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Abstract. We present a vanishing theorem for automorphic line bundles on

good reduction fibers of PEL-type Shimura varieties (including all noncompact
ones). As a consequence, we deduce that for a good prime p no smaller than

the dimension of a PEL-type Shimura variety, any mod p cusp form of positive

cohomological parallel weight is liftable to characteristic zero.

1. Introduction

In the development of a geometric theory of p-adic modular forms, a question
of fundamental interest is whether classical modular forms defined geometrically
over a finite field can be lifted, that is, are reductions mod p of forms similarly
defined in characteristic zero. One could näıvely hope this is always possible, but
there are counterexamples in low dimensions (see Remarks 4.5 and 4.6). The aim of
this article is to provide an affirmative answer under some mild and effective condi-
tions for cusp forms defined by automorphic line bundles on (possibly noncompact)
PEL-type Shimura varieties.

The main results of this paper can be summarized as follows:

Theorem 1.1 (Theorem 4.1 and Corollary 4.3). On a good reduction fiber of a
PEL-type Shimura variety of dimension no greater than the residue characteristic
p, all the higher cohomology of an automorphic line bundle of positive cohomological
parallel weight vanishes. Consequently, any mod p cusp form of such a weight is
liftable to characteristic zero.

The precise definition of the Shimura varieties and the automorphic line bundles
will be given in Section 2.

There are two main ingredients in our proof. The first is Esnault and Viehweg’s
vanishing theorem in positive characteristic (see Section 3). The second is the
theory of toroidal compactifications over mixed characteristic bases, developed in
[6] and [8], which allows us to verify the two crucial conditions (of liftability and
positivity) in Esnault and Viehweg’s theorem.

Although the proofs are short and simple, we emphasize that all conditions
in our statements are effective and independent of the level. After this article
was submitted, we learned that B. Stroh [15] recently obtained similar results in
the Siegel case for genus 2 or 3, also using the vanishing theorem of Esnault and
Viehweg. His method depends on interesting positivity properties of automorphic
line bundles that are, however, peculiar to the Siegel case [14]. We note that in the
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Siegel case (for any genus), our method depends only on a result of Faltings and
Chai [6, Ch. V, Thm. 5.8], and neither on [14] nor on the first author’s thesis.

We shall follow [8, Notations and Conventions] unless otherwise specified.

2. Geometric Setup

2.1. PEL-Type Moduli Problems. Let (O, ?, L, 〈 · , · 〉, h0) be an integral PEL
datum in the following sense:

(1) O is an order in a (nonzero) simple algebra, finite-dimensional over Q, with
a positive involution ?.

(2) (L, 〈 · , · 〉, h0) is a PEL-type O-lattice as in [8, Def. 1.2.1.3] (in [8, Def.
1.2.1.3] h0 was denoted by h).

Any such datum defines (by [8, Def. 1.2.1.5] and [8, Def. 1.2.5.4]) a group functor
G over Spec(Z) and a number field F0 called the reflex field.

We shall denote the ring of integers in F0 by OF0
and use similar notations for

other number fields. This is in conflict with the notation of the order O in the
integral PEL datum, but the precise interpretation will be clear from the context.

We say that a rational prime number p > 0 is good if it satisfies the following
conditions (cf. [8, Def. 1.4.1.1]):

(1) p is unramified in O (as in [8, Def. 1.1.1.14]).
(2) p 6= 2 if O⊗

Z
Q involves simple factors of type D (as in [8, Def. 1.2.1.15]).

(3) The pairing 〈 · , · 〉 is perfect after base change to Z(p).

Let us choose a good prime p, which will be fixed throughout, and let H be a
neat open compact subgroup of G(Ẑp) (see [13, 0.6] or cf. [8, Def. 1.4.1.8] for the
definition of neatness).

By [8, Def. 1.4.1.4] (with 2 = {p} there), the data of (L, 〈 · , · 〉, h0) and H define
a moduli problem MH over S0 = Spec(OF0,(p)), parameterizing tuples (A, λ, i, αH)
over schemes S over S0 of the following form:

(1) A → S is an abelian scheme, and λ : A → A∨ is a polarization of degree
prime to p.

(2) i : O ↪→ EndS(A) is an O-endomorphism structure as in [8, Def. 1.3.3.1].
(3) LieA/S with its O⊗

Z
Z(p)-module structure given naturally by i satisfies the

determinantal condition in [8, Def. 1.3.4.2] given by (L⊗
Z
R, 〈 · , · 〉, h0).

(4) αH is an (integral) level-H structure of (A, λ, i) of type (L⊗
Z
Ẑp, 〈 · , · 〉) as

in [8, Def. 1.3.7.8].

(The definition can be identified with the one in [7, §5] by [8, Prop. 1.4.3.3].) By
[8, Thm. 1.4.1.12 and Cor. 7.2.3.10], MH is representable by a (smooth) quasi-
projective scheme over S0 (under the assumption that H is neat).

According to [8, Thm. 6.4.1.1 and 7.3.3.4], under the assumption that H is
neat, MH admits a toroidal compactification Mtor

H = Mtor
H,Σ, a scheme projective

and smooth over S0, depending on a compatible collection Σ (of the so-called cone
decompositions) which is projective and smooth in the sense of [8, Def. 6.3.3.2 and
7.3.1.3]. It satisfies the following properties:

(1) Let d be the relative dimension of Mtor
H over S0. This number can be

effectively calculated from the PEL datum we started with (see [8, Cor.
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2.2.4.15 and Thm. 2.2.4.16].) and agrees with the complex dimension of
the finite union X = G(R)h0 of Hermitian symmetric spaces.

(2) The universal abelian scheme A → MH extends to a semi-abelian scheme
Ator → Mtor

H . In particular, we can define the relative cotangent bundle
Lie∨Ator/Mtor

H
:= e∗AtorΩ1

Ator/Mtor
H

, which is locally free and coherent.

(3) The complement (Mtor
H − MH)red is a relative Cartier divisor D = D∞,H

with simple normal crossings. Here simpleness of the normal crossings uses
[8, Cond. 6.2.5.18 and Lem. 6.2.5.20] and the assumption that H is neat.

(4) Let ω := ∧top Lie∨Ator/Mtor
H

. Then, according to [8, Thm. 7.2.4.1], the scheme

Proj( ⊕
r≥0

Γ(Mtor
H , ω⊗ r)) over S0 is projective and normal, containing MH as

an open dense subscheme, and defines the minimal compactification Mmin
H

of MH (independent of the choice of Σ). Moreover, the invertible sheaf ω
descends to an ample invertible sheaf over Mmin

H .
(5) Under the assumption that Σ is projective, [8, Thm. 7.3.3.4] asserts more

precisely that Mtor
H is the normalization of the blowup of Mmin

H along a
coherent sheaf of ideals J of OMmin

H
whose pullback  to OMtor

H
is of the form

OMtor
H

(−D′), for some relative Cartier divisor D′ of normal crossings on Mtor
H

such that D′red = D. In particular,

(2.1) ∃ r0 > 0 such that ω⊗ r(−D′) is ample for every r ≥ r0.

(All these assertions are generalizations of their counterparts in the Siegel case [6].)
In what follows, we shall fix a choice of Σ, and suppress Σ from the notations.

Because O⊗
Z
Q is simple, its center F is a number field . By [8, Prop. 1.1.1.17], we

have a non-canonical isomorphism O⊗
Z
Zp ∼= Mt(OF ⊗

Z
Zp) for some integer t > 0.

Let R1 be any discrete valuation ring over OF0,(p) satisfying the following con-
ditions:

(1) The maximal ideal of R1 is generated by p, and the residue field κ1 of R1

is a perfect field of characteristic p. In this case, the p-adic completion of
R1 is isomorphic to the Witt vectors W (κ1) over κ1.

(2) O⊗
Z
R1
∼= Mt(OF ⊗

Z
R1).

Let S1 := Spec(R1). Let L1 := (OF ⊗
Z
R1)⊕ t be (up to isomorphism) the unique

simple projective (left) O⊗
Z
R1-module of O⊗

Z
R1
∼= Mt(OF ⊗

Z
R1).

2.2. PEL-Type Shimura Varieties. Consider the (real analytic) set X = G(R)h0

of G(R)-conjugates h : C → EndO⊗
Z
R(L⊗

Z
R) of h0 : C → EndO⊗

Z
R(L⊗

Z
R). Let

Hp := H and Hp := G(Zp) be open compact subgroups of G(Ẑp) and G(Zp), and

let H be the open compact subgroup HpHp of G(Ẑ). It is well known (see [7, §8]
or [9, §2]) that there exists a quasi-projective variety ShH over F0, together with a
canonical open and closed immersion ShH ↪→ MH ⊗

OF0,(p)

F0 when H is neat, such

that the analytification of ShH ⊗
F0

C can be canonically identified with the double

coset space G(Q)\X×G(A∞)/H.
Let MH,0 (resp. Mtor

H,0, resp. Mmin
H,0) denote the schematic closure of ShH in MH

(resp. in Mtor
H , resp. in Mmin

H ). Then MH,0 is smooth over S0, and Mtor
H,0 is proper

smooth over S0 with properties analogous to those of Mtor
H .
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2.3. Modular Forms of Cohomological Parallel Weights. Let MH,1 (resp.
Mtor
H,1, resp. Mmin

H,1) denote the pullback of MH,0 (resp. Mtor
H,0, resp. Mmin

H,0) under

S1 → S0. For simplicity, we shall denote the pullbacks of A (resp. Ator) to MH,1
(resp. Mtor

H,1) by the same notation. When the context is clear, we shall also denote

the pullbacks of other objects (such as D and D′) by the same notations.

Lemma 2.1. The sheaf HomO(L1,Lie∨Ator/Mtor
H,1

) is locally (over Mtor
H,1) a free module

of finite rank over OF ⊗
Z

OMtor
H,1

(and hence over OMtor
H,1

).

Proof. The sheaf Lie∨Ator/Mtor
H,1

is locally (over Mtor
H,1) a direct sum of finitely many

copies of the sheaf L1 ⊗
R1

OMtor
H,1

. Hence the result follows from the fact that

HomO⊗
Z
R1(L1, L1) ∼= OF ⊗

Z
R1. �

Definition 2.2. The line bundle ω1 := ∧top HomO(L1,Lie∨Ator/Mtor
H,1

) is called the

basic automorphic line bundle.

A quick fact is:

Lemma 2.3. We have a canonical isomorphism ω ∼= ω⊗ t1 of invertible sheaves over
Mtor
H,1.

A complete theory for automorphic line bundles or vector bundles would require
more background (and is beyond this article). We will review these notions and
put them in the context of a more comprehensive theory in our forthcoming papers
[10] and [11].

We shall focus on the following special cases of automorphic line bundles.

Definition 2.4. Let Ωd := ΩdMtor
H,1/S1

:= ∧d Ω1
Mtor

H,1/S1
denote the (relative) canonical

bundle, and let Ω
d

:= ΩdMtor
H,1/S1

(logD) ∼= ∧d (Ω1
Mtor

H,1/S1
[d logD]) denote the (relative)

canonical bundle with logarithmic poles. Note that Ωd = Ω
d
(−D).

Let k ≥ 0 be an integer. The automorphic line bundle of cohomological

parallel weight k is defined to be the line bundle Ω
d ⊗

OMtor
H,1

ω⊗ k1 . We shall denote

this symbolically as ω
⊗(kc+k)
1 , as if Ω

d
= ω⊗ kc1 for some integer kc. Then we also

say that ω
⊗(kc+k)
1 is the automorphic line bundle of parallel weight kc + k.

Remark 2.5. The meaning of Ω
d

as an automorphic line bundle can be explained
if we introduce vector-valued weights, making kc meaningful as a vector. It is also

possible to identify Ω
d

with a positive rational power of ω1 in Pic(Mtor
H,1)⊗

Z
Q, mak-

ing kc meaningful as a positive rational number, at the expense of losing information
on weights (in cases beyond the Siegel and Hilbert–Blumenthal varieties).

For any R1-algebra, we denote the pullbacks of objects from R1 to R by attaching
the subscript R.

Definition 2.6. Let k ≥ 0 be an integer, and R any R1-algebra. An R-valued
automorphic form of cohomological parallel weight k, or equivalently of parallel
weight kc + k, and of level H, is an element of the R-module

Mkc+k(H;R) := Γ(Mtor
H,1,R, ω

⊗(kc+k)
1,R ) = Γ(Mtor

H,1,R, (Ω
d ⊗

OMtor
H,1

ω⊗ k1 )R).
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An R-valued automorphic form of parallel weight kc+k is called cuspidal, in which
case we say it is a cusp form, if it is an element of the R-submodule

Skc+k(H;R) := Γ(Mtor
H,1,R, (ω

⊗(kc+k)
1,R (−D)) = Γ(Mtor

H,1,R, (Ω
d ⊗

OMtor
H,1

ω⊗ k1 )R)

of Mkc+k(H;R) (in other words, it is a global section in Mkc+k(H;R) vanishing
along the boundary).

Definition 2.7. We say that a cohomological parallel weight k ≥ 0 is positive if
k > 0. Equivalently, we say that the parallel weight kc + k is above the least
cohomological parallel weight.

3. Vanishing Theorem of Esnault–Viehweg

Recall the following vanishing theorem in [5]:

Theorem 3.1 (Esnault–Viehweg [5, Prop. 11.5]). Let Z be a proper smooth variety
over a perfect field κ of characteristic p > 0, E a (possibly non-reduced) effective
normal crossings divisor such that Ered is a simple normal crossings divisor, and
L an invertible sheaf on Z. Assume the following conditions:

(1) The triple (Z,E,L ) lifts to (Z̃, Ẽ, L̃ ) over W2(κ).
(2) There exists an integer ν0 > 0 such that, for every integer ν ≥ ν0, the sheaf

L ⊗ ν(−E) is ample.

Then, for a+ b < dim(Z) ≤ char(κ), one has

(3.1) Hb(Z,ΩaZ(logEred) ⊗
OZ

L ⊗(−1)) = 0.

4. Main Results

Recall that the fraction field K1 of R1 is a field of characteristic zero and that
the residue field κ1 of R1 is a field of characteristic p. The mod p cusp forms we
will investigate are more precisely the κ1-valued cusp forms of weight kc + k for
some k > 0.

4.1. Vanishing Theorem for Automorphic Line Bundles.

Theorem 4.1. Suppose that p = char(κ1) ≥ d is a good prime (as in Section 2.1),

and let k > 0. Then, for all i > 0, Hi(Mtor
H,1,κ1

, (Ωd ⊗
OMtor

H,1

ω⊗ k1 )κ1
) = 0.

Proof. By Serre duality, it suffices to show that

(4.1) Hi(Mtor
H,1,κ1

, ω
⊗(−k)
1,κ1

) = 0

for all i < d. For this purpose, we may replace κ1 with its algebraic closure and
Mtor
H,1,κ1

with one of its connected components. We apply Theorem 3.1 to κ := κ1,

Z := Mtor
H,1,κ1

, E := D′κ1
(so that Ered = Dκ1

), and L := ω⊗ k1,κ1
, the dual of the sheaf

in (4.1). Since these are pullbacks of objects over R1 (whose p-adic completion is
W (κ1)), the first liftability condition (1) is trivially verified. By (2.1) and Lemma
2.3, L ⊗ ν(−E) is ample for ν ≥ ν0 = r0t > 0. This verifies the second condition
(2). Hence (4.1) follows from Theorem 3.1, with a = 0 and b = i < d. �
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Remark 4.2. When the Shimura variety in question is either compact or a curve, ω
is ample on Mtor

H,1, and Theorem 4.1 can be proved (just) with the Kodaira vanishing

of Deligne, Illusie, and Raynaud [2, Cor. 2.8], instead of Theorem 3.1.
In the compact case, essentially the same method can be applied to prove that

the higher plurigenera (Pm for m ≥ 2) are invariant in reduction modulo p (cf. [16,
Thm 1.2.1(ii)]).

4.2. Torsion-freeness and Liftability.

Corollary 4.3. Suppose p = char(κ1) ≥ d is a good prime, and k > 0. Then the
following are true:

(1) We have an equality

(4.2) dimK1
(Skc+k(H;K1)) = dimκ1

(Skc+k(H;κ1)).

(2) The R1-module Skc+k(H, R1) is free.
(3) Any element of Skc+k(H, κ1) is the reduction modulo p of some element in

Skc+k(H, R1).

Proof. All of these are consequences of the proper flatness of Mtor
H,1 → S1: By

upper semi-continuity (cf. [12, §5, Cor. (a)]), Theorem 4.1 shows that, for all i > 0,

Hi(Mtor
H,1,K1

, (Ωd ⊗
OMtor

H,1

ω⊗ k1 )K1) = 0. Hence, (4.2) follows from the invariance of the

Euler characteristics (cf. [12, §5, Cor. (b)]). The second and third statements now
follow from [12, §5, Cor. 2]. �

Remark 4.4. If we consider cusp forms defined by sections of ω⊗ k
′

1 (−D) (instead of

Ωd ⊗
OMtor

H,1

ω⊗ k1 ) and if we regard kc as a rational number (see Remark 2.5), then the

proofs of Theorem 4.1 and Corollary 4.3 carry over as long as k′ > kc (instead of
k > 0).

Remark 4.5. The bound k > 0 in Corollary 4.3 is sharp for Picard modular surfaces.
See [16, Thm. 3.4] for counterexamples with k = 0.

Remark 4.6. In the special case of modular curves, a lot is already known: For
weights ≥ 2 (i.e., k ≥ 0 in our context), we know all modular forms (and not just
cusp forms) lift in good reduction, while for weight 1 (which is non-cohomological,
or k = −1 if appropriately interpreted), we know that some forms do not lift. See
[3, Lem. 1.9] and [4, Appendix A]. However, the proof of this liftability depends
heavily on dimension being 1 (e.g., there is only one higher cohomology and its
vanishing follows just from the Riemann–Roch theorem, which takes a particularly
simple form for curves) and does not generalize to higher dimensions.
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