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FOR RIGID VARIETIES
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ABSTRACT. On any smooth algebraic variety over a p-adic local field, we con-
struct a tensor functor from the category of de Rham p-adic étale local systems
to the category of filtered algebraic vector bundles with integrable connections
satisfying the Griffiths transversality, which we view as a p-adic analogue of
Deligne’s classical Riemann—Hilbert correspondence. A crucial step is to con-
struct canonical extensions of the desired connections to suitable compactifi-
cations of the algebraic variety with logarithmic poles along the boundary, in a
precise sense characterized by the eigenvalues of residues; hence the title of the
paper. As an application, we show that this p-adic Riemann—Hilbert functor is
compatible with the classical one over all Shimura varieties, for local systems
attached to representations of the associated reductive algebraic groups.
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1. INTRODUCTION

Let X be a connected smooth complex algebraic variety, X®" the associated
analytic space and X'P the underlying topological space. The classical Riemann—
Hilbert correspondence establishes (tensor) equivalences among the following:

e the category of finite-dimensional complex representations of 1 (X P, x)
(where z is a chosen based point), which by a well-known topological con-
struction, is equivalent to the category of local systems (i.e., locally constant
sheaves) of finite-dimensional C-vector spaces on X *°P;

e the category of vector bundles with integrable connections on X?"; and

e the category of vector bundles with integrable connections on X, with reg-
ular singularities at infinity (which we shall simply call regular integrable
connections, in what follows).

The equivalence of the first and second categories is a simple consequence of the
Frobenius theorem: for a local system L on X'P, the associated vector bundle
with an integrable connection is (L ®¢ Oxan,1 ® d); and conversely, for a vector
bundle with an integrable connection on X?", its sheaf of horizontal sections is a
local system on X%P. The equivalence of the second and third categories, however,
is a deep theorem due to Deligne [Del70].

An analogous Riemann—Hilbert correspondence for varieties over a p-adic field
is long desired but remains rather mysterious until recently. The situation is far
more complicated. Let X be a smooth algebraic variety over @, for example. In
this setting, the second and third categories remain meaningful, and it is natural
to replace the first with the category of p-adic étale local systems on X. However,
after this replacement, one cannot expect an equivalence between the first and the
second categories, as can already be seen when X is a point. Moreover, in general,
the natural analytification functor from the third to the second category is not an
equivalence either. Nevertheless, one of the main goals of this paper is to prove the
following result (as one step towards the p-adic Riemann—Hilbert correspondence):
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Theorem 1.1. Let X be a smooth algebraic variety over a p-adic field k (see Nota-
tion and Conventions). Then there is a tensor functor Dzﬁ; from the category of de
Rham p-adic étale local systems I on X to the category of algebraic vector bundles
on X with regular integrable connections and decreasing filtrations satisfying the
Griffiths transversality. In addition, there is a canonical comparison isomorphism

(1.2) Hi (X7, L) @q, Bar = Hig (X, DYE(L)) ©k Bar
compatible with the canonical filtrations and the actions of Gal(k/k) on both sides.

Here Bggr is Fontaine’s p-adic period ring, and Hgg is the algebraic de Rham
cohomology. The notion of de Rham p-adic étale local systems was first introduced
by Scholze in [Sch13l Def. 8.3] (generalizing earlier work of Brinon [Bri0g]) using
some relative de Rham period sheaf. However, it turns out that this notion satisfies
a rather surprising rigidity property: by [LZI7, Thm. 3.9], a p-adic étale local
system L on X?" is de Rham if and only if, on each connected component of X,
there exists some classical point x such that, for some (and hence every) geometric
point T over zx, the corresponding p-adic representation Lz of the absolute Galois
group of the residue field of x is de Rham in the classical sense. In this situation,
it follows that the same is also true at every classical point x of X. Note that the
functor denoted by Dggr in [LZ17, Thm. 3.9] is the composition of the functor DZIF%
in Theorem[L.1]with the analytification functor. Compared with [Sch13] and [LZ17],
the algebraicity of the integrable connection is an important new contribution of
this paper. In particular, this allows us to go further to compare the p-adic theory
with Deligne’s complex theory mentioned above, as we shall see shortly.

Theorem [I.1] also includes a new de Rham comparison isomorphism for smooth
algebraic varieties over k with nontrivial coefficients, which implies that HZ, (XE’ IL)
is a de Rham representation of Gal(k/k). The de Rham comparison for smooth
varieties has a long history, which we shall not attempt to review—see, for exam-
ple, [Fal89, [Fal02] [Tsu99l Kis02, Niz08, [Niz09, Yam11l [Beil2| [AT13] [Sch13} [Sch16,
CN17, [LP19]. All these earlier works either imposed some strong assumption on
the coefficient L (and in fact most works assumed that L is trivial) or assumed
that the variety X is proper. But we require neither. In this generality, without
first constructing the corresponding DZE(L) as in Theorem it was not even
clear how to formulate the comparison isomorphism! Once Dglﬁ;(L) is constructed,
we can adapt Scholze’s approach in [Sch13|] and obtain the desired comparison for
arbitrary nontrivial coefficients on arbitrary smooth varieties.

Besides taking cohomology, the functor DZIP% is compatible with many other
operations of sheaves. For example, it commutes with taking nearby cycles in the
simplest situation where our formulation is available.

Theorem 1.3. Let f : X — Al be a smooth morphism and let D := f=1(0). Let
L be a de Rham p-adic étale local systems on X — D. Then there is a canonical
isomorphism of vector bundles with integrable connections

D3 (R (L)) = RU(D3E(L))

on D, compatible with the filtrations on both sides. (Here RU; at the two sides
of the isomorphism denotes the nearby cycle functors in the étale and D-module
settings, respectively.) In particular, RV (L) is a de Rham local system on Degy.
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See Theorem [£.3.2] for a slightly more general statement, and see Corollary [£.34]
for a concrete interpretation when X is a smooth curve over k. These results suggest
a strong relation between our work and classical Hodge theory, such as Schmid’s
theorem on limit Hodge structures [Sch73]. Another manifestation of this relation is
that we prove some cohomology vanishing results for p-adic algebraic varieties (see
Theorem [4.2.1)), similar to those that can be obtained from complex Hodge theory.
In particular, we obtain a new proof of the Kodaira—Akizuki—-Nakano vanishing
theorem (together with some generalizations) by p-adic Hodge-theoretic methods.

We shall call the functor Dglf'% in Theorem the (algebraic) p-adic Riemann—
Hilbert functor. It is natural to ask whether this functor is compatible with Deligne’s
classical Riemann—Hilbert correspondence in a suitable sense. We shall formulate
our expectation in the Conjecture below. Let us begin with some preparations.

Let X be a smooth algebraic variety over a number field . We fix an isomor-
phism ¢ : @p 5 C and a homomorphism o : E — C, and write 06X = X ®p, C.
There is a tensor functor from the category of p-adic étale local systems . on X
to the category of (vector bundles with) regular integrable connections on oX as
follows. Note that L|,x is an étale local system on o X, corresponding to a p-adic
representation of the étale fundamental group of each connected component of o .X,
which is the profinite completion of the fundamental group of the corresponding
connected component of (¢.X)*P. Then L|,x ®q,, C can be regarded as a classical
local system on (0 X)%P denoted by tL,. By Deligne’s Riemann—Hilbert corre-
spondence, we obtain a regular integrable connection on ¢X. On the other hand,

v loo: E = @p determines a p-adic place v. Let E, be the completion of F

with respect to v, and assume that L|x, is de Rham. Then DSE(MXEU) ®g,,. C
is another regular integrable connection, with an additional decreasing filtration
Fil® satisfying the Griffiths transversality. We would like to compare the above two
constructions. In order to do so, we need to impose a further restriction on L.

We say that L is geometric if, at each geometric point T above a closed point
z of X, the p-adic representation Lz of Gal(k(xz)/k(z)) is geometric in the sense
of Fontaine—Mazur (see [FM97, Part I, §1]). Note that geometric p-adic étale
local systems on X form a full tensor subcategory of the category of all étale local
systems. If IL is geometric, then L|x, is de Rham (by [LZ17, Thm. 3.9]).

Conjecture 1.4. The above two tensor functors from the category of geometric
p-adic €tale local systems on X to the category of reqular integrable connections
on 0 X are canonically isomorphic. In addition, (DZIF%(MXEU) ®g,,. C,Fil*) is a
complex variation of Hodge structures.

This is closely related to a relative version of the Fontaine-Mazur conjecture
proposed in [LZI7], but it might be more approachable because it is stated purely
in terms of sheaves. Even so, it seems to be currently out of reach. Nevertheless, in
the case of Shimura varieties, we can partially verify this conjecture. Let (G, X) be a
Shimura datum, K C G(Ay) a neat open compact subgroup, and Shx = Shg (G, X)
the associated Shimura variety, defined over the reflex field E = E(G, X). Let G¢
be the quotient of G by the minimal subtorus Zs(G) of the center Z(G) of G such
that the torus Z(G)°/Z4(G) has the same split ranks over Q and R. Recall that
there is a tensor functor from the category Repr(Gc) of algebraic representations
of G° over Q,, to the category of p-adic étale local systems on Shy (see, for example,
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[LS18b) Sec. 3] or [LZ17) Sec. 4.2]), whose essential image consists of only certain
geometric p-adic étale local systems (see [LZ17, Thm. 1.2]).

Theorem 1.5. The conjecture holds for the (p-adic) étale local systems on Shk
coming from Repg, (G°) as above.

Note that this theorem applies to all Shimura varieties, on which étale local
systems are not (yet) known to be related to motives in general. Crucial ingredients
in our proof include Margulis’s superrigidity theorem [Mar91], and a construction
credited to Piatetski-Shapiro by Borovoi [Bor84] and Milne [Mil83]. This theorem
itself has applications to the arithmetic of Shimura varieties, such as the following:

Corollary 1.6. The Grothendieck—Messing period map for Shy is étale.

This implies that the local geometry of Shimura varieties is controlled by the
moduli spaces of p-adic shtukas constructed by Scholze (see [SW20, Sec. 23.3]).
(From the definitions, it was not clear how these moduli spaces are related to
Shimura varieties.) Some other applications of Theorem will appear in [LLZ].

Now let us explain our strategy for proving Theorem As mentioned above,
in [LZ17, Thm. 3.9], a tensor functor D3} was constructed from the category of de
Rham p-adic étale local systems on X2" to the category of filtered vector bundles
on X2 with integrable connections satisfying the Griffiths transversality. In order
to prove Theorem a natural idea is to fix a smooth compactification X of X
with a normal crossings boundary divisor, and extend the filtered vector bundles
with integrable connections in loc. cit. to filtered vector bundles on X with
integrable log connections (i.e., connections with log poles along the boundary
divisor). However, rather unlike the complex analytic situation in [Del70], not every
integrable connection on X2" is extendable and hence algebraizable (see [ABO1], Ch.
4, Rem. 6.8.3] or [ABC20] Rem. 34.6.3] for some counter-example).

Instead, we shall directly construct a functor from the category of de Rham p-adic
étale local systems on X" to the category of filtered vector bundles with integrable
log connections on X™. We shall work in the realm of log analytic geometry as
in [DLLZ], and construct a log Riemann—Hilbert correspondence, which is a crucial
step in this paper. Compared with [LZ17], many new ingredients and essential
new ideas are needed for this construction, and many new difficulties have to be
overcome. Let us begin with a rough summary. Based on [DLLZ], the starting
point is the construction of the log de Rham period sheaf OBgg 1og, generalizing
the de Rham period sheaf OBgg as in [Schl3] and [LZ17]. Then we define the log
Riemann—Hilbert functors in a way similar to [LZ17]. However, for our purpose, we
also need to develop a very general formalism of decompletion systems, generalizing
the one introduced in [KLI6, Sec. 5] and many other classical works. After these,
the major divergence of the methods from [LZI7] occurs. One of the key facts used
in loc. cit., that a coherent module with an integrable connection is automatically
locally free, completely breaks down for log connections in general. Our new idea
is to study a collection of important invariants attached to a log connection—i.e.,
the residues along the irreducible components of the boundary, using the above-
mentioned decompletion formalism. This allows us to prove a lot of favorable
properties of the log connections constructed from the de Rham local systems. In
particular, we can canonically extend the filtration on the integrable connection (as
constructed in [Sch13] and [LZI17]) to the boundary. Moreover, the residues play
an essential role in our study of nearby cycles, as in Theorem
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Let us also mention that, in the classical setting over C, Illusie-Kato—Nakayama
[IKNO5, TKNO7] developed a theory of quasi-unipotent log Riemann—Hilbert corre-
spondence, which obtained as a byproduct Deligne’s Riemann-Hilbert correspon-
dence for local systems with quasi-unipotent monodromy at infinity.

We now explain our construction in more details. We will work over a smooth
rigid analytic variety Y over k (viewed as an adic space over Spa(k, Oy)), together
with a normal crossings divisor D C Y, and view Y as a log adic space by equipping
it with the natural log structure defined by D. (For applications to our previous
setup, we take Y = Yan, and take D to be the analytification of the boundary
divisor X — X with its reduced subscheme structure.) Any Kummer étale Z,-local
system I on Y induces a Zp—local system L on Yorokét- Let p 1 Yprokst — Yan
denote the natural projection from the pro-Kummer étale site to the analytic site.
(Note that as a subscript “an” means the analytic site, while as a superscript it
means the analytification of an algebraic object.) Let Q1,(log D) denote the sheaf
of differentials with log poles along D, as usual. The following theorem is an
abbreviated version of Theorem from which Theorem [I.1] will be deduced.

Theorem 1.7. LetY and p be as above. Consider the functor Dyr 1og, which sends
a Kummer étale Zy-local system I on' Y to

Dyr,10g (L) := (L ®z, OByR 10g)-
Then Dar 1og (L) is a vector bundle on Y, equipped with an integrable log connection
VL : Dar,log(L) = Dar,10g(L) ®0, Q5 (log D)

and a decreasing filtration (by coherent subsheaves) satisfying the Griffiths transver-
sality, which extends the vector bundle Dgr (L) with its integrable connection in
[LZ17, Thm. 3.9]. Moreover, all eigenvalues of the residues of Dgr iog(L) along
the irreducible components of D are rational numbers in [0,1). In particular,
(Ddr,10g (L), V1) is the canonical extension of the (Dqr (L), VL); i.e., the unique
(if existent) extension of (Dgr(LL), VL) with such eigenvalues of residues.

If Lly_p is a de Rham étale Z,-local system, then gr Dygr 10g(L) is a vector
bundle on Yan of rank rkz (L), and we have the de Rham (resp. Hodge—Tate) com-
parison isomorphism between the Kummer étale cohomology of I and the log de
Rham (resp. log Hodge) cohomology of DR 1og(L).

Note that, unlike the functors DZIP% and Dggr in Theorem and [LZ17, Thm.
3.9], the functor Dygr 10g fails to be a tensor functor in general, as the eigenvalues of
the residues of Dag,1og(L1) ®0y Ddr,log(IL2) might be outside [0, 1), and therefore
D4R 1og(IL1) ®0y D4R log (IL2) might not be isomorphic to Dag,og (L1 ®Zp Ls). This
failure is caused by the failure of the surjectivity of the canonical morphism

(1.8) 1" (Dar,og (L)) ®oy,

e OBar log = L @5 OBdR log
in general, even when rko, (Dgr,log (L)) = rkz, (IL). This phenomenon is not present
in the usual comparison theorems in p-adic Hodge theory, but is consistent with the
complex Riemann-Hilbert correspondence. Nevertheless, we will see in Theorem
that Dgg,log Testricts to a tensor functor from the subcategory of de Rham
local systems with unipotent geometric monodromy along the boundary to the sub-
category of integrable log connections with nilpotent residues along the boundary.
We will deduce Theorem [I.7] from a geometric log Riemann-Hilbert correspon-
dence. Let Y be as above, let K be a perfectoid field over k£ containing all roots
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of unity, and let Gal(K/k) abusively denote the group of continuous field auto-
morphisms of K over k. Let BCTR = BXR(K, Ok) and Bgr = Bar(K,Ok) (as
in [LZ17, Sec. 3.1]), and consider the ringed spaces Y = (Yam(’)y@kBiR) and
Y = (Yan, Oy@deR), where (’)y@chTR and Oy ®j Bgr are sheaves on Y,, which
we interpret as the rings of functions on the not-yet-defined base changes “Y@kBjR”
and “Y®yBar”, respectively. Let p/ : Yproket S Y.n denote the natural mor-
phism of sites. The following theorem is an abbreviated version of Theorem [3.2.3

Theorem 1.9. The functor
RH]Og(]L) = R/L; (IE ®Zp OEdR,IOg)

is an ezxact functor from the category of Kummer étale Z,-local systems on'Y to the
category of Gal(K /k)-equivariant vector bundles on Y, equipped with an integrable
log connection Vi, : RHiog(L) = RHi0g(L) @0y - (log D), and a decreasing filtra-
tion (by locally free (’)y@kBjR-sumedules) satisfying the Griffiths transversality.

Moreover, we have H ., (Yz, L) ®z, Bar = HfiOg ar (Vs RHiog(L)) when K = k.

Let R”Hlf)g(ﬂ_d) = R,u;(]i ®z, FilOOIB%dR,lOg), which is an Oy@kB(TR—lattice in
RHiog(L) equipped (as in [LZI7, Rem. 3.2]) with the ¢-connection Vi := ¢V, :
R'Hfgg(lh) — RHltg(]L) ®oy -(log D)(1), where t € Bgr is an element on which
Gal(K/k) acts via the cyclotomic character. By reduction modulo ¢, we obtain the
log p-adic Simpson functor Hiog, constructed in much greater generality by Faltings
[Fal05] and Abbes—Gros—Tsuji [AGT16]. See Theorem for more details.
Compared with the situation in [LZ17], the proof of Theorem requires some
decompletion statement beyond the scope of [KL16]. We have therefore developed
a general formalism in Appendix [A] which might be of some independent interest.
Now we explain how to deduce Theorem from Theorem where some es-
sential new ideas of this paper appear. By using the above-mentioned decompletion
statement and an argument similar to the one in |[LZ17], it is not difficult to show
that Dyr 1og(L) = (R’Hlog(L))Gal(K/ k) is a coherent sheaf on Y,,. However, unlike
the situation in [LZI7], the existence of a log connection does not guarantee the
local freeness of Dggr og(IL). A priori, only its reflexivity is clear. Nevertheless,
there is a collection of important invariants attached to a log connection; i.e., the
residues along the irreducible components of D. Somewhat surprisingly, by using
the decompletion formalism again, we find that all the eigenvalues of the residues
are rational numbers in [0,1). Together with the reflexivity and a general fact
about log connections, this allows us to conclude that Dgr 10g(LL) is indeed locally
free. We remark that residues also plays a vital role in deducing the comparison of
cohomology in Theorem [I.7] from the comparison of cohomology in Theorem [I.9]
Finally, our results on residues also allow us to define V-filtrations and study
nearby cycles in the p-adic setting, which in turn allows us to deduce Theorem [1.3

Outline of this paper. Let us briefly describe the organization of this paper, and
highlight the main themes in each section.

In Section[2] we study the log de Rham period sheaves, generalizing the usual ones
studied in [Bri08|, Sec. 5], [Sch13, Sec. 6], and [Sch16], with a subtle difference—see
Remark 2:2.11] In Section 2.1} we recall some notation and basic results for log
adic spaces developed in [DLLZ]. In Section we present the general definitions
of these log de Rham period sheaves. In Section we describe their structures
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in detail, when there are good local coordinates. In Section [2:4] we record some
consequences, including the Poincaré lemma. We note that results of this section
hold for a class of log adic spaces larger than those considered in Theorems[1.7]and
This extra generality is useful for many applications (see, e.g., [LLZ]).

In Section 3| we establish the geometric and arithmetic versions of log p-adic
Riemann—Hilbert correspondences, as well as the log p-adic Simpson correspondence,
as explained above. We introduce some general terminologies for filtered vector
bundles with log connections “relative to Bqr” in Section [3.I] and state the main
results in Section [3.2] which are more detailed versions of Theorems and
The proofs are given in the following subsections. In Section we show that we
obtain coherent sheaves in the various constructions. In Section[3.4] we calculate the
eigenvalues of residues of the connections along the boundary. This is the technical
heart of this paper. In particular, it justifies the local freeness of the above coherent
sheaves. In Section we show that our correspondences are compatible with
certain pullbacks and pushforwards, by using our results on residues and the known
compatibilities in [Sch13] and [LZ17]. In Section we establish the comparisons
of cohomology in our main theorems. In Section [3.7] we show that the formation of
quasi-unipotent nearby cycles (in the rigid analytic setting, as introduced in [DLLZ,
Sec. 6.4.1]) is compatible with the log Riemann—Hilbert functors.

In Section [4 we present our main results for algebraic varieties. In Section
we construct the p-adic Riemann—Hilbert functor and prove Theorem We also
establish the corresponding log Hodge-Tate comparison and the degeneration of
(log) Hodge—de Rham spectral sequences, and record the latter results in Theorem
In Section [4.2] we present some vanishing theorem for p-adic algebraic vari-
eties, by adapting complex Hodge-theoretic arguments in [Suh18| using our p-adic
results. In Section we show that the formation of algebraic (quasi-unipotent)
nearby cycles is compatible with our p-adic Riemann—Hilbert functor.

In Section [B] we compare two constructions of filtered vector bundles with reg-
ular connections on Shimura varieties, and deduce Theorem and Corollary
In Section [5.1} we begin with the overall setup. In Section [5.2] we explain the two
constructions, one complex analytic and the other p-adic. In Section we state
our main comparison theorem on these two constructions, and record some conse-
quences. In Section[5.4] we reduce the theorem to a technical statement concerning
representations of fundamental groups, which are then verified in the remaining two
subsections. This section can be read largely independent of the rest of the paper.

In Appendix we generalize the decompletion formalism in [KLI6, Sec. 5].
In Appendix we introduce and study the notions of decompletion systems and
decompleting triples. In Appendix[A-2] we present three examples which play crucial
roles in Section 3| (in the proof of coherence and the calculation of residues). The
appendix can also be read largely independent of the rest of the paper.

Acknowledgements. We would like to thank Kiran Kedlaya, Koji Shimizu, and
Daxin Xu for helpful conversations, and thank the Beijing International Center for
Mathematical Research, the Morningside Center of Mathematics, and the California
Institute of Technology for their hospitality. Some important ideas occurred to us
when we were participants of the activities at the Mathematical Sciences Research
Institute and the Oberwolfach Research Institute for Mathematics, and we would
like to thank these institutions for providing stimulating working environments.



LOGARITHMIC RIEMANN-HILBERT CORRESPONDENCES FOR RIGID VARIETIES 9

Finally, we would like to thank Yihang Zhu and the anonymous referees for many
helpful comments that helped us correct and improve earlier versions of this paper.

Notation and conventions. Unless otherwise specified, we always denote by k a
nonarchimedean local field (i.e., a field complete with respect to a nontrivial nonar-
chimedean multiplicative norm |- | : k — Rx>) with residue field x of characteristic
p > 0, and O, denotes the ring of integers in k. We also denote by kT C Oy an
open valuation ring, whose choice depends on the context. Sometimes, we choose
a pseudo-uniformizer (i.e., a topological nilpotent unit) @ of k contained in k.

By a locally noetherian adic space over k, we mean an adic space X over
Spa(k, k*) that admits an open covering by affinoids U; = Spa(A;, A;") where each
A; is strongly noetherian. A noetherian adic space over k is a qcqs locally noether-
ian adic space over k. If X is locally noetherian, we denote by X, its analytic site,
by X its associated étale site, and by A : Xg — X, the natural projection of
sites. We shall regard rigid analytic varieties as adic spaces topologically of finite
type over Spa(k, Of) (as in [Hub96]), in which case we will work with k+ = O.

By default, monoids are assumed to be commutative, and the monoid operations
are written additively (rather than multiplicatively), unless otherwise specified. For
a monoid P, let P8P denote its group completion. If R is a commutative ring with
unit and P is a monoid, we denote by R[P] the monoid algebra over R associated
with P. The image of a € P in R[P] will be denoted by e®.

Group cohomology will always mean continuous group cohomology.

As in [Sch13], many of our results will be over nonarchimedean local fields k that
are discrete valuation fields of mized characteristic (0,p) with perfect residue fields.
For the sake of simplicity, we will abusively call such fields p-adic fields. The main
results of [LZ17] work over such fields.

2. LOG DE RHAM PERIOD SHEAVES

In this section, we define and study the log de Rham period sheaves, generalizing
the usual ones studied in [Bri08, Sec. 5], [Sch13, Sec. 6], and [Sch16]. We shall
assume that k is of characteristic zero and residue characteristic p > 0.

2.1. Basics of log adic spaces. We begin with a summary of some notation
and basic results for log adic spaces developed in the companion paper [DLLZ], in
slightly less generality than the one in loc. cit., for the sake of simplicity.

Let X be any étale sheafy adic space; i.e., X admits a well-defined étale site
X¢t and the étale structure presheaf Ox,, : U — Oy(U) is a sheaf. A pre-log
structure on X is a pair (M x, a) consisting of a sheaf M x of monoids on X¢ and
a morphism « : Mx — Ox,, of sheaves of monoids (for the natural multiplicative
monoid structure of Ox,, ). Such a pair is a log structure if o induces an isomorphism
a 1(0%,,) = 0%, , in which case (X, Mx,a) is a log adic space. The log structure
is trivial when a‘l(O)X(ét) = M. For simplicity, we shall often write (X, Mx) or
X, when the context is clear. Moreover, we have the notions of morphisms between
log structures and between log adic spaces, of the log structure associated with a
pre-log structure, and of pullbacks of log structures. These are analogous to the
similar notions for schemes—see [DLLZ, Def. 2.2.2] for more details. A log adic
space is noetherian (resp. locally noetherian) if its underlying adic space is.

For example, when P is a monoid such that either P is finitely generated,
or that k is perfectoid and P is uniquely p-divisible, then we know that Y :=
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Spa(k[P], k*[P]) = Spa(k(P), kT (P)) is an étale sheafy adic space over Spa(k, k™)
(see [DLLZ, Lem. 2.2.13 and 2.2.15]). By abuse of notation, we shall sometimes
denote by simply P the constant sheaf Py on Y associated with the monoid P.
Then we have the canonical log structure P°% on Y associated with the pre-log
structure P — Oy,, induced by a — e € k(P) (see [DLLZ, Def. 2.2.17]).

Example 2.1.1. When P = Z2 for some n > 0, we have Spa(k(P),k*(P)) =
D" := Spa(k(Ty,...,T,), k{(T1,...,T,)), the n-dimensional unit disc, with the
log structure on D™ induced by 2%, — k(T1,...,Tn) : (a1,...,a,) = Ty - Tpm.

Given any log adic space X and any monoid P, a chart of X modeled on P is a
morphism of sheaves of monoids 6 : Px — Mx such that a(H(PX)) - (’);}ét and
such that the log structure associated with the pre-log structure a0 : Px — Ox,,
is isomorphic to Mx (see [DLLZ, Def. 2.3.1]). When X is defined over Spa(k, k™)
and when Spa(k(P), k*(P)) is defined as a log adic space as above, this is equivalent
to having a strict morphism (see [DLLZ, Rem. 2.3.2]) from X to Spa(k(P), k™ (P)).
We say a log adic space is fs if it étale locally admits charts models on monoids
that are fs, i.e., finitely generated, integral, and saturated (see [DLLZl Def. 2.1.1 and
2.3.5]). We also have the notion of fs charts of morphisms between fs log adic spaces
(see [DLLZl Prop. 2.3.21 and 2.3.22]). By [DLLZ, Prop. 2.3.27], fiber products exist
in the category of locally noetherian fs log adic spaces whenever the fiber products
of underlying adic spaces exist (although the underlying adic spaces of the fiber
products of fs log adic spaces might differ from the latter).

We say that a morphism of locally noetherian fs log adic spaces is strictly étale if
the underlying morphism of adic spaces is étale. By using the notion of charts, we
can define log smooth and log étale morphisms of locally noetherian fs adic spaces
(see [DLLZL Def. 3.1.1]). When X is log smooth over Spa(k, Oy), where the latter is
equipped with the trivial log structure, we simply say that X is log smooth over k
(see [DLLZ, Def. 3.1.9]). By [DLLZl, Prop. 3.1.10], a log smooth fs log adic space X
over k étale locally admits strictly étale morphisms X — Spa(k(P), k™ (P)) which
provide charts modeled on toric monoids P, i.e., fs monoids that are sharp in the
sense that the subgroups P™ of invertible elements of P are trivial. When the
underlying adic space of X is smooth, we may assume in the above that P = ZZ,
for some n > 0, so that Spa(k(P), k™ (P)) = D" (see [DLLZ, Cor. 3.1.11]). We call
any strictly étale morphism X — Spa(k(P),k*(P)) (resp. X — D") as above a
toric chart (resp. smooth toric chart) (see [DLLZ] Def. 3.1.12]).

We will mostly apply the general theory to the following class of fs log adic spaces
(see [DLLZ, Ex. 2.3.17 and 3.1.13] for more details):

Example 2.1.2. Let X be a smooth rigid analytic variety over k. A (reduced)
normal crossings divisor D of X is given by a closed immersion 1 : D — X over
k that is étale locally—or equivalently, analytic locally, up to replacing k with a finite
extension—of the form S x {Ty--- T, = 0} < S x D", for some smooth S over k.
We equip X with the log structure Mx = {f € Ox,, : f is invertible on X — D},
where o : Mx — Ox,, is the natural inclusion, which makes (X, Mx) a log smooth
noetherian fs adic space over k. Etale locally, when X = S x D", the log structure
on X is the pullback of the one on D" (see Example , and we have smooth
toric charts X — D™ such that v: D — X s the pullback of {Ty --- T, = 0} — D",
where Ty, ..., T, are the coordinates of D™, for some 0 <1 < n.
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For each locally noetherian fs log adic space X, we have the Kummer étale
site Xyet, as in [DLLZ, Sec. 4.1], whose objects are fs log adic spaces Kummer
étale over X. A typical example of Kummer é‘fale morll)hisms is, for each inte-
ger m > 1, the ramified cover D?, := Spa(k(T}",... ,Tﬁ),k*(Tﬁ,...,Tﬁ)) —
D" = Spa(k(Th,...,T,), kT (T1,...,T,)). We also have the pro-Kummer étale site
Xprokét, as in [DLLZ, Def. 5.1.2] (which generalizes [Sch16]). Then we have natural
projections of sites vx : Xprokss — Xkét, €x,6t © Xkt — Xet, and vx = x4 0 Ux :
Xprokst — Xet, Where €x ¢ is an isomorphism when the log structure is trivial. For
any morphism f : X — Y of locally noetherian fs log adic spaces, we have compat-
ible canonical morphisms of sites fies @ Xkee — Ykst and fprokst : Xprokét — Yprokét-

We can naturally define locally constant sheaves and torsion local systems on
Xxeé (see [DLLZL Def. 4.4.14]). We define a Z,-local system (or lisse Z,-sheaf)
on Xyeg to be an inverse system of Z/p™-modules L = (L,,),,>1 on Xy such that
each L, is a locally constant sheaf which are locally (on Xy¢) associated with
finitely generated Z/p™-modules, and such that the inverse system is isomorphic
in the pro-category to an inverse system in which L,q1/p" = L,. We define a
Qy-local system (or lisse Q,-sheaf) on Xy to be an object of the stack associated
with the fibered category of isogeny lisse Z,-sheaves. (See [DLLZ| Def. 6.3.1].) Let
Zp = mn(Z/p”) as a sheaf of rings on Xprokst, and let @p = Zp[%]. A Zp—local
system on Xprokét is a sheaf of Zp—modules on Xprokst that is locally isomorphic to
L®z, ip for some finitely generated Z,-modules L. The notion of @p-local systems
on Xproket 1S defined similarly. (See [DLLZ, Def. 6.3.2 and Lem. 6.3.3]). Functors
on Q,- (resp. @p—) local systems naturally extend to functors on Z,- (resp. Zp—)
local systems, which we shall abusively denote by the same symbols, for simplicity.

2.2. Definitions of period sheaves. Let (R, R") be a perfectoid affinoid algebra
over k, with (R?, R**) its tilt. Recall that there are the period rings

Aint(R, RY) := W(R’™) and  Bin(R, RY) := Aine(R, R)[3].
It is well known that there is a natural surjective map
(2.2.1) 0: Aps(R,RT) — RT,

whose kernel is a principal ideal generated by some & € Aj,¢(R, RT), which is not
a zero divisor (see, for example, [KL15 Lem. 3.6.3]). We define

Bl (R, RY) :=1im (B (R, RY)/€") and  Bar(R, R*) := B (R, R)[¢™"].

We shall equip Bar(R, R*) with the filtration Fil'Bqr (R, R") = "B (R, RY),
for all » € Z. This filtration is separated, complete, and independent of the choice
of &. Therefore, for all r € Z, we have a canonical isomorphism

(2.2.2) gr’ Bar(R, RY) 2 ¢"R.

Now let X be a locally noetherian fs log adic space over Spa(Qy,Z,). As in
[DLLZ, Def. 5.4.1] (which generalizes [Sch13, Def. 4.1 and 5.10]), we have:

—~

* Og(prokét = U_l(og(két)v where ? = () or +;
O% e = im0, (0% " O — Ot [,
* OXprokét - mn (OXprokét /p ) and OXprokét = OXprokét [p]7

b? . 2 b .
) OXprokét - I&H@ OXprokét’ Where = @ or +’
® (: MX = ,U*I(MXkét) N OX

prokét prokét ? and
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b. b . b
e ./\/lXprokét = @%Hav Mx — O%

We shall sometimes omit the subscripts “prokét” or “Xprokst”-

prokét prokét "

Definition 2.2.3. We define the following sheaves on Xp oét:
(1) Let Ajpr,x = W(@;b ) and Binr x = Ainf,x[%], where the latter is

prokét
equipped with a natural map 0 : B x — @) X proket -
(2) Let BJ; x = lim_ (Bint,x/(ker6)7), and Bar,x := BJy [t™'], where  is
any generator of (ker Q)BXR, - (We will choose some ¢ in 1] below.)
(3) The filtration on IB%Q'RX is given by Filr]B%ji'RVX = (ker0)"Bjg - It induces
a filtration on Bag, x given by Fil'Bagr x := > .~ _, t’SFilr+5BiR7X.

We shall omit the subscript X in the notation when the context is clear.

Proposition 2.2.4. Suppose that U € Xprokst 15 log affinoid perfectoid, with asso-
ciated perfectoid space U = Spa(R, RT), as in [DLLZ, Def. 5.3.1 and Rem. 5.3.5].

~

(1) We have a canonical isomorphism Aupe(U) = Aine(R, RY), and similar iso-
morphisms for Bing, IBSji'R, and Byg.
(2) HI(U,B}z) =0 and H’(U,Bqr) = 0 for all j > 0.

Proof. The proof is essentially the same as in the one of [Sch13] Thm. 6.5], with
the input [Sch13l Lem. 5.10] there replaced with [DLLZ] Prop. 5.4.3]. O

Remark 2.2.5. By the previous discussion and Proposition [2.2.4f|1) (for Ain¢), the
element ¢ in Definition exists locally on Xp,okét and is not a zero divisor.
Therefore, the sheaf Bqr and its filtration are indeed well defined.

Corollary 2.2.6. If X is over a perfectoid field k (over Q,) containing all roots
of unity, then gr* Bar = @cz, (Ox, e (1))

Proof. This follows from (2.2.2]) and Proposition [2.2.4] as in [Sch13| Cor. 6.4]. O

Corollary 2.2.7. Suppose that v+ : Z — X is a strict closed immersion, as in
[DLLZl, Def. 2.2.23]. Then Bar,x — tprokét,«(Bar,z) is surjective. More precisely,
its evaluation at every log affinoid perfectoid object U in Xprokstr 5 surjective.

Proof. This follows from [DLLZl, Prop. 5.4.5] and Propositionm O

Now let X be a locally noetherian fs log adic space over Spa(k, k™). We shall con-
struct OB$R710g, » @ log version of the geometric de Rham period sheaves OBIR’ x
introduced in [Bri08| [Sch13} [Sch16]. As log affinoid perfectoid objects form a basis
B of Xproker (see [DLLZ, Prop. 5.3.12]), it suffices to define O]B%IRJOg,X as a sheaf
associated with a presheaf on B.

We adopt the notation in [DLLZl Sec. 5.3 and 5.4]. Let U = @iel Ui € Xprokét

be a log affinoid perfectoid object, with U; = (Spa(R;, R}"), M;, a;), for each i € I,
and with associated perfectoid space U = Spa(R, RT), where (R, R") is the p-
adic completion of h_ngieI(Rl-,R;r), which is perfectoid. By [DLLZ, Thm. 5.4.3],
(O(U), 0 (U)) = (R, RY), and (O°(U), 0"+ (U)) is its tilt (R”, R°T). Let us write:

o M; := M;(U;), for each i € I;

o M :=Mx, .. (U) = lim, _ M;; and

.MbZ:be ) =1 M.

im
prokét <—ar—aP
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Recall that we have a; : M; — R;, for each i € I, and o® : M’ — R’ (see
Section and [DLLZl Def. 5.4.1]). For each r > 1, we have a multiplicative map
R> — W(R"*)[L]/¢" induced by R*T — W(R*t), which we still denote by f > [f].

1
p
Then the composition of this map with o” : M* — R® induces a map

i o My X g M° = (Ri@wy () (W (RT) /€7)) [M; xag M)
a=(d,a") = (ai(d)@1) — (1@ [a’(a")]) e,

where e denotes (in boldface, unlike in our convention) the element of the monoid
algebra corresponding to a = (a',a”) € M; xp; M". Let

(2.2.8) Sir = (Ri@w ey (W (R) /€)My X s M)/ (@i,0(0)) g

By abuse of notation, we shall sometimes drop tensor products with 1 in the nota-
tion, and write o;(a’) = [@”(a”)] e® in S; . There is a natural map

(2.2.9) Orog : Siv — R

induced by the natural maps R; — R and (2.2.1)) such that 04(e*) = 1, which is
well defined because 0([a”(a”)]) = ai(a’) in R, for all (a/,a”) € M; xpr M”. Let

S; = @(Sw/(ker b10g)°).
equipped with a canonically induced map 6iog : §Z — R. Note that @ie s §Z

depends only on U € X},okeét, but not on the presentation U = @ie s U;.

Definition 2.2.10. (1) The geometric de Rham period sheaf OIEB(TR,IO%X on
Xprokét is the sheaf associated with the presheaf sending U to @ie s Si,
equipped with the filtration FilTOB:{R’]Og’X := (ker Glog)’”(’)IB:fR’log)X.

(2) We define the filtration on OIB%(J{R’IOg’ +[t7!], where t is the same as in Defi-
nition [2.2.3((2), by Fil" (OBg 1, x[t71]) == X5, t*Fil' OBy |, x-
(3) Let OBgR,10g,x be the completion of (’)IB%Q“RJ()&X[t’l] with respect to the
above filtration, equipped with the induced filtration. Then we have
Fil" OB tog,x = Um(Fil" (OB 1, x[t™])/Fil" " (OB{R 10g x [t '])):
s>0

and OBdR,log,X = UT€Z FﬂrOEdR’log’X. Let O(Clog,X = gl"o OBdR,log,X~
We shall omit the subscript X in the notation when the context is clear.

Note that Fil’OBgg jog is a sheaf of rings and OBgg 1o = (Fil°OBgr 1og) [t ']-
(However, OBar log 7 OB 1, [t '] in general.)

Remark 2.2.11. Even if the log structure is trivial, the definition of OBggr 1og given
here is slightly different from the definitions of OBggr in [Bri08, Sec. 5], [Sch13l
Sec. 6], and [Sch16], as we perform an additional completion with respect to the
filtration. This modification is necessary because the sheaves OBgr defined in
loc. cit. are not complete with respect to the filtrations—we thank Koji Shimizu
for pointing out this. We will see in Corollary 2.4.2] below that the Poincaré lemma
still holds and, with the new definition of OBgg, all the previous arguments in
loc. cit. (and also those in |[LZ17]) remain essentially unchanged.
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Remark 2.2.12. Although OBgg log is defined for any locally noetherian fs log adic
space X over Spa(k, k™), we shall only use it for log smooth ones over p-adic fields,
or some of their closed subspaces with induced log structures.

The period sheaf OIB%:R,IOg is equipped with a natural log connection. Let Qlj‘}g
be the sheaf of log differentials, as in [DLLZ], Def. 3.3.6]. By abuse of notation, its
pullbacks to Xg;, Xyer, and Xprokee Will still be denoted by the same symbols.

Note that there is a unique B (U)/£"-linear log connection

(2.2.13) V: Si,r — Si,r QR; Q};ég(Ul)
extending d : R; — Q'8(U;) and 6 : M; — Q'98(U;) such that
(2.2.14) V(e®) =e*d(a),

for all a = (a’,a") € M; x pr M. Essentially by definition, we have
Y ((ker f1og)*) C (Ker log)*" @, QL (T7)

for all s > 1. By taking ker(fio4)-adic completion, inverse limit over r, and direct
limit over i, the above log connection (2.2.13)) extends to a ]BIR—linear log connection

lo
(2.2.15) V: OBlg 1o0p = OBJR 1og ®Ox, e X -
Since t € IBBLJ{R, 2.2.15|) further extends to a Bggr-linear log connection
_ - 1
(2.2.16) V : OBJg o[t = OBl 1, [t ®0x, e X

satisfying V(Filr(OBXRJOg[t*lD) C (FilT_l(OBjR,log[le) QOx,, et
r € Z. Therefore, (2.2.16]) also extends to a Bgr-linear log connection

(2.2.17) V : OBgR,log — OByRr,10g ®0x Ql)?ga

prokét

Ql;gg, for all

satisfying V(Fil” OBgr 1og) C (Fil" " OB4R 1og) @0 Q'e, for all r € Z.

prokét

2.3. Local study of Byg and OBgg, log. In this subsection, we study Bqr and
OBar 10g When there are good local coordinates. These results are similar to [Bri08|
Sec. 5], [Sch13l Sec. 6], and [Sch16]. We assume that k is a p-adic field, and let k be
a fixed algebraic closure. For each m > 1, we denote by p,,, (resp. oo = U )
the group of m-th (resp. all) roots of unity in k. Let k,, = k(u,,) C k, for all
m > 1; let koo = k(o) = Up ky, in k; and let koo be the p-adic completion of ko
Then k:oo is a perfectoid field. Let k:b denote its tilt. We shall denote by k', k‘“‘

and kb+ the rings of integers in k,,, koo, and k" , respectively. Let
A = At (Foo, kL)
Fix an isomorphism of abelian groups
(2.3.1) C:Q/Z 5
and write ¢, 1= ((L), for all n € Z>1. Then ((2) = ¢, for all % € Q. Define
e:Q— () v (C®),C(L),¢(%), ).

We shall also write (¥ = ((y) and €¥ = e(y). (In particular, ¢ = €(1).) Note that

w’ = (e — 1)/(6% — 1) is a pseudo-uniformizer of EZO, and

¢:=(ld - 1)/([e7] — 1)



LOGARITHMIC RIEMANN-HILBERT CORRESPONDENCES FOR RIGID VARIETIES 15

generates the kernel of 6 : Ay, — Ejo Consider

(2.3.2) t :=log([e]) € By = By (Foo, kL) = lim (Aine[2]/€7).

Let k — Bg‘R be the unique embedding such that the composition of k& — B;‘R — Eoo

is the natural homomorphism k& — Eoo.

Let P be a toric monoid which decomposes as a direct sum P = P & Q of toric
monoids. (Here P means P/Q as in [DLLZ, Rem. 2.1.2], rather than the sharp
quotient of P as in [DLLZ, Def. 2.1.1].) We shall denote by (@ — {0}) the ideal
of k(P) (and other similar algebras) generated by {e®},cq—t0}- The surjection

k(P) — k(P)/(Q — {0}) = k(P) induces a strict closed immersion
E := Spa(k(P), k" (P)) = Spa(k(P), k" (P)),

where E is equipped with the log structure pulled back from Spa(k(P), k™ (P)) (see
[DLLZ, Def. 2.2.17]). For each m € Z>1, let =P be the toric monoid such that
P < %P can be identified with the m-th multiple map [m] : P — P, and let
@ and ;- P be defined similarly. Let Py, :=lim (L P) and Pg’ := (Pg.,)® =
PP 27 Q, and let Qq.,, Q%p7 ﬁ@zo, and ﬁ%p be defined similarly. By pulling back
a standard toric tower over Spa(k(P),k*(P)) (cf. [DLLZ, Sec. 6.1]), we obtain a
pro-Kummer étale cover E := @m E,, — E, with strict closed immersions

Em =K XSpa(k(P),kJr(P)) Spa(k‘m(%P% k;"r_L<%P>) — Spa(kzm<%P),k‘;;(%P>)

and transition morphisms E,,, — E,, (for m|m’) induced by the natural inclusions
Lp— -LP. Note that E,, = Spa(kn (L P), k(X P)) as adic spaces, because all
nilpotent elements of ky, (- P)/(Q — {0}) are integral over k(- P)/(Q — {0}) and
hence p-divisible. Then E is log affinoid perfectoid with associated perfectoid space

E = Spa(keo (Pas, ), b (Pazo)):

For a € Py.,, we denote by T* € kT (Py.,) the corresponding element (as
opposed to e” as usual). Let T denote theiimage of T* in k*(Pq.,). Note
that 7% = 0 when a &z P@go- Moreover, we denote by %a the unique element
in Py., such that m(La) = a, so that (I'=%)™ = T% in k*(Pg.,). Let T :=
(T, T%%,..) € (%C‘;(PQN))b, and let T denote its image in (k1 (Pg.,))’. Again,
note that 7% = 0 when a ¢ Pg.,. The Galois group I' = AUt(E/EEOC) has a
natural action on k%, (Pg.,) given by
(2.3.3) Y(T*) =v@T",
for all 7~€ I'and @ € ﬁ@zo C ﬁép C PSP, where v(a) is the element of p_, given
by Aut(E/E; ) = Hom(Pg"/P®, ) (cf. [DLLZ, (6.1.4)]).

For each r > 1, we view Bl /¢" as a Tate k-algebra (in the sense of [Sch12) Def.
2.6]) with a ring of definition A;,¢/€" (with its p-adic topology), and view

(Bin/€) (5 P)/(Q —{0}) = (Bir/€" )@k (k{5 P)/(Q — {0}))
as a Tate algebra as well. The completed direct limit (over m) of these algebras is

canonically isomorphic to the completed direct limit of (B /¢")(xP), which we

1
m
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denote by (Bjx /§7’)<§@20>. By l) there is a canonical isomorphism
(2.3.4) (Bir/€")(Paso) = Bg (koo (Pas, ), ki (Poso)) /€7

sending e® to [Tab], for all @ € FQZo- Then 1) is I'-equivariant if we equip
(Bir/€")(Pg.,) with the action of I' defined by

(2.3.5) v(e®) = [(v(@),7(5a), - - )] €,

forally €T and @ € ?@M, which reduces modulo £ to the action

Now suppose that X = Spa(A4, A*) is an affinoid fs log adic space w1th a strictly
étale morphism X — [E. Let X be the pullback of E under X — E. Then
X ¢ Xprokét is also log affinoid perfectoid with X = Spa(Aoo,AOt)) the associated
perfectoid space, and X — X@w is a Galois cover with Galois group I'.

Consider the sheaf of monoid algebras B | 5[P]. Let M C By |5[P] denote the
sheaf of ideals generated by {e® — 1},¢cp, and let

Brl g [P — 1] := lim (B | £ [P]/9M").
Note that e* € 1+ M C (Biz|z[[P — 1]])>< for all @ € P. Therefore, we have a
monoid homomorphism Py, — (Bi;| [P — ]]) C BIzl5[[P — 1]] (with respect
to the multiplicative structure on B, |5 [[P — 1]]) deﬁned by sending --a, where
m € Z>; and a € P, to the formal power series of (l—l—(e“—l)) %, which we abusively
still denote by e On the other hand, consider the monoid homomorphism

oo

P = Bllg(P— 1)) arlog(e®) :=> (1) 5(e* — 1)
=1

(with respect to the additive structure on B | ([P — 1]]), which uniquely extends
to a group homomorphism P& — B, |¢[[P — 1]] : a+— y, such that

ya = log(e"” ) — log(e")
when a = a* — a~ for some a™,a” € P. Then the above homomorphism further
extends linearly to a Q-vector space homomorphism P§” — Bzl [[P-1]]: a+ ya.
Since y, — (e — 1) € M2 for all a € P, if we choose a Z-basis {a1,...,a,} of P8P,
and write y; = yq,, for each j = 1,...,n, then we have a canonical isomorphism

(2.3.6) Birlsllvis .- unl] S BRIzl — 1] : y; =y,

of IB%IR&—algebras, matching the ideals (y1,...,yn)" and (&, y1,...,yn)" of the
source with the ideals MM" and (£, 9M)" of the target, respectively, for all r € Z>(.
We similarly define B | [[P—1]] and Bl | ¢ [P—1]][[@—1]], and the decomposition
P = P®(Q induces a canonical isomorphism B | ¢ [P—1]] & Bz | [P-1]][[@—1]].
Lemma 2.3.7. There is a unique morphism of sheaves

(2.3.8) v:Ox, el = Birlz [P — 1]

satisfying the following conditions:

prokét

e¥—1, 60

(1) The composition Ox 5 Biglgl[P— 1)) ——— Ox

natural map.

prokét|X prokét|)~( is the
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(2) The composition Py, X, e |5 = OXproree |5 — Birl [P — 1]] is induced

—ab, — .
by a — [T"]e®, where Po. o Xponee denotes the constant sheaf of monoids
on Xprokés associated with Pon: and where @ denotes the image of a in P.

Proof. Consider any log affinoid perfectoid object U = @ie ! U; € Xprokét /X 88 in
[DLLZ, Def. 5.3.1], with U; = (Spa(R;, R}"), M;, a;). We would like to construct a
compatible family of maps

(2.3.9) v+ Ry — B (U)[[P — 1]],

indexed by ¢ € I. For each i € I, by [DLLZ, Lem. 4.2.5], U; xg E,,, — E,,
is strictly étale for some m;. Given U — X , some U;; — U; factors through
Uy — U; xg Ep,,, so that R; — Ry factors as R; — B := O(U; xg E,,,;) — Ryv.
We have a structure homomorphism km7[milP] /(Q — {0}) — B induced by the
second projection U; xg E,,, = E,,,, and a canonical k,,,-algebra homomorphism
Ko, [ - Pl/(Q—{0}) — B (U)[[P — 1]] sending the image of e? to [Tab] e, for all
a € nTin which fit into the following commutative diagram of solid arrows

ki, [7;P1/(Q = {0}) ——————— BiR(U)[[P - 1]]

my

B
J e }GHLgHo

R; B Ry 6Xprokét (U)

By [Hub96), Cor. 1.7.3(iii)], there is a ﬁnitely generated k*[mi P]/(Q —{0})-algebra
B such that By := B+[ ] is étale over k[ P]/(Q —{0}) and such that B is the p-
adic completion of By. Then it follows from [Sch13, Lem. 6.11] that there is a unique
continuous lifting B — B (U)[[P—1]], denoted by the dotted arrow above, making
the whole diagram commute. Then the composition of R; — B — B (U)[[P — 1]]
gives the desired . It is clear that such v;’s, for all i € I, are independent of
the choices, compatible with each other, and define the desired . ([l

The following lemma generalizes the isomorphism ([2.3.4)) for X = Spa(4, A*).

Note that (2.3.8) induces a map A — (B, (X)/&)[[P — 1] <=5 B, (X)/¢".
Together with (2.3.4)), it induces a canonical map

2310)  (ABLBR/E)Buat ey Bin/€) Pas) = Bin(X)/€"
Lemma 2.3.11. The map 1) is an isomorphism. Furthermore, the T'-action

on (B /E")(P) defined in (2.3.5) uniquely extends to a continuous I'-action on

A®k(B§R/£ ), which is trivial modulo & and makes (2.3.10) T'-equivariant.

Proof. Since is compatible with the filtrations induced by multiplication
by the powers of { by considering the associated graded pieces, it suffices to show
that (A®kk ) (P >k (Pgs,) = A Then the same argument as in the proof of
[Schi3l Lem. 6.18] applies, with its input [Sch13l Lem. 4.5] for the tower T — T
replaced with [DLLZ, Lem. 6.1.9] for the tower lim  Spa(ki (LP), k5 (EP) — E.
The unique existence of a continuous T'-action on A®y(Bjy /&) extending the
I-action on (B =/€7)(P) follows from an argument similar to the one in the proof of
Lemma Concretely, since the map k(P) — A arises as the p-adic completion
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of an étale morphism k[P] — Ay of finite type, the [-action on (B, /¢")[P] uniquely
extends to a continuous I'-action on Ay ®y, (B /¢"), and further uniquely extends
to a continuous I'-action after p-adic completion, with desired properties. ([

Lemma 2.3.12. There exists a map of sheaves of monoids
(2.3.13) B: Mg = BRlzlP—1])*
satisfying the following conditions:
(1) For all a € M’, we have v(a(a*)) = [a’(a)] B(a), where we denote by
a > a? the natural projection M? — M.
(2) The composition of 3 with the canonical map Bl |z [[P — 1]] Liiatslini

6Xpmkét| 5 is the constant 1.
(8) The restriction of 3 to Qq., (as a constant sheaf) is given by a — e®.

Proof. The sheaf M°| 5 is generated by Pg_, = Pg., ® Qq., (as constant sheaves)
and lim O% |- We need to define the map for @ € Pg.,. If we write (locally)
f=re
(@) = hTa°b7 for some section h of lim O%
- frofr
then a(at) = (ozb(a))tl = T and the conditions of the lemma are satisfied by the
local section (@) := %h]n)eao of (Bix[[P — 1]])*| 5. This expression is independent
of the local choices, and hence globalizes and defines the desired map . O

prokét

X

b
Xprokét

‘)’E cO and g € ?on,

prokét

Next, we give an explicit description of OIB%:{RJOE; on the localized site Xproket e
Let U = @iel U, € Xpmkét/;( be a log affinoid perfectoid object, with U; =
(Spa(R;, Rf), M;,q;), as in the proof of Lemma Let S;, be as in .
Note that, for a = (a’,a”) with a” € Qg., — {0}, we have a’(a”) = 0 and hence the
relation a;(a’) = [a’(a”)] e reduces to simply a;(a’) = 0 in S; .., with no constraint
on €%, in which case we can view e® as a free variable. Consider the map

(BIR(U)/E)P] = Sip: e+ el for all a € P,
which sends (£,9) to ker 6, and therefore induces a map B (U)[[P — 1]] — S;.
By taking completion and sheafification, we obtain a map

(2.3.14) Biglz[[P — 1] = OBig 1.l %

on Xprokst - 1f we define Fil'B g | 5 [[P—1]] := (&, M) "B, | 5 [[P—1]], then (2.3.14)
is compatible with the filtrations on both sides (see Definition [2.2.10)).

The following is a log analogue of [Bri08, Prop. 5.2.2] and [Sch13, Prop. 6.10],
formulated in terms of charts and monoids:

Proposition 2.3.15. The map (2.3.14) is an isomorphism of filtered sheaves.

Proof. Let U = @z‘e s Ui € Xprokst e be a log affinoid perfectoid object, with
U; = (Spa(R;, Rf), M;,;), as in Lemma For i € I and r > 1, the map
2.3.8) induces a natural map R; — (Bl (U)/€")[[P — 1]]. Together with the map
2.3.13|), these maps induce a ring homomorphism

(2.3.16) (R oy (B (U)/€7)) [M; x g M°] = (B (U)/€0)([P — 1],
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sending e® to 3(a”), for all a = (a’,a") € M; x y M”. By Lemmas and
this map factors through S;, — (BI;(U)/€")[[P — 1]], and its composition with
B (U) /NP — 1]] “oLE0, B s the map O0g, Where S, and 6y, are as
in (2.2.8) and , respectively. Therefore, this map sends ker 6,5 to (&, ).
By taking ker 6),5-adic completion, inverse limit over » > 1, and direct limit over
i € I, we obtain a map OBjR,log(U) — B (U)[[P — 1]], whose pre-composition
with the map B (U)[[P — 1]] — OIB;RJOg(U) given by is the identity
map, because it is IB%:R(U)—Iinear and sends e® to e?, for all a € P. On the other
hand, the post-composition of with B (U)[[P = 1]] = OBy ., (U) is the

natural map R, — O]B%IRJOg(U), because k[FPy.,|] — BiL(U)[[P —1]] — S; sends

ab, —

e > [T ]e° [Tab}e(a’a) = T" and the map k[7-P)/(Q — {0}) — Bo in the
proof of Lemma is étale. Consequently, the map S;, — §Z /€" induced by
the composition of |i with (BJx(U)/¢M)[[P —1]] — S, /€ coincides with the
natural map, because both maps send the image of e in S; , to the same further
image in §i/£r, for all @ € M; x; M. Thus, the composition of OIBIR’IOg(U) —
BiR(U)[[P—1]] = OIB%CTRJOg(U) is also the identity map, as desired. O

As a byproduct of the proof, we see that, as in [Schl6], for U = ylnig U; as

above, the natural map S; — OB g 10g(U) (as in Definition [2.2.10) is already an
isomorphism, for each i.
Now, as before, let us fix a Z-basis {ai,...,a,} of P8P, and write y; = y,,, for

each j = 1,...,n, so that we have BI; |z [P —1]] 2 Biz|z[[v1,- -, ynl] as in (2.3.6).
Corollary 2.3.17. The isomorphism ([2.3.14) induces isomorphisms
Fil"OByR log = "Bz {Wh,..., Wy}

= {tr ST oA WA € BLIWh,..., Wl : ba — 0, t-adically, as [A| — oo}
A€z,

over Xprokét/)‘z—, for all r € Z, where we have the variable

(2.3.18) W; =ty
for each 1 < j <mn, and the monomial
(2.3.19) WA =W Wk

with |A] == [Aq1|+ -+ |An] = A1+ -+ Ay, for each exponent A = (Ay,...,Ay,) €
Z%,. (Here we denote by {W1,...,W,} the ring of power series that are t-adically
convergent, which is similar to the notation (W1, ..., W,,) for the ring of power se-
ries that are p-adically convergent.) Thus, gr” OBgr 10g = tT@X Wh,...,Wy],
for allr € Z, and gr® OByR 1oz = @X tE W, W,

prokét [

prokét [

By comparing the constructions, we obtain the following:

Corollary 2.3.20. Suppose that v : Z — X is a strict closed immersion of log
adic spaces such that the underlying morphism of adic spaces is the pullback of
the closed immersion Spa(k(P/Q'), k™ (P/Q')) — E = Spa(k(P),k*(P)) induced
by k(P) — k(P)/(Q" — {0}) = k(P/Q’), for some direct summand Q' of P. Let
7 =XxxZ. Suppose that U € Xprokét/)? 1s log affinoid perfectoid, whose pullback
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V :=U xx Z is log affinoid perfectoid in Zprokét/Z Then, for each r > 1, the
canonical surjection IBSdRX( ))& — IBIR (V) /& (¢f. Corollary |2 induces

(2.3.21) (Blr,x (U)/€) /(T*eqmoacqr-10) = (Bl 2 /5’")

where ([Ts‘lb])se(%O acQ'—
{[T°} sequp.acq— {0} In addition, the canonical isomorphisms BdRZ s[[P—1]] =

OB+R710g7Z|Z and B, rx|gl[P—1]] = OIB%+R710g’X|X given by Proposition [2.3.15| are

compatible with each other via pullback and pushforward.

(0} denotes the p-adic completion of the ideal generated by

2.4. Consequences.

Remark 2.4.1. Let k be a p-adic field. We may apply the calculations in Section
[2:3]in the following two cases:

(1) When X is log smooth over k, étale locally there are toric charts X — E =
Spa(k(P),k*(P)) (with Q@ = 0), as in [DLLZ, Def. 3.1.12].

(2) Let Y be smooth over k, with log structure defined by a normal crossings
divisor ¥ — Y as in Example and let X be a smooth intersection
of irreducible components of E, equipped with the log structure pulled
back from Y, as in [DLLZ, Ex. 2.3.18]. Then, étale locally, there is a
toric chart of Y as above inducing a strictly étale morphism X — E =
Spa(k(P/Q),k*(P/Q)) (for some direct summand Q of P).

In both cases, the sheaves of log differentials Ql)‘zg and Ql)‘z,g" = /\’Q])(;g are defined
as in [DLLZ, Def. 3.3.6 and 3.3.19], and are known to be vector bundles on X,
by [DLLZL Thm. 3.3.17 and Cor. 3.3.18]. (As before, by abuse of notation, their
pullbacks to Xe;, Xket, and Xproker Will still be denoted by the same symbols.)

In particular, we have the following Poincaré lemma for OIB%dR log and OBgR log,
with the log connections defined at the end of Section

Corollary 2.4.2. Let X be as in Remark 2.4.1]

(1) We have an ezact compler 0 — Bl — (’)]B%CTR log C’)B(J{R’log ® Ql)(;g’l A
lo, 2
OB(TR,Iog ® QXg
e above statement holds wit an replaced with Bar an
2) The ab hold h Bl and 0B$R,1og laced with B d
OBgR.log, Tespectively.

(3) The subcomplex:0 — Fil'Bar — Fil’ OBag jog ~— (Fil' ' OBap 10g) @25 5
(Filr_z(’)IBdR,log) ® Ql)';g’z -+ of the complex for Bar and OBgr jog %5 also
exact, for each r € Z.

(4) For each v € Z, the quotient compler 0 — gr" Bqr — gr" OB4R log AN
(gr" ! OBaR 1og) ® Qlog’l v, = (gr" 2 OBaR log) ® Ql)(gg’2~-~ of the previous
complex is exact, and can be identified with the compler 0 — Ox, .. (1) —

v v
OCiog(r) = (OCiog(r)) @ AR (=1) 5 (OCiog(r)) ® QRF*(~2) -

(All the above tensor products are over Ox which we omitted for simplicity.)

prokét ?
Proof. In both cases of Remark [2.4.1] up to étale localization on X, we may assume
that there exists a strictly étale morphism X — E = Spa(k(P), k" (P)), and then

pass to X pro-Kummer étale locally, as in Section Choose a Z-basis {a1,...,an}

of P8P and write a; = aj — a; for some aj' a; € P, for each j = 1,...,n
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By Proposition 2.3.15] and Corollary 2.3.17] it suffices to prove the exactness of
the complexes by using IEB(TR|}~([[y1,...,yn]] and Byr|g{Wi,...,Wy} in place of
OIB%Q'R10g and OBgr 1og, respectively. Note that the isomorphism ([2.3.14) matches
y; with log(e (af o] )) log(e (a ;’“;)). By [DLLZ, Thm. 3.3.17, Cor. 3.3.18, Prop.
3.2.25, and Cor. 3.2.29], Ql)?g = @7_,(Ox 6(a;)), and hence (because of (2.2.14))
(2.4.3) V(y;) = V(log(e(aj’“;))) — V(log(e(a;’a;))) = 5((1;-') — (5(aj_) = 0(a;)
and (because of (2.3.18)))

(2.4.4) V(W;) =t"15(a;).

The exactness then follows from a straightforward calculation. (Note that the t-adic
convergence condition on power series is not affected by taking anti-derivatives.) O

By combining Corollaries 2.2.6] and [2:4.2] we obtain the log Faltings’s extension:

Corollary 2.4.5. We have a short exact sequence of sheaves of (9\Xprokét -modules

0— OXpmket( ) — gr' OBI,; log — @Xpmkét ®o Ql)fgg — 0.

Xprokét

Finally, suppose that X and X’ are both as in Remark and that f: X —
X' is a log smooth morphism. Then we have a canonical short exact sequence
0 = fH(QRF) = QRF — Q¥ — 0 of vector bundles on X, by [DLLZ, Thm.

3.3.17 and Cor. 3.3.18]; and we shall write Q% = A*Q% , as in [DLLZ, Def.
3.3.19]. In this case, the log de Rham complex (Ql)cgg", V) induces the relative log

de Rham complex (Ql)%;’xwv)’ and we have the following relative Poincaré lemma:

Corollary 2.4.6. With f : X — X' as above, we have an exact complex 0 —>

-1 + + \A + log,1
Soroket (OBiR 10g.x7) = OBGR 10 x = OBiR 10g,x ® Qy/x/ A

OIB%IR log,x @ Ql)?ff(, — «--. Similarly, we have an exact complex with BdRX,

+
Bag, x Q@

proks-t( dR, X’)

B:IFLX” O]Bg;ii_Rﬂog,X’ and Ole_R7log,X’ replaced with BdR,X; BdR,X’; OBdR,log,X; and
OB4R,1og,x’, Tespectively, which is strictly compatible with all the filtrations.

Proof. By [DLLZ, Prop. 3.1.4 and 3.1.10], up to étale localization on X and X',

we may assume that f: X — X’ admits an injective sharp fs chart P’ — P. Then
we can compatibly define log affinoid perfectoid objects X — X and X' — X', as
in Section with a morphism X — X’ lifting f : X — X'. Let {a1,...,a,} and
{a},... ,a;l,} be Z-bases of P8P and (P')8P, respectively, and define {yl, ey Ynts
Wiy b {Wh, .. Wy b, and {W, ..., W/}, as in the proof of Corollary

Hence, it suffices to prove the exactness of the complex 0 — IB(TR’X |zlwi, - unll =

B x| gllv - ynll = Big xlgllyn, - unl] © Q;‘;%XJX .- and the analogous

1 .
one for Bar, x| {W1,.... Wy, } and Bar x| g{W1,..., Wi} @ Q%[ 5. Since (P')2P
and PSP are both finitely generated free abelian groups, (P’ )%p is noncanonically a
direct factor of Pép. Hence, there exist elements a;,,;,...,a;, of P whose images

in PE”/(P')% form a Q-basis. By [DLLZ, Thm. 3.3.17, Cor. 3.3.18, Prop. 3.2.25,
and Cor. 3.2.29] we have Q'8 = &7, (Ox d(ay)), Fr(Q8) = @?/:1 (Ox 6(a})),
and Ql;;%X, =041 ((’)X d(a ’4)); and a Q-linear combination of yi,...,y, is an-

nihilated by V : Bl y|glly1, - 9all = Bl xlgllyr, - vall @ QX5 ¢ [ exactly



22 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

when it lies in the Q-linear span of y{,...,y,,. We have a similar statement for
Bar, x| g{W1,...,Wyn} and W{,...,W},. Thus, the exactness of the complexes
follows from a straightforward calculation, as in the proof of Corollary O

3. LoG RIEMANN—HILBERT CORRESPONDENCES

In this section, we establish our log p-adic Riemann—Hilbert and Simpson cor-
respondences. Let k be a p-adic field, with a fixed algebraic closure k. Let K be
a perfectoid field containing ko, = k(p.,) C k, and let Gal(K/k) abusively denote
the group of continuous field automorphisms of K over k.

3.1. Filtered log connections “relative to Bgr”. Let us begin with a few
definitions and constructions for a general locally noetherian adic space X over k.

Definition 3.1.1. (1) Asin [LZ17, Sec. 3.1], let
(312) B(;FR = EIR(K, OK) and BdR = BdR(K, OK)

(the first replacing (2.3.2) from now on). Let ¢t = log([e]) € By, as in
(2.3.2). Then the homomorphism k — K lifts uniquely to k — B$R.

(2) For each integer r > 1, we define Ox®y (Bl /t") to be the sheaf on X,,
associated with the presheaf which assigns to each affinoid open subset
U = Spa(A, A*) C X the ring AR (B /t"). Then we define

OX@kBg_R = @(Ox(g)k(B;_R/tr)) and OX@deR = (Ox(/X\)kB;_R)[til].

(3) The filtrations on OX@;;B:{R and Ox®y,Bar are defined by setting
Fil"(Ox®,Bjr) = t"(Ox®,Blz) and Fil"(Ox®yBar) =t “Fil'"*(Ox &1 BJR)
for some (and hence every) s > —r. Then we define
(Ox@xBar)*" = Fil"(Ox @ Bar) /Fil”™ (Ox &4 Bar),

for any —oo < a < b < o0o. In particular, g‘r”(OX@deR) = (0X®deR)[T’T].

(4) By replacing affinoid open subsets U C X in with general étale mor-
phisms U — X from affinoid adic spaces, we similarly define the sheaves
Ox,, ®k(Blz /1), for all integers r > 1; Ox,, ®,Biz; and Ox, ®Bar on
X¢t. They are equipped with similarly defined filtrations.

Remark 3.1.3. These sheaves were introduced slightly differently in [LZ17, Sec. 3.1]
as sheaves on X an and Xp ¢ But since X an (resp. Xk e) is generated by
base changes of objects of Xy an (resp. Xy ¢t), for all finite extensions k' of k (see,
e.g., [LZI7, Lem. 2.5]), the categories of finite locally free Ox® (B /t")-modules,
(’)X@)kBCTR—modules, Oxét@)k (BIR/tT)—modules, and Oxét(@kBGTR—modules are nat-
urally equivalent to the corresponding categories introduced in [LZ17, Def. 3.5]. For
example, the category of finite locally free Ox®;, K-modules (i.e., grO(OX(@kBgR)-
modules) on X,, is equivalent to the category of vector bundles on Xk ap.

Thanks to Remark the arguments in the proofs of [LZI7, Lem. 3.1 and 3.2,
Prop. 3.3, and Cor. 3.4] also apply in the current setting and give the following:

Lemma 3.1.4. Recall that A : Xy — Xan denotes the natural projection of sites.
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(1) If X = Spa(A, A1) is affinoid, then
ARy(BIg/tT), ifi=0;

H'(Xet, Ox,, @r(Bip/t")) = {0 ifi >0

(2) There is a canonical isomorphism gr”(Ox,, ®rBar) = Ox,, OrK(r).
(8) There are canonical isomorphisms

Ox@k(Bfp/t") = M (Ox. Br(Big/t")) = RA (Ox,. Bk(Bip /1)),
which in turn induce, for ? =0 and +, isomorphisms
Ox@1Bir = A (Ox, ®kBir) = R\ (Ox,, ©r Bir)-

(4) If X = Spa(A, A1) is affinoid, then we have canonical equivalences among
the categories of finite projective A@kBIR—modules; of finite locally free
Ox ®y B -modules; and of finite locally free Ox,, @kB(TR-modules.

(5) The pushforward A, induces an equivalence from the category of finite locally
free Ox,, @k(Big /t")-modules (resp. Ox,, @y Big-modules) to the category
of finite locally free Ox ®y(Big /t")-modules (resp. Ox®y, By -modules).

As in [LZI7, Sec. 3.1], for ? = () or 4, we can define the ringed space
(3.1.5) X' = (Xan, Ox@rBjr);

where OX@kB;fR and Ox®yBar are as in Definition . They should be
interpreted as the (not-yet-defined) base changes of X under k — B;'R and k —
Bgr, respectively. Then we have Oy+ = @X@)kB(;"R and Oy = Ox®yByr.

Following [LZ17, Def. 3.5], we call a finite locally free Ox @kB(;"R—module a vector
bundle on X*. By considering such objects over open subspaces of X, these objects
form a stack on X,,. By passing to the t-isogeny category, we obtain the stack of
vector bundles on open subspaces of X. Then the category of vector bundles on X
is the groupoid of global sections of this stack. Note that, unlike in [LZI7] Def. 3.5],
we do not require that a vector bundle on X comes from a vector bundle on X+
via a global extension of scalars (although this extra generality will not be needed
in the following). Clearly, there is a faithful functor from the category of vector
bundles on X to the category of Ox®jBgr-modules.

Hence, for each vector bundle £ on X,,, the sheaf EGAKJICB(J{R (resp. 5®deR) (with
its obvious meaning) is a vector bundle on Xt (resp. X). More generally, if £ is a
vector bundle on X,,, and if M is a vector bundle on X" (resp. X), then we may
regard £ ®p, M as a vector bundle on X (resp. X).

Now let X be a log smooth fs log adic space over k. Let Ql}?g and Ql)?g” =A® Ql)cgg
be the sheaves of log differentials on X,,, as in [DLLZ] Def. 3.3.6 and 3.3.19].
Definition 3.1.6. For ? = ) or +, let Ql;%/BSR = Qg‘;g@kBgR and Ql‘;)'%}.BZR =
Ql)?g"@)kBgR, called the sheaves of relative log differentials on X° over B:‘;R.
log
X?/Bly

. o . 1 . 1
inducing differential maps on 23%’/'37 , extending the ones on Ox and Q*°.
dR

For ? = () or +, there is a natural B:';R—linear differential map d : O > — Q

Definition 3.1.7. (1) A log connection on a vector bundle £ on X is a Byr-

. 1
linear map of sheaves V : & = £ ®p, Q:’%Bda

rule. We say that V is integrable if V2 = 0, in which case we have the log

satisfying the usual Leibniz
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de Rham complex DRiog(E) = (€ ®0, Ql/.gi’édR,V) and the log de Rham
cohomology Hfong(X,S) := H'(X, DRog(£)).
(2) Let t = log([e]) € Bl be as in (2.3.2)). A log t-connection on a vector bun-

dle £F on X7 is a Bf-linear map of sheaves V™ : £+ — T @0, Ql)c(’i/B:R

satisfying the (modified) Leibniz rule VT (fe) = (te) @ df + fVT(e), for all
f € Ox+ and e € E. We say VT is integrable if (V)% = 0, in which case
we have a similar log de Rham complex (as above).

(3) A log Higgs bundle on X is a vector bundle E on X a, equipped with an
Ox -linear map of sheaves 0 : £ — E®o, Ql)(;i(—l) such that 6 A6 = 0.
(We shall often omit the subscript “an” in the following, when there is
no risk of confusion.) Then we have the log Higgs complex Higgs,,(E) =
(E®ox, Qlj‘;i"(—o), ) (where the two e are equal to each other) and the
log Higgs cohomology HfogHiggS(XK, E) := H'(Xk, Higgs),s(E)).

(4) A log connection on a coherent sheaf E on X is a k-linear map of sheaves
V:E = EQo, Q{;;g satisfying the usual Leibniz rule. We say that V
is integrable if V2 = 0, in which case we have the log de Rham com-
plex DRiog(E) = (E Qoy Ql)?g”, V) and the log de Rham cohomology
leong(X7 E) = Hl(X’ DR]O%(E))'

Suppose that E is equipped with a decreasing filtration by coherent
subsheaves Fil*E satisfying the (usual) Griffiths transversality condition
V(FiI'E) C (Fil" 'E) ®o, Ql)‘zg, for all 7. Then the complex DR (FE)
admits a filtration defined by Fil" DRiog(E) := ((Fil'"°F) ®0, Qlose V),
with the two e equal to each other, and with V respecting the filtration
and inducing O x-linear morphisms on the graded pieces. The graded pieces
form a complex gr DR)og(E) with Ox-linear differentials, and we also have
the log Hodge cohomology Hﬁ)’gIZHodge (X, E) = Hotb (X, gr® DRlog(E)).

The log de Rham cohomology and the log Hodge cohomology are related
by the (log) Hodge—de Rham spectral sequence (associated with the filtration

Fil* DRog (E) above) EY* = Hi?y o (X, E) = Hit L (X E).

The following two lemmas are clear.
Lemma 3.1.8. The functor
(EX, V) = (6, VAFI }20) i= (€7 @py Bar,t™ 'V {77 }120)

is an equivalence of categories from the category of vector bundles with integrable log
t-connections on X7 to the category of vector bundles with integrable log connections
(E,V) on X that are equipped with filtrations {Fil"},>¢ by locally free Ox®jy,Bix-
submodules satisfying, for all r > 1, the condition Fil" = t(Fil" ‘&) and the
. ) iy oy ar—1 1
Griffiths transversality condition V(Fil"€) C (FiI"™°€) ®o ., Q;i/BIR.
Lemma 3.1.9. The functor (E1,V1) — (E7/t, V"), where VT abusively also
denotes its induced map on ET/t, is a functor from the category of vector bundles
with integrable log t-connections on Xt to the category of log Higgs bundles on X .

3.2. Statements of theorems. Let us now state the main theorems of this sec-
tion. Let k, k, koo, and K be as in the beginning of this Section |3 and let X be
any log adic space over k as in Example with its log structure induced by a
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normal crossings divisor D. Let U := X — D. Given any Q,-local system L, recall
that we say L|y,, has unipotent geometric monodromy along D (see [DLLZ, Def.
6.3.7 and Rem. 6.3.13]) when k¢t (X(§)7§) acts unipotently on the stalk Lg, for
each log geometric points £ of X lying above each geometric point £ of D, where
the log structure of the strict localization X (§) is pulled back from X. Let

(321) ,u’ : XPTOkét/XK — Xan-

be the natural projection of sites. For a Qp-local system L on Xy, let L be the
corresponding Qp-local system on Xproket, as in [DLLZl Lem. 6.3.3], and consider

(3.2.2) RHiog (L) := Ryl (L ©5 OBar tos)-

Theorem 3.2.3. (1) The assignment L — RHiog(LL) s an exact functor from
the category of Qp-local systems on Xyey to the category of Gal(K/k)-
equivariant vector bundles on X equipped with integrable log connections

Vi @ RHiog(L) = RHiog(L) ®0. Ql;inR and decreasing filtrations (by

locally free OXQ@kBiR-submodules) satisfying the Griffiths transversality,
defined by Fil' RHyog (L) := 1l (L D, Fil’ OBar,10g), for all v € Z.

(2) For each irreducible component Z (defined as in [Con99]) of the normal
crossings divisor D, let Resz (VL) denote the residue of the log connection
VL along Z (see Section below for details on the definition of residues).
If Z is irreducible (which we may always assume, up to replacing k with a
finite extension), then all the eigenvalues of Resz(VL) are in QN [0,1).

(3) Assume that X is proper over k, and that K = k. LetL be a Zyp-local system
on Xyer. Then there is a canonical Gal(K /k)-equivariant isomorphism

H (XK xéts L) @z, Bar = Hfog ar (X RHiog(L)),

for each i > 0, compatible with the filtrations on both sides, where the right-
hand side is as in Definition ,

(4) Suppose that Y is another log adic space whose log structure is defined by
some normal crossings divisor E as in Example and that h : Y — X
is a morphism of log adic spaces. For any pair of irreducible components
Z and W of D and E, respectively, let mwz € Z>qo denote the multi-
plicity of W in the divisor h™1(Z); and let nz be 0 (resp. 1) if L|y,, has
(resp. does mot have) unipotent geometric monodromy along Z. Assume
that, for each irreducible component W of E, we have ), mwznz < 1,
where the sum is over all irreducible components Z of D. Then there
is a canonical Gal(K/k)-equivariant isomorphism h*(RHMieg(L), VL) =
(RHlOg(h_l(L)), th(L)), compatible with the filtrations on both sides.

As a byproduct, we obtain the log p-adic Simpson functor in our setting. We
refer to [Fal05L [AGT16] for more general and thorough treatments.

Theorem 3.2.4. (1) There is a natural functor Hieg from the category of Qp-
local systems IL on Xyg to the category of Gal(K/k)-equivariant log Higgs
bundles 01, : Hiog(L) — Hiog(L) Rox, Ql)?i(fl) on Xgan. Concretely,
by Lemma R?—lltg = FilOR'Hlog is a functor from the category of
Qp-local systems on Xye to the category of Gal(K/k)-equivariant vector
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bundles with integrable log t-connections on XT. Then, by Lemma
Hiog := gr RHiog = RH; /t is the desired functor.

log

Under the same assumption as in Theorem [3.2.3|(3)), there is a canonical
Gal(K/k)-equivariant isomorphism

Hi (XK,kéta L) ®ZP K= Hliog Higgs (XK’?H“ Hlog (L)> )

for each i > 0, where Hfog Higgs (XK,an, Hiog (L)) is as in Definition 1)
Under the same assumption as in Theorem [3.2.3(|4)), there is a canonical
Gal(K /k)-equivariant isomorphism

R (Haog (L), L) = (Hiog(h™ (L)), O0p-1(1))-

We also have an arithmetic log p-adic Riemann—Hilbert functor. Consider the
natural projection of sites

(3.2.5)

M Xprokét — Xan~

For any @Qp-local system L on X, consider

(3.2.6)

DdR,log(L) = L (HAJ ®@p OBdR,log)-

Theorem 3.2.7. (1) The assignment L — Dqg,1og(L) defines a functor from

(2)

(3)

(3.2.8)

(3.2.9)

(4)

(5)

the category of Qp-local systems on Xy¢t to the category of vector bundles on
Xan with integrable log connections Vi, : Dag log(IL) = Dar,log (L) ®0 « Qlj‘gg
and decreasing filtrations Fil®* Dyg 10g (L) (by coherent subsheaves) satisfying
the (usual) Griffiths transversality.

For each irreducible component Z (defined as in [Con99]) of the normal
crossings divisor D, all eigenvalues of the residue Resz(Vy) are in QN[0,1).
If the restriction of L to Uxss = U is de Rham (as reviewed in the
introduction), then gr Dyr 10g(IL) is a vector bundle on X of rank rkq, (L).

Assume that X is proper over k, that K =k, and thatL is a Zy-local system
on Xygsy whose restriction to Ug is de Rham. Then, for each i > 0, there
is a canonical Gal(K /k)-equivariant isomorphism

H' (X xét, L) @z, Bar = Hg ar (Xan, Dar,log (L)) @k Bar

compatible with the filtrations on both sides. Moreover, the (log) Hodge-
de Rham spectral sequence for Dyr 10g(L) degenerates on the Eq page, and
there is also a canonical Gal(K/k)-equivariant isomorphism

Hi (XK7két, ]L) ®Zp K= @aer:i (Hﬁ)gHodge (Xan; DdR,log (]L)) Rk K(_a‘)) )

for each i > 0, which can be identified with the 0-th graded piece of the
isomorphism (3.2.8), giving the (log) Hodge—Tate decomposition.
Under the same assumption as in Theorem , there is a canonical
isomorphism h* (DdR,log(]L),VH‘) = (DdR,]Og(h_l(HJ))7Vhfl(ﬂl)), compati-
ble with the filtrations on both sides.

Suppose that Y is another log adic space with its log structure defined by
a normal crossings diwisor E — Y as in Ezample 2.1.2] Let V =Y — E.
Let f: X =Y be a proper log smooth morphism that restricts to a proper
smooth morphism fly : U — V. Let L be a Zy-local system on Xy that
is de Rham when restricted to Uysy = Ug,. Then R fie «(L) is a Zy-local
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system on Yye that is de Rham when restricted to Viegw = Vi, for each
i > 0. Moreover, we have a canonical isomorphism

(Dar,jog (R’ fuet,« (L)), VRifm,*(L)> ~ (R fiog ar,« (Dar,1og (L), VL))

compatible with the filtrations on both sides, where Riflong,* denotes the
usual relative analogue of the log de Rham cohomology, and where the sub-
script “free” denotes the Oy -torsion-free quotient.

By Theorem and [DLLZ, Cor. 6.3.4], we obtain the following:

free’

Corollary 3.2.10. Let Y be a smooth rigid analytic variety over k, and let K = k.
Assume that Y admits a proper smooth compactification Y <Y such thatY —Y
is a normal crossings divisor. Let . be a de Rham Z,-local system on Yy, with
its extension L := Jxés« (L) to a Zy-local system on Yiet. Then H? (YK7ét7H_4) is a
finite Z,-module, and there is a canonical Gal(K/k)-equivariant isomorphism

(3.2.11) H (Yo, L) ®z, Bar = Hfog ar (Yans Dar,jog (L)) @k Bar,

compatible with the filtrations on both sides. Moreover, the (log) Hodge—de Rham
spectral sequence for Dyg 1og(L) degenerates on the Ey page, and the 0-th graded
piece of (3.2.11) is also a canonical Gal(K/k)-equivariant isomorphism

H! (YK7ét, ]L) ®z, K= ®,1p=; (Hﬁ)’ngodge (?ana DaRr1og (E)) Ok K(_a)> :

Note that, as explained in [DLLZ, Rem. 6.2.2], the finiteness of H* (YK’ét, ]L) as
a Zp-module does not hold in general for an arbitrary smooth rigid analytic variety
Y (that is not Zariski open in some proper rigid analytic variety).

As mentioned in the introduction, due to the failure of the surjectivity of ,
Dggr jog is not a tensor functor in general, and we have similar failures for RHiog
and Hioe. Nevertheless, we still have the following:

Theorem 3.2.12. (1) The functor RHiog (resp. Hiog) restricts to a tensor
functor from the category of Qp-local systems on Xyst whose restrictions to
Ust have unipotent geometric monodromy along D to the category of fil-
tered Gal(K/k)-equivariant vector bundles on X equipped with integrable
log connections with nilpotent residues along D (resp. the category of
Gal(K/k)-equivariant log Higgs bundles on X an)-

(2) The functor Dar iog Testricts to a tensor functor from the category of Q-
local systems on Xye whose restrictions to Ug, are de Rham and have
unipotent geometric monodromy along D to the category of filtered vector
bundles on Xan equipped with integrable log connections with nilpotent
residues along D.

3.3. Coherence. In this subsection, we prove Theorems [3.2.3|(T) and B.2.4J(1)), and
show that Dgr 10g(L) is a torsion-free reflexive coherent sheaf on X,,.

By factoring M/ as Xprokét/XK = XK,prokét — XK,ét — XK,an — Xanu we
see that RHiog(L) admits a natural Gal(K/k)-action. We need to show that
Ru;(]ﬁ ®g, Fil"OB4r 10g) is a locally free 0X®kB(J{R—module of rank rkq, (L), for
every r. Assuming this, it follows that

RHMiog(L) = Ryl (L ®g, OBar,log) = Ry, (L ®g, Fil’OBgR 1og) [t ']
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is a vector bundle of rank rkq, (IL) on X, equipped with the filtration
Fil" RHjog (L) := pil, (L ©g, Fil'OBar 1og).
by locally free O X@;@B:R—submodules. Consider the integrable log connection

V:L ®@p OBdR,log — L ®@p OBdR,log Rox Ql;ég

prokét

formed by tensoring the one on OBgR o With L. By the projection formula

(3.3.1) Ryl (L ®g, OBaRr log @0x, Qlee*) =~ R/ (L ®g, OBdR log) ®0x Qlose,

rokét

we obtain a log connection Vi, : RHiog(LL) = RHiog(L) @0« Ql)‘zg. The integrability
of Vi, and the Griffiths transversality with respect to the filtration Fil*RHjog (L)
follow from the corresponding properties of the connection .

In what follows, we shall denote by Z either the whole X or an open subspace
of a smooth intersection of irreducible components of D, equipped with the log
structure pulled back from X, which fits into the second case of Remark

Lemma 3.3.2. Let Z be as above. For any —oo < a < b < oo, there is a natural
isomorphism (Oz&®yBqg )@t = Ru’zﬁ*(OBgal’{lj]long).

Proof. By Lemma [3.1.4{[3), it suffices to prove the analogue for the morphism v/ :
Zprokét 17 T Zyg, (instead of p7,). By using Corollary [2.3.17] the argument is
similar to the ones in the proofs of [Sch13l Prop. 6.16(i)] and [LZ17, Lem. 3.7]. O

By the same arguments as in the proofs of [LZ17, Thm. 2.1(i) and 3.8(i)], in
order to show that R/ (L ®g, Fil"OB4gr 10g) is a locally free O X@;CB;{R—module of
rank rkg, (I.), for every r, it suffices to prove the following:

Proposition 3.3.3. Let L be a Qp,-local system on Xys. Let Z be as above, and
let Lz denote the pullback of . under Zporss — Xprokét-

(1) Rty (Ly @5, OCiogz) =0, for all i > 0.
(2) ,u’Z’*(]I:Z ®@p OCiog,z) is a finite locally free gr0(0X®deR)-module, whose
rank is equal to rko, (L) if Z = X.

For simplicity, we may assume that K = ko, so that Gal(K/k) is identified with
an open subgroup of Z* via the cyclotomic character x. (The assertions for larger
perfectoid fields then follow by base change.) By Lemma , it suffices to
prove similar statements for the projection of sites v}, : Zproket 1z Ze (instead
of uly : Zprokét 17k Zan)- Since such statements are étale local in nature, we may
assume that X = Spa(R, RT) is an affinoid log adic space over Spa(k, k™), where
kT = Oy, with a smooth toric chart X — E := Spa(k(P), k™ (P)) (see [DLLZ, Cor.
3.1.11 and Def. 3.1.12]), where P = Z%, = ®'_(Z>0 a;). We shall write T} = e/,
for each j. Note that this fits into the setup in Section with @ = 0 there, and
we may assume that Z is defined by T} = --- =T} = 0, for some [ < n. Therefore,
we have a log affinoid perfectoid object X in Xproket (resp. Z in Zpoket) obtained
by pulling back E := hm R, —E, where E,, := Spa(ky, (L P), k(L P)), and we

1 ~
shall write T = ew® for each j. Then X — X} is a Galois pro-Kummer étale
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cover with Galois group Igeom = (Z(1))", and X — X is also a Galois pro-Kummer
étale cover, whose Galois group I fits into a short exact sequence

(3.34) 1 = Tgeom — ' = Gal(kso/k) — 1,

with Gal(ks/k) acting on Igeom = (2(1))” via the cyclotomic character x :
Gal(keo/k) — Z*. The same is true for the pullbacks Z — Zy.. and 7= Z.

Let Ry := R®:K. Also, let R := R/(T},...,T;) and Rg := R®,K. By Corol-
lary we have OClog 2|7 = Oz .|z [Wi,..., Wy, where W; = t1y; =
t~1log(e%) in the notation there, for all j = 1,...,n. Let

Ly .= H:Z ®@p @Z

prokét ?

which is a locally free O -module of rank rkg, (I). Then

prokét

(Lz ®g, OCiog2)|z = La|zW1,..., Wy,
Note that Riy’Z’* (]i, z®g, OCiog,7) is the sheaf on Zg associated with the presheaf

Y — Hi(ZpYOkét/YK’ Lz ®@p OClog,Z)-
In order to prove Proposition|3.3.3] it suffices to prove the following two statements:
(a) HO(Zprokét/ZK,]i:Z ®g, OCioq,7) is a ﬁilite projective Ry-module, of rank
rko, (L) if Z = X; and Hi(Zproket/Z , Lz ®g, OCiog,z) =0, for all i > 0.
(b) Let Y = Spa(S,ST) — Z be a composition of rational embeddings and fi-

nite étale morphisms, and let ]Ly denote the pullback of L z under Y okst —
Zprokét- Then we have a canonical isomorphism of Sx-modules

HO(Zprokét/ZK;H/;Z ®@p OCIO&Z) ®§K SK :> HO(Yprokét/kaﬂ/;Y ®(@p O(Clog7Y)~

Our approach to proving @ and @ is similar to the one in the proof of [LZ17]
Thm. 2.1]. We will only explain the new ingredients here, and refer to [LZ17] for
more details. For ‘any Y as in (]ED we endow it with the induced log structure.
Then Y :=Y Xz Ze Zprokét, Where Z — Zis as above, is log affinoid perfectoid;
and Y — Y} is also a Galois pro-Kummer étale cover with Galois group I'geom.-

By Corollary and [DLLZL Thm. 5.4.4], and by the same arguments as in
the proofs of [LZ17, Cor. 2.4, and Lem. 2.7], we obtain the following lemma:
Lemma 3.3.5. Let M be a Q,-local system on Zygs.

(1) Let U be log affinoid perfectoid object in Zprokét/ZK, For any —oco < a <
b < oo, and for each i > 0, we have Hi(ZprOkét/U7M ®@p OBgaélj}logyz) = 0.

(2) H? (Fgcom, (M ®@p O(Clogz)(f/)) ~ [’ (mekét/YK , M ®@p O(Clogyz) , for all
i>0.

Consider the topological basis {71,...,Vn} of I'geom = (Z(l))" given by pulling
back the image in Z" of the standard basis {a1,...,a,} of Z™ via the isomorphism
(Z(1))™ = Z"™ induced by (2.3.1), which is characterized by the property that

(3.3.6) v TF = G T,
forall 1 <j,7’ <nand m >1 (cf. [DLLZ (6.1.4)] and (2.3.3)).
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For each m > 1, write Xk, = Spa(RKvm,R},m) = Xk Xg, (En)k, and
write Zg,m = Zx Xg, En)x = Spa(EK,m,E;m), for some uniquely deter-
mined complete Huber pairs (R m, R}},m) and (EK,m,E;,m). Note that R ,, =
RKﬁm/(Tﬁ,‘..,Tl#) (cf. Section . Let ﬁK,oo and ﬁKﬁm be the p-adic com-
pletions of lim = Rg m and lim Ry m, respectively (cf. [DLLZ, Rem. 5.3.2]). By
Theorem ({RK7m}m21,}A%K7OO,Fgeom x Gal(K/k)) is a decompletion sys-
tem. Therefore, as in Definition m Lo = Lx ()?) has a model over R m,,

for some mgy > 1, i.e., a finite projective R m,,-module L,,,(Xk), necessarily of
rank rkg, (IL), with a continuous R ,,,-semilinear action of I'geom x Gal(K/k) such

that L, (XK) @R, f{Km ~ £x(X); and we may assume that it is good, i.c.,
H (Cgeom, Ly (XK)) =3 H (Tgeom, Lx (X)), for all i > 0. Note that Tgeom =
(Z(1))™ acts on Ry m via the last n — [ factors ['geom = (Z(1))"! (see ) By
Theorem again, ({RK,m}mZIaﬁKpoyfgeom X Gal(K/k’)) is also a decom-
pletion system. Since £z(Z) = Lx (X) Dfpe o ﬁK,oo by [DLLZ, Lem. 6.3.6],

1 1

(3.3.7) Lino(ZK) = Ling(Xi) @Ry Ricom = Ling (Xr) /(T ..., T™)

is a model of Lz(Z). Up to enlarging mq (and replacing Ly, (X k) with its base
change, accordingly), we may assume that L, (Zx) is also a good model.

Lemma 3.3.8. The Ry-linear representation of T'geom 0n L, (Xk) is quasi-
unipotent; i.e., a finite-index subgroup of I'geom acts unipotently on Ly, (Xk). By
base change, the same holds for the Ry -linear representation 0f Tgeom 0N Ly (Zxc).

Proof. Let k' := ur , where k" is the maximal unramified extension of k in k.
1

1
Let k. = K(py) C &, R, = ROy, 1)k (17" ,...,T;"°), and T, =
Gal(K/k ), for each I > 0. Since R m, is canonically isomorphic to the com-
pletion of h_I)nl R;l, by Theorem [A.2.1.2|and Remark [A.2.1.3 ({R;z}lzm Ri mo, ')
is a decompletion system. By Definition [A.1.2| (with Lo, = L., (Xk)) and Remark
since I'geom is topologically finitely generated, for some sufficiently large
lp, there exists an R; 1,-Submodule L, with a continuous [geom X I'j-action and a

canonical isomorphism Ly, @p/, Ri,m, 5 Ly (Xk) of Tgeom ¥ I'j-modules. Then
p'0

the same argument as in the proof of [LZ17, Lem. 2.15] works here. O

By Lemma [3.3.8, we obtain decompositions
(339) Lmo (XK) =Dr Lmo,T(XK) and Lmo (ZK) =Ds Lmo,T(ZK)7

where 7 are characters of I'geom Of finite order and the subscript “7” denotes the
maximal K-subspaces on which v — 7(v) acts nilpotently, for all v € I". Then each
Ly +(Xk) (vesp. L, - (Zk)) is a finite projective Rx-module (resp. Rx-module)
stable under the action of I'geom. Comnsider, in particular, the unipotent parts

(3310) L(XK) = ng,l(XK) and L(ZK) = Lmo,l(ZK)~

Up to enlarging mg as before, we may assume that the order of every 7 in (3.3.9)
divides mg. For each such 7, there exists some monomial 7" in Rg ,,,, with a, in
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L7, on which Iyeom acts via 7. Since all monomials 7% with a € --Z" are in
mo = =2 mo

Ri me [Tfl, ..., T;71, it follows that
(3.3.11) L(XKk) @Ry Ric,mo [Tl_l, R A = Lmo(XK)[Tl_l, LT,

n n

and that the rank of L(Xf) as a finite projective Rx-module is rkq, (IL).

Remark 3.3.12. However, the natural map
(3313) L(XK) QRy RK,mo — Lmo (XK)

might not be an isomorphism in general. This is the source of the failure of the
surjectivity of (|1.8) mentioned in the introduction.

Remark 3.3.14. In general, the two decompositions in are not compatible via
base change from Ry to Rx = Ry /(Ti,...,Ti). Nevertheless, since the induced
morphisms L, +(Xk)/(T1,...,T1) = Lm, +(Zk) are zero whenever 7 # 7/, we
have a canonical surjection L(Xg)/(T1,...,T)) - L(Zk).

For each 7 # 1, there exists some j such that v; —1: Ly, +(Zx) = Ly, (Zk)
is invertible, and so H* (Fgcom,Lmo,T(ZK)) = 0, for all # > 0. Hence, we have
H? (I‘gcom, L(ZK)) ~ [ (I‘gcom,Lmo(ZK)), and the following lemma follows from
essentially the same argument as in the proof of [LZ17, Lem. 2.9]:

Lemma 3.3.15. There is a canonical Gal(K/k)-equivariant isomorphism

L(Zk), ifi=0;

Hi(Zprokét/ZKJL’Z ®@p O(Clog,Z) = {O ifi>0

By Definition up to enlarging mg, the formation of L,,,(Zk) is compat-
ible with base changes under compositions of rational embeddings and finite étale
morphisms Y — Z. The same is true for the formation of the direct summands
Lumy,+(ZK) in the decomposition (3.3.9). These yield the following:

Lemma 3.3.16. The formation of the finite projective Ry -module L(Zy), which
is of rank ko, (L) when Z = X, is compatible with base changes under compositions
of rational embeddings and finite étale morphisms Y — Z.

Thus, we have established the statements @ and (b)) above, and completed the

proofs of Proposition and hence also of Theorems [3.2.3|[1) and [B.2.4][1). (The
cases where Z # X will be also useful in Section [3.7|and in [LLZ].)

Next, we move to the arithmetic situation. We will only consider Z = X.

Lemma 3.3.17. The sheaf Dar,iog(LL) is a coherent sheaf on Xan.

Proof. For simplicity, we may still assume that K = Eoo. Again, to show the
coherence of DdR’log(L), we shall consider the projection v : Xj,qrst — Xgt, instead,
and we may assume that X = Spa(R, R") admits a smooth toric chart. Note that
this modified Dyg,1og(LL) is the sheaf on Xg; associated with the presheaf

Y = H (Xproket ys L ©g, OBar,log) = H°(Gal(K/k), RHiog(L)(Y)).
From the proof of Theorem , we know that
gr” RMiog(IL) = il (L ©5 OCioy)(r).
It suffices to prove the following two statements (parallel to @ and above):
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(a’) The R-module H°(Gal(K/k), 1, (fA@@p OCiog)(r)(X)) is finitely generated,
and vanishes for |r| > 0.

(b)) If Y = Spa(S,S*) — X = Spa(R, RT) is a composition of rational local-
izations and finite étale morphisms, then we have a canonical isomorphism

H°(Gal(K/k), i, (L ®5 OCiog)(r)(X)) @ S
5 HO(Gal(K/k), p (L ©5 OCios)(r)(Y)).

Let kpe = Uk, in k, with p-adic completion Epoo. By assumption, K =
%OO. Hence, there are extensions k¥ D Ey C Ey C C, := @p over @, such that
K = k:poo@ElEg, and we can deduce from [BCO8, Prop. 4.1.1, 3.1.4, and 3.3.1]
that (L(XK)(T))GEI(K/kpm) = (L(XK)Gal(K/EP‘X’))(r) is a finite projective Ry -

)Gal(K/Epoc)

module satisfying (L(Xx)(r) ®r, Rk = L(Xk)(r), for all r € Z.

Also, we have (L(XK)(T))Gal(K/kPOO)(@RA . S@pm = (L(YK)(T))GaI(K/k”m), because

kp

(L(Xk)(r)) ®ryx Sk = L(Yk)(r). By Theorem [A.2.1.2|and Corollary [A.1.21| (with
{ts} there given by all powers of the cyclotomic character of Gal(ky=/k) — Z,),

the finite projective R; -module L(XK)G’B”I(K/EPC"’)7 with its induced action of
Gal(Epm/k) = Gal(kp~/k), descends to a finite projective Ry , -module L :=
Ly ;, (X), for some ly > 0, such that L(r) is a good model (see Definition 1]

of (L(XK)(7“))(;'31(K/k’)°°)7 for all 7 € Z, in the sense that H(Gal(kp~/k), L(r)) =
H(Gal(kye /k), (L(XK)(T))Gal(K/k”OO)), for all ¢ > 0. Consequently, we have

HO(Gal(K/k), i (L ®3g, OCuog) (r)(X)) = H°(Gal(kp/k), L(r)),

which is clearly a finitely generated R-module, and vanishes when |r| > 0.
As for the statement (]E[), up to enlarging Iy, we may assume in addition that

L(r)®gr S is a good model of (L(YK)(T))GaI(K/kPOO). Hence, it suffices to show that

HO(Gal(kye /k), L(r)) ®@g S = H°(Gal(kye /k), L(r) ®f S).

Thus, the desired base change property follows from the exactness of the complex

0 — H%(Gal(kp=/k),L) — L (017800 71) L*, where 41, . .., 05 (for some s < 2, in
fact) are topological generators of Gal(k, /k), and from the flatness of R — S. O

Lemma 3.3.18. The coherent sheaf Dar iog(LL) on Xan is reflexive.

Proof. Being torsion-free, Dgr,iog(IL) is locally free outside some locus X of codi-
mension at least two in X. Let 3: X — Xo — X denote the canonical open immer-
sion. We claim that RHog(IL) 2 7. 7* (RH10g(L)). Since RHiog(L) is locally free,
we may work locally and assume that it is isomorphic to (Ox @deR)" for some n >
0. By using the filtration on Ox®,Bar in Definition it suffices to treat the
case of Ox,., which follows from [Kis99, Cor. 2.2.4]. By taking Gal(K/k)-invariants,
we obtain a similar canonical isomorphism Dy 1og(L) = s 5" (DdR,log(L)). Since
Dyr,1og (L) is coherent and 7*Dqg,1og (L) is locally free, it follows that Dgg 10g(L) is
reflexive, by the same argument as in the proof of [Ser66l Prop. 7]. (]
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3.4. Calculation of residues. The main goal of this subsection is to prove The-
orems B238), B2 @), and BZT3

Let us first review the definition of residues for log connections and some basic
properties. We shall only consider the case where X is as Example although
the definition can be given more generally. We first suppose that F' is a vector
bundle on X,, equipped with an integrable log connection V : FF = F ®p Ql)‘zg.

Let Z C D be an irreducible component (i.e., the image of a connected component
of the normalization of D, as in [Con99]). To define the residue Resz(V) of V along
Z, we may shrink X and assume that Z is smooth and connected. Locally on X, up
to enlarging k, we may assume that there is a smooth toric chart X — D", where
D™ is as in Example such that Z = {T1 = 0}. Let ¢ : Z — X denote the
closed immersion, and let F'|z denote the O-module pullback +*(F'). Then there is
an Oz-linear endomorphism

(3.4.1) Resz(V) = V(Tiz%) mod T} : F|z — F|z,

where T} 22~ RIR denotes the dual of dT1 . Asin the classical situation, this operator does

not depend on the choice of the coordmate Ti. Also, its formation is compatible
with rational localizations, and hence is a well-defined endomorphism of F|z.

Consider Z as a smooth rigid analytic variety by itself, which is equipped with
the normal crossings divisor D' = U; (D; N Z), where the D;’s are irreducible
components of D other than Z. Then Z admits the structure of a log adic space,
defined by D’, as in Example Again as in the classical situation, the pullback
F|z is equipped with a log connection V' : F|z — F|z Qo ngg, and the residue
Resz (V) is horizontal with respect to V'. As a result, the characteristic polynomial
Pz (z) of Resz(V) is constant over Z and lies in kz[z], where kz is the algebraic
closure of k in I'(Z, Oz). Thus, the eigenvalues of Resz(V) (i.e., the roots of Pz(x))
are algebraic over k. For each root o of Pz(x) in a finite extension k' of k, let

be the corresponding generalized eigenspace of Resz (V). This is a direct summand
(and hence a quotient) of (F|z) ® k', which is preserved by the log connection V.

Given any vector bundle with an integrable log connection (F,V) on X =
(Xan, Ox®Bgr), by using Lemma the above discussions carry through.
Specifically, the coefficients of the characteristic polynomial Py (x) of Resz(V) are
constant over Z = (Zay, OZ®deR), and therefore lie in kz @y Bqr, where kz is as
above. In particular, if kz = k, then Pz(x) € Bggr[z]; and we can similarly define
(‘Fl%@)BdRB” V'), for each root a of Pz(x) in a finite extension B’ of Byg.

Now suppose that F' is a torsion-free coherent Ox-module equipped with an
integrable log connection V. Let U be the maximal open subset of X such that
F|y is a vector bundle, which is the complement of an analytic closed subvariety Xg
of X of codimension at least two. In particular, Xy cannot contain any irreducible
component of D. Hence, by replacing X with U, we can proceed as above and
attach a polynomial Pz(x) € kz[x] to each irreducible component Z C D.

Now we begin the proof of Theorem [3.2.3[2)). Since the question is local, we may
assume that X = Spa(R, RT) is affinoid and admits a smooth toric chart X — D";
that the close subspace Z; = {T; = 0} of X is irreducible when nonempty, for each
1 <4 < n; and that RHieg(L) is free. By Proposition and Corollary

RHiog (L) (X) = HO (T yeom, (L @, Bar)(X){W1, ..., Wa}),
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where each W; = t~'y; is defined as in (2.3.18). Let No := (ﬁ:®@p IBIR)()?), which
is a module over B, (X) = B, (Roo, RL) (see Proposition [2.2.4). Then we have

FIIO(H’; ®@p OBdR,log)(y) = Noo{Wh sy Wn}

= { Z ba WA by € Noo, by — 0, t-adically, as [A| — oo}
AEZ’;O

= { Z cA(VX) i cp € Ny, cp — 0, t-adically, as |A] — oo},
A€z,

where WA is as in , and (VX) = (‘;{/11) (‘[/\Vﬂ), for each A = (Aq,...,Ap).

~

Recall that we have chosen the topological basis {71, ...,7n} of T'geom = (Z(1))"
satisfying the characterizing property (3.3.6). For each A = (A4,...,A,) € Z%,
let us write (y — 1) for (y; — D)+ (v, — 1)An.

Lemma 3.4.3. (1) If > ca (VX) € Noo{Wi,..., Wy} is Tgeom-invariant, then
(y—1)*¢co — 0, t-adically, as |A| — oo, and cp = (y—1)"cy for all A € Z%,.
(2) Let

(3.4.4) Nt:={ce€Ny:(yv— DA¢ — 0, t-adically, as |A| — 00}

Then the map Noo{Wh,...,W,} = N sending all Wy,..., W, to zero
induces a canonical isomorphism

(3.4.5) n: RH (L)(X) 2 (Nao{W1,..., W, })Feeom =2 N,

log
with the inverse map given by c — ZAGZ,; (v — 1)*e (VX)
>0
(3) Let N := N+ Dp1, Byr = NT[t7Y]. Then the above isomorphism 1 induces

a canonical isomorphism RHiog(L)(X) = N, which we still denote by 7.

Proof. We have v, le = W; + ;5. (Note that the WW; defined in Corollary
differs from the V; defined in the proof of [Sch13| Prop. 6.16] by a sign, and therefore
we need ;' in our formula rather than the v; as in [Schi3, Lem. 6.17].) This
implies that %—1(‘/;/‘) = (W'ij“) = (V;/l) + (JVEH), and so (y; ! — IO CA(VX)) =
>oA (’yl-_lcm_ei —|—'yi_ch — cA) (VX), where ¢; = (0,...,0,1,0,...,0) has only the i-th
entry equal to 1. Therefore, cy — fy;ch = vfchJrei, or, equivalently, y;ca —cp =
CAte,, for all i and A. In particular, this implies that (v — 1)"cy = ca, which goes
to 0 as |[A| — oo. This proves (I). Then and also follow easily. O

By the proof of Theorem 1) in Section R’Hfgg(l[,) (X) is a finite pro-
jective R@kB;R—module. Note that the natural action of I'geom On N preserves
N+, and by transport of structure gives an action of T'geom 0n RHiog(L)(X ). This
action is closely related to the residues, as we shall see. Recall from Lemma
that, if we define the I'geom-action of R®j,Bar by requiring that (1) = [e]‘sijTj
and that the action becomes trivial modulo &, then the embedding R®yBar —
BdR(ﬁoo, ﬁ;) sending T; to [Tib] is I'geom-equivariant. Via this embedding, we may
regard N, as an R@kB;R—module, and Nt as an R@kB;R—submodule of N.

Lemma 3.4.6. The isomorphism 1) is an isomorphism of R@kBJR—modules,

where the actions of Ry By on RHﬂ;g(L)(X) and Noo are as explained above.
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Proof. This follows from the fact that the map (2.3.10) (which is an isomorphism
by Lemma [2.3.11)) is obtained from the map (2.3.8) via e* — 1, for alla € P. O

Hence, the action of 7; on N*/T;N* is (R/T;)®xBjy-linear, and induces an
(R/T;)®}, Bar-linear action on N/T;N.
Lemma 3.4.7. Under the isomorphism RHiog(L)(X) = N given by Lemma
the residue of the connection Vi, of RHiog(L) along Z; = {T; = 0} corresponds to
the endomorphism t~log(v;) of N/T;N.
Proof. Let us expand elements of Noo {W1,...,W,} in the basis {IW*}, instead of
{(VX)}A Suppose that ¢g € N and n71(co) = ZA cA(A) ZA ba WA, Then by

the definition of residues as in (3.4.1)), by Lemma[3.4.3] and by (2.4.3) and (2 , We
obtain the identities n((Resz, (VL)) (77 (c0))) = t_lbei =t1 Zil(—l)“_lgcaei =

Y (1) L (s = 1) = 7 log(13)(co), as desired. O
Remark 3.4.8. The definitions of both ¢ and 7; (in (2.3.2)) and (3.3.6))) depend on
the choice of ¢ : Q/Z 5 p_ in (2.3.1), but t~'log(7;) does not.

To proceed further, we need the following lemma, which follows from [DLLZ,
Lem. 6.3.6] by induction on r.

Lemma 3.4.9. Let1: Z — Y be a strict closed immersion of locally noetherian fs
log adic spaces over Spa(Qy,Z,). Let M be a Qp-local system on Yproker- Then

(tproket (M) g, (Bar,z/€") (U xy Z)
~ (M ®g, Bar,y /")) (U) @Bag.y ey Bar,z/E")(U xy Z).
for every v > 1 and every log affinoid perfectoid object U of Yproket-

Let Z; be the (possibly empty) smooth divisor on X defined by T; = 0. Equip Z;
with the pullback of the log structure of X, and denote by Z? log adic space thus
obtained. Then the canonical morphism of log adic spaces ¢ : Za — X is a strict
closed immersion. Consider the log affinoid perfectoid object Z6 =79 xx X =
Zi Xpn D" in (Z a)proket (as in Corollary |2.3.20)), with associated perfectoid space

Z?. By |D and Lemma |3.4. 9|, we have a canonical isomorphism
(3410) (Noo/fT)/([Tsz])seQ>o = ( ;r%)ket(ﬂ‘) ®Qp B:;R Zf’) Z?)/fT

Let Bgr denote a fixed algebraic closure of Bgr extending the fixed algebraic

closure k of k, and let EIR denote the integral closure of B;‘R in Bar.

Lemma 3.4.11. If v;v = zv for some nonzero v € (Noo/fr)/([TS"])seQ>O and

1
some T € EIR/H, then © = (Y for some y € Q.

Proof. Up to replacing k with a finite extension, we may assume that Z; contains a
k-point z. Let 22 denote z equipped with the log structure pulled back from X. Let

79 .= 22 XXX with associated perfectoid space ?‘9 Then v;v = zv still holds in the

base change of ( W/gr)/([ngb])seQm along ( dR, Za/gr)(za) ( dR, Zc?/gr)(Na)
which is isomorphic to (}L|Za ®Q (B dR, Za/f’”))( 9), by Lemma Note that ;

acts trivially on 29, Hence, IL| =, is equipped with an action of ~;, which is quas1—

unipotent because it extends to a continuous one of Z( ) % Gal(koo/k) (see (3 ),
and the same argument as in the proof of [LZ17, Lem. 2.15] also works here. g



36 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

Next we use the decompletion over B, /¢" established in Section to de-
scend Noo /€ = (L ®g, Biz)(X)/&" to some finite level.

Lemma 3.4.12. For each r > 1, there exist some m > 1 and a finite projective
B, -module Ny, (where B, ., is as in ), equipped with a semilinear T'-
action, such that Noo /€™ = Ny, @8, . (BIg(X)/E") as EIR()N()/ﬁr—modules with
semilinear T'-actions. In addition, up to replacing m with a multiple (and replacing
Ny with its base change, accordingly), we may assume that Nt /" C Ny, (as
submodules of Noo /€7), and that Ny, [(NT/€7) is T;-torsion-free.

Proof. The first statement follows from Lemma and Theorem As
for the second statement, we may assume that H? (T, N, ,,,) — H*(T, Ny /€7) is an
isomorphism for j = 0,1 (by Definition )7 so that H(T', (Noo/€")/Nym) =
0. Then the whole I' acts unipotently on each element of N* /& (by (3.4.4)),
while each nonzero element of (Noo/€")/Ny m lies outside the kernel of v — 1 for
some v € I'. It follows that N* /" C N,.,,, C Noo/E", as desired. As for the last
statement, it suffices to show that (Nuoo/&")/(NT/£") is Ti-torsion-free. By the
definition of N, and by , Noo/E" is T;-torsion-free. By the definition of
N7 /€, it remains to note that, for each ¢ € Nu /€", we have (7 — 1) (T;¢) = 0 for
some A € Z2, if and only if (y—1)""(¢) = 0 for some A’ € Z,, since (v; —1)(T; ¢) =

[e]% T; vi(c) — Tic = T; (([e]° — 1)7; + (s — 1))c and [] — 1 € (£) C Biz. O

Lemma 3.4.13. If y;u = zv for some nonzero v € (N*/£")/(T;) and some x €
E:{R/é"", then x = (Y[e?] for somey € Q and z € QN [0,1).

Proof. By Lemma |3.4.12] we may assume that v € (N+/§T)/(Ti) - Nr,m/TiNT’m

for some m and NV, ,,. Consider the filtration TﬁNr,m/TiNnm C Nr’m/TiN,«,m,

with 0 < a < m. Since v # 0, there exists some 0 < a < m such that the im-
a atl

age v of v in T;™ Nr’m/Ti ™ N, is nonzero, which also satisfies v,v = zv. By

Lemma [3.4.12| again, the natural embedding N, ,,, < N& /£ induces by restriction

to Ti% rm and by factoring out a multiplication by Ti% a well-defined embed-
a atl
ding T, Ny /T, ™ Ny < (Noo/fr)/([be]);\eQw, and the nonzero image w of
v in (Noo /€M) /(IT°])0cq , satisfies the twisted relation v;w = [e~w]zw because
1 Rt
v T = [em ]| T;™ (cf. ) Thus, by Lemma [3.4.11} we have x = (¥[¢*] with
yeQand z:= % € %Z N[0,1) CQNJ0,1), as desired. O

Finally, let us finish the proof of Theorem . Let kz, be the algebraic
closure of k in I'(Z;, Oz,). For our purpose, we may replace k with a finite extension,
replace X with an open subspace, and replace Z; accordingly, so that kz, = k and
the eigenvalues of the residue along Z; are in Bqg. By Lemma it suffices to
show that the eigenvalues of t~!log(v;) are in Q N [0,1). Let v € N/T;N be an
eigenvector of t~1log(7y;) with eigenvalue Z € Bqr. Up to multiplying v by a power
of t, we may assume that v € NT/T;N*. Since the action of ; on N*/T;NT is
Bi.-linear, v is an eigenvector of ; with eigenvalue exp(#t) in EIR. By Lemma
and by the assumption that (y; — 1)l v — 0, t-adically, as | — oo, it is easy
to see that exp(Zt) = (Y[e?], with y + z € Z and z € QN [0, 1). Therefore, we may
assume that —y = z € QN [0,1). Thus, the eigenvalues of ¢! log(y;) are of the
form ¢~ log(¢*[€*]) = z € QN [0, 1), which verifies Theorem , as desired.

a
m
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Remark 3.4.14. By the proof Lemma the surjection L(Xk)/(Th) - L(Zk)
in Remark|3.3.14) (when [ = 1 there) is the evaluation on X of (gr RHiog(L))|p, —
gr’ (RH1og(L)[%, ) (cf. (3.4.2)), where RHig(L)|%, is interpreted as a quotient of
RHiog(L)|p, and equipped with the canonically induced filtration.

Proposition 3.4.15. For the connection Vi, : DR jog(L) = DR 1o (L) @0« Ql)(;g,
all eigenvalues of Resgr,—oy (VL) are in QN [0,1).

Proof. Note that Dgr 1og(IL)(X) = R’;’-tlog(]L)()?)G’M(K/k)7 and the isomorphism 7
in is Gal(K/k)-equivariant. Therefore, Dgg 1og(IL)(X) = NGa(E/R)  In
addition, the residue Resgr,—o} (VL) is still given by ¢! log(7;) as in Lemma
Then the proposition follows from the arguments just explained above. [l

In order to complete the proof of Theorem [3.2.7(|1), it remains to apply the
following proposition to conclude that Dyr 1og (L) is a vector bundle.

Proposition 3.4.16. A torsion-free coherent Ox-module F with an integrable log
connection V: F' = F Qo Ql}‘;g is locally free when the following conditions hold:
(1) F is reflexive (i.e., isomorphic to its bidual).
(2) For every i, all eigenvalues of Resgr,—o1(V) are in QN [0,1).

Proof. This follows from the same argument as in the proof of [AB0I, Ch. 1, Prop.
4.5] or [ABC20), Lem. 11.5.1]. More precisely, it suffices to note that, under the
assumptions, the completion of the stalk of £ at each classical point of X is free,
by [ABOI] Ch. 1, Lem. 4.6.1] or [ABC20, the proof of Lem. 11.5.1]. O

To apply Proposition [3.4.16] to Dyr iog(L), it suffices to note that the condition
(1) is satisfied by Lemma [3.3.18] and the condition is satisfied by Proposition
3.4.150 The proof of Theorem [3.2.7(1)) is now complete.

Proposition 3.4.17. Suppose that F (resp. F') is a locally free (resp. torsion-free)
coherent O x -module, with an integrable log connection V (resp. V') as in Definition
, whose residues along the irreducible components of D all have eigenvalues
in QN[0,1). Then any morphism (F,V) — (F',V') whose restriction toU = X —D
is an isomorphism is necessarily an isomorphism over the whole X. The same is
true if we replace Ox-modules with O x @k Bar-modules.

Proof. Let (F"',V") := ((F',V')V)Y, where F is the double Ox-dual of F”, which
is by definition a reflexive coherent Ox-module, and where V" is the induced log
integrable connection, whose residues along the irreducible components of D also
have eigenvalues in QN [0, 1). Hence, by Proposition[3.4.16] F” is locally free. Since
the restriction of the given morphism (F, V) — (F/,V’) to the dense subspace U is
an isomorphism, we have injective morphisms (F,V) — (F', V') — (F", V"), and
it suffices to show that their composition is an isomorphism over X. Therefore, we
can replace F’ with F”/, and assume that both F and F’ are locally free. Thus,
by working locally, we may replace X with its affinoid open subspaces which admit
strictly étale morphisms to D™ as in Example 2.1.2] and assume that both F' and
F’ are free of rank d. Then, with respect to the chosen bases, the map F — F' is
represented by a matrix A in My (OX(X)), which is invertible outside D. In order
to show that it is invertible over X, it suffices to show that the entries of A~!, which
are a priori analytic functions on X meromorphic along D, are everywhere regular
analytic functions on X. But this is classical—see, for example, the proof of [ABO1]
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Ch. 1, Prop. 4.7] or the uniqueness assertion of Thm. 11.2.2 in Sec. 11.4,
based on Prop.-Def. 10.2.5]. Moreover, by Lemma [3.1.4] the above arguments also
apply to integrable log connections on X (as in Definition [3.1.7|(1)). O

As usual, we define a decreasing filtration on Dgg 10g(LL) by setting
Fil® Daptog (L) = (Fil*RH0q(L)) /Y.
Lemma 3.4.18. We endow DdR,lOg(L)@)deR with the usual product filtration.
Then the canonical morphism
(3.4.19) DaR 1og (L) @% Bar — RHiog(L)

defined by adjunction is injective (by definition) and strictly compatible with the
filtrations on both sides. That is, for each r, (3.4.19)) induces an injective morphism

(3.4.20) gr" (Dar 1og (L)®k Bar) = gr” RHiog (L)

Proof. Since DR jog(L) = (RH10g(IL)) S /R the left-hand side of (3.4.20) can
be identified with ®g4p=r ((gra((RH]Og(L))GaI(K/k))) Rk K(b)), while the right-

hand side of (3.4.20) contains ®q4p=r ((gra R’Hlog(L))Gal(K/k) ® K(b)) as a sub-
space, where we have direct sums in such forms because of the Gal(K/k)-actions.
Thus, it suffices to note that the canonical morphism gr“((RHlog (L))Gal(K/k)) —
(gr“ RHiog (L))Gal(K/ %) is injective, for each a, essentially by definition. (I
Corollary 3.4.21. IfL|y,, is de Rham, then (3.4.19)) is an isomorphism of vector
bundles on X, compatible with the log connections and filtrations on both sides.

Proof. Since L|y,, is de Rham, by Cor. 3.12(ii)], the restriction of (3.4.19))

to U is an isomorphism. By Proposition [3.4.17|and Theorems [3.2.3|[2)) and [3.2.7|(1)),
the morphism (|3.4.19)) is an isomorphism, compatible with the log connections. By

Lemma [3.4.18] it is also compatible with the filtrations. O

Corollary 3.4.22. If L|y,, is de Rham, then gr Dqr iog(L) is a vector bundle of
rank rkq, (IL).

Proof. By Corollary [3.4.21] &, ((gra DyR log (L))@kK(—aD 5 g RH g (L) =
Hiog(L). Since Hiog (L) is a vector bundle on X g by Theorem [3.2.4{[1)), this shows
that gr Dar 10¢(IL) is a vector bundles on X of rank equal to that of Hjee(IL), which
is in turn equal to rkq, (IL) by the proof of Theorem [3.2.4(1]) in Section O

Thus, by Proposition |3.4.15{and Corollary [3.4.22] the proof of Theorem [3.2.7}(2)

is also complete. We conclude this subsection with the following:

Proof of Theorem [3.2.12] Given any Qp-local system L on Xys such that L|y,,
has unipotent geometric monodromy along D, by definition (see the paragraph
preceding Theorem, the action of v; as in Lemma [3.4.7|on any stalk of IL|§8
is unipotent. Consequently, x = 1 in Lemmas [3.4.11}and [3.4.13] and the residues of
RHiog(L) (by Lemma[3.4.7) are all nilpotent (i.c., have zero eigenvalues). For such
L, in the paragraph preceding Remark Lyny.+(Xk) # 0 can happen in
only when 7(v;) = 1 for all 7 such that Z; = {T; = 0} # 0 on X = Spa(R,R").
Hence, up to enlarging mg, the corresponding monomial 7% there is invertible in

Ry mo- In this case, the morphism (3.3.13) is an isomorphism, just like (3.3.11));
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and the canonical morphisms (1) ™! (Hiog (L)) @0 OCjoy — L ®7, OClog and

(1) H(RHiog (L) ®@(uy-1(0x) OBar,log — L ®3, OB4Rr,10g are also isomorphisms
(ct. Thm. 2.1(ii) and 3.8(iii)]). Therefore, we can argue as in the proofs of
[LZ17, Thm. 2.1(iv) and 3.8(i)] that Hicg and RHiee restrict to tensor functors.
This proves part of the theorem.

As for part (), if L|y,, is de Rham and has unipotent geometric monodromy
along D, then the residues of Dgg,1og(IL)(X) are nilpotent, by the proofs of part
(1) above and of Proposition [3.4.15} and (3.4.19) is an isomorphism, by Corollary
In this case, the canonical morphism p~! (DdR,log (IL)) R0y OB4R,10g —

prokét

prokét

L®5; OBgR,log (cf. lb is also an isomorphism, and we can conclude as in
Thm. 3.9(v)] that Dyg 10g also restricts to a tensor functor. O

3.5. Compatibility with pullbacks and pushforwards. In this subsection, we
prove Theorems , , and . We shall omit the explicit veri-
fications of the Gal(K/k)-equivariance of the adjunction morphisms, because they
are obvious from the constructions of the functors RHiog and Hiog (cf. Section .
Let us begin with pullbacks. Let ) be defined by Y as in . Leth:Y - X
be as in the statements of the theorems. Let E be the normal crossings divisor
defining the log structure on Y, as in Example 2.1.2] and let V :=Y — E.

Remark 3.5.1. Theorems [3.2.3|[)), [3.2.4(3), and 3:2.7[) are obvious when o : Y —

X is an open immersion. Moreover, when the log structure is trivial, the functors
RHlog, Hiog, and Dag jog coincide with their analogues RH, H, and Dqg in [LZ1T,
Thm. 3.8, 2.1, and 3.9]. (See also Remark [2.2.11})

Lemma 3.5.2. In the above setting, we have h=1(D) C E set-theoretically.

Proof. By the definition of the log structures Mx and My of X and Y, respec-
tively, as in Example the map h* : h=}(Mx) — My between log structures
is defined only when h=!(D) C E set-theoretically. Hence, the lemma follows. [J

Lemma 3.5.3. The canonical morphism

(3.5.4) B* (Hiog (L)) — Hiog (A (L)),

defined by adjunction is injective. The similarly defined morphisms
(3.5.5) h* (RHiog(L)) = RHiog (R (L))

and

(3.5.6) h* (Dar,10g (L)) = Dar,1og (R~ (L))

are injective and strictly compatible with the filtrations on their both sides.

Proof. Since Vi is dense in Y, and since h*(Hiog(L)) is a vector bundle on Yx
by Theorem , the morphism is injective because the corresponding
morphisms for hly : V — U is an isomorphism by [LZ17, Thm. 2.1(iii)]. Since
gr" RHiog (L) = Hiog(L)(r) and gr” RHiog (R (L)) = Hiog (R (L)) (r), for all r,
the statement for (3.5.5)) follows from that for (3.5.4). Also, the statement for
follows from those for (3.5.4) and (3.4.20)), by Lemma [3.4.18| (and its proof). O

Corollary 3.5.7. Under the same assumption as in Theorem |3.2.3||4), the canon-
ical morphisms (3.5.5) and (3.5.6) are isomorphisms compatible with the log con-
nections and filtrations on both sides. In this case, the canonical morphism (3.5.4)),
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which can be identified with the 0-th graded piece of (3.5.5)), is an isomorphism
compatible with the log Higgs fields on both sides.

Proof. For any pair of irreducible components Z and W of D and F, respectively,
let myz be as in Theorem [3.2.3d); and let hyz : W — Z denote the induced
morphism, when myz > 1 (i.e.,, h(W) C Z). Let VL denote the log connection
for either RH1og(IL) or Dar iog(IL). For each W, by working with local coordinates
as in Section we see that Resy (h* (VL)) = Ynwycz mwz hiyz (Resz(VL));
and that hjy, ,(Resz(VL)) and A}y, (Resz (VL)) commute, for any Z and Z’ as
above. Hence, by Theorem the assumption in Theorem ensures that
there is at most one non-nilpotent summand myy z, h*‘}VZ (ResZ(V]L)), in which
case myyz, = 1. As a result, by Theorems and 7 the eigenvalues
of Resw (h*(VL)) belong to QN [0,1) as those of Resz, (VL) do. Also by these
theorems, the eigenvalues of the residues of the log connections for RHios (h_l(]L))
and Dgg 1og (R~ *(L)) belong to QN [0,1). Thus, by Proposition [3.4.17] and The-
orems [3.2.3(|1) and [3.2.7|(1]), the assertions for and follow from the
corresponding ones for hly : V — U in Thm. 3.8(iv) and 3.9(ii)], and the
assertion for follows from the one for , as desired. [l

Thus, we have finished the proofs of Theorems [3.2.3|{)), [3.2.43)), and [.2.74).
Next, let us turn to Theorem [3.2.7|(5). Let f : X — Y be as in the statement

of the theorem. Let ) be defined by Y as in . Since f~1(E) C D by the
same argument as in the proof of Lemma m and since f|y : U — V is proper
smooth, we must have D = f~1(E), because U is dense in X. Let L be a Z,-
local system on Xyg. By [DLLZ, Cor. 6.3.5], R’ frer,«(L) is a Zy-local system on

Yier. By [DLLZ, Def. 6.3.2 and Prop. 5.2.1], we have R’ fieg « (L) = Rifprokétv*(ﬁ_\;).
By Corollary Bar,x ® - fl;r})két(OBdR,IOg,Y) is quasi-isomorphic to
P

1
rokét (Bar,y)

log,e . . -1
OBaR,jog, X ROx, e QX/Y, and hence the canonical morphism j”pmkét (OB4R,10g,y) —

-1 . . . s
Bar,x ® e (Bary) forokeét (OB4R,log,v) induces a canonical morphism

prrokét,*(]i) ®7, OB4R,log,y — Rfprokét,« (IE ®z, OBaR,log,x @0x, . Ql;%;)

By applying Rujy-, to both sides of this morphism, we obtain RHiog (R fret,« (L))
on the left-hand side, and R(uy., © forokét,«) (L @3, OBar log.x ®0x Ql;;%;) &

prokét

R(fan,* o /’L/X,*) (H/; ®zp OBdR,log,X ®0Xprokét QI)(;‘;’;) = Rflog dR,* (RHlOg(L)) on the

right-hand side, by Theorem and the projection formula. Therefore, we
obtain a canonical morphism (of coherent sheaves with log connections)

(3.5.8) RHiog (R’ fiet,« (L)) = R’ fiogar,« (RHiog (L)),

which is compatible with the filtrations on both sides. If L|y,, is de Rham, then we
can identify szlog dR,* (RH]og (]L)) with szlog dR,* (DdR,log (L)@deR)7 by Corol-
lary |3.4.21} and hence with RiflOg dR,* (DdR,log (L))@deR, by the following lemma;:

Lemma 3.5.9. Let g : Z — Z' be a proper morphism of rigid analytic varieties

over k, and let F be a complex of vector bundles on Z' (whose differentials are not
necessarily Oz -linear). Then we have Rgap « (}-@deR) >~ Rgan,»(F)@rBar.-
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Proof. By considering spectral sequences associated with the filtration on Byg and
the stupid (“béte”) filtration on F, it suffices to note that, for any coherent Ox-
module F', we have Rgap « (F@k gr” Byr) & Rgany*(F)@Qk gr” Bgr, where gr” Bqr =2
K (r), because g is a proper morphism (cf. [Sch13] the proof of Lem. 7.13]). O

Thus, when L|y,, is de Rham, can be rewritten as
RHiog (R’ fiet,« (L)) = R’ fiogar,« (Dar,log (L)) @k Bar-
By taking Gal(K/k)-invariants, we obtain a canonical morphism
(3.5.10) Dar,tog (R’ frét,« (L)) = R’ fiog ar,« (Dar,tog (L)),
which is also compatible with the filtrations on both sides.

Lemma 3.5.11. Under the assumption that L|y,, is de Rham, (R fre«(L))|v,, =
R'(flv)et,«(Llu,,) is also de Rham, and (3.5.10)) is defined and induces a morphism

(3512) DdR,log (Rifkét,* (]L)) — (Riflog dR,* (DdR,log(]L)) ) froe

which is injective and strictly compatible with the filtrations on both sides. That is,
for each r, (3.5.12)) induces an injective morphism

(3.5.13) 81" Dar og (R’ fier « (L)) — gr” ( (Rif log R« (Ddelog(L)))free) '

Proof. Since Lly,, is de Rham, (R fxet,«(L))|ve, = R'(f|v)et,«(Llu,,) is also de
Rham, by [Schl3, Thm. 8.8] and [LZI7, Thm. 3.8(v)]. Therefore, by Corollary

3.4.22, gr DR log Rifkét’*(L)) is a vector bundle on Y. Since V is dense in Y,
the morphism (3.5.13) (which is defined as soon as (3.5.12)) is compatible with

the filtrations of both sides) is injective because the corresponding morphism for
flu : U — V is an isomorphism, by [Sch13, Thm. 8.8]. O

Corollary 3.5.14. Under the assumption that L|y,, is de Rham, (3.5.12) is an
isomorphism compatible with the log connections and filtrations on both sides.

Proof. By Lemma|[3.5.11] it suffices to show that (3.5.12)) is an isomorphism (com-

patible with the log connections on both sides). By the same argument as in [Kat71
Sec. VII], the eigenvalues of the residues of (Riflog dR,* (DdR’log (]L)))f are still in

QnNJ0,1). Hence, by Proposition [3.4.17|and Theorem [3.2.7|(1)), the assertion follows
from the corresponding one for f|y : U — V in [Schi3] Thm. 8.8]. O

The proof of Theorem [3.2.7|(5]) is now complete.

3.6. Comparison of cohomology. In this subsection, we prove the remaining
Theorems [3.2.3|(3), [3.2.4(2), and [3.2.7|(3). We shall assume that X is proper over

k, and that K = k. (In this case, B(J{R and Bgg are the usual Fontaine’s rings.)

Lemma 3.6.1. For each Zy,-local system L on Xy, and for each i > 0, we have
a canonical Gal(K /k)-equivariant isomorphism of By -modules

H'(Xk ke, L) ®z, Big = Hi(XK,prokét,H: ®z, Bi),

compatible with the filtrations on both sides, and also (by taking 0-th graded pieces)
a canonical Gal(K/k)-equivariant isomorphism of K-modules

H? (XK7két, L) Rz, K=H' (XK,prokéta IE ®Zp OXK,pmkét)'
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Proof. The proof is the same as [Sch13, Thm. 8.4], with the input [Schi3, Thm.
5.1] there replaced with [DLLZL Thm. 6.2.1]. O

Lemma 3.6.2. Let L be any Z,-local system on Xyg. For each i > 0, we have a
canonical Gal(K/k)-equivariant isomorphism of Bagr-modules

H' (X i proket, L ®3, Bar) = Hiog ar (¥, RHiog(L))
and also a canonical Gal(K/k)-equivariant isomorphism of K-modules
Hi (XK,prokéh L ®Zp OXK,prokét) = Hliog Higgs (XK,an’ Hlog (]L)) .
Q'eg* V) and

Ql;;g"(—O), 0) (where the two e in the latter complex are equal

rokét

Proof. Let us simply denote the complexes (]I/; ®5 OByR,log ®0 X,
(I/[\J@Zp O(Cbg ®Oxprokét
to each other) by DRjog (H/:(X)z OBayr,1og) and Higgslog(f[:(gi OCiog), respectively. By
Corollary we have quasi—isomorphﬁsms L ®; Bar 5 DRiog(L (gizp OBaR 10g)
and (by taking the O-th graded pieces) L ®5 Oxy e — Higgsiog(L ®5 OCiog)

over Xk prokét- By Theorem 3.2.3|. and Proposition and by the projec-
tion formula (cf. (3.3.1), Ry, (DRlog(L ®z, OIB%dR,lOg)) = DRiog(RHiog(LL)) and

Ry, (Hz'ggslog(ff, ®2p OClog)) = Higgs)os(Hiog (L)), and the lemma follows. O

Thus, Theorems [3.2.3((3]) and [3.2.4{(2)) follow from Lemmas and
It remains to complete the proof of Theorem [3.2.7|(3]). In the remainder of this

subsection, we shall assume in addition that L|y,, is a de Rham local system.
Firstly, the isomorphism (3.2.8) is given by Theorem [3.2.3((3) and the following:

Lemma 3.6.3. With assumptions as above, there is a canonical isomorphism
Hliog dR (X7RH105(]L)) = Hliog dR (Xana DdR,log (L)) ®k7 BdR'
Proof. Combine Corollary B.4.21] (with L|y,, de Rham) and Lemma [3.5.9] O

Secondly, gr Dyr,10g(IL) is a vector bundle of rank rkz, (IL) by Corollary (3.4.22
and the isomorphism (3.2.9)) is given by Theorem [3.2.4)(2)) and the following:

Lemma 3.6.4. With assumptions as above, there is a canonical isomorphism
Hiy tiggs (XK ans Hiog (L)) = @app— (Hffj’;Hodge (Xan, Dar,1og (L)) @ K(—a))~
Proof. Since L|y,, is de Rham, by Corollary and Lemma we have
Hiy tiggs (X Kans Hiog (L)) = H' (Xkan, Higgs s (Hiog(L)))
~ 0" ( Xk ans 81° (DRiog (Ddr,og (L)) @k Bar) )
= @y (H' (Xans 88" DRiog (Dar iog(L))) @5 K (~0))

= Datb=i (HlaogHodge (Xan; DyRr og (L)) Rk K(_a)> : 0

Finally, the (log) Hodge-de Rham spectral sequence for Dyg jog(IL) degenerates
on the E; page because, by (3.2.8)) and (3.2.9)), we have

dimy, Hiypg ar (Xan: Daritog (L)) = Y dimy HoY oo (Xan, Darotog (L))
a+b=1

The proof of Theorem [3.2.7|(3)) is now complete.
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3.7. Compatibility with nearby cycles. Let f: X — D = Spa(k(T), k" (T)) be
a morphism of smooth rigid analytic varieties such that D := f~!(0) is a normal
crossings divisor. We endow X with the log structure defined by 2 : Dyeqg — X as
in Example Let U := X — D. Recall that we have introduced in [DLLZ, Def.
6.4.1] the functors of unipotent and quasi-unipotent nearby cycles R¥%(L|y) and
R\Il;{u(MU), respectively, for Q,-local systems L on Xys. In this subsection, we
show that their formation is compatible with the log Riemann—Hilbert functors, in
the simplest situation to which the methods of this paper are directly applicable.
As usual, for any Oy-module F' on a locally ringed space Y and any closed
immersion 2 : Z < Y such that Zz := ker(Oy — z*(OZ)) is an invertible Oy -ideal,
let F(nZ) := F®po, Ig(_"), for each n € Z. Also, if we have compatible inclusions

F(nZ) — F(mZ) extending the identity morphism on F'|y, for all m > n, then we
let F(xZ) := lim F(nZ) = Upez F(nZ). The following lemma is elementary:

Lemma 3.7.1. Let (F, V) be any vector bundle with an integrable log connection on
Xan. Let Z C Dyeq be an irreducible component, and suppose that all the eigenvalues
of the residue belong to QN [0,1). Then F(xZ) is defined, and there is a
unique decreasing Q-filtration V' on F(xZ) by locally free O x -submodules equipped
with compatible integrable log connections, characterized by the following properties:
(1) We have VOF (xZ) = F and Ve F(xZ) = (VOF(xZ))(=Z), for alla € Q.
(2) The isomorphism (VOF (xZ))/(V'F(xZ)) = F|z canonically induces, for
each « € QN [0,1), an isomorphism
(3.7.2) gry F(xZ) := (VOF(x2))/(VZ*F(xZ)) = F|%,
where V>YF(xZ) := Ugsq VPF(xZ) and where F|% is as in .
By using Lemma when Zz is also irreducible, we have analogues of the above
for any vector bundle with an integrable log connection (F,V) on X such that all
the eigenvalues of Resz(V) belong to QN [0,1). When F®iBar = F, for each a,
we have (V‘IF(*Z))(@deR X VeF(xZ) and (gr?, F(*Z))@deR & o1l F(xZ).

Remark 3.7.3. Since V : F — F Qo Ql)?g induces a connection V : F(xZ) —
F(xZ)®0, Qx satisfying V2 = 0, we can view F'(xZ) as a D-module, and view the
filtration in Lemmal3.7.1]as a special case of the Kashiwara—Malgrange V-filtrations
(cf. [Sai88| Sec. 3.1], with V'* here corresponding to V_;_, there). (Note that there
are different conventions of indices in the literature.)

By Theorem , when Z7 is irreducible, the above construction applies to
RHMiog(L). Recall that there is a decreasing filtration Fil*RHiog(IL) on RHiog (L)
by locally free Ox @kBgR—submodules. This induces, for each a > —1, the filtration

Fil'VARHiog (L) (x2) := (Fil'RHiog (L)) (Z) N (VAR Hiog (L) (x2))

on VARHieg (L) (*Z) by OX(@kBjR—submodules. By construction, for a > 8 > —1,
the inclusion VYR Hog (L) (%Z) = VAR Hog (L) (¥2) is strictly compatible with the
filtrations. For each & > —1, we similarly define the filtration on V=*RHjoe (L) (%Z).
Then we have an induced quotient filtration on gryy RHiog (L) (+Z), for each oo > —1.

Remark 3.7.4. For each « € QN [0, 1), in general, the isomorphism is com-
patible with filtrations only if we view RHiog(L)|% as a quotient (rather than a
subsheaf) of RHiog(L)|z with its induced filtration. We emphasize that it is the
quotient filtration on gr{ RHieg(IL)(*Z) that will be important in the following.
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Theorem 3.7.5. Assume that D is smooth and Dy is irreducible. Then, for each
Qyp-local system L on Xyes, there is a canonical Gal(K/k)-equivariant isomorphism
of Op®y Bar-modules

(3.7.6) RH(RYT (L)) = Bae(-1,0) (8% RHiog(L) (%)),
which restricts to an isomorphism
(3.7.7) RH(RUH(LI)) = g1l RHiog(L)(+),

compatible with filtrations and integrable connections. Here RH is the functor de-
fined in [LZ17, Thm. 3.8] (see Remark , and we write R0 (L) (%) instead of
RHMiog (L) (D) for simplicity.

Proof. Let us first prove (3.7.7]). Besides the trivial log structure, there is another
natural log structure on D given by the pullback of the log structure on X. Let D?
denote the corresponding log adic space. Then we have a correspondence of log adic

] ~ ~
spaces D <— D% 5 X. Let L9 := z;rlokét (L), which is associated with L9 := 5, } (L)

by [DLLZ, Lem. 6.3.3]. Let J2 denote the pullback to D? of the Z,-local system
denoted by the same symbols J? in second last paragraph preceding Lem.
6.4.2], and let j? denote the associated 21,—10(:&1 system.

__ By Corollary [2:3:20] and Lemma we have canonical morphisms of sheaves
L&g, OBar,log,x — prokét,» (L2 ®3, OBR 1og,00) = Riproket,« (L7 ®g, OByg 1o, n?)
on Xprokét- By applying RH’X,*» we obtain a morphism of Ox ®y,Bqr-modules

(3.7.8) RH10g(L) = 1. Rptlpo , (L° D5, OBdr log 02)-

By Corollaries [2.3.17] and [2.3.20], and by matching a basis of J, with binomial
monomials up to degree r — 1 in W as in the proof of [DLLZ, Lem. 6.4.2], for any
—00 < a < b < o0, there is a natural isomorphism

9,—1 [a,b] s (O ~v [a,b]
gprokét(OBdR,log,D) ®Zp hﬂ(vﬂr) = OBdR710g7D3'

By [DLLZ], Def. 6.4.1 and Prop. 5.1.7], we obtain canonical morphisms
m a,b T (T 0,— a,b
R\Ilf(]L|U) ®2p OBER,]log,D - Rggrokét,* (LB ®Zp 11_1’1>1(J?) ®Zp gproklét(OBEiR,]log,D)>

~ 14) T . [‘I:b]
- Reprokét,* (L ®Zp ORdR,log,Da)'

Since Ru'po , = Rulp , o Regrokét’* (as D2 = D,,), by applying Ry, to the

above, and by taking colimit and limit, we obtain a canonical morphism of sheaves
(3.7.9) RH (R} (L|v)) = Rpps (L7 @5 OBag jos,00)-

We claim that is an isomorphism, and that the combination of and
|D induces a canonical isomorphism grd, RHjoq(LL)(x) & RH (R\I/? (Llv)).

Since the question is local, we may assume that X is affinoid, and that f factors
as X — D" 2 DxD"?! — D, where the first map is a smooth toric chart, and where
the last map is the first projection. Accordingly, we have I'geom = (Z’yl) X 2(1)”*1.
By Lemmal[3.4.3] Corollary[2.3.20]and (3.4.10)), in the notation there, the evaluation
of at X can be identified with the natural map

(3:7.10) N 2 (Jim ((Noo /")) ) [1] = (yim (((Now /") /(T Dcres) ™) )
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where (- )"P denotes the maximal quotient spaces on which I'geom acts unipotently.
By the arguments in the proof of Lemmam 3} the right-hand side of (|3 m can
be identified with the quotient of N/T; on Wthh t1 log ~1) acts nilpotently, which

is 0. (gr) RHog(IL)(%))(X) by Lemma an This also gives the left-

hand side of the evaluation of (3.7.9) at D by DLL Prop 6.4.4], Lemma [3.3.15]
and Remark [3.4.14] Since ( oo/f)UlnllD — (N /&) /([T°]) )ump is surjective

s€

by Lemma again, so is (3.7.10]). Thus the claim and follow.

Next, we reduce (3.7.6) to Since v, acts quasi—unipotently on L|ps (as
in the proof of Lem7 there is some degree m standard Kummer étale
cover of D — D (inducing an isomorphism between the origins of D), with base
change g : X,, — X, such that ¢g71(IL|) has purely unipotent geometric mon-
odromy along D (which we also identify as a subspace of X,,). By [DLLZ, Lem.
6.4.3], RU{"(L|y) = R\I/gof( “}(L|y)). By Lemma m we have a canonical
morphism ¢* (R’Hlog( )) — RHiog (gil(]L)), strictly compatible with filtrations,
which restricts to an isomorphism over U, := X,, — D (and can be viewed as a
“meromorphic isomorphism”). Hence, we obtain an induced canonical isomorphism
(g* (R’Hlog(]L)))(*) = (R’Hlog (g*I(L)))(*). By Theorem (3.2.12 the residue of
RHMiog (971 (L)) along D is nilpotent. Since the eigenvalues of the residues of
RHiog (L) belong to Q N [0,1), those of RHiog(IL)(D) belong to Q N [—1,0). Since
pulling back by g multiplies the eigenvalues of residues by m (as explained in the
proof of Corollary [3.5.7)), those of g*(RHiog(L)) and g*(RHiog(L)(D)) belong to
QN [0,m) and Q N [—m,0), respectively. Hence, by applying Lemma to
F = RHiog (97 (L)), we obtain inclusions of sheaves

9" (RM1og (L)) = RHiog (97 (L)) = g (RH1og(L)(D)).

which are strictly compatible with the filtrations (see the paragraph preceding Re-
mark [3.7.4]). By pushing forward to X, we obtain the following inclusions of sheaves

RH10g(L) @0y 9+(0x,,) = 9:RHiog (97 (L)) = RH105(L)(D) @0y 9+(0x,,),
which are strictly compatible with the filtrations. We can identify the above with

ot TV RHiog (L) = @71 (T77V 7 Riog (1) (+))
O (T7" V™ R0 (L) (+)),
because g.(Ox,, ) = &7," TI% Ox (which explains the first and third terms), and

because the second term is exactly the submodule of the third term whose eigen-
values of residues are zero. Thus, we obtain the desired isomorphisms

e (gry ™ RMiog(L)(¥) = g1 (9* RHio0g (971@)))(*)
= o1l RHiog (97 (L)) (%),

which are compatible with filtrations. O

Now suppose moreover that L|y,, is de Rham. By Theorem [3.2.7)(2) and Lemma
3.7.1} we also have the V-filtration V*Dggr 10g(L)(*) on Dgr 10g(LL)(*), and the fil-
tration Fil® Dyg 1og(IL) on Dgr jog (L) induces, for each a > —1, the filtration

Fil'V* Dap,tog (L) (*) := (Fil' Dar,10g(L)) (D) N (V* Dar,tog (L) (*))
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on V*Dgyr log (L) (*) by Ox-submodules, and similar filtrations on V=% Dyg 106 (L) ()
and gr{; Dag,iog (L) (*).

Theorem 3.7.11. In Theorem suppose moreover that L|y,, is de Rham.
Then there is a canonical isomorphism

(3712) Dar (R\I/;J;u(IMU)) = EBQE(_LO] (gr{'} DdR,log(L)(*))7
which restricts to an isomorphism
(3.7.13) Dagr (R4 (L|y)) = gry, Dar,iog (L) (%),

compatible with filtrations and integrable connections. Here Dggr is the functor
defined in [LZI17, Thm. 3.9] (see Remark [3.5.1). Moreover, RV{"(L|y) and its
direct summand R\Il?(]L|U) are both de Rham Q,-local systems on Dg.

Proof. By taking Gal(K/k)-invariants, we obtain (3.7.12)) and (3.7.13]) from
and (3.7.7), respectively. Since L|y,, is de Rham, by Corollary [3.4.21| and Lemma
the canonical morphism (gr% DdR,log(L)(*))®deR — gr{‘} DdR,log(L)(*) is
an isomorphism, for each . Hence, by (3.7.6)) and (3.7.12), the canonical morphism
Dar (R\IJ?“(MU))@;CBdR — RH(RU{“(L[y)) is also an isomorphism. It follows
that RV 1" (L|r) and therefore its summand R¥%(L[r) are de Rham, as desired. [

4. RIEMANN—HILBERT FUNCTOR FOR p-ADIC ALGEBRAIC VARIETIES

4.1. The functor DSE. In this subsection, we shall prove Theorem and record
some byproducts. Let X be a smooth algebraic variety over a p-adic field k. By
[Nag62| [Hir64al, [Hir64b], there is a smooth compactification 7 : X < X such that
the boundary D = X — X (with its reduced subscheme structure) is a normal
crossings divisor. Let X", Yan, 722, and D denote the analytifications (realized
in the category of adic spaces over Spa(k, k™), where kT = Oy). We shall equip
X™ with the log structure defined by D**, as in Example

In order to simplify the language, we shall use the term filtered connection (resp.
filtered regular connection) to mean a filtered vector bundle on X equipped with
an integrable connection (resp. an integrable connection with regular singularities)
satisfying the Griffiths transversality. Likewise, we shall use the term filtered log
connection to mean a filtered vector bundle on X (resp. Yan) equipped with an
integrable connection satisfying the Griffiths transversality. In addition, by abuse of
language, we shall say that a Z,-local system on X¢; is de Rham if its analytification
is, and that a Z,-local system on X is de Rham if its restriction to X®" is.

Let L be a Z,-local system on X, with analytification L*". Let L =
Tty (L") be its extension to a Zy-local system on Xz (by [DLLZ., Cor. 6.3.4]).

By Theorem we obtain a filtered log connection DyR 1og (Ean) on X, which is
the analytification of an algebraic one, by GAGA (see [K6p74]), which we abusively
denote by Dgll%,log (L). Then its restriction to X is a filtered regular connection

(4.1.1) D3 (L) := (D3f 1 (L)) |«
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Let us summarize the constructions in the following commutative diagram:

alg
{de Rham Z,-local systems on Xét} oy {ﬁltered regular connections on X }

o I

{de Rham Z,-local systems on X gt“} {ﬁltered log connections on Y}

Ji‘é‘t,*J{ (-)a“lz by GAGA

— Dar. 1o .
{de Rham Z,-local systems on X izt} s {ﬁltered log connections on X an}
Note that the de Rham assumptions on the local systems ensure that the associ-
ated regular connections or log connections are of the right ranks, and are filtered
by vector subbundles (rather than more general coherent subsheaves) with vector

bundles as associated graded pieces.

Lemma 4.1.2. The functor Dglg is a tensor functor, and is independent of the
choice of the compactification X.
Proof. By Proposition [3.4.15] and by [AB01], Ch. 1, Prop. 6.2.2] or [ABC20], Sec.
11.1.3], for all L, the exponents of the integrable connection Dglé (L) consist of only
rational numbers, which are not Liouville numbers. (See, for example, [ABC20,
Sec. 32.1] for a review.) Then the lemma follows from the following two facts:
(1) By [Bal8g], [ABOI, Ch. 4, Thm. 4.1], or [ABC20, Thm. 32.2.1]; and by the
same argument as in the proof of [ABOIl Ch. 4, Cor. 3.6] or [ABC20, Cor.
31.4.6], the analytification functor from the category of algebraic regular
connections on X whose exponents contain no Liouville numbers to the
category of analytic ones on X?" is fully faithful.
(2) The composition of DS‘IF% with the analytification functor is the functor Dqr
in [LZ17, Thm. 3.9(v)], a tensor functor independent of the choice of X. [

It remains to establish the comparison isomorphism in Theorem [I.1] As in
Section let K =k, so that the rings B:{R and Bggr in Definition 1) have
their usual meaning as Fontaine’s rings. By [Hub96, Prop. 2.1.4 and Thm. 3.8.1],
if L is an étale Zy-local system on X, and if L*" is its analytification on X®", then
we have a canonical Gal(k/k)-equivariant isomorphism

(4.1.3) H (X5, L) =2 HE (X2, L27).
By [DLLZ, Cor. 6.3.4] and Theorem [3.2.7|(3), we have a canonical isomorphism
H, (X%n’]Lan) ®z, Bar = Hfong(X , Dar,jog(L™)) ®k Bar, compatible with

the filtrations and Gal(k/k)-actions on both sides. Finally, by GAGA again (see
[K6p74]) and by Deligne’s comparison result in [Del70, II, 6], we have

—an

Hliog dR (yaHV DdR,log(L )) = Hliog dR (yﬂ Dgllglog(]]‘)) = H(liR (X’ Dglé(L)) .

This completes the proof of Theorem [1.1
By combining (4.1.3), [DLLZ, Cor. 6.3.4], and GAGA (see [K6p74]) with the
other assertions in Theorem [3.2.7|(3)), we also obtain the following:

Theorem 4.1.4. In the above setting, the (log) Hodge—de Rham spectral sequence

b b ~ al a+b (¥ al
Ef - Hl?)g Hodge (X’ Ddl%log (L)) = Hlo—ng (X’ Ddl%,log (L))
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degenerates on the Iy page, and the 0-th graded piece of (1.2) can be identified with
a canonical Gal(k/k)-equivariant comparison isomorphism

Hét (XE’ L) ®Qp E = Datb=i (Hllz;gl;;Hodge (Y’ DZIF%,log (]L)) Ok E(ia)) :

4.2. Generalizations of Kodaira—Akizuki—Nakano vanishing. This subsec-
tion will be devoted to the proof of the following theorem:

Theorem 4.2.1. Let X be a proper smooth algebraic variety of pure dimension d
over a p-adic field k, with a reduced normal crossings divisor D. Let U := X — D.
Let L be a de Rham Qy-local system on Ug. Let € = Dgglog(L) be as in Section
(with X and X there given by U and X here, respectively). Let DRiog(E) and
gt DR1og(€) be as in Definition . Let L be an invertible sheaf on X, with a
(possibly empty) effective divisor D' supported on (a subdivisor of) D such that

(4.2.2) LN (—D’) is ample for all sufficiently large N.

Then we have

(4.2.3) H' (X, L' ®0y gr DRiog(€)) =0, for all i < d;
(4.2.4) H(X,L(—D) ®0y gr DRiog(E)) = 0, for all i > d.
If . has unipotent geometric monodromy along D, then we also have
(4.2.5) H'(X,L(—D) ®o, gr DRiog(€)) =0, for all i > d.

Remark 4.2.6. The condition (4.2.2)) implies that £ is nef and big—see [EV92, Rem.
11.6 a)]. In fact, it is equivalent to being nef and big up to applying embedded
resolution of singularities as in [Hir64al [Hir64b]—see [Suhl8, footnote 1].

Remark 4.2.7. When L is trivial, in which case &€ = Ox, our p-adic Hodge-theoretic
proof of Theorem m provides new proofs for the classical vanishing theorems (in
characteristic zero) due to Kodaira, Akizuki, and Nakano [Kod53, [AN54] (when
D = ()); Deligne, Illusie, and Raynaud [DIS7] (when D’ = {)); and Esnault and
Viehweg [EV92]. Also, when L is of the form R®f,(Q,) for some a and some
proper smooth morphism f : V — U, Theorem [£:2.1] provides a p-adic Hodge-
theoretic generalization (as opposed to the complex analytic one in [Suhl§|) of the
characteristic-zero consequences in [[1190] and [LS13l Sec. 3], without having to
assume that f extends to a proper morphism Y — X with very good properties.

Proof of Theorem [4.2.1]. It suffices to prove , since follows by Serre
duality, and since 1} follows because &' = Dglé’log(]LV) under the unipotency
assumption, by Theorem and GAGA [Kop74]. We will closely follow the first
strategy in [Suhl18 Sec. 2], but with the input from Saito’s direct image theorem
(see [Sai90, Thm. 2.14]) replaced with our p-adic Hodge-theoretic results.

We claim that, up to replacing D’ with a positive multiple, we may assume that
there exists some Ny such that £N(—D’) is very ample for all N > Ny. When
D’ = (), the claim is clearly true, and the remainder of this proof establishes the
special case of this theorem when D’ = (). When D’ # (), the claim follows from the
same argument as in the proof of [EV92, (**) in the proof of Prop. 11.5], with the
input [EV92] Cor. 11.3] of [EV92, Cor. 11.4] there replaced with the special case of
this theorem when D’ = (), whose proof we have just explained.

We may enlarge Ny and assume that, along each irreducible component Z of D
which has multiplicity ez in D’, the eigenvalues of the residue of £ are contained
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in QN[0,1— §£). By the same Bertini-type argument as in [LS13| Sec. 2.1], there
exist N > Np and s € HY (X, LN(fD’)) such that the corresponding hyperplane
section H C X is smooth and meets D transversally, so that D + H and D|g are
normal crossings divisors on X and H, respectively. Up to replacing k with a finite
extension, we may assume that k contains all the N-th roots of unity in k.

Let 2 : H — X denote the canonical closed immersion. For the sake of clarity, we
shall denote by DRios p(-) the log de Rham complex associated with Q% (log D),
and similarly denote complexes associated with log structures defined by other
normal crossings divisors. In order to prove , by considering the long exact
sequence associated with the following twist of the adjunction exact sequence

0— L1 Koy gr DRlOgD(E) — Lt ®oy gr DRlog(D+H) (E)
— Uy (£|;Il oy 8r DRlog(D|H) (?|H)(—1)) [—1] —0
(in which the Tate twist (—1) is just a shift of grading by —1), and by induction on

the dimension of X (since &|y = DZE,log(]L|UmH) by Theorem 3.2.7|., and since
pulling back under the immersion ¢ preserves ampleness), it suffices to prove that

(4.2.8) H' (X, L7 ®ox gr DRiog(p+m)(€)) =0, for all i < d.

As in [EV92| Sec. 3], consider L@ = L7 L%j ), which is equipped with
an integrable log connection V(*) such that the eigenvalues of the residue of V(%)
along H (resp. each irreducible component Z of D) are 5 (resp. % —[“5# ). Let Y’

denote the relative spectrum of the Ox-algebra 695:701 £(“)_1, whose multiplicative
structure is induced by the dual of Ox > L®N(—D') ¢ L®N. Then the cyclic
cover m:Y — X is finite flat, and the pullback of 7 to W := X — (D + H) is a
finite étale Galois cover my : V — W with Galois group Hom(Z/NZ, kx).

By construction, £(®)" |y = Tw,«(Ov)[Xa), where [x,] denotes the isotypical
component for the character x, : Hom(Z/N Z, k;x) — k> defined by evaluation at
the image of a, which is compatible with the connections (and trivial filtrations)
on both sides. Consider M, := myw ¢4 «(K)[Xa], Where k denotes the constant k-local
system on V of rank one; i.e., a constant Qp-local system of rank [k : Q,] equipped
with the canonical action of k. Then M, is a k-local system on W of rank one.
Let 7 : k ®q, k — k be the multiplication map, and let 7M denote the pushout
via 7 of any k ®q, k-module M. Since my,.(Oy) = TDZIF% (TI'W,ét7*(k))7 by Theorem
3.2.7, L@y 7D3E(M,,), which uniquely extends to L7 TDS;—%’]Og(Ma)
by [ABOI, Ch. 1, Prop. 4.7] or [ABC20, Thm. 11.2.2], because both sides have
eigenvalues of residues in QN [0,1), by the above and Theorem .

Since §¢ < ;[—ZO < 1 for each irreducible component Z of D, we have LV =1
Since &l = D3E(L), the residue of € along H is zero. By Lemma we have
L7 w @0y Elw = TDE(M, ®q, L|w), which uniquely extends to £L7! ®o, € =
TDZE,IOg(Ml ®q, L|w), again because both sides have eigenvalues of residues in
QnNJ0,1). Thus, the Hodge-de Rham spectral sequences for D?llf%,log (M1 ®q, Liw)
and L7! ®0, € degenerate by Theorem [4.1.4] and (4.2.8) is equivalent to

(4.2.9) H' (X, L™ ®oy DRiog(p+m)(€)) =0, for all i < d.



50 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

Since the eigenvalue of the residue of £7! ®p, &€ along H is positive, by [EV92,
Lem. 2.10], for any b > 0, the statement (4.2.9)) is in turn equivalent to

(4.2.10) H' (X, L7 (—bH) ®0y DRiog(p+m)(E)) =0, for all i < d.

Finally, by considering the filtration spectral sequence, it suffices to show that, for
some b > 0, we have

(4.2.11) HY (X, L7 (—bH) ®oy gt DRiog(p+m)(E)) =0, for all i < d.

Since the divisor H is ample, and since gr DRiog(p4m)(€) is a complex of finite
locally free Ox-modules concentrated in degrees [0, d], by considering the spectral
sequence associated with the stupid (“béte”) filtration, the last statement
holds for some b > 0, by Serre vanishing and Serre duality, as desired. O

4.3. De Rham local systems at the boundary. In this subsection, we apply
the results in Section 3.7 to study nearby cycles in some simple cases. We will leave
a more general treatment to a future work.

Let X be an algebraic variety with a divisor D over k. Suppose that there exist
an étale neighborhood D — W — X and a morphism f : W — A! over k such
that f=1(0) = D. In this case, there is the notion of unipotent and quasi-unipotent
nearby cycles due to Beilinson (see [Bei87]; cf. [Reill]). Let us briefly recall the
definition. Let G,, := A'—{0} be the multiplicative group scheme over k. We have a
canonical isomorphism 71 (G, 1) = 11 (G, 7, 1) xGal(k/k), and w1 (G, 7, 1) = Z(1)
as Gal(k/k)-modules. For each r > 1, let J, denote the rank r unipotent étale Q-
local system on G,, defined by the representation of 71(G,,, 1) on Q,, such that a
topological generator v € m1(G,, 7, 1) acts as a principal unipotent matrix J, and

such that Gal(k/k) acts diagonally on Q) and trivially on ker(J, — 1). There is
an obvious inclusion J, < J,11, and a projection J,+1 — J.(—1) such that the
composition J, — J.(—1) is given by the monodromy action. For each m > 1,
let [m] denote the m-th power homomorphism of G,,, and let K,, := [m].(Q,).
If m | m/, there is a natural inclusion K,, < K, (defined by adjunction). Let
U: =W —D,and let 2: D — W and j3: U — W denote the canonical morphisms.
We shall also denote by J, and K,,, their pullbacks to U. Then for each Q,-perverse
sheaf F on Uy, its unipotent and quasi-unipotent nearby cycles are

RUH(F) :=lim« ' Ry (F ®q, J;) and RU{*(F):=lim RV} (F ®q, Kn),

respectively, where the limits are taken in the category of perverse sheaves on Dgt.

Let L be a Qp-local system on Ug. Let f2* : W — AL denote the analyti-
fication of f, whose pullback under D < A" we denote by f3". If the reduced
subspace of D®" is a normal crossings divisor in X", the quasi-unipotent nearby
cycles RU%a, (L*") has been introduced in [DLLZ, Def. 6.4.1].

Lemma 4.3.1. In the above setting, we have (R\IJ;{“(]L))an = R\I/qgn (Lam).

Proof. This follows from [Hub96, Prop. 2.1.4 and Thm. 3.8.1] and [DLLZ, Lem.
4.5.4 and Thm. 4.6.1]. O

Suppose moreover that f is smooth, and that (F,V) is a vector bundle with
an integrable connection on U = W — D that (necessarily uniquely) extends to
a vector bundle F' on W with a log connection ¥V whose eigenvalues of residues
along D belong to QN [0,1). Then we can define the Q-filtration V* on F(xD) :=
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Un, F(nD), as in Lemma and RUY(F,V) and RUY"(F,V) (which are de-
fined much more generally using the theory of holonomic algebraic D-modules) are
canonically isomorphic to grl, F(*D) (resp. Bae(~1,0] (gr% F(*D))), with canon-
ically induced integrable connections and filtrations (cf. [Sai88, (5.1.3.3)]). By
[Nag62, Hir64al, [Hir64b] again, we can compactify (W, D) to some (W, D), where W
is proper, and where D is a simple normal crossings divisor such that D = WND and
the closure of D in D is a union of smooth irreducible components of D. Since we
have a log connection Dglé,log (L) on W as in Section its restriction to W gives an

~

extension of DZE(L) as in the last paragraph, and hence we have RV} (DgE(L)) =
al. u al. ~ o al.
g1y, Dig(L)(xD) and RY " (DIE(L)) = @ae(-1,0 (€15 Daf (L) (xD)).

Theorem 4.3.2. Assume that f is smooth. Let L be a de Rham Q,-local system on
Us. Then R\I/;%" (L) is a de Rham Qy-local system on D¢y, and there is a canonical
isomorphism D3 (RU(L)) = RS (DZIP%(IL)) which restricts to an isomorphism
DSE (R\IJ;(]L)) =~ RUY (DZIF%(]L)), as filtered (integrable) connections.

Proof. As explained in Lemma all the exponents of D3 (R\I';{“ (L)) are non-
Liouville numbers. Moreover, since the eigenvalues of the residues of the log con-
nection Dzllf Jog (L) on W along the irreducible divisors of D are all in QN [0, 1), the

exponents of the connection Dzlpghlog(]L) 9, are also non-Liouville numbers. Thus, the
theorem follows from the algebraization of the canonical isomorphisms in Theorem

3.7.11} by using Lemma and the fact in the proof of Lemma O

Remark 4.3.3. As the geometric monodromy of L. along D is quasi-unipotent (see
[DLLZ, Def. 6.3.7 and Rem. 6.3.13] and the proof of Lemma [3.4.11)), and as the
eigenvalues of the residue of Dglpghlog(]L) along D are in QNJ[0, 1), the quasi-unipotent

nearby cycles of L and DZE(L) coincide with their respective full nearby cycles.

When X is a smooth curve over k, Theorem has the following concrete
interpretation. In this case, D = =z is a k-point, and f = z is an étale local
coordinate of X at . We can identify RVU,(L) with the finite-dimensional Q,-
representation Ly of Gal(K,/K,), where K, is the local field around z, and 7,
is a geometric point above 1, = Spec(K ), which specializes to a geometric point
Z = Spec(k) above . The coordinate z splits the natural projection Gal(K ,/K,) —
Gal(k/k), and so we may regard RV, (LL) as a representation of Gal(k/k).

Corollary 4.3.4. IfL is a de Rham Q,-local system on (X — )¢, then R¥ (L)
is a de Rham representation of Gal(k/k) (with the choice of coordinate z).

5. APPLICATION TO SHIMURA VARIETIES

In this section, we shall prove Theorem which serves as an evidence of
Conjecture and also Corollary In order to avoid confusion, the symbol K
will be reserved for levels (rather than fields). For simplicity, we shall continue to
use the term filtered log connection to mean a filtered vector bundle equipped with
an integrable connection satisfying the Griffiths transversality, as in Section [4.1
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5.1. The setup. Let (G, X) be any Shimura datum. That is, G is a connected
reductive Q-group, and X is a hermitian symmetric domain parameterizing a con-
jugacy class of homomorphisms

(511) h:S:= Res(c/]R Gm’(j — GR,

satisfying a list of axioms (see [Del79, 2.1.1] and [Mil05, Def. 5.5]). For each
neat (see [Pin89, 0.6]) open compact subgroup K of G(Ay), we denote by Shx =
Shk (G, X) the canonical model of the associated Shimura variety at level K, which
is a smooth quasi-projective algebraic variety over a number field £ C C, called the
reflex field E of (G, X). Recall that, essentially by definition, the analytification of
its base change Shg ¢ from E to C is the complex manifold

(5.1.2) Shig ¢ = (Q)\(X x G(Ay))/K,

where G(Q) acts diagonally on X x G(Ay) from the left, and where K acts trivially
on X and canonically on G(Ay) from the right. Note that right multiplication by
g € G(Ay) induces an isomorphism [g] : Shi},—1 ¢ = Shi'¢, which algebraizes and
descends to an isomorphism Shgg -1 5 Shg, still denoted by [g]. (See [Mil05),
Lan17] and the references there for basic facts concerning Shimura varieties.)

Given neat open compact subgroups K; and K5 such that K; is a normal sub-
group of K5, we obtain a finite étale cover Shx, — Shg, with a canonical K5/K;-
action. It will be convenient to consider the projective system {Shg }x, which can
be viewed as the scheme Sh := lim X Shy over E, which admits the canonical right
action of G(Ay) described above. We call these actions (and their various extensions
to other objects) Hecke actions of G(Ay) (sometimes with G(A ) omitted).

Let G¢ be the quotient of G by the minimal subtorus Z,(G) of the center Z(QG)
of G such that the torus Z(G)°/Z,(G) has the same split ranks over Q and R.
(This is equivalent to the definition in [Mil90, Ch. III] when (G, X) satisfies [Mil90]
(I1.2.1.4)].) Let G9* denote the derived group of G, and let G4°™¢ denote the image
of G4 in G°¢. Let G* denote the adjoint quotient of G. We have the canonical
central isogenies G4°* — Gder¢ — G2 of connected semisimple Q-algebraic groups.

For each field F', let Rep(G°) denote the category of finite-dimensional algebraic
representations of G¢ over F', which we also view as an algebraic representation of
G by pullback. Let Q@ denote the algebraic closure of Q in C, and let @p be an
algebraic closure of @Q,, together with a fixed isomorphism ¢ : @p 5 €, which

induces an injective field homomorphism + =5 : Q—=Q,.

5.2. Local systems on Shimura varieties. Let us begin with the complex ana-
lytic constructions. For any V' € Repg(G°), we define the (Betti) Q-local system

BV = G(Q)\((X x V) x G(Ay))/K

on Shi¢. (See Proposition below for some formal properties.)

Let us also explain the construction of gV more concretely via the representation
of the fundamental groups of (connected components) of S %C, under the classical
correspondence between local systems and fundamental group representations.

Suppose that we have a connected component of Shi’ ¢ (see ) given by

(5.2.1) I o \XT 2 Q@) \ (XF % (C(Q)190K)) /K
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(cf. [Del79, 2.1.2] or [Mil05, Lem. 5.13]), where X* is a fixed connected component
of X and go € G(Ay), and where G(Q) is the stabilizer of X* in G(Q) and

Il o0 = GQ)4 N (90Kgy ")
is a neat (see [Bor69, 17.1]) arithmetic subgroup of G(Q). It follows from the
definitions that F;r(’ go 18 neat when K is. Let F}’,Cgo and F}’Zg denote the images of
F} 5 10 G¢(Q) and G*4(Q), respectively, so that we have surjective homomorphisms

+ +, +,ad
(5.2.2) FK,go —» FK,(;O —» FK;O'

Lemma 5.2.3. The subgroup I‘}”Cgo of G¢(Q) is contained in G™¢(Q), and the
+,ad

second homomorphism in is an isomorphism F;r(:(;o 571 K.go-

Proof. Since ker(G — G¢) is the maximal Q-anisotropic R-split subtorus of the
center of G, the quotient G¢/G4¢":¢ is a torus isogenous to a product of a split torus
and a torus of compact type (i.e., R-anisotropic) over Q. Since all neat arithmetic
subgroups of such a torus are trivial, the neat image F}’;O of I‘f{(, 5 1 Ge(Q) is
contained in G4°¢(Q). Consequently, the second homomorphism in is an
isomorphism, because its kernel, being both neat and finite, is trivial. O

Corollary 5.2.4. The connected component Fzgo \XT is a smooth manifold whose

fundamental group (with any base point of XT) is canonically isomorphic to F;’;O.
Proof. As F} g, acts on X* via F;r(’f;g C G*4(Q), this follows from Lemma O

Remark 5.2.5. We shall not write I‘;?Zi again in what follows.

By taking Xt as a universal cover of F};’ 0 \XT, and by fixing the choice of a

base point on X*t, the pullback of gV to F;“C 5 \X 1 determines and is determined
by the fundamental group representation

(5.2.6) P (V) : TR — GLg(V),

which coincides with the restriction of the representation of G¢ on V. In particular,
it is compatible with the change of levels K/ C K.

Moreover, given g € g5 "G(Q)4go, so that gog = ygo for some v € G(Q),, we
have F;r]’(cg_l,go = fyl“;:;o'y*l, and the Hecke action [g] induces a morphism

+ + Xt +

(5.2.7) FgKg_l,go\X = D g \ X
which is nothing but the isomorphism defined by left multiplication by v~!. It fol-
lows that the canonical isomorphism [g] (V) = gV of local systems corresponds
to the following equality of fundamental group representations

(5.2.8) Pirca1.00(V) =7 (0K 5o (V)),

where v(p}r{’ gO(V)) means the representation of F:}r}fg,l . = szlzov_l defined by

9
conjugating the values of p;r(’go (V) by v in GL(V).

Now, by base change along Q C C via the canonical homomorphism, we obtain
the object V¢ :=V ®g C in Repc(G©), as well as the C-local system

BV =8V ®@ C
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on Shg (C), which via the classical Riemann—Hilbert correspondence (as reviewed
in the introduction) corresponds to the (complex analytic) integrable connection

(arVE", V) = (8Vc ®c Osnyp ., 1 @ d).

Moreover, any h € X (as in (5.1.1))) induces a homomorphism h¢ : Gu,c X Gm,c —
Gc, whose restriction to the first factor defines the so-called Hodge cocharacter

(5.2.9) pn : Gmc — G,

inducing a (decreasing) filtration Fil® on qg V" satisfying the Griffiths transversal-
ity condition. Then we obtain a filtered integrable connection (qrV.&", V,Fil®).

Let Sh%" be a toroidal compactification of Shx (as in [Pin89]), which we assume
to be projective and smooth, with the boundary divisor D := Sh'?" — Shy (with its
reduced subscheme structure) a normal crossings divisor, whose base change from F
to C and whose further complex analytification are denoted by Sh}?ﬁc and Shi2'™",
respectively. As explained in [LS13] Sec. 6.1], gV has unipotent monodromy aiong
Dg". Therefore, by [Del70, II, 5] and [Kat71l, Sec. VI and VII], (qrVE", V) uniquely
extends to an integrable log connection (qr V&, V), with nilpotent residues along
Dgr. By [Del70) II, 5.2(d)], V — (arVE ™, V) defines a tensor functor from
Repc(G®) to the category of integrable log connections on Shzgi’c&n. Moreover,
by [SchT3] (see also [CKS87]), the filtration Fil®* on qr V' uniquely extends to a
filtration on gr V¢ ™" (by subbundles), still denote by Fil®. The extended V and
Fil® still satisfy the Griffiths transversality, and therefore (ar V™", V, Fil®) is an
analytic filtered log connection. By GAGA (see the proof of [Del70, II, 5.9]), this
triple canonically algebraizes to an algebraic filtered log connection

(arVE™M, V, Fil®).
(These qr V™™ and qg VE™ agree with the canonical extensions defined differently

in [Har89, Sec. 4], and also [Har90] and [Mil90].) The restriction of (ar V&, V, Fil®)
then defines an algebraic filtered regular connection

(dRK(C 5 v7 Fll.)

on Shg ¢, whose complex analytification is isomorphic to (qr V", V, Fil*). We call
(arY ¢, V) the automorphic vector bundle associated with Ve. We summarize the
above discussions as the following:

Proposition 5.2.10. The assignment of gV (resp. (arV¢, V,Fil*)) to V defines
a tensor functor from Repg(G©) to the category of G(Ay)-equivariant Q-local sys-
tems (resp. filtered regular connections) on {Shi’c}x (resp. {Shi c}x), which is
functorial with respect to pullbacks under morphisms between Shimura varieties in-
duced by morphisms between Shimura data. Hence, the assignment of (arVc, V)
(resp. (arV, V,Fil®)) to V defines a G(Ay)-equivariant G¢-bundle with an inte-
grable connection (Ec, V) (resp. a Pg-bundle Epg) on {Shr c}x, where P¢ is the
parabolic subgroup of G& defined by some py, as in (¢f. [LZ17, Rem. 4.1(1)]).
By forgetting filtrations, we obtain a G(Ay)-equivariant morphism Epe — Ec.

Remark 5.2.11. As explained in [LZ17, Rem. 4.1(i)], the conjugacy class of uy, as
in defines a partial flag variety Flc = G /P& parameterizing the associated
conjugacy class of parabolic subgroups, which depends only on the Shimura datum
(G, X) and descends to a partial flag variety F¢ of G¢ over the reflex field E. Let
Ere. = E&c xG¢ Flc. Then the filtrations on arY ¢’s as in Proposition define
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a section of Ery. over {Shx c}x. For any particular choice of P& in F¢(C), this
section amounts to the reduction of &¢ to a Pg-bundle Epg as in Proposition
Moreover, if (£,V) is the canonical model of (¢, V) as in [Mil90, Ch. ITI, Thm.
4.3], we also have the canonical model £z := & x G Fo of Epe = EFue, over Shy.

Next, let us turn to the p-adic analytic constructions. Given any V &€ Rep@(Gc)
as above, by base change via f1|@ Q= @p, we obtain the object V@p = V®@@p
in Rep@p(GC). As explained in [LSI8b] Sec. 3] (see also [LZ17, Sec. 4.2]), given
such a finite-dimensional representation V@p of G¢ over Q,,, there is a canonical
automorphic Q,,-étale local system (i.e., lisse Q,-étale sheaf) étK@p on Shg (with
stalks isomorphic to Vg ) In fact, by the very construction of & 4@ , for each finite
extension L of Q, in Qp such that Vg has a model Vy, over L, we have an L-étale
local system ¢V ; on Shg (with stalks isomorphic to V7,) such that

(5.2.12) &V ®LQ, «Vg -

In addition, by [AGV73, XI, 4.4] (or by using the canonical homomorphism from the
fundamental group to the étale fundamental group), its pullback to Shg ¢ induces
a Q,-local system Vg , together with a canonical isomorphism

(5.2.13) BK@p ®@p7b Cx BKC'

Note that this implies that étz@ has unipotent geometric monodromy along D@.
P —_
Suppose that Vg has a model Vi, over a finite extension L of Q, in Q,. Let k
P

be a finite extension of the composite of L and the image of F @& Q <L—>1 @p in @p.
Let us denote with an additional subscript “k” (resp. “@p”) the base changes of
Shk etc from F to k (resp. @p) via the above composition. We will adopt a similar
notation for sheaves. We can view the L-étale local system ¢V ; as a Q,-étale local
system with compatible L-actions. By [LZ17, Thm. 1.2], the pullback of &V, to
Shg , which we still denote by the same symbols, is de Rham. By working as in
Section and by pushing out via the multiplication homomorphism

(5.2.14) T:L®qg,k—k: a®br ab,

we obtain a filtered log connection (p-ar V™" := DSE,IOg(étKL) ®(L@q, k), k. V, Fil*)
on Sh%", . which has nilpotent residues along D) by [DLLZ, Cor. 6.4.4], The-
orem and GAGA (see [Kop74]); and also a filtered regular connection
(p-arVy = Dglf%(étKL) ®(Log, k),m ks V,Fil*). These constructions are compatible
with replacements of L and k with extension fields satisfying the same conditions.
Thus, we can canonically assign to each étz@p as above the filtered log connection

(5.2.15) (p_dRzg;“, V,Fil*) := (parVi™, V, Fil*) @1 Q,
on ShtorQ , whose restriction to Sh kg, 1s the filtered regular connection
(5.2.16) (p_dRZ@p, V,Fil®) := (,.arV}, V, Fil*) @ @p.

Both (5.2.15)) and ([5.2.16)) are independent of the choices of L and k for a given V.
Since (p_dRK@ ,V,Fil®) is algebraic, its base change under ¢ : @p S Cisa
P

filtered regular connection (,.qrV¢,V,Fil®) on Shg ¢, the horizontal sections of
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whose complex analytification defines a C-local system .V on Shi'¢. Since DA
is a tensor functor uniquely determined by Dggr via the analytification functor (see
Lemma and its proof), by [LZ17, Thm. 3.9(ii)], we obtain the following:

Proposition 5.2.17. The analogue of Proposition [5.2.10] holds for the assignments

of pV ¢, (p-arVg ,V,Fil*), and (p-arV, V,Fil*). In particular, they define a
P

G(Ay)-equivariant G°-bundle with an integrable connection (,&c, V) (resp. a P§-

bundle pEpc) on {Shr clx, with a G(Ay)-equivariant morphism ,Epe — pEc.

Likewise, the base change of (,-4r H%m, V, Fil*) under ¢ is a filtered log connection

(p-arVE™, V, Fil*) on Shi¢c, with nilpotent residues along D2". The analogues of
Proposition [5.2.17| for (p_dRL%Zn, V,Fil®) and (p.arVE", V, Fil®) also hold.

Remark 5.2.18 (cf. Remark|[5.2.11)). By construction (based on (5.2.16)), (,€c, V)
(vesp. pEpe = ,EFy. ) canonically admits a model (,E, V) (resp. pExe, ) over Shi ,
where k is the completion of E at the place determined by ¢.

5.3. Statement of theorem. It is natural to ask whether the Betti local systems
»-BY ¢ and gV (resp. the filtered connections (,-4r V¢, V, Fil®*) and (4r V¢, V, Fil®))
on Sh*}?,c (resp. Shg ¢) are canonically isomorphic to each other, as in the following
summarizing diagram:

coefficient

coefficient .
base change via

base change via ar s
—_ Pt =:Q—Q
can.: Q — C Q- P

BV ————V € Repg(G*) —"—— «Vg,

classical RHI T Ip-adic (log) RH

(arY ¢, V, F;l') »BY ¢ (;D-dRK@pv V, Fil®)
AR ? e Iclassical RH
? i base change
(p—dRZC7 V,Fil*) via 1 :Q, > C

The following theorem provides affirmative (and finer) answers:

Theorem 5.3.1. We have canonical isomorphisms , 8V = gV over Sh??’(c and
(p-arV ¢, V,Fil*) = (4qrV¢, V,Fil®) over Shi ¢, compatible with each other un-
der the complex Riemann—Hilbert correspondence. Furthermore, we have canoni-
cal G(Ay)-equivariant isomorphisms between the relevant pairs of tensor functors
in Propositions [5.2.17] and [5.2.10], compatible with pullbacks under morphisms be-
tween Shimura varieties induced by morphisms of Shimura data, inducing compati-
ble canonical G(A y)-equivariant isomorphisms (,Ec, pV) = (Ec, V) and pEpe = Epe.

These isomorphisms are compatible with the formation of canonical models in the
sense that they descend to canonical G(Ay)-equivariant isomorphisms (,Ek, V) =
(€. V)@Erk and ,Ex, = ExeRE k, respectively, if (€,V) and Ex, are the canonical
models of (Ec, V) and Epe = Exy, respectively, as in [Mil90, Ch. III, Thm. 4.3] and
Remark and if (,E, pV) and pEx¢, are as in Remark [5.2.18]

The analogous assertions hold for the filtered log connections (p.ar Ve, V, Fil®)
and (aqrVE", V,Fil®) (and the associated torsors).

The proofs of Theorem [5.3.1] will be given in the remaining subsections. Note
that it verifies, in particular, the conjecture in [LZ17, Rem. 4.1(ii)].
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Assuming this theorem for the moment, since every irreducible algebraic repre-
sentation of G® over Q, has a model over Q, we obtain the following:

Corollary 5.3.2. Theorem also holds.

Next, we turn to Corollary Consider the (p-adic) analytic G;?*"-torsor with
an integrable connection (,&i",,V) on Shi, defined by the assignment of the p-
adic analytification ,.qr V3" of p.arV to V € Repr (G¢), where k is the completion
of E with respect to the p-adic place determined by ¢. As in Remark the
filtrations on ,.qr V3", for all V, define a section of ,E3, = €2 xS FLM over
Sh%;. Now let # € Shy (k’), where &’ is a finite extension of k in Q,. Then there is
an analytic neighborhood U of x in Sh¥’ . trivializing (the pullback of) (,Ei", ,V) as
a Gy*"-torsor with an integrable connection. Then the above section of ,£%} over
Shi . defines the so-called Grothendieck-Messing period map gy : U — F3)

Corollary 5.3.3 (restatement of Corollary . This morphism wgn s étale.

Proof. Let (’)[/}’I (resp. OQ_ZJ"GM(m)) denote the completion of the local ring Oy,

(resp. (’)HZ?JGM(@). It suffices to show that the homomorphism 1) : O}Z,wa(z) —

Op, induced by may is an isomorphism (cf. [Hub96, Prop. 1.7.11]). Note that

the composition of Spec(Of ) Spe(v) Spec(O%y rou(@)) A Fey, is determined

by the induced section of ,Ex¢, over Spec(O{},x) and the universal property of the

~

algebraic partial flag variety F¢. By transporting via the isomorphisms (,&¢, ,V) =
L

(€, V) and ,Epg = Epg in Theorem [5.3.1] the pullbacks via k' < @, = C of the
trivialization of (,&,,V) and the section of ,Exy, over Spec(Of; ), the pullback
¢ of 1 can be identified with the corresponding homomorphism for the usual
complex analytic period map defined by Ea‘é on Sh% ¢, whose induced morphisms
from the spectra of completions of local rings are also determined by the universal
property of F¢. By the complex analytic construction in Section this latter
period map is locally an open immersion of complex analytic spaces, given by the
Borel embedding X — F{&" (see [Mil90, Ch. III, Sec. 1] and [Hel0T, Ch. VIII,
Sec. 7]). Thus, ¢ is an isomorphism, and so is v, as desired. O

Remark 5.3.4. Theorem and Corollary [5.3.3] are not surprising when there
are families of motives whose relative Betti, de Rham, and p-adic étale realizations
define the local systems gV, (arV ¢, V, Fil*), and &V , respectively. This is the

case, for example, when Shg is a Shimura variety of Hodge type. (We will take
advantage of this in Section [5.5below.) But Theorem and Corollary also
apply to Shimura varieties associated with exceptional groups, over which there are
(as yet) no known families of motives defining our local systems as above.

Remark 5.3.5. By Theorem and Deligne’s comparison result in [Del70, II, 6],
and by Theorem the spectral sequence

a,b _ rra,b tor can a+b tor can\ ~ rra-+b
El - Hlog Hodge(ShI(,(C7 dRZ(C ) = Hlog dR(ShK,C’ dRKC ) - HdR (ShK’(C, dRKC)

degenerates on the E; page. While this degeneration was already known thanks to
Saito’s direct image theorem (see [Sai90, Thm. 2.14] and [SuhI8| Sec. 4]), we have a
new proof here based on p-adic Hodge theory. Also, we can determine the Hodge—

Tate weights of Hi(ShK@p, étz@p) in terms of dimc Hﬁ)’giﬁ‘;dge(Shgng, arYE™), for
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all a € Z, which can be computed using the dual BGG decomposition and relative
Lie algebra cohomology. (We will explain these in more detail in [LLZ].)

Remark 5.3.6. The comparison isomorphisms in Theorem [5.3.1] over Shimura vari-
eties induce similar isomorphisms on general locally symmetric varieties, by pull-
back and by finite étale descent. Consequently, the analogue of the statements in
Remark [5.3.5] for general locally symmetric varieties also hold.

Remark 5.3.7. By replacing the input [Suh1§| in the proof of [Lanl6b, Thm. 4.3]
with Theorem [£:2.T] and by Theorem [5.3.1]and Remark [5.3.6] we obtain new p-adic
Hodge-theoretic proofs of the vanishing results for the coherent and de Rham coho-
mology in [Lanl6b, Thm. 4.1, 4.4, 4.7, and 4.10], generalizing the characteristic-zero
cases of previous results in [LS12 [LS13] [LS14] Lan16al.

5.4. Proof of theorem: preliminary reductions. Let us fix a connected com-
ponent F}; 9o \XT of Shigc as in , which is the analytification of a quasi-
projective variety defined over some finite extension E+ of F in Q. Let h € Xt be
a special point such that factors through Tgr for some maximal torus T of
G (over Q). (Recall that special points are dense in XT—see the proof of [Mil05),
Lem. 13.5].) Up to replacing ET with a finite extension in Q, we may assume that
the image of & € X* in I'je , \X" is defined over E*.

The pullbacks of gV to h € X can be canonically identified with V¢ by its
very construction. On the other hand, the pullback of , gV can also be canonically
identified with V¢. In fact, in both cases, we have slightly more:

Proposition 5.4.1. The pullbacks of 8V and , 8V to (G(Q)h) x G(Af) are
canonically and G(Q) x G(Ay)-equivariantly isomorphic to the trivial local system
(G(Q)h) x Ve x G(Ay) (on which G(Q) acts by diagonal left multiplication on all
three factors, and G(Ay) acts by right multiplication on the last factor.)

Proof. The assertion for gV follows from its very construction. As for the assertion
for , 8V, let us first identify the pullback of étK@p to the images of (h,g), for
g € G(Ay), by recalling the arguments on which [LZ17, Lem. 4.8] is based. We
shall write I‘;r(,g = G(Q)y N (gKg™1) (cf. @ ), so that I‘;r()g\X"r gives the
connected component of Shi - containing the image of (h, g).

By assumption, & : S = Resc/gr Gm,c — Gr (as in ) factors through Tk,
and the Hodge cocharacter (as in ) induces a cocharacter pup, : Gm,c = Tc,
which is the base change of some cocharacter y1 : Gy, p — T defined over some
number field F in Q. Then the composition of x4 with the norm map from Tr to
T defines a homomorphism Ny : Resp/g Gm,r — T of tori over Q, and we have

a composition of homomorphisms F*\A} N T(Q\T(A) = T(Q)\T(Ays), where
T(Q) denotes the closure of T(Q) in T(Af), which factors through

X Artp

(5.4.2) FOAL MY Gal(F/F) "% TQ\T(A,),

where FP is the maximal abelian extension of F in Q. If Fi , is the subfield of

F2b guch that Gal(F®/F ,) is the preimage of (9K g ' NT(Q))\(¢Kg 1 NT(A}))
under (5.4.2)), then we have an induced Galois representation

(5.4.3) r(W) kg Gal(Q/Fig) = (9K g~ NT(Q))\(gKg " NT(Ay)).
(If g = go, then Fx , C E*, since the image of h in F}’go \XT is defined over ET.)
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Since Ty stabilizes the special point h, it is R-anisotropic modulo the center
of G, and hence its maximal Q-anisotropic R-split subtorus is the same as that
of the center of G. Therefore, as explained in the proof of [LZ17, Lem. 4.5], the
pullback of V to T satisfies the requirement that its restriction to gKg~ ' N'T(Q) is
trivial as in [LZI7, (4.4)] (with the neatness of gKg~! here implying that the
open compact subgroup K there is sufficiently small). Thus, the composition
T(Af) = T(Qp) — G(Q,) — GLg (Vg ) factors through (gKg ' NT(Q)\T(Ay)

and induces, by composition with 1) a Galois representation T(M,V)}} gp -

Gal(Q/Fk 4) — GL@p (V@p) describing the pullback of étz@p to the geometric point

—1

above the image of h in I‘;Q’Q\XJr given by the composition of Fi 4 B0 S Q-

L
Let L, Vi, k, and 7 be as in Section giving us maps Q, = L — k — @p S cC
in the remainder of this paragraph. Without loss of generality, we may assume that
k also contains the image of F 4 in Q,. Then the image of r(p, V)}k(’gﬁu is con-
tained in the subgroup GL, (VL) of GL@p (V@p), and we can view this representation

over L as a representation over Q, with an additional action of L, as usual. By
[LZ17, Lem. 4.4], this representation is potentially crystalline. Since it factors
through the abelian group T(Q,), by [Patl9, Thm. 2.3.13 and its proof] (based
on [Ser68, Ch. IT and IIT] and [DMOS82, Ch. IV]; cf. [EM97, §6, Prop., and its
proof]), it is isomorphic to the p-adic étale realization M, of some object M in
the Tannakian category (CM)f, , of motives (for absolute Hodge cycles) over Fk g
generated by Artin motives and abelian varieties potentially of CM type, as defined
in [DMOS82, Ch. IV]. Let Mp and Mggr denote the Betti and de Rham realiza-
tions of M. Via the canonical p-adic étale-Betti and Betti-de Rham comparison
isomorphisms, we have canonically induced actions of L on Mp g, := Mp ®@q Qy,
and hence on Mp ¢ := Mp ®g C and Myr c := Mar ®F, , C. Moreover, we have
canonically induced isomorphisms from V¢ to the pushouts of Mp c and Mgg,c via
the base change 7¢ : L ®g, C = C of 7 : L ®q, k¥ — k. By [Bla94, Thm. 0.3],
the absolute Hodge cycles defining objects in (CM)p, , are compatible with the
p-adic étale-de Rham comparison isomorphism of Faltings’s, and hence we have
a canonically induced comparison isomorphism Dgg (M) 5 Map ® Fi., b, where
Dgr is defined over k. Thus, we can canonically identify the pullbacks of 4qrV and
p-drY ¢ to h via the pushout of Myg ¢ via 7¢. (These identifications do not depend

on the choices of M and r(u,V)};’g’p 5 M, because, by [DMOS82, Ch. IV, (D)],

can.

Homcmyp,, (M, M")®qQ, = Home,, @/, (Mp, M,), for any M" in (CM)p,, ,

and hence any isomorphism (g, V)} 9

Mp :) MZI), ]\4}37(@p :> Mé,@;ﬂ MB,C :> ME/S,(C’ and MdR,(C :) MéR,(C’ which are
compatible with the various canonical comparison isomorphisms above for M and
M'.) Accordingly, by using the trivial complex Riemann—Hilbert correspondence
over the single C-point h, we can canonically identify the pullbacks of gV and
»-BY ¢ to h via the corresponding pushout of Mp ¢ via 7c. Consequently, we can
canonically identify the pullback of , gV to h with V.

For each v € G(Q), by conjugating all the actions on the base changes of V' and
the model Vi, by « in the above, we can also canonically identify the pullback of
p»-BY ¢ to vh with Vo. When put together as a canonical identification over the

— MI’J canonically induce isomorphisms
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whole (G(Q)h) x G(Ay), it is G(Q)-equivariant by what we just explained, and is
G(Ay)-equivariant because it does not involve the second factor G(Ay) at all. O

Proposition 5.4.4. Suppose that the assertions for Betti local systems in Theorem
hold. Then the remaining assertions in Theorem also hold.

Proof. Since ,.8V = gV over Sh?c, we have (p.arV¢,V) = (arV, V) over
Shk ¢, because both sides admit extensions (p.qrVE™, V) and (qrVE™, V) over
Shtor (and hence have regular singularities along D¢ = Shtor — Shg c). Since
both (p_dchan, V) and (¢qrV.&", V) have nilpotent residues along D¢ (as explained
in Section 7 these two extensions are also canonically isomorphic to each other
(by [ABOI) Ch. 1, Prop. 4.7] or [ABC20, Thm. 11.2.2]). To verify that the filtrations
are respected by such isomorphisms, it suffices to do so at the special points, or just
at the arbitrary special point h we have chosen, because special points are dense in
the complex analytic topology (see the proof of [Mil05, Lem. 13.5]).

Consider the Galois representation r(, V)};,gm in the proof of Proposition

By decomposing the representation Vg of T(@p) into a direct sum of characters
p

of T(Q,), we obtain a corresponding decomposition of r(p, V)% into a direct

K.gp
sum of characters Gal(Q/Fk 4) — @; . By construction, the restrictions of these

characters of Gal(Q/F,g) to the decomposition group at the place v of Fi , given

-1
by the composition F 4 &= Q <y @p are locally algebraic (in the sense of [Ser68]
Ch. 11, Sec. 1.1, Def.]), because they are induced (up to a sign convention) by the
composition of the local Artin map, the cocharacter @: — T(@p) given by the
base change of y under the same Fg 4 — @p, and the corresponding characters of
(@p) (This local algebraicity played a crucial role in the references we cited in the
proof of Proposition ) Thus, the Hodge filtrations on the pullbacks of ,.qrV ¢
and qrV to h are both determined by the Hodge cocharacter up : Gp,c = Ge.
The remainder of Theorem [.3.1] follows from the fact that the formations of
(€E, V) (resp. £x¢) and (€, V) (resp. ,Ex¢, ) are determined by their pullbacks to
special points, which are compatible with each other by the arguments in the proof
of Proposition (resp. of this proposition); and that the descent data for such
torsors extend to their canonical extensions as in [Mil90, Ch. V, Sec. 6]. O

By Proposition [5.4.4] it remains to prove the assertions for Betti local systems in
Theorem As explained before (cf. (5.2.6))), the pullbacks of , 5V and gV to
1"1? 9 \XT determine and are determined by the fundamental group representations

p;r((g?(v) ¢ — GLe(Ve) and pRQO(V) ¢ — GLe(Ve),

K,go K,g0

respectively, by canonically identifying the pullbacks of the local Systems »-BY ¢ and
BV to the image of h € X in F+,. \XT using Proposition Then it suffices

to show that p+ (p)(V) and ng (V) coincide as representations of I‘Jr . In this
case, they are 1som0rphlc via the identity morphism on V¢, and therefore the choice
of such an isomorphism is functorial in V' and compatible with tensor products and
duals because the assignment of pE 9 (V) to V is, with Hecke actions because
of Proposition [5.4.1} and with morphisms between Shimura varieties induced by
morphisms of Shimura data because all constructions involved are.
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Since I';¢ ' is contained in G9°"¢(Q), and since p . (V) depends only on the
restriction V|gdere of Vo to GIe5:¢ it remains to prove the following proposition.

,(p)
»go

sentation of G°%¢ that coincides with the representation Vg |gaer.e of GI¢ on V.

Proposition 5.4.5. The representation p; (V) extends to an algebraic repre-

Remark 5.4.6. Such an extension is necessarily unique, as arithmetic subgroups
of semisimple groups without compact Q-simple factors are Zariski dense, by the
Borel density theorem (see, for example, [Bor69, Prop. 15.12]).

Lemma 5.4.7. Let (Cu},)u(), K, Jo, and h € XT be a Shimura datum and some
additional choices of data analogous to (G, X), K, go, and h € XT. Let Gder _y @der
be a central isogeny inducing some X+ 3% X+ mapping h toh and a finite covering
map f I‘*IZ(@O\)U(Jr — F}’go\Xf Let T := F—;{,go c Gdene(Q), which (by neatness)
is mapped isomorphically to a finite index subgroup T of T := FRQO C Gdere(Q).
LetV e Rep@(éc), with an isomorphism between the pullbacks to Gder,c of V and

V. Then the similarly defined representations ﬁj“(,go (‘u/),ﬁjv(;’;)(\v/) T = GLe(Ve)

are canonically induced, respectively, by the pullbacks of p}’go(V),p};’,g)(V) T —

v

GL¢ (V). Moreover, if the analogue of Proposition |5.4.5| holds for ﬁ't’(vp)(V) and
o K,go
Velgaer.e» then Proposition holds for p;’&)(‘/) and Vg|gaer.c.

Proof. All statements but the last one follow immediately from the functoriality

of the constructions. Let BE@ and p_Bﬁ(C denote the corresponding local system
on Shz}?)(c. By Proposition , and by considering the descent data for local

systems with respect to the covering map lu“\)u(“‘ — T\X*, the pullbacks to h of
fe (Bﬁ(ch“ﬂ\)“(-;—) and f, (p_Bﬂdf\;(Jr) can be canonically identified with

Ind%(‘/(df) 2 {p:T—=Ve:o(@) = 7_1(90(')/)),f0r ally €T and v/ € T'},
and the pullbacks to h of the sub-local systems gV |r\x+ and , BV |p\x+ can be
canonically identified with the equalizer of Indp(Ve|r) = Indk(IndL(Ve|p)), where
the two morphisms are canonical, which can be in turn canonically identified with

Velr 2 {p: T = Ve p(y) =77 (p(7)), for all 7,7 € T},
where I' and T act on the codomains V¢ by restrictions of Vi |qaer,c. If the analogue of
Proposition |5.4.5( holds for p“;;;’;)(‘u/) and Vc|éder‘c, then Bich*\)“u o p_Bﬁc

and f*(BﬁC f\)v(Jr) o f*(p_BEdf\;ﬁ) matches pV¢|p\x+ and ,.BV¢|rx+ as sub-
local systems. As a result, Proposition also holds for G9™¢ and Vg |gdere. [

\X+»

Lemma 5.4.8. It suffices to prove Proposition in the special case where G4
and GI°¢ qre Q-simple and simply-connected as algebraic groups over Q.

Proof. By [Del79, Lem. 2.5.5], there exists a connected Shimura datum with the

semisimple algebraic group over Q being the simply-connected cover G of Gder,
Moreover, there is a decomposition = [Lics G; of G into a product of its Q-simple
factors such that each él is part of a connected Shimura datum. Thus, we can
choose some Shimura data (G,X) and (G;,X;) with Gdere 3 G and G335 G,
choose levels and additional data such that the corresponding rc G(Q) is of the
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form I' = [Lics I; for some neat arithmetic subgroups L; of (N}i((@) and such that
its image T in G4°"¢(Q) is a subgroup of F}’,Cgo, and apply Lemma (I

Consequently, in what follows, we may and we shall assume that GI¢™¢ is simply-
connected as an algebraic group over Q, so that Gder = Gder:¢ also is.

5.5. Cases of real rank one, or of abelian type. In this subsection, we assume
that G4°¢ is Q-simple and simply-connected as an algebraic group over Q (so that
Gder =2 Gder©) and that either GE** is of type A or tkg(GE) < 1.

Lemma 5.5.1. Under the above assumptions, the Shimura datum (G, X) is neces-
sarily of abelian type (see, for example, [Lanl7, Def. 5.2.2.1]). Up to replacing G
with another reductive algebraic group over Q with the same derived group G°*, we
may assume that (G, X) is of Hodge type (see, for ezample, [Lanl7, Def. 5.2.1.1]).

Proof. Let G9*(R),,. denote the product of all noncompact simple factors of G4¢*(R)
(as a real Lie group). By the classification of Hermitian symmetric domains (see
[Hel0Il Ch. X, Sec. 6]), any GI°*(R), here satisfying rkg(Gge") < 1 is isomorphic
to SU,, 1, for some n > 1. Thus, every Gn%er considered by this lemma is of type A.
By the classification in [Del79, 2.3], (G, X) is necessarily of abelian type. The last
statement then also follows, essentially by definition. O

Consequently, for our purpose, we may assume that the Shimura datum (G, X) is
of Hodge type. Note that G = G¢ in this case. Moreover, there exists some faithful
representation V) of G = G¢ over Q, together with a perfect alternating pairing

(5.5.2) Vo x Vo — Q(—1),

where (—1) denotes the formal Tate twist (induced by the pullback of the sym-
plectic similitude character), which are defined by some Siegel embedding in the
definition of a Shimura datum of Hodge type, together with an abelian scheme
f: A — Shg with a polarization A\, whose m-fold self-fiber product we denote
by f™ : A™ — Shg, such that, for all i > 0, we have R (Q) = A'(sV{")
over Shg c; R’:fgﬁ*(@p) = /\i(étzgf@p) over Shy, where Vo,@p =V ®g @p; and
(R (% sshx) ®E C, V,Fil*) = (A" (arV('e), V, Fil*) over Shi ¢, where Vo ¢ :=
W ®@C and the V and Fil® at the left-hand side are the Gauss—Manin connection
and the relative Hodge filtration, respectively. The polarization A then compatibly
induces (as in [DP94 1.5]) the pairings gV, x gV, — B@(—l), étK()@p X étzo@p —
ét@p(_:l), and qrV ¢ X arV g c = arC(—1) defined by , with (—1) denoting
the Tate twists in the respective categories.

Lemma 5.5.3. We have a canonical isomorphism

(5.5.4) (arVEE (—1), V,Fil*) = (,.ar V¢ (—1), V, Fil*)

foralli >0, m >0, and t € Z. Accordingly, we have a canonical isomorphism
(5.5.5) BVE (=) = psV5e ().

Moreover, the pullback of (5.5.5)) to the image of the special point h € X in
F;’go \XT (see the beginning of Section , which is defined over a finite extension

Et of E in Q, is given by the identity morphism of V()‘%’é"(—t).
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Proof. Since Shg is defined over E and so the p-adic analytification functor from the
category of algebraic filtered connections to the category of p-adic analytic ones is
fully faithful, by [ABOT], Ch. 4, Cor. 6.8.2] or [ABC20, Cor. 34.6.2]; since the p-adic
analytification of (R’ff(Q;m/ShK) ®p k,V,Fil*) = (le,z’,‘*(Q;X?/ShKﬁk), V,Fil®) is
canonically isomorphic to (DdR(Rif]ZLét,*(@p)), V,Fil*), for any finite extension k
of the composite of £ and Q, in @p, by [Sch13, Thm. 8.8 and 9.1]; and since such
an isomorphism is functorial, we have (5.5.4]), from which follows by taking
horizontal sections, because both sides can be canonically identified (up
to the same Tate twist (—¢)) with the image of (Rme(QAm/ShK) @p C,V,Fil*)
under ¢, for some endomorphism ¢, of the abelian scheme " : A™ — Shg, by
Lieberman’s trick (see, e.g., [LS12, Sec. 3.2]). Since the comparison isomorphisms
among the Betti, étale, and de Rham cohomology of an abelian variety defined over
E7 are all compatible with each other, the second assertion also follows. (I

Lemma 5.5.6. For each irreducible representation V. of G over Q, there exist
integers my > 0 and ty (depending noncanonically on V') such that V is a direct
summand of V2™ (=tv), where (—ty) denotes the formal Tate twist (which has
no effect when restricted to the subgroup G* of G), so that V = sy (VO®"W (ftv))
for some Hodge tensor sy € V2 (i.e., a tensor of weight (0,0) with respect to the
induced Hodge structure on Vi©; cf. [DMOS82, Ch. I, Prop. 3.4]).

Proof. See [LS18al, Prop. 3.2], which is based on [DMOS82] Ch. I, Prop. 3.1(a)]. O

By combining Lemmas [5.5.3] and [5.5.6] we obtain the following:

Corollary 5.5.7. For each irreducible V &€ Rep@(G), there exist some integers
my > 0 and ty such that the local systems gV ¢ and gV are direct summands of
BK?’&”V(—tV) and p gVEEY (—tv), respectively. Consequently, there is a morphism

(5.5.8) BV — pBV

15.5.5)

~ can.

defined by composing Y ¢ & Bzg&nv(ftv) — p_BZE?gV(—tV) - pBV .

Proposition 5.5.9. The above morphism (5.5.8) is an isomorphism over the con-
nected component F};,go\x+ of Shk ¢ that induces the identity morphism between

the two representations p;”(;; )(V) and p;r(’ 5 (V). In particular, Proposition
holds under the assumptions of this subsection.

Proof. Tt suffices to show that, via the canonical isomorphisms in Proposition [5.4.1]
the pullback of to the image of h, as in Lemma is given by the iden-
tity morphism of a subspace of V(ff’é”( —t). Since the comparison isomorphisms thus
far are functorial and compatible with pullbacks to special points, over which the
pullbacks of A are abelian varieties potentially of CM type over number fields (see
[Mil05] Cor. 14.11]), the pullback of is induced by the comparison isomor-
phisms for the cohomology of such abelian varieties, which are compatible with the
ones used in the proof of Proposition by Remark below, and it suffices
to note that the Hodge tensor sy in Lemmal[5.5.6] are respected by such comparison
isomorphisms, because Hodge cycles on such abelian varieties are absolute Hodge
(by [DMOS82, Ch. I, Main Thm. 2.11]) and de Rham (by [Bla94, Thm. 0.3]). O



64 HANSHENG DIAO, KAI-WEN LAN, RUOCHUAN LIU, AND XINWEN ZHU

Remark 5.5.10. By [STG68, Sec. 5], abelian varieties potentially of CM type over
number fields have potential good reduction everywhere. By [ITK21l Sec. 11], the p-
adic de Rham comparison isomorphisms of Faltings’s (used in [Bla94] and the proof
of Proposition and Scholze’s (used in the proof of Lemma coincide (at
least) for abelian varieties with potential good reductions over p-adic fields.

5.6. Cases of real rank at least two. In this subsection, we assume that Gder¢
is Q-simple and simply-connected as an algebraic group over Q (so that Gder =
Gder:¢) | and that tkg(GEer) > 2. By Proposition we may and we shall assume
in addition that G is not of type A. We shall make use of the following special
case of Margulis’s superrigidity theorem:

Theorem 5.6.1. Let H be a Q-simple simply-connected connected algebraic group
over Q, and let T' be an arithmetic subgroup of H(Q). Suppose that rkg(Hg) >
2. Then, given any representation p : I' — GL,,(C), there exists a finite index
normal subgroup T'g of T' such that p|r, extends to a (unique) group homomorphism
p : H(C) — GL,,(C) that is induced by an algebraic group homomorphism He —
GLy,.c, and such that p(y) = 6(vy)p(), for all v € T, for some representation
§:T/Ty — GL,,(C) whose image commutes with p(H(C)).

Proof. This follows from [Mar91l Ch. VIII, Thm. (B), part (iii)] with S = {o0},
A=T, K =Q, and ¢ = C (in the notation there). O

By applying Theorem with H = Gdere T = F}:‘;D, and p = p;r(:(;;)(V)

as in Section we see that there is a finite-index subgroup F;ZO,O of F};’;U
(p)

such that the restriction p} %

5}2(;(,))(‘/) : G?Cer’c — GL¢(Vg). If K1 C K, are neat open compact subgroups of

G(Ay), then F}L(’ﬁgo cTEe and po®@ (v) = p};(g)o(v)h“}f,go’ and therefore

(V)|p+.e extends to an algebraic representation
K,g0,0

Ka2,90 Ki1,90

(5.6.2) P Nlre  mpve = g™ (V)|

+.c
K1.,90,0 K2,90,0 nr

K1,90,00 " K2,90,0

: +,c +,c +,c +,c +,c f f +,c +,
Since Fch,gO,O/(FK:,gO,O N FK;QO,O) c FK;QO/FK;QO,O is finite, FK10,9070 n FK26,9070
is an arithmetic subgroup of G4°"¢(Q). By (5.6.2) and the Borel density theorem
(see Remark , ﬁ;’l(g)o(V) = ﬁ}’z(f])o(V). Since K7 and K> are arbitrary, there
is a well-defined assignment (to V') of an algebraic representation

PV G — GLe(Ve)

such that ,5’;((;; )(V) = ,Bﬁgﬁ)’(p )(V) for all neat open compact subgroups K of G(Ay).

Since G4°r¢ is Q-simple and simply-connected, since rkg(GE®) > 2, and since
Gder is not of type A, by the known positive answers to the congruence subgroup
problem (see [PR94l Prop. 9.10, Thm. 9.15, and the summary in the last two pages
of Sec. 9.5]), any F};’)Zmo obtained above is a congruence subgroup. By taking any

K' C K such that F;r(’,c’go C F;:CQ()’O’ we see that p};’,(f;z (V)= [);;)’(p)(V)\F;,/cg . Thus,
190

by Lemma |5.4.7} it suffices to show that ﬁ’;o’(p )(V) coincides with Ve der.c.

By the above construction, and by Proposition the assignment of ,B’;O’ ) (V)
to V € Repc(G€) defines a tensor functor from Repg(G€) to Repg(Gaer©), and
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hence induces (as in [DMOS82, Ch. II, Cor. 2.9]) a group homomorphism Géer’c —
G§. Since Géer’c is semisimple, this homomorphism factors through
(5.6.3) GE™e — GE™°.

For each v € GI°:¢(Q), the Hecke action of g = gy 'vgo € G(Ay) induces an iso-

morphism F;Kgfl,go \Xt STk 9 \XT (see li defined by left multiplication by
-1 +

~~ ", compatible with the isomorphism I‘g K190 = I‘}L( % induced by conjugation

by v~!. By Proposition and (5.2.8)), we have the C’ompatibility
e P VYA YY) = (3 P (VY (B3P (V) (5P (V) ()
-1

= (7(V)) (B P (V) (= (V) (1) ™

for all v/ € F}’zmo N 771F;_i(cg,gg,o'77 where g = g, 'yg0, Where

-1
(5.6.4)

m(V): GE™° — GLe(Ve)
denotes the algebraic representation given by the restriction V| der.c.
C

Lemma 5.6.5. Suppose that the representation ﬁ;o’(p)(V) is irreducible when V' is.

Then ,?);t)’(p)(V) = 7(V) as algebraic representations of GE™°.

Proof. By Proposition [5.2.17, we may assume that 7 := 7(V) and hence p :=
ﬁ;r({(p ) (V') are irreducible. Let us measure their difference by the algebraic morphism

e : G — QLe(Ve) (which is not shown to be a group homomorphism yet) defined

by €(g) = p(g) " tn(g), for all g € GI"¢(C). By (5.6.4), we have

(5.6.6) p(Y) = e()p(y )e(y) ™

for all v € T F;’,Zo,o N W*IF;I’(CQ’%OV. Since I” is a neat arithmetic sub-
group of G4°¢(Q), by the Borel density theorem (see Remark , we also have
(5.6.6) for all 4/ € G4e*:¢(C). Then the morphism ¢ is a group homomorphism,
because €(v1') = Fr') " m(1') = B(v') " FO) " m((r) = p) " e()m(r') =
ep(Y) I (y) = e(y)e(v'), for all 4,7 € GIr¢(Q), and because GI™¢(Q) is
Zariski dense in G4°™¢ (by [Spr98, Cor. 13.3.10], or still the Borel density theorem).
By Schur’s lemma (and this Zariski density), € factors through an algebraic group

homomorphism Gger’c — Gy, which is trivial because Gféer’c is semisimple. [

Lemma 5.6.7. The above homomorphism (5.6.3) is an automorphism. In partic-
ular, the representation f);)’(p)(V) 1s indeed irreducible when V is.

Proof. Since Gficer’c is semisimple and simply-connected, it suffices to show that the
Lie algebra of the kernel of (5.6.3), which is a priori a product of C-simple factors
of the Lie algebra of G2, is trivial. Therefore, it suffices to show that (5.6.3) has
nontrivial restrictions to all C-simple factors of Gflcer’c, and it suffices to find some
V € Repe(G€) such that ﬁjo’(p )(V) is nontrivial on all simple C-simple factors.

As explained in [Bor84] [Mil83], based on a construction due to Piatetski-Shapiro,
there exist morphisms ¢1 : (G,X) < (G1,X;) and @2 : (Go,X2) < (G1,X;) be-
tween Shimura data such that the following hold:

o G is Q-simple, and we have Gdere & Glere s Resp/g G%er’c for some
totally real number field F, identifying G%er’c as a direct factor of G‘liié’c.
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e GS° is also Q-simple, and all C-simple factors of Ggf’é’c are of type A;.
In this case, as in the proof of Lemma the Shimura datum (Gg, X2)
is of abelian type, for which Proposition and hence Theorem [5.3.1

er,c

hold. Moreover, the homomorphism Gg,c — G'fié’c induced by 2 embeds

distinct C-simple factors of Gge(é’c into distinct C-simple factors of Gclle(é’c,

er,c

and every simple factor of G(f,(c’ meets Ggié’c nontrivially.
Therefore, there exists some V; € Repe(GY) such that its pullback V5 € Repe(G$)

is nontrivial on all C-simple factors of Gge(é’c. By Proposition BV and
p-BY 5 ¢ are canonically isomorphic to pullbacks of , gV, ¢, and we already know
that the fundamental group representations associated with p—BK2,C = BKZ,C are
given by the restrictions of V2. Let ﬁ;;(p)(Vl) be associated with , gV ¢ as
in the case of fm)’(p)(V). By [Mar91, Ch. I, Sec. 3, Lem. 3.13], the pullbacks of
arithmetic subgroups of G{**(Q) to Gr¢(Q) and G3°(Q) contain arithmetic
subgroups. Therefore, by the Borel density theorem (see Remark [5.4.6)), the pull-
back of p3; P (V1) to Gg)e(é’c is nontrivial on all C-simple factors of Ggié’c, and hence

fqo’(p )(Vl) is nontrivial on all C-simple factors of G(lie(é’c. By the Borel density the-

orem again, [);F()’(p ) (V) is isomorphic to the pullback of ﬁ;o’(p )(Vl), which is then
nontrivial on all simple C-simple factors of Gficcr’c, as desired. O

Thus, Proposition also holds under the assumptions of this subsection, by
Lemmas and The proof of Theorem is now complete.

APPENDIX A. A FORMALISM OF DECOMPLETION

In this appendix, we generalize the formalism of decompletion developed in
[KL16l, Sec. 5], in order to treat the general Kummer towers.

A.1. Results. For a topological ring A with a continuous action by a topologi-
cal group T, let Proj,(T") (resp. Rep4(T")) denote the category of finite projective
(resp. finite free) A-modules equipped with a semilinear continuous I'-action. For
simplicity, they are also called finite projective (resp. finite free) I-modules over A.
Note that, given a finite free I'-module L of rank [, after choosing a basis of L, the
action of I on L can be represented by a l-cocycle f € C! (F, GrLl(A))7 and any
change of basis only results in a change of the cocycle by a coboundary. It follows
that the isomorphism classes of finite free I'-modules of rank [ over A are classified
by the cohomology set H'* (R GLZ(A)). In addition, for L1, Ly € Proj4(I"), we have

(A11) Homp,o;, () (L1, L2) = HO(D, LY ®4 Ly).

From now on, we shall assume that our topological rings are all commutative,
unless otherwise specified. Let {A;};c;r be a direct system of topological rings,
where [ is a small filtered index category; and A,, a complete topological ring

with compatible continuous homomorphisms A; — //1\00 such that the induced map
ligie s A; = Ay has dense image. Let I' be a topological group acting continuously

and compatibly on {4;};c; and A\Oo.

Definition A.1.2. We call the triple ({A;}ier, ﬁoo, T') a decompletion system (resp.
weak decompletion system) if the following two conditions hold:
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(1) For each finite projective (resp. finite free) T-module Lo, over Ay, there
exist some i € I, some finite projective (resp. finite free) I-module L; over
A;, and some I'-equivariant continuous A -linear morphism ¢; : L; — L
inducing an isomorphism ¢; ® 1 : L; ® 4, A 5 Lo of I'-modules over A
We shall call such a pair (L;, ;) (or simply L;) a model of Lo, over A;.

(2) For each model (L;, ¢;) over A;, there exists some i > 4 such that, for every
i’ > ig, the model (L;, 1) :== (L; ®4, Ay, 1; ® 1) is good in the sense that
the natural map H*(T', L;;) — H*(I', Lo) is an isomorphism.

Remark A.1.3. If ({A;}ier, Ao, T) is a decompletion system (resp. weak decom-
pletion system), then the natural functor lim,  Projy, (I') = Projz (I') (resp.
lim, Rep 4,(I) = Repz (I')) is an equivalence of categories. Indeed, the con-
dition 1mphes that the functor is essentially surjective, and ( m ) and the
condltlon 2) imply that the functor is fully faithful. Similarly, the condition
implies that, for any two models (L;1,¢;1) and (L;2,¢;2) of Lo over A;, there
exists some 4’ Z 7 such that (Li,l ®Ai A,L'/, Li1 (24 1) = (L@Q ®A7‘, A,j/, L,2 X 1) over Ai’~

To give criterions when a triple ({4;}ier, A\OO,F) is a (weak) decompletion sys-
tem, we shall work with (nonarchimedean) Banach rings, as in [KLI5| Sec. 2.2].
For a Banach A-module N and a closed A-submodule M, we shall equip M with
the induced norm and N/M with the quotient norm. Both are Banach A-modules.
The following lemma is straightforward.

Lemma A.1.4. Let M — N be an isometric homomorphism of Banach modules
over a Banach ring A. Then the following are equivalent:

(1) The natural projection ©: N — N/M admits an isometric section.

(2) The embedding M — N admits a submetric splitting pr: N — M.

(3) N admits a closed A-submodule L such that M & L — N s an isometric
isomorphism, where M @ L is equipped with the supremum norm.

If L and M are Banach modules over a Banach ring, we will often equip the
completed tensor product L& M with the product norm, as in [KL15] Def. 2.1.10].
If a Banach ring A admits a continuous action by a profinite group I', and M is
a Banach A-module with a semilinear isometric I'-action, then we equip the A-
module C*(T", M) of continuous maps I'* — M with the supremum norm given by
[l fll = sup,ers [f(7)], for each degree s. Then C*(I', M) is a complex of Banach
A-modules. We will also make use of the following terminology.

Definition A.1.5. A complex (C*,d) of Banach modules over a Banach ring A is
called uniformly strict exact with respect to some constant ¢ > 0 if, for each degree
s and each cocycle f € C%, there exists g € C*~! such that f = dg and |g| < c|f].

Now the following definition makes sense.

Deﬁnltlon A.1.6. Let ({4; }lGI,AOO, ') be as in the paragraph preceding Defini-
tion 2l Suppose moreover that each A; — AOO is a closed embedding and T is
proﬁmte. We say that ({A;}ier, A, ') is weakly decompleting if there exist:
e amnorm | - | on A, making it a Banach ring (and therefore making each A;
a Banach subring); and
e an inverse system {I'; };cs of closed normal subgroups converging to 1 (i.e.,
each open neighborhood of 1 in T" contains T';, for some i € I) such that
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the canonical map I' — I'/T'; admits a continuous section (which is not
necessarily a homomorphism), for each i € I,
satisfying the following conditions:

(1) The T-action on A is isometric.

(2) (Splitting.) For each i € I, the natural projection Ao, — Ao /A; admits an
isometric section as Banach A;-modules.

(3) (Uniform strict exactness.) There exists some ¢ > 0 such that, for all i € I,
the complex C*(T';, Ao /A;) is uniform strict exact with respect to ¢, as in
Definition In particular, A\Oo /A; has totally trivial T';-cohomology.

Remark A.1.7. (1) If we keep the same choices of {T'; };c1, but modify the norm
on goo up to equivalence such that the conditions and still hold,
then the condition also holds up to adjusting the constant ¢ > 0.
(2) Since I' — I'/T'; admits a continuous section, the Hochschild-Serre spectral
sequence holds for the continuous cohomology of the subgroup I'; of T'.

(3) By Lemma above, the condition in Definition is equivalent

to the existence of a submetric splitting pr; : A — A;. But unlike the
classical Tate trace maps, the map pr, is not required to be I';-equivariant.

Our first main result of this appendix is the following:
Theorem A.1.8. A weakly decompleting triple is a weak decompletion system.

In order to obtain decompletion systems rather than weak decompletion systems,
we shall consider those A underlying stably uniform Huber pairs (A4, A™) (as in
[SW20|, Def. 5.2.4]) or stably uniform adic Banach rings (as in [KL15, Rem. 2.8.5])
over nonarchimedean fields. For simplicity, we shall say such A are stably uniform.

Definition A.1.9. A triple ({4;}ics, Aso,T') as in the first two sentences of Defi-
nition is called stably decompleting if:

(a) A;’s and A, are stably uniform over a nonarchimedean field k.
(b) each rational subset U of Spa(A4;, AY) is stabilized by some open normal

subgroup I'y of T'; and the pullback of ({Aj}jZi,A\OC”FU) to each such U
is weakly decompleting.

The second main result of this appendix is the following:
Theorem A.1.10. A stably decompleting triple is a decompletion system.
Now we start to prove Theorems [A.1.8[and [A.1.10]

Lemma A.1.11. Let (C*,d) be as in Definition . Then, for each f € C?,
there exists some h € C*~' such that |h| < max{c|f[,?|df|} and |f — dh| < c|df|.

Proof. Since df is a cocycle, there exists some g € C® such that df = dg and
lg| < c|df|. Since d(f — g) = 0, there exists some h € C*~! such that dh = f — g
and |h] < clf — g| < max{clf],c?/df}. O

Lemma A.1.12. Let A be a Banach ring with a continuous action by a profinite
group I', and M a Banach A-module with a semilinear isometric I'-action. Let
L= EBé-zlAej be an object of Rep 4(T), equipped with the supremum norm. Suppose
that C*(T', M) is uniformly strict exact with respect to some ¢ > 0, as in Definition
' and that there exists some r > 1 such that |v(e;) — e;| < L, for all j and all
v €T. Then C*(T', L ® 4 M) is uniformly strict exact with respect to the same c.
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Proof. Let f = Zé-:l(ej ® f;) be a cocycle with f; € C*(T', M) for all 1 < j <.
Note that the norm of Zé-:l(ej ®df;) = 23:1(33‘ ®@df;) —df = Zé.:l(ej ® df;) —
d(Z;:l(ej ® f;)) is bounded by % That is, for each j, we have ||df;|| < % By
Lemma |A.1.11} there exist h; € C*~H(T, M) with ||f; — dh;|| < U ana I|hs] <

T

c|fll, forall j=1,...,1. Put h = 23:1(61' ® h;). Then ||h]| < ¢| f|, and the norm
of f—dh = 3"\_ (e;®(f;—dh;))+ (Zgzl(ej@adhj)—d(zgzl(ej@;hj))) is bounded
by “Tﬂ By iterating this process, we obtain cochains Hy, Ha,... € C*71(T', Lo s M)
satisfying ||H,| < chll‘ and ||f —dHy —--- — dH,|| < Hf” , for all n > 1. Then

n

f=dH for H=Y" H; € C*!(T, L®A M) and || H|| §c||fH as desired. O

Corollary A.1.13. Let ({A;}ier, Aoo, ') be weakly decompleting. Let L; be a model
of a finite free T'-module Lo, over Aoo, as in Definition |I Then there exist
2

some ig > i such that L;: is a good model, as in Deﬁmtwn ), for each ' > ig.

Proof. Take any basis {ej}lgjgl of L; over A;, and equip L; with the supremum
norm, as in Lemma For any r > 1, since {T'; }ies converges to 1 in I, there
exists some 79 > % such that Iv(ej) —ej;| < rc, for all v € T';, and j. Hence, for each
i’ > ig, by the assumption that L, is finite free, by the conditions in Definition[A.1.6]
and by applying Lcmmato (Air,Tir, Aso/Air), we see that L; @4, (A oo/A )
has totally trivial I';;-cohomology, and therefore has totally trivial I'-cohomology,
by the Hochschild—Serre spectral sequence (see Remark ) (]

Lemma A.1.14. Let A — B be an isometric homomorphism of Banach rings. If
the natural projection w : B — B/A admits an isometric Banach A-module section
s: B/A — B, then |m(bibs)| < max{|m(b1)|[ba], |b1]|m(b2)|}, for all by, b € B.

Proof. Write b; = a; + s(w(b;)), for i = 1,2, so that w(b1b2) = a1m(b2) + 7w(b1)az +
m(s(m(b1))s(m(b2))). Then |arm(be)| < |as||m(b2)| < |ba] |w(b2)], by Lemma [A.1.4]
Similarly, |w(b1)az| < |ba||7w(b1)]. Consequently, we have |mw(s(m(b1))s(m(b2)))] <
[s(m(b1))s(m(b2))| < [(s(m(b1))] |s(m(b2))| = |mw(br)|[w(b2)]. Since |mw(br)][m(b2)] <

min{ |7 (by)| [b], |b1| |7 (b2)|}, the lemma follows.

O

Lemma A.1.15. Let A — B be a I'-equivariant isometric homomorphism of Ba-
nach rings with isometric I'-actions. Assume that the natural projection w : B —
B/A admits an isometric Banach A-module section s, and that C*(T', B/A) is uni-
formly strict exact with respect to some constant ¢ > 1 (as in Definition .
Let M;(B/A) = M;(B)/M;(A) (as Banach A-modules). Let f be a cocycle in
C'(I', GLy(B)). Suppose that there exists some r > 1 such that |f(v) — 1] < L for
ally €T and that || f|| < L, where f is the image of f in C*(T, MI(B/A)) (which
is merely a cochain). (We shall also denote similar images by overlines in the proof

below.) Then f is equivalent to a cocycle in C* (F, GLI(A)).

Proof. We claim that there exists some ¢ € M;(B) with |¢| < ¢||f| such that the
cocycle f' iy = (1 + ) f(7)(1 + )" satisfies [f'(y) —1| < L forall vy € T
and || f']| < @ in C*'(T',M;(B/A)). Granting the claim, by iterating this pro-
cllf] < L

cess, we can find a sequence ¢1,¢,... in M;(B) with |¢,| < -~ such

that [y(1+c,) - yA+ ) f(NA+a) T (IT+e) < ”%:“, for all n > 1. Put
Soo = limn_mo((l +6) (14 gl)) € GL;(B). It follows that the cocycle f : v —
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7(s00) ()5 takes values in M;(A) N GLy(B) and satisfies [f(7) — 1] < L < 1 for
v € I'. This implies that f is a cocycle in C* (', GL;(A)), and the lemma follows.
It remains to prove the claim. Note that f(v172) = v1(f(72))f(71) because f is

cocycle in C*(I', GLy(B)). By Lemma we have

4 (v192)] = 1 fG2) + Fn) — Tl = (1 (G2) = D) — 1) < L
By Lemma (applied to —f instead), there exists h € M;(B/A) such that

(A.1.16) R < max{e|[f|l,2|df||} = ¢llfl < L <1
and
(A.1.17) 7+ dhl| < clldf| < 1L

By assumption, we can lift h to some h € M;(B) such that |h| = |h| < c|| |-
For v € I, by (A.1.16), we have [y(1 + h)f(v)(1 +h)™' — f(v)| < |h| < X, and

therefore |y(1+ R)f(v)(1+h)~' — 1| < L. Moreover, by (A.1.16)) again, we have

— rc’

FA+R IO+ T =+ B =R < A < L(c|Fl) = YL Also, by
LemmalA.1.14] we get [y(1+ h) F(7)(T — h) — F(7) —v(h) + ol = [y (W) (F(3) — 1) —
(f(y) = Dh) —~y(h)f(7v)h| < @ By combining these and 1) we obtain the

desired estimate |y(1 4+ h)f(y)(1+ k)71 < @, and the claim follows. O
Proof of Theorem [A1.8 By Corollary the condition (2) in Definition

holds. Hence, our main task is to verify the condition in Definition

Let Lo be a finite free T-module over As,. As before, by choosing an As.-basis
of Lo, the T-module structure of L., amounts to a cocycle f € C! (R GLZ(A\OO)).
By taking 4 sufficiently large such that Lemma applies to the restriction of
f to a 1-cocycle of T';, we obtain a (free) model L; of the I';-module L., over A;.
Since the I'-action on L, is A;-semilinear, and since I'; is normal in T, for each
g € I, the subset gL; := {g(x) : © € L;} of Ly is not only an A;-submodule,
but also a T';-submodule. Moreover, the canonical map (gL;) ®4, Aos — Lo is an
isomorphism of I';-modules over AOO, as the canonical map L; ®4, A — Lo is.
We would like to find some i’ > i such that Ly = gLy in L, for all g € T. (We
emphasize that we need the same i’ to work for all g € T.) If so, then the semilinear
T';-action on L; extends to a semilinear I'-action, which makes L; a model of the
I'-module L, over A;. We shall adapt the proof of Corollary

Take any bases {e;}1<j<i and {€}}1<j<i of L; and Ly over Aj;, respectively.
Since the I'-action on Lo is Aj;-semilinear, {ge;}1<j<; is a basis of gL; over A;,
and {e} ® g(ejr)}1<jjr<1 is a basis of M := LY ®4, (gLi) over A;, for each g € T'.
We shall equip these modules with the supremum norms given by the chosen bases.
Then the norm on M = L} ®4, (9L;) is also the product norm. Since I' acts
isometrically on A;, the A;-semilinear map ¢ : L; — gL; is also isometric. Fix any
r > max{1, 1}, and take any sufficiently large i > such that |fyg(ej) (ej)|gL =
9(9™79)(e5) — gle)lgr, = (g7 v9)(e)) e (€)) —€jloy < =,
all g € T', v € Ty, and j. As a result, we have |7(e] ® g(ejr )) — e @ glej)
|(v(e) =€) @ (va(ej ) —gles) +es@ (vales) —gles)) +(v(ef) ) @g(ej)], < 72
Therefore, (LY @4, gL;) ®a, (As/Ay) has totally trivial T';-cohomology, by Lemma
and the conditions in Definition Thus, since the canonical inclusions
Ly — L and gLy < L induce the isomorphisms HompmjAv,(pi)(Li/,gLi/) 5

for
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HOInP]rojgoC (Ty) (Lz X4, A\oov ng XA, A\OO) :> HomProjgoo (Ty) (LC><>7 LOO) (Cf )a
we obtain Idy__ (L) = gL;s; i.e., Ly = gLy in Lo, as desired. O

Lemma A.1.18. For any continuous surjective map U — V of Banach spaces over
a nonarchimedean field k, and any compact topological space X, the natural map
C(X,U) = C(X,V) between spaces of continuous functions on X is also surjective.

Proof. Let f € C(X,V). Then the subspace f(X) of V is a compact metric space,
which is separable and admits a countable dense subset. Therefore, f(X) is con-
tained in a closed subspace W of V' with a dense countable-dimensional k-subspace.
By [BGR&4| Sec. 2.7.2, Prop. 8], up to replacing the norm on W with an equiva-
lent one, W admits an orthonormal Schauder k-basis {e;};cs. Thus, in order to
lift f to C(X,U), it suffices to find some elements €;’s of U lifting e;’s such that
sup;¢ s{|€;]} < oo. Such elements €;’s exist because, by the open mapping theorem
(see, for example, [KL15, Thm. 2.2.8]), the unit ball of W is contained in the image
of the ball of some radius C' > 0 of the preimage of W in U. O

Lemma A.1.19. Let ({Ai}iel,gm,F) be stably decompleting. Let L be a finite
projective I'-module over A;, for some i € I. Then there exists some iy > i such
that L ® 4, (Aso/A;r) has totally trivial T-cohomology, for each i’ > ig.

Proof. Take any finite covering B of Spa(A;, A?) by rational subsets over which the
pullbacks of L; are free, and let I be an open normal subgroup of I stabilizing every
rational subset in 9. By Corollary there exists some ig > 4 such that, for
every i’ > ig, the restrictions of L ® 4, (Ao /Ai) to all the rational subsets in B as
well as their intersections have totally trivial I'-cohomology. Since A; and Ao are
stably uniform, by [KLI5, Thm. 2.7.7, and 2.8.10], their Cech complexes over B are
acyclic. Therefore, the Cech complex € for L® 4, (ﬁoo /A;) over B is also acyclic.
Equip rational localizations of A;; and ﬁoo with spectral norms (as in [KL15, Def.
2.1.9 and 2.8.1]), and L with any Banach A;-module structure. Then %* becomes,
in particular, a complex of Banach k-spaces. Consider the double complex €**
with €%t := C*(I',%") the standard complex of continuous maps from (I')* to
€"* that computes the continuous group cohomology, which is exact, as explained
above, for each b > 0; and with €** induced by ¢’®, which is acyclic, for each a > 0,
by applying Lemma to X = (I")* and U = € - V = im(¢° — €1, for
each b > 0. By an elementary diagram chasing, C*(I'', H°(%*)) is also exact. Thus,
L®a, (A\OO/AZ-/) =~ H9(%*) has totally trivial I"-cohomology, and therefore totally
trivial I'-cohomology, by the Hochschild—Serre spectral sequence, as desired. (]

Lemma A.1.20 (cf. [KLI6l Lem. 5.6.8], with simplified statements and a more
detailed proof here). Let Eoo be a Banach ring, with a direct system of closed
subrings {A; }icr such that U;A; is dense in Xoo. Then each finite projective EOO—
module arises by base change from some finite projective A;-module, for somei € I.

Proof. Let M be a finite projective /Too—module, and choose an A\Oo—linear surjection
F — M with F a finite free Eoo—module. Choose a projector on F' corresponding
to a splitting of F' — M, and represent this projector by a matrix U over goo. Note
that U? = U and |U| > 1. Hence, we may choose a matrix V over some A; such
that [U V| < [U| ™, and so that [V2 = V| = |V(V = U)+(V - U)U + (U - V)| <
|U - V||U’ < |U|72. Let us define a sequence Wy, W1, ... by Newton iteration,
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by taking Wy = V and W = 3W2 — 2W2, for all I > 0. Since Wi — W, =
(W2=W1)(1—=2W,) and W2, — Wiy = (W2—W;)2(4W2—4W,;—3), by induction on

l
[ >0, we obtain |[W; —U| < [V2=V||U] and |[W2 —Wi| < [U| (V2= V||U]*)?.
Consequently, the matrices W; converge to a matrix W. By the last inequality,
W?2 = W, and so W is a projector over A;. Let F; be the free A;-module on the
same basis as F. Then W represents a projector on F;, whose image is a finite
projective A;-module which we denote by M;.

It remains to exhibit an isomorphism M; ® 4, goo 5 M. Note that M; ®a, goo
and M are the images of the projectors on F represented by the matrices U and W,
respectively; and that |U—W| < [U]|™*. Then the matrix X := UW+(1-U)(1-W)
is invertible, because X —1 = UW + (1 -U)(1 -W) -1 =2UW —-U - W =
UW —U)+ (U— W)W satisfies | X — 1| < 1. Since UX = UW = XW, the

. . X .. . . ~ o~ .
isomorphism F' = F' induces an isomorphism M; ® 4, Ao — M, as desired. (I

Proof of Theorem [A.1.10, By Lemma|A.1.19] the condition in Definition
A1)

follows from the same argument based on as in the proof of Theorem

It remains to verify the condition ([I}) in Definition [A.1.2} by constructing a model
for each finite projective ['-module L., over Eoo. By Lemma |A.1.20, Lo is the
base change to Ao of a finite projective A;-module L; (without I'-action), for some
i € I. Take any finite covering B of Spa(A;, A?) by rational subsets over which the
pullbacks of Zi are free, and let I'' be an open normal subgroup of T' stabilizing
every rational subset in 8. By Theorem for some i’ > i, the (finite free)
pullback of Ly, (as a I'-module) to each rational subset in B admits a model (as a
I"-module) over A;/, and these models coincide on intersections of rational subsets
in B. Thus, they glue to a (finite projective) model L;; of L (as a I'-module)
over A;/, by the Kiehl gluing property for stably uniform adic Banach rings (see,
again, [KLL15, Thm. 2.7.7 and 2.8.10]). For each g € T', consider the A;-submodule
gL of Le, which is also a I''-submodule because I” is a normal subgroup of T,
as in the second paragraph of the proof of Theorem It suffices to show that

there exists some i’ > i’ such that Ly» = gL in Ly for all ¢ € T', and we may
verify this after pullback to the rational subsets in B. Since I'/T” and 9B are both
finite, this follows from Theorem [ATT.8] as desired. O

Corollary A.1.21. Let ({A;}icr, goo,l") be weakly (resp. stably) decompleting. Let
0 € I be an initial object, and {5 : T' — Al }ses a collection of continuous group
homomorphisms such that, for each open meighborhood % of 1 in Agy, there exists
some open neighborhood ¥ of 1 in T such that ys(¥) C % for all s € S. Let
Lo be a finite free (resp. finite projective) T'-module over goo. For each s € S, let
Loo(¥)s) := Loo ®4, Ao(1s), where Ag(1)s) is Ao equipped with the action of T' via
Ys. Let L; be a model of Lo, over A;, for some i € I. Then we have the following:

(1) Li(vs) := L; ®a, Ao(¥s) is a model of Loo(1s) over A;, for all s € S.
(2) There exists some ig > i such that Ly (ts) := Ly ®@a, Ao(¥s) s a good
model of Lo (1s) over Ay, for alli' > iy and all s € S.

Proof. The assertion is clear. As for the assertion , by the same argument
as in the proof of Theorem we are reduced to the case where L; is a finite
free A;-module. Given the argument in the proof of Corollary [A.T.13] it suffices to
show that, if L; admits a basis {e;};cs over A4; such that |y(e;) —e;| < X, for all

rc’
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v € T;, for some r and ¢ as in Lemma [A.1.12] then there exists some i > i such
that the corresponding basis {€} := e; ® 1}jes of Ly (¢5) = Lir ®a, Ao(¢)s) over Ay
also satisfies |y(e}) — €j| < -, for all i’ > ij, s € S, and v € T'y. To see this, note
that [y(e}) —ej] = [(v(e;) — €;) @ (s (7) = 1) +€; @ (¥s(v) = 1) + (v(e;) —e;) @ 1].
Thus, it suffices to take any i(, > i such that [¢,(y) — 1| < min{1, L}, for all s € S,
v €'y, and j € J, which exists by our assumption on {¥s}ses- (I

A.2. Examples. We present three examples of decompletion systems.

A.2.1. Arithmetic towers. Consider Qp(p,e) = U0 Qp(py) and Zy(pye) =
Ui>o Zp(upz), equipped with the p-adic norms extending the standard ones on
Qp and Z,. Let (A, A") be any Huber pair over (Qp,Z,). For each [ > 0, let
(A,,, A ) = (A®q, Qp(py), AT @z, Zy(1,)). Let (ﬁpoo ) A\;oo) be the p-adic com-
pletion of (Ui>o Api, Uiz A ). Suppose that (A, A%)) and (Apee, Af) are stably
uniform. Let 'y := Gal((@p(upm)/@p(ppl)). By the Tate-Sen formalism with
Banach-algebra coefficients developed in [BCOS|, we have the following:

Proposition A.2.1.1. ({4, }l>0, poo, I'1) 4s stably decompleting.

Proof. It suffices to show that any ({4, }l>0, p,'1) as above is weakly decom-
pleting, since its pullbacks to rational locahzatlons of A satisfy the same assump-
tions. We may use the product norm on 121\00 & A@@p Qp(ptye ), where A is equipped
with the spectral norm with unit ball A* (as in [KLI5, Def. 2.1.9 and 2.8.1]) and
use the open subgroups {I',; };>0 of I'y. Then the condition (1]} of Definition
holds. As for the condition (2 of Definition it suffices to note that Q,(t,m )
admits a norm-direct supplement in Qp(g,») as normed Qj (g, )-vector spaces,
whenever | < m < n, by [BGR84], Sec. 2.4.2, Prop. 3, and Sec. 2.4.1, Prop. 5]. It
remains to verify the condition (3)) of Definition By [BCO08, Prop. 4.1.1 and
3.1.4, and, in particular, TS(3) in Def. 3.1.3], for any ¢ > p%l, and for all sufficiently
large I (depending on c) and any topological generator « of I, the endomorphism
1—7~: Epm [Ap — A\poo /A, admits a continuous inverse of norm < p°. As a
result, HO(FPMA\;DO /A+) =0, and HY(T,, ﬁto /A*) is annihilated by p?. Since
', is procyclic, H (T, A+ JA%) =0, for i > 2. In this case, we claim that the
condition of Deﬁmtlon 6| holds with ¢ = p?. To see this, let f be a cocycle
in Ci(Fpl,Apoo /A,). Up to replacing f with a scalar multiple, we may suppose
that f lies in C*(T, 2;00 /A;Q). Since H* (T, E;‘oo /A;',) is annihilated by p?, there
exists some h € C*71(T,, gto//ﬁ) such that ||h| < ||f|| and dh = p?f. Thus,
g:=p 2heCHT,, A+ /A+) satisfies ||g|| < p?||f|| and dg = f, as desired. O

Theorem A.2.1.2. ({A, }l>07 po, 1) s a decompletion system.

Proof. Combine Proposition 1] and Theorem O

Remark A.2.1.3. Let k be a p-adic field, and let A be a Banach k-algebra. For
each I > 0, put A, := A @ k(p,) and Ty = Gal(k(py)/k(p,)). Note
that there exists some sufficiently large [y > 0 such that, for all Il > lyp, we have
Ap = Ay ®@p(u o) Qp (ke ) and Iy = Gal((@p(upm)/@p(upz)). In this case, by

Theorem 2 ({4 }l>0, poe, '1) is still a decompletion system.
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A.2.2. Geometric towers. In thlS example, we shall follow the setup in Section
with X = Spa(A, A™) and X = Spa(As, AL), in the notation there. Write
Xm@w = Spa(Am,Ew,A;@w), for all m > 1, so that (A, AL) is the p-adic com-
pletion of @m(Am 7 ,A; z ). Let Ty := Hom(Pép/PgP, Poo) & Horn(ng7 2(1)),
as in [DLLZ, (6.1.4)], and let I'y, := Hom(P§"/-- P#, ) C Ty, which acts on
A, 5. 'sand A by AT® = v(a)T?, for all y € I'; and a € Py, (and acts trivially
on A and ko). Note that the actions of I'y on A4 T
[ :=T; x Gal(keo/k), with Gal(kso/k) acting on Ty via the cyclotomic character.

's and Xoo naturally extend to

Proposition A.2.2.1. ({4 T }leaA\ocnf) 18 stably decompleting.

Proof. Since X,,’s are reduced rigid analytic spaces over k, and since X is perfec-
toid, Am@w 's are closed subrings of A satisfying the condition @) in Definition
By [Ber(7, Lem. 2.1.3], each rational subspace of X, 7 is the base change
of a rational subspace of X, x/, for some [k’ : k] < oo, and hence is stabilized by

the open subgroup I'y, x Gal(koo/k’) of T'. Since rational subsets of X, are also
strictly étale over E,,, in order to verify the condition (]ED in Definition up
to replacing X with Xm, and replacing £ with a finite extension, it suffices to show
that any ({A,, 7 }m>1, A, T) as above is weakly decompleting. We shall use the

spectral norm on Aoo, and use the subgroups {I';;, };n>1 of L. Firstly, the condition
of Definition [A.1.6]is satisfied, by [KLI5, Thm. 2.3.10 and Rem. 2.8.3]. Secondly,
according to the T'1-action, we have a canonical decomposition of kL [P]-modules

(A.2.2.2) kG [Poso] = kL [P1 @ (x1 (kL [Posolx))

where x runs over all nontrivial finite-order characters of I'y; and so the condition
of Definition [A.1.6| follows from the completed tensor product of (A.2.2.2) with
AT, Finally, note that (A.2.2.2) also induces (by completed tensor product as

above) a I',,-equivariant isomorphism AT /A = Wm (@yz1 My ), where My, :=

(A5/P") ® Gt /L) ((k*/p™)[Pqg.,lx) and the direct sum is over all nontrivial

finite-order characters x of I',,,. Thus, by using [DLLZ, Lem. 6.1.7] and proceeding
as in the proof of Proposition [A.2.1.1] we see that the condition of Definition

holds with ¢ = max;,>1{|[¢m — 1| 7!} = P71, as desired. O
Theorem A.2.2.3. ({Am}mZhﬁw,f) is a decompletion system.
Proof. Combine Proposition and Theorem O

Remark A.2.2.4. Both Proposition 1] and Theorem remain true if we

replace T with a closed subgroup I" contalnlng Iy, because 1f the conditions in
Definitions and m hold for F then they also hold for I

A.2.3. Deformation of geometric towers. In this example, we shall continue to fol-
low the setup in Section[2:3] Let us fix the choice of a uniformizer @ of k. For each
r > 1, equip Bz /¢" with the norm |z| := inf{|w|" : n € Z, w "z € Ajne/E"}, for
each r > 1. ThlS norm on BJ;/¢" extends the norm on k and makes Big /¢
a Banach k-algebra. For any toric monoid P, let us equip (Bjy/¢")(P) and
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(Bir/€") (-t P) with the supremum norm, and equip A®y (B /¢") and

(A.2.3.1) By = (A®k(BIz /&) ® gt serypy (Ban/€ )5 P)

with the product norms, as in [KLI5| Def. 2.1.10]. Note that B,.,, is equipped with
a natural isometric action of I'y, by (2.3.5). Then {B, ,,},>1 is a direct system of
Banach k-algebras with compatible actions of I'y, with completed direct limit

]B§7 0o (= (A@k(B /f ))®(BIR/£")(ﬁ)(BJR/€T)<PQZU>

canonically isomorphic to IB%IR( ~) /€" as topological rings, by Lemma Since
induces (by completed tensor product with A& (Bl /€")) submetrlc sur-
Jectlons IB%T oo = By, the system {B,.,, },>1 satisfies the condition 1.' in Definition
6l Moreover, when r = 1, the topological rings B, ,,, and 31,00 can be identified
Wlth A _— and Xoo, respectively, with compatibly equivalent norms. Therefore,
by Remarks [A2.2.4] and [A.T.7(T)), if we use the same subgroups {T'm}m>1 of T'1 as
in the proof of Proposition A.2.2.1|, then ({Bl,m}mzl,ﬁlm,ﬂ) is stably decom-

pleting, and hence is a decompletion system, as ({4, . Fm>1, A\OO, ry)is

Lemma A.2.3.2. The natural projection 0 : B R/E = koo admits a section s in
the category of k-Banach spaces whose opemtor seminorm satisfies |s| < 2|ow| L.

Proof. By [BGR84l Sec. 2.7.2, Prop. 3], we can find a Schauder k-basis {e;},cs of
Koo such that max;es{|bje;|} <2|Z]€J ier
Moreover, we can rescale e; such that |w| < |e;| <1 for all j € J, and lift each e;
to some element €; in Aj,s. Then we can define the desired section s by mapping
each convergent sum .. ;bje; to > ;bjé;. O

bje;], for every convergent sum . ; bje;.

Proposition A.2.3.3. ({Br,m}mzl,@r,m, T'1) is weakly decompleting, for allr > 1.

Proof. With the chosen norms, and with the open subgroups {I',,}m>1 of Ty,
it remains to verify the uniform strict exactness condition. As explaingd above,
({Bl,m}mZM@l,oo; I'y) is stably (and hence weakly) decompleting, which satisfies
the condition with some constant ¢ > 1 (when we equip norms compatibly as
above and use the same subgroups {I';, };m>1 of I'1). We shall show by induction
that ({Br,m}mZMEr,oo; I';) satisfies the condition with the constant (2|co|~1)"~1c"
starting with the known case r = 1. For each r > 1, let f be a cocycle in
C'(Fm,@rm/Br’m). Then its image f in C'(Fm,@l,oo/l[%l,m) satisfies ||f|| < ||If]l-
Let § be a cochain satisfying dg = f with ||g]| < ¢/|f]| < ¢|f|l. By Lemma
we can lift g to a cochain § € C*(Tpy, By.oo/Br.m) with |[§]] < 2|17 <
2w|~Le||f||l. Accordingly, there is a cochain f; € C®(Tp,Br_y 0o/Br_1,m) such
that f —dg = £ f; via the isometry BJr r/E L §B r/&" induced by multiplication
by &, and || fil| = €A = IIf — dg|| < 2|w|” 1c\|f|| By the inductive hypothe-
sis, we can find a cochain g; € C* (Fm,@r 1700/183,«_17,”) satisfying dg; = f1 with
loul < (2leo|~1)—2e HIAL < @lw] =) e[| £l Now put g := G+&gu; here again
€91 is a cochain in C® (T, By. o /By via the isometry Bl /671 = €BT, /¢7. Then
we have dg = f and ||g|| < max{||g]|,[lg1]|} < (2|ww|~")"~ = c"||fll, as desired. O

Theorem A.2.3.4. ({Br,m}mzl,]ﬁrm, ') is a decompletion system, for all r > 1.
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Proof. Let Lo be a finite projective I'-module over @mo. Note that, if (L., tm)
is a model of Lo, over B, ,,, then (£ Ly, /%Ly, Ty) is a model of Lo, /Lo over
By, forall 1 <s <r. Since ({Bl’m}mzl,@lm, I') is a decompletion system, there
exists some sufficiently divisible m’ > 1 such that, for all 1 < s < r, the base change
of (£ 1Ly /€5 Ly, Tm) t0 By 1 is a good model. Thus, the base change of (Ly,, tm)
to B,/ is a good model, and we have verified the condition in Definition [A.1.2
Moreover, by the same argument based on as in the proof of Theorem|[A.1.8
this property also ensures that any two models over B, ,,, becomes identical in Lo
after base change to B, ,,,s for some sufficiently large multiple m’ of m.

It remains to show the existence of a model of L.,. Firstly, by the same ar-
gument as in the proof of Theorem for some m > 1, we can find a finite
covering of (Xy,); by rational subsets over which Lo /(Lo are free. (More pre-

cisely, we mean Lo, /Lo is free over the pullbacks of X to these rational subsets.
Since rational subsets of X, are also strictly étale over E,,, we still have com-
patible actions of I'), on such pullbacks. For simplicity, we shall adopt a similar
language in the following.) As explained in the proof of Proposition by
[Ber07, Lem. 2.1.3], there is an open subgroup of Gal(k./k) stabilizing all ratio-
nal subsets in the above finite covering. Hence, up to replacing X with X,,, and
replacing k with a finite extension, we may assume that there exists a finite cov-
ering X = Ujer Spa(R;, R}) by rational subsets such that Lo, /Lo is free over
each Spa(R;, Rj)@w. Since ¢ is a nilpotent element, the base change Lo, ; of Lo

under ARy (Bir/¢") — Ri®k(BIz/€") is also free. By Proposition [A.2.3.3] and
Theorem for some m > 1, each Lo ; admits a free model (L, 4, tm,i) Over

= + T + ry/ 1 _
(Ri®k(BiR/EM)) R (B 7er)(P) (B4r/€")(5;P), and we may assume that these mod
els coincide on the intersections of rational subsets in the covering. Thus, by [LZ17,
Prop. 3.3], these models glue to a model of L., as desired. O
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