Then Ỹ := Y ×Z Z̃ ∈ Zprokét, where Z̃ → Z is as above, is log affinoid perfectoid;

and Ỹ → Yk∞ is also a Galois pro-Kummer étale cover with Galois group Γgeom.
By Corollary 2.3.17 and [DLLZ, Thm. 5.4.4], and by the same arguments as in

the proofs of [LZ17, Cor. 2.4, and Lem. 2.7], we obtain the following lemma:

Lemma 3.3.5. Let M be a Qp-local system on Zkét.

(1) Let U be log affinoid perfectoid object in Zprokét/Z̃K
. For any −∞ ≤ a ≤

b ≤ ∞, and for each i > 0, we have Hi(Zprokét/U , M̂⊗Q̂p OB
[a,b]
dR,log,Z) = 0.

(2) Hi
(
Γgeom, (M̂⊗Q̂p OClog,Z)(Ỹ )

) ∼= Hi
(
Zprokét/YK

, M̂⊗Q̂p OClog,Z

)
, for all

i ≥ 0.

Consider the topological basis {γ1, . . . , γn} of Γgeom
∼= (Ẑ(1))n given by pulling

back the image in Ẑn of the standard basis {a1, . . . , an} of Zn via the isomorphism

(Ẑ(1))n
∼→ Ẑn induced by (2.3.1), which is characterized by the property that

(3.3.6) γj T
1
m

j′ = ζ
δjj′
m T

1
m

j′ ,

for all 1 ≤ j, j′ ≤ n and m ≥ 1 (cf. [DLLZ, (6.1.4)] and (2.3.3)).
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For each m ≥ 1, write XK,m = Spa(RK,m, R
+
K,m) := XK ×EK (Em)K , and

write ZK,m := ZK ×EK (Em)K = Spa(RK,m, R
+

K,m), for some uniquely deter-

mined complete Huber pairs (RK,m, R
+
K,m) and (RK,m, R

+

K,m). Note that RK,m ∼=
RK,m/(T

1
m

1 , . . . , T
1
m

l ) (cf. Section 2.3). Let R̂K,∞ and R̂K,∞ be the p-adic com-

pletions of lim−→m
RK,m and lim−→m

RK,m, respectively (cf. [DLLZ, Rem. 5.3.2]). By

Theorem A.2.2.3,
(
{RK,m}m≥1, R̂K,∞,Γgeom o Gal(K/k)

)
is a decompletion sys-

tem. Therefore, as in Definition A.1.2, L∞ = LX(X̃) has a model over RK,m0
,

for some m0 ≥ 1, i.e., a finite projective RK,m0
-module Lm0

(XK), necessarily of
rank rkQp(L), with a continuous RK,m0

-semilinear action of ΓgeomoGal(K/k) such

that Lm0
(XK) ⊗RK,m0

R̂K,∞ ∼= LX(X̃); and we may assume that it is good, i.e.,

Hi
(
Γgeom, Lm0(XK)

) ∼→ Hi
(
Γgeom,LX(X̃)

)
, for all i ≥ 0. Note that Γgeom

∼=
(Ẑ(1))n acts on RK,m via the last n− l factors Γgeom

∼= (Ẑ(1))n−l (see (3.3.6)). By

Theorem A.2.2.3 again,
(
{RK,m}m≥1, R̂K,∞,Γgeom o Gal(K/k)

)
is also a decom-

pletion system. Since LZ(Z̃) ∼= LX(X̃)⊗R̂K,∞ R̂K,∞ by [DLLZ, Lem. 6.3.6],

(3.3.7) Lm0
(ZK) := Lm0

(XK)⊗RK,m RK,m ∼= Lm0
(XK)/(T

1
m0

1 , . . . , T
1
m0

l )

is a model of LZ(Z̃). Up to enlarging m0 (and replacing Lm0
(XK) with its base

change, accordingly), we may assume that Lm0
(ZK) is also a good model.

Lemma 3.3.8. The RK-linear representation of Γgeom on Lm0
(XK) is quasi-

unipotent; i.e., a finite-index subgroup of Γgeom acts unipotently on Lm0(XK). By

base change, the same holds for the RK-linear representation of Γgeom on Lm0
(ZK).

Proof. Let k′ := k̂ur, where kur is the maximal unramified extension of k in k.

Let k′pl := k′(µpl) ⊂ k, R′pl := R⊗̂k〈T1,...,Tn〉 k
′
pl〈T

1
m0

1 , . . . , T
1
m0
n 〉, and Γ′pl :=

Gal(K/k′pl), for each l ≥ 0. Since RK,m0 is canonically isomorphic to the com-

pletion of lim−→l
R′pl , by Theorem A.2.1.2 and Remark A.2.1.3, ({R′pl}l≥0, RK,m0

,Γ′1)

is a decompletion system. By Definition A.1.2 (with L∞ = Lm0(XK)) and Remark
A.1.3, since Γgeom is topologically finitely generated, for some sufficiently large
l0, there exists an R′

pl0
-submodule Lpl0 with a continuous Γgeom o Γ′1-action and a

canonical isomorphism Lpl0 ⊗R′
pl0
RK,m0

∼→ Lm0
(XK) of ΓgeomoΓ′1-modules. Then

the same argument as in the proof of [LZ17, Lem. 2.15] works here. �

By Lemma 3.3.8, we obtain decompositions

(3.3.9) Lm0
(XK) = ⊕τ Lm0,τ (XK) and Lm0

(ZK) = ⊕τ Lm0,τ (ZK),

where τ are characters of Γgeom of finite order and the subscript “τ” denotes the
maximal K-subspaces on which γ − τ(γ) acts nilpotently, for all γ ∈ Γ. Then each
Lm0,τ (XK) (resp. Lm0,τ (ZK)) is a finite projective RK-module (resp. RK-module)
stable under the action of Γgeom. Consider, in particular, the unipotent parts

(3.3.10) L(XK) := Lm0,1(XK) and L(ZK) := Lm0,1(ZK).

Up to enlarging m0 as before, we may assume that the order of every τ in (3.3.9)
divides m0. For each such τ , there exists some monomial T aτ in RK,m0

, with aτ in
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1
m0

Zn≥0, on which Γgeom acts via τ . Since all monomials T a with a ∈ 1
m0

Zn are in

RK,m0 [T−1
1 , . . . , T−1

n ], it follows that

(3.3.11) L(XK)⊗RK RK,m0 [T−1
1 , . . . , T−1

n ] ∼= Lm0(XK)[T−1
1 , . . . , T−1

n ],

and that the rank of L(XK) as a finite projective RK-module is rkQp(L).

Remark 3.3.12. However, the natural map

(3.3.13) L(XK)⊗RK RK,m0
→ Lm0

(XK)

might not be an isomorphism in general. This is the source of the failure of the
surjectivity of (1.8) mentioned in the introduction.

Remark 3.3.14. In general, the two decompositions in (3.3.9) are not compatible via
base change from RK to RK ∼= RK/(T1, . . . , Tl). Nevertheless, since the induced
morphisms Lm0,τ (XK)/(T1, . . . , Tl) → Lm0,τ ′(ZK) are zero whenever τ 6= τ ′, we
have a canonical surjection L(XK)/(T1, . . . , Tl) � L(ZK).

For each τ 6= 1, there exists some j such that γj − 1 : Lm0,τ (ZK)→ Lm0,τ (ZK)
is invertible, and so Hi

(
Γgeom, Lm0,τ (ZK)

)
= 0, for all i ≥ 0. Hence, we have

Hi
(
Γgeom, L(ZK)

) ∼= Hi
(
Γgeom, Lm0

(ZK)
)
, and the following lemma follows from

essentially the same argument as in the proof of [LZ17, Lem. 2.9]:

Lemma 3.3.15. There is a canonical Gal(K/k)-equivariant isomorphism

Hi(Zprokét/ZK
, L̂Z ⊗Q̂p OClog,Z) ∼=

{
L(ZK), if i = 0;

0, if i > 0.

By Definition A.1.2, up to enlarging m0, the formation of Lm0
(ZK) is compat-

ible with base changes under compositions of rational embeddings and finite étale
morphisms Y → Z. The same is true for the formation of the direct summands
Lm0,τ (ZK) in the decomposition (3.3.9). These yield the following:

Lemma 3.3.16. The formation of the finite projective RK-module L(ZK), which
is of rank rkQp(L) when Z = X, is compatible with base changes under compositions
of rational embeddings and finite étale morphisms Y → Z.

Thus, we have established the statements (a) and (b) above, and completed the
proofs of Proposition 3.3.3 and hence also of Theorems 3.2.3(1) and 3.2.4(1). (The
cases where Z 6= X will be also useful in Section 3.7 and in [LLZ].)

Next, we move to the arithmetic situation. We will only consider Z = X.

Lemma 3.3.17. The sheaf DdR,log(L) is a coherent sheaf on Xan.

Proof. For simplicity, we may still assume that K = k̂∞. Again, to show the
coherence of DdR,log(L), we shall consider the projection ν : Xprokét → Xét instead,
and we may assume that X = Spa(R,R+) admits a smooth toric chart. Note that
this modified DdR,log(L) is the sheaf on Xét associated with the presheaf

Y 7→ H0
(
Xprokét/Y , L̂⊗Q̂p OBdR,log

)
= H0

(
Gal(K/k),RHlog(L)(Y )

)
.

From the proof of Theorem 3.2.3(1), we know that

grrRHlog(L) ∼= µ′∗(L̂⊗Q̂p OClog)(r).

It suffices to prove the following two statements (parallel to (a) and (b) above):
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(a′) The R-module H0
(
Gal(K/k), µ′∗(L̂⊗Q̂pOClog)(r)(X)

)
is finitely generated,

and vanishes for |r| � 0.
(b′) If Y = Spa(S, S+) → X = Spa(R,R+) is a composition of rational local-

izations and finite étale morphisms, then we have a canonical isomorphism

H0
(
Gal(K/k), µ′∗(L̂⊗Q̂p OClog)(r)(X)

)
⊗R S

∼→ H0
(
Gal(K/k), µ′∗(L̂⊗Q̂p OClog)(r)(Y )

)
.

Let kp∞ := ∪l kpl in k, with p-adic completion k̂p∞ . By assumption, K =

k̂∞. Hence, there are extensions k ⊃ E1 ⊂ E2 ⊂ Cp := Q̂p over Qp such that

K ∼= k̂p∞⊗̂E1
E2, and we can deduce from [BC08, Prop. 4.1.1, 3.1.4, and 3.3.1]

that
(
L(XK)(r)

)Gal(K/k̂p∞ ) ∼=
(
L(XK)Gal(K/k̂p∞ )

)
(r) is a finite projective Rk̂p∞ -

module satisfying
(
L(XK)(r)

)Gal(K/k̂p∞ ) ⊗R
k̂p∞

RK ∼= L(XK)(r), for all r ∈ Z.

Also, we have
(
L(XK)(r)

)Gal(K/k̂p∞ )⊗R
k̂p∞

Sk̂p∞
∼=
(
L(YK)(r)

)Gal(K/k̂p∞ )
, because(

L(XK)(r)
)
⊗RK SK ∼= L(YK)(r). By Theorem A.2.1.2 and Corollary A.1.21 (with

{ψs} there given by all powers of the cyclotomic character of Gal(kp∞/k) → Z×p ),

the finite projective Rk̂p∞ -module L(XK)Gal(K/k̂p∞ ), with its induced action of

Gal(k̂p∞/k) ∼= Gal(kp∞/k), descends to a finite projective Rk
pl0

-module L :=

Lk
pl0

(X), for some l0 ≥ 0, such that L(r) is a good model (see Definition A.1.2(2))

of
(
L(XK)(r)

)Gal(K/k̂p∞ )
, for all r ∈ Z, in the sense that Hi

(
Gal(kp∞/k), L(r)

) ∼→
Hi
(
Gal(kp∞/k),

(
L(XK)(r)

)Gal(K/k̂p∞ ))
, for all i ≥ 0. Consequently, we have

H0
(
Gal(K/k), µ′∗(L̂⊗Q̂p OClog)(r)(X)

) ∼= H0
(
Gal(kp∞/k), L(r)

)
,

which is clearly a finitely generated R-module, and vanishes when |r| � 0.
As for the statement (b′), up to enlarging l0, we may assume in addition that

L(r)⊗R S is a good model of
(
L(YK)(r)

)Gal(K/k̂p∞ )
. Hence, it suffices to show that

H0
(
Gal(kp∞/k), L(r)

)
⊗R S

∼→ H0
(
Gal(kp∞/k), L(r)⊗R S

)
.

Thus, the desired base change property follows from the exactness of the complex

0→ H0(Gal(kp∞/k), L)→ L
(δ1−1,...,δs−1)−−−−−−−−−→ Ls, where δ1, . . . , δs (for some s ≤ 2, in

fact) are topological generators of Gal(kp∞/k), and from the flatness of R→ S. �

Lemma 3.3.18. The coherent sheaf DdR,log(L) on Xan is reflexive.

Proof. Being torsion-free, DdR,log(L) is locally free outside some locus X0 of codi-
mension at least two in X. Let  : X −X0 → X denote the canonical open immer-
sion. We claim that RHlog(L) ∼= ∗ 

∗(RHlog(L)
)
. Since RHlog(L) is locally free,

we may work locally and assume that it is isomorphic to (OX⊗̂kBdR)n for some n ≥
0. By using the filtration on OX⊗̂kBdR in Definition 3.1.1, it suffices to treat the
case of OXK , which follows from [Kis99, Cor. 2.2.4]. By taking Gal(K/k)-invariants,
we obtain a similar canonical isomorphism DdR,log(L) ∼= ∗ 

∗(DdR,log(L)
)
. Since

DdR,log(L) is coherent and ∗DdR,log(L) is locally free, it follows that DdR,log(L) is
reflexive, by the same argument as in the proof of [Ser66, Prop. 7]. �
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3.4. Calculation of residues. The main goal of this subsection is to prove The-
orems 3.2.3(2), 3.2.7(1)–(2), and 3.2.12.

Let us first review the definition of residues for log connections and some basic
properties. We shall only consider the case where X is as Example 2.1.2, although
the definition can be given more generally. We first suppose that F is a vector

bundle on Xan equipped with an integrable log connection ∇ : F → F ⊗OX Ωlog
X .

Let Z ⊂ D be an irreducible component (i.e., the image of a connected component
of the normalization of D, as in [Con99]). To define the residue ResZ(∇) of ∇ along
Z, we may shrink X and assume that Z is smooth and connected. Locally on X, up
to enlarging k, we may assume that there is a smooth toric chart X → Dn, where
Dn is as in Example 2.1.1, such that Z = {T1 = 0}. Let ı : Z ↪→ X denote the
closed immersion, and let F |Z denote the O-module pullback ı∗(F ). Then there is
an OZ-linear endomorphism

(3.4.1) ResZ(∇) := ∇(T1
∂
∂T1

) mod T1 : F |Z → F |Z ,

where T1
∂
∂T1

denotes the dual of dT1

T1
. As in the classical situation, this operator does

not depend on the choice of the coordinate T1. Also, its formation is compatible
with rational localizations, and hence is a well-defined endomorphism of F |Z .

Consider Z as a smooth rigid analytic variety by itself, which is equipped with
the normal crossings divisor D′ = ∪j (Dj ∩ Z), where the Dj ’s are irreducible
components of D other than Z. Then Z admits the structure of a log adic space,
defined by D′, as in Example 2.1.2. Again as in the classical situation, the pullback

F |Z is equipped with a log connection ∇′ : F |Z → F |Z ⊗OZ Ωlog
Z , and the residue

ResZ(∇) is horizontal with respect to ∇′. As a result, the characteristic polynomial
PZ(x) of ResZ(∇) is constant over Z and lies in kZ [x], where kZ is the algebraic
closure of k in Γ(Z,OZ). Thus, the eigenvalues of ResZ(∇) (i.e., the roots of PZ(x))
are algebraic over k. For each root α of PZ(x) in a finite extension k′ of k, let

(3.4.2) F |αZ⊗kk′ ⊂ (F |Z)⊗k k′

be the corresponding generalized eigenspace of ResZ(∇). This is a direct summand
(and hence a quotient) of (F |Z)⊗k k′, which is preserved by the log connection ∇′.

Given any vector bundle with an integrable log connection (F ,∇) on X =
(Xan,OX⊗̂kBdR), by using Lemma 3.1.4, the above discussions carry through.
Specifically, the coefficients of the characteristic polynomial PZ(x) of ResZ(∇) are
constant over Z = (Zan,OZ⊗̂kBdR), and therefore lie in kZ ⊗kBdR, where kZ is as
above. In particular, if kZ = k, then PZ(x) ∈ BdR[x]; and we can similarly define
(F|αZ⊗BdR

B′ ,∇′), for each root α of PZ(x) in a finite extension B′ of BdR.

Now suppose that F is a torsion-free coherent OX -module equipped with an
integrable log connection ∇. Let U be the maximal open subset of X such that
F |U is a vector bundle, which is the complement of an analytic closed subvariety X0

of X of codimension at least two. In particular, X0 cannot contain any irreducible
component of D. Hence, by replacing X with U , we can proceed as above and
attach a polynomial PZ(x) ∈ kZ [x] to each irreducible component Z ⊂ D.

Now we begin the proof of Theorem 3.2.3(2). Since the question is local, we may
assume that X = Spa(R,R+) is affinoid and admits a smooth toric chart X → Dn;
that the close subspace Zi = {Ti = 0} of X is irreducible when nonempty, for each
1 ≤ i ≤ n; and that RHlog(L) is free. By Proposition 2.3.15 and Corollary 2.3.17,

RHlog(L)(X) ∼= H0
(
Γgeom, (L̂⊗Q̂p BdR)(X̃){W1, . . . ,Wn}

)
,
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where each Wj = t−1yj is defined as in (2.3.18). Let N∞ := (L̂⊗Q̂p B
+
dR)(X̃), which

is a module over B+
dR(X̃) ∼= B+

dR(R̂∞, R̂
+
∞) (see Proposition 2.2.4). Then we have

Fil0(L̂⊗Q̂p OBdR,log)(X̃) ∼= N∞{W1, . . . ,Wn}

=
{ ∑

Λ∈Zn≥0

bΛW
Λ : bΛ ∈ N∞, bΛ → 0, t-adically, as |Λ| → ∞

}
=
{ ∑

Λ∈Zn≥0

cΛ
(
W
Λ

)
: cΛ ∈ N∞, cΛ → 0, t-adically, as |Λ| → ∞

}
,

where WΛ is as in (2.3.19), and
(
W
Λ

)
:=
(
W1

Λ1

)
· · ·
(
Wn

Λn

)
, for each Λ = (Λ1, . . . ,Λn).

Recall that we have chosen the topological basis {γ1, . . . , γn} of Γgeom
∼= (Ẑ(1))n

satisfying the characterizing property (3.3.6). For each Λ = (Λ1, . . . ,Λn) ∈ Zn≥0,

let us write (γ − 1)Λ for (γ1 − 1)Λ1 · · · (γn − 1)Λn .

Lemma 3.4.3. (1) If
∑
cΛ
(
W
Λ

)
∈ N∞{W1, . . . ,Wn} is Γgeom-invariant, then

(γ−1)Λc0 → 0, t-adically, as |Λ| → ∞, and cΛ = (γ−1)Λc0 for all Λ ∈ Zn≥0.

(2) Let

(3.4.4) N+ :=
{
c ∈ N∞ : (γ − 1)Λc→ 0, t-adically, as |Λ| → ∞

}
.

Then the map N∞{W1, . . . ,Wn} → N∞ sending all W1, . . . ,Wn to zero
induces a canonical isomorphism

(3.4.5) η : RH+
log(L)(X) ∼= (N∞{W1, . . . ,Wn})Γgeom ∼= N+,

with the inverse map given by c 7→
∑

Λ∈Zn≥0
(γ − 1)Λc

(
W
Λ

)
.

(3) Let N := N+⊗B+
dR
BdR

∼= N+[t−1]. Then the above isomorphism η induces

a canonical isomorphism RHlog(L)(X) ∼= N , which we still denote by η.

Proof. We have γ−1
i Wj = Wj + δij . (Note that the Wj defined in Corollary 2.3.17

differs from the Vj defined in the proof of [Sch13, Prop. 6.16] by a sign, and therefore

we need γ−1
i in our formula rather than the γi as in [Sch13, Lem. 6.17].) This

implies that γ−1
i

(
Wi

j

)
=
(
Wi+1
j

)
=
(
Wi

j

)
+
(
Wi

j−1

)
, and so (γ−1

i − 1)
(∑

Λ cΛ
(
W
Λ

))
=∑

Λ

(
γ−1
i cΛ+ei + γ−1

i cΛ− cΛ
)(
W
Λ

)
, where ei = (0, . . . , 0, 1, 0, . . . , 0) has only the i-th

entry equal to 1. Therefore, cΛ − γ−1
i cΛ = γ−1

i cΛ+ei , or, equivalently, γicΛ − cΛ =
cΛ+ei , for all i and Λ. In particular, this implies that (γ − 1)Λc0 = cΛ, which goes
to 0 as |Λ| → ∞. This proves (1). Then (2) and (3) also follow easily. �

By the proof of Theorem 3.2.4(1) in Section 3.3, RH+
log(L)(X) is a finite pro-

jective R⊗̂kB+
dR-module. Note that the natural action of Γgeom on N∞ preserves

N+, and by transport of structure gives an action of Γgeom on RHlog(L)(X). This
action is closely related to the residues, as we shall see. Recall from Lemma 2.3.11
that, if we define the Γgeom-action of R⊗̂kBdR by requiring that γi(Tj) = [ε]δijTj
and that the action becomes trivial modulo ξ, then the embedding R⊗̂kBdR →
BdR(R̂∞, R̂

+
∞) sending Ti to [T [i ] is Γgeom-equivariant. Via this embedding, we may

regard N∞ as an R⊗̂kB+
dR-module, and N+ as an R⊗̂kB+

dR-submodule of N∞.

Lemma 3.4.6. The isomorphism (3.4.5) is an isomorphism of R⊗̂kB+
dR-modules,

where the actions of R⊗̂kB+
dR on RH+

log(L)(X) and N∞ are as explained above.
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Proof. This follows from the fact that the map (2.3.10) (which is an isomorphism
by Lemma 2.3.11) is obtained from the map (2.3.8) via ea 7→ 1, for all a ∈ P . �

Hence, the action of γi on N+/TiN
+ is (R/Ti)⊗̂kB+

dR-linear, and induces an

(R/Ti)⊗̂kBdR-linear action on N/TiN .

Lemma 3.4.7. Under the isomorphism RHlog(L)(X) ∼= N given by Lemma 3.4.3,
the residue of the connection ∇L of RHlog(L) along Zi = {Ti = 0} corresponds to
the endomorphism t−1 log(γi) of N/TiN .

Proof. Let us expand elements of N∞{W1, . . . ,Wn} in the basis {WΛ}Λ instead of

{
(
W
Λ

)
}Λ. Suppose that c0 ∈ N and η−1(c0) =

∑
Λ cΛ

(
W
Λ

)
=
∑

Λ bΛW
Λ. Then, by

the definition of residues as in (3.4.1), by Lemma 3.4.3, and by (2.4.3) and (2.4.4), we
obtain the identities η

(
(ResZi(∇L))(η−1(c0))

)
= t−1bei = t−1

∑∞
a=1(−1)a−1 1

acaei =

t−1
∑∞
a=1(−1)a−1 1

a (γi − 1)ac0 = t−1 log(γi)(c0), as desired. �

Remark 3.4.8. The definitions of both t and γi (in (2.3.2) and (3.3.6)) depend on

the choice of ζ : Q/Z ∼→ µ∞ in (2.3.1), but t−1 log(γi) does not.

To proceed further, we need the following lemma, which follows from [DLLZ,
Lem. 6.3.6] by induction on r.

Lemma 3.4.9. Let ı : Z → Y be a strict closed immersion of locally noetherian fs

log adic spaces over Spa(Qp,Zp). Let M̂ be a Q̂p-local system on Yprokét. Then(
ı−1
prokét(M̂)⊗Q̂p (BdR,Z/ξ

r)
)
(U ×Y Z)

∼=
(
M̂⊗Q̂p (BdR,Y /ξ

r)
)
(U)⊗(BdR,Y /ξr)(U) (BdR,Z/ξ

r)(U ×Y Z).

for every r ≥ 1 and every log affinoid perfectoid object U of Yprokét.

Let Zi be the (possibly empty) smooth divisor on X defined by Ti = 0. Equip Zi
with the pullback of the log structure of X, and denote by Z∂i log adic space thus
obtained. Then the canonical morphism of log adic spaces ı : Z∂i ↪→ X is a strict

closed immersion. Consider the log affinoid perfectoid object Z̃∂i := Z∂i ×X X̃ ∼=
Zi ×Dn D̃n in (Z∂i )prokét (as in Corollary 2.3.20), with associated perfectoid spacễ
Z∂i . By (2.3.21) and Lemma 3.4.9, we have a canonical isomorphism

(3.4.10)
(
N∞/ξ

r
)/

([T s[i ])∧s∈Q>0
∼=
(
ı−1
prokét(L̂)⊗Q̂p B

+
dR,Z∂i

)
(Z̃∂i )

/
ξr.

Let BdR denote a fixed algebraic closure of BdR extending the fixed algebraic

closure k of k, and let B
+

dR denote the integral closure of B+
dR in BdR.

Lemma 3.4.11. If γiv = xv for some nonzero v ∈
(
N∞/ξ

r
)/

([T s[i ])∧s∈Q>0
and

some x ∈ B+

dR/ξ
r, then x = ζy for some y ∈ Q.

Proof. Up to replacing k with a finite extension, we may assume that Zi contains a
k-point z. Let z∂ denote z equipped with the log structure pulled back from X. Let

z̃∂ := z∂×X X̃, with associated perfectoid space ̂̃z∂ . Then γiv = xv still holds in the

base change of
(
N∞/ξ

r
)/

([T s[i ])∧s∈Q>0
along (B+

dR,Z∂i
/ξr)(Z̃∂i ) → (B+

dR,z∂
/ξr)(z̃∂),

which is isomorphic to
(
L̂|z∂ ⊗Q̂p (B+

dR,z∂
/ξr)

)
(z̃∂), by Lemma 3.4.9. Note that γi

acts trivially on ̂̃z∂ . Hence, L̂|̂̃z∂ is equipped with an action of γi, which is quasi-

unipotent because it extends to a continuous one of Ẑ(1)oGal(k∞/k) (see (3.3.4)),
and the same argument as in the proof of [LZ17, Lem. 2.15] also works here. �
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Next we use the decompletion over B+
dR/ξ

r established in Section A.2.3 to de-

scend N∞/ξ
r = (L̂⊗Q̂p B

+
dR)(X̃)/ξr to some finite level.

Lemma 3.4.12. For each r ≥ 1, there exist some m ≥ 1 and a finite projective
Br,m-module Nr,m (where Br,m is as in (A.2.3.1)), equipped with a semilinear Γ-

action, such that N∞/ξ
r ∼= Nr,m ⊗Br,m

(
B+

dR(X̃)/ξr
)

as B+
dR(X̃)/ξr-modules with

semilinear Γ-actions. In addition, up to replacing m with a multiple (and replacing
Nr,m with its base change, accordingly), we may assume that N+/ξr ⊂ Nr,m (as
submodules of N∞/ξ

r), and that Nr,m
/

(N+/ξr) is Ti-torsion-free.

Proof. The first statement follows from Lemma 2.3.11 and Theorem A.2.3.4. As
for the second statement, we may assume that Hj(Γ, Nr,m)→ Hi(Γ, N∞/ξ

r) is an
isomorphism for j = 0, 1 (by Definition A.1.2(2)), so that H0(Γ, (N∞/ξ

r)/Nr,m) =
0. Then the whole Γ acts unipotently on each element of N+/ξr (by (3.4.4)),
while each nonzero element of (N∞/ξ

r)/Nr,m lies outside the kernel of γ − 1 for
some γ ∈ Γ. It follows that N+/ξr ⊂ Nr,m ⊂ N∞/ξ

r, as desired. As for the last
statement, it suffices to show that (N∞/ξ

r)
/

(N+/ξr) is Ti-torsion-free. By the
definition of N∞, and by (2.3.4), N∞/ξ

r is Ti-torsion-free. By the definition of
N+/ξr, it remains to note that, for each c ∈ N∞/ξr, we have (γ− 1)Λ(Ti c) = 0 for

some Λ ∈ Zn≥0 if and only if (γ−1)Λ′(c) = 0 for some Λ′ ∈ Zn≥0, since (γj−1)(Ti c) =

[ε]δij Ti γi(c)− Ti c = Ti
(
([ε]δij − 1)γi + (γi − 1)

)
c and [ε]− 1 ∈ (ξ) ⊂ B+

dR. �

Lemma 3.4.13. If γiv = xv for some nonzero v ∈ (N+/ξr)
/

(Ti) and some x ∈
B

+

dR/ξ
r, then x = ζy[εz] for some y ∈ Q and z ∈ Q ∩ [0, 1).

Proof. By Lemma 3.4.12, we may assume that v ∈ (N+/ξr)
/

(Ti) ⊂ Nr,m
/
TiNr,m

for some m and Nr,m. Consider the filtration T
a
m
i Nr,m

/
TiNr,m ⊂ Nr,m

/
TiNr,m,

with 0 ≤ a ≤ m. Since v 6= 0, there exists some 0 ≤ a < m such that the im-

age v of v in T
a
m
i Nr,m

/
T
a+1
m

i Nr,m is nonzero, which also satisfies γiv = xv. By
Lemma 3.4.12 again, the natural embedding Nr,m ↪→ N∞/ξ

r induces by restriction

to T
a
m
i Nr,m and by factoring out a multiplication by T

a
m
i a well-defined embed-

ding T
a
m
i Nr,m

/
T
a+1
m

i Nr,m ↪→ (N∞/ξ
r)
/

([T s[i ])∧s∈Q>0
, and the nonzero image w of

v in (N∞/ξ
r)
/

([T s[i ])∧s∈Q>0
satisfies the twisted relation γiw = [ε−

a
m ]xw because

γi T
1
m
i = [ε

1
m ]T

1
m
i (cf. (2.3.5)). Thus, by Lemma 3.4.11, we have x = ζy[εz] with

y ∈ Q and z := a
m ∈

1
mZ ∩ [0, 1) ⊂ Q ∩ [0, 1), as desired. �

Finally, let us finish the proof of Theorem 3.2.3(2). Let kZi be the algebraic
closure of k in Γ(Zi,OZi). For our purpose, we may replace k with a finite extension,
replace X with an open subspace, and replace Zi accordingly, so that kZi = k and
the eigenvalues of the residue along Zi are in BdR. By Lemma 3.4.7, it suffices to
show that the eigenvalues of t−1 log(γi) are in Q ∩ [0, 1). Let v ∈ N/TiN be an
eigenvector of t−1 log(γi) with eigenvalue x̃ ∈ BdR. Up to multiplying v by a power
of t, we may assume that v ∈ N+/TiN

+. Since the action of γi on N+/TiN
+ is

B+
dR-linear, v is an eigenvector of γi with eigenvalue exp(x̃t) in B

+

dR. By Lemma

3.4.13, and by the assumption that (γi − 1)l v → 0, t-adically, as l →∞, it is easy
to see that exp(x̃t) = ζy[εz], with y + z ∈ Z and z ∈ Q ∩ [0, 1). Therefore, we may
assume that −y = z ∈ Q ∩ [0, 1). Thus, the eigenvalues of t−1 log(γi) are of the
form t−1 log(ζ−z[εz]) = z ∈ Q ∩ [0, 1), which verifies Theorem 3.2.3(2), as desired.
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Remark 3.4.14. By the proof Lemma 3.4.13, the surjection L(XK)/(T1) � L(ZK)

in Remark 3.3.14 (when l = 1 there) is the evaluation on X̃ of
(
gr0RHlog(L)

)
|D1
→

gr0
(
RHlog(L)|0D1

)
(cf. (3.4.2)), where RHlog(L)|0D1

is interpreted as a quotient of
RHlog(L)|D1

and equipped with the canonically induced filtration.

Proposition 3.4.15. For the connection ∇L : DdR,log(L)→ DdR,log(L)⊗OX Ωlog
X ,

all eigenvalues of Res{Ti=0}(∇L) are in Q ∩ [0, 1).

Proof. Note that DdR,log(L)(X) ∼= RHlog(L)(X̃)Gal(K/k), and the isomorphism η

in (3.4.5) is Gal(K/k)-equivariant. Therefore, DdR,log(L)(X) ∼= NGal(K/k). In
addition, the residue Res{Ti=0}(∇L) is still given by t−1 log(γi) as in Lemma 3.4.7.
Then the proposition follows from the arguments just explained above. �

In order to complete the proof of Theorem 3.2.7(1), it remains to apply the
following proposition to conclude that DdR,log(L) is a vector bundle.

Proposition 3.4.16. A torsion-free coherent OX-module F with an integrable log

connection ∇ : F → F ⊗OX Ωlog
X is locally free when the following conditions hold:

(1) F is reflexive (i.e., isomorphic to its bidual).
(2) For every i, all eigenvalues of Res{Ti=0}(∇) are in Q ∩ [0, 1).

Proof. This follows from the same argument as in the proof of [AB01, Ch. 1, Prop.
4.5] or [ABC20, Lem. 11.5.1]. More precisely, it suffices to note that, under the
assumptions, the completion of the stalk of E at each classical point of X is free,
by [AB01, Ch. 1, Lem. 4.6.1] or [ABC20, the proof of Lem. 11.5.1]. �

To apply Proposition 3.4.16 to DdR,log(L), it suffices to note that the condition
(1) is satisfied by Lemma 3.3.18, and the condition (2) is satisfied by Proposition
3.4.15. The proof of Theorem 3.2.7(1) is now complete.

Proposition 3.4.17. Suppose that F (resp. F ′) is a locally free (resp. torsion-free)
coherent OX-module, with an integrable log connection ∇ (resp. ∇′) as in Definition
3.1.7(4), whose residues along the irreducible components of D all have eigenvalues
in Q∩[0, 1). Then any morphism (F,∇)→ (F ′,∇′) whose restriction to U = X−D
is an isomorphism is necessarily an isomorphism over the whole X. The same is
true if we replace OX-modules with OX⊗̂kBdR-modules.

Proof. Let (F ′′,∇′′) := ((F ′,∇′)∨)∨, where F ′′ is the double OX -dual of F ′, which
is by definition a reflexive coherent OX -module, and where ∇′′ is the induced log
integrable connection, whose residues along the irreducible components of D also
have eigenvalues in Q∩ [0, 1). Hence, by Proposition 3.4.16, F ′′ is locally free. Since
the restriction of the given morphism (F,∇)→ (F ′,∇′) to the dense subspace U is
an isomorphism, we have injective morphisms (F,∇) → (F ′,∇′) → (F ′′,∇′′), and
it suffices to show that their composition is an isomorphism over X. Therefore, we
can replace F ′ with F ′′, and assume that both F and F ′ are locally free. Thus,
by working locally, we may replace X with its affinoid open subspaces which admit
strictly étale morphisms to Dn as in Example 2.1.2, and assume that both F and
F ′ are free of rank d. Then, with respect to the chosen bases, the map F → F ′ is
represented by a matrix A in Md

(
OX(X)

)
, which is invertible outside D. In order

to show that it is invertible over X, it suffices to show that the entries of A−1, which
are a priori analytic functions on X meromorphic along D, are everywhere regular
analytic functions on X. But this is classical—see, for example, the proof of [AB01,
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Ch. 1, Prop. 4.7] or [ABC20, the uniqueness assertion of Thm. 11.2.2 in Sec. 11.4,
based on Prop.-Def. 10.2.5]. Moreover, by Lemma 3.1.4, the above arguments also
apply to integrable log connections on X (as in Definition 3.1.7(1)). �

As usual, we define a decreasing filtration on DdR,log(L) by setting

Fil•DdR,log(L) :=
(
Fil•RHlog(L)

)Gal(K/k)
.

Lemma 3.4.18. We endow DdR,log(L)⊗̂kBdR with the usual product filtration.
Then the canonical morphism

(3.4.19) DdR,log(L)⊗̂kBdR → RHlog(L)

defined by adjunction is injective (by definition) and strictly compatible with the
filtrations on both sides. That is, for each r, (3.4.19) induces an injective morphism

(3.4.20) grr
(
DdR,log(L)⊗̂kBdR

)
→ grrRHlog(L).

Proof. Since DdR,log(L) ∼= (RHlog(L))Gal(K/k), the left-hand side of (3.4.20) can

be identified with ⊕a+b=r

((
gra
(
(RHlog(L))Gal(K/k)

))
⊗k K(b)

)
, while the right-

hand side of (3.4.20) contains ⊕a+b=r

((
graRHlog(L)

)Gal(K/k) ⊗k K(b)
)

as a sub-

space, where we have direct sums in such forms because of the Gal(K/k)-actions.
Thus, it suffices to note that the canonical morphism gra

(
(RHlog(L))Gal(K/k)

)
→(

graRHlog(L)
)Gal(K/k)

is injective, for each a, essentially by definition. �

Corollary 3.4.21. If L|Uét
is de Rham, then (3.4.19) is an isomorphism of vector

bundles on X , compatible with the log connections and filtrations on both sides.

Proof. Since L|Uét
is de Rham, by [LZ17, Cor. 3.12(ii)], the restriction of (3.4.19)

to U is an isomorphism. By Proposition 3.4.17 and Theorems 3.2.3(2) and 3.2.7(1),
the morphism (3.4.19) is an isomorphism, compatible with the log connections. By
Lemma 3.4.18, it is also compatible with the filtrations. �

Corollary 3.4.22. If L|Uét
is de Rham, then grDdR,log(L) is a vector bundle of

rank rkQp(L).

Proof. By Corollary 3.4.21, ⊕a
((

graDdR,log(L)
)
⊗̂kK(−a)

)
∼→ gr0RHlog(L) ∼=

Hlog(L). Since Hlog(L) is a vector bundle on XK by Theorem 3.2.4(1), this shows
that grDdR,log(L) is a vector bundles on X of rank equal to that of Hlog(L), which
is in turn equal to rkQp(L) by the proof of Theorem 3.2.4(1) in Section 3.3. �

Thus, by Proposition 3.4.15 and Corollary 3.4.22, the proof of Theorem 3.2.7(2)
is also complete. We conclude this subsection with the following:

Proof of Theorem 3.2.12. Given any Qp-local system L on Xkét such that L|Uét

has unipotent geometric monodromy along D, by definition (see the paragraph
preceding Theorem 3.2.12), the action of γi as in Lemma 3.4.7 on any stalk of L| ̂̃

Z∂i
is unipotent. Consequently, x = 1 in Lemmas 3.4.11 and 3.4.13, and the residues of
RHlog(L) (by Lemma 3.4.7) are all nilpotent (i.e., have zero eigenvalues). For such
L, in the paragraph preceding Remark 3.3.12, Lm0,τ (XK) 6= 0 can happen in (3.3.9)
only when τ(γi) = 1 for all i such that Zi = {Ti = 0} 6= ∅ on X = Spa(R,R+).
Hence, up to enlarging m0, the corresponding monomial T aτ there is invertible in
RK,m0

. In this case, the morphism (3.3.13) is an isomorphism, just like (3.3.11);
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and the canonical morphisms (µ′)−1
(
Hlog(L)

)
⊗OXprokét

OClog → L̂⊗Ẑp OClog and

(µ′)−1
(
RHlog(L)

)
⊗(µ′)−1(OX ) OBdR,log → L̂ ⊗Ẑp OBdR,log are also isomorphisms

(cf. [LZ17, Thm. 2.1(ii) and 3.8(iii)]). Therefore, we can argue as in the proofs of
[LZ17, Thm. 2.1(iv) and 3.8(i)] that Hlog and RHlog restrict to tensor functors.
This proves part (1) of the theorem.

As for part (2), if L|Uét
is de Rham and has unipotent geometric monodromy

along D, then the residues of DdR,log(L)(X) are nilpotent, by the proofs of part
(1) above and of Proposition 3.4.15; and (3.4.19) is an isomorphism, by Corollary
3.4.21. In this case, the canonical morphism µ−1

(
DdR,log(L)

)
⊗OXprokét

OBdR,log →
L̂⊗Ẑp OBdR,log (cf. (1.8)) is also an isomorphism, and we can conclude as in [LZ17,

Thm. 3.9(v)] that DdR,log also restricts to a tensor functor. �

3.5. Compatibility with pullbacks and pushforwards. In this subsection, we
prove Theorems 3.2.3(4), 3.2.4(3), and 3.2.7(4)(5). We shall omit the explicit veri-
fications of the Gal(K/k)-equivariance of the adjunction morphisms, because they
are obvious from the constructions of the functors RHlog and Hlog (cf. Section 3.3).

Let us begin with pullbacks. Let Y be defined by Y as in (3.1.5). Let h : Y → X
be as in the statements of the theorems. Let E be the normal crossings divisor
defining the log structure on Y , as in Example 2.1.2, and let V := Y − E.

Remark 3.5.1. Theorems 3.2.3(4), 3.2.4(3), and 3.2.7(4) are obvious when h : Y →
X is an open immersion. Moreover, when the log structure is trivial, the functors
RHlog, Hlog, and DdR,log coincide with their analogues RH, H, and DdR in [LZ17,
Thm. 3.8, 2.1, and 3.9]. (See also Remark 2.2.11.)

Lemma 3.5.2. In the above setting, we have h−1(D) ⊂ E set-theoretically.

Proof. By the definition of the log structures MX and MY of X and Y , respec-
tively, as in Example 2.1.2, the map h] : h−1(MX)→MY between log structures
is defined only when h−1(D) ⊂ E set-theoretically. Hence, the lemma follows. �

Lemma 3.5.3. The canonical morphism

(3.5.4) h∗
(
Hlog(L)

)
→ Hlog

(
h−1(L)

)
,

defined by adjunction is injective. The similarly defined morphisms

(3.5.5) h∗
(
RHlog(L)

)
→ RHlog

(
h−1(L)

)
and

(3.5.6) h∗
(
DdR,log(L)

)
→ DdR,log

(
h−1(L)

)
are injective and strictly compatible with the filtrations on their both sides.

Proof. Since VK is dense in YK , and since h∗
(
Hlog(L)

)
is a vector bundle on YK

by Theorem 3.2.4(1), the morphism (3.5.4) is injective because the corresponding
morphisms for h|V : V → U is an isomorphism by [LZ17, Thm. 2.1(iii)]. Since
grrRHlog(L) ∼= Hlog(L)(r) and grrRHlog

(
h−1(L)

) ∼= Hlog

(
h−1(L)

)
(r), for all r,

the statement for (3.5.5) follows from that for (3.5.4). Also, the statement for (3.5.6)
follows from those for (3.5.4) and (3.4.20), by Lemma 3.4.18 (and its proof). �

Corollary 3.5.7. Under the same assumption as in Theorem 3.2.3(4), the canon-
ical morphisms (3.5.5) and (3.5.6) are isomorphisms compatible with the log con-
nections and filtrations on both sides. In this case, the canonical morphism (3.5.4),
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which can be identified with the 0-th graded piece of (3.5.5), is an isomorphism
compatible with the log Higgs fields on both sides.

Proof. For any pair of irreducible components Z and W of D and E, respectively,
let mWZ be as in Theorem 3.2.3(4); and let hWZ : W → Z denote the induced
morphism, when mWZ ≥ 1 (i.e., h(W ) ⊂ Z). Let ∇L denote the log connection
for either RHlog(L) or DdR,log(L). For each W , by working with local coordinates
as in Section 3.4, we see that ResW

(
h∗(∇L)

)
=
∑
h(W )⊂Z mWZ h

∗
WZ

(
ResZ(∇L)

)
;

and that h∗WZ

(
ResZ(∇L)

)
and h∗WZ′

(
ResZ′(∇L)

)
commute, for any Z and Z ′ as

above. Hence, by Theorem 3.2.12, the assumption in Theorem 3.2.3(4) ensures that
there is at most one non-nilpotent summand mWZ0

h∗WZ0

(
ResZ(∇L)

)
, in which

case mWZ0
= 1. As a result, by Theorems 3.2.3(2) and 3.2.7(2), the eigenvalues

of ResW
(
h∗(∇L)

)
belong to Q ∩ [0, 1) as those of ResZ0

(∇L) do. Also by these

theorems, the eigenvalues of the residues of the log connections for RHlog

(
h−1(L)

)
and DdR,log

(
h−1(L)

)
belong to Q ∩ [0, 1). Thus, by Proposition 3.4.17 and The-

orems 3.2.3(1) and 3.2.7(1), the assertions for (3.5.5) and (3.5.6) follow from the
corresponding ones for h|V : V → U in [LZ17, Thm. 3.8(iv) and 3.9(ii)], and the
assertion for (3.5.4) follows from the one for (3.5.5), as desired. �

Thus, we have finished the proofs of Theorems 3.2.3(4), 3.2.4(3), and 3.2.7(4).
Next, let us turn to Theorem 3.2.7(5). Let f : X → Y be as in the statement

of the theorem. Let Y be defined by Y as in (3.1.5). Since f−1(E) ⊂ D by the
same argument as in the proof of Lemma 3.5.2, and since f |U : U → V is proper
smooth, we must have D = f−1(E), because U is dense in X. Let L be a Zp-
local system on Xkét. By [DLLZ, Cor. 6.3.5], Rifkét,∗(L) is a Zp-local system on

Ykét. By [DLLZ, Def. 6.3.2 and Prop. 5.2.1], we have ̂Rifkét,∗(L) ∼= Rifprokét,∗(L̂).

By Corollary 2.4.6, BdR,X ⊗f−1
prokét(BdR,Y ) f

−1
prokét(OBdR,log,Y ) is quasi-isomorphic to

OBdR,log,X⊗OXprokét
Ωlog,•
X/Y , and hence the canonical morphism f−1

prokét(OBdR,log,Y )→
BdR,X ⊗f−1

prokét(BdR,Y ) f
−1
prokét(OBdR,log,Y ) induces a canonical morphism

Rfprokét,∗(L̂)⊗Ẑp OBdR,log,Y → Rfprokét,∗
(
L̂⊗Ẑp OBdR,log,X ⊗OXprokét

Ωlog,•
X/Y

)
.

By applying Rµ′Y,∗ to both sides of this morphism, we obtain RHlog

(
Rfkét,∗(L)

)
on the left-hand side, and R(µ′Y,∗ ◦ fprokét,∗)

(
L̂⊗Ẑp OBdR,log,X ⊗OXprokét

Ωlog,•
X/Y

) ∼=
R(fan,∗ ◦ µ′X,∗)

(
L̂ ⊗Ẑp OBdR,log,X ⊗OXprokét

Ωlog,•
X/Y

) ∼= Rflog dR,∗
(
RHlog(L)

)
on the

right-hand side, by Theorem 3.2.3(1) and the projection formula. Therefore, we
obtain a canonical morphism (of coherent sheaves with log connections)

(3.5.8) RHlog

(
Rifkét,∗(L)

)
→ Riflog dR,∗

(
RHlog(L)

)
,

which is compatible with the filtrations on both sides. If L|Uét
is de Rham, then we

can identify Riflog dR,∗
(
RHlog(L)

)
with Riflog dR,∗

(
DdR,log(L)⊗̂kBdR

)
, by Corol-

lary 3.4.21, and hence with Riflog dR,∗
(
DdR,log(L)

)
⊗̂kBdR, by the following lemma:

Lemma 3.5.9. Let g : Z → Z ′ be a proper morphism of rigid analytic varieties
over k, and let F be a complex of vector bundles on Z ′ (whose differentials are not
necessarily OZ′-linear). Then we have Rgan,∗

(
F⊗̂kBdR) ∼= Rgan,∗(F)⊗̂kBdR.
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Proof. By considering spectral sequences associated with the filtration on BdR and
the stupid (“bête”) filtration on F , it suffices to note that, for any coherent OX -
module F , we have Rgan,∗

(
F ⊗̂k grr BdR) ∼= Rgan,∗(F )⊗̂k grr BdR, where grr BdR

∼=
K(r), because g is a proper morphism (cf. [Sch13, the proof of Lem. 7.13]). �

Thus, when L|Uét
is de Rham, (3.5.8) can be rewritten as

RHlog

(
Rifkét,∗(L)

)
→ Riflog dR,∗

(
DdR,log(L)

)
⊗̂kBdR.

By taking Gal(K/k)-invariants, we obtain a canonical morphism

(3.5.10) DdR,log

(
Rifkét,∗(L)

)
→ Riflog dR,∗

(
DdR,log(L)

)
,

which is also compatible with the filtrations on both sides.

Lemma 3.5.11. Under the assumption that L|Uét
is de Rham,

(
Rifkét,∗(L)

)
|Vét
∼=

Ri(f |U )ét,∗(L|Uét
) is also de Rham, and (3.5.10) is defined and induces a morphism

(3.5.12) DdR,log

(
Rifkét,∗(L)

)
→
(
Riflog dR,∗

(
DdR,log(L)

))
free

which is injective and strictly compatible with the filtrations on both sides. That is,
for each r, (3.5.12) induces an injective morphism

(3.5.13) grrDdR,log

(
Rifkét,∗(L)

)
→ grr

((
Riflog dR,∗

(
DdR,log(L)

))
free

)
.

Proof. Since L|Uét
is de Rham,

(
Rifkét,∗(L)

)
|Vét
∼= Ri(f |U )ét,∗(L|Uét

) is also de
Rham, by [Sch13, Thm. 8.8] and [LZ17, Thm. 3.8(v)]. Therefore, by Corollary
3.4.22, grDdR,log

(
Rifkét,∗(L)

)
is a vector bundle on Y . Since V is dense in Y ,

the morphism (3.5.13) (which is defined as soon as (3.5.12) is compatible with
the filtrations of both sides) is injective because the corresponding morphism for
f |U : U → V is an isomorphism, by [Sch13, Thm. 8.8]. �

Corollary 3.5.14. Under the assumption that L|Uét
is de Rham, (3.5.12) is an

isomorphism compatible with the log connections and filtrations on both sides.

Proof. By Lemma 3.5.11, it suffices to show that (3.5.12) is an isomorphism (com-
patible with the log connections on both sides). By the same argument as in [Kat71,

Sec. VII], the eigenvalues of the residues of
(
Riflog dR,∗

(
DdR,log(L)

))
free

are still in

Q∩ [0, 1). Hence, by Proposition 3.4.17 and Theorem 3.2.7(1), the assertion follows
from the corresponding one for f |U : U → V in [Sch13, Thm. 8.8]. �

The proof of Theorem 3.2.7(5) is now complete.

3.6. Comparison of cohomology. In this subsection, we prove the remaining
Theorems 3.2.3(3), 3.2.4(2), and 3.2.7(3). We shall assume that X is proper over

k, and that K = k̂. (In this case, B+
dR and BdR are the usual Fontaine’s rings.)

Lemma 3.6.1. For each Zp-local system L on Xkét, and for each i ≥ 0, we have
a canonical Gal(K/k)-equivariant isomorphism of B+

dR-modules

Hi(XK,két,L)⊗Zp B
+
dR
∼= Hi(XK,prokét, L̂⊗Ẑp B

+
dR),

compatible with the filtrations on both sides, and also (by taking 0-th graded pieces)
a canonical Gal(K/k)-equivariant isomorphism of K-modules

Hi(XK,két,L)⊗Zp K
∼= Hi(XK,prokét, L̂⊗Ẑp OXK,prokét

).
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Proof. The proof is the same as [Sch13, Thm. 8.4], with the input [Sch13, Thm.
5.1] there replaced with [DLLZ, Thm. 6.2.1]. �

Lemma 3.6.2. Let L be any Zp-local system on Xkét. For each i ≥ 0, we have a
canonical Gal(K/k)-equivariant isomorphism of BdR-modules

Hi
(
XK,prokét, L̂⊗Ẑp BdR

) ∼= Hi
log dR

(
X ,RHlog(L)

)
and also a canonical Gal(K/k)-equivariant isomorphism of K-modules

Hi
(
XK,prokét, L̂⊗Ẑp OXK,prokét

) ∼= Hi
log Higgs

(
XK,an,Hlog(L)

)
.

Proof. Let us simply denote the complexes (L̂⊗ẐpOBdR,log⊗OXprokét
Ωlog,•
X ,∇) and

(L̂⊗ẐpOClog⊗OXprokét
Ωlog,•
X (−•), θ) (where the two • in the latter complex are equal

to each other) by DRlog(L̂⊗ẐpOBdR,log) and Higgs log(L̂⊗ẐpOClog), respectively. By

Corollary 2.4.2, we have quasi-isomorphisms L̂⊗Ẑp BdR
∼→ DRlog(L̂⊗Ẑp OBdR,log)

and (by taking the 0-th graded pieces) L̂ ⊗Ẑp OXK,prokét

∼→ Higgs log(L̂ ⊗Ẑp OClog)

over XK,prokét. By Theorem 3.2.3(1) and Proposition 3.3.3, and by the projec-

tion formula (cf. (3.3.1)), Rµ′∗
(
DRlog(L̂ ⊗Ẑp OBdR,log)

) ∼= DRlog(RHlog(L)) and

Rµ′∗
(
Higgs log(L̂⊗Ẑp OClog)

) ∼= Higgs log(Hlog(L)), and the lemma follows. �

Thus, Theorems 3.2.3(3) and 3.2.4(2) follow from Lemmas 3.6.1 and 3.6.2.
It remains to complete the proof of Theorem 3.2.7(3). In the remainder of this

subsection, we shall assume in addition that L|Uét
is a de Rham local system.

Firstly, the isomorphism (3.2.8) is given by Theorem 3.2.3(3) and the following:

Lemma 3.6.3. With assumptions as above, there is a canonical isomorphism

Hi
log dR

(
X ,RHlog(L)

) ∼= Hi
log dR

(
Xan, DdR,log(L)

)
⊗k BdR.

Proof. Combine Corollary 3.4.21 (with L|Uét
de Rham) and Lemma 3.5.9. �

Secondly, grDdR,log(L) is a vector bundle of rank rkZp(L) by Corollary 3.4.22,
and the isomorphism (3.2.9) is given by Theorem 3.2.4(2) and the following:

Lemma 3.6.4. With assumptions as above, there is a canonical isomorphism

Hi
log Higgs

(
XK,an,Hlog(L)

) ∼= ⊕a+b=i

(
Ha,b

log Hodge

(
Xan, DdR,log(L)

)
⊗k K(−a)

)
.

Proof. Since L|Uét
is de Rham, by Corollary 3.4.21 and Lemma 3.5.9, we have

Hi
log Higgs

(
XK,an,Hlog(L)

)
= Hi

(
XK,an,Higgs log(Hlog(L))

)
∼= Hi

(
XK,an, gr0

(
DRlog(DdR,log(L))⊗̂kBdR

))
∼= ⊕a

(
Hi
(
Xan, gra DRlog(DdR,log(L))

)
⊗k K(−a)

)
∼= ⊕a+b=i

(
Ha,b

log Hodge

(
Xan, DdR,log(L)

)
⊗k K(−a)

)
. �

Finally, the (log) Hodge–de Rham spectral sequence for DdR,log(L) degenerates
on the E1 page because, by (3.2.8) and (3.2.9), we have

dimkH
i
log dR

(
Xan, DdR,log(L)

)
=
∑
a+b=i

dimkH
a,b
log Hodge

(
Xan, DdR,log(L)

)
.

The proof of Theorem 3.2.7(3) is now complete.
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3.7. Compatibility with nearby cycles. Let f : X → D = Spa(k〈T 〉, k+〈T 〉) be
a morphism of smooth rigid analytic varieties such that D := f−1(0) is a normal
crossings divisor. We endow X with the log structure defined by ı : Dred ↪→ X as
in Example 2.1.2. Let U := X −D. Recall that we have introduced in [DLLZ, Def.
6.4.1] the functors of unipotent and quasi-unipotent nearby cycles RΨu

f (L|U ) and

RΨqu
f (L|U ), respectively, for Qp-local systems L on Xkét. In this subsection, we

show that their formation is compatible with the log Riemann–Hilbert functors, in
the simplest situation to which the methods of this paper are directly applicable.

As usual, for any OY -module F on a locally ringed space Y and any closed
immersion ı : Z ↪→ Y such that IZ := ker

(
OY → ı∗(OZ)

)
is an invertible OY -ideal,

let F (nZ) := F ⊗OY I
⊗(−n)
Z , for each n ∈ Z. Also, if we have compatible inclusions

F (nZ) ↪→ F (mZ) extending the identity morphism on F |U , for all m ≥ n, then we
let F (∗Z) := lim−→n∈Z F (nZ) = ∪n∈Z F (nZ). The following lemma is elementary:

Lemma 3.7.1. Let (F,∇) be any vector bundle with an integrable log connection on
Xan. Let Z ⊂ Dred be an irreducible component, and suppose that all the eigenvalues
of the residue (3.4.1) belong to Q ∩ [0, 1). Then F (∗Z) is defined, and there is a
unique decreasing Q-filtration V • on F (∗Z) by locally free OX-submodules equipped
with compatible integrable log connections, characterized by the following properties:

(1) We have V 0F (∗Z) = F and V α+1F (∗Z) =
(
V αF (∗Z)

)
(−Z), for all α ∈ Q.

(2) The isomorphism
(
V 0F (∗Z)

)/(
V 1F (∗Z)

) ∼= F |Z canonically induces, for
each α ∈ Q ∩ [0, 1), an isomorphism

(3.7.2) grαV F (∗Z) :=
(
V αF (∗Z)

)
/
(
V >αF (∗Z)

) ∼= F |αZ ,

where V >αF (∗Z) := ∪β>α V βF (∗Z) and where F |αZ is as in (3.4.2).

By using Lemma 3.1.4, when Zk is also irreducible, we have analogues of the above
for any vector bundle with an integrable log connection (F ,∇) on X such that all
the eigenvalues of ResZ(∇) belong to Q ∩ [0, 1). When F ⊗̂kBdR

∼= F , for each α,
we have

(
V αF (∗Z)

)
⊗̂kBdR

∼= V αF(∗Z) and
(
grαV F (∗Z)

)
⊗̂kBdR

∼= grαV F(∗Z).

Remark 3.7.3. Since ∇ : F → F ⊗OX Ωlog
X induces a connection ∇ : F (∗Z) →

F (∗Z)⊗OX ΩX satisfying ∇2 = 0, we can view F (∗Z) as a D-module, and view the
filtration in Lemma 3.7.1 as a special case of the Kashiwara–Malgrange V -filtrations
(cf. [Sai88, Sec. 3.1], with V • here corresponding to V−1−• there). (Note that there
are different conventions of indices in the literature.)

By Theorem 3.2.3(2), when Zk is irreducible, the above construction applies to
RHlog(L). Recall that there is a decreasing filtration Fil•RHlog(L) on RHlog(L)

by locally free OX⊗̂kB+
dR-submodules. This induces, for each α > −1, the filtration

FiliV αRHlog(L)(∗Z) :=
(
FiliRHlog(L)

)
(Z) ∩

(
V αRHlog(L)(∗Z)

)
on V αRHlog(L)(∗Z) by OX⊗̂kB+

dR-submodules. By construction, for α ≥ β > −1,

the inclusion V αRHlog(L)(∗Z) ↪→ V βRHlog(L)(∗Z) is strictly compatible with the
filtrations. For each α ≥ −1, we similarly define the filtration on V >αRHlog(L)(∗Z).
Then we have an induced quotient filtration on grαV RHlog(L)(∗Z), for each α > −1.

Remark 3.7.4. For each α ∈ Q ∩ [0, 1), in general, the isomorphism (3.7.2) is com-
patible with filtrations only if we view RHlog(L)|αZ as a quotient (rather than a
subsheaf) of RHlog(L)|Z with its induced filtration. We emphasize that it is the
quotient filtration on grαV RHlog(L)(∗Z) that will be important in the following.
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Theorem 3.7.5. Assume that D is smooth and Dk is irreducible. Then, for each
Qp-local system L on Xkét, there is a canonical Gal(K/k)-equivariant isomorphism

of OD⊗̂kBdR-modules

(3.7.6) RH
(
RΨqu

f (L|U )
) ∼= ⊕α∈(−1,0]

(
grαV RHlog(L)(∗)

)
,

which restricts to an isomorphism

(3.7.7) RH
(
RΨu

f (L|U )
) ∼= gr0

V RHlog(L)(∗),
compatible with filtrations and integrable connections. Here RH is the functor de-
fined in [LZ17, Thm. 3.8] (see Remark 3.5.1), and we write RHlog(L)(∗) instead of
RHlog(L)(∗D) for simplicity.

Proof. Let us first prove (3.7.7). Besides the trivial log structure, there is another
natural log structure on D given by the pullback of the log structure on X. Let D∂

denote the corresponding log adic space. Then we have a correspondence of log adic

spaces D
ε∂←− D∂ ı−→ X. Let L̂∂ := ı−1

prokét(L̂), which is associated with L∂ := ı−1
két(L)

by [DLLZ, Lem. 6.3.3]. Let J∂r denote the pullback to D∂ of the Zp-local system
denoted by the same symbols J∂r in [DLLZ, second last paragraph preceding Lem.

6.4.2], and let Ĵ∂r denote the associated Ẑp-local system.
By Corollary 2.3.20 and Lemma 3.3.5, we have canonical morphisms of sheaves

L̂⊗Q̂pOBdR,log,X → ıprokét,∗
(
L̂∂⊗Q̂pOBdR,log,D∂

) ∼= Rıprokét,∗
(
L̂∂⊗Q̂pOBdR,log,D∂

)
on Xprokét. By applying Rµ′X,∗, we obtain a morphism of OX⊗̂kBdR-modules

(3.7.8) RHlog(L)→ ı∗Rµ
′
D∂ ,∗(L̂

∂ ⊗Q̂p OBdR,log,D∂ ).

By Corollaries 2.3.17 and 2.3.20, and by matching a basis of Jr with binomial
monomials up to degree r − 1 in W as in the proof of [DLLZ, Lem. 6.4.2], for any
−∞ < a ≤ b <∞, there is a natural isomorphism

ε∂,−1
prokét(OB

[a,b]
dR,log,D)⊗Ẑp lim−→

r

(Ĵ∂r ) ∼= OB[a,b]

dR,log,D∂
.

By [DLLZ, Def. 6.4.1 and Prop. 5.1.7], we obtain canonical morphisms

RΨu
f (L|U )⊗Ẑp OB

[a,b]
dR,log,D → Rε∂prokét,∗

(
L̂∂ ⊗Ẑp lim−→

r

(Ĵ∂r )⊗Ẑp ε
∂,−1
prokét(OB

[a,b]
dR,log,D)

)
∼= Rε∂prokét,∗

(
L̂∂ ⊗Ẑp OB

[a,b]

dR,log,D∂

)
.

Since Rµ′D∂ ,∗
∼= Rµ′D,∗ ◦ Rε∂prokét,∗ (as D∂

an
∼= Dan), by applying Rµ′D∂ ,∗ to the

above, and by taking colimit and limit, we obtain a canonical morphism of sheaves

RH
(
RΨu

f (L|U )
)
→ Rµ′D∂ ,∗(L̂

∂ ⊗Q̂p OBdR,log,D∂ ).(3.7.9)

We claim that (3.7.9) is an isomorphism, and that the combination of (3.7.8) and
(3.7.9) induces a canonical isomorphism gr0

V RHlog(L)(∗) ∼= RH
(
RΨu

f (L|U )
)
.

Since the question is local, we may assume that X is affinoid, and that f factors
as X → Dn ∼= D×Dn−1 → D, where the first map is a smooth toric chart, and where

the last map is the first projection. Accordingly, we have Γgeom
∼= (Ẑγ1)× Ẑ(1)n−1.

By Lemma 3.4.3, Corollary 2.3.20 and (3.4.10), in the notation there, the evaluation
of (3.7.8) at X can be identified with the natural map

(3.7.10) N ∼=
(

lim←−
r

(
(N∞/ξ

r)unip
))

[ 1
t ]→

(
lim←−
r

((
(N∞/ξ

r)
/

([T s[1 ])∧s∈Q>0

)unip
))

[ 1
t ],
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where ( · )unip denotes the maximal quotient spaces on which Γgeom acts unipotently.
By the arguments in the proof of Lemma 3.4.13, the right-hand side of (3.7.10) can
be identified with the quotient of N/T1 on which t−1 log(γ1) acts nilpotently, which
is ı∗

(
gr0
V RHlog(L)(∗)

)
(X) by Lemma 3.4.7 and (3.7.2). This also gives the left-

hand side of the evaluation of (3.7.9) at D, by [DLLZ, Prop. 6.4.4], Lemma 3.3.15,

and Remark 3.4.14. Since (N∞/ξ)
unip →

(
(N∞/ξ)

/
([T s[1 ])∧s∈Q>0

)unip
is surjective

by Lemma 3.3.15 again, so is (3.7.10). Thus, the claim and (3.7.7) follow.
Next, we reduce (3.7.6) to (3.7.7). Since γ1 acts quasi-unipotently on L|D∂ (as

in the proof of Lemma 3.4.11), there is some degree m standard Kummer étale
cover of D → D (inducing an isomorphism between the origins of D), with base
change g : Xm → X, such that g−1(L|U ) has purely unipotent geometric mon-
odromy along D (which we also identify as a subspace of Xm). By [DLLZ, Lem.
6.4.3], RΨqu

f (L|U ) ∼= RΨu
g◦f
(
g−1(L|U )

)
. By Lemma 3.5.3, we have a canonical

morphism g∗
(
RHlog(L)

)
→ RHlog

(
g−1(L)

)
, strictly compatible with filtrations,

which restricts to an isomorphism over Um := Xm − D (and can be viewed as a
“meromorphic isomorphism”). Hence, we obtain an induced canonical isomorphism(
g∗
(
RHlog(L)

))
(∗) ∼→

(
RHlog

(
g−1(L)

))
(∗). By Theorem 3.2.12, the residue of

RHlog

(
g−1(L)

)
along D is nilpotent. Since the eigenvalues of the residues of

RHlog(L) belong to Q ∩ [0, 1), those of RHlog(L)(D) belong to Q ∩ [−1, 0). Since
pulling back by g multiplies the eigenvalues of residues by m (as explained in the
proof of Corollary 3.5.7), those of g∗

(
RHlog(L)

)
and g∗

(
RHlog(L)(D)

)
belong to

Q ∩ [0,m) and Q ∩ [−m, 0), respectively. Hence, by applying Lemma 3.7.1 to
F = RHlog

(
g−1(L)

)
, we obtain inclusions of sheaves

g∗
(
RHlog(L)

)
↪→ RHlog

(
g−1(L)

)
↪→ g∗

(
RHlog(L)(D)

)
.

which are strictly compatible with the filtrations (see the paragraph preceding Re-
mark 3.7.4). By pushing forward to X, we obtain the following inclusions of sheaves

RHlog(L)⊗OX g∗(OXm) ↪→ g∗RHlog

(
g−1(L)

)
↪→ RHlog(L)(D)⊗OX g∗(OXm),

which are strictly compatible with the filtrations. We can identify the above with

⊕m−1
i=0 T

i
m

1 RHlog(L) ↪→ ⊕m−1
i=0

(
T

i
m

1 V −
i
mRHlog(L)(∗)

)
↪→ ⊕m−1

i=0

(
T

i
m

1 V −1RHlog(L)(∗)
)
,

because g∗(OXm) ∼= ⊕m−1
i=0 T

i
m

1 OX (which explains the first and third terms), and
because the second term is exactly the submodule of the third term whose eigen-
values of residues are zero. Thus, we obtain the desired isomorphisms

⊕m−1
i=0

(
gr
− i
m

V RHlog(L)(∗)
) ∼= gr0

V

(
g∗RHlog

(
g−1(L)

))
(∗)

∼= gr0
V RHlog

(
g−1(L)

)
(∗),

which are compatible with filtrations. �

Now suppose moreover that L|Uét
is de Rham. By Theorem 3.2.7(2) and Lemma

3.7.1, we also have the V -filtration V •DdR,log(L)(∗) on DdR,log(L)(∗), and the fil-
tration Fil•DdR,log(L) on DdR,log(L) induces, for each α > −1, the filtration

FiliV αDdR,log(L)(∗) :=
(
FiliDdR,log(L)

)
(D) ∩

(
V αDdR,log(L)(∗)

)
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on V αDdR,log(L)(∗) byOX -submodules, and similar filtrations on V >αDdR,log(L)(∗)
and grαV DdR,log(L)(∗).

Theorem 3.7.11. In Theorem 3.7.5, suppose moreover that L|Uét
is de Rham.

Then there is a canonical isomorphism

(3.7.12) DdR

(
RΨqu

f (L|U )
) ∼= ⊕α∈(−1,0]

(
grαV DdR,log(L)(∗)

)
,

which restricts to an isomorphism

(3.7.13) DdR

(
RΨu

f (L|U )
) ∼= gr0

V DdR,log(L)(∗),

compatible with filtrations and integrable connections. Here DdR is the functor
defined in [LZ17, Thm. 3.9] (see Remark 3.5.1). Moreover, RΨqu

f (L|U ) and its

direct summand RΨu
f (L|U ) are both de Rham Qp-local systems on Dét.

Proof. By taking Gal(K/k)-invariants, we obtain (3.7.12) and (3.7.13) from (3.7.6)
and (3.7.7), respectively. Since L|Uét

is de Rham, by Corollary 3.4.21 and Lemma
3.7.1, the canonical morphism

(
grαV DdR,log(L)(∗)

)
⊗̂kBdR → grαV DdR,log(L)(∗) is

an isomorphism, for each α. Hence, by (3.7.6) and (3.7.12), the canonical morphism
DdR

(
RΨqu

f (L|U )
)
⊗̂kBdR → RH

(
RΨqu

f (L|U )
)

is also an isomorphism. It follows

that RΨqu
f (L|U ) and therefore its summand RΨu

f (L|U ) are de Rham, as desired. �

4. Riemann–Hilbert functor for p-adic algebraic varieties

4.1. The functor Dalg
dR. In this subsection, we shall prove Theorem 1.1 and record

some byproducts. Let X be a smooth algebraic variety over a p-adic field k. By
[Nag62, Hir64a, Hir64b], there is a smooth compactification  : X ↪→ X such that
the boundary D = X − X (with its reduced subscheme structure) is a normal

crossings divisor. Let Xan, X
an

, an, and Dan denote the analytifications (realized
in the category of adic spaces over Spa(k, k+), where k+ = Ok). We shall equip

X
an

with the log structure defined by Dan, as in Example 2.1.2.
In order to simplify the language, we shall use the term filtered connection (resp.

filtered regular connection) to mean a filtered vector bundle on X equipped with
an integrable connection (resp. an integrable connection with regular singularities)
satisfying the Griffiths transversality. Likewise, we shall use the term filtered log
connection to mean a filtered vector bundle on X (resp. X

an
) equipped with an

integrable connection satisfying the Griffiths transversality. In addition, by abuse of
language, we shall say that a Zp-local system on Xét is de Rham if its analytification

is, and that a Zp-local system on X
an

két is de Rham if its restriction to Xan is.

Let L be a Zp-local system on Xét, with analytification Lan. Let Lan
:=

an
két,∗(Lan) be its extension to a Zp-local system on X

an

két (by [DLLZ, Cor. 6.3.4]).

By Theorem 3.2.7, we obtain a filtered log connection DdR,log(Lan
) on X

an
, which is

the analytification of an algebraic one, by GAGA (see [Köp74]), which we abusively

denote by Dalg
dR,log(L). Then its restriction to X is a filtered regular connection

(4.1.1) Dalg
dR(L) :=

(
Dalg

dR,log(L)
)∣∣
X
.
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Let us summarize the constructions in the following commutative diagram:{
de Rham Zp-local systems on Xét

} Dalg
dR //

( · )an

��

{
filtered regular connections on X

}
{

de Rham Zp-local systems on Xan
ét

}
an
két,∗

��

{
filtered log connections on X

}∗

OO

( · )an ∼= by GAGA

��{
de Rham Zp-local systems on X

an

két

} DdR,log
//
{

filtered log connections on X
an}

Note that the de Rham assumptions on the local systems ensure that the associ-
ated regular connections or log connections are of the right ranks, and are filtered
by vector subbundles (rather than more general coherent subsheaves) with vector
bundles as associated graded pieces.

Lemma 4.1.2. The functor Dalg
dR is a tensor functor, and is independent of the

choice of the compactification X.

Proof. By Proposition 3.4.15, and by [AB01, Ch. 1, Prop. 6.2.2] or [ABC20, Sec.

11.1.3], for all L, the exponents of the integrable connection Dalg
dR(L) consist of only

rational numbers, which are not Liouville numbers. (See, for example, [ABC20,
Sec. 32.1] for a review.) Then the lemma follows from the following two facts:

(1) By [Bal88], [AB01, Ch. 4, Thm. 4.1], or [ABC20, Thm. 32.2.1]; and by the
same argument as in the proof of [AB01, Ch. 4, Cor. 3.6] or [ABC20, Cor.
31.4.6], the analytification functor from the category of algebraic regular
connections on X whose exponents contain no Liouville numbers to the
category of analytic ones on Xan is fully faithful.

(2) The composition of Dalg
dR with the analytification functor is the functor DdR

in [LZ17, Thm. 3.9(v)], a tensor functor independent of the choice of X. �

It remains to establish the comparison isomorphism in Theorem 1.1. As in

Section 3.6, let K = k̂, so that the rings B+
dR and BdR in Definition 3.1.1(1) have

their usual meaning as Fontaine’s rings. By [Hub96, Prop. 2.1.4 and Thm. 3.8.1],
if L is an étale Zp-local system on X, and if Lan is its analytification on Xan, then

we have a canonical Gal(k/k)-equivariant isomorphism

(4.1.3) Hi
ét

(
Xk,L

) ∼= Hi
ét

(
Xan
k
,Lan

)
.

By [DLLZ, Cor. 6.3.4] and Theorem 3.2.7(3), we have a canonical isomorphism

Hi
ét

(
Xan
k
,Lan

)
⊗Zp BdR

∼= Hi
log dR

(
X

an
, DdR,log(Lan

)
)
⊗k BdR, compatible with

the filtrations and Gal(k/k)-actions on both sides. Finally, by GAGA again (see
[Köp74]) and by Deligne’s comparison result in [Del70, II, 6], we have

Hi
log dR

(
X

an
, DdR,log(Lan

)
) ∼= Hi

log dR

(
X,Dalg

dR,log(L)
) ∼= Hi

dR

(
X,Dalg

dR(L)
)
.

This completes the proof of Theorem 1.1.
By combining (4.1.3), [DLLZ, Cor. 6.3.4], and GAGA (see [Köp74]) with the

other assertions in Theorem 3.2.7(3), we also obtain the following:

Theorem 4.1.4. In the above setting, the (log) Hodge–de Rham spectral sequence

Ea,b1 = Ha,b
log Hodge

(
X,Dalg

dR,log(L)
)
⇒ Ha+b

log dR

(
X,Dalg

dR,log(L)
)
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degenerates on the E1 page, and the 0-th graded piece of (1.2) can be identified with
a canonical Gal(k/k)-equivariant comparison isomorphism

Hi
ét

(
Xk,L

)
⊗Qp k̂

∼= ⊕a+b=i

(
Ha,b

log Hodge

(
X,Dalg

dR,log(L)
)
⊗k k̂(−a)

)
.

4.2. Generalizations of Kodaira–Akizuki–Nakano vanishing. This subsec-
tion will be devoted to the proof of the following theorem:

Theorem 4.2.1. Let X be a proper smooth algebraic variety of pure dimension d
over a p-adic field k, with a reduced normal crossings divisor D. Let U := X −D.

Let L be a de Rham Qp-local system on Uét. Let E = Dalg
dR,log(L) be as in Section

4.1 (with X and X there given by U and X here, respectively). Let DRlog(E) and

gr DRlog(E) be as in Definition 3.1.7. Let L be an invertible sheaf on X, with a
(possibly empty) effective divisor D′ supported on (a subdivisor of) D such that

(4.2.2) LN (−D′) is ample for all sufficiently large N .

Then we have

Hi
(
X,L−1 ⊗OX gr DRlog(E)

)
= 0, for all i < d;(4.2.3)

Hi
(
X,L(−D)⊗OX gr DRlog(E∨)

)
= 0, for all i > d.(4.2.4)

If L has unipotent geometric monodromy along D, then we also have

(4.2.5) Hi
(
X,L(−D)⊗OX gr DRlog(E)

)
= 0, for all i > d.

Remark 4.2.6. The condition (4.2.2) implies that L is nef and big—see [EV92, Rem.
11.6 a)]. In fact, it is equivalent to being nef and big up to applying embedded
resolution of singularities as in [Hir64a, Hir64b]—see [Suh18, footnote 1].

Remark 4.2.7. When L is trivial, in which case E = OX , our p-adic Hodge-theoretic
proof of Theorem 4.2.1 provides new proofs for the classical vanishing theorems (in
characteristic zero) due to Kodaira, Akizuki, and Nakano [Kod53, AN54] (when
D = ∅); Deligne, Illusie, and Raynaud [DI87] (when D′ = ∅); and Esnault and
Viehweg [EV92]. Also, when L is of the form Raf∗(Qp) for some a and some
proper smooth morphism f : V → U , Theorem 4.2.1 provides a p-adic Hodge-
theoretic generalization (as opposed to the complex analytic one in [Suh18]) of the
characteristic-zero consequences in [Ill90] and [LS13, Sec. 3], without having to
assume that f extends to a proper morphism Y → X with very good properties.

Proof of Theorem 4.2.1. It suffices to prove (4.2.3), since (4.2.4) follows by Serre

duality, and since (4.2.5) follows because E∨ ∼= Dalg
dR,log(L∨) under the unipotency

assumption, by Theorem 3.2.12 and GAGA [Köp74]. We will closely follow the first
strategy in [Suh18, Sec. 2], but with the input from Saito’s direct image theorem
(see [Sai90, Thm. 2.14]) replaced with our p-adic Hodge-theoretic results.

We claim that, up to replacing D′ with a positive multiple, we may assume that
there exists some N0 such that LN (−D′) is very ample for all N ≥ N0. When
D′ = ∅, the claim is clearly true, and the remainder of this proof establishes the
special case of this theorem when D′ = ∅. When D′ 6= ∅, the claim follows from the
same argument as in the proof of [EV92, (**) in the proof of Prop. 11.5], with the
input [EV92, Cor. 11.3] of [EV92, Cor. 11.4] there replaced with the special case of
this theorem when D′ = ∅, whose proof we have just explained.

We may enlarge N0 and assume that, along each irreducible component Z of D
which has multiplicity eZ in D′, the eigenvalues of the residue of E are contained
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in Q ∩ [0, 1− eZ
N0

). By the same Bertini-type argument as in [LS13, Sec. 2.1], there

exist N ≥ N0 and s ∈ H0
(
X,LN (−D′)

)
such that the corresponding hyperplane

section H ⊂ X is smooth and meets D transversally, so that D + H and D|H are
normal crossings divisors on X and H, respectively. Up to replacing k with a finite
extension, we may assume that k contains all the N -th roots of unity in k.

Let ı : H → X denote the canonical closed immersion. For the sake of clarity, we
shall denote by DRlogD( · ) the log de Rham complex associated with Ω•X(logD),
and similarly denote complexes associated with log structures defined by other
normal crossings divisors. In order to prove (4.2.3), by considering the long exact
sequence associated with the following twist of the adjunction exact sequence

0→ L−1 ⊗OX gr DRlogD(E)→ L−1 ⊗OX gr DRlog(D+H)(E)

→ ı∗
(
L|−1
H ⊗OH gr DRlog(D|H)(E|H)(−1)

)
[−1]→ 0

(in which the Tate twist (−1) is just a shift of grading by −1), and by induction on

the dimension of X (since E|H ∼= Dalg
dR,log(L|U∩H) by Theorem 3.2.7(4), and since

pulling back under the immersion ı preserves ampleness), it suffices to prove that

(4.2.8) Hi
(
X,L−1 ⊗OX gr DRlog(D+H)(E)

)
= 0, for all i < d.

As in [EV92, Sec. 3], consider L(a)−1

:= L−a(ba(D′+H)
N c), which is equipped with

an integrable log connection ∇(a) such that the eigenvalues of the residue of ∇(a)

along H (resp. each irreducible component Z of D) are a
N (resp. aeZN −b

aeZ
N c). Let Y

denote the relative spectrum of the OX -algebra ⊕N−1
a=0 L(a)−1

, whose multiplicative

structure is induced by the dual of OX
s→ L⊗N (−D′) ⊂ L⊗N . Then the cyclic

cover π : Y → X is finite flat, and the pullback of π to W := X − (D + H) is a
finite étale Galois cover πW : V →W with Galois group Hom

(
Z/NZ, k×

)
.

By construction, L(a)−1 |W ∼= πW,∗(OV )[χa], where [χa] denotes the isotypical
component for the character χa : Hom

(
Z/NZ, k×

)
→ k× defined by evaluation at

the image of a, which is compatible with the connections (and trivial filtrations)
on both sides. Consider Ma := πW,ét,∗(k)[χa], where k denotes the constant k-local
system on V of rank one; i.e., a constant Qp-local system of rank [k : Qp] equipped
with the canonical action of k. Then Ma is a k-local system on W of rank one.
Let τ : k ⊗Qp k → k be the multiplication map, and let τM denote the pushout

via τ of any k⊗Qp k-module M . Since πW,∗(OV ) ∼= τDalg
dR

(
πW,ét,∗(k)

)
, by Theorem

3.2.7(5), L(a)−1 |W ∼= τDalg
dR(Ma), which uniquely extends to L(a)−1 ∼= τDalg

dR,log(Ma)

by [AB01, Ch. 1, Prop. 4.7] or [ABC20, Thm. 11.2.2], because both sides have
eigenvalues of residues in Q ∩ [0, 1), by the above and Theorem 3.2.7(2).

Since eZ
N ≤

eZ
N0

< 1 for each irreducible component Z ofD, we have L(1)−1

= L−1.

Since E|U ∼= Dalg
dR(L), the residue of E along H is zero. By Lemma 4.1.2, we have

L−1|W ⊗OW E|W ∼= τDalg
dR(M1 ⊗Qp L|W ), which uniquely extends to L−1 ⊗OX E ∼=

τDalg
dR,log(M1 ⊗Qp L|W ), again because both sides have eigenvalues of residues in

Q ∩ [0, 1). Thus, the Hodge–de Rham spectral sequences for Dalg
dR,log(M1 ⊗Qp L|W )

and L−1 ⊗OX E degenerate by Theorem 4.1.4, and (4.2.8) is equivalent to

(4.2.9) Hi
(
X,L−1 ⊗OX DRlog(D+H)(E)

)
= 0, for all i < d.
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Since the eigenvalue of the residue of L−1 ⊗OX E along H is positive, by [EV92,
Lem. 2.10], for any b ≥ 0, the statement (4.2.9) is in turn equivalent to

(4.2.10) Hi
(
X,L−1(−bH)⊗OX DRlog(D+H)(E)

)
= 0, for all i < d.

Finally, by considering the filtration spectral sequence, it suffices to show that, for
some b ≥ 0, we have

(4.2.11) Hi
(
X,L−1(−bH)⊗OX gr DRlog(D+H)(E)

)
= 0, for all i < d.

Since the divisor H is ample, and since gr DRlog(D+H)(E) is a complex of finite
locally free OX -modules concentrated in degrees [0, d], by considering the spectral
sequence associated with the stupid (“bête”) filtration, the last statement (4.2.11)
holds for some b� 0, by Serre vanishing and Serre duality, as desired. �

4.3. De Rham local systems at the boundary. In this subsection, we apply
the results in Section 3.7 to study nearby cycles in some simple cases. We will leave
a more general treatment to a future work.

Let X be an algebraic variety with a divisor D over k. Suppose that there exist
an étale neighborhood D → W → X and a morphism f : W → A1 over k such
that f−1(0) = D. In this case, there is the notion of unipotent and quasi-unipotent
nearby cycles due to Beilinson (see [Bei87]; cf. [Rei10]). Let us briefly recall the
definition. Let Gm := A1−{0} be the multiplicative group scheme over k. We have a

canonical isomorphism π1(Gm, 1) ∼= π1(Gm,k, 1)oGal(k/k), and π1(Gm,k, 1) ∼= Ẑ(1)

as Gal(k/k)-modules. For each r ≥ 1, let Jr denote the rank r unipotent étale Qp-
local system on Gm defined by the representation of π1(Gm, 1) on Qrp such that a
topological generator γ ∈ π1(Gm,k, 1) acts as a principal unipotent matrix Jr and

such that Gal(k/k) acts diagonally on Qrp and trivially on ker(Jr − 1). There is
an obvious inclusion Jr ↪→ Jr+1, and a projection Jr+1 → Jr(−1) such that the
composition Jr → Jr(−1) is given by the monodromy action. For each m ≥ 1,
let [m] denote the m-th power homomorphism of Gm, and let Km := [m]∗(Qp).
If m | m′, there is a natural inclusion Km ↪→ Km′ (defined by adjunction). Let
U := W −D, and let ı : D → W and  : U → W denote the canonical morphisms.
We shall also denote by Jr and Km their pullbacks to U . Then for each Qp-perverse
sheaf F on Uét, its unipotent and quasi-unipotent nearby cycles are

RΨu
f (F) := lim−→

r

ı−1R∗(F ⊗Qp Jr) and RΨqu
f (F) := lim−→

m

RΨu
f (F ⊗Qp Km),

respectively, where the limits are taken in the category of perverse sheaves on Dét.
Let L be a Qp-local system on Uét. Let fan : W an → A1,an denote the analyti-

fication of f , whose pullback under D ↪→ A1,an we denote by fan
D . If the reduced

subspace of Dan is a normal crossings divisor in Xan, the quasi-unipotent nearby
cycles RΨqu

fan
D

(Lan) has been introduced in [DLLZ, Def. 6.4.1].

Lemma 4.3.1. In the above setting, we have
(
RΨqu

f (L)
)an ∼= RΨqu

fan
D

(Lan).

Proof. This follows from [Hub96, Prop. 2.1.4 and Thm. 3.8.1] and [DLLZ, Lem.
4.5.4 and Thm. 4.6.1]. �

Suppose moreover that f is smooth, and that (F,∇) is a vector bundle with
an integrable connection on U = W − D that (necessarily uniquely) extends to
a vector bundle F on W with a log connection ∇ whose eigenvalues of residues
along D belong to Q ∩ [0, 1). Then we can define the Q-filtration V • on F (∗D) :=
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∪n F (nD), as in Lemma 3.7.1; and RΨu
f (F,∇) and RΨqu

f (F,∇) (which are de-

fined much more generally using the theory of holonomic algebraic D-modules) are
canonically isomorphic to gr0

V F (∗D) (resp. ⊕α∈(−1,0]

(
grαV F (∗D)

)
), with canon-

ically induced integrable connections and filtrations (cf. [Sai88, (5.1.3.3)]). By
[Nag62, Hir64a, Hir64b] again, we can compactify (W,D) to some (W,D), where W
is proper, and whereD is a simple normal crossings divisor such thatD = W∩D and
the closure of D in D is a union of smooth irreducible components of D. Since we

have a log connectionDalg
dR,log(L) onW as in Section 4.1, its restriction toW gives an

extension of Dalg
dR(L) as in the last paragraph, and hence we have RΨu

f

(
Dalg

dR(L)
) ∼=

gr0
V D

alg
dR(L)(∗D) and RΨqu

f

(
Dalg

dR(L)
) ∼= ⊕α∈(−1,0]

(
grαV D

alg
dR(L)(∗D)

)
.

Theorem 4.3.2. Assume that f is smooth. Let L be a de Rham Qp-local system on
Uét. Then RΨqu

f (L) is a de Rham Qp-local system on Dét, and there is a canonical

isomorphism Dalg
dR

(
RΨqu

f (L)
) ∼= RΨqu

f

(
Dalg

dR(L)
)

which restricts to an isomorphism

Dalg
dR

(
RΨu

f (L)
) ∼= RΨu

f

(
Dalg

dR(L)
)
, as filtered (integrable) connections.

Proof. As explained in Lemma 4.1.2, all the exponents of Dalg
dR

(
RΨqu

f (L)
)

are non-
Liouville numbers. Moreover, since the eigenvalues of the residues of the log con-

nection Dalg
dR,log(L) on W along the irreducible divisors of D are all in Q∩ [0, 1), the

exponents of the connection Dalg
dR,log(L)|0D are also non-Liouville numbers. Thus, the

theorem follows from the algebraization of the canonical isomorphisms in Theorem
3.7.11, by using Lemma 4.3.1 and the fact (1) in the proof of Lemma 4.1.2. �

Remark 4.3.3. As the geometric monodromy of L along D is quasi-unipotent (see
[DLLZ, Def. 6.3.7 and Rem. 6.3.13] and the proof of Lemma 3.4.11), and as the

eigenvalues of the residue of Dalg
dR,log(L) along D are in Q∩[0, 1), the quasi-unipotent

nearby cycles of L and Dalg
dR(L) coincide with their respective full nearby cycles.

When X is a smooth curve over k, Theorem 4.3.2 has the following concrete
interpretation. In this case, D = x is a k-point, and f = z is an étale local
coordinate of X at x. We can identify RΨz(L) with the finite-dimensional Qp-
representation Lηx of Gal(Kx/Kx), where Kx is the local field around x, and ηx
is a geometric point above ηx = Spec(Kx), which specializes to a geometric point
x = Spec(k) above x. The coordinate z splits the natural projection Gal(Kx/Kx)→
Gal(k/k), and so we may regard RΨz(L) as a representation of Gal(k/k).

Corollary 4.3.4. If L is a de Rham Qp-local system on (X − x)ét, then RΨz(L)

is a de Rham representation of Gal(k/k) (with the choice of coordinate z).

5. Application to Shimura Varieties

In this section, we shall prove Theorem 1.5, which serves as an evidence of
Conjecture 1.4, and also Corollary 1.6. In order to avoid confusion, the symbol K
will be reserved for levels (rather than fields). For simplicity, we shall continue to
use the term filtered log connection to mean a filtered vector bundle equipped with
an integrable connection satisfying the Griffiths transversality, as in Section 4.1.
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5.1. The setup. Let (G,X) be any Shimura datum. That is, G is a connected
reductive Q-group, and X is a hermitian symmetric domain parameterizing a con-
jugacy class of homomorphisms

(5.1.1) h : S := ResC/R Gm,C → GR,

satisfying a list of axioms (see [Del79, 2.1.1] and [Mil05, Def. 5.5]). For each
neat (see [Pin89, 0.6]) open compact subgroup K of G(Af ), we denote by ShK =
ShK(G,X) the canonical model of the associated Shimura variety at level K, which
is a smooth quasi-projective algebraic variety over a number field E ⊂ C, called the
reflex field E of (G,X). Recall that, essentially by definition, the analytification of
its base change ShK,C from E to C is the complex manifold

(5.1.2) Shan
K,C
∼= G(Q)\

(
X×G(Af )

)
/K,

where G(Q) acts diagonally on X×G(Af ) from the left, and where K acts trivially
on X and canonically on G(Af ) from the right. Note that right multiplication by

g ∈ G(Af ) induces an isomorphism [g] : Shan
gKg−1,C

∼→ Shan
K,C, which algebraizes and

descends to an isomorphism ShgKg−1
∼→ ShK , still denoted by [g]. (See [Mil05,

Lan17] and the references there for basic facts concerning Shimura varieties.)
Given neat open compact subgroups K1 and K2 such that K1 is a normal sub-

group of K2, we obtain a finite étale cover ShK1 → ShK2 with a canonical K2/K1-
action. It will be convenient to consider the projective system {ShK}K , which can
be viewed as the scheme Sh := lim←−K ShK over E, which admits the canonical right

action of G(Af ) described above. We call these actions (and their various extensions
to other objects) Hecke actions of G(Af ) (sometimes with G(Af ) omitted).

Let Gc be the quotient of G by the minimal subtorus Zs(G) of the center Z(G)
of G such that the torus Z(G)◦/Zs(G) has the same split ranks over Q and R.
(This is equivalent to the definition in [Mil90, Ch. III] when (G,X) satisfies [Mil90,
(II.2.1.4)].) Let Gder denote the derived group of G, and let Gder,c denote the image
of Gder in Gc. Let Gad denote the adjoint quotient of G. We have the canonical
central isogenies Gder → Gder,c → Gad of connected semisimple Q-algebraic groups.

For each field F , let RepF (Gc) denote the category of finite-dimensional algebraic
representations of Gc over F , which we also view as an algebraic representation of
G by pullback. Let Q denote the algebraic closure of Q in C, and let Qp be an

algebraic closure of Qp, together with a fixed isomorphism ι : Qp
∼→ C, which

induces an injective field homomorphism ι−1|Q : Q ↪→ Qp.

5.2. Local systems on Shimura varieties. Let us begin with the complex ana-
lytic constructions. For any V ∈ RepQ(Gc), we define the (Betti) Q-local system

BV := G(Q)\
(
(X× V )×G(Af )

)
/K

on Shan
K,C. (See Proposition 5.2.10 below for some formal properties.)

Let us also explain the construction of BV more concretely via the representation
of the fundamental groups of (connected components) of Shan

K,C, under the classical
correspondence between local systems and fundamental group representations.

Suppose that we have a connected component of Shan
K,C (see (5.1.2)) given by

(5.2.1) Γ+
K,g0
\X+ ∼= G(Q)+\

(
X+ × (G(Q)+g0K)

)
/K
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(cf. [Del79, 2.1.2] or [Mil05, Lem. 5.13]), where X+ is a fixed connected component
of X and g0 ∈ G(Af ), and where G(Q)+ is the stabilizer of X+ in G(Q) and

Γ+
K,g0

:= G(Q)+ ∩ (g0Kg
−1
0 )

is a neat (see [Bor69, 17.1]) arithmetic subgroup of G(Q). It follows from the

definitions that Γ+
K,g0

is neat when K is. Let Γ+,c
K,g0

and Γ+,ad
K,g0

denote the images of

Γ+
K,g0

in Gc(Q) and Gad(Q), respectively, so that we have surjective homomorphisms

(5.2.2) Γ+
K,g0

� Γ+,c
K,g0

� Γ+,ad
K,g0

.

Lemma 5.2.3. The subgroup Γ+,c
K,g0

of Gc(Q) is contained in Gder,c(Q), and the

second homomorphism in (5.2.2) is an isomorphism Γ+,c
K,g0

∼→ Γ+,ad
K,g0

.

Proof. Since ker(G → Gc) is the maximal Q-anisotropic R-split subtorus of the
center of G, the quotient Gc/Gder,c is a torus isogenous to a product of a split torus
and a torus of compact type (i.e., R-anisotropic) over Q. Since all neat arithmetic

subgroups of such a torus are trivial, the neat image Γ+,c
K,g0

of Γ+
K,g0

in Gc(Q) is

contained in Gder,c(Q). Consequently, the second homomorphism in (5.2.2) is an
isomorphism, because its kernel, being both neat and finite, is trivial. �

Corollary 5.2.4. The connected component Γ+
K,g0
\X+ is a smooth manifold whose

fundamental group (with any base point of X+) is canonically isomorphic to Γ+,c
K,g0

.

Proof. As Γ+
K,g0

acts on X+ via Γ+,ad
K,g0

⊂ Gad(Q), this follows from Lemma 5.2.3. �

Remark 5.2.5. We shall not write Γ+,ad
K,g0

again in what follows.

By taking X+ as a universal cover of Γ+
K,g0
\X+, and by fixing the choice of a

base point on X+, the pullback of BV to Γ+
K,g0
\X+ determines and is determined

by the fundamental group representation

(5.2.6) ρ+
K,g0

(V ) : Γ+,c
K,g0

→ GLQ(V ),

which coincides with the restriction of the representation of Gc on V . In particular,
it is compatible with the change of levels K ′ ⊂ K.

Moreover, given g ∈ g−1
0 G(Q)+g0, so that g0g = γg0 for some γ ∈ G(Q)+, we

have Γ+,c
gKg−1,g0

= γΓ+,c
K,g0

γ−1, and the Hecke action [g] induces a morphism

(5.2.7) Γ+
gKg−1,g0

\X+ ∼→ Γ+
K,g0
\X+,

which is nothing but the isomorphism defined by left multiplication by γ−1. It fol-
lows that the canonical isomorphism [g]−1(BV )

∼→ BV of local systems corresponds
to the following equality of fundamental group representations

(5.2.8) ρ+
gKg−1,g0

(V ) = γ
(
ρ+
K,g0

(V )
)
,

where γ
(
ρ+
K,g0

(V )
)

means the representation of Γ+,c
gKg−1,g0

= γΓ+,c
K,g0

γ−1 defined by

conjugating the values of ρ+
K,g0

(V ) by γ in GL(V ).

Now, by base change along Q ⊂ C via the canonical homomorphism, we obtain
the object VC := V ⊗Q C in RepC(Gc), as well as the C-local system

BV C := BV ⊗Q C
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on ShK(C), which via the classical Riemann–Hilbert correspondence (as reviewed
in the introduction) corresponds to the (complex analytic) integrable connection

(dRV
an
C ,∇) := (BV C ⊗C OShan

K,C
, 1⊗ d).

Moreover, any h ∈ X (as in (5.1.1)) induces a homomorphism hC : Gm,C×Gm,C →
GC, whose restriction to the first factor defines the so-called Hodge cocharacter

(5.2.9) µh : Gm,C → GC,

inducing a (decreasing) filtration Fil• on dRV
an
C satisfying the Griffiths transversal-

ity condition. Then we obtain a filtered integrable connection (dRV
an
C ,∇,Fil•).

Let Shtor
K be a toroidal compactification of ShK (as in [Pin89]), which we assume

to be projective and smooth, with the boundary divisor D := Shtor
K −ShK (with its

reduced subscheme structure) a normal crossings divisor, whose base change from E

to C and whose further complex analytification are denoted by Shtor
K,C and Shtor,an

K,C ,

respectively. As explained in [LS13, Sec. 6.1], BV C has unipotent monodromy along
Dan

C . Therefore, by [Del70, II, 5] and [Kat71, Sec. VI and VII], (dRV
an
C ,∇) uniquely

extends to an integrable log connection (dRV
can,an
C ,∇), with nilpotent residues along

Dan
C . By [Del70, II, 5.2(d)], V 7→ (dRV

can,an
C ,∇) defines a tensor functor from

RepC(Gc) to the category of integrable log connections on Shtor,an
K,C . Moreover,

by [Sch73] (see also [CKS87]), the filtration Fil• on dRV
an
C uniquely extends to a

filtration on dRV
can,an
C (by subbundles), still denote by Fil•. The extended ∇ and

Fil• still satisfy the Griffiths transversality, and therefore (dRV
can,an
C ,∇,Fil•) is an

analytic filtered log connection. By GAGA (see the proof of [Del70, II, 5.9]), this
triple canonically algebraizes to an algebraic filtered log connection

(dRV
can
C ,∇,Fil•).

(These dRV
can,an
C and dRV

can
C agree with the canonical extensions defined differently

in [Har89, Sec. 4], and also [Har90] and [Mil90].) The restriction of (dRV
can
C ,∇,Fil•)

then defines an algebraic filtered regular connection

(dRV C,∇,Fil•)

on ShK,C, whose complex analytification is isomorphic to (dRV
an
C ,∇,Fil•). We call

(dRV C,∇) the automorphic vector bundle associated with VC. We summarize the
above discussions as the following:

Proposition 5.2.10. The assignment of BV (resp. (dRV C,∇,Fil•)) to V defines
a tensor functor from RepQ(Gc) to the category of G(Af )-equivariant Q-local sys-

tems (resp. filtered regular connections) on {Shan
K,C}K (resp. {ShK,C}K), which is

functorial with respect to pullbacks under morphisms between Shimura varieties in-
duced by morphisms between Shimura data. Hence, the assignment of (dRV C,∇)
(resp. (dRV C,∇,Fil•)) to V defines a G(Af )-equivariant Gc-bundle with an inte-
grable connection (EC,∇) (resp. a PcC-bundle EPcC) on {ShK,C}K , where PcC is the
parabolic subgroup of Gc

C defined by some µh as in (5.2.9) (cf. [LZ17, Rem. 4.1(i)]).
By forgetting filtrations, we obtain a G(Af )-equivariant morphism EPcC → EC.

Remark 5.2.11. As explained in [LZ17, Rem. 4.1(i)], the conjugacy class of µh as
in (5.2.9) defines a partial flag variety F`C ∼= Gc

C/P
c
C parameterizing the associated

conjugacy class of parabolic subgroups, which depends only on the Shimura datum
(G,X) and descends to a partial flag variety F` of Gc over the reflex field E. Let
EF`C := EC×GcC F`C. Then the filtrations on dRV C’s as in Proposition 5.2.10 define
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a section of EF`C over {ShK,C}K . For any particular choice of PcC in F`(C), this
section amounts to the reduction of EC to a PcC-bundle EPcC as in Proposition 5.2.10.
Moreover, if (E ,∇) is the canonical model of (EC,∇) as in [Mil90, Ch. III, Thm.
4.3], we also have the canonical model EF` := E ×Gc F` of EPcC ∼= EF`C , over ShK .

Next, let us turn to the p-adic analytic constructions. Given any V ∈ RepQ(Gc)

as above, by base change via ι−1|Q : Q ↪→ Qp, we obtain the object VQp := V ⊗QQp
in RepQp(Gc). As explained in [LS18b, Sec. 3] (see also [LZ17, Sec. 4.2]), given

such a finite-dimensional representation VQp of Gc over Qp, there is a canonical

automorphic Qp-étale local system (i.e., lisse Qp-étale sheaf) étV Qp on ShK (with

stalks isomorphic to VQp). In fact, by the very construction of étV Qp , for each finite

extension L of Qp in Qp such that VQp has a model VL over L, we have an L-étale

local system étV L on ShK (with stalks isomorphic to VL) such that

(5.2.12) étV L ⊗L Qp ∼= étV Qp .

In addition, by [AGV73, XI, 4.4] (or by using the canonical homomorphism from the
fundamental group to the étale fundamental group), its pullback to ShK,C induces

a Qp-local system BV Qp , together with a canonical isomorphism

(5.2.13) BV Qp ⊗Qp,ι C
∼= BV C.

Note that this implies that étV Qp has unipotent geometric monodromy along DQ.

Suppose that VQp has a model VL over a finite extension L of Qp in Qp. Let k

be a finite extension of the composite of L and the image of E
can.
↪→ Q ι−1

↪→ Qp in Qp.
Let us denote with an additional subscript “k” (resp. “Qp”) the base changes of

ShK etc from E to k (resp. Qp) via the above composition. We will adopt a similar
notation for sheaves. We can view the L-étale local system étV L as a Qp-étale local
system with compatible L-actions. By [LZ17, Thm. 1.2], the pullback of étV L to
ShK,k, which we still denote by the same symbols, is de Rham. By working as in
Section 4.1, and by pushing out via the multiplication homomorphism

(5.2.14) τ : L⊗Qp k → k : a⊗ b 7→ ab,

we obtain a filtered log connection (p-dRV
can
k := Dalg

dR,log(étV L)⊗(L⊗Qpk),τ k,∇,Fil•)

on Shtor
K,k, which has nilpotent residues along Dk by [DLLZ, Cor. 6.4.4], The-

orem 3.2.12, and GAGA (see [Köp74]); and also a filtered regular connection

(p-dRV k := Dalg
dR(étV L) ⊗(L⊗Qpk),τ k,∇,Fil•). These constructions are compatible

with replacements of L and k with extension fields satisfying the same conditions.
Thus, we can canonically assign to each étV Qp as above the filtered log connection

(5.2.15) (p-dRV
can
Qp
,∇,Fil•) := (p-dRV

can
k ,∇,Fil•)⊗k Qp

on Shtor
K,Qp

, whose restriction to ShK,Qp is the filtered regular connection

(5.2.16) (p-dRV Qp ,∇,Fil•) := (p-dRV k,∇,Fil•)⊗k Qp.

Both (5.2.15) and (5.2.16) are independent of the choices of L and k for a given V .

Since (p-dRV Qp ,∇,Fil•) is algebraic, its base change under ι : Qp
∼→ C is a

filtered regular connection (p-dRV C,∇,Fil•) on ShK,C, the horizontal sections of
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whose complex analytification defines a C-local system p-BV C on Shan
K,C. Since Dalg

dR

is a tensor functor uniquely determined by DdR via the analytification functor (see
Lemma 4.1.2 and its proof), by [LZ17, Thm. 3.9(ii)], we obtain the following:

Proposition 5.2.17. The analogue of Proposition 5.2.10 holds for the assignments
of p-BV C, (p-dRV Qp ,∇,Fil•), and (p-dRV C,∇,Fil•). In particular, they define a

G(Af )-equivariant Gc-bundle with an integrable connection (pEC, p∇) (resp. a PcC-
bundle pEPcC) on {ShK,C}K , with a G(Af )-equivariant morphism pEPcC → pEC.

Likewise, the base change of (p-dRV
can
Qp
,∇,Fil•) under ι is a filtered log connection

(p-dRV
can
C ,∇,Fil•) on Shtor

K,C, with nilpotent residues along Dan
C . The analogues of

Proposition 5.2.17 for (p-dRV
can
Qp
,∇,Fil•) and (p-dRV

can
C ,∇,Fil•) also hold.

Remark 5.2.18 (cf. Remark 5.2.11). By construction (based on (5.2.16)), (pEC, p∇)
(resp. pEPcC ∼= pEF`C) canonically admits a model (pEk, p∇) (resp. pEF`k) over ShK,k,
where k is the completion of E at the place determined by ι.

5.3. Statement of theorem. It is natural to ask whether the Betti local systems

p-BV C and BV C (resp. the filtered connections (p-dRV C,∇,Fil•) and (dRV C,∇,Fil•))
on Shan

K,C (resp. ShK,C) are canonically isomorphic to each other, as in the following
summarizing diagram:

BV C

?

V ∈ RepQ(Gc)�

coefficient
base change via

can. : Q ↪→ C
oo �

coefficient
base change via

ι−1|Q : Q ↪→ Qp
//
étV Qp_

p-adic (log) RH

��

(dRV C,∇,Fil•)
_

classical RH

OO

?

p-BV C (p-dRV Qp ,∇,Fil•)
9

base change

via ι : Qp
∼→ C

ss
(p-dRV C,∇,Fil•)

_
classical RH

OO

The following theorem provides affirmative (and finer) answers:

Theorem 5.3.1. We have canonical isomorphisms p-BV C
∼= BV C over Shan

K,C and

(p-dRV C,∇,Fil•) ∼= (dRV C,∇,Fil•) over ShK,C, compatible with each other un-
der the complex Riemann–Hilbert correspondence. Furthermore, we have canoni-
cal G(Af )-equivariant isomorphisms between the relevant pairs of tensor functors
in Propositions 5.2.17 and 5.2.10, compatible with pullbacks under morphisms be-
tween Shimura varieties induced by morphisms of Shimura data, inducing compati-
ble canonical G(Af )-equivariant isomorphisms (pEC, p∇) ∼= (EC,∇) and pEPcC ∼= EPcC .

These isomorphisms are compatible with the formation of canonical models in the
sense that they descend to canonical G(Af )-equivariant isomorphisms (pEk, p∇) ∼=
(E ,∇)⊗E k and pEF`k ∼= EF`⊗E k, respectively, if (E ,∇) and EF` are the canonical
models of (EC,∇) and EPcC ∼= EF`C , respectively, as in [Mil90, Ch. III, Thm. 4.3] and
Remark 5.2.11, and if (pEk, p∇) and pEF`k are as in Remark 5.2.18.

The analogous assertions hold for the filtered log connections (p-dRV
can
C ,∇,Fil•)

and (dRV
can
C ,∇,Fil•) (and the associated torsors).

The proofs of Theorem 5.3.1 will be given in the remaining subsections. Note
that it verifies, in particular, the conjecture in [LZ17, Rem. 4.1(ii)].
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Assuming this theorem for the moment, since every irreducible algebraic repre-
sentation of Gc over Qp has a model over Q, we obtain the following:

Corollary 5.3.2. Theorem 1.5 also holds.

Next, we turn to Corollary 1.6. Consider the (p-adic) analytic Gc,an
k -torsor with

an integrable connection (pEan
k , p∇) on Shan

K,k defined by the assignment of the p-
adic analytification p-dRV

an
k of p-dRV k to V ∈ RepQp(Gc), where k is the completion

of E with respect to the p-adic place determined by ι. As in Remark 5.2.11, the
filtrations on p-dRV

an
k , for all V , define a section of pEan

F`k := pEan
k ×Gc,an

k F`an
k over

Shan
K,k. Now let x ∈ ShK(k′), where k′ is a finite extension of k in Qp. Then there is

an analytic neighborhood U of x in Shan
K,k′ trivializing (the pullback of) (pEan

k , p∇) as

a Gc,an
k′ -torsor with an integrable connection. Then the above section of pEan

F`k over
Shan

K,k defines the so-called Grothendieck–Messing period map πGM : U → F`an
k′ .

Corollary 5.3.3 (restatement of Corollary 1.6). This morphism πGM is étale.

Proof. Let O∧U,x (resp. O∧F`,πGM(x)) denote the completion of the local ring OU,x
(resp. OF`an

k′ ,πGM(x)). It suffices to show that the homomorphism ψ : O∧F`,πGM(x) →
O∧U,x induced by πGM is an isomorphism (cf. [Hub96, Prop. 1.7.11]). Note that

the composition of Spec(O∧U,x)
Spec(ψ)→ Spec(O∧F`,πGM(x))

can.→ F`k is determined

by the induced section of pEF`k over Spec(O∧U,x) and the universal property of the

algebraic partial flag variety F`. By transporting via the isomorphisms (pEC, p∇) ∼=

(EC,∇) and pEPcC ∼= EPcC in Theorem 5.3.1 the pullbacks via k′
can.
↪→ Qp

ι
∼→ C of the

trivialization of (pEk, p∇) and the section of pEF`k over Spec(O∧U,x), the pullback
ψC of ψ can be identified with the corresponding homomorphism for the usual
complex analytic period map defined by Ean

PcC
on Shan

K,C, whose induced morphisms

from the spectra of completions of local rings are also determined by the universal
property of F`. By the complex analytic construction in Section 5.2, this latter
period map is locally an open immersion of complex analytic spaces, given by the
Borel embedding X+ ↪→ F`an

C (see [Mil90, Ch. III, Sec. 1] and [Hel01, Ch. VIII,
Sec. 7]). Thus, ψC is an isomorphism, and so is ψ, as desired. �

Remark 5.3.4. Theorem 5.3.1 and Corollary 5.3.3 are not surprising when there
are families of motives whose relative Betti, de Rham, and p-adic étale realizations
define the local systems BV C, (dRV C,∇,Fil•), and étV Qp , respectively. This is the

case, for example, when ShK is a Shimura variety of Hodge type. (We will take
advantage of this in Section 5.5 below.) But Theorem 5.3.1 and Corollary 5.3.3 also
apply to Shimura varieties associated with exceptional groups, over which there are
(as yet) no known families of motives defining our local systems as above.

Remark 5.3.5. By Theorem 5.3.1 and Deligne’s comparison result in [Del70, II, 6],
and by Theorem 4.1.4, the spectral sequence

Ea,b1 = Ha,b
log Hodge(Shtor

K,C, dRV
can
C )⇒ Ha+b

log dR(Shtor
K,C, dRV

can
C ) ∼= Ha+b

dR (ShK,C, dRV C)

degenerates on the E1 page. While this degeneration was already known thanks to
Saito’s direct image theorem (see [Sai90, Thm. 2.14] and [Suh18, Sec. 4]), we have a
new proof here based on p-adic Hodge theory. Also, we can determine the Hodge–
Tate weights of Hi(ShK,Qp , étV Qp) in terms of dimCH

a,i−a
log Hodge(Shtor

K,C, dRV
can
C ), for
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all a ∈ Z, which can be computed using the dual BGG decomposition and relative
Lie algebra cohomology. (We will explain these in more detail in [LLZ].)

Remark 5.3.6. The comparison isomorphisms in Theorem 5.3.1 over Shimura vari-
eties induce similar isomorphisms on general locally symmetric varieties, by pull-
back and by finite étale descent. Consequently, the analogue of the statements in
Remark 5.3.5 for general locally symmetric varieties also hold.

Remark 5.3.7. By replacing the input [Suh18] in the proof of [Lan16b, Thm. 4.3]
with Theorem 4.2.1, and by Theorem 5.3.1 and Remark 5.3.6, we obtain new p-adic
Hodge-theoretic proofs of the vanishing results for the coherent and de Rham coho-
mology in [Lan16b, Thm. 4.1, 4.4, 4.7, and 4.10], generalizing the characteristic-zero
cases of previous results in [LS12, LS13, LS14, Lan16a].

5.4. Proof of theorem: preliminary reductions. Let us fix a connected com-
ponent Γ+

K,g0
\X+ of Shan

K,C as in (5.2.1), which is the analytification of a quasi-

projective variety defined over some finite extension E+ of E in Q. Let h ∈ X+ be
a special point such that (5.1.1) factors through TR for some maximal torus T of
G (over Q). (Recall that special points are dense in X+—see the proof of [Mil05,
Lem. 13.5].) Up to replacing E+ with a finite extension in Q, we may assume that
the image of h ∈ X+ in Γ+

K,g0
\X+ is defined over E+.

The pullbacks of BV C to h ∈ X+ can be canonically identified with VC by its
very construction. On the other hand, the pullback of p-BV C can also be canonically
identified with VC. In fact, in both cases, we have slightly more:

Proposition 5.4.1. The pullbacks of BV C and p-BV C to (G(Q)h) × G(Af ) are
canonically and G(Q)×G(Af )-equivariantly isomorphic to the trivial local system
(G(Q)h) × VC × G(Af ) (on which G(Q) acts by diagonal left multiplication on all
three factors, and G(Af ) acts by right multiplication on the last factor.)

Proof. The assertion for BV C follows from its very construction. As for the assertion
for p-BV C, let us first identify the pullback of étV Qp to the images of (h, g), for

g ∈ G(Af ), by recalling the arguments on which [LZ17, Lem. 4.8] is based. We
shall write Γ+

K,g := G(Q)+ ∩ (gKg−1) (cf. (5.2.1)), so that Γ+
K,g\X+ gives the

connected component of Shan
K,C containing the image of (h, g).

By assumption, h : S = ResC/R Gm,C → GR (as in (5.1.1)) factors through TR,
and the Hodge cocharacter (as in (5.2.9)) induces a cocharacter µh : Gm,C → TC,
which is the base change of some cocharacter µ : Gm,F → TF defined over some

number field F in Q. Then the composition of µ with the norm map from TF to
T defines a homomorphism Nµ : ResF/Q Gm,F → T of tori over Q, and we have

a composition of homomorphisms F×\A×F
Nµ→ T(Q)\T(A) → T(Q)\T(Af ), where

T(Q) denotes the closure of T(Q) in T(Af ), which factors through

(5.4.2) F×\A×F
ArtF→ Gal(F ab/F )

r(µ)→ T(Q)\T(Af ),

where F ab is the maximal abelian extension of F in Q. If FK,g is the subfield of

F ab such that Gal(F ab/FK,g) is the preimage of (gKg−1∩T(Q))\(gKg−1∩T(Af ))
under (5.4.2), then we have an induced Galois representation

(5.4.3) r(µ)+
K,g : Gal(Q/FK,g)→ (gKg−1 ∩ T(Q))\(gKg−1 ∩ T(Af )).

(If g = g0, then FK,g ⊂ E+, since the image of h in Γ+
K,g0
\X+ is defined over E+.)
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Since TR stabilizes the special point h, it is R-anisotropic modulo the center
of G, and hence its maximal Q-anisotropic R-split subtorus is the same as that
of the center of G. Therefore, as explained in the proof of [LZ17, Lem. 4.5], the

pullback of V to T satisfies the requirement that its restriction to gKg−1 ∩T(Q) is
trivial as in [LZ17, (4.4)] (with the neatness of gKg−1 here implying that the
open compact subgroup K there is sufficiently small). Thus, the composition

T(Af ) → T(Qp) → G(Qp) → GLQp(VQp) factors through (gKg−1 ∩ T(Q))\T(Af )

and induces, by composition with (5.4.3), a Galois representation r(µ, V )+
K,g,p :

Gal(Q/FK,g)→ GLQp(VQp) describing the pullback of étV Qp to the geometric point

above the image of h in Γ+
K,g\X+ given by the composition of FK,g

can.
↪→ Q ι−1

↪→ Qp.

Let L, VL, k, and τ be as in Section 5.2, giving us maps Qp ↪→ L ↪→ k ↪→ Qp
ι
∼→ C

in the remainder of this paragraph. Without loss of generality, we may assume that
k also contains the image of FK,g in Qp. Then the image of r(µ, V )+

K,g,p is con-

tained in the subgroup GLL(VL) of GLQp(VQp), and we can view this representation

over L as a representation over Qp with an additional action of L, as usual. By
[LZ17, Lem. 4.4], this representation is potentially crystalline. Since it factors
through the abelian group T(Qp), by [Pat19, Thm. 2.3.13 and its proof] (based
on [Ser68, Ch. II and III] and [DMOS82, Ch. IV]; cf. [FM97, §6, Prop., and its
proof]), it is isomorphic to the p-adic étale realization Mp of some object M in
the Tannakian category (CM)FK,g of motives (for absolute Hodge cycles) over FK,g
generated by Artin motives and abelian varieties potentially of CM type, as defined
in [DMOS82, Ch. IV]. Let MB and MdR denote the Betti and de Rham realiza-
tions of M . Via the canonical p-adic étale–Betti and Betti–de Rham comparison
isomorphisms, we have canonically induced actions of L on MB,Qp := MB ⊗Q Qp,
and hence on MB,C := MB ⊗Q C and MdR,C := MdR ⊗FK,g C. Moreover, we have
canonically induced isomorphisms from VC to the pushouts of MB,C and MdR,C via
the base change τC : L ⊗Qp C → C of τ : L ⊗Qp k → k. By [Bla94, Thm. 0.3],
the absolute Hodge cycles defining objects in (CM)FK,g are compatible with the
p-adic étale–de Rham comparison isomorphism of Faltings’s, and hence we have
a canonically induced comparison isomorphism DdR(Mp)

∼→ MdR ⊗FK,g k, where
DdR is defined over k. Thus, we can canonically identify the pullbacks of dRV C and

p-dRV C to h via the pushout of MdR,C via τC. (These identifications do not depend

on the choices of M and r(µ, V )+
K,g,p

∼→ Mp because, by [DMOS82, Ch. IV, (D)],

Hom(CM)FK,g
(M,M ′)⊗QQp

can.
∼→ HomGal(Q/FK,g)(Mp,M

′
p), for any M ′ in (CM)FK,g ,

and hence any isomorphism r(µ, V )+
K,g,p

∼→ M ′p canonically induce isomorphisms

Mp
∼→ M ′p, MB,Qp

∼→ M ′B,Qp , MB,C
∼→ M ′B,C, and MdR,C

∼→ M ′dR,C, which are

compatible with the various canonical comparison isomorphisms above for M and
M ′.) Accordingly, by using the trivial complex Riemann–Hilbert correspondence
over the single C-point h, we can canonically identify the pullbacks of BV C and

p-BV C to h via the corresponding pushout of MB,C via τC. Consequently, we can
canonically identify the pullback of p-BV C to h with VC.

For each γ ∈ G(Q), by conjugating all the actions on the base changes of V and
the model VL by γ in the above, we can also canonically identify the pullback of

p-BV C to γh with VC. When put together as a canonical identification over the
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whole
(
G(Q)h

)
×G(Af ), it is G(Q)-equivariant by what we just explained, and is

G(Af )-equivariant because it does not involve the second factor G(Af ) at all. �

Proposition 5.4.4. Suppose that the assertions for Betti local systems in Theorem
5.3.1 hold. Then the remaining assertions in Theorem 5.3.1 also hold.

Proof. Since p-BV C
∼= BV C over Shan

K,C, we have (p-dRV C,∇) ∼= (dRV C,∇) over
ShK,C, because both sides admit extensions (p-dRV

can
C ,∇) and (dRV

can
C ,∇) over

Shtor
K,C (and hence have regular singularities along DC = Shtor

K,C − ShK,C). Since
both (p-dRV

can
C ,∇) and (dRV

can
C ,∇) have nilpotent residues along DC (as explained

in Section 5.2), these two extensions are also canonically isomorphic to each other
(by [AB01, Ch. 1, Prop. 4.7] or [ABC20, Thm. 11.2.2]). To verify that the filtrations
are respected by such isomorphisms, it suffices to do so at the special points, or just
at the arbitrary special point h we have chosen, because special points are dense in
the complex analytic topology (see the proof of [Mil05, Lem. 13.5]).

Consider the Galois representation r(µ, V )+
K,g,p in the proof of Proposition 5.4.1.

By decomposing the representation VQp of T(Qp) into a direct sum of characters

of T(Qp), we obtain a corresponding decomposition of r(µ, V )+
K,g,p into a direct

sum of characters Gal(Q/FK,g) → Q×p . By construction, the restrictions of these

characters of Gal(Q/FK,g) to the decomposition group at the place v of FK,g given

by the composition FK,g
can.
↪→ Q ι−1

↪→ Qp are locally algebraic (in the sense of [Ser68,
Ch. III, Sec. 1.1, Def.]), because they are induced (up to a sign convention) by the

composition of the local Artin map, the cocharacter Q×p → T (Qp) given by the

base change of µ under the same FK,g ↪→ Qp, and the corresponding characters of

T(Qp). (This local algebraicity played a crucial role in the references we cited in the
proof of Proposition 5.4.1.) Thus, the Hodge filtrations on the pullbacks of p-dRV C
and dRV C to h are both determined by the Hodge cocharacter µh : Gm,C → GC.

The remainder of Theorem 5.3.1 follows from the fact that the formations of
(EE ,∇) (resp. EF`) and (pEk,∇) (resp. pEF`k) are determined by their pullbacks to
special points, which are compatible with each other by the arguments in the proof
of Proposition 5.4.1 (resp. of this proposition); and that the descent data for such
torsors extend to their canonical extensions as in [Mil90, Ch. V, Sec. 6]. �

By Proposition 5.4.4, it remains to prove the assertions for Betti local systems in
Theorem 5.3.1. As explained before (cf. (5.2.6)), the pullbacks of p-BV C and BV C to
Γ+
K,g0
\X+ determine and are determined by the fundamental group representations

ρ
+,(p)
K,g0

(V ) : Γ+,c
K,g0

→ GLC(VC) and ρ+
K,g0

(V ) : Γ+,c
K,g0

→ GLC(VC),

respectively, by canonically identifying the pullbacks of the local systems p-BV C and

BV C to the image of h ∈ X+ in Γ+
K,g0
\X+ using Proposition 5.4.1. Then it suffices

to show that ρ
+,(p)
K,g0

(V ) and ρ+
K,g0

(V ) coincide as representations of Γ+
K,g0

. In this
case, they are isomorphic via the identity morphism on VC, and therefore the choice
of such an isomorphism is functorial in V and compatible with tensor products and
duals because the assignment of ρ+

K,g0
(V ) to V is, with Hecke actions because

of Proposition 5.4.1, and with morphisms between Shimura varieties induced by
morphisms of Shimura data because all constructions involved are.
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Since Γ+,c
K,g0

is contained in Gder,c(Q), and since ρ+
K,g0

(V ) depends only on the

restriction VC|Gder,c of VC to Gder,c, it remains to prove the following proposition.

Proposition 5.4.5. The representation ρ
+,(p)
K,g0

(V ) extends to an algebraic repre-

sentation of Gder,c that coincides with the representation VC|Gder,c of Gder,c on VC.

Remark 5.4.6. Such an extension is necessarily unique, as arithmetic subgroups
of semisimple groups without compact Q-simple factors are Zariski dense, by the
Borel density theorem (see, for example, [Bor69, Prop. 15.12]).

Lemma 5.4.7. Let (Ğ, X̆), K̆, ğ0, and h̆ ∈ X̆+ be a Shimura datum and some

additional choices of data analogous to (G,X), K, g0, and h ∈ X+. Let Ğder → Gder

be a central isogeny inducing some X̆+ ∼→ X+ mapping h̆ to h and a finite covering

map f : Γ+

K̆,ğ0
\X̆+ → Γ+

K,g0
\X+. Let Γ̆ := Γ+

K̆,ğ0
⊂ Ğder,c(Q), which (by neatness)

is mapped isomorphically to a finite index subgroup Γ of Γ := Γ+
K,g0

⊂ Gder,c(Q).

Let V̆ ∈ RepQ(Ğc), with an isomorphism between the pullbacks to Ğder,c of V̆ and

V . Then the similarly defined representations ρ̆+

K̆,ğ0
(V̆ ), ρ̆

+,(p)

K̆,ğ0
(V̆ ) : Γ̆ → GLC(V̆C)

are canonically induced, respectively, by the pullbacks of ρ+
K,g0

(V ), ρ
+,(p)
K,g0

(V ) : Γ →
GLC(VC). Moreover, if the analogue of Proposition 5.4.5 holds for ρ̆

+,(p)

K̆,ğ0
(V̆ ) and

V̆C|Ğder,c , then Proposition 5.4.5 holds for ρ
+,(p)
K,g0

(V ) and VC|Gder,c .

Proof. All statements but the last one follow immediately from the functoriality
of the constructions. Let BV̆ C and p-BV̆ C denote the corresponding local system
on Shan

K̆,C. By Proposition 5.4.1, and by considering the descent data for local

systems with respect to the covering map Γ̆\X̆+ → Γ\X+, the pullbacks to h of

f∗(BV̆ C|Γ̆\X̆+) and f∗(p-BV̆ C|Γ̆\X̆+) can be canonically identified with

IndΓ
Γ
(VC|Γ) ∼= {ϕ : Γ→ VC : ϕ(γγ′) = γ−1

(
ϕ(γ′)

)
, for all γ ∈ Γ and γ′ ∈ Γ},

and the pullbacks to h of the sub-local systems BV C|Γ\X+ and p-BV C|Γ\X+ can be

canonically identified with the equalizer of IndΓ
Γ
(VC|Γ) ⇒ IndΓ

Γ

(
IndΓ

Γ
(VC|Γ)

)
, where

the two morphisms are canonical, which can be in turn canonically identified with

VC|Γ ∼= {ϕ : Γ→ VC : ϕ(γγ′) = γ−1
(
ϕ(γ′)

)
, for all γ, γ′ ∈ Γ},

where Γ and Γ act on the codomains VC by restrictions of VC|Gder,c . If the analogue of

Proposition 5.4.5 holds for ρ̆
+,(p)

K̆,ğ0
(V̆ ) and V̆C|Ğder,c , then BV̆ C|Γ̆\X̆+

∼= p-BV̆ C|Γ̆\X̆+ ,

and f∗(BV̆ C|Γ̆\X̆+) ∼= f∗(p-BV̆ C|Γ̆\X̆+) matches BV C|Γ\X+ and p-BV C|Γ\X+ as sub-

local systems. As a result, Proposition 5.4.5 also holds for Gder,c and VC|Gder,c . �

Lemma 5.4.8. It suffices to prove Proposition 5.4.5 in the special case where Gder

and Gder,c are Q-simple and simply-connected as algebraic groups over Q.

Proof. By [Del79, Lem. 2.5.5], there exists a connected Shimura datum with the

semisimple algebraic group over Q being the simply-connected cover G̃ of Gder.

Moreover, there is a decomposition G̃ ∼=
∏
i∈I G̃i of G̃ into a product of its Q-simple

factors such that each G̃i is part of a connected Shimura datum. Thus, we can

choose some Shimura data (Ğ, X̆) and (Ği, X̆i) with Ğder,c ∼→ G̃ and Ğder,c
i

∼→ G̃i,

choose levels and additional data such that the corresponding Γ̃ ⊂ G̃(Q) is of the
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form Γ̃ =
∏
i∈I Γ̃i for some neat arithmetic subgroups Γ̃i of G̃i(Q) and such that

its image Γ in Gder,c(Q) is a subgroup of Γ+,c
K,g0

, and apply Lemma 5.4.7. �

Consequently, in what follows, we may and we shall assume that Gder,c is simply-
connected as an algebraic group over Q, so that Gder ∼= Gder,c also is.

5.5. Cases of real rank one, or of abelian type. In this subsection, we assume
that Gder,c is Q-simple and simply-connected as an algebraic group over Q (so that
Gder ∼= Gder,c), and that either Gder

R is of type A or rkR(Gder
R ) ≤ 1.

Lemma 5.5.1. Under the above assumptions, the Shimura datum (G,X) is neces-
sarily of abelian type (see, for example, [Lan17, Def. 5.2.2.1]). Up to replacing G
with another reductive algebraic group over Q with the same derived group Gder, we
may assume that (G,X) is of Hodge type (see, for example, [Lan17, Def. 5.2.1.1]).

Proof. Let Gder(R)nc denote the product of all noncompact simple factors of Gder(R)
(as a real Lie group). By the classification of Hermitian symmetric domains (see
[Hel01, Ch. X, Sec. 6]), any Gder(R)nc here satisfying rkR(Gder

R ) ≤ 1 is isomorphic
to SUn,1, for some n ≥ 1. Thus, every Gder

R considered by this lemma is of type A.
By the classification in [Del79, 2.3], (G,X) is necessarily of abelian type. The last
statement then also follows, essentially by definition. �

Consequently, for our purpose, we may assume that the Shimura datum (G,X) is
of Hodge type. Note that G ∼= Gc in this case. Moreover, there exists some faithful
representation V0 of G ∼= Gc over Q, together with a perfect alternating pairing

(5.5.2) V0 × V0 → Q(−1),

where (−1) denotes the formal Tate twist (induced by the pullback of the sym-
plectic similitude character), which are defined by some Siegel embedding in the
definition of a Shimura datum of Hodge type, together with an abelian scheme
f : A → ShK with a polarization λ, whose m-fold self-fiber product we denote
by fm : Am → ShK , such that, for all i ≥ 0, we have RifmC,∗(Q) ∼= ∧i(BV

m
0 )

over ShK,C; Rifmét,∗(Qp) ∼= ∧i(étV
m
0,Qp

) over ShK , where V0,Qp := V0 ⊗Q Qp; and(
Rifm∗ (Ω•Am/ShK

)⊗E C,∇,Fil•
) ∼= (∧i(dRV

m
0,C),∇,Fil•

)
over ShK,C, where V0,C :=

V0 ⊗Q C and the ∇ and Fil• at the left-hand side are the Gauss–Manin connection
and the relative Hodge filtration, respectively. The polarization λ then compatibly
induces (as in [DP94, 1.5]) the pairings BV 0×BV 0 → BQ(−1), étV 0,Qp× étV 0,Qp →

étQp(−1), and dRV 0,C× dRV 0,C → dRC(−1) defined by (5.5.2), with (−1) denoting

the Tate twists in the respective categories.

Lemma 5.5.3. We have a canonical isomorphism

(5.5.4)
(

dRV
⊗m
0,C (−t),∇,Fil•

) ∼= (p-dRV
⊗m
0,C (−t),∇,Fil•

)
for all i ≥ 0, m ≥ 0, and t ∈ Z. Accordingly, we have a canonical isomorphism

(5.5.5) BV
⊗m
0,C (−t) ∼= p-BV

⊗m
0,C (−t).

Moreover, the pullback of (5.5.5) to the image of the special point h ∈ X+ in
Γ+
K,g0
\X+ (see the beginning of Section 5.4), which is defined over a finite extension

E+ of E in Q, is given by the identity morphism of V ⊗m0,C (−t).
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Proof. Since ShK is defined over E and so the p-adic analytification functor from the
category of algebraic filtered connections to the category of p-adic analytic ones is
fully faithful, by [AB01, Ch. 4, Cor. 6.8.2] or [ABC20, Cor. 34.6.2]; since the p-adic
analytification of

(
Rifm∗ (Ω•Am/ShK

)⊗E k,∇,Fil•
) ∼= (Rifmk,∗(Ω•Amk /ShK,k

),∇,Fil•
)

is

canonically isomorphic to
(
DdR(Rifmk,ét,∗(Qp)),∇,Fil•

)
, for any finite extension k

of the composite of E and Qp in Qp, by [Sch13, Thm. 8.8 and 9.1]; and since such
an isomorphism is functorial, we have (5.5.4), from which (5.5.5) follows by taking
horizontal sections, because both sides of (5.5.4) can be canonically identified (up
to the same Tate twist (−t)) with the image of

(
Rmfm∗ (Ω•Am/ShK

) ⊗E C,∇,Fil•
)

under ε∗m, for some endomorphism εm of the abelian scheme fm : Am → ShK , by
Lieberman’s trick (see, e.g., [LS12, Sec. 3.2]). Since the comparison isomorphisms
among the Betti, étale, and de Rham cohomology of an abelian variety defined over
E+ are all compatible with each other, the second assertion also follows. �

Lemma 5.5.6. For each irreducible representation V of G over Q, there exist
integers mV ≥ 0 and tV (depending noncanonically on V ) such that V is a direct
summand of V ⊗mV0 (−tV ), where (−tV ) denotes the formal Tate twist (which has
no effect when restricted to the subgroup Gder of G), so that V = sV

(
V ⊗mV0 (−tV )

)
for some Hodge tensor sV ∈ V ⊗0 (i.e., a tensor of weight (0, 0) with respect to the
induced Hodge structure on V ⊗0 ; cf. [DMOS82, Ch. I, Prop. 3.4]).

Proof. See [LS18a, Prop. 3.2], which is based on [DMOS82, Ch. I, Prop. 3.1(a)]. �

By combining Lemmas 5.5.3 and 5.5.6, we obtain the following:

Corollary 5.5.7. For each irreducible V ∈ RepQ(G), there exist some integers
mV ≥ 0 and tV such that the local systems BV C and p-BV C are direct summands of

BV
⊗mV
0,C (−tV ) and p-BV

⊗mV
0,C (−tV ), respectively. Consequently, there is a morphism

(5.5.8) BV C → p-BV C

defined by composing BV C
can.
↪→ BV

⊗mV
0,C (−tV )

(5.5.5)
∼→ p-BV

⊗mV
0,C (−tV )

can.
� p-BV C.

Proposition 5.5.9. The above morphism (5.5.8) is an isomorphism over the con-
nected component Γ+

K,g0
\X+ of ShK,C that induces the identity morphism between

the two representations ρ
+,(p)
K,g0

(V ) and ρ+
K,g0

(V ). In particular, Proposition 5.4.5
holds under the assumptions of this subsection.

Proof. It suffices to show that, via the canonical isomorphisms in Proposition 5.4.1,
the pullback of (5.5.8) to the image of h, as in Lemma 5.5.3, is given by the iden-
tity morphism of a subspace of V ⊗m0,C (−t). Since the comparison isomorphisms thus
far are functorial and compatible with pullbacks to special points, over which the
pullbacks of A are abelian varieties potentially of CM type over number fields (see
[Mil05, Cor. 14.11]), the pullback of (5.5.8) is induced by the comparison isomor-
phisms for the cohomology of such abelian varieties, which are compatible with the
ones used in the proof of Proposition 5.4.1 by Remark 5.5.10 below, and it suffices
to note that the Hodge tensor sV in Lemma 5.5.6 are respected by such comparison
isomorphisms, because Hodge cycles on such abelian varieties are absolute Hodge
(by [DMOS82, Ch. I, Main Thm. 2.11]) and de Rham (by [Bla94, Thm. 0.3]). �
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Remark 5.5.10. By [ST68, Sec. 5], abelian varieties potentially of CM type over
number fields have potential good reduction everywhere. By [IIK21, Sec. 11], the p-
adic de Rham comparison isomorphisms of Faltings’s (used in [Bla94] and the proof
of Proposition 5.4.1) and Scholze’s (used in the proof of Lemma 5.5.3) coincide (at
least) for abelian varieties with potential good reductions over p-adic fields.

5.6. Cases of real rank at least two. In this subsection, we assume that Gder,c

is Q-simple and simply-connected as an algebraic group over Q (so that Gder ∼=
Gder,c), and that rkR(Gder

R ) ≥ 2. By Proposition 5.5.9, we may and we shall assume
in addition that Gder

R is not of type A. We shall make use of the following special
case of Margulis’s superrigidity theorem:

Theorem 5.6.1. Let H be a Q-simple simply-connected connected algebraic group
over Q, and let Γ be an arithmetic subgroup of H(Q). Suppose that rkR(HR) ≥
2. Then, given any representation ρ : Γ → GLm(C), there exists a finite index
normal subgroup Γ0 of Γ such that ρ|Γ0

extends to a (unique) group homomorphism
ρ̃ : H(C) → GLm(C) that is induced by an algebraic group homomorphism HC →
GLm,C, and such that ρ(γ) = δ(γ)ρ̃(γ), for all γ ∈ Γ, for some representation
δ : Γ/Γ0 → GLm(C) whose image commutes with ρ̃(H(C)).

Proof. This follows from [Mar91, Ch. VIII, Thm. (B), part (iii)] with S = {∞},
Λ = Γ, K = Q, and ` = C (in the notation there). �

By applying Theorem 5.6.1 with H = Gder,c, Γ = Γ+,c
K,g0

, and ρ = ρ
+,(p)
K,g0

(V )

as in Section 5.4, we see that there is a finite-index subgroup Γ+,c
K,g0,0

of Γ+,c
K,g0

such that the restriction ρ
+,(p)
K,g0

(V )|Γ+,c
K,g0,0

extends to an algebraic representation

ρ̃
+,(p)
K,g0

(V ) : Gder,c
C → GLC(VC). If K1 ⊂ K2 are neat open compact subgroups of

G(Af ), then Γ+,c
K1,g0

⊂ Γ+,c
K2,g0

and ρ
+,(p)
K1,g0

(V ) = ρ
+,(p)
K2,g0

(V )|Γ+,c
K1,g0

, and therefore

(5.6.2) ρ
+,(p)
K1,g0

(V )|Γ+,c
K1,g0,0

∩Γ+,c
K2,g0,0

= ρ
+,(p)
K2,g0

(V )|Γ+,c
K1,g0,0

∩Γ+,c
K2,g0,0

.

Since Γ+,c
K1,g0,0

/(Γ+,c
K1,g0,0

∩ Γ+,c
K2,g0,0

) ⊂ Γ+,c
K2,g0

/Γ+,c
K2,g0,0

is finite, Γ+,c
K1,g0,0

∩ Γ+,c
K2,g0,0

is an arithmetic subgroup of Gder,c(Q). By (5.6.2) and the Borel density theorem

(see Remark 5.4.6), ρ̃
+,(p)
K1,g0

(V ) = ρ̃
+,(p)
K2,g0

(V ). Since K1 and K2 are arbitrary, there

is a well-defined assignment (to V ) of an algebraic representation

ρ̃+,(p)
g0

(V ) : Gder,c
C → GLC(VC)

such that ρ̃
+,(p)
K,g0

(V ) = ρ̃
+,(p)
g0 (V ) for all neat open compact subgroups K of G(Af ).

Since Gder,c is Q-simple and simply-connected, since rkR(Gder
R ) ≥ 2, and since

Gder
R is not of type A, by the known positive answers to the congruence subgroup

problem (see [PR94, Prop. 9.10, Thm. 9.15, and the summary in the last two pages

of Sec. 9.5]), any Γ+,c
K,g0,0

obtained above is a congruence subgroup. By taking any

K ′ ⊂ K such that Γ+,c
K′,g0

⊂ Γ+,c
K,g0,0

, we see that ρ
+,(p)
K′,g0

(V ) = ρ̃
+,(p)
g0 (V )|Γ+,c

K′,g0
. Thus,

by Lemma 5.4.7, it suffices to show that ρ̃
+,(p)
g0 (V ) coincides with VC|Gder,c

C
.

By the above construction, and by Proposition 5.2.17, the assignment of ρ̃
+,(p)
g0 (V )

to V ∈ RepC(Gc) defines a tensor functor from RepC(Gc) to RepC(Gder,c), and
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hence induces (as in [DMOS82, Ch. II, Cor. 2.9]) a group homomorphism Gder,c
C →

Gc
C. Since Gder,c

C is semisimple, this homomorphism factors through

(5.6.3) Gder,c
C → Gder,c

C .

For each γ ∈ Gder,c(Q), the Hecke action of g = g−1
0 γg0 ∈ G(Af ) induces an iso-

morphism Γ+
gKg−1,g0

\X+ ∼→ Γ+
K,g0
\X+ (see (5.2.7)) defined by left multiplication by

γ−1, compatible with the isomorphism Γ+
gKg−1,g0

∼→ Γ+
K,g0

induced by conjugation

by γ−1. By Proposition 5.4.1 and (5.2.8), we have the compatibility

ρ̃+,(p)
g0

(V )(γγ′γ−1) =
(
ρ̃+,(p)
g0

(V )(γ)
)(
ρ̃+,(p)
g0

(V )(γ′)
)(
ρ̃+,(p)
g0

(V )(γ)
)−1

=
(
π(V )(γ)

)(
ρ̃+,(p)
g0

(V )(γ′)
)(
π(V )(γ)

)−1
,

(5.6.4)

for all γ′ ∈ Γ+,c
K,g0,0

∩ γ−1Γ+,c
gKg,g0,0

γ, where g = g−1
0 γg0, where

π(V ) : Gder,c
C → GLC(VC)

denotes the algebraic representation given by the restriction VC|Gder,c
C

.

Lemma 5.6.5. Suppose that the representation ρ̃
+,(p)
g0 (V ) is irreducible when V is.

Then ρ̃
+,(p)
g0 (V ) = π(V ) as algebraic representations of Gder,c

C .

Proof. By Proposition 5.2.17, we may assume that π := π(V ) and hence ρ̃ :=

ρ̃
+,(p)
g0 (V ) are irreducible. Let us measure their difference by the algebraic morphism

ε : Gder,c
C → GLC(VC) (which is not shown to be a group homomorphism yet) defined

by ε(g) = ρ̃(g)−1π(g), for all g ∈ Gder,c(C). By (5.6.4), we have

(5.6.6) ρ̃(γ′) = ε(γ)ρ̃(γ′)ε(γ)−1

for all γ′ ∈ Γ′ := Γ+,c
K,g0,0

∩ γ−1Γ+,c
gKg,g0,0

γ. Since Γ′ is a neat arithmetic sub-

group of Gder,c(Q), by the Borel density theorem (see Remark 5.4.6), we also have
(5.6.6) for all γ′ ∈ Gder,c(C). Then the morphism ε is a group homomorphism,
because ε(γγ′) = ρ̃(γγ′)−1π(γγ′) = ρ̃(γ′)−1ρ̃(γ)−1π(γ)π(γ′) = ρ̃(γ′)−1ε(γ)π(γ′) =
ε(γ)ρ̃(γ′)−1π(γ′) = ε(γ)ε(γ′), for all γ, γ′ ∈ Gder,c(Q), and because Gder,c(Q) is
Zariski dense in Gder,c (by [Spr98, Cor. 13.3.10], or still the Borel density theorem).
By Schur’s lemma (and this Zariski density), ε factors through an algebraic group

homomorphism Gder,c
C → Gm,C, which is trivial because Gder,c

C is semisimple. �

Lemma 5.6.7. The above homomorphism (5.6.3) is an automorphism. In partic-

ular, the representation ρ̃
+,(p)
g0 (V ) is indeed irreducible when V is.

Proof. Since Gder,c
C is semisimple and simply-connected, it suffices to show that the

Lie algebra of the kernel of (5.6.3), which is a priori a product of C-simple factors

of the Lie algebra of Gder,c
C , is trivial. Therefore, it suffices to show that (5.6.3) has

nontrivial restrictions to all C-simple factors of Gder,c
C , and it suffices to find some

V ∈ RepC(Gc) such that ρ̃
+,(p)
g0 (V ) is nontrivial on all simple C-simple factors.

As explained in [Bor84, Mil83], based on a construction due to Piatetski-Shapiro,
there exist morphisms ϕ1 : (G,X) ↪→ (G1,X1) and ϕ2 : (G2,X2) ↪→ (G1,X1) be-
tween Shimura data such that the following hold:

• Gder,c
1 is Q-simple, and we have Gder,c ϕ1

↪→ Gder,c
1 ↪→ ResF/Q Gder,c

F for some

totally real number field F , identifying Gder,c
C as a direct factor of Gder,c

1,C .
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• Gder,c
2 is also Q-simple, and all C-simple factors of Gder,c

2,C are of type A1.

In this case, as in the proof of Lemma 5.5.1, the Shimura datum (G2,X2)
is of abelian type, for which Proposition 5.5.9 and hence Theorem 5.3.1

hold. Moreover, the homomorphism Gder,c
2,C → Gder,c

1,C induced by ϕ2 embeds

distinct C-simple factors of Gder,c
2,C into distinct C-simple factors of Gder,c

1,C ,

and every simple factor of Gder,c
1,C meets Gder,c

2,C nontrivially.

Therefore, there exists some V1 ∈ RepC(Gc
1) such that its pullback V2 ∈ RepC(Gc

2)

is nontrivial on all C-simple factors of Gder,c
2,C . By Proposition 5.2.17, p-BV C and

p-BV 2,C are canonically isomorphic to pullbacks of p-BV 1,C, and we already know
that the fundamental group representations associated with p-BV 2,C

∼= BV 2,C are

given by the restrictions of V2,C. Let ρ̃
+,(p)
g0 (V1) be associated with p-BV 1,C as

in the case of ρ̃
+,(p)
g0 (V ). By [Mar91, Ch. I, Sec. 3, Lem. 3.13], the pullbacks of

arithmetic subgroups of Gder,c
1 (Q) to Gder,c(Q) and Gder,c

2 (Q) contain arithmetic
subgroups. Therefore, by the Borel density theorem (see Remark 5.4.6), the pull-

back of ρ̃
+,(p)
g0 (V1) to Gder,c

2,C is nontrivial on all C-simple factors of Gder,c
2,C , and hence

ρ̃
+,(p)
g0 (V1) is nontrivial on all C-simple factors of Gder,c

1,C . By the Borel density the-

orem again, ρ̃
+,(p)
g0 (V ) is isomorphic to the pullback of ρ̃

+,(p)
g0 (V1), which is then

nontrivial on all simple C-simple factors of Gder,c
C , as desired. �

Thus, Proposition 5.4.5 also holds under the assumptions of this subsection, by
Lemmas 5.6.5 and 5.6.7. The proof of Theorem 5.3.1 is now complete.

Appendix A. A formalism of decompletion

In this appendix, we generalize the formalism of decompletion developed in
[KL16, Sec. 5], in order to treat the general Kummer towers.

A.1. Results. For a topological ring A with a continuous action by a topologi-
cal group Γ, let ProjA(Γ) (resp. RepA(Γ)) denote the category of finite projective
(resp. finite free) A-modules equipped with a semilinear continuous Γ-action. For
simplicity, they are also called finite projective (resp. finite free) Γ-modules over A.
Note that, given a finite free Γ-module L of rank l, after choosing a basis of L, the
action of Γ on L can be represented by a 1-cocycle f ∈ C1

(
Γ,GLl(A)

)
, and any

change of basis only results in a change of the cocycle by a coboundary. It follows
that the isomorphism classes of finite free Γ-modules of rank l over A are classified
by the cohomology set H1

(
Γ,GLl(A)

)
. In addition, for L1, L2 ∈ ProjA(Γ), we have

(A.1.1) HomProjA(Γ)(L1, L2) ∼= H0(Γ, L∨1 ⊗A L2).

From now on, we shall assume that our topological rings are all commutative,
unless otherwise specified. Let {Ai}i∈I be a direct system of topological rings,

where I is a small filtered index category; and Â∞ a complete topological ring

with compatible continuous homomorphisms Ai → Â∞ such that the induced map

lim−→i∈I Ai → Â∞ has dense image. Let Γ be a topological group acting continuously

and compatibly on {Ai}i∈I and Â∞.

Definition A.1.2. We call the triple ({Ai}i∈I , Â∞,Γ) a decompletion system (resp.
weak decompletion system) if the following two conditions hold:
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(1) For each finite projective (resp. finite free) Γ-module L∞ over Â∞, there
exist some i ∈ I, some finite projective (resp. finite free) Γ-module Li over
Ai, and some Γ-equivariant continuous Ai-linear morphism ιi : Li → L∞
inducing an isomorphism ιi ⊗ 1 : Li ⊗Ai Â∞

∼→ L∞ of Γ-modules over Â∞.
We shall call such a pair (Li, ιi) (or simply Li) a model of L∞ over Ai.

(2) For each model (Li, ιi) over Ai, there exists some i0 ≥ i such that, for every
i′ ≥ i0, the model (Li′ , ιi′) := (Li ⊗Ai Ai′ , ιi ⊗ 1) is good in the sense that
the natural map H•(Γ, Li′)→ H•(Γ, L∞) is an isomorphism.

Remark A.1.3. If ({Ai}i∈I , Â∞,Γ) is a decompletion system (resp. weak decom-
pletion system), then the natural functor lim−→i∈I ProjAi(Γ) → ProjÂ∞(Γ) (resp.

lim−→i∈I RepAi(Γ) → RepÂ∞(Γ)) is an equivalence of categories. Indeed, the con-

dition (1) implies that the functor is essentially surjective, and (A.1.1) and the
condition (2) imply that the functor is fully faithful. Similarly, the condition (2)
implies that, for any two models (Li,1, ιi,1) and (Li,2, ιi,2) of L∞ over Ai, there
exists some i′ ≥ i such that (Li,1⊗Ai Ai′ , ιi,1⊗ 1) ∼= (Li,2⊗Ai Ai′ , ιi,2⊗ 1) over Ai′ .

To give criterions when a triple ({Ai}i∈I , Â∞,Γ) is a (weak) decompletion sys-
tem, we shall work with (nonarchimedean) Banach rings, as in [KL15, Sec. 2.2].
For a Banach A-module N and a closed A-submodule M , we shall equip M with
the induced norm and N/M with the quotient norm. Both are Banach A-modules.
The following lemma is straightforward.

Lemma A.1.4. Let M → N be an isometric homomorphism of Banach modules
over a Banach ring A. Then the following are equivalent:

(1) The natural projection π : N → N/M admits an isometric section.
(2) The embedding M → N admits a submetric splitting pr : N →M .
(3) N admits a closed A-submodule L such that M ⊕ L → N is an isometric

isomorphism, where M ⊕ L is equipped with the supremum norm.

If L and M are Banach modules over a Banach ring, we will often equip the
completed tensor product L⊗̂AM with the product norm, as in [KL15, Def. 2.1.10].
If a Banach ring A admits a continuous action by a profinite group Γ, and M is
a Banach A-module with a semilinear isometric Γ-action, then we equip the A-
module Cs(Γ,M) of continuous maps Γs →M with the supremum norm given by
‖f‖ = supγ∈Γs |f(γ)|, for each degree s. Then C•(Γ,M) is a complex of Banach
A-modules. We will also make use of the following terminology.

Definition A.1.5. A complex (C•, d) of Banach modules over a Banach ring A is
called uniformly strict exact with respect to some constant c ≥ 0 if, for each degree
s and each cocycle f ∈ Cs, there exists g ∈ Cs−1 such that f = dg and |g| ≤ c|f |.

Now the following definition makes sense.

Definition A.1.6. Let ({Ai}i∈I , Â∞,Γ) be as in the paragraph preceding Defini-

tion A.1.2. Suppose moreover that each Ai → Â∞ is a closed embedding and Γ is

profinite. We say that ({Ai}i∈I , Â∞,Γ) is weakly decompleting if there exist:

• a norm | · | on Â∞ making it a Banach ring (and therefore making each Ai
a Banach subring); and

• an inverse system {Γi}i∈I of closed normal subgroups converging to 1 (i.e.,
each open neighborhood of 1 in Γ contains Γi, for some i ∈ I) such that
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the canonical map Γ → Γ/Γi admits a continuous section (which is not
necessarily a homomorphism), for each i ∈ I,

satisfying the following conditions:

(1) The Γ-action on Â∞ is isometric.

(2) (Splitting.) For each i ∈ I, the natural projection Â∞ → Â∞/Ai admits an
isometric section as Banach Ai-modules.

(3) (Uniform strict exactness.) There exists some c > 0 such that, for all i ∈ I,

the complex C•(Γi, Â∞/Ai) is uniform strict exact with respect to c, as in

Definition A.1.5. In particular, Â∞/Ai has totally trivial Γi-cohomology.

Remark A.1.7. (1) If we keep the same choices of {Γi}i∈I , but modify the norm

on Â∞ up to equivalence such that the conditions (1) and (2) still hold,
then the condition (3) also holds up to adjusting the constant c > 0.

(2) Since Γ→ Γ/Γi admits a continuous section, the Hochschild–Serre spectral
sequence holds for the continuous cohomology of the subgroup Γi of Γ.

(3) By Lemma A.1.4 above, the condition (2) in Definition A.1.6 is equivalent

to the existence of a submetric splitting pri : Â∞ � Ai. But unlike the
classical Tate trace maps, the map pri is not required to be Γi-equivariant.

Our first main result of this appendix is the following:

Theorem A.1.8. A weakly decompleting triple is a weak decompletion system.

In order to obtain decompletion systems rather than weak decompletion systems,
we shall consider those A underlying stably uniform Huber pairs (A,A+) (as in
[SW20, Def. 5.2.4]) or stably uniform adic Banach rings (as in [KL15, Rem. 2.8.5])
over nonarchimedean fields. For simplicity, we shall say such A are stably uniform.

Definition A.1.9. A triple ({Ai}i∈I , Â∞,Γ) as in the first two sentences of Defi-
nition A.1.6 is called stably decompleting if:

(a) Ai’s and Â∞ are stably uniform over a nonarchimedean field k.
(b) each rational subset U of Spa(Ai, A

◦
i ) is stabilized by some open normal

subgroup ΓU of Γ; and the pullback of ({Aj}j≥i, Â∞,ΓU ) to each such U
is weakly decompleting.

The second main result of this appendix is the following:

Theorem A.1.10. A stably decompleting triple is a decompletion system.

Now we start to prove Theorems A.1.8 and A.1.10.

Lemma A.1.11. Let (C•, d) be as in Definition A.1.5. Then, for each f ∈ Cs,
there exists some h ∈ Cs−1 such that |h| ≤ max

{
c|f |, c2|df |

}
and |f − dh| ≤ c|df |.

Proof. Since df is a cocycle, there exists some g ∈ Cs such that df = dg and
|g| ≤ c|df |. Since d(f − g) = 0, there exists some h ∈ Cs−1 such that dh = f − g
and |h| ≤ c|f − g| ≤ max

{
c|f |, c2|df |

}
. �

Lemma A.1.12. Let A be a Banach ring with a continuous action by a profinite
group Γ, and M a Banach A-module with a semilinear isometric Γ-action. Let
L = ⊕lj=1Aej be an object of RepA(Γ), equipped with the supremum norm. Suppose
that C•(Γ,M) is uniformly strict exact with respect to some c > 0, as in Definition
A.1.5; and that there exists some r > 1 such that |γ(ej)− ej | < 1

rc , for all j and all
γ ∈ Γ. Then C•(Γ, L⊗AM) is uniformly strict exact with respect to the same c.
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Proof. Let f =
∑l
j=1(ej ⊗ fj) be a cocycle with fj ∈ Cs(Γ,M) for all 1 ≤ j ≤ l.

Note that the norm of
∑l
j=1(ej ⊗ dfj) =

∑l
j=1(ej ⊗ dfj)− df =

∑l
j=1(ej ⊗ dfj)−

d
(∑l

j=1(ej ⊗ fj)
)

is bounded by ‖f‖rc . That is, for each j, we have ‖dfj‖ ≤ ‖f‖rc . By

Lemma A.1.11, there exist hj ∈ Cs−1(Γ,M) with ‖fj − dhj‖ ≤ ‖f‖
r and ‖hj‖ ≤

c‖f‖, for all j = 1, . . . , l. Put h =
∑l
j=1(ej ⊗ hj). Then ‖h‖ ≤ c‖f‖, and the norm

of f−dh =
∑l
j=1(ej⊗(fj−dhj))+

(∑l
j=1(ej⊗dhj)−d

(∑l
j=1(ej⊗hj)

))
is bounded

by ‖f‖r . By iterating this process, we obtain cochains H1, H2, . . . ∈ Cs−1(Γ, L⊗AM)

satisfying ‖Hn‖ ≤ c‖f‖
rn−1 and ‖f − dH1 − · · · − dHn‖ ≤ ‖f‖

rn , for all n ≥ 1. Then

f = dH for H =
∑∞
i=1Hi ∈ Cs−1

(
Γ, L⊗AM), and ‖H‖ ≤ c‖f‖, as desired. �

Corollary A.1.13. Let ({Ai}i∈I , Â∞,Γ) be weakly decompleting. Let Li be a model

of a finite free Γ-module L∞ over Â∞, as in Definition A.1.2(1). Then there exist
some i0 ≥ i such that Li′ is a good model, as in Definition A.1.2(2), for each i′ ≥ i0.

Proof. Take any basis {ej}1≤j≤l of Li over Ai, and equip Li with the supremum
norm, as in Lemma A.1.12. For any r > 1, since {Γi}i∈I converges to 1 in Γ, there
exists some i0 ≥ i such that |γ(ej)− ej | < 1

rc , for all γ ∈ Γi0 and j. Hence, for each
i′ ≥ i0, by the assumption that Li is finite free, by the conditions in Definition A.1.6,

and by applying Lemma A.1.12 to (Ai′ ,Γi′ , Â∞/Ai′), we see that Li ⊗Ai (Â∞/Ai′)
has totally trivial Γi′ -cohomology, and therefore has totally trivial Γ-cohomology,
by the Hochschild–Serre spectral sequence (see Remark A.1.7(2)). �

Lemma A.1.14. Let A → B be an isometric homomorphism of Banach rings. If
the natural projection π : B → B/A admits an isometric Banach A-module section
s : B/A→ B, then |π(b1b2)| ≤ max

{
|π(b1)| |b2|, |b1| |π(b2)|

}
, for all b1, b2 ∈ B.

Proof. Write bi = ai + s(π(bi)), for i = 1, 2, so that π(b1b2) = a1π(b2) + π(b1)a2 +
π(s(π(b1))s(π(b2))). Then |a1π(b2)| ≤ |a1| |π(b2)| ≤ |b1| |π(b2)|, by Lemma A.1.4.
Similarly, |π(b1)a2| ≤ |b2| |π(b1)|. Consequently, we have |π(s(π(b1))s(π(b2)))| ≤
|s(π(b1))s(π(b2))| ≤ |(s(π(b1))| |s(π(b2))| = |π(b1)| |π(b2)|. Since |π(b1)| |π(b2)| ≤
min

{
|π(b1)| |b2|, |b1| |π(b2)|

}
, the lemma follows. �

Lemma A.1.15. Let A → B be a Γ-equivariant isometric homomorphism of Ba-
nach rings with isometric Γ-actions. Assume that the natural projection π : B →
B/A admits an isometric Banach A-module section s, and that C•(Γ, B/A) is uni-
formly strict exact with respect to some constant c ≥ 1 (as in Definition A.1.5).
Let Ml(B/A) := Ml(B)/Ml(A) (as Banach A-modules). Let f be a cocycle in
C1
(
Γ,GLl(B)

)
. Suppose that there exists some r > 1 such that |f(γ)− 1| ≤ 1

rc for

all γ ∈ Γ and that ‖f‖ ≤ 1
rc2 , where f is the image of f in C1

(
Γ,Ml(B/A)

)
(which

is merely a cochain). (We shall also denote similar images by overlines in the proof
below.) Then f is equivalent to a cocycle in C1

(
Γ,GLl(A)

)
.

Proof. We claim that there exists some ς ∈ Ml(B) with |ς| ≤ c‖f‖ such that the
cocycle f ′ : γ 7→ γ(1 + ς)f(γ)(1 + ς)−1 satisfies |f ′(γ) − 1| ≤ 1

rc for all γ ∈ Γ

and ‖f ′‖ ≤ ‖f‖
r in C1

(
Γ,Ml(B/A)

)
. Granting the claim, by iterating this pro-

cess, we can find a sequence ς1, ς2, . . . in Ml(B) with |ςn| ≤ c‖f‖
rn−1 ≤ 1

rn such

that
∣∣γ(1 + ςn) · · · γ(1 + ς1)f(γ)(1 + ς1)−1 · · · (1 + ςn)−1

∣∣ ≤ ‖f‖rn , for all n ≥ 1. Put

ς∞ = limn→∞
(
(1 + ςn) · · · (1 + ς1)

)
∈ GLl(B). It follows that the cocycle f̃ : γ 7→
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γ(ς∞)f(γ)ς−1
∞ takes values in Ml(A)∩GLl(B) and satisfies |f̃(γ)− 1| ≤ 1

rc ≤
1
r for

γ ∈ Γ. This implies that f̃ is a cocycle in C1
(
Γ,GLl(A)

)
, and the lemma follows.

It remains to prove the claim. Note that f(γ1γ2) = γ1(f(γ2))f(γ1) because f is
cocycle in C1

(
Γ,GLl(B)

)
. By Lemma A.1.14, we have

|df(γ1, γ2)| = |γ1f(γ2) + f(γ1)− f(γ1γ2)| = |(γ1f(γ2)− 1)(f(γ1)− 1)| ≤ ‖f‖rc .

By Lemma A.1.11 (applied to −f instead), there exists h ∈ Ml(B/A) such that

(A.1.16) |h| ≤ max
{
c‖f‖, c2‖df‖

}
= c‖f‖ ≤ 1

rc ≤
1
r

and

(A.1.17) ‖f + dh‖ ≤ c‖df‖ ≤ ‖f‖r .

By assumption, we can lift h to some h ∈ Ml(B) such that |h| = |h| ≤ c‖f‖.
For γ ∈ Γ, by (A.1.16), we have |γ(1 + h)f(γ)(1 + h)−1 − f(γ)| ≤ |h| ≤ 1

rc , and

therefore |γ(1 + h)f(γ)(1 + h)−1 − 1| ≤ 1
rc . Moreover, by (A.1.16) again, we have

|γ(1 + h)f(γ)(1 + h)−1 − γ(1 + h)f(γ)(1− h)| ≤ |h|2 ≤ 1
rc

(
c‖f‖

)
= ‖f‖

r . Also, by

Lemma A.1.14, we get |γ(1 + h)f(γ)(1− h)− f(γ)− γ(h) +h| = |γ(h)(f(γ)− 1)−
(f(γ)− 1)h)− γ(h)f(γ)h| ≤ ‖f‖r . By combining these and (A.1.17), we obtain the

desired estimate |γ(1 + h)f(γ)(1 + h)−1| ≤ ‖f‖r , and the claim follows. �

Proof of Theorem A.1.8. By Corollary A.1.13, the condition (2) in Definition A.1.2
holds. Hence, our main task is to verify the condition (1) in Definition A.1.2.

Let L∞ be a finite free Γ-module over Â∞. As before, by choosing an Â∞-basis

of L∞, the Γ-module structure of L∞ amounts to a cocycle f ∈ C1
(
Γ,GLl(Â∞)

)
.

By taking i sufficiently large such that Lemma A.1.15 applies to the restriction of
f to a 1-cocycle of Γi, we obtain a (free) model Li of the Γi-module L∞ over Ai.
Since the Γ-action on L∞ is Ai-semilinear, and since Γi is normal in Γ, for each
g ∈ Γ, the subset gLi := {g(x) : x ∈ Li} of L∞ is not only an Ai-submodule,

but also a Γi-submodule. Moreover, the canonical map (gLi)⊗Ai Â∞ → L∞ is an

isomorphism of Γi-modules over Â∞, as the canonical map Li ⊗Ai Â∞ → L∞ is.
We would like to find some i′ ≥ i such that Li′ = gLi′ in L∞, for all g ∈ Γ. (We
emphasize that we need the same i′ to work for all g ∈ Γ.) If so, then the semilinear
Γi-action on Li′ extends to a semilinear Γ-action, which makes Li′ a model of the
Γ-module L∞ over Ai′ . We shall adapt the proof of Corollary A.1.13.

Take any bases {ej}1≤j≤l and {e′j}1≤j≤l of Li and L∨i over Ai, respectively.
Since the Γ-action on L∞ is Ai-semilinear, {gej}1≤j≤l is a basis of gLi over Ai,
and {e′j ⊗ g(ej′)}1≤j,j′≤l is a basis of M := L∨i ⊗Ai (gLi) over Ai, for each g ∈ Γ.
We shall equip these modules with the supremum norms given by the chosen bases.
Then the norm on M = L∨i ⊗Ai (gLi) is also the product norm. Since Γ acts
isometrically on Ai, the Ai-semilinear map g : Li → gLi is also isometric. Fix any
r > max{1, 1

c}, and take any sufficiently large i′ ≥ i such that |γg(ej)− g(ej)|gLi =

|g(g−1γg)(ej) − g(ej)|gLi = |(g−1γg)(ej) − ej |Li < 1
rc and |γ(e′j) − e′j |L∨i <

1
rc , for

all g ∈ Γ, γ ∈ Γi′ , and j. As a result, we have
∣∣γ(e′j ⊗ g(ej′)

)
− e′j ⊗ g(ej′)

∣∣
M

=∣∣(γ(e′j)−e′j
)
⊗
(
γg(ej′)−g(ej′)

)
+e′j⊗

(
γg(ej′)−g(ej′)

)
+
(
γ(e′j)−e′j

)
⊗g(ej′)

∣∣
M
< 1

rc .

Therefore, (L∨i ⊗Ai gLi)⊗Ai (Â∞/Ai′) has totally trivial Γi-cohomology, by Lemma
A.1.12 and the conditions in Definition A.1.6. Thus, since the canonical inclusions
Li′ ↪→ L∞ and gLi′ ↪→ L∞ induce the isomorphisms HomProjA

i′
(Γi)(Li′ , gLi′)

∼→
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HomProjÂ∞ (Γi)(Li ⊗Ai Â∞, gLi ⊗Ai Â∞)
∼→ HomProjÂ∞ (Γi)(L∞, L∞) (cf. (A.1.1)),

we obtain IdL∞(Li′) = gLi′ ; i.e., Li′ = gLi′ in L∞, as desired. �

Lemma A.1.18. For any continuous surjective map U → V of Banach spaces over
a nonarchimedean field k, and any compact topological space X, the natural map
C(X,U)→ C(X,V ) between spaces of continuous functions on X is also surjective.

Proof. Let f ∈ C(X,V ). Then the subspace f(X) of V is a compact metric space,
which is separable and admits a countable dense subset. Therefore, f(X) is con-
tained in a closed subspace W of V with a dense countable-dimensional k-subspace.
By [BGR84, Sec. 2.7.2, Prop. 8], up to replacing the norm on W with an equiva-
lent one, W admits an orthonormal Schauder k-basis {ej}j∈J . Thus, in order to
lift f to C(X,U), it suffices to find some elements ẽj ’s of U lifting ej ’s such that
supj∈J{|ẽj |} <∞. Such elements ẽj ’s exist because, by the open mapping theorem
(see, for example, [KL15, Thm. 2.2.8]), the unit ball of W is contained in the image
of the ball of some radius C > 0 of the preimage of W in U . �

Lemma A.1.19. Let ({Ai}i∈I , Â∞,Γ) be stably decompleting. Let L be a finite
projective Γ-module over Ai, for some i ∈ I. Then there exists some i0 ≥ i such

that L⊗Ai (Â∞/Ai′) has totally trivial Γ-cohomology, for each i′ ≥ i0.

Proof. Take any finite covering B of Spa(Ai, A
◦
i ) by rational subsets over which the

pullbacks of Li are free, and let Γ′ be an open normal subgroup of Γ stabilizing every
rational subset in B. By Corollary A.1.13, there exists some i0 ≥ i such that, for

every i′ ≥ i0, the restrictions of L⊗Ai (Â∞/Ai′) to all the rational subsets in B as

well as their intersections have totally trivial Γ′-cohomology. Since Ai′ and Â∞ are
stably uniform, by [KL15, Thm. 2.7.7, and 2.8.10], their Čech complexes over B are

acyclic. Therefore, the Čech complex C • for L⊗Ai (Â∞/Ai′) over B is also acyclic.

Equip rational localizations of Ai′ and Â∞ with spectral norms (as in [KL15, Def.
2.1.9 and 2.8.1]), and L with any Banach Ai-module structure. Then C • becomes,
in particular, a complex of Banach k-spaces. Consider the double complex C •,•

with C •,b := C•(Γ′,C b) the standard complex of continuous maps from (Γ′)• to
C b that computes the continuous group cohomology, which is exact, as explained
above, for each b ≥ 0; and with C a,• induced by C •, which is acyclic, for each a ≥ 0,
by applying Lemma A.1.18 to X = (Γ′)a and U = C b → V = im(C b → C b+1), for
each b ≥ 0. By an elementary diagram chasing, C•(Γ′, H0(C •)) is also exact. Thus,

L⊗Ai (Â∞/Ai′) ∼= H0(C •) has totally trivial Γ′-cohomology, and therefore totally
trivial Γ-cohomology, by the Hochschild–Serre spectral sequence, as desired. �

Lemma A.1.20 (cf. [KL16, Lem. 5.6.8], with simplified statements and a more

detailed proof here). Let Â∞ be a Banach ring, with a direct system of closed

subrings {Ai}i∈I such that ∪iAi is dense in Â∞. Then each finite projective Â∞-
module arises by base change from some finite projective Ai-module, for some i ∈ I.

Proof. Let M be a finite projective Â∞-module, and choose an Â∞-linear surjection

F → M with F a finite free Â∞-module. Choose a projector on F corresponding

to a splitting of F →M , and represent this projector by a matrix U over Â∞. Note
that U2 = U and

∣∣U ∣∣ ≥ 1. Hence, we may choose a matrix V over some Ai such

that
∣∣U −V ∣∣ < ∣∣U ∣∣−3

, and so that
∣∣V 2−V

∣∣ =
∣∣V (V −U) + (V −U)U + (U −V )

∣∣ ≤∣∣U − V ∣∣∣∣U ∣∣ < ∣∣U ∣∣−2
. Let us define a sequence W0,W1, . . . by Newton iteration,
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by taking W0 = V and Wl+1 = 3W 2
l − 2W 3

l , for all l ≥ 0. Since Wl+1 −Wl =
(W 2

l −Wl)(1−2Wl) and W 2
l+1−Wl+1 = (W 2

l −Wl)
2(4W 2

l −4Wl−3), by induction on

l ≥ 0, we obtain
∣∣Wl−U

∣∣ < ∣∣V 2−V
∣∣∣∣U ∣∣ and

∣∣W 2
l −Wl

∣∣ ≤ ∣∣U ∣∣−2(∣∣V 2−V
∣∣∣∣U ∣∣2)2l .

Consequently, the matrices Wl converge to a matrix W . By the last inequality,
W 2 = W , and so W is a projector over Ai. Let Fi be the free Ai-module on the
same basis as F . Then W represents a projector on Fi, whose image is a finite
projective Ai-module which we denote by Mi.

It remains to exhibit an isomorphism Mi ⊗Ai Â∞
∼→M . Note that Mi ⊗Ai Â∞

and M are the images of the projectors on F represented by the matrices U and W ,

respectively; and that
∣∣U−W ∣∣ < ∣∣U ∣∣−2

. Then the matrixX := UW+(1−U)(1−W )
is invertible, because X − 1 = UW + (1 − U)(1 −W ) − 1 = 2UW − U −W =
U(W − U) + (U − W )W satisfies

∣∣X − 1
∣∣ < 1. Since UX = UW = XW , the

isomorphism F
X→ F induces an isomorphism Mi ⊗Ai Â∞

∼→M , as desired. �

Proof of Theorem A.1.10. By Lemma A.1.19, the condition (2) in Definition A.1.2
follows from the same argument based on (A.1.1) as in the proof of Theorem A.1.8.
It remains to verify the condition (1) in Definition A.1.2, by constructing a model

for each finite projective Γ-module L∞ over Â∞. By Lemma A.1.20, L∞ is the

base change to Â∞ of a finite projective Ai-module L̃i (without Γ-action), for some
i ∈ I. Take any finite covering B of Spa(Ai, A

◦
i ) by rational subsets over which the

pullbacks of L̃i are free, and let Γ′ be an open normal subgroup of Γ stabilizing
every rational subset in B. By Theorem A.1.8, for some i′ ≥ i, the (finite free)
pullback of L∞ (as a Γ′-module) to each rational subset in B admits a model (as a
Γ′-module) over Ai′ , and these models coincide on intersections of rational subsets
in B. Thus, they glue to a (finite projective) model Li′ of L∞ (as a Γ′-module)
over Ai′ , by the Kiehl gluing property for stably uniform adic Banach rings (see,
again, [KL15, Thm. 2.7.7 and 2.8.10]). For each g ∈ Γ, consider the Ai′ -submodule
gLi′ of L∞, which is also a Γ′-submodule because Γ′ is a normal subgroup of Γ,
as in the second paragraph of the proof of Theorem A.1.8. It suffices to show that
there exists some i′′ ≥ i′ such that Li′′ = gLi′′ in L∞ for all g ∈ Γ, and we may
verify this after pullback to the rational subsets in B. Since Γ/Γ′ and B are both
finite, this follows from Theorem A.1.8, as desired. �

Corollary A.1.21. Let ({Ai}i∈I , Â∞,Γ) be weakly (resp. stably) decompleting. Let
0 ∈ I be an initial object, and {ψs : Γ → A×0 }s∈S a collection of continuous group
homomorphisms such that, for each open neighborhood U of 1 in A0, there exists
some open neighborhood V of 1 in Γ such that ψs(V ) ⊂ U for all s ∈ S. Let

L∞ be a finite free (resp. finite projective) Γ-module over Â∞. For each s ∈ S, let
L∞(ψs) := L∞ ⊗A0

A0(ψs), where A0(ψs) is A0 equipped with the action of Γ via
ψs. Let Li be a model of L∞ over Ai, for some i ∈ I. Then we have the following:

(1) Li(ψs) := Li ⊗A0
A0(ψs) is a model of L∞(ψs) over Ai, for all s ∈ S.

(2) There exists some i0 ≥ i such that Li′(ψs) := Li′ ⊗A0 A0(ψs) is a good
model of L∞(ψs) over Ai′ , for all i′ ≥ i0 and all s ∈ S.

Proof. The assertion (1) is clear. As for the assertion (2), by the same argument
as in the proof of Theorem A.1.10, we are reduced to the case where Li is a finite
free Ai-module. Given the argument in the proof of Corollary A.1.13, it suffices to
show that, if Li admits a basis {ej}j∈J over Ai such that |γ(ej)− ej | < 1

rc , for all
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γ ∈ Γi, for some r and c as in Lemma A.1.12, then there exists some i′0 ≥ i such
that the corresponding basis {e′j := ej⊗1}j∈J of Li′(ψs) = Li′⊗A0 A0(ψs) over Ai′

also satisfies |γ(e′j)− e′j | < 1
rc , for all i′ ≥ i′0, s ∈ S, and γ ∈ Γi′ . To see this, note

that |γ(e′j)− e′j | = |(γ(ej)− ej)⊗ (ψs(γ)− 1) + ej ⊗ (ψs(γ)− 1) + (γ(ej)− ej)⊗ 1|.
Thus, it suffices to take any i′0 ≥ i such that |ψs(γ)− 1| < min{1, 1

rc}, for all s ∈ S,
γ ∈ Γi′0 , and j ∈ J , which exists by our assumption on {ψs}s∈S . �

A.2. Examples. We present three examples of decompletion systems.

A.2.1. Arithmetic towers. Consider Qp(µp∞) := ∪l≥0 Qp(µpl) and Zp(µp∞) :=
∪l≥0 Zp(µpl), equipped with the p-adic norms extending the standard ones on

Qp and Zp. Let (A,A+) be any Huber pair over (Qp,Zp). For each l ≥ 0, let

(Apl , A
+
pl

) :=
(
A⊗QpQp(µpl), A+⊗Zp Zp(µpl)

)
. Let (Âp∞ , Â

+
p∞) be the p-adic com-

pletion of (∪l≥0Apl ,∪l≥0A
+
pl

). Suppose that (Apl , A
+
pl

) and (Âp∞ , Â
+
p∞) are stably

uniform. Let Γpl := Gal
(
Qp(µp∞)/Qp(µpl)

)
. By the Tate–Sen formalism with

Banach-algebra coefficients developed in [BC08], we have the following:

Proposition A.2.1.1. ({Apl}l≥0, Âp∞ ,Γ1) is stably decompleting.

Proof. It suffices to show that any ({Apl}l≥0, Âp∞ ,Γ1) as above is weakly decom-
pleting, since its pullbacks to rational localizations of A satisfy the same assump-

tions. We may use the product norm on Â∞ ∼= A⊗̂QpQp(µp∞), where A is equipped

with the spectral norm with unit ball A+ (as in [KL15, Def. 2.1.9 and 2.8.1]) and
use the open subgroups {Γpl}l≥0 of Γ1. Then the condition (1) of Definition A.1.6
holds. As for the condition (2) of Definition A.1.6, it suffices to note that Qp(µpm)
admits a norm-direct supplement in Qp(µpn) as normed Qp(µpl)-vector spaces,
whenever l ≤ m ≤ n, by [BGR84, Sec. 2.4.2, Prop. 3, and Sec. 2.4.1, Prop. 5]. It
remains to verify the condition (3) of Definition A.1.6. By [BC08, Prop. 4.1.1 and
3.1.4, and, in particular, TS(3) in Def. 3.1.3], for any c > 1

p−1 , and for all sufficiently

large l (depending on c) and any topological generator γ of Γpl , the endomorphism

1 − γ : Âp∞/Apl → Âp∞/Apl admits a continuous inverse of norm ≤ pc. As a

result, H0(Γpl , Â
+
p∞/A

+
pl

) = 0, and H1(Γpl , Â
+
p∞/A

+
pl

) is annihilated by p2. Since

Γpl is procyclic, Hi(Γpl , Â
+
p∞/A

+
pl

) = 0, for i ≥ 2. In this case, we claim that the

condition (3) of Definition A.1.6 holds with c = p2. To see this, let f be a cocycle

in Ci(Γpl , Âp∞/Apl). Up to replacing f with a scalar multiple, we may suppose

that f lies in Ci(Γpl , Â
+
p∞/A

+
pl

). Since Hi(Γpl , Â
+
p∞/A

+
pl

) is annihilated by p2, there

exists some h ∈ Ci−1(Γpl , Â
+
p∞/A

+
pl

) such that ‖h‖ ≤ ‖f‖ and dh = p2f . Thus,

g := p−2h ∈ Ci−1(Γpl , Â
+
p∞/A

+
pl

) satisfies ‖g‖ ≤ p2‖f‖ and dg = f , as desired. �

Theorem A.2.1.2. ({Apl}l≥0, Âp∞ ,Γ1) is a decompletion system.

Proof. Combine Proposition A.2.1.1 and Theorem A.1.10. �

Remark A.2.1.3. Let k be a p-adic field, and let A be a Banach k-algebra. For
each l ≥ 0, put Apl := A ⊗k k(µpl) and Γpl := Gal

(
k(µp∞)/k(µpl)

)
. Note

that there exists some sufficiently large l0 ≥ 0 such that, for all l ≥ l0, we have
Apl ∼= Apl0 ⊗Qp(µ

pl0
) Qp(µpl), and Γpl ∼= Gal

(
Qp(µp∞)/Qp(µpl)

)
. In this case, by

Theorem A.2.1.2, ({Apl}l≥0, Âp∞ ,Γ1) is still a decompletion system.
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A.2.2. Geometric towers. In this example, we shall follow the setup in Section

2.3, with X = Spa(A,A+) and
̂̃
X = Spa(Â∞, Â

+
∞), in the notation there. Write

Xm,k̂∞
= Spa(Am,k̂∞ , A

+

m,k̂∞
), for all m ≥ 1, so that (Â∞, Â

+
∞) is the p-adic com-

pletion of lim−→m
(Am,k̂∞ , A

+

m,k̂∞
). Let Γ1 := Hom(P gp

Q /P gp,µ∞) ∼= Hom
(
P gp, Ẑ(1)

)
,

as in [DLLZ, (6.1.4)], and let Γm := Hom(P gp
Q / 1

mP
gp,µ∞) ⊂ Γ1, which acts on

Am,k̂∞ ’s and Â∞ by γT a = γ(a)T a, for all γ ∈ Γ1 and a ∈ PQ≥0
(and acts trivially

on A and k̂∞). Note that the actions of Γ1 on Am,k̂∞ ’s and Â∞ naturally extend to

Γ̃ := Γ1 o Gal(k∞/k), with Gal(k∞/k) acting on Γ1 via the cyclotomic character.

Proposition A.2.2.1. ({Am,k̂∞}m≥1, Â∞, Γ̃) is stably decompleting.

Proof. Since Xm’s are reduced rigid analytic spaces over k, and since
̂̃
X is perfec-

toid, Am,k̂∞ ’s are closed subrings of Â∞ satisfying the condition (a) in Definition

A.1.9. By [Ber07, Lem. 2.1.3], each rational subspace of Xm,k̂∞
is the base change

of a rational subspace of Xm,k′ , for some [k′ : k] < ∞, and hence is stabilized by

the open subgroup Γm o Gal(k∞/k
′) of Γ̃. Since rational subsets of Xm are also

strictly étale over Em, in order to verify the condition (b) in Definition A.1.9, up
to replacing X with Xm, and replacing k with a finite extension, it suffices to show

that any ({Am,k̂∞}m≥1, Â∞, Γ̃) as above is weakly decompleting. We shall use the

spectral norm on Â∞, and use the subgroups {Γm}m≥1 of Γ̃. Firstly, the condition
(1) of Definition A.1.6 is satisfied, by [KL15, Thm. 2.3.10 and Rem. 2.8.3]. Secondly,
according to the Γ1-action, we have a canonical decomposition of k+

∞[P ]-modules

(A.2.2.2) k+
∞[PQ≥0

] = k+
∞[P ]⊕

(
⊕χ 6=1(k+

∞[PQ≥0
]χ)
)
,

where χ runs over all nontrivial finite-order characters of Γ1; and so the condition
(2) of Definition A.1.6 follows from the completed tensor product of (A.2.2.2) with
A+. Finally, note that (A.2.2.2) also induces (by completed tensor product as

above) a Γm-equivariant isomorphism Â+
∞/A

+
m
∼= lim←−n (⊕χ 6=1Mn,χ), where Mn,χ :=

(A+
m/p

n) ⊗(k̂+
∞/pn)[ 1

mP ]

(
(k+/pn)[PQ≥0

]χ
)

and the direct sum is over all nontrivial

finite-order characters χ of Γm. Thus, by using [DLLZ, Lem. 6.1.7] and proceeding
as in the proof of Proposition A.2.1.1, we see that the condition (3) of Definition

A.1.6 holds with c = maxm>1

{
|ζm − 1|−1

}
= p

1
p−1 , as desired. �

Theorem A.2.2.3. ({Am}m≥1, Â∞, Γ̃) is a decompletion system.

Proof. Combine Proposition A.2.2.1 and Theorem A.1.10. �

Remark A.2.2.4. Both Proposition A.2.2.1 and Theorem A.2.2.3 remain true if we

replace Γ̃ with a closed subgroup Γ̃′ containing Γ1, because if the conditions in

Definitions A.1.6 and A.1.9 hold for Γ̃, then they also hold for Γ̃′.

A.2.3. Deformation of geometric towers. In this example, we shall continue to fol-
low the setup in Section 2.3. Let us fix the choice of a uniformizer $ of k. For each
r ≥ 1, equip B+

dR/ξ
r with the norm |x| := inf

{
|$|n : n ∈ Z, $−nx ∈ Ainf/ξ

r
}

, for

each r ≥ 1. This norm on B+
dR/ξ

r extends the norm on k and makes B+
dR/ξ

r

a Banach k-algebra. For any toric monoid P , let us equip (B+
dR/ξ

r)〈P 〉 and
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(B+
dR/ξ

r)〈 1
mP 〉 with the supremum norm, and equip A⊗̂k(B+

dR/ξ
r) and

(A.2.3.1) Br,m :=
(
A⊗̂k(B+

dR/ξ
r)
)
⊗(B+

dR/ξ
r)〈P 〉 (B+

dR/ξ
r)〈 1

mP 〉

with the product norms, as in [KL15, Def. 2.1.10]. Note that Br,m is equipped with
a natural isometric action of Γ1, by (2.3.5). Then {Br,m}r≥1 is a direct system of
Banach k-algebras with compatible actions of Γ1, with completed direct limit

B̂r,∞ :=
(
A⊗̂k(B+

dR/ξ
r)
)
⊗̂(B+

dR/ξ
r)〈P 〉(B

+
dR/ξ

r)〈PQ≥0
〉

canonically isomorphic to B+
dR(X̃)/ξr as topological rings, by Lemma 2.3.11. Since

(A.2.2.2) induces (by completed tensor product with A⊗̂k(B+
dR/ξ

r)) submetric sur-

jections B̂r,∞ → Br,m, the system {Br,m}r≥1 satisfies the condition (2) in Definition

A.1.6. Moreover, when r = 1, the topological rings B1,m and B̂1,∞ can be identified

with Am,k̂∞ and Â∞, respectively, with compatibly equivalent norms. Therefore,

by Remarks A.2.2.4 and A.1.7(1), if we use the same subgroups {Γm}m≥1 of Γ1 as

in the proof of Proposition A.2.2.1, then ({B1,m}m≥1, B̂1,∞,Γ1) is stably decom-

pleting, and hence is a decompletion system, as ({Am,k̂∞}m≥1, Â∞,Γ1) is.

Lemma A.2.3.2. The natural projection θ : B+
dR/ξ

r → k̂∞ admits a section s in
the category of k-Banach spaces whose operator seminorm satisfies |s| ≤ 2|$|−1.

Proof. By [BGR84, Sec. 2.7.2, Prop. 3], we can find a Schauder k-basis {ej}j∈J of

k̂∞ such that maxj∈J
{
|bjej |

}
≤ 2
∣∣∑

j∈J bjej
∣∣, for every convergent sum

∑
j∈J bjej .

Moreover, we can rescale ej such that |$| < |ej | ≤ 1 for all j ∈ J , and lift each ej
to some element ẽj in Ainf . Then we can define the desired section s by mapping
each convergent sum

∑
j∈J bjej to

∑
j∈J bj ẽj . �

Proposition A.2.3.3. ({Br,m}m≥1, B̂r,∞,Γ1) is weakly decompleting, for all r ≥ 1.

Proof. With the chosen norms, and with the open subgroups {Γm}m≥1 of Γ1,
it remains to verify the uniform strict exactness condition. As explained above,

({B1,m}m≥1, B̂1,∞,Γ1) is stably (and hence weakly) decompleting, which satisfies
the condition with some constant c ≥ 1 (when we equip norms compatibly as
above and use the same subgroups {Γm}m≥1 of Γ1). We shall show by induction

that ({Br,m}m≥1, B̂r,∞,Γ1) satisfies the condition with the constant (2|$|−1)r−1cr,
starting with the known case r = 1. For each r > 1, let f be a cocycle in

C•(Γm, B̂r,∞/Br,m). Then its image f in C•(Γm, B̂1,∞/B1,m) satisfies ‖f‖ ≤ ‖f‖.
Let g be a cochain satisfying dg = f with ‖g‖ ≤ c‖f‖ ≤ c‖f‖. By Lemma

A.2.3.2, we can lift g to a cochain g̃ ∈ C•(Γm, B̂r,∞/Br,m) with ‖g̃‖ ≤ 2|$|−1‖g‖ ≤
2|$|−1c‖f‖. Accordingly, there is a cochain f1 ∈ C•(Γm, B̂r−1,∞/Br−1,m) such
that f −dg̃ = ξf1 via the isometry B+

dR/ξ
r−1 ∼= ξB+

dR/ξ
r induced by multiplication

by ξ, and ‖f1‖ = ‖ξf1‖ = ‖f − dg̃‖ ≤ 2|$|−1c‖f‖. By the inductive hypothe-

sis, we can find a cochain g1 ∈ C•(Γm, B̂r−1,∞/Br−1,m) satisfying dg1 = f1 with
‖g1‖ ≤ (2|$|−1)r−2cr−1‖f1‖ ≤ (2|$|−1)r−1cr‖f‖. Now put g := g̃+ξg1; here again

ξg1 is a cochain in C•(Γm, B̂r,∞/Br,m) via the isometry B+
dR/ξ

r−1 ∼= ξB+
dR/ξ

r. Then

we have dg = f and ‖g‖ ≤ max
{
‖g̃‖, ‖g1‖

}
≤ (2|$|−1)r−1cr‖f‖, as desired. �

Theorem A.2.3.4. ({Br,m}m≥1, B̂r,∞,Γ) is a decompletion system, for all r ≥ 1.
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Proof. Let L∞ be a finite projective Γ-module over B̂r,∞. Note that, if (Lm, ιm)
is a model of L∞ over Br,m, then (ξs−1Lm/ξ

sLm, ιm) is a model of L∞/ξL∞ over

B1,m, for all 1 ≤ s ≤ r. Since ({B1,m}m≥1, B̂1,∞,Γ) is a decompletion system, there
exists some sufficiently divisible m′ ≥ 1 such that, for all 1 ≤ s ≤ r, the base change
of (ξs−1Lm/ξ

sLm, ιm) to B1,m′ is a good model. Thus, the base change of (Lm, ιm)
to Br,m′ is a good model, and we have verified the condition (2) in Definition A.1.2.
Moreover, by the same argument based on (A.1.1) as in the proof of Theorem A.1.8,
this property also ensures that any two models over Br,m becomes identical in L∞
after base change to Br,m′ for some sufficiently large multiple m′ of m.

It remains to show the existence of a model of L∞. Firstly, by the same ar-
gument as in the proof of Theorem A.1.10, for some m ≥ 1, we can find a finite
covering of (Xm)k̂∞ by rational subsets over which L∞/ξL∞ are free. (More pre-

cisely, we mean L∞/ξL∞ is free over the pullbacks of
̂̃
X to these rational subsets.

Since rational subsets of Xm are also strictly étale over Em, we still have com-
patible actions of Γm on such pullbacks. For simplicity, we shall adopt a similar
language in the following.) As explained in the proof of Proposition A.2.2.1, by
[Ber07, Lem. 2.1.3], there is an open subgroup of Gal(k∞/k) stabilizing all ratio-
nal subsets in the above finite covering. Hence, up to replacing X with Xm, and
replacing k with a finite extension, we may assume that there exists a finite cov-
ering X = ∪i∈I Spa(Ri, R

+
i ) by rational subsets such that L∞/ξL∞ is free over

each Spa(Ri, R
+
i )k̂∞ . Since ξ is a nilpotent element, the base change L∞,i of L∞

under A⊗̂k(B+
dR/ξ

r) → Ri⊗̂k(B+
dR/ξ

r) is also free. By Proposition A.2.3.3 and
Theorem A.1.8, for some m ≥ 1, each L∞,i admits a free model (Lm,i, ιm,i) over(
Ri⊗̂k(B+

dR/ξ
r)
)
⊗(B+

dR/ξ
r)〈P 〉 (B

+
dR/ξ

r)〈 1
mP 〉, and we may assume that these mod-

els coincide on the intersections of rational subsets in the covering. Thus, by [LZ17,
Prop. 3.3], these models glue to a model of L∞, as desired. �
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319, Société Mathématique de France, Paris, 2008, pp. 303–337.



LOGARITHMIC RIEMANN–HILBERT CORRESPONDENCES FOR RIGID VARIETIES 77

[Bei87] A. A. Beilinson, How to glue perverse sheaves, K-theory, arithmetic and geome-

try (Moscow, 1984–1986), Lecture Notes in Mathematics, vol. 1289, Springer-Verlag,

Berlin, Heidelberg, New York, 1987, pp. 42–51.
[Bei12] A. Beilinson, p-adic periods and derived de Rham cohomology, J. Amer. Math. Soc.

25 (2012), no. 3, 715–738.

[Ber07] V. G. Berkovich, Integration of one-forms on p-adic analytic spaces, Annals of Math-
ematics Studies, vol. 162, Princeton University Press, Princeton, 2007.
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