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Abstract. In this survey article, we explain how modular forms can be de-

fined geometrically in higher dimensions and in mixed characteristics using

smooth toroidal compactifications, and how this can be useful for studying the
cohomology groups of PEL-type Shimura varieties valued in torsion automor-

phic coefficients.
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1. Background and introduction

Let us begin with the proto-example, namely the classical theory of modular
curves and modular forms. (References for facts summarized here can be found in,
for example, the survey articles in [CY97] and [CSS97], where one can find perhaps
the most famous application of the theory of modular forms. I personally find the
experience of reading [Shi71], [Del71a], [DR73], and [KM85] most helpful.)

Consider an integer k ≥ 1 defining the “weight”, and a congruence subgroup Γ
of SL2(Z) defining the “level”. Let Mk(Γ) (resp. Sk(Γ)) be the space of holomorphic
modular (resp. cusp) forms of weight k. Let YΓ,C = Γ\H (“open modular curve”)
be the quotient of the Poincaré upper half plane H, and let XΓ,C (“compactified
modular curve”) be the compact Riemann surface containing YΓ,C (by adding the
“cusps”). (More details will be given in §2.1.)

When k ≥ 2, there is the so-called Eichler-Shimura isomorphism

(1.1) Mk(Γ)⊕ Sk(Γ)c ∼= H1(YΓ,C,Symk−2(C⊕2)),

where the superscript c means the complex conjugation, and where Symk−2(C⊕2)

is the local system attached to the representation Symk−2(C⊕2) of GL2.
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By Serre duality (realized by integration as a C-anti-linear isomorphism), we
may rewrite (1.1) as

(1.2) H0(XΓ,C, ω
⊗ k
C )⊕H1(XΓ,C, ω

⊗(−k+2)
C ) ∼= H1(YΓ,C,Symk−2(C⊕2)),

where ωC is a (holomorphic) line bundle over XΓ,C canonically extending the fa-
miliar Hodge line bundle ωC over YΓ,C, such that we can define geometrically

Mk(Γ) := H0(XΓ,C, ω
⊗ k
C ). Then the Eichler-Shimura isomorphism can be rein-

terpreted as a degeneracy statement in (mixed) Hodge theory. (Note that here
XΓ,C is compact and YΓ,C is non-compact. The use of nice compactifications is
standard in mixed Hodge theory. See [Del71b] and [PS08].)

By the Betti-étale comparison, the right-hand side of (1.2) can be replaced with
the (`-adic) étale cohomology (after making the coefficient `-adic using some fixed
choice of an isomorphism C ∼= Qac

` , where Qac
` is a fixed algebraic closure of the

`-adic numbers Q`), carrying interesting actions of both the Hecke algebra and the
absolute Galois group (of the field of definition of XΓ,C). This leads to, among other
things, the important association of Galois representations with (Hecke) eigenforms.

On the other hand, while one can ask many interesting arithmetic questions
about Mk(Γ) and Sk(Γ), they do not carry interesting Galois actions. In fact, the
geometric objects YΓ,C, XΓ,C, ωC, and ωC all have very natural models over the
integers, defined by moduli problems of elliptic curves with level structures, and by
their degenerations. Using these integral models, people have been able to define
and study the modular forms algebro-geometrically in mixed characteristics, and
study interesting phenomena such as congruences among modular forms of very
different natures (e.g., among cusp forms and Eisenstein series).

Now the question is what we can do in higher dimensions.
First of all, over C, the modular curves are generalized by the so-called Shimura

varieties, together with a theory of compactifications and automorphic bundles.
(The group GL2 is replaced with larger reductive algebraic groups, whose irre-
ducible representations are used in the definition of such automorphic bundles.)
The Eichler-Shimura isomorphism (1.2) has precise analogues given by the dual
BGG spectral sequences of Faltings, with degeneracy due to mixed Hodge theory,
relating modular forms on the left-hand sides to the group cohomology on the right-
hand sides. Thanks to the recent advances in trace formula and related techniques,
it is probably fair to say that people have made more progresses on the side of
group cohomology (with coefficients over C) than on the side of modular forms.

On the other hand, if we consider group cohomology with torsion coefficients,
then known transcendental methods no longer apply, except that the (torsion ver-
sion of) p-adic Hodge theory allow us to compare such group cohomology with log
crystalline and log de Rham cohomology in mixed characteristics (0, p), and that we
still have some analogues of the dual BGG spectral sequences, from modular forms
in mixed characteristics on the left-hand side to the log de Rham cohomology on the
right-hand side. Now we might hope to answer questions about group cohomology
with torsion coefficients by studying modular forms or related geometric objects.

In what follows, we will explain the following two topics in more detail:

(1) Firstly, we will explain how modular forms can be defined and studied in
higher dimensions and in good mixed characteristics using good integral
models of compactifications and automorphic bundles.
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(2) Secondly, we will explain some effective conditions for the spaces of such
modular forms to enjoy nice properties (such as vanishing or freeness over
coefficients rings at particular cohomology degrees), and deduce corre-
sponding results for group cohomology with torsion coefficients. (This is
a joint work with Junecue Suh.)

We will provide references of both original and introductory natures. (For references
to [Lan08], although we will use the numbering in the original version, the reader
is advised to consult the errata and revision for corrections of typos and minor
mistakes, and for improved exposition.)

2. Geometric modular forms in higher dimensions

2.1. Review of the theory in dimension one. Let us begin with the ana-
lytic definition of modular forms of one variable. (For more information, see [Shi71,
Ch. 2].) The group GL2(R)+ := {γ ∈ GL2(R) : det(γ) > 0} acts on the Poincaré
upper-half plane H := {z ∈ C : Im(z) > 0} by the familiar Möbius transformation
z 7→ γz := az+b

cz+d , defined for any z ∈ H and γ =
(
a b
c d

)
∈ GL2(R)+. Let k ≥ 1

be an integer, and let Γ be a congruence subgroup (namely, defined by congruence
conditions) of SL2(Z).

Definition 2.1. A (holomorphic) modular form of weight k ≥ 1 and level
Γ is a holomorphic function f : H→ C satisfying the following two conditions:

(1) (automorphy condition) For any γ =
(
a b
c d

)
∈ Γ, we have the functional

equation f(z) = (cz + d)−kf(γz).
(2) (growth condition) For any γ =

(
a b
c d

)
∈ SL2(Z), the function (cz +

d)−kf(γz) stays bounded as Im(z) → ∞. (If (cz + d)−kf(γz) → 0 as
Im(z)→∞, we say that f is a cusp form.)

We shall denote by Mk(Γ) (resp. Sk(Γ)) the C-vector space of modular forms
(resp. cusp forms) of weight k and level Γ.

For many applications of modular forms to number theory, it is desirable to
answer the following fundamental questions:

Question 2.2. Can we define Mk(Γ;R) and Sk(Γ;R) (i.e., modular forms
and cusp forms “over R”) for rings R other than C? Even better, can we make the
definition functorial and compatible with arbitrary flat base changes in R?

For example, we would like to define Mk(Γ; “Z”) and Mk(Γ; “Fp”), where “Z”
stands for some localization of the ring of integers in some number field at a pre-
scribed set of primes, and where “Fp” is a residue field of “Z” of characteristic p > 0.
Then we want Mk(Γ) ∼= Mk(Γ;C) ∼= Mk(Γ; “Z”) ⊗

“Z”
C and Sk(Γ) ∼= Sk(Γ;C) ∼=

Sk(Γ; “Z”) ⊗
“Z”

C, with the reduction maps Mk(Γ; “Z”)→Mk(Γ; “Fp”) for each p.

Since modular forms are a priori defined by transcendental conditions, it is not
clear how these questions should be answered. Thus the first step would be to revise
the definition of modular forms, by introducing the so-called modular curves.

For each point z ∈ H, we can define a lattice Lz := Zz + Z in C, and an
elliptic curve Ez := C/Lz. By varying z, we obtain a holomorphic family E → H of
elliptic curves. If γ =

(
a b
c d

)
∈ SL2(Z), then Lz = Zz+Z = Z(az+ b) +Z(cz+ d) =

(cz+d)Lγz, and hence the multiplication (cz+d)−1 : C ∼→ C defines an isomorphism

Ez = C/Lz
∼→ Eγz = C/Lγz. This shows that:
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(1) If Γ is a torsion-free congruence subgroup of SL2(Z), then E → H descends
to a holomorphic family EΓ,C → YΓ,C := Γ\H of elliptic curves.

(2) If ωΓ,C := Lie∨EΓ,C/YΓ,C
is the relative cotangent bundle along the identity

section, then sections of ω⊗ kΓ,C can be represented by holomorphic functions

f : H→ C satisfying f(γz) = (cz + d)kf(z) for any z ∈ H and γ ∈ Γ.

Therefore, we see that the automorphy condition in Definition 2.1 can be redefined
geometrically. To take care of the growth condition, let XΓ,C := Γ\H∗, where
H∗ = H∪P1(Q) (as subsets of P1(C), with natural actions of GL2(R)+ induced
by the canonical action of GL2(C) on P1(C)) is given a topology such that the
quotient XΓ,C has the structure of a compact Riemann surface, and such that
ωΓ,C extends naturally to a line bundle ωΓ,C over XΓ,C. We shall call YΓ,C (resp.
XΓ,C) the modular curve (resp. compactified modular curve) of level Γ. By its
very construction, YΓ,C parameterizes isomorphism classes of pairs (E,αΓ) over C,
where E is an elliptic curve over C, and αΓ is a level Γ structure, namely a Γ-orbit
of isomorphisms α : Z⊕ 2 ∼→ H1(E,Z). Then we have canonical isomorphisms

Mk(Γ;C) ∼= H0(XΓ,C, ω
⊗ k
Γ,C) and Sk(Γ;C) ∼= H0(XΓ,C, ω

⊗ k
Γ,C(−∞)), where (−∞)

means vanishing at the cusps XΓ,C − YΓ,C.
In [DR73], Deligne and Rapoport defined the moduli problem of elliptic curves

with level Γ structures over “Z”, which in this case can be Z[ 1
N ] for any integer

N such that Γ contains Γ(N) := ker(SL2(Z)→ SL2(Z/NZ)), and showed that the
moduli problem is representable by a scheme YΓ (over “Z”). (Later in [KM85], by
introducing the so-called Drinfeld level structures, Katz and Mazur could ensure
that “Z” is indeed Z.) Moreover, YΓ has a natural compactification XΓ (over “Z”)
given by the moduli of generalized elliptic curves (which are certain degenerations of
elliptic curves with ordinary double points as singularities) with additional struc-
tures. The universal elliptic curve EΓ → YΓ extends to a smooth group scheme
Eext

Γ → XΓ given by the smooth part of the universal generalized elliptic curve,
and hence the line bundle ωΓ := Lie∨EΓ/YΓ

over YΓ extends to the line bundle

ωΓ := Lie∨Eext
Γ /XΓ

.

According to [DR73, Ch. VII, §4], the base extensions of the geometric objects
YΓ, XΓ, ωΓ, and ωΓ from “Z” to C are canonically isomorphic to YΓ,C, XΓ,C,
ωΓ,C, and ωΓ,C, respectively, which induce canonical isomorphisms Mk(Γ;C) ∼=
H0(XΓ,C, ω

⊗ k
Γ,C) and Sk(Γ;C) ∼= H0(XΓ,C, ω

⊗ k
Γ,C(−∞)).

For any “Z”-algebra R, let us denote the base extensions to R by subscripts
(which is justified when R = C thanks to the previous paragraph). Then we can
define modular forms and cusp forms of weight k and level Γ over R by

(2.3) Mk(Γ, R) := H0(XΓ,R, ω
⊗ k
Γ,R)

and

(2.4) Sk(Γ, R) := H0(XΓ,R, ω
⊗ k
Γ,R(−∞)).

Moreover, for any ring homomorphism R → R′, we have the desired functoriality
Mk(Γ, R) → Mk(Γ, R′) and Sk(Γ, R) → Sk(Γ, R′), and for flat ring extensions

R→ R′, we have Mk(Γ, R)⊗
R
R′
∼→Mk(Γ, R′) and Sk(Γ, R)⊗

R
R′
∼→ Sk(Γ, R′).

Hence Question 2.2 has been answered.

2.2. Summary of key ingredients. Before moving on, let us summarize the
key ingredients in the geometric definition of modular forms:
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(1) The analytic definition of YΓ,C and XΓ,C over C.
(2) The integral model YΓ of YΓ,C defined using the moduli of elliptic curves

with level Γ structures. (The precise ring of definition “Z” depends on
the definition of level Γ structures.)

(3) The integral model XΓ of XΓ,C defined using degenerations of elliptic
curves into curves with ordinary double points as singularities.

(4) The definition of ωΓ,C using the holomorphic family EΓ,C → YΓ,C.
(5) The definition of ωΓ using the universal elliptic curve EΓ → YΓ.
(6) The definition of ωΓ using the extended object Eext

Γ → XΓ. (This uses

implicitly some compactified object EΓ → XΓ.)
(7) The definitions of Mk(Γ;R) and Sk(Γ;R) (in (2.3) and (2.4)) using H0 of

tensor powers of ωΓ (with vanishing along the cusps in the case of Sk).

In the following subsections, we will discuss generalizations of these one by one.

2.3. Shimura varieties and their compactifications over the complex
numbers. The modular curve YΓ,C over C is generalized by the Shimura varieties.

One starts with a Shimura datum (G,X), where G is a reductive algebraic group
over Q and X is a finite union of Hermitian symmetric domains carrying an action
of G(R) and satisfying some conditions. (We will not make these conditions precise
because we will not need them.) Let H be an open compact subgroup of G(A∞).

(Here A∞ = Ẑ⊗
Z
Q, where Ẑ = lim←−

N

(Z/NZ).) Then the Shimura variety at level H

attached to this datum is the double quotient

(2.5) ShH,C := G(Q)\(X×G(A∞)/H).

A priori, this is only a complex analytic space, which is a finite union of quo-
tients of X by arithmetic subgroups of G(Q). (The finiteness of the union is due to
the finiteness of G(Q)\G(A∞)/H, by [Bor63, Thm. 5.1].)

According to Satake and Baily-Borel [BB66, 10.11], there is a minimal com-

pactification Shmin
H,C of ShH,C, which is canonical and given by a finite union of

complex normal projective varieties. According to Mumford and his coworkers
[AMRT75], there is a collection of (non-canonical) nonsingular and/or projec-
tive compactifications Shtor

H,C in the category of complex algebraic spaces, called
toroidal compactifications, parameterized by certain combinatorial data of compat-
ible choices of cone decompositions, which resolve the (generally very complicated)

singularities of the minimal compactification Shmin
H,C. Thus, ShH,C is a nice geometric

object with nice compactifications (in the category of algebraic varieties, if we only
consider projective toroidal compactifications). This is important for defining and
studying, for example, the Hodge structure on the de Rham cohomology. (Later in
mixed characteristics even the very existence of nice compactifications is unclear,
and we can say very little about relations among different compactifications, be-
cause we do not have analogues of Hironaka’s embedded resolution of singularities
[Hir64a, Hir64b].)

Moreover, by the theory of canonical models, ShH,C has a canonical model ShH
over a number field F0 called the reflex field. (It is then customary to also call ShH
the Shimura variety over F0.) According to Harris [Har89] and Pink [Pin89],

Shmin
H,C and Shtor

H,C also have canonical models Shmin
H and Shtor

H , respectively, over
(the same) F0.
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The upshot is that the reflex field depends on the Shimura datum (G,X) but
not on the level H. As a result, the inductive limit of (`-adic) étale cohomology
groups of ShH (as the level H varies) carries both the Hecke action (defined by an
action of G(A∞) on the limit) and the Galois action (of Gal(Qac/F0), where Qac

is the algebraic closure of Q in C), and these commute with each other. (Similar
statements can be made about the intersection cohomology defined using the min-
imal compactifications.) This is why people look for relations among automorphic
representations and Galois representations in the cohomology of Shimura varieties.

The theory of Shimura varieties has its origin in, as suggested by its name,
the works of Shimura [Shi02]. (See also [Shi71] and [Shi98].) The prevailing
formulation is due to Deligne, whose papers [Del71a] and [Del79] are the canonical
references in this subject. A helpful introduction is [Mil05]. (For the purpose of
this article, we will not need the theory of canonical models.)

The theory of compactifications of arithmetic quotients of Riemannian or Her-
mitian symmetric spaces is an important subject by itself. Apart from the minimal
and toroidal compactifications, there are many other compactifications as topo-
logical spaces, often far beyond the category of algebraic varieties. (See Borel-Ji
[BJ06] for a nice overall treatment on the subject.) We emphasize the minimal
and toroidal compactifications because they are the only ones that turned out to
have nice models over the reflex fields, and even over integers. (See §2.5 below.)

2.4. Integral models of Shimura varieties. Not all Shimura varieties
are known to have nice integral models. (Here integral means defined over
Spec(OF0

[ 1
N ]) for some explicit integer N .) Although by abstract nonsense alge-

braic varieties defined over number fields have some integral model over the ring of
integers, such abstract models are not useful when we need to have precise control
on the local structures. To the best of our knowledge, all useful integral models
of Shimura varieties involve (either directly or indirectly) moduli spaces of abelian
varieties with certain additional structures.

Among Shimura varieties that do possess useful integral models, the PEL-type
Shimura varieties are those that admit interpretations as moduli spaces of abelian
varieties with the PEL structures, namely the polarizations (“P”), the endomor-
phism structures (“E”), and the level structures (“L”). (This certainly has its origin
in works of Shimura.) One reason for these structures to be useful is because it is
easy to define moduli problems with these structures over very general rings. Defi-
nitions of moduli problems over “Z” in the good reduction case (namely cases where
we know the moduli problem is smooth over a base scheme with prescribed residue
characteristics) can be found in Zink [Zin82, §1], Langlands-Rapoport [LR87,
§6], and in utmost generality in Kottwitz [Kot92, §5], following earlier ideas of
Grothendieck and Deligne (using objects up to isogeny). (I recommend reading the
definition given by Kottwitz.)

The bad reduction case (namely cases where the model can have singularities in
fibers of positive characteristics) can be very difficult in general, and the justification
for the theory (i.e., “How bad can we allow the models to be?”) may depend heavily
on the applications. People might have the impression from low dimensions and a
few very successful examples in arbitrary dimensions (such as [HT01]) that there
should be some optimal theory, but we cannot rule out the possibility that different
applications might deserve very different treatments. In what follows, we will leave
the bad reduction case to specialists and focus mainly on the good reduction case.
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For the purpose of compactifications later, we will prefer to define the moduli
problems by parameterizing objects up to isomorphism. Since many readers today
might be more familiar with the definition by isogeny classes, and since the defi-
nition by isomorphism classes is less canonical, we shall supply more detail. (The
definition by isomorphism classes is certainly not new. This is the approach taken
in many famous special cases, such as [DR73, KM85, Rap78, DP94, MFK94,
FC90, Lar88, Lar92] and many later works.)

Let (O, ?, L, 〈 · , · 〉, h0) be an integral PEL datum in the following sense:

(1) O is an order in a (nonzero) semisimple algebra, finite-dimensional over
Q, together with a positive involution ?.

(2) L is an O-lattice, namely a Z-lattice with the structure of an O-module.
(3) 〈 · , · 〉 : L×L→ Z(1) is an alternating pairing satisfying 〈bx, y〉 = 〈x, b?y〉

for any x, y ∈ L and b ∈ O.
(4) h0 : C→ EndO⊗

Z
R(L⊗

Z
R) is an R-algebra homomorphism satisfying:

(a) For any z ∈ C and x, y ∈ L⊗
Z
R, we have 〈h0(z)x, y〉 = 〈x, h0(zc)y〉,

where C→ C : z 7→ zc is the complex conjugation.
(b) For any choice of

√
−1 in C, the pairing −

√
−1 〈 · , h0(

√
−1) · 〉 :

(L⊗
Z
R)×(L⊗

Z
R)→ R is symmetric and positive definite. (This last

condition forces 〈 · , · 〉 to be nondegenerate.)

(In [Lan08, Def. 1.2.1.3], h0 was denoted by h.) The tuple (O,? , L, 〈 · , · 〉, h0) then
gives us an integral version of the (B,? , V, 〈 · , · 〉, h0) in [Kot92] and related works.
We shall denote the center of O⊗

Z
Q by F . (Then F is a product of number fields.)

Definition 2.6 (cf. [Lan08, Def. 1.2.1.5]). Let O and (L, 〈 · , · 〉) be given as
above. Then we define for any Z-algebra R

G(R) :=

(g, r) ∈ GLO⊗
Z
R(L⊗

Z
R)×Gm(R) :

〈gx, gy〉 = r〈x, y〉, ∀x, y ∈ L⊗
Z
R

 .

The assignment is functorial in R and defines a group functor G over Spec(Z).

The homomorphism h0 : C → EndO⊗
Z
R(L⊗

Z
R) defines a Hodge structure of

weight −1 on L, with Hodge decomposition

(2.7) L⊗
Z
C = V0 ⊕ V c0 ,

such that h0(z) acts as 1⊗ z on V0, and as 1⊗ zc on V c0 . Let F0 be the reflex field,
namely the field of definition of the isomorphism class of the O⊗

Z
C-module V0.

(See [Kot92, §5] and [Lan08, Def. 1.2.5.4]. Note that this does not mean there
exists an O⊗

Z
F0-module whose base extension from F0 to C is isomorphic to V0.)

We shall denote the ring of integers in F (resp. F0) by OF (resp. OF0
).

We say that a rational prime number p > 0 is good if it satisfies the following
conditions (cf. [Kot92, §5] and [Lan08, Def. 1.4.1.1]):

(1) p is unramified in O (as in [Lan08, Def. 1.1.1.14]).
(2) p 6= 2 if O⊗

Z
Q involves simple factors of type D (as in [Lan08, Def.

1.2.1.15]).
(3) The pairing 〈 · , · 〉 is perfect after base change to Zp.
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Let us fix a choice of a good prime p > 0.
LetH be a neat open compact subgroup of G(Ẑp). (See [Pin89, 0.6] or [Lan08,

Def. 1.4.1.8] for the definition of neatness. The assumption of neatness corresponds
to the assumption that the congruence subgroup Γ is torsion-free when defining
modular curves of level Γ.)

By [Lan08, Def. 1.4.1.4] (with 2 = {p} there), the data of (L, 〈 · , · 〉, h0) and
H define a moduli problem MH over S0 = Spec(OF0,(p)), parameterizing tuples
(A, λ, i, αH) over schemes S over S0 of the following form:

(1) A→ S is an abelian scheme.
(2) λ : A→ A∨ is a polarization of degree prime to p.
(3) i : O ↪→ EndS(A) is an O-endomorphism structure as in [Lan08, Def.

1.3.3.1].
(4) LieA/S with its O⊗

Z
Z(p)-module structure given naturally by i sat-

isfies the determinantal condition in [Lan08, Def. 1.3.4.1] given by
(L⊗

Z
R, 〈 · , · 〉, h0). (The idea and the formulation are due to [Kot92, §5]

and [RZ96, 3.23(a)], respectively.)

(5) αH is an (integral) level-H structure of (A, λ, i) of type (L⊗
Z
Ẑp, 〈 · , · 〉) as

in [Lan08, Def. 1.3.7.8]. (In general this condition is nontrivial even if

H = G(Ẑp) is maximal, unlike in certain famous special cases.)

(The definition can be identified with the one in [Kot92, §5] by [Lan08, Prop.
1.4.3.3].) By [Lan08, Thm. 1.4.1.12 and Cor. 7.2.3.10], MH is representable by a
(smooth) quasi-projective scheme over S0 (under the assumption that H is neat).
(The proof of quasi-projectivity uses results of Moret-Bailly [MB85], but does
not require Mumford’s geometric invariant theory [MFK94]. It is intriguing and
somewhat mysterious, but certainly no surprise, that both involve algebraic theta
functions.)

Consider the (real analytic) set X = G(R)h0 of G(R)-conjugates h : C →
EndO⊗

Z
R(L⊗

Z
R) of h0 : C → EndO⊗

Z
R(L⊗

Z
R). Let Hp := H and Hp := G(Zp) be

open compact subgroups of G(Ẑp) and G(Qp), respectively, and let H be the open

compact subgroup HpHp of G(Ẑ). Define ShH,C by forming the double quotient
as in (2.5), which we also view (by abuse of language) as a finite union of quasi-
projective varieties (using Baily and Borel’s theorem [BB66, 10.11]).

For any h ∈ X, the real analytic torus Ah := (L⊗
Z
R)/L with complex structure

given by h has the structure of a polarized abelian variety with endomorphism and
level structures defining a C-valued point of MH. More generally, any element of
X×G(A∞) defines some C-valued point of MH, and two elements define the same
point if they lie in the same double orbit (for G(Q) and H). In other words, ShH,C
can be viewed as an analytic moduli space of abelian varieties with PEL structures
defined by (O, ?, L, 〈 · , · 〉, h0). By arguing carefully as in [Kot92, §8] and [Lana,
§2], one can show that there is a canonical isomorphism between ShH,C and an open
and closed subscheme of MH ⊗

OF0,(p)

C. (In general, ShH,C might not be isomorphic

to the whole of MH ⊗
OF0,(p)

C, due to the so-called failure of Hasse’s principle. See

for example [Kot92, §8] and [Lan08, Rem. 1.4.3.11].)
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2.5. Integral models of compactifications. Just as the compactification
XΓ of YΓ (see §2.1) is constructed using moduli of generalized elliptic curves
(which are certain degenerations of elliptic curves), to compactify integral models
of PEL-type Shimura varieties, we would like to study the degeneration of the
objects parameterized by the corresponding moduli problems.

Based on the work of Mumford [Mum72], Faltings and Chai (see [Fal85],
[Cha85], and especially [FC90]) studied the theory of semi-abelian degenerations
for polarized abelian varieties over noetherian normal complete adic rings satisfying
certain reasonable conditions, and constructed smooth integral models of (smooth)
toroidal compactifications of the Siegel modular varieties (parameterizing princi-
pally polarized abelian schemes with principal level structures, over base schemes
over which the primes dividing the level are invertible).

In their construction, they did not use any moduli problem of degenerating
objects. Instead, they glue boundary charts (whose construction depends on choices
of cone decompositions) to the moduli problem in the étale topology. Such a process
is feasible because the sheaves of relative log differentials can be explicitly calculated
and compared over the charts. As a byproduct, they obtained integral models of
the minimal compactifications of Siegel modular varieties by taking the projective
spectra of certain graded algebras of (scalar-valued) algebraic automorphic forms.
(Unlike in the theory over C, we do not know any direct construction of the minimal
compactifications.) The theory is generalized in Larsen’s thesis [Lar88] (see also
[Lar92]) for certain Picard modular varieties.

In my thesis [Lan08], I constructed smooth integral models of (smooth) com-
pactifications of all types of PEL-type Shimura varieties (as defined in §2.4 above),
based on a generalization of the method of Faltings and Chai’s in [FC90] with
a new emphasis on the degeneration of level structures. (As remarked above, the

definition of level structures in general is nontrivial even if H = G(Ẑp) is maximal.)
This involves some calculation of Weil pairings that has been unnecessary in earlier
works.

The case of Siegel modular varieties with bad reductions of parahoric levels at
p is treated in the thesis of Stroh [Str08] (see also [Str10a, Str10b]). It should be
possible to treat similar parahoric levels for most symplectic and unitary cases by
combining Stroh’s ideas with ours. (Maybe Stroh will carry this out.) It is less clear
what one should expect in cases of deeper levels, because (without applications in
mind) it is already unclear how the integral models should be defined.

There are also the important canonical compactifications constructed by Alex-
eev and Nakamura [AN99, Ale02] and by Olsson [Ols08], which indeed use some
moduli problem of degenerating objects. However, while such compactifications are
very interesting for algebraic geometers, they have no known applications to the
study of automorphic representations and related topics in number theory. (Al-
though it might seem a disadvantage that the old-fashioned toroidal compactifica-
tions are noncanonical and have to be constructed by gluing boundary charts, it is
also an advantage that we have a very precise description of the boundary!)

In what follows we will focus on good reduction models of (smooth) toroidal
compactifications (which will eventually be the only ones useful for the strategy in
§3). Let us summarize some results in [Lan08, Ch. 6–7].

Theorem 2.8 (see [Lan08, Thm. 6.4.1.1, 7.2.4.1, and 7.3.3.4] for more details).
When H is neat, MH admits a toroidal compactification Mtor

H = Mtor
H,Σ, a scheme
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projective and smooth over S0, depending on a compatible collection Σ (of the so-
called cone decompositions) that is projective and smooth in the sense of
[Lan08, Def. 6.3.3.2 and 7.3.1.3]. (By abuse of language we sometimes simply call
Σ a cone decomposition, even though it is technically a compatible collection of
cone decompositions along various boundary components.) It satisfies the following
properties:

(1) The universal abelian scheme A→ MH extends to a semi-abelian scheme
Aext → Mtor

H , the polarization λ : A→ A∨ extends to a prime-to-p isogeny

λext : Aext → (Aext)
∨

between semi-abelian schemes, and the endomor-
phism structure i : O ↪→ EndMH(A) extends to an endomorphism structure
iext : O ↪→ EndMext

H
(Aext). (Because the base is normal, once the semi-

abelian extension Aext → Mtor
H exists, it is unique, and the remaining

structures extend uniquely. See [FC90, Ch. I, Prop. 2.7].)
(2) The complement of MH in Mtor

H (with its reduced structure) is a relative
Cartier divisor D = D∞,H with simple normal crossings, and the in-
tersections of components of D define a stratification of MH with locally
closed strata given by schemes smooth over S0.

(3) There is an extended Kodaira-Spencer isomorphism from a quotient
of Lie∨Aext/Mtor

H
⊗

OMtor
H

Lie∨(Aext)∨/Mtor
H

(by precise relations defined by λext and

iext) to

Ω
1

Mtor
H /S0

:= Ω1
Mtor

H /S0
(logD) = Ω1

Mtor
H /S0

[d logD],

the sheaf of modules of log 1-differentials on Mtor
H over S0, with respect to

the relative Cartier divisor D.
(4) Let ω := ∧top Lie∨Aext/Mtor

H
. Then the scheme Proj( ⊕

r≥0
Γ(Mtor

H , ω⊗ r)) is

normal and projective over S0, contains MH as an open dense subscheme,
and defines the minimal compactification Mmin

H of MH (independent
of the choice of Σ). Moreover, the line bundle ω descends to an ample
line bundle over Mmin

H .
(5) Mtor

H is the normalization of the blow-up of Mmin
H along a coherent sheaf

of ideals J of OMmin
H

whose pullback  to OMtor
H

is of the form OMtor
H

(−D′),
for some relative Cartier divisor D′ with normal crossings on Mtor

H such
that D′red = D. In particular:

(2.9) ∃ r0 > 0 such that ω⊗ r(−D′) is ample for every r ≥ r0.

(Here we use [Lan08, Thm. 7.3.3.4] and the assumption that Σ is projec-
tive.)

In what follows, we shall sometimes omit Σ when the choice is clear.
Let ShH denote the schematic image of the canonical morphism ShH,C → MH.

Let MH,0 (resp. Mtor
H,Σ,0) denote the schematic closure of ShH in MH (resp. Mtor

H,Σ).

Then MH,0 is smooth over S0, and Mtor
H,Σ,0 → S0 is proper and smooth and shares

the properties of Mtor
H,Σ → S0 listed above. By abuse of notation, we denote the

pullback of D to Mtor
H,Σ,0 still by D. Similarly, let Mmin

H,0 denote the schematic closure

of ShH in Mmin
H . Then Mtor

H,Σ,0 → Mmin
H,0 enjoys the same properties of Mtor

H,Σ → Mmin
H

described in Theorem 2.8.
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Remark 2.10. Although not logically related, (2) of Theorem 2.8 asserts that
our choices of cone decompositions are consistent with those called SNC in [Har89]
and subsequent works such as [HZ94a], [HZ94b], and [HZ01].

In [Lana], by using comparison between spaces of analytic and algebraic theta
functions, it is shown that Mtor

H,Σ,0 ⊗
OF0,(p)

C is indeed a toroidal compactification

Shtor
H,C of ShH,C ∼= MH,0 ⊗

OF0,(p)

C (constructed by the method of [AMRT75],

[Har89], and [Pin89]), and as a consequence that Mmin
H,0 ⊗
OF0,(p)

C is the minimal

compactification Shmin
H (constructed by the method of [BB66] and [Pin89]). (We

have to point out that the claims in certain works that this is true because the
local charts of the analytic and algebraic constructions look similar, is not justified,
because the construction methods are not logically related to each other.)

Thanks to its stratification by smooth locally closed subschemes, the (smooth)
toroidal compactification Mtor

H,Σ,0 (with its long list of nice properties inherited from

Mtor
H,Σ in Theorem 2.8) is a nice geometric object suitable for the study of Hodge,

de Rham, and crystalline cohomology. (We will see some applications in §3.)
An intriguing (yet less noticed) fact is that the construction of Mtor

H,Σ,0 is also

useful for compact Shimura varieties. (If a boundary stratum is empty in charac-
teristic zero, it has to be empty in positive characteristic too.) This leads to:

Corollary 2.11. If ShH,C (with its real analytic structure inherited from X)
is compact, then MH,0 is proper (and hence projective) over S0.

(It is possible to prove this using only part of Faltings and Chai [FC90], without
the gluing construction of Mtor

H,Σ. See [Lanb, §4].)

2.6. Automorphic bundles and canonical extensions over the complex
numbers. For simplicity, let us maintain the PEL-type setup in this subsection.

Consider the subgroup P0,C of GC stabilizing the Hodge filtration given by
the Hodge decomposition (2.7). (This P0,C will be compatible with the P0 to
be defined in §2.8 below.) The Hodge decomposition (2.7) itself then induces a
splitting of the Levi quotient M0,C as a subgroup of P0,C. By varying h in X,
the varying Hodge filtration then defines an embedding of X in the flag variety
GC/P0,C. By abuse of language, we shall also identify this flag variety with its
complex points G(C)/P0(C). Given any algebraic representation WC of P0,C, the
sheaf of holomorphic sections of

(2.12) (G(C)×WC)/P0(C)→ G(C)/P0(C)

defines a G(C)-equivariant holomorphic vector bundle on G(C)/P0(C), whose re-
striction to X descends to its (smooth) arithmetic quotients and defines a holomor-
phic vector bundle WC on ShH,C. The (holomorphic) vector bundles like WC are

generalizations of the line bundles ω⊗ kC in §1.
On the other hand, given any algebraic representation VC of GC := G⊗

Z
C, one

can consider the sheaf of locally constant (resp. holomorphic) sections of

(2.13) G(Q)\((X×VC)×G(A∞)/H)→ ShH,C = G(Q)\(X×G(A∞)/H),

which we denote by BV C (resp. V C). (Here “B” means the Betti version of the au-
tomorphic sheaves we consider.) The cohomology of BV C can be computed by the
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de Rham cohomology (and hence can be computed using the Lie algebra cohomol-
ogy, see [BW00, Ch. VII]). Moreover, V C is naturally equipped with an integrable
connection ∇ : V C → V C ⊗

OShH,C

Ω1
ShH,C

(inducing the algebraic de Rham complex

(V C ⊗
OShH,C

Ω•ShH,C ,∇)), such that BV C is canonically isomorphic to the sheaf of hor-

izontal sections of (V C,∇), and so that we have

Hi(ShH,C,BV C) ∼= Hi
dR(ShH,C, V C) := Hi(ShH,C, (V C ⊗

OShH,C

Ω•ShH,C ,∇)).

(The last term is a hypercohomology of complexes.) The sheaves BV C are general-

izations of the sheaves Symk−2(C⊕2) in §1.
However, for obtaining mixed Hodge structures on Hi

dR(ShH,C, V C), so that
an analogue of (1.2) is possible, it is desirable to introduce the so-called canonical
extensions of both bundles like V C andWC over toroidal compactifications of ShH,C.
(See [Mum77], [FC90, Ch. VI], [Har89], [Har90], and [Mil90]. See in particular
[Har89, Thm. 4.2] for the relation between canonical extensions and the notion
of regular singularities of algebraic differential equations in [Del70] and [Kat71].)
We shall denote canonical extensions by the superscript “can”.

For simplicity, assume that GC has no type D factors (so that it is connected,
and so that its irreducible representations are uniquely determined by their highest
weights; otherwise, we need to group together several highest weights sharing the
same irreducible representation, as in [LSb, LSc]). By choosing a suitable common
maximal torus of GC and M0,C, and by choosing suitable Borel subgroups of GC and
M0,C, we can compare the weights of GC and M0,C and assume that the dominant

weights X+
GC

for GC form a subset of the dominant weights X+
M0,C

for M0,C. Let

WGC (resp. WM0,C) denote the Weyl group of GC (resp. M0,C), and let

WM0,C := {w ∈WGC : w(X+
GC

) ⊂ X+
M0,C
}.

Let ρ be the half sum of positive roots of GC, and let w · µ = w(µ + ρ) − ρ be
the familiar dot action (respecting the infinitesimal weight of Harish-Chandra).
Let Vµ,C (resp. Wν,C) denote the irreducible representation of GC (resp. M0,C) of
highest weight µ (resp. ν).

In [Fal83], using older ideas of Bernstein-Gelfand-Gelfand [BGG75], Faltings
showed that there is the dual BGG spectral sequence, which is of the form
(2.14)

Ea,i−a1 := ⊕
w∈WM0,C

Hi−l(w)(Shtor
H,C,GraF((W∨w·µ,C)can))⇒ Hi

dR(ShH,C, V
∨
µ,C).

The degeneracy of (2.14) is shown in certain special cases in [Fal83] (the anisotropic
case) and [FC90] (the Siegel case), and in general in [HZ01, Cor. 4.2.3], all using
some kinds of mixed Hodge theory.

We shall consider cohomology classes in Hi(Shtor
H,C, (W ν,C)can), where i ∈ Z and

ν is any dominant weight of M0(C), modular forms or rather automorphic forms
of weight ν and level H (for our PEL datum). (If need be, we can also specify the
cohomology degree i we are using.) Then (2.14) (with its degeneracy) asserts that
there is a filtration on Hi

dR(ShH,C, V
∨
µ,C) with graded pieces given by automorphic

forms of some specific weights (and level H). This is the desired generalization
of (1.1), or rather (1.2). (We encourage the reader to work out the details and
understand why this generalizes (1.2), and what this does generalize.)
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2.7. Automorphic bundles in mixed characteristics. In mixed charac-
teristics, the integral models of Shimura varieties are not defined by quotients of
symmetric spaces, and hence the definition of automorphic bundles will require
more algebraic considerations. The idea we learned from Milne [Mil90] is that it is
better to consider the so-called principal bundles, which are geometric objects which
take care of the needed twisting without having to go through the quotients as in
(2.13) and (2.12) for each individual representations. (The idea is then successfully
applied to the mixed characteristics setup in, for example, [MT02].)

Let p be the good prime chosen in §2.4.

Lemma 2.15. There exists a finite extension F ′0 of F0 in C, unramified at p, to-
gether with an O⊗

Z
OF ′

0,(p)
-module L0 such that L0 ⊗

OF ′
0,(p)

C ∼= V0 as O⊗
Z
C-modules.

See [Lan08, Lem. 1.2.5.9 in the revision] for a proof. For each fixed F ′0, the
choice of L0 is unique up to isomorphism.

Let us denote by 〈 · , · 〉can. : (L0⊕L∨0 (1))×(L0⊕L∨0 (1)) → OF ′
0,(p)

(1) (cf.
[Lan08, Lem. 1.1.4.16]) the alternating pairing 〈(x1, f1), (x2, f2)〉can. := f2(x1) −
f1(x2). The natural right action of O on L∨0 (1) defines a natural left action of O
by composition with the involution ? : O ∼→ O. Then (2.7) canonically induces an
isomorphism L∨0 (1)⊗

Z
C ∼= V c0 of O⊗

Z
C-modules.

Definition 2.16. For any OF ′
0,(p)

-algebra R, set

G0(R) :=


(g, r) ∈ GLO⊗

Z
R((L0⊕L∨0 (1)) ⊗

OF ′
0,(p)

R)×Gm(R) :

〈gx, gy〉can. = r〈x, y〉can., ∀x, y ∈ (L0⊕L∨0 (1)) ⊗
OF ′

0,(p)

R

 ,

P0(R) :=

{
(g, r) ∈ G0(R) : g(L∨0 (1) ⊗

OF ′
0,(p)

R) = L∨0 (1) ⊗
OF ′

0,(p)

R

}
,

M0(R) := GLO⊗
Z
R(L∨0 (1) ⊗

OF ′
0,(p)

R)×Gm(R),

where we view M0(R) canonically as a quotient of P0(R) by

P0(R)→ M0(R) : (g, r) 7→ (g|L∨
0 (1) ⊗

O
F ′

0,(p)

R, r).

The assignments are functorial in R, and define group functors G0, P0, and M0

over Spec(OF ′
0,(p)

).

By [Lan08, Prop. 1.1.1.17, Cor. 1.2.5.7, and Cor. 1.2.3.10], there exists a dis-
crete valuation ring R1 over OF ′

0,(p)
satisfying the following conditions:

(1) The maximal ideal of R1 is generated by p, and the residue field k1 of R1

is a finite field of characteristic p. In this case, the p-adic completion of
R1 is isomorphic to the Witt vectors W (k1) over k1.

(2) The ring OF is split over R1, in the sense that HomZ-alg.(OF , R1) has
cardinality [F : Q].

(3) There exists an isomorphism

(2.17) (L⊗
Z
R1, 〈 · , · 〉) ∼= (L0⊕L∨0 (1), 〈 · , · 〉can.) ⊗

OF ′
0,(p)

R1
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inducing an isomorphism G⊗
Z
R1
∼= G0 ⊗

OF ′
0,(p)

R1 realizing P0 ⊗
OF ′

0,(p)

R1 as

a subgroup of G⊗
Z
R1. (The existence of the isomorphism (2.17) follows

from [Lan08, Cor. 1.2.3.10] by comparing multi-ranks.)

Remark 2.18. For the purpose of studying arithmetic questions, it is often
harmless (and helpful) to enlarge the coefficient ring.

From now on, let us fix the choices of R1 and the isomorphism (2.17), and
set OF,1 := OF ⊗

Z
R1, O1 := O⊗

Z
R1, L1 := L⊗

Z
R1, L0,1 := L0 ⊗

OF ′
0,(p)

R1, G1 :=

G0 ⊗
OF ′

0,(p)

R1
∼= G⊗

Z
R1, P1 := P0 ⊗

OF ′
0,(p)

R1, and M1 := M0 ⊗
OF ′

0,(p)

R1. We shall also

denote base changes of geometric objects such as MH,0 (from OF0,(p)) to R1 by
replacing 0 with 1.

Definition 2.19. The principal G1-bundle over MH,1 is the G1-torsor

EG1
:= IsomO⊗

Z
OMH,1

((HdR
1 (A/MH,1), 〈 · , · 〉λ,OMH,1(1)),

((L0,1⊕L∨0,1(1)) ⊗
R1

OMH,1 , 〈 · , · 〉can.,OMH,1(1))),

the sheaf of isomorphisms of OMH,1-sheaves of symplectic O-modules. (The pair-

ing 〈 · , · 〉λ on HdR
1 (A/MH,1) is defined by the polarization λ as in [DP94, 1.5].

The group G1 acts as automorphisms on (L⊗
Z

OMH,1 , 〈 · , · 〉can.,OMH,1(1)) by def-

inition. The third entries in the tuples represent the values of the pairings. We
allow isomorphisms of symplectic modules to modify the pairings up to units.)

Definition 2.20. The principal P1-bundle over MH,1 is the P1-torsor

EP1
:= IsomO⊗

Z
OMH,1

((HdR
1 (A/MH,1), 〈 · , · 〉λ,OMH,1(1),Lie∨A∨/MH,1

),

((L0,1⊕L∨0,1(1)) ⊗
R1

OMH,1 , 〈 · , · 〉can.,OMH,1(1), L∨0,1(1) ⊗
R1

OMH,1)),

the sheaf of isomorphisms of OMH,1-sheaves of symplectic O-modules with maxi-

mal totally isotropic O⊗
Z
R1-submodules. (The sheaf Lie∨A∨/MH,1

is a subsheaf of

HdR
1 (A/MH,1) totally isotropic under the pairing 〈 · , · 〉λ. The group P1 acts as au-

tomorphisms on (L⊗
Z

OMH,1 , 〈 · , · 〉can.,OMH,1(1), L∨0,1(1) ⊗
R1

OMH,1) by definition.)

These are torsors because (HdR
1 (A/MH,1), 〈 · , · 〉λ,OMH,1(1),Lie∨A∨/MH,1

) and

((L0,1⊕L∨0,1(1)) ⊗
R1

OMH,1 , 〈 · , · 〉can.,OMH,1(1), L∨0,1(1) ⊗
R1

OMH,1) are étale locally

isomorphic by the theory of infinitesimal deformations (cf. for example [Lan08,
Ch. 2]) and the theory of Artin’s approximations (cf. [Art69, Thm. 1.10 and Cor.
2.5]).

Definition 2.21. The principal M1-bundle over MH,1 is the M1-torsor

EM1
:= IsomO⊗

Z
OMH,1

((Lie∨A∨/MH,1
,OMH,1(1)), (L∨0,1(1) ⊗

R1

OMH,1 ,OMH,1(1))),

the sheaf of isomorphisms of OMH,1-sheaves of O⊗
Z
R1-modules. (We view

the second entries in the pairs as an additional structure, inherited from
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the corresponding objects for P1. The group M1 acts as automorphisms on
(L∨0,1(1) ⊗

R1

OMH,1 ,OMH,1(1)) by definition.)

Definition 2.22. For any R1-algebra R, we denote by RepR(G1) (resp.
RepR(P1), resp. RepR(M1)) the category of finite R-modules with algebraic
actions of G1 ⊗

R1

R (resp. P1 ⊗
R1

R, resp. M1 ⊗
R1

R).

Definition 2.23. Let R be any R1-algebra. For any W ∈ RepR(G1), we define

(2.24) EG1,R(W ) := (EG1 ⊗
R1

R)

G1 ⊗
R1

R

× W,

and call it the automorphic sheaf over MH,1 ⊗
R1

R associated with W . It is called

an automorphic bundle if W is locally free as an R-module. We define similarly
EP1,R(W ) (resp. EM1,R(W )) for W ∈ RepR(P1) (resp. W ∈ RepR(M1)) by replacing
G1 with P1 (resp. with M1) in the above expression (2.24).

Example 2.25. We have EG1,R1
(L1) ∼= EP1,R1

(L1) ∼= HdR
1 (A/MH,1), with

Hodge filtration defined by the submodule EP1,R1
(L∨0,1(1)) ∼= EM1,R1

(L∨0,1(1)) ∼=
Lie∨A∨/MH,1

, and with top graded piece EP1,R1
(L0,1) ∼= EM1,R1

(L0,1) ∼= LieA/MH,1
.

The Hodge filtration on HdR
1 (A/MH,1) can be (compatibly) generalized by

defining a Hodge filtration F on any object W ∈ RepR(P1), which induces the
Hodge filtration on EP1,R(W ), still denoted by F. (For W ∈ RepR(G1) one considers
EG1,R(W ) ∼= EP1,R(W |P1

); for W ∈ RepR(M1), the Hodge filtration on EM1,R(W )
is always canonically split.)

There is a canonical way to define the Gauss-Manin connections

∇ : EG1,R(W )→ EG1,R(W ) ⊗
OMH,R

Ω1
MH,R/SR

using the Gauss-Manin connection of H1
dR(A/MH,1). The complex

(EG1,R(W ) ⊗
OMH,R

Ω•MH,R/SR
,∇)

it induces is called the de Rham complex attached to EG1,R(W ). (Good places
to learn about connections and de Rham complexes in the algebraic setup are
[KO68, Kat71, Kat70, Kat72].)

2.8. Canonical extensions in mixed characteristics; compactifications
of Kuga families. Our treatment of canonical extensions in mixed characteristics
follow mainly [FC90, Ch. VI] and [MT02] (although we do have a different con-
struction of (good toroidal) compactifications of Kuga families in [Lanc], using
toroidal boundary strata of larger Shimura varieties).

Let m ≥ 0 be any integer, and let Nm := Am be the m-fold fiber product
of A → MH. By [Lanc, Thm. 2.15], by taking Q := O⊕m there (cf. [Lanc,
Ex. 2.2]), the abelian scheme Nm → MH (which we call a Kuga family) admits a
collection of (non-canonical) toroidal compactifications Ntor

m,κ, indexed by a directed
partially ordered set Km,H,Σ of κ’s, such that the (smooth) structural morphism
fm : Nm → MH extends to a proper log smooth morphism f tor

m,κ : Ntor
m,κ → Mtor

H,Σ
for each κ ∈ Km,H,Σ. This collection {Ntor

m,κ}κ∈Km,H,Σ enjoys a long list of nice
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properties (see the statements of [Lanc, Thm. 2.15]); we will give precise references
to them when needed.

By abuse of notation, we shall denote the pullbacks of f tor
m,κ : Ntor

m,κ → Mtor
H,Σ

to Mtor
H,Σ,0 and Mtor

H,Σ,1 by f tor
m,κ : Ntor

m,κ → Mtor
H,Σ,1 and f tor

m,κ : Ntor
m,κ → Mtor

H,Σ,1,

respectively (and similarly over other base schemes).

Proposition 2.26. The locally free sheaf HdR
1 (A/MH,1) extends to a unique

locally free sheaf HdR
1 (A/MH,1)can over Mtor

H,Σ,1, satisfying the following properties:

(1) The sheaf HdR
1 (A/MH,1)can, canonically identified as a subsheaf of the

quasi-coherent sheaf (MH,1 ↪→ Mtor
H,Σ,1)∗(H

dR
1 (A/MH,1)), is self-dual un-

der the pairing (MH,1 ↪→ Mtor
H,Σ,1)∗(〈 · , · 〉λ). We shall denote the induced

pairing by 〈 · , · 〉can
λ .

(2) HdR
1 (A/MH,1)can contains Lie∨(Aext)∨/Mtor

H,Σ,1
as a subsheaf that is totally

isotropic under 〈 · , · 〉can
λ .

(3) The quotient sheaf HdR
1 (A/MH,1)can/Lie∨(Aext)∨/Mtor

H,Σ,1
can be canonically

identified with the subsheaf LieAext/Mtor
H,Σ,1

of (MH,1 ↪→ Mtor
H,Σ,1)∗LieA/MH,1

.

(4) The pairing 〈 · , · 〉can
λ induces canonical an isomorphism LieAext/Mtor

H,Σ,1

∼→
Lie(Aext)∨/Mtor

H,Σ,1
which coincides with dλext.

(5) Let

H1
dR(A/MH,1)can := HomOMtor

H,Σ,1
(HdR

1 (A/MH,1)can,OMtor
H,Σ,1

).

The Gauss-Manin connection of H1
dR(A/MH,1) extends to an integrable

connection

∇ : H1
dR(A/MH,1)can → H1

dR(A/MH,1)can ⊗
OMtor

H,Σ,1

Ω
1

Mtor
H,Σ,1/S1

with log poles along D, called the extended Gauss-Manin connection, com-
patible with the extended Kodaira-Spencer morphism in Theorem 2.8.

With these properties, we say that (HdR
1 (A/MH,1)can,∇) is the canonical exten-

sion of (HdR
1 (A/MH,1),∇).

The locally free sheaf HdR
1 (A/MH,1)can (with all these stated properties) is

unique once it exists. To show the existence, we use the morphism f tor
1,κ : Ntor

1,κ →
Mtor
H,Σ for some κ ∈ K1,H,Σ (i.e., m = 1 in above), and show that the OMtor

H,Σ,1
-dual

of the locally free sheaf H1
log-dR(Ntor

1,κ/M
tor
H,Σ) := R1(f tor

1,κ)∗(Ω
•
Ntor

1,κ/M
tor
H,Σ

) satisfies all

the properties of HdR
1 (A/MH,1)can stated in Proposition 2.26. (See [Lanc, proof of

Prop. 6.9, based on Thm. 2.15] for details. The compactifications of Kuga families
with m ≥ 1 will be useful for other purposes as well. See §3.4 below.)

Remark 2.27. We formulated Proposition 2.26 in this somewhat axiomatic
way to emphasize that any construction achieving these properties would serve
the same purpose for the construction of canonical extensions (of automorphic
bundles). Therefore, one can refer to [FC90, Ch. VI] and related works in special
cases, without having to explain the consistency with [Lanc]. (This is desirable
because the methods in [FC90, Ch. VI] and [Lanc] are different.)
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Then the principal bundle EG1
(defined above in §2.7) extends canonically to a

principal bundle Ecan
G1

over Mtor
H,Σ,1 by setting

(2.28) Ecan
G1

:= IsomO⊗
Z

OMtor
H,Σ,1

((HdR
1 (A/MH,1)can, 〈 · , · 〉can

λ ,OMtor
H,Σ,1

(1)),

((L0,1⊕L∨0,1(1)) ⊗
OF0,(p)

OMtor
H,Σ,1

, 〈 · , · 〉can.,OMtor
H,Σ,1

(1))).

Similarly, the principal bundle EP1
(resp. EM1

) extends canonically to a principal
bundle Ecan

P1
(resp. Ecan

M1
) over Mtor

H,Σ,1. As before, these are torsors by Artin’s theory

of approximations (cf. [Art69, Thm. 1.10 and Cor. 2.5]), because they have sections
over completions of strict local rings.

Definition 2.29. Let R be any R1-algebra. For any W ∈ RepR(G1), we define

(2.30) Ecan
G1,R(W ) := (Ecan

G1
⊗
R1

R)

G1 ⊗
R1

R

× W,

called the canonical extension of EG1,R(W ), and define accordingly Esub
G1,R

(W ) :=

Ecan
G1,R

(W ) ⊗
OMtor

H,Σ,1

ID, called the subcanonical extension of EG1,R(W ), where ID

is the OMtor
H,Σ,1

-ideal defining the relative Cartier divisor D (in (2) of Theorem 2.8).

Using the extended Gauss-Manin connection in Proposition 2.26, the Gauss-Manin
connection of EG1,R(W ) extends (uniquely) to integral connections of Ecan

G1,R
(W )

and Esub
G1,R

(W ) (with log poles along the boundary divisor D). We define similarly

Ecan
P1,R

(W ), Esub
P1,R

(W ), Ecan
M1,R

(W ), and Esub
M1,R

(W ) with G1 (and its principal bundle)

replaced accordingly with P1 and M1 (and their respective principal bundles).

2.9. Geometric modular forms in higher dimensions. Now we are ready
to give definitions of modular forms in higher dimensions and in mixed character-
istics. We will call them algebraic automorphic forms.

Let R be any R1-algebra. For any W ∈ RepR(G1), we can then define the
graded modules of R-valued algebraic automorphic forms of weight W using coho-
mology of the coherent sheaf Ecan

G1,R
(W ) over Mtor

H,Σ,R := Mtor
H,Σ,0 ⊗

OF0,(p)

R.

The theory is more useful if we have parameters for the weight modules W to
be used. In mixed characteristics (0, p), it is helpful to at least introduce the notion
of p-small weights: (In what follows, we will use the obvious notations such as the
weights XG1 and roots ΦG1 for G1, although we have not defined them formally.
The dominant weights X+

G1
and X+

M1
will be chosen compatibly with each other, as

in the case over C.)

Definition 2.31. We say µ ∈ X+
G1

is p-small if (µ+ ρ, α∨) ≤ p for every

α ∈ Φ+
G1

. We say µ ∈ X+
M1

is p-small if (µ+ ρ, α∨) ≤ p for every α ∈ Φ+
M1

. We

denote the subset of X+
G1

(resp. X+
M1

) that are p-small by X<p
G1

(resp. X<p
M1

).

Since G1 (resp. M1) is split overR1, there exists a split reductive algebraic group
Gsplit (resp. Msplit) over Z such that G1

∼= Gsplit⊗
Z
R1 (resp. M1

∼= Msplit⊗
Z
R1).

Using the Weyl modules (over Z), namely the span of a highest weight vector
under the action of the group scheme and the distribution algebra over Z, we can
define canonically (by base extension from Z to R1) the R1-module Vµ (resp. Wν)

of highest weight µ ∈ X+,<p
G1

(resp. ν ∈ X+,<p
M1

). We set Vµ,R := Vµ ⊗
R1

R (resp.
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Wν,R := Wν ⊗
R1

R) for any R1-algebra R, and we set V µ,R := EG1,R(Vµ,R), V can
µ,R :=

Ecan
G1,R

(Vµ,R), V sub
µ,R := Esub

G1,R
(Vµ,R), W ν,R := EM1,R(Wν,R), W can

ν,R := Ecan
M1,R

(Wν,R),

and W sub
ν,R := Esub

M1,R
(Wν,R). (For more details concerning the Weyl modules, see

[LSb, §2.6], its references to [PT02], and the references of [PT02] to other works.
Here for ease of exposition we assumed that G1 has no type D factors, but this
assumption is not necessary.)

Definition 2.32. Let ν ∈ X+,<p
M1

. Let R be any R1-algebra. Consider the
following graded modules of R-valued algebraic automorphic forms of weight
ν:

(1) A•ν,can(H;R) := H•(Mtor
H,Σ,R,W

can
ν,R). We call these forms canonical.

(2) A•ν,sub(H;R) := H•(Mtor
H,Σ,R,W

sub
ν,R). We call these forms subcanonical.

(3) A•ν,int(H;R) := image(H•(Mtor
H,Σ,R,W

sub
ν,R) → H•(Mtor

H,Σ,R,W
can
ν,R)). We

call these forms interior.

(The modifier “canonical” will often be suppressed.) In all three cases, the choice
of Σ is immaterial (cf. [Lanc, (4) of Thm. 2.15] or rather [Lan08, proof of Lem.
7.1.1.3]).

However, our terminology (canonical, subcanonical, and interior) are not stan-
dard; there do not seem to be standard names for these spaces, except when the
cohomology degree is 0 or d (thanks to the prototypical case R = C). In degree 0,
forms in A0

ν(H;R)can can be called holomorphic, while forms in A0
ν(H;R)sub can be

called cuspidal holomorphic. In degree d, forms in Adν(H;R)sub can be called anti-
holomorphic (thanks to Hodge theory over C), while forms in Adν(H;R)can can be
called cuspidal anti-holomorphic (thanks to Serre duality, following the case of de-
gree 0). We refrain from calling A•ν(H;R)sub cuspidal because this is not justified in
degrees higher than 0. In general, A•ν(H;R)sub is not a submodule of A•ν(H;R)can.

The main justification we have for these terminologies is that these algebraic
automorphic forms can be used to define filtrations on the algebraic log de Rham
cohomology in mixed characteristics. More precisely, the usual Hodge spectral se-
quence for the log de Rham cohomology groups

(2.33) Ha+b
log-dR(Mtor

H,R, (V
∨
µ,R)can) := Ha+b(Mtor

H,R, (V
∨
µ,R)can ⊗

OMtor
H,R

Ω
•
Mtor

H,R/SR
)

can be replaced with the dual BGG spectral sequence
(2.34)

Ea,b1 := ⊕
w∈WM1

Ha+b−l(w)(Mtor
H,R,GraF((W∨w·µ,R)can))⇒ Ha+b

log-dR(Mtor
H,R, (V

∨
µ,R)can).

There is also a “compactly supported” analogue with (W∨w·µ,R)can replaced with

(W∨w·µ,R)sub. (See Faltings [Fal83], Faltings-Chai [FC90], Mokrane-Tilouine-Polo
[MPT02], and my article with Polo [LP] for details in the dual BGG construction.)

Remark 2.35. If R is a field of characteristic zero, then the log de Rham
cohomology H•log-dR(Mtor

H,R, (V
∨
µ,R)can) calculates the usual de Rham cohomology

H•dR(MH,R, V
∨
µ,R). However, this is in general not true when R has a residue field

of characteristic p > 0. Moreover, because we do not have Hironaka’s embed-
ded resolution of singularities [Hir64a, Hir64b] in mixed characteristics, we do
not know if any non-toroidal smooth compactifications of MH,R/SR with a simple
normal crossings boundary divisor would yield the same cohomology groups.
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The obvious advantage of (2.34) is that its left-hand side is given by a direct
sum of spaces of algebraic automorphic forms, for which we might have better
methods, rather than by some abstract hypercohomology.

3. Cohomology of torsion automorphic sheaves and vanishing theorems

Since Taylor’s thesis (see [Tay88, Thm. 4.2]), people know that the torsion in
the cohomology of (unions of) locally symmetric spaces (including Shimura vari-
eties) can be abundant and can have number-theoretic significance. Recent works
such as Bergeron-Venkatesh [BV] have even shown examples where the torsion
grows exponentially with levels. On the other hand, although it is speculated that
there is little or no torsion in the case of Shimura varieties, not much seemed to be
known.

In Mokrane-Tilouine [MT02] and Dimitrov [Dim05], they explored the idea
in Faltings-Chai [FC90] of studying the Zp-valued Betti or étale cohomology using
log crystalline and log de Rham cohomology in characteristic p, and proved some
vanishing and freeness results for the special cases of Siegel modular threefolds and
Hilbert modular varieties, after localization at a prime of the Hecke algebra with
non-effective conditions on the image of the associated mod p Galois representa-
tion. Their work is based on combinatorial comparisons of patterns of Hodge-Tate
weights, and the non-effective conditions they used are to guarantee that the desired
patterns can only appear in certain preferred cohomology degrees. A fundamental
question is whether there is a method which does not rely on such non-effective
conditions.

In my joint work with Junecue Suh [LSa, LSb, LSc], we discovered a way
to translate the (geometric) “Kodaira type conditions” in vanishing theorems of
Deligne-Illusie [DI87], Illusie [Ill90], Esnault-Viehweg [EV92], and Ogus [Ogu94]
to the (representation-theoretic) “sufficient regularity conditions” in vanishing the-
orems of Faltings [Fal83], Vogan-Zuckerman [VZ84], Li-Schwermer [LS04], Saper
[Sap05], and others, and proved new vanishing theorems with torsion coefficients.
As a byproduct, we obtained freeness for the interior cohomology, namely the canon-
ical image of Hc in H, with coefficients in Zp-valued automorphic sheaves, under a
list of mild and effective conditions, for all PEL-type Shimura varieties.

Our approach does not require any non-effective assumptions (such as those
in Mokrane-Tilouine [MT02]), and gives after base change to C a purely algebraic
proof of several vanishing results so far only proved by transcendental methods.

3.1. Setup. Let us maintain the setup in §2 (and in particular the choices of
p and R1). An important running assumption is that there is no level at p.

The structural homomorphism OF0
→ R1 determines a p-adic place of F0, and

we will denote the completion of OF0 at this place by W . Since p is unramified
in O and hence in OF0 , we can identify W with the ring of Witt vectors of its
residue field. By passing to the completions, W embeds canonically into the p-adic
completion of R1.

3.2. Vanishing theorem for torsion Betti cohomology.

Definition 3.1. We say that µ ∈ X+
GC

is sufficiently regular if, for any

positive root α ∈ Φ+
GC

, we have (µ, α∨) ≥ 1 for any α coming from a type A factor

of GC, and (µ, α∨) ≥ 2 otherwise. (We define similarly for µ ∈ X+
G1

when we work
in mixed characteristics later.)
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For any cohomology theory with the notion of compactly supported cohomol-
ogy, we define the interior cohomology by setting Hint := image(Hc → H). Note
that Hint is not defined as a derived functor. Therefore, for example, there are no
long exact sequences attached to short exact sequences.

Theorem 3.2. There exists an explicit function C(µ) (depending on µ and also
on the PEL datum, but not on the level) such that, for any sufficiently regular
weight µ ∈ X+

GC
as above, for any prime p good for the PEL datum (defining ShH,C)

such that p > C(µ), and for any W -algebra R, we have:

(1) Hi(ShH,C,BV
∨
µ,R) = 0 for every i < d := dimC(ShH,C).

(2) Hi
c(ShH,C,BV

∨
µ,R) = 0 for every i > d.

(3) Hi
int(ShH,C,BV

∨
µ,R) = 0 for every i 6= d.

(4) (“ liftability”) For ? = c or int, the canonical “reduction mod p” mor-
phism Hd

? (ShH,C,BV
∨
µ,R)→ Hd

? (ShH,C,BV
∨
µ,(R/pR)) is surjective.

(5) (“ freeness”) For ? = ∅ or int, if ShH,C is compact, or if R is flat over
W , then Hd

? (ShH,C,BV
∨
µ,R) is a free R-module of finite rank.

If ShH,C is compact, or if one only cares about (3), then the case where R = C
can be proved by transcendental methods (harmonic forms, L2 methods, etc) as
in, for example, Faltings [Fal83]. In the non-compact case, to the best of our
knowledge, the first analytic proofs of (1) and (2) were given by Li and Schwermer’s
work on the Eisenstein cohomology of arithmetic groups (see [LS04, Cor. 5.6]), and
roughly at the same time by Saper’s work on L-modules (see [Sap05, §11, Thm.
5]). Before their works, the important special case of symplectic groups with factors
of rank two was treated using Franke’s method in [TU99, Appendix A]. However,
there is no known transcendental proof for the torsion case R = k1 (or rather
R = Fac

p ).
In fact, it is an elementary exercise in homological algebra that the special case

R = k1 implies all other cases. Therefore it suffices to focus on this special case.

3.3. Vanishing theorem for torsion log de Rham and log Hodge coho-
mology. Based on a series of reduction steps using (torsion) comparison theorems
among Betti, étale, log crystalline, and log de Rham cohomology (see [Del77, Ar-
cata, V, Cor. 3.3] and [AGV73, XI, Thm. 4.4] for the Betti–étale comparison; see
[LSb, §5] and [LSc, §9] for the explanation of the étale–log crystalline compari-
son based on [BM02], [FM87], [Fal89], and [Fal02]; see [Ber74], [BO78], and
[Kat89, Thm. 6.2] for the log crystalline–log de Rham comparison; for all of these
we use the Kuga families and their good toroidal compactifications), the proof of
Theorem 3.2 can be reduced to the following:

Theorem 3.3. For any R1-algebra R, the analogues of Theorem 3.2 for the log
Hodge and log de Rham cohomology over Mtor

H,R are true.

3.4. Idea of the proof. It suffices to show that Hi
log-dR(Mtor

H,R, (V
∨
µ,R)can) = 0

for i < d. By (2.34) (with R = k1), it suffices to show that, for any w ∈WM1 and
any i < d, we have

(3.4) Hi−l(w)(Mtor
H,k1

, (W∨w·µ,k1
)can) = 0.

Without some condition on µ, this cannot be true. (See [Suh08] for counter-
examples in the context of compact Picard modular surfaces. There µ is trivial and
hence violates the sufficient regularity condition in Definition 3.1.)
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Now that the main point is to show that the cohomology groups of certain
coherent sheaves vanish, it is natural for us to resort to generalizations of Kodaira
vanishing in characteristic p, which is essentially the only vanishing we know other
than the cruder Serre’s vanishing. (I would recommend starting with Deligne-Illusie
[DI87] and Esnault-Viehweg [EV92].)

For any such vanishing theorem, the coherent sheaves are tensored with line
bundles with certain positivity condition, and we prefer such line bundles to be
canonical extensions of automorphic line bundles, i.e., of the form W can

ν0,k1
for some

ν0 ∈ X+,<p
M1

. On integral models of PEL-type Shimura varieties, there is essentially
only one source of such line bundles, namely those constructed using variants of
the ω in Theorem 2.8, and we can find choices of ν0 such that, for any w ∈ WG1

,
we have (w(ν0), α∨) ≤ 1 for any root α coming from a type A factor of G1, and
(w(ν0), α∨) ≤ 2 otherwise (cf. Definition 3.1).

In the compact case, we can use Deligne-Illusie [DI87] and Illusie [Ill90], to-
gether with (2.34), and show that

Hi−l(w)(MH,k1
,W∨w·µ+ν0,k1

) = 0

for µ ∈ X+,<p
G1

satisfying some condition p > C0(µ) and for any w ∈ WM1 . Here

W∨w·µ+ν0,k1
∼= W∨ν0,k1

⊗W∨w·µ,k1
, where W ν0,k1

is an ample line bundle, and where

W∨w·µ,k1
is a vector bundle with an integrable connection of a geometric origin,

because up to Tate twist it can be constructed (via geometric plethysm) as a sum-
mand of the relative de Rham cohomology of some Nm,k1

= Amk1
→ MH,k1

for some
m ≥ 0. The results of Deligne-Illusie and Illusie apply because the whole setup lifts
to W2(k1) (and in fact even W (k1)).

By changing our perspective a little bit, we can fix µ ∈ X+,<p
G1

and ask for

each w ∈ WM1 whether there exists some µ′ ∈ X+,<p
G1

such that p > C0(µ′) and
w · µ = w · µ′ + ν0. Equivalently, this is asking whether µ− w(ν0) is an element of

X+,<p
G1

satisfying p > C0(µ′). If µ is sufficiently regular as in Definition 3.1, then
(µ− w(ν0), α∨) ≥ 0, and the condition is verified if we define C(µ) to be slightly
larger than C0(µ). This proves the key vanishing (3.4), as desired. (One can picture
this as having enough room in the Weyl chamber for shifting µ towards the wall.)

To generalize the argument to the non-compact case, we need the following:

(1) We need to use the fact that the relative log de Rham cohomology H
of f tor

m,κ : Ntor
m,κ → Mtor

H,1 enjoys a long list of (unusually) nice properties.

Note that since the morphism f tor
m,κ is not semistable in general, most of

the properties we need (in mixed characteristic) are impossible to prove
by abstract methods. Fortunately, in [Lanc], we can prove everything we
need by using explicit boundary charts of toroidal compactifications. (For
experts working on varieties in general, it is perhaps surprising that such
good compactifications exists at all in mixed characteristics.)

(2) By applying Ogus’s result [Ogu94] to the log crystal attached to H
(over W (k1)), we obtain the so-called decomposition theorem (generalizing
those of Deligne-Illusie’s and Illusie’s) for the push-forward of the de Rham
complex (of the reduction over k1) under the relative Frobenius morphism.
(Here the main properties we need about H are that it is locally free,
self-dual, with degenerate (relative) Hodge spectral sequence, and that
the crystalline Frobenius of the attached log crystal is an isogeny.)
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(3) In Esnault-Viehweg [EV92], they proved a Kodaira type vanishing the-
orem for line bundles that satisfy some positivity condition weaker than
ampleness along the boundary, which quite luckily is satisfied in our con-
text thanks to (2.9) in Theorem 2.8. (This allowed us to give a simple
proof of a liftability theorem in [LSa], which nevertheless is a special
case of what we are proving now.) Combining their techniques with the
decomposition theorem provided by Ogus, we can show that

Hi−l(w)(Mtor
H,k1

, (W∨w·µ+ν0,k1
)can) = 0.

(Here the main property we need about H is that the Gauss-Manin con-
nection has nilpotent residues along the irreducible components of the
boundary divisor D of Mtor

H,k1
.)

(4) Then we can conclude the proof of (3.4) as in the compact case.

This gives a sketch of the proof of Theorem 3.3. As a byproduct, we also obtain a
suitable analogue of Theorem 3.3 for cohomological algebraic automorphic forms,
namely those that appear in the left-hand side of (2.34) for some µ.

3.5. Concluding remark.

Remark 3.5 (sources of torsion). The results we have obtained suggest that
the only possible sources of p-torsion in the cohomology of Shimura varieties, or
more ambitiously cohomology of arithmetic groups (i.e. of arithmetic quotients of
Riemannian symmetric spaces, often without Hermitian structures), are as follows:

(1) Lack of Hermitian structure (not even Shimura varieties).
(2) Boundary cohomology (the cone of the canonical morphism from Hc to

H, complementing the interior cohomology).
(3) Ramification at p (including levels); i.e., bad reductions.
(4) Large weights (compared with p).
(5) Irregular weights.

We believe (1) and (2) are related. We are inclined to believe that (3), (4), (5) are
difficult for intrinsic reasons.

There are many concurrent works on torsion in the cohomology of arithmetic
groups, and we have to stop our survey here due to the limitation of our knowledge.
We hope that this article is at least useful for understanding one aspect of the theory.
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varieties, Tôhoku Math. J. (2) 51 (1999), 399–420.

[Art69] M. Artin, Algebraization of formal moduli: I, in Spencer and Iyanaga [SI69], pp. 21–
71.

[BB66] W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded

symmetric domains, Ann. Math. (2) 84 (1966), no. 3, 442–528.
[BC79] A. Borel and W. Casselman (eds.), Automorphic forms, representations and L-

functions, Proceedings of Symposia in Pure Mathematics, vol. 33, Part 2, held at

Oregon State University, Corvallis, Oregon, July 11 – August 5, 1977, American Math-
ematical Society, Providence, Rhode Island, 1979.

[Ber74] P. Berthelot, Cohomologie crystalline des schémas de caractéristique p > 0, Lecture
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[BM02] C. Breuil and W. Messing, Torsion étale and crystalline cohomologies, in Berthelot
et al. [BFI+02], pp. 81–124.

[BO78] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Mathematical Notes,

vol. 21, Princeton University Press, Princeton, 1978.
[Bor63] A. Borel, Some finiteness properties of adele groups over number fields, Publ. Math.

Inst. Hautes. Étud. Sci. 16 (1963), 5–30.

[BV] N. Bergeron and A. Venkatesh, The asymptotic growth of torsion homology for arith-

metic groups, preprint.
[BW00] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and represen-

tations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67,

American Mathematical Society, Providence, Rhode Island, 2000.
[Cha85] C.-L. Chai, Compactification of Siegel moduli schemes, London Mathematical Society

Lecture Note Series, vol. 107, Cambridge University Press, Cambridge, New York,

1985.
[CM90a] L. Clozel and J. S. Milne (eds.), Automorphic forms, Shimura varieties, and L-

functions. Volume II, Perspectives in Mathematics, vol. 11, Proceedings of a Con-

ference held at the University of Michigan, Ann Arbor, July 6–16, 1988, Academic
Press Inc., Boston, 1990.

[CM90b] L. Clozel and J. S. Milne (eds.), Automorphic forms, Shimura varieties, and L-
functions. Volume I, Perspectives in Mathematics, vol. 10, Proceedings of a Conference

held at the University of Michigan, Ann Arbor, July 6–16, 1988, Academic Press Inc.,

Boston, 1990.
[Con71] Congrès International des Mathématiciens, 1/10 Septembre 1970, Nice, France, Actes

du Congrès International des Mathématiciens, 1970, publiés sous la direction du
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de modèles canoniques, in Borel and Casselman [BC79], pp. 247–290.
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Mathématique de France. Nouvelle Série, vol. 85, Société Mathématique de France,
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