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Abstract. We study several kinds of subschemes of mixed characteristics

models of Shimura varieties which admit good (partial) toroidal and mini-
mal compactifications, with familiar boundary stratifications and formal local

structures, as if they were Shimura varieties in characteristic zero. We also

generalize Koecher’s principle and the relative vanishing of subcanonical exten-
sions for coherent sheaves, and Pink’s and Morel’s formulae for étale sheaves,

to the context of such subschemes.
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1. Introduction

Integral models of Shimura varieties and their compactifications have played
crucially important roles in many recent developments in algebraic number theory.
In most of these developments, it is desirable to have certain decompositions of
their special fibers into disjoint unions of locally closed subsets, which allowed
mathematicians to reduce or relate their questions to some simpler building blocks.

For example, in PEL-type cases without factors of type D, we have the p-rank
strata and Newton strata for all models, the Oort central leaves and Ekedahl–Oort
strata for models above hyperspecial levels at p, and the Kottwitz–Rapoport strata
for models above parahoric levels at p, on the reductions modulo p of all integral
models we consider. When the level and ramification at p are mild, these are known
to form stratifications in the precise sense that closures of strata are again unions
of strata. In general, they still form stratifications in a weaker sense that suitable
unions form closed subsets, which are sufficiently useful for many applications.

On the other hand, it is also desirable to have nice total or partial compactifi-
cations of the integral models. For a long time, it was mainly the good reduction
integral models or some parahoric variants of them which had been considered at
all (see the introductions of [36], [78], and [79]). Nevertheless, in recent works by
Madapusi Pera (see [50]) and us (with more elementary arguments; see [38], [41],
and [43], and also [1] and [70]), a general principle has emerged—the difficulties
in the construction of compactifications and in the construction of normal integral
models with nice local properties are essentially disjoint from each other.

Roughly speaking, the first goal of this article is to uniformly construct good
partial toroidal and minimal compactifications for many nice locally closed subsets
or subschemes, without any detailed knowledge of their local properties, but with
a long list of nice properties as if they were Shimura varieties in characteristic zero.

We have several motivations for this.
Firstly, while preparing our previous article [45], we observed that the supports of

nearby cycles over the integral models of PEL-type or Hodge-type Shimura varieties
we consider, even in the trivial coefficient case, enjoy some intriguing nice features
near the toroidal and minimal boundary, which make it possible to talk about good
toroidal and minimal compactifications of such supports. (We emphasize that in
PEL-type cases we do allow arbitrarily high levels at p, for which no theory of
local models is currently available.) Based on earlier experience of one of us (see
[80] and [82]), we soon realized that the same can be said for several other kinds
of subsets or subschemes of the integral models we consider, including the above-
mentioned p-rank strata, Newton strata, Oort central leaves, Ekedahl–Oort strata,
and Kottwitz–Rapoport strata (at least in PEL-type cases).

Secondly, in Boxer’s recent work [12] on generalized Hasse invariants on Ekedahl–
Oort strata, he introduced the notion of well-positioned subschemes near the bound-
aries of toroidal and minimal compactifications of the good reduction integral mod-
els constructed in [36], and used it to show that the Ekedahl–Oort strata extend
to affine subschemes of the minimal compactifications. We observed that a slightly
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weaker notion than Boxer’s naturally generalizes to cover many other interesting
situations, including everything we mentioned in the previous paragraph. We shall
call them well-positioned subsets or subschemes, from now on.

Thirdly, we can generalize many useful results concerning the coherent and étale
cohomology of integral models of Shimura varieties to the context of well-positioned
subsets or subschemes—these can be considered the second goal of this article.
They not only have many potentially applications, but also clarify what were re-
ally needed in their original proofs. For example, for coherent cohomology, we
can generalize Koecher’s principle for the global sections of canonical extensions
of automorphic bundles over partial toroidal compactifications, and the vanishing
of higher direct images of subcanonical extensions of automorphic bundles under
the canonical morphisms from the partial toroidal compactifications to the partial
minimal compactifications, even when they are far from normal. For étale coho-
mology, under some technical assumptions, we can generalize Pink’s formula (see
[72]) for the pullbacks to boundary strata of the derived direct images of automor-
phic étale sheaves, under the canonical morphisms from Shimura varieties to the
minimal compactifications; and also Morel’s formula (see [58], [59], and [61]) for
the analogues for middle perversity extensions instead of derived direct images.

Here is an outline of this article.
In Section 2, we introduce and study the notions of well-positioned subsets and

subschemes of the integral models of PEL-type or Hodge-type Shimura varieties we
consider, and of their partial toroidal and minimal compactifications. In Section
2.1, we review the integral models we consider, and give a qualitative description
of their toroidal and minimal compactifications. In Section 2.2, we introduce the
well-positioned subsets and subschemes, and prove some basic lemmas. In Section
2.3, we construct the partial toroidal and minimal compactifications for all well-
positioned subsets and subschemes, and include some basic consequences. For ex-
ample, we show that the local properties of the partial toroidal compactifications are
as nice as the given well-positioned subset (with its reduced subscheme structure)
or subscheme. In Section 2.4, we show that the consideration of well-positioned sub-
sets and subschemes, and their partial compactifications, are functorial in nature
and compatible with Hecke actions. In Section 2.5, we present the generalizations
of Koecher’s principle and the vanishing of higher direct images alluded above.

In Section 3, we study many examples of well-positioned subsets and subschemes.
We start with the seemingly trivial examples of pullbacks and fibers in Section 3.1.
Then we proceed with the more interesting examples of the p-rank strata in Section
3.2, the Newton strata in Section 3.3, the Oort central leaves in Section 3.4, the
Ekedahl–Oort strata in Section 3.5, and the Kottwitz–Rapoport strata in Section
3.6, all in PEL-type cases (and often without factors of type D), by first introducing
them as locally closed subsets, and then showing that they are well positioned as
in Section 2.2, and hence admit partial toroidal and minimal compactifications
as in Section 2.3. We have chosen to present these examples in PEL-type cases,
often without factors of type D, because the theories are most complete and well
understood in these cases. (Nevertheless, see [85] and [48], for example, for some
recent developments for Hodge-type Shimura varieties with hyperspecial levels at p.)
The definitions we have used are not necessarily the ones of the greatest elegance,
novelty, or historical importance, but rather ones that are most amenable to the
consideration of semi-abelian degenerations near the boundary. (We apologize to
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any experts whose works we might have failed to highlight or even mention.) In
Section 3.7, we study the supports of nearby cycles, and show that they are well
positioned, under an assumption that is satisfied at a cofinal system of levels. The
upshot is that, with little knowledge beyond the definitions, we can show that
many subsets or subschemes are well positioned. Then they automatically admit
partial toroidal and minimal compactifications with familiar properties, just like
their ambient integral models of Shimura varieties, and they enjoy all the nice
features we have abstractly established in Section 2.

In Section 4, we introduce and study the notion of well-positioned étale sheaves
and complexes over the partial toroidal compactifications of the well-positioned
subsets introduced in Section 2. In Sections 4.1 and 4.2, we give their definitions
and study their general properties, together with some examples. In Sections 4.3,
4.4, and 4.5, we present the generalizations of Pink’s and Morel’s formulae alluded
above, and also a variant of Mantovan’s formula with boundary terms (different
from our previous generalization in [45]).

We emphasize that our results apply even when we have essentially no knowledge
of the well-positioned subsets etc being considered. For example, consider any good
reduction p-integral model introduced by Kottwitz in [32, Sec. 5] in PEL-type cases
not of type D, consider the intersection of a Newton and an Ekedahl–Oort strata
on its characteristic p special fiber, and consider just one irreducible component of
its pullback to principal level p2018, which we denote by Y. We know essentially
nothing about Y, but we can still show that it is well positioned, that the (generally
infinite-dimensional) coherent cohomology of its partial toroidal compactification
Ytor

Σ still satisfies our generalization of Koecher’s principle, and that the intersection
complex of Ytor

Σ is well positioned and satisfies our generalization of Morel’s formula
over Ymin.

We shall follow [36, Notation and Conventions] unless otherwise specified. While
for practical reasons we cannot explain everything we need from the various con-
structions of toroidal and minimal compactifications we need, we recommend the
reader to make use of the reasonably detailed index and table of contents there,
when looking for the numerous definitions. For references to [36], the reader should
also consult the errata available on the author’s website for corrections to some
known errors and imprecisions. We will sometimes use materials in [45] without
thoroughly reviewing them.

2. Well-positioned subsets and subschemes of good integral models

2.1. Background setting. Let p > 0 be a rational prime number. Let us repeat
[45, Ass. 2.1] as follows:

Assumption 2.1.1. Let XH → S be a scheme over the spectrum of a discrete
valuation ring R0 of mixed characteristics (0, p), which is the pullback of one the

following integral models in the literature: (The various notations S0, ~S0, etc below
are those in the works we cited, which we will freely use, but mostly only in proofs.)

(Sm) A smooth integral model

MH2 → S0 = Spec(OF0,(2))

defined as a moduli of abelian schemes with PEL structures at a neat
level H2 ⊂ G(Ẑ2), as in [36, Ch. 1, 2, and 7], with p ∈ 2 and H =
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H2×
∏
q∈2

G(Zq). (When 2 = {p}, it is shown in [36, Prop. 1.4.3.4] that

the definition in [36, Sec. 1.4.1] by isomorphism classes agrees with the one
in [36, Sec. 1.4.2] by Z×(p)-isogeny classes, the latter being Kottwitz’s defini-

tion in [32, Sec. 5].)
(Nm) A flat integral model

~MH → ~S0 = Spec(OF0,(p))

of a moduli MH → S0 = Spec(F0) at a neat level H ⊂ G(Ẑ) (essen-
tially the same as above, but with 2 = ∅) defined by taking normalizations
over certain auxiliary good reduction models as in [38, Sec. 6] (which al-
low bad reductions due to arbitrarily high levels, ramifications, polarization
degrees, and collections of isogenies). (In this case, we also allow F0 to
be a finite extension of the reflex field, with MH etc replaced with their
pullbacks.) For simplicity, we shall assume that, in the choice of the col-
lection {(gj, Lj, 〈 · , · 〉j)}j∈J in [38, Sec. 2], we have gj = 1 for all j ∈ J
and (Lj0 , 〈 · , · 〉j0) = (pr0L, p−2r0〈 · , · 〉) for some j0 ∈ J and some r0 ∈ Z.
(This simplifying assumption imposes no restriction on the integral models
we consider.)

(Spl) A flat integral model

~Mspl
H → Spec(OK)

of MH ⊗
F0

K → Spec(K) defined by taking normalizations as in [43, Sec.

2.4] over the splitting models defined by Pappas–Rapoport as in [68, Sec. 15].
(By taking normalizations, we mean we also allow H to be arbitrarily higher
levels, not just the same levels considered in [68, Sec. 15].) For simplicity,
we shall assume that, in the choice of the collection {(gj, Lj, 〈 · , · 〉j)}j∈J

in [43, Choices 2.2.9], we have gj = 1 for all j ∈ J and (Lj0 , 〈 · , · 〉j0) =
(pr0L, p−2r0〈 · , · 〉) for some j0 ∈ J and some r0 ∈ Z. (Again, this simplify-
ing assumption imposes no restriction on the integral models we consider.)

(Hdg) A flat integral model

SK → Spec(OE,(v))

in the notation of [50, Introduction] at a neat level K. For consistency with
the notation in other cases, we shall denote K, E, and SK as H, F0, and
MH, respectively, in what follows. Essentially by construction, there exists
some auxiliary good reduction Siegel moduli MHaux

→ Spec(Z(p)) in Case
(Sm) above, with a finite morphism MH → MHaux ⊗Z(p)

OF0,(v) extending a

closed immersion MH⊗
Z
Q→ MHaux ⊗Z

F0.

In all cases, there is some group functor G over Spec(Z), and some reflex field F0.

• In Cases (Sm), (Nm), and (Spl), the integral models are defined by
(among other data) an integral PEL datum (O, ?, L, 〈 · , · 〉, h0) (cf. [36,
Def. 1.2.1.3]), which defines the group functor G as in [36, Def. 1.2.1.6],
and the reflex field F0 as in [36, Def. 1.2.5.4]. For technical reasons, we
shall insist that [36, Cond. 1.4.3.10] is satisfied. Moreover, we shall assume
as in [38, end of Sec. 2], [41, Thm. 6.1], and [43, Choices 2.2.10] that the

image of H ⊂ G(Ẑ) under the canonical homomorphism G(Ẑ) → G(Ẑp)
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is also neat. (In Case (Sm), this follows from the assumption that

H2 ⊂ G(Ẑ2) is neat.)
• In Case (Hdg), we still have an integral PEL datum defining the auxil-

iary good reduction Siegel moduli MHaux
, which we abusively denote as

(O, ?, L, 〈 · , · 〉, h0) (with O = Z, without “aux” in the notation), which also
defines a group functor Gaux with an injective homomorphism G → Gaux.
Moreover, we shall assume as in [50, Sec. 4.1.1] that K = H is of the form
H = HpHp for some Hp ⊂ G(A∞,p) and Hp ⊂ G(Qp), and that Hp is also
neat. (The neatness of Hp is not explicitly emphasized in [50, Sec. 4.1.1],
but is implicitly needed in the construction by normalizations in [50, Sec.
3.7.1], where K = H is assumed to be contained in some neat open compact
K‡ = Haux ⊂ Gaux(A∞) of the form HpauxHaux,p with Hpaux ⊂ Gaux(A∞,p)
and Haux,p = Gaux(Zp) ⊂ Gaux(Qp). Since Gaux(Zp) is not neat, the neat-
ness of Haux forced Hpaux and hence Hp to be also neat.)

Except in Case (Sm), we allow the level H ⊂ G(A∞) to be arbitrarily high at p; i.e.,
given any open compact subgroup of G(Qp), there exists some H we allow whose
image under the canonical homomorphism G(A∞)→ G(Qp) is smaller.

We shall say that we are in Case (Sm), (Nm), (Spl), or (Hdg) depending on the
case in Assumption 2.1.1 from where XH → S is pulled back.

For each XH → S as in Assumption 2.1.1, we have good toroidal and minimal
compactifications Xtor

H,Σ → S and Xmin
H → S, whose qualitative properties we sum-

marized axiomatically in [45, Prop. 2.2], based on the constructions in [36], [38],
[41], [43], and [50], which we also repeat as follows, for the sake of clarity:

Proposition 2.1.2. Let XH → S be as above. Then there is a canonical minimal
compactification

JXmin
H

: XH ↪→ Xmin
H

over S, together with a canonical collection of toroidal compactifications

JXtor
H,Σ

: XH ↪→ Xtor
H,Σ

over S, labeled by certain compatible collections Σ of cone decompositions, satisfying
the following properties:

(1) The structural morphism Xmin
H → S is proper. For each Σ, there is a proper

surjective structural morphism∮
H,Σ : Xtor

H,Σ → Xmin
H ,

which is compatible with JXmin
H

and JXtor
H,Σ

in the sense that

JXmin
H

=
∮
H,Σ ◦JXtor

H,Σ
.

(2) The scheme Xmin
H admits a stratification by locally closed subschemes Z flat

over S, each of which is isomorphic to an analogue of XH (in Cases (Sm),
(Nm), or (Spl)) or a finite quotient of it (in Case (Hdg)). Moreover, the
same incidence relation among strata holds on each fiber over S.

(3) Each Σ is a set {ΣZ}Z of cone decompositions ΣZ with the same index set
as that of the strata of Xmin

H —The elements of this index set can be called
the cusp labels for XH. For simplicity, we shall suppress such cusp labels
and denote the associated objects with subscripts given by the strata Z.



COMPACTIFICATIONS OF SUBSCHEMES 7

(4) For each stratum Z, the cone decomposition ΣZ is a cone decomposition of
some P, where P is the union of the interior P+ of a homogenous self-
adjoint cone (see [4, Ch. 2]) and its rational boundary components, which is
admissible with respect to some arithmetic group Γ acting on P (and hence
also on ΣZ). (For example, in the case of Siegel moduli, each P+ can be
identified with the space of r × r symmetric positive definite pairings for
some integer r, and P can be identified with the space of r × r symmetric
positive semi-definite pairings with rational radicals.) Then ΣZ has a subset
Σ+

Z forming a cone decomposition of P+. If τ is a cone in ΣZ that is not in

Σ+
Z , then there exist a stratum Z′ of Xmin

H , whose closure in Xmin
H contains Z,

and a cone τ ′ in Σ+
Z′ , whose Γ′-orbit is uniquely determined by the Γ-orbit

of τ (where Γ′ is the analogous arithmetic group acting on ΣZ′).
We may and we shall assume that Σ is smooth and projective, and that,

for each Z and σ ∈ Σ+
Z , its stabilizer Γσ in Γ is trivial.

(5) For each Σ, the associated Xtor
H,Σ admits a stratification by locally closed

subschemes Z[σ] flat over S, labeled by the strata Z of Xmin
H and the orbits

[σ] ∈ Σ+
Z /Γ. The stratifications of Xtor

H,Σ and Xmin
H are compatible with each

other in a precise sense, which we summarize as follows: The preimage of
a stratum Z of Xmin

H is the (set-theoretic) disjoint union of the strata Z[σ] of

Xtor
H,Σ with [σ] ∈ Σ+

Z /Γ. If τ is a face of a representative σ of [σ], which is

identified (as in the property (4) above) with the Γ′-orbit [τ ′] of some cone
τ ′ in Σ+

Z′ , where Z′ is a stratum whose closure in Xmin
H contains Z, then

Z[σ] is contained in the closure of Z[τ ′]. The same incidence relation among
strata holds on each fiber over S.

(6) For each stratum Z of Xmin
H , there is a proper surjective morphism

C → Z

from a normal scheme which is flat over S, together with a morphism

Ξ→ C

of schemes which is a torsor under the pullback of a split torus E with some
character group S over Spec(Z), so that we have

Ξ ∼= Spec
OC

( ⊕
`∈S

Ψ(`))

for some invertible sheaves Ψ(`). (Each Ψ(`) can be viewed as the subsheaf
of (Ξ → C)∗OΞ on which E acts via the character ` ∈ S.) This character
group S admits a canonical action of Γ, and its R-dual S∨R := HomZ(S,R)
canonically contains the above P as a subset with compatible Γ-actions.

(7) For each σ ∈ ΣZ, consider the canonical pairing 〈 · , · 〉 : S×S∨R → R and

σ∨ := {` ∈ S : 〈`, y〉 ≥ 0, ∀y ∈ σ},
σ∨0 := {` ∈ S : 〈`, y〉 > 0, ∀y ∈ σ},

σ⊥ := {` ∈ S : 〈`, y〉 = 0, ∀y ∈ σ} ∼= σ∨/σ∨0 .

Then we have the affine toroidal embedding

Ξ ↪→ Ξ(σ) := Spec
OC

( ⊕
`∈σ∨

Ψ(`)).
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The scheme Ξ(σ) has a closed subscheme Ξσ defined by the ideal sheaf
corresponding to ⊕

`∈σ∨0
Ψ(`), so that

Ξσ ∼= Spec
OC

( ⊕
`∈σ⊥

Ψ(`)).

Then Ξ(σ) admits a natural stratification by Ξτ , where τ runs over all the
faces of σ in ΣZ.

(8) For each representative σ ∈ Σ+
Z of an orbit [σ] ∈ Σ+

Z /Γ, let

Xσ := (Ξ(σ))∧Ξσ

denote the formal completion of Ξ(σ) along Ξσ, and let (Xtor
H,Σ)∧Z[σ]

denote

the formal completion of Xtor
H,Σ along Z[σ]. Then there is a canonical iso-

morphism

Xσ ∼= (Xtor
H,Σ)∧Z[σ]

inducing a canonical isomorphism

Ξσ ∼= Z[σ].

(9) Let x be a point of Ξσ, which can be canonically identified with a point of Z[σ]

via the above isomorphism. Let us equip Ξ(σ) with a coarser stratification
induced by the Γ-orbits [τ ] of τ , where τ are the faces of σ. Each such orbit
[τ ] can be identified with the Γ′-orbits [τ ′] of some cone τ ′ in Σ+

Z′ , where Z′

is a stratum whose closure in Xmin
H contains Z. Then there exists an étale

neighborhood

U → Xtor
H,Σ

of x and an étale morphism

U → Ξ(σ)

respecting x such that the stratification of U induced by that of Xtor
H,Σ co-

incides with the stratification of U induced by that of Ξ(σ), in the sense
that the preimage of the stratum Z[τ ′] of Xtor

H,Σ coincides with the preim-

age of the [τ ]-stratum of Ξ(σ) when [τ ] determines [τ ′] as explained above;
and such that the pullbacks of these étale morphisms to Z[σ] and to Ξσ are
both open immersions. (In particular, Xtor

H,Σ and Ξ(σ), equipped with their

stratifications as explained above, are étale locally isomorphic at x.)

For our purpose in this article, it is useful to have the following more precise
version of (8) of Proposition 2.1.2:

Proposition 2.1.3. Let us retain the same setting as in Proposition 2.1.2. For
each given Σ, and for each Z, consider the full toroidal embedding

ΞΣZ
= ∪
σ∈ΣZ

Ξ(σ)

defined by the cone decomposition ΣZ (cf. [36, Thm. 6.1.2.8 and Sec. 6.2.5]), and
consider the formal completion

XΣZ
:= (ΞΣZ

)∧∪
τ∈Σ

+
Z

Ξτ
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of ΞΣZ
along its closed subscheme ∪

τ∈Σ+
Z

Ξτ . Consider, for each σ ∈ Σ+
Z , the formal

completion
X◦σ := (Ξ(σ))∧Ξ(σ)+

of Ξ(σ) along its closed subscheme

Ξ(σ)+ := ∪
τ∈Σ+

Z , τ⊂σ
Ξτ .

Then XΣZ
admits an open covering by X◦σ for σ running through elements of Σ+

Z ,
and we have canonical flat morphisms

(2.1.4) Xσ → X◦σ ↪→ XΣZ
→ Xtor

H,Σ

(of locally ringed spaces) inducing isomorphisms

(2.1.5) X◦σ
∼→ (Xtor

H,Σ)∧ ∪
τ∈Σ

+
Z
, τ⊂σ

Z[τ]

and

(2.1.6) XΣZ
/Γ
∼→ (Xtor

H,Σ)∧ ∪
[τ]∈Σ

+
Z
/Γ

Z[τ]

such that (2.1.6) induces (2.1.5) by restriction, extending the Xσ
∼→ (Xtor

H,Σ)∧Z[σ]
and

Ξσ
∼→ Z[σ] in (8) of Proposition 2.1.2.

More precisely, for each σ ∈ Σ+
Z , and for each affine open formal subscheme

W = Spf(R) of X◦σ, under the canonically induced (flat) morphisms

W := Spec(R)→ Xtor
H,Σ

and
Spec(R)→ Ξ(σ)

induced by (2.1.5), the stratification of W induced by that of Xtor
H,Σ coincides with

the stratification of W induced by that of Ξ(σ). In particular, the preimages of XH
and Ξ coincide as open subschemes of W . This open subscheme, which we denote
as

W 0,

is the locus over Spec(R) where the pullback of any Mumford family is abelian.
(For the meaning of Mumford families, see [36, Def. 6.2.5.28] in Case (Sm), and
see [38, (8.29)] and [41, the proof of Lem. 4.13] in Case (Nm). In Case (Spl), the
Mumford families are the pullbacks from those in Case (Nm); see [43, the proof of
Lem. 3.2.22]. In Case (Hdg), we consider any pullbacks of Mumford families from
auxiliary toroidal compactifications in Case (Sm).)

Proof. In Case (Sm), these follow from the very construction of Mumford families as
relative schemes (with additional structures) over the formal boundary charts in [36,
Sec. 6.2.5], and from the proof of [36, Thm. 6.4.1.1(5)] and its modification in the
proof of [42, Lem. 1.3.2.41], based on [36, Thm. 6.4.1.1(6)], by matching the pullback
of the tautological semi-abelian scheme over Xtor

H,Σ = Mtor
H2,Σ with the Mumford

family over XΣZ
= XΦH2 ,δH2 ,ΣΦH2 ,δH2

, for each representative (ΦH2 , δH2 , σ) as in

[36, Def. 6.2.6.1]. (Since the pullback of the stratification of Xtor
H,Σ is determined

by the theory of degeneration, it coincides with the pullback of the stratification of
Ξ(σ); see the proofs of [36, Prop. 6.3.1.6 and 6.3.2.10].) In Case (Nm), these follow
from [41, Prop. 5.1 and 5.20]. In Case (Spl), these follow from the proposition in
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Case (Nm), because the stratification of ~Xspl,tor
H,Σ is the pullback of that of ~Xtor

H,Σ, and

because ~Ξspl
ΦH,δH

(σ) ∼= ~ΞΦH,δH(σ) ×
~CΦH,δH

~Cspl
ΦH,δH

(see [43, (3.2.13)]). In Case (Hdg),

this follows from the facts that Xtor
H,Σ is the normalization (and hence finite) over

some auxiliary good reduction toroidal compactification in Case (Sm), and that
each stratum Z[σ] of Xtor

H,Σ is open and closed in the preimage of a stratum of this

auxiliary toroidal compactification, by the proof of [50, Prop. 4.2.13]. �

Let us also record the following strengthening of (9) of Proposition 2.1.2, which
follows from the same argument of the proofs of [45, Prop. 2.2(9) and Cor. 2.4], but
with the input [45, Prop. 2.2(8)] there replaced with Proposition 2.1.3 here:

Corollary 2.1.7 (cf. [45, Cor. 2.4]). Let x be any point of Xtor
H,Σ, which we may

assume to lie on some stratum Z[σ] above some stratum Z of Xmin
H . Let σ be any

representative of [σ], and let E ↪→ E(σ) and Eσ be the affine toroidal embedding
and the closed σ-stratum of E(σ) over Spec(Z) (defined analogously as in the case
of Ξ ↪→ Ξ(σ) and Ξσ, but simpler). Let

Z̃ := ∪
[τ ]∈Σ+

Z /Γ
Z[τ ]

(with its reduced subscheme structure) in Xtor
H,Σ, which is the reduced subscheme of

Xtor
H,Σ ×

Xmin
H

Z. Let

E(σ)+ := ∪
τ∈Σ+

Z , τ⊂σ
Eτ

(with its reduced subscheme structure) in E(σ). Then there exists an étale neigh-
borhood

U → Xtor
H,Σ

of x and an étale morphism

U → E(σ) ×
Spec(Z)

C

such that the stratifications of U induced by that of Xtor
H,Σ and by that of E(σ) coin-

cide with each other; and such that the pullback of U → Xtor
H,Σ under the canonical

morphism Z̃ → Xtor
H,Σ and the pullback of U → E(σ) ×

Spec(Z)
C under the canonical

morphism E(σ)+ ×
Spec(Z)

C → E(σ) ×
Spec(Z)

C are both open immersions.

Suppose τ is a face of σ. Then the preimage of the stratum Z[τ ′] of Xtor
H,Σ in U ,

where [τ ′] is determined by [τ ] as in (9) of Proposition 2.1.2, is the preimage of
the stratum Eτ of E(σ). If we denote by Ztor

[τ ′] the closure of Z[τ ′] in Xtor
H,Σ, and by

Eτ (σ) the closure of Eτ in E(σ), then the above implies that, étale locally at x, the
open immersion

JZtor
[τ′]

: Z[τ ′] ↪→ Ztor
[τ ′]

can be identified with the product of the canonical open immersion

JEτ (σ) : Eτ ↪→ Eτ (σ)

with the identity morphism on C.
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In particular, when τ = {0}, this means the preimage U of X in U coincides with
the preimage of E. Moreover, étale locally at x, the open immersion

JXtor
H,Σ

: X ↪→ Xtor
H,Σ

can be identified with the product of the canonical open immersion

JE(σ) : E ↪→ E(σ)

with the identity morphism on C.

In the remainder of this subsection, we record some special cases where C → Z
is known to be an abelian scheme torsor for each Z.

Remark 2.1.8. Already in Case (Sm), where H2 ⊂ G(Ẑ2) has no factor at p, the
morphism C → Z might not be an abelian scheme for each Z, for an arbitrary
H—see the errata for [36] on the author’s website, and also the clarification in [42,
Rem. 1.3.1.6]. (It is only an abelian scheme torsor over a finite étale cover of Z.)
Nevertheless, C → Z is indeed an abelian scheme for all Z when H2 is a principal
level

U2(m) := ker(G(Ẑ2)→ G(Z/mZ))

for some integer m prime to 2, because the constructions in [36, Sec. 6.2.2–6.2.3]
remain valid, despite the mistake when taking quotients in [36, Sec. 6.2.4].

Consider the following special case of Case (Nm) in Assumption 2.1.1:
Suppose p is a good prime (as in [36, Def. 1.4.1.1]) for an integral PEL
datum (O, ?, L, 〈 · , · 〉, h0) as in Assumption 2.1.1 (which we have insisted to
satisfy [36, Cond. 1.4.3.10]). Consider the trivial collection J = {j0} with
{(gj0 , Lj0 , 〈 · , · 〉j0)} = {(1, L, 〈 · , · 〉)}, as in [38, Ex. 2.3]. Let H be the principal
level

U(n) := ker(G(Ẑ)→ G(Z/nZ))

for some n = n0p
r, where n0 ≥ 3 is an integer prime to p, and where r ≥ 0, so that

Hp = Up(n0) := ker(G(Ẑp)→ G(Z/n0Z))

is neat. Let

H0 := U(n0) := ker(G(Ẑ)→ G(Z/n0Z)) = HpG(Zp).

Then XH → S (resp. XH0
→ S) is a pullback of ~MH → ~S0 (resp. ~MH0

→ ~S0) under

some morphism S→ ~S0 = Spec(OF0,(p)).

Lemma 2.1.9. With the setting as above in Case (Nm), the morphism C → Z at
level H is an abelian scheme for all Z. Moreover, if we denote by C0 → Z0 the
analogous morphism at level H0, then the canonical morphism C → C0 ×

Z0

Z can be

identified with the multiplication by pr on the abelian scheme C over Z.

Proof. Let (ZH,ΦH, δH) be a representative of cusp label for MH. Let us denote
by (ZHp ,ΦHp , δHp) the prime-to-p part of (ZH,ΦH, δH), and by (ZH0

,ΦH0
, δH0

) the
induced representative at level H0. It suffices to show that, in the notation of

[38, Sec. 8], ~CΦH,δH → ~MZH
H is an abelian scheme, and the canonical morphism

~CΦH,δH → ~CΦH0
,δH0

×
~M

ZH0
H0

~MZH
H can be identified with the multiplication by pr on

the abelian scheme ~CΦH,δH over ~MZH
H .
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Since p is a good prime for (O, ?, L, 〈 · , · 〉, h0), we have the morphisms
CΦHp ,δHp → MZHp

Hp → Spec(OF0,(p)) as in [36, Sec. 6.2.3–6.2.4], where the first
one is an abelian scheme. By [36, Prop. 1.4.4.3], the canonical morphism

M
ZH0

H0
→ MZHp

Hp ⊗Z
Q is an open and closed immersion. Since the schemes ~M

ZH0

H0
and

~MZH
H over ~S0 = Spec(OF0,(p)) are independent of the auxiliary choices (see [38,

Prop. 6.1 and 7.4]), by taking MZHp
Hp as an auxiliary good reduction model, we

have an open and closed immersion ~M
ZH0

H0
↪→ MZHp

Hp , and we can take ~MZH
H to be

the normalization of MZHp
Hp under the composition MZH

H → M
ZH0

H0
→ ~M

ZH0

H0
↪→ MZHp

Hp
of canonical morphisms.

Since Hp is a principal level, by the construction in [36, Sec. 6.2.3], CΦHp ,δHp →
MZHp
Hp is an abelian scheme. By the same reasoning as in the previous paragraph,

~CΦH0
,δH0

→ ~M
ZH0

H0
is canonically isomorphic to the pullback of CΦHp ,δHp → MZHp

Hp

under the open and closed immersion ~M
ZH0

H0
↪→ MZHp

Hp , which is also an abelian
scheme. Since H = U(n0p

r) and H0 = U(n0) are both principal levels, the canon-
ical morphism CΦH,δH → CΦH0

,δH0
×

M
ZH0
H0

MZH
H can be identified with the multi-

plication by pr on the abelian scheme CΦH,δH over MZH
H . Hence, there is also

an isomorphism CΦH,δH
∼→ CΦH0

,δH0
×

M
ZH0
H0

MZH
H , which extends to an isomorphism

~CΦH,δH
∼→ ~CΦH0

,δH0
×

~M
ZH0
H0

~MZH
H , by Zariski’s main theorem, because abelian schemes

are smooth, and because the base scheme ~MZH
H is noetherian normal by construc-

tion. The assertions in the first paragraph above now follow. �

Lemma 2.1.10. In Case (Spl) that is based on the same setting as above in
Case (Nm) (see the paragraph preceding Lemma 2.1.9), the analogous statements
in Lemma 2.1.9 also hold.

Proof. For each representative (ZH,ΦH, δH) of cusp label for MH, by [43, Def. 3.2.3],
~Cspl

ΦH,δH
is the normalization of ~CΦH,δH ×

~M
ZH
H

~MZH,spl
H . When ~CΦH,δH → ~MZH

H is an

abelian scheme, this fiber product is already normal because ~MZH,spl
H is. Hence,

~Cspl
ΦH,δH

→ ~MZH,spl
H is the pullback of ~CΦH,δH → ~MZH

H , and the lemma follows. �

Remark 2.1.11. Other than the above special cases in Cases (Nm) and (Spl) (with
the restrictive assumption that J = {j0}, as in the paragraph preceding Lemma
2.1.9), it is also true in many other special cases that C → Z is an abelian scheme,
or at least an abelian scheme torsor, for each Z. See, for example, the Siegel moduli
with parahoric levels in [78]. (It is plausible that the argument there can be gener-
alized to all cases in Cases (Nm) and (Spl) where p is good for (O, ?, L, 〈 · , · 〉, h0),

and where H = HpHp for some principal Hp ⊂ G(Ẑp) and for some parahoric
subgroup Hp of G(Qp) that is the identity component of the stabilizer of the base
change of the collection L to Zp.)

Remark 2.1.12. When this article was first written, our treatment in Case (Hdg)
was based on the 2015 version of [50], and hence inherited its assumptions on H
which ensure that the morphism MH → MHaux ⊗Z(p)

OF0,(v) (in Assumption 2.1.1) is



COMPACTIFICATIONS OF SUBSCHEMES 13

a closed immersion. This was also why we assumed in [45] and [46] that, in Case
(Hdg) there, the level at p was exactly the pullback of some hyperspecial level at
p of a symplectic similitude group (see, in particular, [46, Rem. 2.1]). Henceforth,
this assumption has been removed in the 2018 version of [50], so now we can also
allow arbitrarily high levels at p in Case (Hdg). We can similarly remove the
corresponding assumptions in [45] and [46], because exactly the same arguments in
[46] also work with the 2018 version of [50], except with the minor update that, in
[46, proof of Prop. 2.4], the fifth sentence in the fifth paragraph should refer to [50,
Def. 5.1.1] instead of 5.1.2.

2.2. Well-positioned subsets and subschemes. Let T be a locally noetherian
scheme over S. For the schemes XH etc (and morphisms among them) over S, we
shall denote their pullbacks to T by (XH)T etc.

Definition 2.2.1. We say that a locally closed subset (resp. subscheme) Y of (XH)T
is well-positioned if there exists a collection

Y\ = {Y\Z}Z

indexed by the strata Z of Xmin
H , where each Y\Z is a locally closed subset (resp.

subscheme) of ZT such that, for each W as in Proposition 2.1.3, the pullback of Y to
(W 0)T under the induced morphism W 0 → XH is, as a subset (resp. subscheme) of

(W 0)T, the pullback of Y\Z under the composition W 0 → Z of the induced morphism

W 0 → Ξ with the canonical morphisms Ξ→ C → Z. For convenience, for each Y\Z
as above, we shall also denote by Y\C the pullback of Y\Z under C → Z, as a subset

(resp. subscheme). We shall say that Y\ is associated with Y.

Lemma 2.2.2. In Definition 2.2.1, it suffices to verify the condition for some affine
open covering of XΣZ

= ∪
σ∈Σ+

Z

X◦σ by affine formal schemes W’s as in Proposition

2.1.3 for just one collection Σ of cone decompositions.

Proof. Since locally closed subsets or subschemes coincide if and only if they do over
the open subsets in an open covering, for each Σ, it suffices to verify the condition
in Definition 2.2.1 for some open covering as in the statement of the lemma. Since
every two Σ’s has a common refinement, it suffices to show that, if Σ′ is a refinement
of Σ, then the condition holds for Σ if and only if it holds for Σ′. In this case, the
canonical morphism

Xtor
H,Σ′ → Xtor

H,Σ

is proper, under which ∪
[σ′]∈Σ′,+Z /Γ

Z[σ′] is the reduced subscheme of the preimage of

∪
[σ]∈Σ+

Z /Γ
Z[σ], which induces a proper morphism

(Xtor
H,Σ′)

∧
∪

[σ′]∈Σ
′,+
Z

/Γ

Z[σ′]
→ (Xtor

H,Σ)∧ ∪
[σ]∈Σ

+
Z
/Γ

Z[σ]

between the formal completions. On the other hand, for each σ ∈ Σ+
Z , consider

Ξ(σ)′ := ∪
τ∈Σ′,+Z , τ⊂σ

Ξ(τ),

which admits a proper morphism

Ξ(σ)′ → Ξ(σ)
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extending the identity morphism on Ξ and inducing a proper morphism

∪
τ∈Σ′,+Z , τ⊂σ

X◦τ → X◦σ

compatible with the compositions of morphisms

X◦τ ↪→ XΣ′Z
/Γ
∼→ (Xtor

H,Σ′)
∧

∪
[σ′]∈Σ

′,+
Z

/Γ

Z[σ′]

and
X◦σ ↪→ XΣZ

/Γ
∼→ (Xtor

H,Σ)∧ ∪
[σ]∈Σ

+
Z
/Γ

Z[σ]
,

where the first morphisms in the compositions are open immersions, and where
the second morphisms in the compositions are the canonical isomorphisms, as in
Proposition 2.1.3. Therefore, for each affine open formal subscheme W = Spf(R) of
X◦σ, which induces a canonical morphism W = Spec(R)→ Ξ(σ), the pullback of W
under Ξ(σ)′ → Ξ(σ) is covered by finitely many Wi = Spec(Ri), where Wi → Ξ(σ)′

is induced by some affine open formal subscheme Wi = Spf(Ri) of X◦τi , for some

τi ∈ Σ′,+Z such that τi ⊂ σ. Since Ξ(σ)′ → Ξ(σ) induces the identity morphism
on Ξ by pullback on the target, W 0 = ∪

i
W 0
i is an open covering, and the lemma

follows, as desired. �

The following three lemmas follow immediately from the definitions:

Lemma 2.2.3. Suppose a locally closed subset (resp. subscheme) Y of (XH)T is an
intersection of locally closed subsets (resp. subschemes) {Yi}i∈I of (XH)T, where
each Yi is a well-positioned subset (resp. subscheme) of (XH)T associated with

Y\i := {Y\i,Z}Z as in Definition 2.2.1. Then Y is also a well-positioned subset (resp.

subscheme), associated with Y\ := { ∩
i∈I

Y\i,Z}Z as in Definition 2.2.1.

Lemma 2.2.4. Suppose Y is a well-positioned subset (resp. subscheme) of (XH)T,

associated with Y\ = {Y\Z}Z as in Definition 2.2.1. If Y0 is a closed subset of Y

that is a well-positioned subset of (XH)T associated with Y\0 = {Y\0,Z}Z, where each

Y\0,Z is a closed subset of Y\Z, then the open complement Y−Y0 is a well-positioned

subset (resp. subscheme), associated with {Y\Z −Y\0,Z}Z. Similarly, if Y0 is an open

subset of Y that is a well-positioned subset of (XH)T associated with Y0,\ = {Y0,\
Z }Z,

where each Y0,\
Z is an open subset of Y\Z, then the closed complement Y − Y0 is a

well-positioned subset of (XH)T, associated with {Y\Z − Y0,\
Z }Z.

Lemma 2.2.5. Suppose a locally closed subset (resp. subscheme) Y of (XH)T is
a union of its open subsets (resp. subschemes) {Yi}i∈I , where each Yi is a well-

positioned subset (resp. subscheme) of (XH)T associated with Y\i := {Y\i,Z}Z as in
Definition 2.2.1. In the case of subschemes, suppose moreover that, for each Z, the

subschemes {Y\i,Z}i∈I induce compatible open subscheme structures over their finite

intersections, so that ∪
i∈I

Y\i,Z is defined. Then Y is also a well-positioned subset

(resp. subscheme), associated with Y\ = { ∪
i∈I

Y\i,Z}Z as in Definition 2.2.1.

Lemma 2.2.6. Suppose Y is a closed well-positioned subset (resp. subscheme) of

(XH)T, and suppose Y\ = {Y\Z}Z is associated with Y as in Definition 2.2.1. Then

Y\Z is closed in ZT, and Y\C is closed in CT, for each Z.
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Proof. For each Z, since C → Z is proper and surjective, it suffices to show that Y\C
is closed in CT. Assume otherwise, aiming for a contradiction. Then there exists

a point x in the closure of Y\C in CT, but not in Y\C . Since Ξ is fiberwise dense in
Ξ(σ) over C, and since Ξ→ C and Ξσ → C are faithfully flat, by [21, IV-2, 2.3.12],
there exists a point y in the fiber of (Ξσ)T → CT above x such that, for every affine

neighborhood U of y in Ξ(σ)T, the pullback of Y\C to U0 := U ∩ΞT is not closed.
Since Xσ = (Ξ(σ))∧Ξσ → Ξ(σ) is flat and induces the identity morphism along Ξσ,
for some W as in Proposition 2.1.3, which we may assume to contain y, the pullback

Y\W 0 of Y\C to (W 0)T is not closed. But this contradicts the assumption that Y is

closed, because Y\W 0 is by definition also the pullback of Y to (W 0)T, as desired. �

Lemma 2.2.7. Suppose Y is a well-positioned subset (resp. subscheme) of (XH)T,

and suppose Y\ = {Y\Z}Z is associated with Y as in Definition 2.2.1. Then the

closure (resp. schematic closure; see [10, Sec. 2.5, p. 55]) Y of Y in (XH)T is a well-
positioned subset (resp. subscheme) if and only if the following condition holds: For

each Z, the closure (resp. schematic closure) Y
\

C of Y\C in C is the pullback of the

closure (resp. schematic closure) Y
\

Z of Y\Z in Z, as a subset (resp. subscheme). In

this case, the closed complement Y0 := Y−Y is a well-positioned subset. (The above
condition is automatically satisfied when Y is closed in (XH)T, by Lemma 2.2.6; or
when C → Z is flat for each Z, by [21, IV-2, 2.3.10] and [10, Sec. 2.5, Prop. 2].
Note that the schematic closures are defined because T is locally noetherian, in

which case the locally closed immersions Y → (XH)T, Y\C → CT, and Y\Z → ZT

are automatically quasi-compact, for all Z.) In this case, Y
\

:= {Y\Z}Z (resp. Y\0 :=

{Y\Z − Y\Z}Z) is associated with Y (resp. Y0) as in Definition 2.2.1.

Proof. For each W as in Proposition 2.1.3, let YW 0 denote the pullback of Y to
(W 0)T. Since W 0 → XH is flat, by [21, IV-2, 2.3.10] (resp. [10, Sec. 2.5, Prop.
2]), the closure (resp. schematic closure) YW 0 of YW 0 in (W 0)T coincides with the
pullback of Y. Similarly, since W 0 → Ξ and Ξ → C are flat, YW 0 coincides with

the pullback of Y
\

C . Hence, by definition, Y is well positioned if and only if the
condition in the lemma holds. �

Definition 2.2.8. Let {Si}i∈I be a finite set of subschemes of a scheme S such
that each Si is a closed subset of the set-theoretic union ∪

i∈I
Si. For each i ∈ I, let

Si denote the schematic closure of Si in S, and let Si,0 := Si−Si denote the closed
complement with its reduced subscheme structure. Then we define the union ∪

i∈I
Si

as a scheme as the (closed) schematic image of
∐
i∈I

Si → S (see [10, Sec. 2.5, p.

55]) subtracted by the closed subset ∩
i∈I

Si,0.

Lemma 2.2.9. Suppose a locally closed subset (resp. subscheme) Y of (XH)T is a
finite union of its closed subsets (resp. subschemes) {Yi}i∈I (see Definition 2.2.8),
where each Yi is a well-positioned subset (resp. subscheme) of (XH)T. For each

i ∈ I, suppose Y\i = {Y\i,Z}Z is associated with Yi as in Definition 2.2.1. In the case
of subschemes, suppose moreover that C → Z is flat, for each Z. Then Y is also a

well-positioned subset (resp. subscheme), and Y\ := {Y\Z}Z, where Y\Z := ∪
i∈I

Y\i,Z as
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a subset (resp. subscheme) for each Z, is associated with Y as in Definition 2.2.1.

(Implicit in this statement is that each Y\Z is defined in the case of subschemes.)

Proof. Suppose x0 is any point of Yi0,Z which specializes to a point x1 of Yi1,Z, for
some i0, i1 ∈ I. For each σ ∈ Σ+

Z , since C → Z is proper and surjective, since Ξ is
fiberwise dense in Ξ(σ) over C, and since Ξ → C and Ξσ → C are faithfully flat,
there exist some W as in Proposition 2.1.3 and some points x̃0 and x̃1 of W 0 lifting
x0 and x1, respectively, such that x̃0 specializes to x̃1. But x̃0 and x̃1 belong to
the pullbacks of Yi0 and Yi1 , respectively. Therefore, the assumption that Yi0 is
closed in Y shows that x̃1 is contained in the pullback of Yi0 , and so its image x1 is

contained in Yi0,Z. Hence, Y\i0,Z is closed in the set-theoretic union Y\Z := ∪
i∈I

Y\i,Z,

and this union is locally closed as a subset of ZT. In the case of subsets, Y\ := {Y\Z}Z
is associated with Y as in Definition 2.2.1. In the case of subschemes, each Y\Z also

admits the structure as a subscheme of ZT by Definition 2.2.8, and Y\ := {Y\Z}Z is
associated with Y as in Definition 2.2.1 by [10, Sec. 2.5, Prop. 2], because W 0 → XH
and W 0 → C are flat, and because C → Z is flat by assumption. �

Lemma 2.2.10. If Y is a well-positioned subset (resp. subscheme) of (XH)T, if

Y\ = {Y\Z}Z is associated with Y as in Definition 2.2.1, and if C → Z is reduced
(i.e., is flat and has geometrically reduced fibers; see [21, IV-2, 6.8.1]) for all Z,
then the unique reduced subscheme Yred over the underlying locally closed subset

Y of (XH)T is a well-positioned subscheme, and Y\red = {Y\red,Z}Z, where Y\red,Z :=

(Y\Z)red for each Z, is associated with Yred as in Definition 2.2.1. Moreover, if
T = Spec(k) for some field k, and if CT → ZT is (proper and) smooth for all Z, then

the smooth locus Ysm of Yred is a well-positioned subscheme, and Y\sm = {Y\sm,Z}Z,

where Y\sm,Z := (Y\Z)sm is the smooth locus of (Y\Z)red for each Z, is associated with
Ysm as in Definition 2.2.1.

Proof. For each W as in Proposition 2.1.3, by the regularity of W → (XH)T and
W → Ξ(σ) (see [21, IV-2, 7.8.3(v)]), by the reducedness of C → Z, and by [21, IV-2,
5.8.5, 6.4.1, and 6.5.3], the pullback of Yred to (W 0)T coincides with the pullback

of (Y\Z)red as reduced subschemes, because their underlying sets already coincide.
Hence, Yred is a well-positioned subscheme. If T = Spec(k) and if CT → ZT

is smooth (which is, in particular, also regular), by [21, IV-2, 6.5.3] again, the

pullback of Ysm to (W 0)T coincides with the pullback of the smooth locus (Y\Z)sm

of (Y\Z)red. Since Ysm is open in Yred (by [21, IV-2, 6.12.5]), it is locally closed, and
hence also a well-positioned subscheme. �

Remark 2.2.11. It is natural to ask whether the collection Y\ in Definition 2.2.1 is
uniquely determined by Y. In the case of subsets, this is true by definition. In the
case of subschemes, it is still true if C → Z is flat—see (4) of Theorem 2.3.2 below.

2.3. Partial compactifications of well-positioned subschemes. Let T be a
locally noetherian scheme over S, as in the beginning of Section 2.2.

Definition 2.3.1. Suppose Y is a locally closed subset (resp. subscheme) of (XH)T.
Let Y denote the closure (resp. schematic closure) of Y in (XH)T, and let Y0 denote
the complement subset Y− Y. (In this definition, we do not assume that any of Y,

Y, or Y0 is well positioned.) Let Y
min

denote the closure (resp. schematic closure)



COMPACTIFICATIONS OF SUBSCHEMES 17

of Y (or equivalently Y) in (Xmin
H )T, let Y

tor

Σ denote the closure (resp. schematic

closure) of Y (or equivalently Y) in (Xtor
H,Σ)T, let Ymin

0 denote the closure of Y0 in

(Xmin
H )T, and let Ytor

0,Σ denote the closure of Y0 in (Xtor
H,Σ)T. In the case of subsets,

we view them as subschemes with their reduced subscheme structures. Let Ymin :=
Y

min − Ymin
0 and Ytor

Σ := Y
tor

Σ − Ytor
0,Σ, with induced open immersions JYmin : Y ↪→

Ymin and JYtor
Σ

: Y ↪→ Ytor
Σ over T. We shall call Ymin the partial minimal

compactification of Y, and Ytor
Σ the partial toroidal compactification of Y,

with the term partial suppressed when Y is a closed subscheme of (XH)T. (These

partial compactifications are canonically determined by XH

JXtor
H,Σ
↪→ Xtor

H,Σ

∮
H,Σ→ Xmin

H ,

T, and Y, by their very constructions.)

Theorem 2.3.2 (cf. [45, Prop. 2.2] or Proposition 2.1.2). For each well-positioned

subset (resp. subscheme) Y of (XH)T with a collection Y\ = {Y\Z}Z as in Definition
2.2.1, its partial minimal and toroidal compactifications

JYmin : Y ↪→ Ymin

and

JYtor
Σ

: Y ↪→ Ytor
Σ

as in Definition 2.3.1 satisfy the following properties:

(1) For each Σ, the proper surjective structural morphism
∮
H,Σ : Xtor

H,Σ → Xmin
H

induces a proper surjective structural morphism∮
Y,Σ

: Ytor
Σ → Ymin

(over T), so that

JYmin =
∮
Y,Σ
◦JYtor

Σ
.

The structural morphisms Ymin → T and Ytor
Σ → T are projective when Y

is closed in (XH)T (under the assumption in (4) of Proposition 2.1.2 that
Σ is projective).

(2) Consider an ample invertible sheaf ωXmin
H

over Xmin
H chosen as follows: In

Case (Sm), we take ωXmin
H

to be the pullback of ω as in [36, Thm. 7.2.4.1(2)].

In Case (Nm), we take ωXmin
H

to be the pullback of ω~Mmin
H ,J as in [38, Prop.

6.4]. In Case (Spl), we take ωXmin
H

to be the pullback of any of the ample

ω
⊗(k,µ)

~Mspl,min
H ,J

as in [43, Thm. 4.3.1(3)]. In Case (Hdg), we take ωXmin
H

to be

the pullback of ωmin
K as in [50, Thm. 5.2.11(2)]. Then the pullback ωYmin of

ωXmin
H

to Ymin is relatively ample over T, and its further pullback ωYtor
Σ

to

Ytor
Σ is semi-ample over the preimage of every affine open subscheme of T.

When T is affine and Y is closed in (XH)T, we have canonical morphisms

Ytor
Σ → Proj

(
⊕
k≥0

Γ(Ytor
Σ , ω⊗ k

Ytor
Σ

)
)

→ Proj
(
⊕
k≥0

Γ(Ymin, ω⊗ k
Ymin)

)
∼= Ymin,

(2.3.3)

which coincides with the Stein factorization of
∮
Y,Σ

: Ytor
Σ → Ymin.
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(3) The stratification of Xmin
H by locally closed subschemes Z induces a stratifi-

cation of Ymin by locally closed subschemes

YZ := Z ×
Xmin
H

Ymin,

each of which is equipped with a canonical morphism Y\Z → YZ which induces
a bijection between the underlying subsets of ZT (see Definition 2.2.1), with

an open dense stratum Y\Z = Y for Z = XH. For each Σ, the stratification
of Xtor

H,Σ by locally closed subschemes Z[σ] induces a stratification of Ytor
Σ by

locally closed subschemes

YZ[σ]
:= Z[σ] ×

Xtor
H,Σ

Ytor
Σ ,

with an open dense stratum YZ[{0}] = Y for Z = XH and σ = {0}. For
each Z[σ], the canonical surjective morphism Z[σ] → Z induces a surjec-
tive morphism YZ[σ]

→ YZ which factors through a (surjective) morphism

YZ[σ]
→ Y\Z (which is the pullback of Z[σ] → Z when Y is a well-positioned

subscheme of (XH)T). Hence, YZ[σ]
is nonempty exactly when Y\Z is, and

exactly when YZ is.
(4) For each top-dimensional cone σ in Σ+

Z , we have a canonical isomorphism

YZ[σ]

∼→ Y\C , which shows that Y\C is determined by Y, for each Z. Thus, in

the case of subschemes, if the surjection C → Z is flat, then Y\Z is deter-

mined by its pullback Y\C under a faithfully flat morphism, and hence also

by Y. In the case of subsets, Y\Z is determined by Y\C and Y by definition,
without the flatness assumption on C → Z. (See Remark 2.2.11.)

(5) For each representative σ ∈ Σ+
Z of an orbit [σ] ∈ Σ+

Z /Γ, and for ? = Ξ,

Ξ(σ), Ξσ, Xσ, X◦σ, and XΣZ
, let Y\? denote the pullback of ? under the

canonical morphism Y\C → C. (In the case of subsets, we view Y\Z and

Y\C as subschemes of Z and C, respectively, with their reduced subscheme
structures, so that the above all make sense as statements for schemes and
formal schemes. In this case, C → Z induces a proper surjective morphism

Y\C → Y\Z of schemes, which is the pullback of C → Z when C → Z is
reduced; i.e., is flat and has geometrically reduced fibers, as in [21, IV-2,
6.8.1].) Then we have a canonical isomorphism

(2.3.4) Y\Xσ
∼→ (Ytor

Σ )∧YZ[σ]

induced by the canonical isomorphism Xσ
∼→ (Xtor

H,Σ)∧Z[σ]
, extending a canon-

ical isomorphism Y\Ξσ
∼→ YZ[σ]

induced by the canonical isomorphism Ξσ
∼→

Z[σ] (see (8) of Proposition 2.1.2), which extends to flat morphisms

(2.3.5) Y\Xσ → Y\X◦σ ↪→ Y\XΣZ
→ Ytor

Σ

induced by (2.1.4), inducing compatible canonical isomorphisms

(2.3.6) Y\X◦σ
∼→ (Ytor

Σ )∧ ∪
τ∈Σ

+
Z
, τ⊂σ

YZ[τ]
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and

(2.3.7) Y\XΣZ
/Γ
∼→ (Ytor

Σ )∧ ∪
[τ]∈Σ

+
Z
/Γ

YZ[τ]

induced by (2.1.5) and (2.1.6), respectively.
(6) For each σ ∈ Σ+

Z , and for each affine open formal subscheme Spf(R) of

Y\Xσ , under the canonically induced (flat) morphisms Spec(R) → Ytor
Σ and

Spec(R) → Y\Ξ(σ) induced by (2.3.4), the stratification of Spec(R) induced

by that of Ytor
Σ coincides with the stratification of Spec(R) induced by that

of Y\Ξ(σ). In particular, the preimages of Y and Y\Ξ coincide as open sub-

schemes of Spec(R). Analogous statements are true for Y\X◦σ and (2.3.6).

(7) Let x be a point of Y\Ξσ , which can be canonically identified with a point of
YZ[σ]

via the above isomorphism. Then there exists an étale neighborhood

U → Ytor
Σ

of x and an étale morphism

U → Y\Ξ(σ)

respecting x such that the stratification of U induced by that of Ytor
Σ coincides

with the stratification of U induced by that of Y\Ξ(σ), or rather by that of

Ξ(σ) as in (9) of Proposition 2.1.2; and such that the pullbacks of these étale

morphisms to YZ[σ]
and to Y\Ξσ are both open immersions. (In particular,

Ytor
Σ and Y\Ξ(σ), equipped with their stratifications as explained above, are

étale locally isomorphic at x.) There also exist étale morphisms as above
with the analogous but stronger property that their respective pullbacks to

∪
τ∈Σ+

Z , τ⊂σ
YZ[τ]

and ∪
τ∈Σ+

Z , τ⊂σ
Y\Ξτ (with their reduced structures) are both

open immersions.

Proof. The properties (1) and (2), and the assertions concerning underlying subsets
in the property (3), follow immediately from the definitions.

Let Y, Y
min

, Y
tor

Σ , Y0, Ymin
0 , and Ytor

0,Σ be as in Definition 2.3.1. For each Z, let Y
\

C

denote the closure (resp. schematic closure) of Y\C in CT, let Y\C,0 := Y
\

C−Y
\
C denote

the complement, let Y
\

Z denote the closure (resp. schematic closure) of Y\Z in ZT, and

let Y\Z,0 := Y
\

Z−Y\Z denote the complement. For each W as in Proposition 2.1.3, as

in the proof of Lemma 2.2.7, by [21, IV-2, 2.3.10], by the definition of closures (resp.
schematic closures), and by the flatness of W → (Xtor

H,Σ)T and W → Ξ(σ)→ C, the

pullback of Ytor
Σ = Y

tor

Σ −Ytor
0,Σ to WT is the pullback of Y\C = Y

\

C−Y\C,0, as a subset

(resp. subscheme). When Y is just given as a subset of (XH)T, by the regularity of
W → (Xtor

H,Σ)T and W → Ξ(σ) (see [21, IV-2, 6.8.1 and 7.8.3(v)]), by the normality

of Ξ(σ) → C (see [38, Prop. 8.14] and its proof), and by [21, IV-2, 5.8.5, 5.8.6,
6.4.1, and 6.5.3], it follows that the pullback of Ytor

Σ to WT also coincides with the

pullback of Y\C as reduced subschemes.
By the definition of W = Spec(R) by an affine open subscheme W = Spf(R) of

X◦σ, by Proposition 2.1.3, the pullback of YZ[σ]
:= Z[σ] ×

Xtor
H,Σ

Ytor
Σ under the canonical
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isomorphism Ξσ
∼→ Z[σ] coincides with the pullback of Y\C , for all σ ∈ Σ+

Z , and
hence all the assertions in the properties (5) and (6) follow. Since the canonical
morphism Ξσ → C is an isomorphism when σ is top dimensional, this shows that

Y\C is uniquely determined by Y, and the remaining assertions in the property (4)
also follow. Since the canonical morphisms Ξσ → C → Z are surjective, whose
composition can be identified with the surjection Z[σ] � Z induced by

∮
H,Σ :

Xtor
H,Σ → Xmin

H , the induced morphisms

YZ[σ]
∼= Y\Ξσ → Y\C → Y\Z → YZ

are also surjective, where the last morphism induces a bijection between subsets of
ZT, and hence all assertions in the property (3) follow.

Finally, let us prove the property (7). We may and we shall assume that S is
excellent, because the models in Assumption 2.1.1, and their compactifications in
Proposition 2.1.2, are all defined over excellent Dedekind domains. Since Xtor

H and
Ξ(σ) are of finite presentation over S, by the usual limit argument, we may and we
shall assume that T is of finite type over S. By Artin’s approximation (see [2, Thm.
1.12, and the proof of the corollaries in Sec. 2]), and by the isomorphism (2.3.4)
established above, we have some étale neighborhood U → Ytor

Σ of x and an étale

morphism U → Y\Ξ(σ) such that the preimages of YZ[σ]
and Y\Ξσ coincide, such that

the pullbacks of the étale morphisms to YZ[σ]
and Y\Ξσ are open immersions, and

such that the stratifications induced by those of Xtor
H,Σ and Ξ(σ) can be matched

up to automorphisms of the completion of U along the common preimage of YZ[σ]

and Y\Ξσ . The condition for such automorphisms to match stratifications (or rather
some finite collections of closed subschemes) is equivalent to the solution of finitely
many algebraic equations. Thus, by applying Artin’s approximation again, up to

modifying the choices of U → Ytor
Σ and U → Y\Ξ(σ), we may assume that the induced

stratifications already coincide over U , so that the first assertion of the property (7)
holds. By using the isomorphism (2.3.6) instead of (2.3.4) in the above argument,
we also obtain the other stronger assertion of the property (7), as desired. �

Remark 2.3.8. In Case (Sm), the assertions for Ytor
Σ in Theorem 2.3.2 show that

our notion of well-positioned subschemes is consistent with the one introduced by
Boxer in [12, Sec. 3.4].

Remark 2.3.9. Shimura subvarieties are not well positioned in general, even as
subsets, and that is why their compactifications (which can be constructed in a
similar way) are more difficult to describe.

Thanks to the proof of Theorem 2.3.2, we can slightly weaken Definition 2.2.1
as follows:

Lemma 2.3.10. Suppose T is a locally noetherian scheme over S, and suppose Y
is a locally closed subset of (XH)T such that, for each Z, there exists some subset

Y\Z of ZT such that, for each W as in Proposition 2.1.3, the pullback of Y to (W 0)T
coincides with the pullback of Y\Z. Then Y\Z is automatically locally closed in ZT.

Proof. Let Ytor
Σ be as in Definition 2.3.1. Since C → Z is proper and surjective, it

suffices to show that the pullback Y\C of Y\Z is locally closed in CT. Since W → Xtor
H,Σ

and W → Ξ(σ) are flat, by [21, IV-2, 2.3.10], the pullback of Ytor
Σ to Ws also
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coincides with the pullback of Y\C . Since W is arbitrary, we may and we shall

assume that the σ involved is top dimensional in Σ+
Z , in which case the we have an

isomorphism YZ[σ]

∼→ Y\C induced by Z[σ]
∼→ C, as in (4) of Theorem 2.3.2. Since

YZ[σ]
is locally closed in (Z[σ])T by its definition as a pullback of Ytor

Σ , it follows that

Y\C is locally closed in CT, as desired. �

Thanks to (7) of Theorem 2.3.2, we also have the following:

Proposition 2.3.11. If Y is a well-positioned subset (resp. subscheme) of (XH)T,

and if Y\C → Y\Z has connected fibers for all Z, then the open-and-closed subsets
(resp. subschemes) of Y are well-positioned subsets (resp. subschemes), and their
closures in Ymin and Ytor

Σ are also open and closed in these partial compactifications.

Proof. Suppose Y\ = {Y\Z}Z is associated with Y as in Definition 2.2.1. Suppose Y1

is an open-and-closed subset (resp. subscheme) of Y. Let Y2 := Y − Y1 (with its
open subscheme structure when Y is a subscheme). We claim that their respective
closures Ytor

1,Σ and Ytor
2,Σ in Ytor

Σ do not overlap.

Suppose, to the contrary, that there exist some Z and σ ∈ Σ+
Z with some point

x ∈ YZ[σ]
∩Ytor

1,Σ ∩Ytor
2,Σ, which we identify with a point of YΞσ via the isomorphism

Y\Ξσ
∼= YZ[σ]

in (5) of Theorem 2.3.2. Let U → Ytor
Σ and U → Y\Ξ(σ) be étale

morphisms as in (7) of Theorem 2.3.2, whose pullbacks to YZ[σ]
and to Y\Ξσ are

both open immersions. Up to replacing U with an open subscheme, we may and

we shall assume that U → Ytor
Σ and U → Y\Ξ(σ) have connected fibers. Consider the

open subscheme U := U ×
Ytor

Σ

Y of U , which can be identified with U ×
Y\

Ξ(σ)

Y\Ξ because

the étale morphisms match stratifications. Let y denote the image of x in Y\C . Since

U → Y\Ξ(σ) is étale, and since Y\Ξ ↪→ Y\Ξ(σ) is an affine toroidal embedding over Y\C ,

which is fiberwise dense, for each i, there exists some point xi of the pullback of Yi
to U which specializes to x in U and is mapped to y in Y\C . Since Ξ→ C is a torus

torsor, the fiber of U → Y\Ξ → Y\C above y is connected, which cannot overlap with
both the pullbacks of Y1 and Y2. Hence, such an x cannot exist, and the claim
follows. So Ytor

1,Σ is also open and closed in Ytor
Σ .

Now consider Yi,Z[σ]
:= YZ[σ]

∩Ytor
i,Σ, for each i. Since Y\C → Y\Z has connected

fibers, so does the surjective morphism YZ[σ]
∼= Y\Ξσ → Y\Z. Consequently, the

image Y\i,Z of Yi,Z[σ]
in Y\Z, which necessarily coincides with YZ ∩Ymin

i as a subset

of ZT, is open and closed in Y\Z, and Yi,Z[σ]
coincides with the pullback of Y\i,Z,

for each i, because Y\1,Z and Y\2,Z do not overlap either. So Ymin
1 is also open

and closed in Ymin. In YZ[σ]
(resp. Y\Z), let us equip Yi,Z[σ]

(resp. Y\i,Z) with its
reduced subscheme structure in the case of subsets, and with the canonical open
subscheme structure in the case of subschemes. Then the canonical isomorphism

(2.1.5) induces an isomorphism Y\X◦σ ×
Y\Z

Y\i,Z
∼→ (Ytor

i,Σ)∧ ∪
τ∈Σ

+
Z
, τ⊂σ

Yi,Z[τ]
. Thus, for each

W as in Proposition 2.1.3, the pullback of Y1 to (W 0)T coincides with the pullback

of Y\1,Z. Hence, Y1 is well positioned, with associated Y\1 := {Y\1,Z}Z as in Definition
2.2.1, as desired. �
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Proposition 2.3.12. If Y is a well-positioned subset of (XH)T, and if Y\C → Y\Z
is flat and has irreducible fibers for all Z, then the irreducible components of Y
are well-positioned subsets, and their closures in Ymin and Ytor

Σ are also irreducible
components of these partial compactifications.

Proof. Let Y1 be an irreducible component of Y. By definition, its closures in Ymin

and Ytor
Σ , respectively, are irreducible components of these partial compactifications.

It remains to show that Y1 is well positioned. Let U → Ytor
Σ and U → Y\Ξ(σ) be étale

morphisms as in (7) of Theorem 2.3.2, whose pullbacks to YZ[σ]
and to Y\Ξσ are both

open immersions. By the construction of U in the proof there, we may and we shall
assume that it is an approximation of the pullback of Y to some affine formal scheme
W = Spf(R) as in Proposition 2.1.3, with associated affine scheme W = Spec(R).
Up to replacing U with an open subscheme, we may and we shall assume that the

étale morphisms U → Ytor
Σ and U → Y\Ξ(σ) have irreducible fibers. By [21, IV-2,

2.3.10], the pullback U1 of Y1 to U is either empty or an irreducible component of U .
Suppose U1 is nonempty, with generic point ηU1

, which is maximal among points

of U1. Since the morphisms U → Y\Ξ(σ) → Y\C → Y\Z are flat and have irreducible

fibers (by assumption), by [21, IV-2, 2.3.10] again, the image ηZ of ηU1
in Y\Z is

maximal among points of Y\Z, whose closure {ηZ} in Y\Z is an irreducible component,

and U1 coincides with the pullback of {ηZ}. Since Y\C → Y\Z has irreducible and
hence connected fibers,

∮
Y,Σ

: Ytor
Σ → Ymin has connected fibers over YZ. Hence,

over each connected component of Y\Z, there is at most one irreducible component

of the form {ηZ} as above. Let Y\1,Z be the (disjoint) union of such irreducible

components. Then its pullback to any W (associated with W) as above coincides

with the pullback of {ηZ}, and hence with the pullback of U1, or rather of Y1. Since
the affine formal schemes W as above form an open covering of XΣZ

, for each Z, it
follows from Lemma 2.2.2 that Y1 is well positioned, as desired. �

By the same arguments as in the proofs of [38, Prop. 14.1 and 14.2] and [43, Cor.
3.4.15], using the regularity of W → XH and W → Ξ(σ) (see [21, IV-2, 6.8.1 and
7.8.3(v)]) for each W as in Proposition 2.1.3, and using the facts that Ξ(σ)→ C is
surjective and smooth (under the assumption in (4) of Proposition 2.1.2 that Σ is
smooth), and that Ξ is fiberwise dense in Ξ(σ) over C, we obtain the following for
any well-positioned subset or subscheme Y of (XH)T as in Definition 2.2.1, where we
equipped Y with the canonical reduced subscheme structure when Y is only given
as a subset, with partial toroidal compactification Ytor

Σ as in Definition 2.3.1:

Proposition 2.3.13 (cf. [38, Prop. 14.1]). Under the assumption (in (4) of Proposi-
tion 2.1.2) that Σ is smooth, Y is reduced (resp. normal, resp. regular, resp. Cohen–
Macaulay, resp. (Ri), resp. (Si), one property for each i ≥ 0, resp. flat over T, resp.
faithfully flat over T) if and only if Ytor

Σ is.

Proposition 2.3.14 (cf. [38, Prop. 14.2]). Let P be the property of being one of
the following: reduced, geometrically reduced, normal, geometrically normal, reg-
ular, geometrically regular, Cohen–Macaulay, (Ri), geometric (Ri), and (Si), one
property for each i ≥ 0 (see [21, IV-2, 5.7.2 and 5.8.2]). Under the assumption (in
(4) of Proposition 2.1.2) that Σ is smooth, the fiber of Ytor

Σ → T over some point t
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of T satisfies property P if and only if the corresponding fiber of the open subscheme
Y → T over t does.

However, note that the analogues of Propositions 2.3.13 and 2.3.14 for Ymin are
not true in general. (They are already not true for Xmin

H in general.)

Corollary 2.3.15 (cf. [38, Cor. 14.4] and [43, Cor. 3.4.15]). Suppose that Y → T is
flat, that its geometric fibers are reduced (resp. have integral local rings), and that
Y is closed in (XH)T. Then all geometric fibers of Ytor

Σ → T have the same number
of connected (resp. irreducible) components, and the same is true for Y → T.

The following technical result will be useful in Section 4.5: (The readers may
skip it for now, and come back only when reading the proof of Lemma 4.5.24.)

Lemma 2.3.16. Suppose we are in Cases (Sm), (Nm), and (Spl). Suppose Y

is a well-positioned subset of (XH)T, and suppose Y\ = {Y\Z}Z is associated with
Y as in Definition 2.2.1. For each stratum Z of Xmin

H , since it is an analogue of

XH, we can define Zmin and Ymin
Z as in the case of Xmin

H and Ymin. Let Z denote

the closure of Z in Xmin
H , and let YZ ⊂ ZT be defined by YZ as in the case of

Ymin ⊂ (Xmin
H )T in Definition 2.3.1. Then the identity morphism on Z extends to a

canonical isomorphism Zmin ∼→ Z. Moreover, YZ is a well-positioned subset of ZT,
and the isomorphism Zmin ∼→ Z induces a canonical isomorphism Ymin

Z
∼→ YZ.

Proof. We can also define Ztor and Ytor
Z (for some collection of cone decompositions).

Since we are in Cases (Sm), (Nm), and (Spl), by the same argument as in the proof
of [45, Prop. 4.2], up to replacing Σ with a refinement, there exists some top-
dimensional σ ∈ Σ+

Z such that the canonical morphism Z[σ]
∼= C → Z extends to a

morphism from the closure Ztor
[σ] of Z[σ] in Xtor

H,Σ to Ztor. Moreover, the description

of formal charts there shows that YZ = Y\Z is a well-positioned subset of ZT, with

associated collection (YZ)\ = {(YZ)\Z′}Z′ indexed by the strata Z′ of Xmin contained

in Z. By taking any ωXmin
H

as in (2) of Theorem 2.3.2 such that its pullback to Ztor
[σ]

descends to an ample invertible sheaf over Zmin, the canonical morphism Ztor
[σ] →

Xmin
H induces a canonical morphism Zmin → Z, which in turn induces a canonical

morphism Ymin
Z → YZ. (Note that there is at most one morphism Zmin → Z

extending the identity morphism on the open dense subscheme Z of the noetherian
normal scheme Zmin.) For each stratum Z′ of Xmin

H contained in Z, and for each

τ ′ ∈ Σ+
Z′ , the composition Z′[τ ′] � Z′ → Z factors through Z′ → Zmin → Z.

Therefore, Zmin → Z induces a bijection between geometric points, and even induces
the identity morphism from Z′ as a stratum of Zmin to Z′ as a stratum of Xmin

H . Since

Y\Z′ and YZ′ coincide as subsets of Z′T, for each Z′, if Zmin → Z is an isomorphism,

then the induced morphism Ymin
Z → YZ is also an isomorphism.

In remains to show that the canonical morphism Zmin → Z is an isomorphism.
By the same strategy as in [19, Ch. V, p. 152], it suffices to show that it induces
isomorphisms between completions of strict local rings. Let Z′ be any stratum of
Xmin contained in Z. For the sake of clarity, we shall denote Z′ as Z′′ when we view it
as a stratum of Zmin, and denote with superscripts ′ (resp. ′′) various objects of Xmin

H
(resp. Zmin) that are associated with Z′ (resp. Z′′). The morphism Ztor

[σ] → Xmin
H that

induced Zmin → Z also induces a proper surjective morphism C ′ → C ′′ between
noetherian normal schemes, and an injective homomorphism S′′ → S′ such that
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the pullback of Ψ′′(`′′) under C ′ → C ′′ is canonically isomorphic to Ψ′(`′) when `′

is the image of `′′ under S′′ → S′, so that we have canonically induced injective
morphisms

FJ′′,(`
′′) := (C ′′ → Z′′)∗Ψ

′′(`′′)→ FJ′,(`
′) := (C ′ → Z′)∗Ψ

′(`′).

By [36, Prop. 7.2.3.16, and the errata] in Case (Sm), [38, Prop. 12.13] in Case (Nm),
and [43, Prop. 4.2.20] in Case (Spl), for each geometric point x̄ of Z′, which we also
view as geometric points of Zmin and Z, we have ring homomorphisms

(OZ)∧x̄
can.→ (OZmin)∧x̄

∼=

( ∏
`′′∈(P′′)∨

(FJ′′,(`
′′))∧x̄

)Γ′′

→

( ∏
`′∈(P′)∨ ∩ ker(S′→S)

(FJ′,(`
′))∧x̄

)Stab(P′)∨ ∩ ker(S′→S)(Γ
′)

,

(2.3.17)

where ( · )∧x̄ denotes the pullbacks of various objects ( · ) over Z′ to the completion of
the strict local ring of Z′ at x̄, where the first homomorphism is injective because Z is
reduced and Zmin → Z is surjective, where the third homomorphism is defined and
injective by the explanation in the previous sentence, and where the composition of
all homomorphisms in (2.3.17) is an isomorphism. But then all homomorphisms in
(2.3.17) are isomorphisms, because they are already known to be injective. Thus,
Zmin → Z is an isomorphism, because Z′ and x̄ are arbitrary, as desired. �

2.4. Functorial properties and Hecke actions.

Proposition 2.4.1. Under any morphism T′ → T of locally noetherian schemes
over S, the pullback

Y′ := Y×
T
T′

of a well-positioned subset (resp. subscheme) Y of (XH)T is a well-positioned subset

(resp. subscheme) of (XH)T′ . If Y\ = {Y\Z}Z is associated with Y, then

Y′,\ := {Y\Z×
T
T′}

is associated with Y′, as in Definition 2.2.1. Let Y′,min and Y′,tor
Σ denote the partial

minimal and toroidal compactifications of Y′, respectively, as in Definition 2.3.1.
Then the canonical morphisms Y′,min → Ymin×

T
T′ and Y′,tor

Σ → Ytor
Σ ×

T
T′ induce

isomorphisms between the reduced subschemes. In the case of subschemes, the latter
morphism Y′,tor

Σ → Ytor
Σ ×

T
T′ is an isomorphism, without having to pass to the

morphism between reduced subschemes.

Proof. For each Z, let Y\Z be associated with Y as in Definition 2.2.1, and let Y\C
denote its pullback under C → Z. Then Y′ is a well-positioned subset (resp.
subscheme) because the pullback of Y′ to (W 0)T′ coincides with the pullback of

Y′,\C := Y\C ×
T
T′, which is in turn the pullback of Y′,\Z := Y\Z×

T
T′, as subsets (resp.

subschemes), for each W as in Proposition 2.1.3. As in the proof of Theorem 2.3.2,

by the flatness of W → Xtor
H,Σ and W → Ξ(σ), the pullback of Y′,tor

Σ to WT′ coincides

with the pullback of Y′,\C , which also coincides with the pullback of Ytor
Σ , as a subset

(resp. subscheme). The remaining assertions then follow from the definitions. �
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Proposition 2.4.2. If Y is a well-positioned subset (resp. subscheme) of (XH)T, if
(XH′)T → (XH)T is defined by an inclusion H′ ⊂ H of open compact subgroups of

G(Ẑ) (and other data), then the preimage Y′ of Y in (XH′)T is also a well-positioned

subset (resp. subscheme). If Y\ = {Y\Z}Z is associated with Y, and if Y′,\Z′ is the

pullback of Y\Z under Z′ → Z, for each stratum Z′ of Xmin
H′ above a stratum Z of Xmin

H ,

then Y′,\ := {Y′,\Z′ } is associated with Y′, as in Definition 2.2.1. Let Y′,min and Y′,tor
Σ′

denote the partial compactifications of Y′, respectively, as in Definition 2.3.1. Then
the canonical morphisms Y′,min → Ymin ×

Xmin
H

Xmin
H′ and Y′,tor

Σ′ → Ytor
Σ ×

Xtor
H,Σ

Xtor
H′,Σ′

induce isomorphisms between the reduced subschemes. In the case of subschemes,
the latter morphism between partial toroidal compactifications is an isomorphism
by itself.

Proof. By [36, Prop. 6.4.3.4] in Case (Sm), by [41, Prop. 7.1] in Case (Nm), by
[43, Prop. 3.4.10] in Case (Spl), and by [50, Sec. 4.1.12 and 5.2.12] and the same
facts used in the proof of Proposition 2.1.3 in Case (Hdg), we have a proper
morphism Xtor

H′,Σ′ → Xtor
H,Σ for some Σ′ refining Σ, which induces a proper mor-

phism (Xtor
H′,Σ′)

∧
∪

[σ′]∈Σ
′,+
Z′

/Γ′
Z′

[σ′]
→ (Xtor

H,Σ)∧ ∪
[σ]∈Σ

+
Z
/Γ

Z[σ]
between the formal completions

(where any object denoted with a prime means the analogous object at level
H′). This proper morphism is compatible with the proper morphism Ξ(σ)′ :=
∪

τ∈Σ′,+Z , τ⊂σ
Ξ′(τ)→ Ξ(σ) extending Ξ′ → Ξ and covering C ′ → C and Z′ → Z. For

each affine open formal subscheme W = Spf(R) of X◦σ, which induces a canonical
morphism W = Spec(R) → Ξ(σ), its pullback under Ξ(σ)′ → Ξ(σ) is covered by
finitely many Wi = Spec(Ri), where Spec(Ri) → Ξ(σ)′ is induced by some affine

open formal subscheme Wi = Spf(Ri) of X′,◦τi , for some τi ∈ Σ′,+Z such that τi ⊂ σ.
Now suppose Y is a well-positioned subset (resp. subscheme), with associated

Y\ = {Y\Z}Z as in Definition 2.2.1. Let us denote by Y′ the pullback of Y to (XH′)T,

and by Y′,\Z′ the pullback of Y\Z to Z′. Since the pullback of Y to (W 0)T coincides with

the pullback of Y\Z, since Ξ(σ)′ → Ξ(σ) extends the canonical morphism Ξ′ → Ξ,
and since the two compositions Ξ′ → Z′ → Z and Ξ′ → Ξ→ Z coincide, the pullback

of Y to (W 0
i )T coincides with the pullback of Y′,\Z′ as a subset (resp. subscheme).

Since W is arbitrary, Y′ is also a well-positioned subset (resp. subscheme), with

associated Y′,\ := {Y′,\Z′ } as in Definition 2.2.1. As in the proof of Theorem 2.3.2, by
the flatness of W → Xtor

H,Σ, W → Ξ(σ), Wi → Xtor
H′,Σ′ and Wi → Ξ(σ)′, the pullback

of Ytor
Σ to WT coincides with the pullback of Y\Z, and the pullback of Y′,tor

Σ′ to (Wi)T
coincides with the pullback of Y′,\Z′ , and so the pullback of Y′,tor

Σ′ to (Wi)T coincides
with the pullback of Ytor

Σ , as subsets (resp. subschemes), for each i. The remaining
assertions then follow from the definitions. �

For many arithmetic applications, it is desirable to have the following:

Proposition 2.4.3 (cf. [38, Prop. 13.7, 13.9, and 13.15] and [41, Prop. 7.3 and 7.5]).

Suppose that H and H′ are two open compact subgroups of G(Ẑ), that g ∈ G(A∞),
and that Σ′ is a g-refinement of Σ as in [36, Def. 6.4.3.3], such that H′ ⊂ gHg−1,
and such that the morphisms

(2.4.4) [g] : XH′ → XH,
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(2.4.5) [g]
min

: Xmin
H′ → Xmin

H ,

and

(2.4.6) [g]
tor

: Xtor
H′,Σ′ → Xtor

H,Σ

are compatibly defined. (See [36, Prop. 6.4.3.4 and 7.2.5.1] in Case (Sm); see [38,
Prop. 13.7, 13.9, and 13.15] and [41, Prop. 7.3] in Case (Nm); see [43, Prop. 2.4.17,
3.4.10, and 4.3.11] in Case (Spl); and see [50, Sec. 4.1.12 and 5.2.12] in Case (Hdg).)

Suppose that T′ → T is a morphism over S, that Y is a well-positioned subset
(resp. subscheme) of (XH)T, and that Y′ is a well-positioned subset (resp. sub-
scheme) of (XH′)T′ , such that the morphism (2.4.4) induces a morphism

(2.4.7) [g] : Y′ → Y

of sets (resp. schemes). Then the morphism (2.4.5) induces a morphism

(2.4.8) [g]
min

: Y′,min → Ymin

extending (2.4.7), and the morphism (2.4.6) induces a morphism

(2.4.9) [g]
tor

: Y′,tor
Σ′ → Ytor

Σ

extending (2.4.7) and compatible with (2.4.8) under the canonical morphisms
∮
H′,Σ′ :

Y′,tor
Σ′ → Y′,min and

∮
H,Σ : Ytor

Σ → Ymin as in (1) of Theorem 2.3.2.

Suppose moreover that Y′ coincides with the pullback of Y under (2.4.4) as a
well-positioned subset (resp. subscheme). Then the canonical morphisms

Y′,min → Ymin ×
Xmin
H ,[g]min

Xmin
H′

and

Y′,tor
Σ′ → Ytor

Σ ×
Xtor
H,Σ,[g]

tor
Xtor
H′,Σ′

induce isomorphisms between the reduced subschemes. In the case of subschemes,
the latter morphism between partial toroidal compactifications is an isomorphism

by itself. If Y\ = {YZ}Z is associated with Y as in Definition 2.2.1, and if Y′,\Z′ is

the pullback of Y\Z under Z′ → Z, for each stratum Z′ of Xmin
H′ that is mapped to

a stratum Z of Xmin
H under (2.4.5), then Y′,\ := {Y′,\Z′ } is associated with Y′, as in

Definition 2.2.1.

Proof. These follow from the definitions, from the constructions and properties
of (2.4.4), (2.4.5), and (2.4.6) in the references mentioned, and from the same
arguments as in the proofs of Propositions 2.4.1 and 2.4.2. �

2.5. Vanishing of higher direct images, and Koecher’s principle. For sim-
plicity, let us assume that T = Spec(R1) is some noetherian affine scheme over
S = Spec(R0). Let Y be a well-positioned subset or subscheme of (XH)T, with

associated collection Y\ = {Y\Z}Z as in Definition 2.2.1, and with partial minimal
and toroidal compactifications Ymin and Ytor

Σ as in Definition 2.3.1 and Theorem
2.3.2. Let

h : C → Z

denote the structural morphism, with induced morphism

hY : Y\C → Y\Z.
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(Recall that, in the case of subschemes, this is exactly the pullback of h; but in
the case of subsets, this is just the induced map between reduced subschemes.) For

each ` ∈ S, let ΨY(`) denote the pullback of Ψ(`) under Y\C → C. As in [39, Sec.
6], let

P∨,+ := {` ∈ S : 〈`, y〉 > 0,∀y ∈ P− {0}}.
(See Proposition 2.1.2 for the meaning of S etc.)

Lemma 2.5.1 (cf. [41, Lem. 8.1]). There exist infinitely many integers n prime to p
such that, for each such n, there exists a finite étale commutative group scheme Hn

of order prime to p over Z acting on C via morphisms compatible with h : C → Z,
inducing canonical morphisms C → C/Hn

∼→ C over Z, whose composition we
denote as [n], such that

(2.5.2) [n]∗Ψ(`) ∼= Ψ(n2`) ∼= Ψ(`)⊗n
2

,

for each ` ∈ S. Moreover, for any R0-algebra R, the canonical morphism

(2.5.3) Ψ(`) ⊗
R0

R→ [n]∗(Ψ(n2`) ⊗
R0

R)

defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of Hn-invariants (cf. [63, p. 72, Cor.]).

Proof. In Case (Sm), this follows from the constructions in [36, Sec. 6.2.2–6.2.4; see
also the errata], because R0 is flat over OF0,(2). In Case (Nm), this follows from
[41, Lem. 8.1], because R0 is flat over OF0,(p). In Case (Spl), this follows from [43,
Lem. 4.4.5], because R0 is flat over OK . (See Assumption 2.1.1 for the meanings
of OF0,(2) and OK .) It remains to establish the proposition in Case (Hdg). By the
constructions in [50, Sec. 4.1–4.2], there exists some open compact subgroup H′ of
H such that, for some stratum Z′ at level H′ above Z, the corresponding C ′ → Z′ is
an abelian scheme, and C → Z is an equivariant quotient of C ′ → Z′ by some finite
group H ′. Then there exist infinitely many integers n prime to p and the order of
H ′ such that the morphism [n] : C ′ → C ′ over Z′ defined by multiplication by n,
or equivalently by quotient by the finite étale subgroup scheme C ′[n] of n-torsion
points of C ′, descends to a morphism [n] : C → C over Z defined by the quotient
by some finite étale commutative group scheme Hn of order prime to p over Z.
Moreover, we have the isomorphism (2.5.2) by descent and by its analogue at level
H′, again by the constructions in [50, Sec. 4.1–4.2]. Finally, since the order of Hn is
prime to p and hence invertible in the base ring R1, the assertion for (2.5.3) holds
by the same averaging argument as in the proof of [41, Lem. 8.1]. �

Lemma 2.5.4. The morphisms C → C/Hn
∼→ C in Lemma 2.5.1 induces similar

morphisms Y\C → Y\C/Hn
∼→ Y\C compatible with hY : Y\C → Y\Z, whose composition

we denote as [n]Y, such that

[n]∗YΨY(`) ∼= ΨY(n2`) ∼= ΨY(`)⊗n
2

,

for each ` ∈ S. Moreover, for any R1-algebra R, the canonical morphism

(2.5.5) ΨY(`) ⊗
R1

R→ [n]Y,∗(ΨY(n2`) ⊗
R1

R)

defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of Hn-invariants.
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Proof. Since the order of Hn is invertible in the base ring R1, there is a canonical
splitting of (2.5.3) defined (by descent, up to étale localizations trivializing Hn) by
sending each section x of the right-hand side to the section (#Hn)−1

∑
h∈Hn

h(x) of

the left-hand side defined by averaging, which is compatible with arbitrary base
changes. Hence, this lemma follows from Lemma 2.5.1. �

By Lemma 2.5.4, and by the same arguments as in the proofs of [41, Prop. 8.3
and 8.4], we obtain the following two propositions:

Proposition 2.5.6 (cf. [41, Prop. 8.3]). Suppose ` ∈ P∨,+. Then

RihY,∗(ΨY(`) ⊗
R1

R) = 0

for all i > 0 and all R1-algebra R.

Proposition 2.5.7 (cf. [41, Prop. 8.4]). Suppose that S ∼= Z, that ` ∈ S is negative,
and that hY has positive-dimensional fibers. Then

hY,∗(ΨY(`) ⊗
R1

R) = 0

for all R1-algebra R.

Definition 2.5.8 (cf. [39, Cor. 5.8] and [41, Def. 8.5]). Let R be an R1-algebra.
We say that a quasi-coherent sheaf E over Ytor

Σ is formally canonical (resp.
formally subcanonical) (over R) if it satisfies the following condition: Suppose

x̄ is a geometric point over Y\Z, for some stratum Z of Xmin
H . In what follows, we

shall denote by ( · )∧x̄ the pullback of ( · ) under (Y\Z)∧x̄ → Y\Z. Then there exists a

quasi-coherent sheaf E0,x̄ over (Y\C)∧x̄ satisfying the following properties:

(1) For each σ ∈ Σ+
Z , the pullback E ∧ of E to the affine formal subscheme

(Y\X◦σ )∧x̄ of (Y\XΣZ
)∧x̄ (see (5) of Theorem 2.3.2) is of the form

⊕̂`∈? ((ΨY(`))∧x̄ ⊗
O

(Y
\
C

)∧x̄

E0,x̄)

(as an O(Y\C)∧x̄
-module), where ? = σ∨ (resp. ? = σ∨+), where σ∨+ is the

intersection of τ∨0 (in S) for τ running through faces of σ in ΣZ (including
σ itself).

(2) There is a finite exhaustive filtration on E0,x̄ whose graded pieces are iso-

morphic to pullbacks (under the structural morphism (Y\C)∧x̄ → T) of quasi-
coherent sheaves over T = Spec(R1) associated with finite R-modules.

Remark 2.5.9. In Case (Sm), by [39, Cor. 5.8], the pullbacks of the usual canonical
(resp. subcanonical) extensions Ecan

M0
(W ) (resp. Esub

M0
(W )) as in [35, Def. 6.13] are

formally canonical (resp. subcanonical) as in Definition 2.5.8. The same are true
for their pullbacks to Cases (Nm) and (Spl), which is feasible when G(Zp) is a
hyperspecial maximal open compact subgroup of G(Qp).
Theorem 2.5.10 (vanishing of higher direct images; cf. [39, Thm. 3.9] and [41,
Thm. 8.6]). Suppose that R is an R1-algebra, and that E is a quasi-coherent sheaf
over Xtor

H,Σ that is formally canonical (resp. formally subcanonical) over R, as in

Definition 2.5.8. Let D′ be the effective Cartier divisor defined over Xtor
H,Σ as in [41,

Cor. 6.7] (whose definition also work here), whose support is

D := Xtor
H,Σ − XH
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with its reduced subscheme structure, and let

E (−nD′) := E ⊗
OXtor
H,Σ

OXtor
H,Σ

(−nD′),

for each integer n. Then
Ri(
∮
Y,Σ

)∗E (−nD′) = 0

for all i > 0 and n > 0 (resp. n ≥ 0).

Proof. Thanks to Theorem 2.3.2, which provides almost the same axiomatic setup

in [39, Sec. 4], except that hY : Y\C → Y\Z is in general not an abelian scheme

torsor over a finite cover of Y\Z; and thanks to Proposition 2.5.6, which implies the
analogue of [39, Lem. 6.1] for the context here; the same argument as in the proof
of [39, Thm. 3.9] also works here. �

Theorem 2.5.11 (Koecher’s principle; cf. [39, Thm. 2.3] and [41, Thm. 8.7]).
Suppose O⊗

Z
Q is a simple algebra over Q. Suppose R is an R1-algebra, and suppose

that E is a quasi-coherent sheaf over Xtor
H,Σ that is formally canonical over R, as in

Definition 2.5.8. Then the canonical restriction morphism

(2.5.12) (Ytor
Σ → Ymin)∗E → (Y → Ymin)∗(E |Y)

is an isomorphism. Consequently, for each open subset Umin of Ymin, if we de-
note by U tor

Σ its preimage in Ytor
Σ under the canonical morphisms

∮
Y,Σ

, and by U

its preimage in Y under the canonical morphism Y → Ymin, then the canonical
restriction map

(2.5.13) Γ(U tor
Σ ,E |Utor

Σ
)→ Γ(U,E |U )

is a bijection, except when dim(XH) = 1 and Umin − U 6= ∅.

Proof. Thanks to Theorem 2.3.2, which provides almost the same axiomatic setup
in [39, Sec. 4], and thanks to Proposition 2.5.7, which implies the analogue of [39,
Lem. 6.2] for the context here (under the assumption that O⊗

Z
Q is a simple algebra

over Q), the same argument as in the proof of [39, Thm. 2.3] also works here. �

Remark 2.5.14. For an example, see Example 4.2.24 below.

Remark 2.5.15. Based on the arguments of the proofs of [39, Thm. 3.9 and 2.3] and
of [41, Thm. 8.6 and 8.7], the proofs of Theorems 2.5.10 and 2.5.11 only make use

of the underlying topological space of YZ, which coincides with Y\Z as a subset of
ZT, and of the formal completion of Ytor

Σ along the preimage of YZ. Such arguments
closely follow the formal local approaches in the proofs of [24, Thm. 5.4], [42, Sec.
8.2], and [19, Ch. V, Prop. 1.5], rather than the global cohomological approaches
in the proofs of [44, Thm. 1.1], [39, Thm. 2.5], and [40, Thm. 4.5 and 4.6].

Remark 2.5.16. Theorem 2.5.11 shows that, in cases where O⊗
Z
Q is simple and

where XH → S is nonproper and of relative dimension at least two, any general-
ized Hasse invariants over the Ekedahl–Oort strata Y of (XH)s (as in Section 3.5
below) automatically extend to Ytor

Σ , as in [12, Thm. 6.2.2], and hence to the Stein
factorization (Ytor

Σ )st := Spec
OYmin

((
∮
Y,Σ

)∗OYtor
Σ

) of the proper surjective morphism∮
Y,Σ

: Ytor
Σ → Ymin, which is finite over Ymin. Although this does not imply that

they descend to Ymin in general, they do descend to Ymin (with affine nonvanishing
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loci as usual) in the context of [12] (which is in Case (Sm) here), as in [12, Thm.
6.2.3]. This is because, in Case (Sm), by [12, Lem. 3.4.3] and its proof, the forma-
tion of (

∮
H,Σ)∗OXtor

H,Σ
commutes with base change to Ymin (and gives (

∮
Y,Σ

)∗OYtor
Σ

)

whenever Y is a well-positioned subscheme of (XH)T; and therefore (Ytor
Σ )st → Ymin

is an isomorphism in this case.

Remark 2.5.17 (cf. [41, Thm. 8.10]). Since the proof of [39, Thm. 2.5] made use
of Serre duality, we cannot easily generalize the higher Koecher’s principle to the
context of Theorem 2.5.11. (We already had no idea whether we should expect
such a generalization over the whole integral models in ramified characteristics.)

3. Examples of well-positioned subsets and subschemes

3.1. Pullbacks and fibers. Let XH → S be as in Assumption 2.1.1. For any
locally noetherian scheme T over S, it is tautological that the whole scheme Y =
(XH)T is a well-positioned subscheme of itself, that Y\ = {ZT}Z is associated with
Y as in Definition 2.2.1, and so that Ymin = (Xmin

H )T and Ytor
Σ = (Xtor

H,Σ)T satisfy the
properties in Theorem 2.3.2, analogous to those in Proposition 2.1.2. In particular,
the fibers and geometric fibers of XH, Xmin

H , and Xtor
H,Σ over S admit the same

stratifications and the formal local descriptions as in Proposition 2.1.2.
This is not as trivial as it seems to be. In all cases in Assumption 2.1.1, even the

fiberwise density of XH in Xmin
H is not obvious and required some hard work, let alone

the stratification and formal local descriptions along the boundary. (Nevertheless,
these are all proved in the works [36, 38, 41, 43, 50] we cited in the proof of
Proposition 2.1.2 or rather [45, Prop. 2.2].)

3.2. p-rank strata and their pullbacks. We shall consider only Cases (Sm),
(Nm), or (Spl) in this subsection. (As explained in the introduction, we have
chosen to present our examples here and in later subsections only in PEL-type
cases, because the theories are most complete and well understood in these cases.
We have not tried to include Case (Hdg) because the corresponding theories are still
developing.) Let XH → S be as in Assumption 2.1.1, which carries a tautological
collection {(Aj, λj, ij)}j∈J of abelian varieties quasi-isogenous to each other over
XH, equipped with polarizations and endomorphism structures. (In Case (Sm), the
index set J is just a singleton.) Let T→ S be the special point s = Spec(k)→ S of
residue characteristic p > 0.

Consider any geometric point t̄→ (XH)s above a point t ∈ (XH)s, which defines
by pullback a collection {(Aj,t̄, λj,t̄, ij,t̄)}j∈J of abelian varieties quasi-isogenous to
each other over t̄, equipped with polarizations and endomorphism structures. Since
the p-rank of an abelian variety is an isogeny invariant (see [63, Ch. III, Sec. 15, p.
147]), the p-rank of t̄→ (XH)s, which we shall denote as r(t̄), can be defined to be
the p-rank of Aj,t̄ for any j ∈ J. Since the p-rank of Aj,t̄ is unchanged under any
automorphism of t̄→ (XH)s, it is unambiguous to write r(t) := r(t̄)

Since the p-rank of an m-fold self-fiber product of an abelian variety A is just m
times the p-rank of A, by considering any morphism from (XH)s to some principally
polarized Siegel moduli with no level at p (using Zarhin’s trick if necessary, as in
the constructions in [38, Lem. 4.1(2) and (4.6)]), and by pulling back the p-rank
strata over (some characteristic p fiber of) such Siegel moduli (cf. [30, Sec. IV.1]),
we obtain the following:
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Proposition 3.2.1. (1) The subset

(XH)(r)
s := {t ∈ (XH)s : r(t) = r}

of (XH)s is locally closed, and hence admits the structure of a reduced sub-
scheme, for each integer r ≥ 0.

(2) The union ∪
0≤r≤r0

(XH)
(r)
s is closed for each integer r0 ≥ 0.

(3) We have a set-theoretic disjoint union

(3.2.2) (XH)s =
∐
r≥0

(XH)(r)
s .

Remark 3.2.3. The disjoint union (3.2.2) is not a stratification in general, because

the closure of (XH)
(r0)
s in (XH)s might be smaller than ∪

0≤r≤r0
(XH)

(r)
s for some r0.

(See, for example, [22] for the case of Siegel moduli with Iwahori levels at p.)

Definition 3.2.4. By abuse of language, we shall still call (XH)
(r)
s the p-rank r

stratum of (XH)s. We shall call any such stratum a p-rank stratum.

Proposition 3.2.5. For each r0 ≥ 0, the locally closed subset Y := (XH)
(r0)
s of

(XH)s is a well-positioned subset as in Definition 2.2.1, which is associated with

some collection Y\ = {Y\Z}Z such that Y\Z is either the empty subset, or some p-rank
stratum of Zs (whose precise definition will be made clear in the proof), for each

Z. With its reduced subscheme structure, (XH)
(r0)
s admits the partial minimal and

toroidal compactifications (Xmin
H )

(r0)
s := Ymin and (Xtor

H,Σ)
(r0)
s := Ytor

Σ as in Definition

2.3.1 and Theorem 2.3.2. By Lemma 2.2.10, when C → Z is reduced (which is the

case, for example, when C → Z is smooth), (XH)
(r0)
s (with its reduced subscheme

structure) is also a well-positioned subscheme. These statements are also true if we

consider the closed union ∪
0≤r≤r0

(XH)
(r)
s instead of (XH)

(r0)
s .

To show this, we need the following (reviewing) lemma, which will also be useful
for the consideration of more complicated strata in later sections:

Lemma 3.2.6. For each W as in Proposition 2.1.3, let {(Aj,W 0 , λj,W 0 , ij,W 0)}j∈J

denote the pullback of {(Aj, λj, ij)}j∈J to W 0. By considering also the pullbacks
of the Mumford families over X◦σ (see Proposition 2.1.3), the compatible collec-
tion of polarizations {λj,W 0 : Aj,W 0 → A∨j,W 0}j∈J of abelian schemes (which are

compatible with their endomorphism structures) extends to a compatible collection
of homomorphisms {λj,W : Gj,W → G∨j,W }j∈J between semi-abelian schemes with
canonically extended endomorphism structures. Since W is noetherian and normal
(by [21, IV-2, 7.8.3(v)]), the above determines a compatible collection of homomor-

phisms {λ\j,W : G\j,W → G∨,\j,W }j∈J between their Raynaud extensions (see [36, Sec.

3.3.3 and 3.4.4]), together with a compatible collection of commutative diagrams

(3.2.7) 0 // G\j,t̄[p
n] //

λ\
j,t̄

��

Aj,t̄[p
n] //

λj,t̄

��

(Yj/p
nYj)t̄ //

φj,t̄

��

0

0 // G∨,\j,t̄ [pn] // A∨j,t̄[p
n] // (Xj/p

nXj)t̄ // 0
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and

(3.2.8) 0 // Tj,t̄[p
n] //

λTj,t̄

��

G\j,t̄[p
n] //

λ\
j,t̄

��

Bj,t̄[p
n] //

λBj,t̄

��

0

0 // T∨j,t̄[p
n] // G∨,\j,t̄ [pn] // B∨j,t̄[p

n] // 0

of finite flat group schemes over each geometric point t̄ → W 0, for each integer

n ≥ 1, where Tj,W (resp. Bj,W ) is the torus (resp. abelian) part of G\j,W , where

T∨j,W (resp. B∨j,W ) is the torus (resp. abelian) part of G∨,\j,W , where Xj and Yj are

the respective character groups of Tj and T∨j , where the objects with subscripts t̄

are pullbacks to t̄ of the corresponding objects over W 0 or W , where the vertical
morphisms are all induced by polarizations, and where the horizontal morphisms
are all exact sequences of finite flat group schemes.

Proof. These assertions follow from the corresponding assertions for Mumford fam-
ilies. (See [36, Ch. 4 and 5, and Sec. 6.2.5] for Mumford’s construction and for
the definition of Mumford families, and see more particularly [36, Cor. 4.5.2.13 and
Prop. 5.2.2.1] for the assertions concerning torsion points.) �

Proof of Proposition 3.2.5. By Lemma 3.2.6, for each j ∈ J and for each geometric
point t̄ → W 0, since (Y/pnY )t̄ is constant (étale) and since Tj,t̄ is a torus (and
hence Tj,t̄[p

n] is of multiplicative type for every n ≥ 1), the p-rank of Aj,t̄ is just
rkZ(Y ) plus the p-rank of the abelian part Bj,t̄, which depends only on the composi-
tion t̄→W 0 → Z, under which (Bj,t̄, λBj,t̄

, iBj,t̄
) is the pullback of the tautological

(Bj, λBj , iBj) over Z. Hence, Y := (XH)
(r0)
s is a well-positioned subset as in Defini-

tion 2.2.1 if, when r0 ≥ rkZ(Y ), we take Y\Z := Z
r0−rkZ(Y )
s , the p-rank r0 − rkZ(Y )

stratum of Zs (defined similarly by the tautological collection {(Bj, λBj
, iBj

)}j∈J

over Z); and when r0 < rkZ(Y ), we take Y\Z := ∅. The remaining assertions in the
proposition are self-explanatory. �

Remark 3.2.9. When C → Z is reduced at some level H, so that (XH)
(r)
s is a

well-positioned subscheme of (XH)s by Proposition 3.2.5, for each integer r ≥ 0,

the pullback of (XH)
(r)
s to (XH′)s for any higher level H′ ⊂ H is a well-positioned

subscheme of (XH′)s, by Proposition 2.4.2, which underlies the same subset as

(XH′)
(r)
s . This is useful, for example, when p is a good prime for (O, ?, L, 〈 · , · 〉, h0)

as in [36, Def. 1.4.1.1], in which case there exists a bottom level H at which the
morphisms C → Z are all smooth. Then we can pullback from such a bottom level
and obtain well-positioned subschemes over the p-rank strata in all higher levels.

3.3. Newton strata and their pullbacks. We shall consider only Cases (Sm),
(Nm), or (Spl) in this subsection. Let XH → S be as in Assumption 2.1.1, which
carries a tautological collection {(Aj, λj, ij, αHj

)}j∈J, as in the beginning of Section
3.2. Let us take T → S to be the special point s = Spec(k) → S. For simplicity,
assume that O⊗

Z
Q involves no factor of type D, in the sense of [36, Def. 1.2.1.15],

so that (any pullback of) G⊗
Z
Q is (fiberwise) connected.

Consider any geometric point t̄ = Spec(k(t̄))→ (XH)s above a point t ∈ (XH)s,
which defines by pullback a collection {(Aj,t̄, λj,t̄, ij,t̄)}j∈J as before, and hence also
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a collection

{(Aj,t̄[p
∞], λj,t̄, ij,t̄)}j∈J

of Barsotti–Tate groups with quasi-polarizations and endomorphism structures.
Consider

Kt̄ := Frac(W (k(t̄))),

which is equipped with the Frobenius automorphism σt̄ induced by the p-th power
automorphism of k(t̄). Following [31] and [74, Sec. 1], we say that two elements
x, y ∈ G(Kt̄) are σt̄-conjugate if there exists g ∈ G(Kt̄) such that g−1xσt̄(g) = y.
By [75, Lem. 1.16], any morphism t̄′ → t̄ between spectra of algebraically closed
fields in characteristic p > 0 induces a bijection from the set of σt̄-conjugacy classes
in G(Kt̄) to the set of σt̄′ -conjugacy classes in G(Kt̄′), and hence it is unambiguous
to denote either of the two sets as B(G⊗

Z
Qp).

For each j ∈ J, the covariant Dieudonné module D(Aj,t̄[p
∞]) of Aj,t̄[p

∞] is canon-
ically isomorphic to the W (k(t̄))-dual of H1

crys(At̄/W (k(t̄))), equipped with addi-
tional structures induced by λj,t̄ and ij,t̄, and with its (σt̄-linear) Frobenius and

(σ−1
t̄ -linear) Verschiebung endomorphisms, as usual. (See [54, Ch. IV], [53], and

[7].) By [75, 3.23 c)], we have compatible symplectic isomorphisms

D(Aj,t̄[p
∞]) ∼= Lj⊗

Z
W (k(t̄))

of O⊗
Z
W (kt̄)-modules, for all j ∈ J, inducing compatible symplectic isomorphisms

D(Aj,t̄[p
∞]) ⊗

W (k(t̄))
Kt̄
∼= L⊗

Z
Kt̄

of O⊗
Z
Kt̄-modules. Hence, for any j ∈ J, the Frobenius automorphism of

D(Aj,t̄[p
∞]) ⊗

W (k(t̄))
Kt̄ induces a σt̄-linear automorphism of L⊗

Z
Kt̄, which is

independent of the choice of j ∈ J and determines a well-defined σt̄-conjugacy
class b(t̄) in B(G⊗

Z
Qp).

By [74, Sec. 1–3, especially Thm. 3.6] and [31, Sec. 3], we have the following:

Proposition 3.3.1. (1) The assignment of b(t̄) ∈ B(G⊗
Z
Qp) to a geometric

point t̄ → (XH)s depends only on the image t of t̄ → (XH)s, in the sense
that any automorphism of t̄ → (XH)s induces an automorphism of G(Kt̄)
preserving the σt̄-conjugacy class of b(t̄). Thus, it is unambiguous to write

b(t) := b(t̄).

(2) There is a partial ordering ≤ on the set B(G⊗
Z
Qp) such that, for each

b ∈ B(G⊗
Z
Qp), the subset {t ∈ (XH)s : b(t) ≤ b} of (XH)s is closed, and so

the subset

(XH)bs := {t ∈ (XH)s : b(t) = b}

of (XH)s is locally closed. Hence, we have a set-theoretic disjoint union

(3.3.2) (XH)s =
∐

b∈B(G⊗
Z
Qp)

(XH)bs.
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(3) There is a canonical map from B(G⊗
Z
Qp) to the set N of Newton poly-

gons (for GLQp(L⊗
Z
Qp)), denoted b 7→ νb, such that b ≤ b′ only if νb ≤ νb′

(which is the case when νb and νb′ have the same end points and νb lies above
νb′). For each geometric point t̄→ (XH)s, the corresponding Newton poly-
gon νb(t̄) is the one classifying the (rational) covariant Dieudonné module
D(Aj,t̄[p

∞]) ⊗
W (k(t̄))

Kt̄ (for any j ∈ J), ignoring the additional structures.

(4) For each ν ∈ N , the subset {t ∈ (XH)s : νb(t) ≤ ν} of (XH)s is closed, and
so the subset

(XH)νs := {t ∈ (XH)s : νb(t) = ν}

of (XH)s is locally closed. Hence, we have a set-theoretic disjoint union

(3.3.3) (XH)s =
∐
ν∈N

(XH)νs ,

which is coarser than (3.3.2) in general. For each b ∈ B(G⊗
Z
Qp), the subset

(XH)bs of (XH)νbs is open and closed.

Remark 3.3.4. The disjoint union (3.3.2) is not a stratification in general, because
the closure of (XH)bs = {t ∈ (XH)s : b(t) = b} in (XH)s might be smaller than
{t ∈ (XH)s : b(t) ≤ b}. (See [77] and [25, Cor. 3.11.2 and Sec. 3.12] for examples
where the ordinary loci are nonempty but not dense.) Nevertheless, the situation is
better in Case (Sm), where the level at p is hyperspecial: By [23, Thm. 1.1], (3.3.2)
is indeed a stratification. Moreover, by [83, Thm. 11.1], (XH)bs is nonempty for
each b ∈ B(G⊗

Z
Q, [µ]) ⊂ B(G⊗

Z
Q), where [µ] is the conjugacy class of cocharacters

determined by h0 as in [45, Sec. 6.1], and where B(G⊗
Z
Q, [µ]) is as in [33, Sec. 6].

Definition 3.3.5. By abuse of language, we shall still call each (XH)bs a Newton
stratum of (XH)s.

Let Z be a stratum of Xmin
H . (At least temporarily, we will need to introduce some

filtrations Z and V, where Z is typeset in a very slightly different font compared with
Z. This could be a bit confusing, but we hope the purpose of the notation will be
clear from the context.) Since we are in Cases (Sm), (Nm), or (Spl), the stratum Z
is associated with some cusp label [(ZH,ΦH, δH)], which determines an H-orbit ZH
of a fully symplectic liftable filtration Z = {Z−i}i∈Z on L⊗

Z
Ẑ (see [36, Def. 5.2.7.1

and 5.4.2.4]). By [37, Prop. A.5.8 and Lem. A.4.3], we have the following:

Lemma 3.3.6. In Cases (Sm), (Nm), or (Spl), under the assumption that G⊗
Z
Q

is connected, there exists a parabolic subgroup P of G⊗
Z
Q, which is the stabilizer of

a symplectic filtration V = {V−i}i∈Z of L⊗
Z
Q, with

0 = V−3 ⊂ V−2 ⊂ V⊥−2 = V−1 ⊂ V0 = L⊗
Z
Q,

such that V−2⊗
Q
A∞ lies in the H-orbit of Z−2⊗

Z
Q for some representative Z of ZH.

The image of P in each simple factor of (G⊗
Z
Q)ad is either the whole factor or a

proper maximal parabolic subgroup.
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Remark 3.3.7. Lemma 3.3.6 is generally false without the assumption that G⊗
Z
Q

is connected. See [37, Ex. A.7.2].

Let us fix the choices of P and V as in Lemma 3.3.6.

Definition 3.3.8. For each i, set GrV−i = V−i/V−i−1 as usual. Then GrV−1 is
equipped with a pairing 〈 · , · 〉−1 induced by 〈 · , · 〉, compatible with O-actions in the
sense that 〈bx, y〉−1 = 〈x, b?y〉−1 for all b ∈ O and x, y ∈ GrV−1.

Consider, for each Q-algebra R, the following quotients of subgroups of P(R):

(1) P′(R) is the kernel of the homomorphism

(ν−1 GrV−2)(R)×GrV0(R) : P(R)→ GLO⊗
Z
R(GrV−2⊗

Q
R)×GLO⊗

Z
R(GrV0⊗

Q
R) :

(g, r) 7→ (r−1 GrV−2(g),GrV0(g)),

where ν(R) : P(R)→ Gm(R) : (g, r) 7→ r denotes the similitude character.
(2) U(R) := {g ∈ P : GrV(g) = IdGrV}.
(3) M(R) := P(R)/U(R).

(4) Gh(R) :=

{
(gh, r) ∈ GLO⊗

Z
R(GrV−1⊗

Q
R)×R× :

〈ghx, ghy〉−1 = r〈x, y〉−1,∀x, y ∈ V−1

}
, which is equipped with

a canonical homomorphism

GrV−1(R) : P(R)→ Gh(R) : (g, r) 7→ (gh := GrV−1(g), r).

Also, the canonical homomorphism P′(R) → Gh(R) induces a canonical

isomorphism P′(R)/U(R)
∼→ Gh(R).

(5) Z(R) := ker(GrV−1(R)), which contains U(R) by definition.
(6) Gl(R) := Z(R)/U(R) ∼= M(R)/Gh(R), and so M(R) ∼= Gl(R)×Gh(R).

These assignments are functorial in R, and define the unipotent radical U of P,
the Levi quotient M ∼= P/U, and a canonical factorization M ∼= Gl×Gh. For each
H ⊂ G(A∞), we define HP := H∩P(A∞), H′P := H∩P′(A∞), HU := H∩U(A∞),
HM := HP/HU, Hl := HM ∩Gl(A∞), H′l := HP/H′P, Hh := HM/Hl, and H′h :=
H′P/HU. Moreover, for each torus argument Φ representing ΦH, we define Hh,Φ to
be the image in Gh(A∞) of the stabilizer of Φ in HP, so that H′h ⊂ Hh,Φ ⊂ Hh.

Proposition 3.3.9. For each b ∈ B(G⊗
Z
Qp), the (possibly empty) locally closed

subset Y := (XH)bs of (XH)s is a well-positioned subset as in Definition 2.2.1, which

is associated with some collection Y\ = {Y\Z}Z such that Y\Z is either empty or some
Newton stratum of Zs (whose precise definition will be made clear in the proof), for
each Z. With its reduced subscheme structure, (XH)bs admits the partial minimal
and toroidal compactifications (Xmin

H )bs := Ymin and (Xtor
H,Σ)bs := Ytor

Σ as in Definition

2.3.1 and Theorem 2.3.2. By Lemma 2.2.10, when C → Z is reduced (which is the
case, for example, when C → Z is smooth), (XH)bs (with its reduced subscheme
structure) is also a well-positioned subscheme. The analogous statements are true

if we consider the closed union ∪
b′≤b

(XH)b
′

s = {t ∈ (XH)s : b(t) ≤ b} instead of

(XH)bs. By Lemma 2.2.5 and by (4) of Proposition 3.3.1, the analogous statements

are also true if we consider (XH)νs and the closed union ∪
ν′≤ν

(XH)ν
′

s , for each ν ∈ N .

Proof. By Lemma 3.2.6, for each j ∈ J, for each W as in Proposition 2.1.3, and for
each geometric point t̄→W 0, the Barsotti–Tate group Aj,t̄[p

∞] admits a filtration
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with filtered pieces 0 ⊂ Tj,t̄[p
∞] ⊂ G\j,t̄[p

∞] ⊂ Aj,t̄[p
∞], with the graded pieces

given by the (multiplicative-type) torus part Tj,t̄[p
∞], the abelian part Bj,t̄[p

∞],
and the (étale) constant part (Yj⊗

Z
(Qp/Zp))t̄, compatibly equipped with quasi-

polarizations and endomorphism structures. Hence, by functoriality, the associated
covariant Dieudonné module D(Aj,t̄[p

∞]) carries a symplectic filtration

(3.3.10) 0 ⊂ D(Tj,t̄[p
∞]) ⊂ D(G\j,t̄[p

∞]) ⊂ D(Aj,t̄[p
∞])

by O⊗
Z
W (k(t̄))-submodules.

The bottom totally isotropic piece D(Tj,t̄[p
∞]) of (3.3.10) has the same

O-multirank (see [36, Def. 1.2.1.25]) as Z−2, where Z is any representative of the
H-orbit ZH underlying the cusp label of Z (see [36, Def. 5.4.2.4 and 5.4.2.7, and
Thm. 7.2.4.1(4)]). By [37, Lem. A.4.3 and A.4.4] and their proofs, up to modifying
the choices of the above symplectic isomorphisms D(Aj,t̄[p

∞]) ⊗
W (k(t̄))

Kt̄
∼= L⊗

Z
Kt̄

of O⊗
Z
Kt̄-modules, which still define the same element b(t̄) ∈ B(G⊗

Z
Qp), we may

assume that these isomorphisms match (3.3.10) with the filtration Z⊗
Ẑ
Kt̄ on

L⊗
Z
Kt̄. By [37, Prop. A.5.8], there exists a totally isotropic O⊗

Z
Q-submodule

V−2 of L⊗
Z
Q such that V−2⊗

Q
A∞ lies in the H-orbit of Z−2⊗

Z
Q, whose stabilizer

defines a parabolic subgroup P of G⊗
Z
Q, as in Lemma 3.3.6. Let M, Gl, and Gh

be defined as in Definition 3.3.8. Let B(P⊗
Q
Qp) denote the sets of σt̄-conjugacy

classes in P(Kt̄), and let us similarly define B(M⊗
Q
Qp), B(Gl⊗

Q
Qp), and

B(Gh⊗
Q
Qp). Then we have canonical maps

B(P⊗
Q
Qp)→ B(G⊗

Z
Qp)

and

B(P⊗
Q
Qp)→ B(M⊗

Q
Qp) ∼= B(Gl⊗

Q
Qp)×B(Gh⊗

Q
Qp)

induced by the canonical homomorphisms between the groups. By repeating the
definition of b(t̄), the isomorphisms D(Aj,t̄[p

∞]) ⊗
W (k(t̄))

Kt̄
∼= L⊗

Z
Kt̄ above, which

we have assumed to match the filtrations on both sides, define an element bP(t̄) ∈
B(P⊗

Q
Qp) whose image under B(P⊗

Q
Qp)→ B(G⊗

Z
Qp) is b(t̄).

By [33, Sec. 1.4 and 3.6], b(t̄) is determined by the image bM(t̄) of bP(t̄) un-
der the canonical map B(P⊗

Q
Qp) → B(M⊗

Q
Qp), which is in turn determined by

the composition t̄ → W 0 → Z. (Since the two outer graded pieces Tj,t̄[p
∞] and

(Yj⊗
Z

(Qp/Zp))t̄ are multiplicative-type and étale, the essential data is the middle

graded piece Bj,t̄[p
∞] (with its additional structures), which is determined by the

induced t̄ → Z.) On the other hand, since O⊗
Z
Q involves no factor of type D, by

[36, Lem. 1.4.3.3] and by the proof of [37, Lem. A.4.7], the middle graded piece
D(Bj,t̄[p

∞]) ⊗
W (k(t̄))

Kt̄ is determined by D(Aj,t̄[p
∞]) ⊗

W (k(t̄))
Kt̄ (both with their ad-

ditional structures), and therefore b(t̄) also determines bM(t̄).
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For each b ∈ B(G⊗
Z
Qp), and for each Z as above, let us define a locally closed

subset Zbs of Zs as follows: We define Zbs to be empty either if (XH)bs is empty, or
if b is not the image of any bP ∈ B(P⊗

Q
Qp). Otherwise, we define Zbs to be Zbhs ,

the Newton stratum of Zs associated with bh ∈ B(Gh⊗
Q
Qp), where (bl, bh) is the

image of bM under B(M⊗
Q
Qp) ∼= B(Gl⊗

Q
Qp)×B(Gh⊗

Q
Qp). (For our purpose, bl is

not important, because it parameterizes the torus parts of degenerations.)
By the explanations above, for each b ∈ B(G⊗

Z
Qp) as above, and for each W 0

as in Proposition 2.1.3, the pullback of Y := (XH)bs to (W 0)s coincides with the

pullback of Y\Z := Zbs. Thus, Y is a well-positioned subset. The remaining assertions
in the proposition are then self-explanatory. �

Remark 3.3.11. When C → Z is reduced at some level H, so that (XH)bs is a
well-positioned subscheme of (XH)s by Proposition 3.3.9, for each b ∈ B(G⊗

Z
Qp),

the pullback of (XH)bs to (XH′)s for each higher level H′ ⊂ H is a well-positioned
subscheme of (XH′)s, by Proposition 2.4.2, which underlies the same subset as
(XH′)

b
s. (See Remark 3.2.9 for a similar consideration.) Then we can pullback from

such a bottom level and obtain well-positioned subschemes over the Newton strata
in all higher levels. Similar statements are true for pullbacks of (XH)νs to higher
levels, for each ν ∈ N .

3.4. Oort central leaves and their pullbacks. In this subsection, we shall con-
sider only XH → S in the following special case of Case (Nm): Suppose p is a good
prime (as in [36, Def. 1.4.1.1]) for the integral PEL datum (O, ?, L, 〈 · , · 〉, h0) in
Assumption 2.1.1 (which we have insisted to satisfy [36, Cond. 1.4.3.10]). Consider
the trivial collection J = {j0} with

{(gj0 , Lj0 , 〈 · , · 〉j0)} = {(1, L, 〈 · , · 〉)},

as in [38, Ex. 2.3]. Let H be any neat open compact subgroup of G(Ẑ). Let Hp
denote the image of H under the canonical homomorphism G(Ẑ)→ G(Ẑp), and let

H0 := HpG(Zp).

Since p is a good prime for (O, ?, L, 〈 · , · 〉, h0), we have a good reduction integral
model MHp → Spec(OF0,(p)) as in [36, Sec. 1.4.1]. By [36, Prop. 1.4.4.3], the
canonical morphism MH0

→ MHp ⊗
Z
Q is an open and closed immersion. Since the

schemes ~MH0 and ~MH over ~S0 = Spec(OF0,(p)) in [38, Prop. 6.1] are independent
of the auxiliary choices, by taking MHp as an auxiliary good reduction model, we

have an open and closed immersion ~MH0
↪→ MHp , and we can take ~MH to be

the normalization of MHp under the composition MH → MH0
→ ~MH0

↪→ MHp of
canonical morphisms. Then we take XH → S (resp. XH0

→ S) to be the pullback of
~MH → ~S0 (resp. ~MH0 → ~S0), which carries the pullback (A, λ, i) of the tautological

( ~Aj0 ,
~λj0 ,~ij0) over ~MH (resp. ~MH0).

Let T = s̄ → S be a geometric point above the special point s = Spec(k) → S
of residue characteristic p > 0. Let (X, λX, iX) denote any Barsotti–Tate group
X over s̄, with a quasi-polarization λX and an O⊗

Z
Zp-endomorphism structure iX
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compatible with λX. By [66, Thm. 3.3] for the case of quasi-polarized Barsotti–
Tate groups without additional structures, by the fact that there are only finitely
many O⊗

Z
Zp-endomorphism structures over each polarized abelian scheme (see [36,

Prop. 1.3.3.7]), and by (3) and (4) of Proposition 3.3.1, we obtain the following:

Proposition 3.4.1. Let k0 and (X, λX, iX) be as above.

(1) There is a locally closed subset

C(X,λX,iX)((XH)s̄)

of (XH)s̄ containing all points t ∈ (XH)s̄ such that there exists some geo-
metric point t̄ = Spec(k(t̄)) → (XH)s̄ above t ∈ (XH)s̄ such that the triple
(At̄[p

∞], λt̄, it̄) over t̄ defined by the pullback (At̄, λt̄, it̄) of the tautological
triple over XH is isomorphic to the pullback of (X, λX, iX).

(2) Consider the b(X, λX, iX) ∈ B(G⊗
Z
Qp) defined by the (rational) covariant

Dieudonné module D(X) ⊗
W (k0)

Frac(W (k0)) and its additional structures in-

duced by λX and iX. Then C(X,λX,iX)((XH)s̄) is a closed subset, called the

Oort central leaf, of the Newton stratum (XH)
b(X,λX,iX)
s̄ .

Proposition 3.4.2. Let s̄ = Spec(k̄) and (X, λX, iX) be as above. The locally
closed subset Y := C(X,λX,iX)((XH)s̄) of (XH)s̄ is a well-positioned subset as in

Definition 2.2.1, which is associated with some collection Y\ = {Y\Z}Z such that Y\Z
is either the empty subset or some Oort central leaf of Zs̄ (whose precise definition
will be made clear in the proof), for each Z. With its reduced subscheme structure,
C(X,λX,iX)((XH)s̄) admits the partial minimal and toroidal compactifications Ymin

and Ytor
Σ as in Definition 2.3.1 and Theorem 2.3.2, which we abusively denote by

C(X,λX,iX)((X
min
H )s̄) and C(X,λX,iX)((X

tor
H,Σ)s̄), respectively. By Lemma 2.2.10, when

C → Z is reduced (which is the case when H = H0, in which case C → Z is smooth,
by [36, Thm. 6.4.1.1]), C(X,λX,iX) (with its reduced subscheme structure) is also a
well-positioned subscheme.

To show this, we need the following technical lemma, which will also be useful
for the consideration in Section 3.5:

Lemma 3.4.3. With the setting as in Lemma 3.2.6, but with j and J suppressed
from the notation system, for each n ≥ 1, consider the canonical geometric filtration

(3.4.4) W−3,pn = 0 ⊂ W−2,pn = Tt̄[p
n] ⊂ W−1,pn = G\t̄[p

n] ⊂ W0,pn = At̄[p
n]

on At̄[p
n] defined by (3.2.7) and (3.2.8), which is symplectic with respect to the

λt̄-Weil pairing

eλt̄ : At̄[p
n]×At̄[pn]→ µpn,t̄

(which is perfect because λt̄ is of degree prime to p, under the assumption that p is
good for (O, ?, L, 〈 · , · 〉, h0)) in the sense that W−2,pn and W−1,pn are the annihilators
of each other.

Then there exists a noncanonical splitting

(3.4.5) ςpn : GrWpn = Tt̄[p
n]⊕Bt̄[pn]⊕(Y/pnY )t̄

∼→ At̄[p
n]
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of the filtration Wpn which respects the canonical pairings in the sense that, for each

(x−2, x−1, x0) and (y−2, y−1, y0) in GrWpn , we have

eλt̄(ςpn((x−2, x−1, x0)), ςpn((y−2, y−1, y0)))

= eλB,t̄(x−1, y−1) + [eφ(x−2, y0)− eφ(y−2, x0)],
(3.4.6)

where
eλB,t̄ : Bt̄[p

n]×Bt̄[pn]→ µpn,t̄
is the λB,t̄-Weil pairing on the abelian part, and where

eφ : Tt̄[p
n]×(Y/pnY )t̄ → µpn,t̄

is the canonical pairing defined by eφ(x, y) = x(φ(y)) = (φ(y))(x) for all x ∈
Tt̄[p

n] ∼= Homt̄((X/p
nX)t̄,µpn,t̄) and y ∈ (Y/pnY )t̄, where φ : Y → X is dual to

the homomorphism λT,t̄ : Tt̄ → T∨t̄ between the torus parts, induced by λ\t̄ (which are
perfect pairings, because λB,t̄ and φ are of degree prime to p since λt̄ is). We may
assume that ςpn lifts to similar splittings ςpn′ (respecting the canonical pairings) for

all n′ ≥ n.

Proof. Since W is flat over S, there exists a complete discrete valuation ring V with
residue field k(t̄) and with generic point η of residue characteristic zero, together
with a morphism Spec(V )→W 0 lifting the geometric point t̄→W 0. Let us denote
the pullbacks to η of A etc by Aη etc, with subscripts η.

Since η is of residue characteristic zero, and since some level structure αH is
defined over XH⊗

Z
Q, up to replacing V with a finite flat extension (with the same

residue field), we may assume that there is an integral principal level-pn struc-

ture αpn,η : L/pnL
∼→ Aη[pn] of type (L⊗

Z
Ẑ, 〈 · , · 〉) as in [36, Def. 1.3.6.2], whose

pullback to some geometric point η̄ → η is the reduction modulo pn of some sym-
plectic isomorphism α̂η̄ : L⊗

Z
Ẑ ∼→ TAη̄. By pulling back the geometric filtration

on TAη̄ defined by (3.2.7) and (3.2.8) (cf. [36, Prop. 5.2.2.1]), we obtain a filtra-

tion Z on L⊗
Z
Ẑ (whose H-orbit ZH is associated with the cusp label [(ΦH, δH)]

for the stratum Z), which admits a noncanonical splitting δ̂ : GrZ
∼→ L⊗

Z
Ẑ of

O⊗
Z
Zp-modules which respects the induced pairings between the graded pieces.

Hence, by using the above isomorphism α̂η̄, there is also a noncanonical splitting

ς̂η̄ : Tp Tt̄⊕TpBt̄⊕(Y ⊗
Z
Zp)η̄

∼→ TpAη̄, whose reduction modulo pn descends to a

noncanonical splitting

ςpn,η : GrWpn = Tη[pn]⊕Bη[pn]⊕(Y/pnY )η
∼→ Aη[pn],

which are compatible with the O⊗
Z
Zp-module structures and respect the induced

pairings between the grade pieces. (See [36, Sec. 5.2.2] for all of these.)
By [36, Lem. 1.2.4.4], since p is a good prime, up to a change of coordinates

on L⊗
Z
Zp which replaces the above splittings with some other choices, we may

assume that ςpn,η is symplectic in the sense that the condition (3.4.6) holds with
η replacing t̄. Moreover, for each n′ ≥ n, up to replacing η with a point η′ finite
over it, we may assume that ςpn,η lifts to a similar splitting ςpn′ ,η′ (respecting the

canonical pairings). By [36, Prop. 5.2.3.3, or rather the proofs of Lem. 5.2.3.1 and
5.2.3.2], since η is the generic point of a complete discrete valuation ring V , the
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splitting ςpn,η extends to a splitting over V respecting the canonical pairings (with
V replacing η in (3.4.5) and (3.4.6)), whose pullback to t̄ gives the desired splitting
ςpn,t̄ as in (3.4.5), satisfying the condition given by (3.4.6), which lifts to similar
splittings ςpn′ (respecting the canonical pairings) for all n′ ≥ n. �

Proof of Proposition 3.4.2. In Lemma 3.4.3, by varying n ≥ 1, the isomorphism
class of (At̄[p

∞], λt̄, it̄) determines and is determined by the isomorphism classes of
(X,Y, φ : Y → X) and of (Bt̄[p

∞], λB,t̄, iB,t̄), which depends only on the compo-
sition t̄ → W 0 → Z. Therefore, for each W 0 as in Proposition 2.1.3, the pullback

of Y = C(X,λX,iX)((XH)s̄) to (W 0)s̄ coincides with the pullback of some subset Y\Z
of Zs̄ which is either the empty subset, or some Oort central leaf, whose definition
depends only on (X, λX, iX). Hence, Y is a well-positioned subset. The remaining
assertions in the proposition are then self-explanatory. �

Remark 3.4.7. Since C → Z is reduced at level H0, so that C(X,λX,iX)((XH0
)s̄)

is a well-positioned subscheme of (XH0)s̄ by Proposition 3.4.2, the pullback of
C(X,λX,iX)((XH0

)s̄) to (XH)s̄ is a well-positioned subscheme of (XH)s̄, by Propo-
sition 2.4.2, which underlies the same subset as C(X,λX,iX)((XH)s̄). (See Remarks
3.2.9 and 3.3.11 for similar considerations.) Then we can pullback from H0 and
obtain well-positioned subschemes over the Oort central leaves in all higher levels.

3.5. Ekedahl–Oort strata and their pullbacks. In this subsection, we shall
consider only the same kinds of XH → S in Case (Nm) as in Section 3.4. Let T→ S
be the special point s = Spec(k) → S of residue characteristic p > 0. Consider
any geometric point t̄ = Spec(k(t̄)) → (XH)s above a point t ∈ (XH)s, which de-
fines by pullback a triple (At̄, λt̄, it̄), and hence also a truncated Barsotti–Tate group
(At̄[p

n], λt̄, it̄) with the induced quasi-polarization and endomorphism structure, for
each integer n ≥ 1. When n = 1, the isomorphism class of the triple (At̄[p], λt̄, it̄)
is classified by the isomorphism class of the associated F -zip with additional struc-
tures. Concretely, this F -zip is (Mt̄, Ct̄, Dt̄, ϕ0,t̄, ϕ1,t̄), where Mt̄ := HdR

1 (At̄/t̄) :=

H1
dR(At̄/t̄)

∨
is equipped with its two maximal totally isotropic submodules Ct̄ :=

H0(At̄,Ω
1
At̄/t̄

)⊥ = ker(HdR
1 (At̄/t̄) → LieAt̄/t̄) and Dt̄ := (H1(At̄,H

0(Ω•At̄/t̄)))
⊥

given by the Hodge filtration and the conjugate filtration, respectively, together

with the isomorphisms ϕ0,t̄ : (Mt̄/Ct̄)
(p) ∼→ Dt̄ and ϕ1,t̄ : C

(p)
t̄

∼→ Mt̄/Dt̄ induced
by the Cartier isomorphism, as in [83, Sec. 3.1] (which is dual to the construction in
[57, Sec. 7.5]). As explained in [83, Ex. 3.2], Ct̄ = ker(F ) and Dt̄ = ker(V ), where
the (σt̄-linear) Frobenius F : Mt̄ →Mt̄ and (σ−1

t̄ -linear) Verschiebung V : Mt̄ →Mt̄

are the respective reductions modulo p of the corresponding F and V of the co-
variant Dieudonné module D(At̄[p

∞]) (which can be canonically identified with the
dual of H1

crys(At̄/W (k(t̄)))).
For simplicity, assume that O⊗

Z
Q involves no factor of type D, in the sense of

[36, Def. 1.2.1.15], so that (any pullback of) G⊗
Z
Q is connected. By [83, Sec. 3.1

and 5.1–5.3, Thm. 7.1 and 10.1, Cor. 10.2, and Prop. 10.3] (and the references there
to earlier works) for the case H = H0 (with hyperspecial level at p), and by pulling
back the locally closed strata to higher levels H ⊂ H0, we obtain the following:

Proposition 3.5.1. (1) The isomorphism class of F -zips over k(t̄) with addi-
tional structures (in the precise sense described in [83, Def. 3.1]) is classified
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by elements of the subset WM0 of W of minimal Weyl length representa-
tives of WM0\W , where W is the Weyl group of G⊗

Z
F̄p, where F̄p is some

algebraic closure of Fp, and where WM0 is the Weyl group of a Levi sub-
group M0 of a parabolic subgroup P0 of G⊗

Z
F̄p defined up to conjugacy

by h0 (or rather by the p-adic version of [µ] determined by h0, as in [45,
Sec. 6.1]). In particular, there is an element w(t̄) ∈ WM0 associated with
the above F -zip (Mt̄, Ct̄, Dt̄, ϕ0,t̄, ϕ1,t̄) with additional structures induced by
λt̄ and it̄, which depends only on the image t of t̄ → (XH)s. Thus, it is
unambiguous to write w(t) := w(t̄).

(2) There is a partial ordering ≤ on the set WM0 (see [73, Cor. 6.3]) such that,
for each w ∈ WM0 , the subset {t ∈ (XH)s : w(t) ≤ w} of (XH)s is closed,
and so the subset

(XH)ws := {t ∈ (XH)s : w(t) = w}
of (XH)s is locally closed. Hence, we have a set-theoretic disjoint union

(3.5.2) (XH)s =
∐

w∈WM0

(XH)ws .

(3) When H = H0, the disjoint union (3.5.2) is a stratification in the sense

that the closure of (XH0
)ws is {t ∈ (XH0

)s : w(t) ≤ w} = ∪
w′≤w

(XH0
)w
′

s ,

for each w ∈ WM0 . This is called the Ekedahl–Oort stratification of
(XH0)s (see [65], [55], [56], [84], [57], and [83]). Moreover, each (XH0)ws is
equidimensional of dimension l(w), and smooth (over s).

(4) The assignment of F -zips with additional structures works more generally
over schemes over s and defines a canonical morphism ζ : (XH)s → Zip,
where Zip abusively denotes the Artin stack over s of F -zips with additional
structures. When H = H0, the morphism ζ is smooth (by, for example,
specializing [85, Thm. 3.1.2] to our setting here).

Remark 3.5.3. The disjoint union (3.5.2) might not be a stratification in general.
Although it is indeed a stratification at level H0, the morphism (XH)s → (XH0

)s is
not necessarily flat, and hence might not preserve the closure relations.

Definition 3.5.4. By abuse of language, we shall still call each (XH)ws an
Ekedahl–Oort stratum of (XH)s.

Proposition 3.5.5. For each w ∈ WM0 , the locally closed subset Y := (XH)ws of
(XH)s is a well-positioned subset as in Definition 2.2.1, which is associated with

some collection Y\ = {Y\Z}Z such that Y\Z is either the empty subset or some
Ekedahl–Oort stratum of Zs (whose precise definition will be made clear in the
proof), for each Z. With its reduced subscheme structure, (XH)ws admits the partial
minimal and toroidal compactifications (Xmin

H )ws := Ymin and (Xtor
H,Σ)ws := Ytor

Σ as
in Definition 2.3.1 and Theorem 2.3.2. By Lemma 2.2.10, when C → Z is reduced
(which is the case when H = H0, in which case C → Z is smooth, by [36, Thm.
6.4.1.1]), (XH)ws (with its reduced subscheme structure) is also a well-positioned
subscheme. The analogous statements are true if we consider the closed union
∪

w′≤w
(XH)w

′

s = {t ∈ (XH)s : w(t) ≤ w} instead of (XH)ws .

Proof. In Lemma 3.4.3, with n = 1, the isomorphism class of (At̄[p], λt̄, it̄) deter-
mines and is determined by the isomorphism classes of (X,Y, φ : Y → X) and of
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(Bt̄[p], λB,t̄, iB,t̄), which depends only on the composition t̄ → W 0 → Z, because
there is some splitting (3.4.5) which respects the pairings as in (3.4.6). There-
fore, for each w ∈ WM0 , and for each W 0 as in Proposition 2.1.3, the pullback of

Y = (XH)ws to (W 0)s coincides with the pullback of some subset Y\Z of Zs which
is either the empty subset, or some Ekedahl–Oort stratum, whose definition de-
pends only on w (and can be explicitly given in group-theoretic terms). Hence, Y
is a well-positioned subset. The remaining assertions in the proposition are then
self-explanatory. �

Remark 3.5.6. Since C → Z is reduced at level H0, so that (XH0
)ws is a well-

positioned subscheme of (XH0
)s by Proposition 3.5.5, for each w ∈WM0 , the pull-

back of (XH0
)ws to (XH)s is a well-positioned subscheme of (XH)s, by Proposition

2.4.2, which underlies the same subset as (XH)ws . (See Remarks 3.2.9, 3.3.11, and
3.4.7 for similar considerations.) Then we can pullback from H0 and obtain well-
positioned subschemes over the Ekedahl–Oort strata in all higher levels.

Corollary 3.5.7. When H = H0, the schemes (Xtor
H,Σ)ws over s are smooth (under

the assumption in (4) of Proposition 2.1.2 that Σ is smooth), for all w ∈WM0 .

Proof. By Proposition 2.3.14, this follows from (3) of Proposition 3.5.1. �

Corollary 3.5.8. The morphism ζ : (XH)s → Zip in (4) of Proposition 3.5.1
(necessarily uniquely) extends to a morphism ζtor : (Xtor

H )s → Zip, and we have
(Xtor
H,Σ)ws = (ζtor)−1(zw) as subsets of (Xtor

H )s, for the same point zw of Zip such

that (XH)ws = ζ−1(zw), for each w ∈ WM0 . Moreover, ζtor is smooth (under the
assumption in (4) of Proposition 2.1.2 that Σ is smooth) when ζ is.

Proof. By an analogue of the argument of the proof of (7) of Theorem 2.3.2, by also
approximating the finitely many objects and morphisms associated with n = 1 (but
ignoring those associated with n′ > n) in Lemma 3.4.3, we may assume that the
étale morphisms U → Xtor

H,Σ and U → E(σ) ×
Spec(Z)

C in Corollary 2.1.7 are adapted

to all Ekedahl–Oort strata of (XH)s in the sense (as in Definition 4.1.1 below)

that, in the notation of Proposition 3.5.5, the pullbacks of (Xtor
H,Σ)ws = Ytor

Σ and Y\Z
coincides as subsets of Us, for each w ∈ WM0 . Then ζ : (XH)s → Zip induces a
morphism Us → Zip, which factors through the morphisms Us → E ×

Spec(Z)
Cs → Cs,

by essentially the same argument as in the proof of Proposition 3.5.5. By composing
the morphisms Us → E(σ) ×

Spec(Z)
Cs → Cs with the induced morphism Cs →

Zip, we obtain a (necessarily unique) extension Us → Zip, which is smooth when
Us → Zip is (cf. the paragraph preceding Proposition 2.3.13). By construction, the
pullbacks of (XH)ws (resp. (Xtor

H,Σ)ws ) and zw coincide as subsets of Us (resp. Us), for

each w ∈ WM0 . Thus, by varying U → Xtor
H,Σ and by étale descent, we obtain the

desired extension ζtor : (Xtor
H )s → Zip of ζ, with all the required properties. �

3.6. Kottwitz–Rapoport strata and their pullbacks. In this subsection, we
shall consider only XH → S in the following special cases of Cases (Nm) and (Spl):
As in [75, 6.2], assume that O⊗

Z
Zp is a maximal order in O⊗

Z
Qp (stable under

?). Suppose that L is a (periodic and self-dual) multichain of (O⊗
Z
Zp)-lattices

in L⊗
Z
Qp, as in [75, Def. 3.4] and [43, Sec. 2.1]. Let H be any open compact
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subgroup of G(A∞) such that its image Hp under the canonical homomorphism

G(Ẑ) → G(Ẑp) is a neat (see [36, Def. 1.4.1.8]) open compact subgroup of G(Ẑp),
so that H is also neat, and such that the image Hp of H under the canonical

homomorphism G(Ẑ) → G(Zp) is contained in the connected stabilizer H0,p of L
(cf. [43, Def. 2.1.10 and Choices 2.2.10]). Let H0 := HpH0,p.

As explained in [75, 3.2] and [43, Choices 2.2.9 and 2.2.10], there exists a finite
subset LJ = {Λj}j∈J of L such that an O⊗

Z
Zp-lattice Λ in L⊗

Z
Qp belongs to L

if and only if there exist some integers (r[τ ])[τ ]∈Υ/∼ and j ∈ J such that Λ[τ ] =
pr[τ]Λj,[τ ], for all [τ ] ∈ Υ/ ∼, in the notation of [43, Sec. 2.1]; and there exists a
collection {(1, Lj, 〈 · , · 〉j)}j∈J (with the same index set) for the consideration in [38,

Sec. 2] such that Λj = Lj⊗
Z
Zp in L⊗

Z
Qp, such that Lj⊗

Z
Ẑp = L⊗

Z
Ẑp, and such that

Lj0 = pr0L for some j0 ∈ J and some r0 ∈ Z. Hence, {(1, Lj, 〈 · , · 〉j)}j∈J defines a

flat integral model ~MH → Spec(OF0,(p)) as in [38, Prop. 6.1].

Let XH → S (resp. XH0
→ S) be the pullback of ~MH → ~S0 (resp. ~MH0

→ ~S0)

in Case (Nm), or of ~Mspl
H → Spec(OK) (resp. ~Mspl

H0
→ Spec(OK)) in Case (Spl).

For compatibility with the setting in the theory of local models, suppose that
S → Spec(OF0,(p)) factors through Spec(OF0,v), where OF0,v is completion of OF0

at some place v|p. In both cases, XH → S (resp. XH0
→ S) carries the pullback

{(Aj, λj, ij)}j∈J of the tautological collection {( ~Aj, ~λj,~ij)}j∈J over ~MH (resp. ~MH0),
which extends (up to periodicity) to an L -set (A, λ, α) of abelian schemes (up to
Z×(p)-isogeny, with additional structures), which is isomorphic to the pullback of the

tautological one over the moduli Mnaive
Hp over Spec(OF0,v) defined in [43, Def. 2.2.5],

under a canonical morphism XH → Mnaive
Hp .

Let GL denote the identity component of the group scheme over Spec(Zp) sta-
bilizing the multichain L , so that GL (Zp) = H0,p. By [75, Sec. 3 and 6] and [67,

Thm. 2.2], GL is a smooth group scheme, and there is a GL -torsor M̃naive
Hp → Mnaive

Hp ,

together with a GL -equivariant smooth morphism M̃naive
Hp → Mnaive, which is of

the same relative dimension as M̃naive
Hp → Mnaive

Hp , where Mnaive is the local model
for Mnaive

Hp , which is called the naive local model in later works such as [68]. Alter-
natively, there is a smooth morphism Mnaive

Hp → [Mnaive/GL ], which is of the same
relative dimension as the smooth morphism GL → Spec(Zp), without having to ex-

plicitly mention M̃naive
Hp . By composition with the canonical morphism XH → Mnaive

Hp ,
we obtain a morphism $ : XH → [Mnaive/GL ] (which is not necessarily smooth or
even flat).

Let T = s̄→ S be a geometric point above the special point s = Spec(k)→ S of
residue characteristic p > 0. Consider the orbits x̄ in

KRs̄ := Mnaive(s̄)/GL (s̄) = [Mnaive/GL ](s̄).

Since the (GL )s̄-orbits are locally closed in (Mnaive)s̄ (see, for example, [76, Lem.
2.3.3]), the pullback of each x̄ ∈ KRs̄ is a locally closed subset of XH(s̄) (in the
induced Zariski topology). Hence, we have following:

Proposition 3.6.1. (1) For any geometric t̄→ s̄, the canonical pullback map
[Mnaive/GL ](s̄) → [Mnaive/GL ](t̄) is bijective. Consequently, there is a
well-defined assignment $(t̄) ∈ KRs̄ (still abusively denoted using $) to
each geometric point t̄ → (XH)s̄, which induces a well-defined assignment
$(t) ∈ KRs̄ to each point t ∈ (XH)s̄.
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(2) Let us equip KRs̄ with the partial ordering ≤ such that x̄′ ≤ x̄ exactly when
the orbit x̄′ is contained in the closure of the orbit x̄. For each x̄ ∈ KRs̄,
the subset {t ∈ (XH)s̄ : $(t) ≤ x̄} = ∪

x̄′≤x̄
(XH)x̄

′

s̄ of (XH)s̄ is closed, and so

the subset
(XH)x̄s̄ := {t ∈ (XH)s̄ : $(t) = x̄}

of (XH)s̄ is locally closed. Hence, we have a set-theoretic disjoint union

(3.6.2) (XH)s̄ =
∐

x̄∈KRs̄

(XH)x̄s̄ .

Remark 3.6.3. Since $ : XH → [Mnaive/GL ] is not necessarily flat, the disjoint
union (3.6.2) might not be a stratification in general, in the sense that the closure
of a stratum might not be a union of strata. Nevertheless, it is indeed a stratification
when $ is flat. This is the case when H = H0 and when Mnaive happens to be flat

over Spec(Zp) and normal, in which case the canonical morphism ~MH0
→ Mnaive

Hp is
an open and closed immersion.

Definition 3.6.4. By abuse of language, we shall still call (XH)x̄s̄ a Kottwitz–
Rapoport stratum of (XH)s̄. (See [64, Sec. 3] and the introduction of [25].)

Remark 3.6.5. Since the morphism $ : XH → [Mnaive/GL ] factors through
[M loc/GL ] → [Mnaive/GL ] in both Cases (Nm) and (Spl) (cf. [68, (15.4)]), it
makes sense to also introduce Kottwitz–Rapoport strata based on the orbits
in [M loc/GL ](s̄). (In Case (Spl), we can also consider [M spl/GL ] instead of
[M loc/GL ].) In what follows, all the results in Proposition 3.6.6, Remark 3.6.7,
and Corollary 3.6.9 will remain correct if we replace the target of the morphism
$ : XH → [Mnaive/GL ] with [M loc/GL ](s̄) (or with [M spl/GL ](s̄) in Case (Spl)),
and replace the definition of KRs̄ accordingly.

Proposition 3.6.6. For each x̄ ∈ KRs̄, the locally closed subset Y := (XH)x̄s̄ of
(XH)s̄ is a well-positioned subset as in Definition 2.2.1, which is associated with

some collection Y\ = {Y\Z}Z such that Y\Z is either the empty subset or some
Kottwitz–Rapoport stratum of Zs̄ (whose precise definition will be made clear in the
proof), for each Z. With its reduced subscheme structure, (XH)x̄s̄ admits the par-
tial minimal and toroidal compactifications (Xmin

H )x̄s̄ := Ymin and (Xtor
H,Σ)x̄s̄ := Ytor

Σ

as in Definition 2.3.1 and Theorem 2.3.2. By Lemma 2.2.10, when C → Z is
reduced, (XH)x̄s̄ (with its reduced subscheme structure) is also a well-positioned
subscheme. The analogous statements are true if we consider the closed union
∪

x̄′≤x̄
(XH)x̄

′

s̄ = {t ∈ (XH)s̄ : $(t) ≤ x̄} instead of (XH)x̄s̄ .

Proof. As in the proof of Proposition 3.3.9, by Lemma 3.2.6, for each j ∈ J and for
each geometric point t̄→W 0, the Barsotti–Tate group Aj,t̄[p

∞] admits a filtration

0 ⊂ Tj,t̄[p
∞] ⊂ G\j,t̄[p

∞] ⊂ Aj,t̄[p
∞] with graded pieces given by the (multiplicative-

type) torus part Tj,t̄[p
∞], the abelian part Bj,t̄[p

∞], and the (étale) constant part
(Yj⊗

Z
(Qp/Zp))t̄, compatibly equipped with quasi-polarizations and endomorphism

structures, and such filtrations are compatible with each other and with twists by
σk(t̄). Consequently, by considering the associated covariant Dieudonné modules,
the kernel of V : D(Aσt̄j,t̄[p

∞]) → D(Aj,t̄[p
∞]) determines and is determined by

the kernel of V : D(Bσt̄j,t̄ [p
∞])→ D(Bj,t̄[p

∞]), where the superscripts σt̄ denotes the

pullback by σt̄. Hence, $(t̄) depends only on the composition t̄→W 0 → Z, because
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it is determined by the former kernels (for all j ∈ J) (cf. [25, the proof of Prop.
2.5.9, and Rem. 2.5.11]), while the latter kernels (by definition) only depend on the
abelian parts. Therefore, for each x̄ ∈ KRs̄, and for each W 0 as in Proposition 2.1.3,

the pullback of Y := (XH)x̄s̄ to (W 0)s̄ coincides with the pullback of some subset Y\Z
of Zs̄ which is either the empty subset, or some Kottwitz–Rapoport stratum, whose
definition depends only on x̄ (and can be explicitly given in group-theoretic terms).
Hence, Y is a well-positioned subset. The remaining assertions in the proposition
are then self-explanatory. �

Remark 3.6.7. When C → Z is reduced at some level H, so that (XH)x̄s is a well-
positioned subscheme of (XH)s̄ by Proposition 3.6.6, for each x̄ ∈ KRs̄, the pullback
of (XH)x̄s̄ to (XH′)s̄ for each higher level H′ ⊂ H is a well-positioned subscheme of
(XH′)s̄, by Proposition 2.4.2, which underlies the same subset as (XH′)

x̄
s̄ . (See

Remarks 3.2.9, 3.3.11, 3.4.7, and 3.5.6 for similar considerations.) Then we can
pullback from such a bottom level and obtain well-positioned subschemes over the
Kottwitz–Rapoport strata in all higher levels.

Corollary 3.6.8. For each x̄ ∈ KRs̄, the scheme (Xtor
H,Σ)x̄s̄ is smooth over s̄ (under

the assumption in (4) of Proposition 2.1.2 that Σ is smooth) when (XH)x̄s̄ is, and

the scheme ∪
x̄′≤x̄

(Xtor
H,Σ)x̄s̄ is normal and Cohen–Macaulay when ∪

x̄′≤x̄
(XH)x̄

′

s̄ is.

Proof. By Proposition 2.3.14, this follows from (3) of Proposition 3.5.1. �

Corollary 3.6.9. The morphism $ : XH (necessarily uniquely) extends to a mor-
phism $tor : Xtor

H → [Mnaive/GL ], and we have (Xtor
H,Σ)x̄s̄ = ($tor)−1(x̄) as subsets

of (Xtor
H )s̄, for each x̄ ∈ KRs̄ = [Mnaive/GL ](s̄). Moreover, $tor is smooth (under

the assumption in (4) of Proposition 2.1.2 that Σ is smooth) when $ is.

Proof. Suppose that s̄ → s factors through some scheme of finite type over s over
which all the finitely many Kottwitz–Rapoport strata of (XH)s̄ have models. As in
the proof of Corollary 3.5.8, by also approximating these models, we may assume
that the étale morphisms U → Xtor

H,Σ and U → E(σ) ×
Spec(Z)

C in Corollary 2.1.7 are

adapted (as in Definition 4.1.1 below) to all Kottwitz–Rapoport strata of (XH)s̄, in
the sense that, in the notation of Proposition 3.6.6, the pullback of (Xtor

H,Σ)x̄s̄ = Ytor
Σ

to U s̄ coincides with the pullback of Y\Z, for each w ∈ WM0 . Then, by proceeding
as in the proof of Corollary 3.5.8, with the proof of Proposition 3.5.5 replaced with
that of Proposition 3.6.6 as an input, we obtain the desired extension $tor of $,
with all the required properties. �

Example 3.6.10. Let us work in Case (Nm), and replace $ : XH → [Mnaive/GL ]
with $ : XH → [M loc/GL ] as in Remark 3.6.5. Suppose that p > 2 and G⊗

Z
Qp

splits over a tamely ramified extension of Qp, and that H = H0 and H0,p is the
full stabilizer of the multichain L in G(Qp). Also, suppose that O⊗

Z
Q involves no

factor of type D, in the sense of [36, Def. 1.2.1.15], so that G⊗
Z
Qp is connected with

simply-connected derived group. Then it follows from [69, Thm. 1.2 and Sec. 8.2]
and the construction in [38] (see Assumption 2.1.1) that $ : XH → [M loc/GL ] is
smooth. Hence, by Corollary 3.6.9, $tor : Xtor

H → [M loc/GL ] is also smooth. More-
over, it follows from [69, Thm. 1.1 and Sec. 9] that, for each x̄ ∈ KRs̄, the scheme



46 KAI-WEN LAN AND BENOÎT STROH

(XH)x̄s̄ (resp. ∪
x̄′≤x̄

(XH)x̄
′

s̄ ) is smooth over s (resp. normal and Cohen–Macaulay).

By Corollary 3.6.8, the scheme (Xtor
H,Σ)x̄s̄ (resp. ∪

x̄′≤x̄
(Xtor
H,Σ)x̄

′

s̄ ) has the same property.

Remark 3.6.11. The philosophy behind our strategies in Sections 3.2–3.6 can be
(very roughly) summarized as follows: Suppose that we have a stratification of a
characteristic p fiber of an integral model of a Shimura variety defined by pulling
back a stratification of the stack of p-divisible groups, and that the formation of
this latter stratification is insensitive to the étale parts of p-divisible groups. Then
every stratum of the former stratification should be well positioned, and its partial
toroidal and minimal compactifications should be stratified by pullbacks of strata
of the stack of p-divisible groups (of smaller heights).

Remark 3.6.12. Likewise, the Ekedahl–Kottwitz–Oort–Rapoport (EKOR) stratifica-
tion introduced in [26, Sec. 6] should also be well positioned. We leave the details
to the interested readers.

3.7. Supports of nearby cycles. In this subsection, we again consider all cases
in Assumption 2.1.1. Consider any rational prime number ` 6= p. Suppose Λ = Q`
or Q̄`. Recall the notion of the supports of a Λ-perverse sheaf F over a scheme
X of finite type over a base field k which we assume (for simplicity) to be either
algebraically closed or finite (see [6, 2.2.14]). By [6, 4.3.1], F has a finite Jordan–
Hölder filtration, indexed by some finite set I, with simple graded pieces. For each
i ∈ I, the corresponding graded piece is isomorphic to some JYi,!∗(Gi[dim(Yi)]),

where Yi is a reduced irreducible closed subscheme of X, where JYi : Yi
0 ↪→ X is

an immersion from a smooth open dense subscheme Y 0
i of Yi, and where Gi is an

irreducible lisse sheaf over Y 0
i .

Definition 3.7.1. With the setting as above, we shall write

Supp(F) = {Yi : i ∈ I},
ignoring possible repetitions, and call Yi the supports of F .

Remark 3.7.2. The closed subschemes Yi are well determined for all i ∈ I, but
their smooth open subschemes Y 0

i are not: one can always replace Y 0
i with an open

dense subscheme. Since each lisse sheaf Gi over Y 0
i is uniquely determined by its

restriction to any open dense subscheme of Y 0
i , we will abusively say that Gi is well

determined, despite the fact that Y 0
i is not.

Suppose Gi and Gi′ are irreducible lisse sheaves as above, with i, i′ ∈ I, which
are defined over Y 0

i and Y 0
i′ , respectively. We abusively consider them isomorphic

if Y 0
i and Y 0

i′ have the same closure Yi = Yi′ in X, and if the restrictions of Gi and
Gi′ to Y 0

i ∩Y 0
i′ are isomorphic to each other.

Definition 3.7.3. For each Y ∈ Supp(F), we denote by LocY (F) the set of iso-
morphism classes of Gi as above.

By abuse of language, we shall freely shrink or increase the open subscheme Y 0
i

of Yi over which each such Gi is defined (see Remark 3.7.2). For Y ∈ Supp(F) and
G ∈ LocY (F), we define m(Y,G) to be the multiplicity of JY,!∗(G[dim(Y )]) in any
Jordan–Hölder sequence of F . Then we have

(3.7.4) [F ] =
∑

Y ∈Supp(F)

∑
G∈LocY (F)

m(Y,G)[JY,!∗(G[dim(Y )])]
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in the Grothendieck group of perverse sheaves over X.

Remark 3.7.5. If V is a nowhere zero lisse sheaf over X, we have canonically
Supp(F) = Supp(F ⊗V). For each support Y , we have a canonical multi-valued
map LocY (F) → LocY (F ⊗V) sending G to the irreducible Jordan–Hölder con-
stituents of G ⊗V. For example, for any flat model XH → S of relative dimen-
sion d considered in Assumption 2.1.1, for any nonzero étale sheaf Vξ as in [45,
Prop. 3.2], which is defined over all of XH (under the assumption that ` 6= p),
and for any i : s = Spec(k) → S, j : η = Spec(K) → S, ī : s̄ = Spec(k̄) → S̄,
and j̄ : η̄ = Spec(K̄) → S̄ as in [45, Sec. 5.1], the supports of RΨXH(Λ[d]) and
RΨXH(Vξ[d]) (which are perverse sheaves on (XH)s̄ by [27, 4.5]) coincide. There-
fore, for the sake of simplicity, we shall often focus on the trivial coefficient case.

Remark 3.7.6. In Cases (Nm) and (Spl), when H has a high level at p, we have
no geometric information about the “bad reduction” of XH → S. Nevertheless, by
definition, the supports of RΨXH(Λ[d]) still give important topological invariants of
this bad reduction. We will show that these supports have good properties near the
boundary of (XH)s̄ (or, more precisely, near the boundary of any (Xtor

H,Σ)s̄), even
though we do not know their precise shape in the interior.

Let us introduce the following:

Assumption 3.7.7. All the proper surjective morphisms C → Z (in Proposition
2.1.2) are smooth and has (nonempty) connected geometric fibers.

Remark 3.7.8. Assumption 3.7.7 holds, for example, in the contexts of Remark
2.1.8 and Lemmas 2.1.9 and 2.1.10.

Lemma 3.7.9. Suppose that Assumption 3.7.7 holds, and that U → Xtor
H,Σ and

U → E(σ) ×
Spec(Z)

C are étale morphisms as in Corollary 2.1.7, with U the common

preimage of XH and E ×
Spec(Z)

C in U . Up to replacing U with an open subscheme,

we may and we shall assume that the induced morphisms U → Xtor
H,Σ and U →

E(σ) ×
Spec(Z)

C have connected geometric fibers. Let ϕ : U → Z denote the induced

morphism. Then we have the following two cases for Y ∈ Supp(RΨXH(Λ[d])):

(1) The pullback of Y to Us̄ is empty.
(2) The pullback YU of Y to Us̄ coincides with the pullback under ϕ of some

Y \Z ∈ Supp(RΨZ(Λ[dZ])), where dZ := dim(Zη). Moreover, the pullbacks

of sheaves G in LocY (RΨXH(Λ[d])) and G\Z in LocY \Z
(RΨZ(Λ[dZ])) to YU

define a bijection

(3.7.10) LocY (RΨXH(Λ[d])) ∼= LocY \Z
(RΨZ(Λ[dZ])),

such that, when G is matched with G\Z, we have

(3.7.11) m(Y,G) = m(Y \Z ,G
\
Z).

Proof. Since ϕ : U → Z is smooth, we have

(3.7.12) ϕ∗RΨZ(Λ) ∼= RΨU (Λ) ∼= (RΨXH(Λ))|Us̄
(see [3, XV, 2.1] and [16, XIII, 2.1.5]). Moreover, since ϕ is smooth of relative
dimension dZ := d − dZ, the functor ϕ∗[dZ] is t-exact for the middle perversity
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by [6, 4.2.5]. Therefore, it sends a Jordan–Hölder filtration to a filtration. By
[6, 4.2.6.2], since ϕ : U → ϕ(U) has nonempty connected geometric fibers, ϕ∗[dZ]
induces a fully faithful embedding of the category of perverse sheaves over ϕ(U)
as a thick subcategory of the category of perverse sheaves over U . Consequently,
the restriction of the functor ϕ∗[dZ] to the category of perverse sheaves over ϕ(U)
respects Jordan–Hölder filtrations, as desired. (For our purpose, the restriction

from Z to its open subscheme ϕ(U) is irrelevant because any Y \Z in case (2) has a
nonempty intersection with the open subscheme ϕ(U)s̄ of Zs̄.) �

Lemma 3.7.9 shows that studying the nearby cycles RΨXH(Λ) near the boundary
of any (Xtor

H,Σ)s̄ is essentially the same as studying the nearby cycles RΨZ(Λ) over

the smaller analogues Zs̄ of (XH)s̄. More precisely, we have the following:

Proposition 3.7.13. Suppose that Assumption 3.7.7 holds. Then every Y in
Supp(RΨXH(Λ[d])) is a (reduced) well-positioned subscheme of (XH)s̄ as in Def-
inition 2.2.1 (with T = s̄ there), with minimal and toroidal compactifications Y min

and Y tor
Σ as in Definition 2.3.1 and Theorem 2.3.2.

Under the assumption (in (4) of Proposition 2.1.2) that Σ is smooth, we have

(3.7.14) Supp(RΨXtor
H,Σ

(Λ[d])) = {Y tor
Σ : Y ∈ Supp(RΨXH(Λ[d]))}.

For each Y ∈ Supp(RΨXH(Λ[d])) and each G ∈ LocY (RΨXH(Λ[d])), we have a
canonical extension Gtor

Σ ∈ LocY tor
Σ

(Supp(RΨXtor
H,Σ

(Λ[d]))), with

(3.7.15) m(Y,G) = m(Y tor
Σ ,Gtor

Σ ).

Proof. Let Y min and Y tor
Σ denote the (reduced) schematic closures of Y in (Xmin

H )s̄
and (Xtor

H,Σ)s̄, respectively. Suppose U , U , and ϕ : U → Z are as in Corollary

2.1.7 and Lemma 3.7.9. Then Lemma 3.7.9, with the Y \Z there, implies that

ϕ(U)s̄ ∩Y \Z = ϕ(U)s̄ ∩Y min as subsets of Zs̄, and that the pullback of the canon-
ical open immersion JY tor

Σ
: Y → Y tor

Σ (induced by the canonical open immersion

JXtor
H,Σ

: XH ↪→ Xtor
H,Σ) under U → Mtor

H,Σ coincides with the pullback of the canonical

open immersion

JY \Z ×
Z

(E(σ) ×
Spec(Z)

C) : Y \Z ×
Z

(E ×
Spec(Z)

C) ↪→ Y \Z ×
Z

(E(σ) ×
Spec(Z)

C)

induced by JE(σ) : E ↪→ E(σ) and the identity morphisms on Y \Z and C. Since

the respective pullbacks of the étale morphisms U → Xtor
H,Σ and U → E(σ) ×

Spec(Z)
C

to Z[σ] and Eσ ×
Spec(Z)

C are both open immersions (see Corollary 2.1.7), by gluing

in the Zariski topology, the pullback of the canonical isomorphism Ξσ ∼= Z[σ] in

(8) of Proposition 2.1.2 to s̄ induces a canonical isomorphism Y \Z ×
Z

Ξσ ∼= YZ[σ]
,

where YZ[σ]
:= Z[σ] ×

Xtor
H,Σ

Y tor
Σ . Consequently, the canonical isomorphism X◦σ =

(Ξ(σ))∧ ∪
τ∈Σ

+
Z
, τ⊂σ

Ξτ
∼= (Xtor

H,Σ)∧ ∪
τ∈Σ

+
Z
, τ⊂σ

Z[τ]
in Proposition 2.1.3 induces a canoni-

cal isomorphism (Y \Z ×
Z

Ξ(σ))∧
Y \Z ×

Z
Ξσ
∼= (Y tor

Σ )∧YZ[σ]
, and the analogues of the other

properties in Proposition 2.1.2 follow. By matching also the closed subscheme

∪
τ∈Σ+

Z , τ⊂σ
(Y \Z ×

Z
Ξτ ) of Y \Z ×

Z
Ξ(σ) with the locally closed subscheme ∪

τ∈Σ+
Z , τ⊂σ

YZ[τ]
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of Y tor
Σ (see Corollary 2.1.7 again), the analogue of Proposition 2.1.3 also fol-

lows. This shows that Y is a well-positioned subscheme, and that Y \Z and YZ :=
Z ×

Xmin
H

Y min coincide as subsets of Zs̄, by Theorem 2.3.2.

As for the assertions in the last paragraph, under the assumption that Σ is
smooth, the morphism E(σ) → Spec(Z) is smooth for each σ in ΣZ. Hence, the
same argument as in the proof of Lemma 3.7.9 (see, in particular, (3.7.12)) shows
that RΨXtor

H,Σ
(Λ[d]) is étale locally near (Z[σ])s̄ the pullback of RΨZ(Λ[d]), and so

its supports are étale locally the pullbacks of those of RΨZ(Λ[dZ]). Thus, we can
conclude the proof by comparing these with the assertions in Lemma 3.7.9 for
Supp(RΨXH(Λ[d])). �

Remark 3.7.16. It may happen that a support Y does not meet any boundary strata
in the sense that YZ = Z ×

Xmin
H

Y min is empty for each stratum Z of Xmin
H . Equivalently,

by Proposition 3.7.13, YZ[σ]
= Z[σ] ×

Xtor
H,Σ

Y tor
Σ is empty for each stratum Z[σ] of Xtor

H,Σ.

In this case, we have Y = Y min and Y = Y tor
Σ . (For studying supercuspidal

representations of G(Qp), such supports might be the most interesting.)

4. Well-positioned étale sheaves

4.1. Definition. Let T be a locally noetherian scheme over S as in Section 2.2,
which we assume to be separated and of finite type over a regular scheme of dimen-
sion ≤ 1, or over a quasi-excellent finite-dimensional scheme. Consider any rational
prime number ` 6= p. Let Λ be a coefficient ring that is either Z/`mZ (for some
integer m ≥ 1), Z`, Q`, Q̄`, or a finite extension of any of these. For simplicity, we
shall also denote by Λ the constant étale sheaf with values in Λ. We shall denote by
Db
c( · ,Λ) the bounded derived category of Λ-étale constructible sheaves over ( · ),

when defined. (See [15, 1.1], [17], and [49] when Λ is not torsion.) When discussing
perverse sheaves, we shall assume (as in [6, 2.2.14]) that T = Spec(k) for some field
k that is either algebraically closed or finite, and that Λ = Q` or Q̄`.

Given any stratum Z of Xmin
H , we shall write

Z̃ := ∪
[τ ]∈Σ+

Z /Γ
Z[τ ],

which is the reduced subscheme of the preimage of Z in Xtor
H,Σ. Suppose Y is a

well-positioned subset of (XH)T, with associated Y\ = {Y\Z}Z as in Definition 2.2.1.

Let us equip Y and Y\Z with their canonical reduced subscheme structures, for all Z.
Let Ymin, Ytor

Σ , and YZ = Z ×
Xmin
H

Ymin be as in Definition 2.3.1 and Theorem 2.3.2.

Let

YZ̃ := Z̃ ×
Xtor
H,Σ

Ytor
Σ .

Let

aYZ̃
: YZ̃ → Ytor

Σ

and

a\YZ̃
: YZ̃ → Y\Z

denote the canonical morphisms.
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Definition 4.1.1. Consider a collection UZ = {(U i, aUi , a
\

Ui,C
)}i∈IZ , where

aUi : U i → Xtor
H,Σ

and

a\
Ui,E(σi)

: U i → E(σi) ×
Spec(Z)

C

are étale morphisms like the U → Xtor
H,Σ and U → E(σ) ×

Spec(Z)
C in Corollary

2.1.7, which we assume to have connected geometric fibers (which is possible up to
replacing U with an open subscheme).

(1) We say that UZ induces an affine open covering of Z̃ if each U i is affine
and if

{U+

i := U i ×
Xtor
H,Σ

Z̃ ↪→ Z̃}i∈IZ

is an affine open covering of Z̃.
(2) We say that UZ is adapted to a well-positioned subset Y (as above) if

the pullback of Ytor
Σ under aUi coincides with the pullback of Y\Z under the

morphism

a\
Ui

: U i → Z

induced by a\
Ui,E(σi)

, for each Z and for each i ∈ IZ.

Lemma 4.1.2. Given any UZ inducing an affine open covering of Z̃ as in Definition
4.1.1, up to replacing UZ with an étale refinement, we may assume that UZ is adapted
to any finite collection {Yi}i∈I of well-positioned subsets of (XH)T.

Proof. This is achieved by an analogue of the argument of the proof of (7) of The-
orem 2.3.2, by refining the output of Corollary 2.1.7, using Artin’s approximation,
which matches not just the stratifications but also the pullbacks of the locally closed

subschemes Yi and Y\i,Ξ(σ) of (XH)T and (Ξ(σ))T, respectively, for all i (assuming

without loss of generality that S is excellent and that T is of finite type over S). �

Definition 4.1.3. With the setting (of Y, Ytor
Σ , etc) as above, we say that a com-

plex F in Db
c(Y

tor
Σ ,Λ) is a well-positioned complex (over Ytor

Σ ) if there exists a
collection

F \ = {(F \Z, ιZ)}Z
indexed by the strata Z of Xmin

H , where F \Z ∈ Db
c(Y

\
Z,Λ), and where

(4.1.4) ιZ : a∗YZ̃
F ∼→ a\,∗YZ̃

F \Z
is an isomorphism in Db

c(YZ̃,Λ), for each Z, satisfying the following compatibility

condition: For each Z, there exists some collection UZ = {(U i, aUi , a
\

Ui,E(σi)
)}i∈IZ

which induces an affine open covering of Z̃ and is adapted to Y as in Definition
4.1.1, which induces canonical morphisms

aYUi
: YUi := U i ×

Xtor
H,Σ

Ytor
Σ → Ytor

Σ

and

a\YUi
: YUi → Y\Z,



COMPACTIFICATIONS OF SUBSCHEMES 51

such that the restriction of ιZ to

Y
U

+
i

:= YUi ×
Xtor
H,Σ

Z̃,

for each i ∈ IZ, extends to an isomorphism

(4.1.5) ιUi : a∗YUi
F ∼→ a\,∗YUi

F \Z

in Db
c(YUi ,Λ).

We say that an F as above is a well-positioned sheaf (resp. well-positioned
perverse sheaf, when T and Λ are as in the beginning of this section) if, moreover,
F is a sheaf (resp. perverse sheaf). We will often suppress the isomorphisms ιZ from
the notation when they are canonical ones or are clear from the context.

Remark 4.1.6. Certainly, the above applies to the special case with Y = (XH)T and
Y\ = {ZT}Z, as in Section 3.1.

Remark 4.1.7. In Definition 4.1.3, if we replace UZ = {(U i, aUi , a
\

Ui,E(σi)
)}i∈IZ with

a refinement U ′Z = {(U ′i′ , aU ′i′ , a
\

U
′
i′ ,E(σi′ )

)}i′∈I′Z , then the isomorphism ιUi in (4.1.5)

induces an isomorphism ιU ′i′
in Db

c(YU ′i′
,Λ) when U

′
i′ refines U i.

Remark 4.1.8. For a well-positioned perverse sheaf F as in Definition 4.1.3, when

Y\C → Y\Z is smooth, we will typically have F \Z perverse only up to shifting by

dim(Y)− dim(Y\Z). (See Lemma 4.2.13 below.)

Remark 4.1.9. In Definition 4.1.3, we allow F \Z = 0, which will be the case for any Z
such that F = 0 near YZ̃. For Z 6= Z′, we do not require any compatibility between

(F \Z, ιZ) and (F \Z′ , ιZ′).

Remark 4.1.10. In Definition 4.1.3, the complex F does not necessarily determine
the collection F \. Nevertheless, under the assumption (in (4) of Proposition 2.1.2)

that Σ is smooth, if Y\C → Y\Z is smooth and has nonempty connected geometric

fibers, for each Z, and if F and F \Z are either lisse sheaves or perverse sheaves, then

F \Z is uniquely determined by F , by [6, 4.2.6.2]. Alternatively, if Λ = Q̄`, and if

Assumption 4.3.1 below holds, then F \Z is uniquely determined by F (by Theorem
4.3.16; see Remark 4.3.32 below).

Remark 4.1.11. The automorphic étale sheaves Vξ defined as in [45, Sec. 3] typically
(for nontrivial ξ) do not extend to well-positioned complexes over Xtor

H,Σ.

As a partial justification of Definition 4.1.3, we have the following:

Lemma 4.1.12. In each of the contexts of Propositions 2.4.1, 2.4.2, and 2.4.3
(where H′ = H and Σ′ = Σ in the context of Proposition 2.4.1), suppose F is a

well-positioned complex over Ytor
Σ , equipped with a collection F \ = {(F \Z, ιZ)}Z, as

in Definition 4.1.3. Let F ′ denote the pullback of F under Y′,tor
Σ′ → Ytor

Σ . For each

stratum Z′ of Xmin
H′ above a stratum Z of Xmin

H , let F ′,\Z′ denote the pullback of F \Z
under Y′,\Z′ → Y\Z, and let ι′Z′ denote the pullback of ιZ under Y′

Z̃
→ YZ̃, where Y′

Z̃

denotes the preimage of Z̃′ in Y′,tor
Σ′ . Then F ′ is a well-positioned complex over

Y′,tor
Σ′ , equipped with the collection F ′,\ := {(F ′,\Z′ , ι′Z′)}Z′ .
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If F is a well-positioned sheaf, so is F ′. Under the assumption (in (4) of Propo-
sition 2.1.2) that Σ and Σ′ are smooth, if F is a well-positioned perverse sheaf;

if Y\C → Y\Z and the induced morphism Y′,\C′ → Y\Z are smooth of the same rela-

tive dimension dZ − dE, where dE is the relative dimension of E over Spec(Z), for

each Z′ above Z; and if F \Z[−dZ] is a perverse sheaf, for each Z; then F ′ is also a
well-positioned perverse sheaf.

Proof. For each stratum Z of Xmin
H , let UZ = {(U i, aUi , a

\

Ui,E(σi)
)}i∈IZ be as in

Definition 4.1.3. Suppose Z′ is a stratum of Xmin
H′ above Z, with Z̃′ the reduced

subscheme of its preimage in Xtor
H′,Σ′ . Suppose there exists a collection U ′Z′ =

{(U i′ , aUi′ , a
\

Ui′ ,E
′(σi′ )

)}i′∈IZ′ for Xtor
H′,Σ′ such that it induces an affine open cov-

ering of Z̃′ and is adapted to Y′ as in Definition 4.1.1, and such that it refines the
pullback of UZ in the sense that, for each i′ ∈ IZ′ , there exists some i ∈ IZ such

that aUi′ and a\
Ui′ ,E(σi′ )

lift the pullbacks of aUi and a\
Ui,E(σi)

, respectively, via

some étale morphisms U i′ → U i ×
Xtor
H,Σ

Xtor
H′,Σ′ and U i′ → U i ×

Ξ(σi)
Ξ′(σ′i). Then the

pullbacks of ιZ and ιUi to Z̃′ := Z̃ ×
Ytor

Σ

Y′,tor
Σ′ and Y′

Ui′
:= U i′ ×

Xtor
H′,Σ′

Y′,tor
Σ′ , respec-

tively, induce the desired ι′Z′ and ι′
Ui′

. The question (in the last paragraph of the

lemma) of whether F ′ is a sheaf or a perverse sheaf can be answered étale locally,
essentially by definition. (For perverse sheaves, see [6, 2.2.12 and 2.2.19].) Hence,
by using the isomorphisms ι′

Ui′
, and (for perverse sheaves) by the t-exactness of

smooth morphisms up to shifting by the relative dimensions (see [6, 4.2.5]), the
question has an affirmative answer by the assumptions we made. It remains to
construct such a U ′Z′ .

In the context of Proposition 2.4.1, we can just take U ′Z′ = UZ, since these
collections are defined over the same Xtor

H,Σ regardless of the base change T′ → T.
In each of the contexts of Propositions 2.4.2 and 2.4.3, let us fixed a choice of

some i ∈ IZ. Let U
+

i denote the pullback of Z̃ under aUi : U i → Xtor
H,Σ. Suppose

that x is a point of Xtor
H′,Σ′ whose image y in Xtor

H,Σ is contained in the image of the

open immersion U
+

i → Z̃ induced by aUi , so that y lies on the stratum Z[σi] of

Xtor
H,Σ. Up to replacing U i with an affine open subscheme still containing y, we may

and we shall assume that a\
Ui,E(σi)

: U i → E(σi) ×
Spec(Z)

C is induced by an étale

morphism a\
Ui,Ξ(σi)

: U i → Ξ(σi) such that, over the image of this étale morphism,

Ξ(σi) is isomorphic to E(σi) ×
Spec(Z)

C as schemes over C (cf. [45, Lem. 2.3]), and

such that a\
Ui,E(σi)

and a\
Ui,Ξ(σi)

differ by this last isomorphism. Then U
+

i coincides

with the pullback of

Ξ(σi)
+ := ∪

τ∈Σ+
Z , τ⊂σi

Ξτ ⊂ Ξ(σi)

under a\
Ui,Ξ(σi)

. Consider the pullbacks

aU ′i
: U
′
i := U i ×

Xtor
H,Σ

Xtor
H′,Σ′ → Xtor

H′,Σ′
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and

a\
U
′′
i ,Ξ
′(σ′i)

: U
′′
i := U i ×

Ξ(σi)
Ξ′(σ′i)→ Ξ′(σ′i)

of aUi and a\
Ui,Ξ(σi)

, respectively, where σ′i ∈ Σ′,+Z′ is some cone such that x lies

on stratum Z[σ′i]
of Xtor

H′,Σ′ . Let U
′
i := U i ×

Xtor
H,Σ

Xtor
H′,Σ′ , U

′,+
i := U

+

i ×
Xtor
H,Σ

Xtor
H′,Σ′ ,

U
′′
i := U i ×

Ξ(σi)
Ξ′(σ′i), and U

′′,+
i := U

+

i ×
Ξ(σi)

Ξ′(σ′i). Then U
′,+
i coincides with the

pullback of Z̃′, and U
′′,+
i coincides with the pullback of

Ξ′(σ′i)
+ := ∪

τ ′∈Σ′,+
Z′ , τ

′⊂σ′i
Ξ′τ ′ ⊂ Ξ′(σ′i),

and the induced morphisms U
′,+
i → Z̃′ and U

′′,+
i → Ξ′(σ′i)

+ are open immersions

with the same image, the preimage of U
+

i in Z̃′. Therefore, (U
′
i)
∧
U
′,+
i

and (U
′′
i )∧
U
′′,+
i

are both canonically isomorphic to (Xtor
H′,Σ′)

∧
U
′,+
i

. Moreover, for each affine open

formal subscheme W = Spf(R) of (Xtor
H′,Σ′)

∧
U
′,+
i

, the pullbacks to W = Spec(R) of

the stratifications of Xtor
H′,Σ′ and Ξ′(σ′i) coincide with each other.

By the same approximation argument as in the proofs of (7) of Theorem 2.3.2

and of Lemma 4.1.2, there exists a scheme U
′′′
i with étale morphisms U

′′′
i → U

′
i

and U
′′′
i → U

′′
i such that the induced étale morphisms aU ′′′i

: U
′′′
i → Xtor

H′,Σ′ and

a\
U
′′′
i ,Ξ

′(σ′i)
: U
′′′
i → Ξ′(σ′i) satisfy the same properties as the étale morphisms U →

Xtor
H,Σ and U → Ξ(σ) in (9) of Proposition 2.1.2 do, and are adapted to Y′ in the

sense that the pullback of Y′,tor
Σ′ under aU ′′′i

coincides with the pullback of Y′,\Z′

under a\
U
′′′
i ,Ξ

′(σ′i)
; and such that the image of aU ′′′i

contains x, so that x is lifted

to a point of U
′′′
i . By [45, Lem. 2.3, and its proof], up to replacing U

′′′
i with an

affine open subscheme still containing x, we may and we shall assume that, over the

image of a\
U
′′′
i ,Ξ

′(σ′i)
, there is an isomorphism between Ξ′(σ′i) and E′(σ′i) ×

Spec(Z)
C ′

as schemes over C’, which lifts the pullback of the isomorphism between Ξ(σi) and

E(σi) ×
Spec(Z)

C over the image of a\
Ui,Ξ′(σ′i)

, and hence a\
U
′′′
i ,Ξ

′(σ′i)
induces an étale

morphism a\
U
′′′
i ,E

′(σ′i)
: U
′′′
i → E′(σ′i) ×

Spec(Z)
C ′ lifting a\

Ui,E(σi)
. Thus, since i ∈ IZ

and x are arbitrary, by collecting (and reindexing) such (U
′′′
i , aU ′′′i

, a\
U
′′′
i ,E

′(σ′i)
), we

obtain the desired collection U ′Z′ for Xtor
H′,Σ′ . �

Remark 4.1.13. In Lemma 4.1.12, without the assumptions in the last paragraph
there, F ′ is generally not a perverse sheaf even when F is.

4.2. General properties and examples. In this subsection, suppose Y and Y′

are well-positioned subsets of (XH)T, such that Y′ is a (locally closed) subset of

Y, with associated Y\ = {Y\Z}Z and Y′,\ = {Y′,\Z }Z, respectively, as in Definition

2.2.1. Let Ytor
Σ and Y′,tor

Σ denote the partial toroidal compactifications of Y and

Y′, respectively, as in Definition 2.3.1. Let J : Y′,tor
Σ ↪→ Ytor

Σ , JZ̃ : Y′
Z̃
↪→ YZ̃,

and JZ : Y′,\Z ↪→ Y\Z denote the canonical locally closed immersions, for all Z. Let
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aYZ̃
: YZ̃ → Ytor

Σ , aY′
Z̃

: Y′
Z̃
→ Y′,tor

Σ , a\YZ̃
: YZ̃ → Y\Z, and a\Y′

Z̃

: Y′
Z̃
→ Y′,\Z denote the

canonical morphisms, for each Z.

Lemma 4.2.1. Suppose F and F ′ are well-positioned complexes over Ytor
Σ and

Y′,tor
Σ , equipped with collections F \ = {(F \Z, ιZ)}Z and F ′,\ = {(F ′,\Z , ι′Z)}Z, respec-

tively, as in Definition 4.1.3. Then:

(1) J!F ′ is a well-positioned complex over Ytor
Σ , equipped with the collection

{(JZ,!F ′,\Z , JZ̃,!ι
′
Z)}Z. In particular, J!ΛY′,tor

Σ
is a well-positioned sheaf over

Ytor
Σ , equipped with the collection {JZ,!ΛY′,\Z

}Z.

(2) J∗F is a well-positioned complex over Y′,tor
Σ , equipped with the collection

{(J∗ZF
\
Z, J

∗
Z̃
ιZ)}Z.

(3) Hq(F) is a well-positioned sheaf over Ytor
Σ , equipped with the collection

{(Hq(F \Z),Hq(ιZ))}Z, for each q.

Proof. By Lemma 4.1.2 and Remark 4.1.7, we may assume that each collection UZ
as in Definition 4.1.3 that we consider is adapted to both Y and Y′. Since the

canonical morphism Y′
Z̃
→ YZ̃ ×

Y\Z

Y′,\Z induces an isomorphism between the reduced

subschemes, the lemma follow from the definitions, and (for the assertion (1)) from
[3, XVII, 5.1.2]. �

Lemma 4.2.2. Suppose F ′ is as in Lemma 4.2.1. Suppose T is just a point. Under
the assumption (in (4) of Proposition 2.1.2) that Σ is smooth, suppose moreover

that the induced morphism Y\C → Y\Z is smooth (which is the case if C → Z is)
for each Z. Then the canonical morphisms

(4.2.3) a∗YZ̃
RJ∗F ′ → RJZ̃,∗a

∗
Y′
Z̃

F ′

and

(4.2.4) a\,∗YZ̃
RJZ,∗F ′,\Z → RJZ̃,∗a

\,∗
Y′
Z̃

F ′,\Z

are isomorphisms in Db
c(YZ̃,Λ), and hence the isomorphism

RJZ̃,∗ι
′
Z : RJZ̃,∗a

∗
Y′
Z̃

F ′ → RJZ̃,∗a
\,∗
Y′
Z̃

F ′,\Z
canonically induces an isomorphism

(4.2.5) ιZ : a∗YZ̃
RJ∗F ′

∼→ a\,∗YZ̃
RJZ,∗F ′,\Z

in Db
c(YZ̃,Λ), for each Z. Moreover, RJ∗F ′ is a well-positioned complex over Ytor

Σ ,

equipped with the collection {(RJZ,∗F ′,\Z , ιZ)}Z. In particular, RJ∗ΛY′,tor
Σ

is a well-

positioned complex over Ytor
Σ , equipped with the collection {RJZ,∗ΛY′,\Z

}Z.

Proof. For each Z, let UZ = {(U i, aUi , a
\

Ui,E(σi)
)}i∈IZ be any collection as in Defi-

nition 4.1.3 (for F ′, adapted to Y′), which we may and we shall assume to be also
adapted to Y, by Lemma 4.1.2 and Remark 4.1.7. For each i ∈ IZ, consider the
canonical morphisms

aYUi
: YUi := U i ×

Xtor
H,Σ

Ytor
Σ → Ytor

Σ ,

aY′
Ui

: Y′
Ui

:= U i ×
Xtor
H,Σ

Y′,tor
Σ → Y′,tor

Σ ,
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a\YUi
: YUi → Y\Z,

and

a\Y′
Ui

: Y′
Ui
→ Y′,\Z ,

where the restriction of

ι′Z : a∗Y′
Z̃

F ′ ∼→ a\,
∗

Y′
Z̃

F ′,\Z

to

Y′
U

+
i

:= Y′
Ui
×

Xtor
H,Σ

Z̃

extends to an isomorphism

ι′
Ui

: a∗Y′
Ui

F ′ ∼→ a\,∗Y′
Ui

F ′,\Z

in Db
c(Y
′
Ui
,Λ), by assumption.

To show that (4.2.3) and (4.2.4) are isomorphisms, and that RJ∗F ′ is a well-

positioned complex over Ytor
Σ , equipped with the collection {(RJZ,∗F ′,\Z , ιZ)}Z, it

suffices to fix the choices of some i ∈ IZ as above, and show that the restrictions of
(4.2.3) and (4.2.4) to the open subscheme

Y
U

+
i

:= YUi ×
Xtor
H,Σ

Z̃

of YZ̃ are isomorphisms, and that the isomorphism

(a∗YZ̃
RJ∗F ′)|Y

U
+
i

∼→ (a\,∗YZ̃
RJZ,∗F ′,\Z )|Y

U
+
i

(which should be the restriction of ιZ to Y
U

+
i

) induced by the restrictions of (4.2.3),

(4.2.4), and RJZ̃,∗ι
′
Z to Y

U
+
i

extends to an isomorphism

ιUi : a∗YUi
RJ∗F ′

∼→ a\,∗Y′
Ui

RJZ,∗F ′,\Z

over YUi . Let iYUi
: Y

U
+
i
→ YUi , iY′Ui

: Y′
U

+
i

→ Y′
Ui

, JUi : Y′
Ui

↪→ YUi , and

J
U

+
i

: Y′
U

+
i

↪→ Y
U

+
i

denote the canonical morphisms. For these purposes, it suffices

to show that the canonical morphism

(4.2.6) i∗YUi
RJUi,∗a

\,∗
Y′
Ui

F ′,\Z → RJ
U

+
i ,∗
i∗Y′
Ui

a\,∗Y′
Ui

F ′,\Z
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is an isomorphism, by the commutativity of the following commutative diagram

(4.2.7) (a∗YZ̃
RJ∗F ′)|Y

U
+
i

can. o
��

(4.2.3)|Y
U

+
i // (RJZ̃,∗a

∗
Y′
Z̃

F ′)|Y
U

+
i

can. o
��

i∗YUi
a∗YUi

RJ∗F ′
b.c.
∼

// i∗YUi
RJUi,∗a

∗
Y′
Ui

F ′

i∗Y
Ui

RJUi,∗
ι′
Ui o
��

// RJ
U

+
i ,∗
i∗Y′
Ui

a∗Y′
Ui

F ′

RJ
U

+
i
,∗

(ι′Z|Y
U

+
i

) o
��

i∗YUi
a\,∗YUi

RJZ,∗F ′,\Z

can. o
��

b.c.
∼
// i∗YUi

RJUi,∗a
\,∗
Y′
Ui

F ′,\Z
(4.2.6)

// RJ
U

+
i ,∗
i∗Y′
Ui

a\,∗Y′
Ui

F ′,\Z

can. o
��

(a\,∗YZ̃
RJZ,∗F ′,\Z )|Y

U
+
i

(4.2.4)|Y
U

+
i // (RJZ̃,∗a

\,∗
Y′
Z̃

F ′,\Z )|Y
U

+
i

in Db
c(YU+

i
,Λ), in which “b.c.” means base change morphisms, which (under the

smoothness assumptions) are isomorphisms by the smooth base change theorem
(see [3, XVI, 1.2]); and in which the composition of the three vertical arrows at the
right-most column is the restriction of RJZ̃,∗ι

′
Z to the open subscheme Y

U
+
i

of YZ̃.

Let F ′,\C denote the pullback of F ′,\Z to Y′,\C . Consider

E(σi)
+ := ∪

τ∈Σ+
Z , τ⊂σi

Eτ ⊂ E(σi),

Y′,\E(σi)+ := E(σi)
+ ×

Spec(Z)
Y′,\C ,

and

Y\E(σi)+ := E(σi)
+ ×

Spec(Z)
Y\C .

Let JC : Y′,\C → Y\C and JE(σi)+ : Y′,\E(σi)+ → Y\E(σi)+ denote the canonical mor-

phisms. Since Y
U

+
i

∼= E(σi)
+ ×
E(σi)

YUi and Y′
U

+
i

∼= E(σi)
+ ×
E(σi)

Y′
Ui

, in order to

show that (4.2.6) is an isomorphism, by the smooth base change theorem (and the
smoothness assumptions) again, it suffices to show that the canonical morphism

(4.2.8) (YE(σi)+ → Y\C)∗RJC,∗F ′,\C → RJE(σi)+,∗(Y
′
E(σi)+ → Y′,\C )∗F ′,\C

is an isomorphism. Since JE(σi)+ is by definition the product IdE(σi)
+
T
×
T
JC , the

morphism (4.2.8) can be identified with the Künneth morphism

(4.2.9) ΛE(σi)
+
T

L
�
T

(RJC,∗F ′,\C )→ R(IdE(σi)
+
T
×
T
JC)∗(ΛE(σi)

+
T

L
�
T
F ′,\C ),

which is an isomorphism, because T is a point, by [6, 4.2.7], as desired. �

Lemma 4.2.10. Suppose that T = S is Henselian, that Y′ = Yη and Y′,\Z = (Y\Z)η,
and that F ′ is as in Lemma 4.2.1. Consider the nearby cycle functors RΨY and
RΨY\Z

, for all Z, defined by some compatible choices of geometric points η̄ and

s̄ above the generic and special points η and s of S, respectively, as in [45, Sec.
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5.1]. Under the assumption (in (4) of Proposition 2.1.2) that Σ is smooth, sup-

pose moreover that Y\C → Y\Z is smooth for each Z. Then RΨYtor
Σ

(F ′) is a well-

positioned complex over (Ytor
Σ )s̄, equipped with a collection {(RΨY\Z

(F ′,\Z ), ιZ)}Z, for

some canonical isomorphisms ιZ, as in Definition 4.1.3. In this case, ιZ can be taken
to be not just in Db

c((YZ̃)s̄,Λ), but also in Db
c((YZ̃)s̄× η̄,Λ); and the isomorphisms

ιUi can be taken to be not just in Db
c((YUi)s̄,Λ), but also in Db

c((YUi)s̄× η̄,Λ).

(Here Db
c(( · )s̄× η̄,Λ) denotes the bounded derived category of Λ-étale constructible

sheaves over ( · )s̄ with compatible continuous Gal(k(η̄)/k(η))-actions.)

Suppose that Λ = Q` or Q̄`, and that Y\C → Y\Z is smooth of relative di-

mension dZ − dE, where dZ := d − dZ, d := dim((XH)η), dZ := dim(Zη), and

dE := dim(Eη), for each Z. If F ′ is a well-positioned perverse sheaf over Y′,tor
Σ =

(Ytor
Σ )η, and if F ′,\Z [−dZ] is a perverse sheaf over Y′,\Z = (Y\Z)η, for each Z, then

RΨYtor
Σ

(F ′) is a well-positioned perverse sheaf over (Ytor
Σ )s̄, equipped with the col-

lection {(RΨY\Z
(F ′,\Z ), ιZ)}Z as above, where RΨY\Z

(F ′,\Z )[−dZ] is a perverse sheaf,

for each Z.

Proof. For the first paragraph of the lemma, by the same reduction steps as in the
proof of Lemma 4.2.2, we are reduced to showing that the canonical morphism

(4.2.11) ΛE(σi)
+
s̄

L

�
s̄

(RΨY\C
(F ′,\C ))→ RΨE(σi)

+
S ×

S
Y\C

(ΛE(σi)
+
η

L

�
η
F ′,\C )

(cf. (4.2.9)) in Db
c((E(σi)

+
S ×

S
Y\C)s̄× η̄,Λ) is an isomorphism, where F ′,\C denotes the

pullback of F ′,\Z under Y′,\C → Y′,\Z , for each Z. Since σi is smooth by assumption,
E(σi)

+ is a relative normal crossings divisor on the smooth scheme E(σi) over
Spec(Z). Hence, by [16, XIII, 2.1.11] (or rather its proof), we have a canonical
isomorphism

ΛE(σi)
+
s̄

∼→ RΨE(σi)
+
S

(ΛE(σi)
+
η

)

in Db
c(E(σi)

+
s̄ × η̄,Λ), via which (4.2.11) induces the Künneth morphism

(4.2.12) (RΨE(σi)
+
S

(ΛE(σi)
+
η

))
L

�
s̄

(RΨY\C
(F ′,\C ))→ RΨE(σi)

+
S ×

S
Y\C

(ΛE(σi)
+
η

L

�
η
F ′,\C ).

Thus, (4.2.11) is an isomorphism because (4.2.12) is, by [27, 4.7]. The second
paragraph of the lemma then follows from [27, 4.5] and [6, 4.2.8]. �

Lemma 4.2.13. Suppose that T = Spec(k) for some field k that is either al-
gebraically closed or finite, and that Λ = Q` or Q̄`. Suppose that (XH)T and
ZT are equidimensional of dimensions d and dZ, respectively, for each Z. Un-
der the assumption (in (4) of Proposition 2.1.2) that Σ is smooth, suppose more-

over that Y\C → Y\Z is smooth of relative dimension dZ − dE, where dZ := d − dZ
and dE := dim(ET), for each Z. Suppose F ′ is a well-positioned perverse sheaf

over Y′,tor
Σ , equipped with a collection F ′,\ = {F ′,\Z }Z, where F ′,\Z [−dZ] is a per-

verse sheaf over Y′,\Z , for each Z. Then a∗Y′
Z̃

F ′[−1] and a\,∗Y′
Z̃

F ′,\Z [−1] are perverse

sheaves (isomorphic to each other under ι′Z[−1]) in Db
c(Y
′
Z̃
,Λ); and a∗YZ̃

(J!∗F ′)[−1]

and a\,∗YZ̃
JZ,!∗(F ′,\Z [−dZ])[dZ − 1] are perverse sheaves in Db

c(YZ̃,Λ). Moreover, we

have canonical isomorphisms

(4.2.14) a∗YZ̃
(J!∗F ′)[−1]

∼→ JZ̃,!∗(a
∗
Y′
Z̃

F ′[−1])
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and

(4.2.15) a\,∗YZ̃
(JZ,!∗(F ′,\Z [−dZ]))[dZ − 1]

∼→ JZ̃,!∗(a
\,∗
Y′
Z̃

F ′,\Z [−1])

in Db
c(YZ̃,Λ) extending the compositions of canonical isomorphisms

(4.2.16) J∗
Z̃
a∗YZ̃

(J!∗F ′)[−1]
∼→ a∗Y′

Z̃

J∗(J!∗F ′)[−1]
∼→ a∗Y′

Z̃

F ′[−1]

and

J∗
Z̃
a\,∗YZ̃

(JZ,!∗(F ′,\Z [−dZ]))[dZ − 1]
∼→ a\,∗Y′

Z̃

J∗Z(JZ,!∗(F ′,\Z [−dZ]))[dZ − 1]

∼→ a\,∗Y′
Z̃

F ′,\Z [−1],
(4.2.17)

respectively, in Db
c(Y
′
Z̃
,Λ). Hence, the isomorphism

JZ̃,!∗(ι
′
Z[−1])[1] : JZ̃,!∗(a

∗
Y′
Z̃

F ′[−1])[1]
∼→ JZ̃,!∗(a

\,∗
Y′
Z̃

F ′,\Z [−1])[1]

canonically induces an isomorphism

(4.2.18) ιZ : a∗YZ̃
J!∗F ′

∼→ a\,∗YZ̃
JZ,!∗(F ′,\Z [−dZ])[dZ],

in Db
c(YZ̃,Λ), for each Z; and J!∗F ′ is a well-positioned perverse sheaf over Ytor

Σ ,

equipped with the collection {(JZ,!∗(F ′,\Z [−dZ]))[dZ], ιZ)}Z.

In particular, suppose Y′ = Ysm and Y′,\Z = (Y\Z)sm in the above, which are

valid choices by Lemma 2.2.10, so that Y′,tor
Σ = (Ytor

Σ )sm. Consider the intersection
complexes ICYtor

Σ
:= J!∗(Λ(Ytor

Σ )sm
[d]) and ICY\Z := JZ,!∗(ΛY\Z,sm

[dZ]). Then ICYtor
Σ

is

a well-positioned perverse sheaf, equipped with the collection {ICY\Z [dZ]}Z.

Proof. In addition to showing that a∗Y′
Z̃

F ′[−1], a\,∗Y′
Z̃

F ′,\Z [−1], a∗YZ̃
(J!∗F ′)[−1], and

a\,∗YZ̃
JZ,!∗(F ′,\Z [−dZ])[dZ − 1] are all perverse sheaves, since the assignment of middle

perversity extensions is functorial and fully faithful (see [29, Cor. III.5.11]), in order
to also show that the compositions of canonical isomorphisms (4.2.16) and (4.2.17)
(necessarily uniquely) extend to the desired canonical isomorphisms (4.2.14) and
(4.2.15), so that all remaining assertions of the lemma will follow, it suffices to

show that the perverse sheaves a∗YZ̃
(J!∗F ′)[−1] and a\,∗YZ̃

JZ,!∗(F ′,\Z [−dZ])[dZ − 1] are

isomorphic to the middle perversity extensions of their restrictions to Y′
Z̃
, respec-

tively. Essentially by definition (see also [29, the criterion on p. 148, after Lem.-Def.
III.5.2]), both the perversity and this last property can be verified étale locally.

For each Z, let UZ = {(U i, aUi , a
\

Ui,E(σi)
)}i∈IZ be as in Definition 4.1.3 (for F ′,

adapted to Y′), which we may and we shall assume to be also adapted to Y, by

Lemma 4.1.2 and Remark 4.1.7. Since UZ induces an affine open covering of Z̃
by assumption, by the explanation in the previous paragraph, and by using the
canonical isomorphisms induced by ι′Z and ι′

Ui
, for each i ∈ IZ, it suffices to show

that i∗Y′
Ui

a\,∗Y′
Ui

F ′,\Z [−1] is a perverse sheaf in Db
c(Y
′
U

+
i

,Λ), and that the composition

of canonical isomorphisms

J∗
U

+
i

i∗YUi
(JUi,!∗a

\,∗
Y′
Ui

F ′,\Z )[−1]
∼→ i∗Y′

Ui

J∗
Ui

(JUi,!∗a
\,∗
Y′
Ui

F ′,\Z )[−1]

∼→ i∗Y′
Ui

a\,∗Y′
Ui

F ′,\Z [−1].
(4.2.19)
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in Db
c(Y
′
U

+
i

,Λ) (necessarily uniquely) extends to some isomorphism

(4.2.20) i∗YUi
(JUi,!∗a

\,∗
Y′
Ui

F ′,\Z )[−1]
∼→ J

U
+
i ,!∗

(i∗Y′
Ui

a\,∗Y′
Ui

F ′,\Z [−1])

in Db
c(YU+

i
,Λ). (Then i∗YUi

(JUi,!∗a
\,∗
Y′
Ui

F ′,\Z )[−1] is a perverse sheaf in Db
c(YU+

i
,Λ)

that is isomorphic to the middle perversity extension of its restriction to Y′
U

+
i

.)

Under the assumption that Σ is smooth, E(σi)
+ is a relative normal crossings

divisor on the smooth scheme E(σi) over Spec(Z), and hence ΛE(σi)
+
T

[dE − 1] is

a perverse sheaf over E(σi)
+
T , by [29, Lem. III.6.5]. Since F ′,\Z [−dZ] is a perverse

sheaf, under the assumption that Y\C → Y\Z is smooth of relative dimension dZ−dE ,
by the smooth base change theorem (see [3, XVI, 1.2]) and by the t-exactness of
smooth morphisms up to shifting by the relative dimensions (see [6, 4.2.5]),

F ′,\C [−dE ] := (Y′,\C → Y′,\Z )∗F ′,\Z [−dE ]

is also a perverse sheaf. Since a\Y′
Ui

and a\YUi
are pullbacks of the composition of

the étale morphism a\
Ui,E(σi)

: U i → E(σi) ×
Spec(Z)

C with the canonical morphism

E(σi) ×
Spec(Z)

C → Z, and since iY′
Ui

and iYUi
are pullbacks of the closed immersion

E(σi)
+ → E(σ), it follows that i∗Y′

Ui

a\,∗Y′
Ui

F ′,\Z [−1] and i∗YUi
(JUi,!∗a

\,∗
Y′
Ui

F ′,\Z )[−1] are

perverse sheaves in Db
c(Y
′
U

+
i

,Λ) and Db
c(YU+

i
,Λ), respectively, because they are

compatibly isomorphic to the pullbacks under compatible étale morphisms of the
perverse sheaves

(ΛE(σi)
+
T

[dE − 1])
L

�
T

(F ′,\C [−dE ])

and

(ΛE(σi)
+
T

[dE − 1])
L

�
T

(JC,!∗(F ′,\C [−dE ]))

(see [6, 4.2.8]), respectively; and that (via these compatible isomorphisms) the com-
position (4.2.19) can be identified with the pullback of the canonical isomorphism

(IdE(σi)
+
T
×
T
JC)∗((ΛE(σi)

+
T

[dE − 1])
L

�
T

(JC,!∗(F ′,\C [−dE ])))

∼→ (ΛE(σi)
+
T

[dE − 1])
L
�
T

(F ′,\C [−dE ]).

(4.2.21)

Since (4.2.21) extends to the Künneth isomorphism

(ΛE(σi)
+
T

[dE − 1])
L
�
T

(JC,!∗(F ′,\C [−dE ]))

∼→ (IdE(σi)
+
T
×
T
JC)!∗((ΛE(σi)

+
T

[dE − 1])
L
�
T

(F ′,\C [−dE ]))

(4.2.22)

(see [6, 4.2.8] again), it follows that (4.2.19) also extends to some isomorphism
(4.2.20), which can be identified with the pullback of (4.2.22), as desired. �

Lemma 4.2.23. Suppose that S is Henselian, and that Λ = Q` or Q̄` for simplicity.
Consider the nearby cycle functors RΨXtor

H,Σ
and RΨZ, for all Z, defined by some

compatible choices of geometric points η̄ and s̄ above the generic and special points η
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and s of S, respectively, as in [45, Sec. 5.1]. Under the assumption (in (4) of Propo-
sition 2.1.2) that Σ is smooth, suppose moreover that C → Z has connected geo-
metric fibers and is smooth of relative dimension dZ − dE, where d := dim((XH)η),
dZ := dim(Zη), dZ := d − dZ, and dE = dim(ET), for each Z, so that Assumption
3.7.7 holds. Suppose that Y ∈ Supp(RΨXtor

H,Σ
(Λ[d])) and G ∈ LocY (RΨXtor

H,Σ
(Λ[d])),

with corresponding Y \Z ∈ Supp(RΨZ(Λ[dZ])) and G\Z ∈ LocY \Z
(RΨZ(Λ[dZ])), for

each Z, as in Lemma 3.7.9 and Proposition 3.7.13. Then Y ∩(XH)s̄ is a well-
positioned subset of (XH)s̄, by Proposition 3.7.13, with its toroidal compactifica-
tion Y as in Definition 2.3.1. Moreover, there exist smooth open subschemes

Y 0 and Y \,0Z of Y and Y \Z (with their reduced subscheme structures), respectively,

for each Z, over which G and G\Z are defined, such that Y 0 ∩(XH)s̄ is a well-
positioned subset of (XH)s̄, with its toroidal compactification Y 0 as in Definition

2.3.1. Let JY : Y 0 ↪→ Y and JY \Z
: Y \,0Z ↪→ Y \Z denote the canonical open immer-

sions, for each Z. By [20, Appendix, Thm. 10.1] and [6, 5.3.1, 5.3.2, and 5.3.4],

ICY (G) := JY,!∗(G[dim(Y )]) (resp. ICY \Z (G\Z) := JY \Z ,!∗
(G\Z[dim(Y \Z )]), for each Z)

is a pure perverse sheaf. By [6, 5.3.5 and 5.3.8], the ICY (G)-isotypic subquotient

H of RΨXtor
H,Σ

(Λ[d]) (resp. ICY \Z (G\Z)[dZ]-isotypic subquotient H\Z of RΨZ(Λ[d])) is

defined. Then H is a well-positioned pure perverse sheaf over Y , equipped with a

collection {(H\Z, ιZ)}Z, where ιZ is induced by its analogue for nearby cycles as in
Lemma 4.2.10, for each Z.

Proof. These follow from Proposition 3.7.13, from Lemmas 2.2.10, 4.2.10, and 4.2.13
and their proofs, and from the following: For each Z, and for each collection UZ =

{(U i, aUi , a
\

Ui,E(σi)
)}i∈IZ as in Definition 4.1.3, the isomorphisms ιZ and ιUi , for all

i ∈ IZ, are induced by their analogues for nearby cycles, because the corresponding
isotypical subquotients of nearby cycles match over U i, for all i ∈ IZ, and because
the fibered category of perverse sheaves is a stack (see [6, 2.2.19]). �

Example 4.2.24. (This is a more detailed version of a remark we made in the
introduction.) Suppose that we are in the setting of Section 3.4. For simplicity,
assume that O⊗

Z
Q is simple and involves no factor of type D, in the sense of [36,

Def. 1.2.1.15], so that G⊗
Z
Q is connected. Suppose that

H = U(n0p
2018) := ker(G(Ẑ)→ G(Z/(n0p

2018Z))),

for some n0 ≥ 3. By Lemma 2.1.9, C → Z is an abelian scheme, for each Z.
Consider any Newton stratum (XH)bs, for some b ∈ B(G⊗

Z
Qp), as in Proposition

3.3.1, and any Ekedahl–Oort stratum (XH)ws , for some w ∈WM0 , as in Proposition
3.5.1, which are well-positioned subschemes of (XH)s, by Propositions 3.3.9 and
3.5.5. By Lemma 2.2.3 and Proposition 2.3.12, any irreducible component Y of
the intersection (XH)bs ∩(XH)ws (with its reduced subscheme structure) is a well-
positioned subscheme of (XH)s. Thus, the (generally infinite-dimensional) coherent
cohomology of its partial toroidal compactification still satisfies our generalization
of Koecher’s principle, by Theorem 2.5.11. Moreover, by Lemmas 4.2.1, 4.2.2,
and 4.2.13, if we denote by J : Y ↪→ (Xtor

H,Σ)s the canonical immersion, then J!Q̄`
(resp. RJ∗Q̄`, resp. the intersection complex ICYtor

Σ
) is a well-positioned sheaf (resp.

complex, resp. perverse sheaf) over (Xtor
H,Σ)s, and we will have generalizations of
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Pink’s and Morel’s formulae for these in Sections 4.3 and 4.5 (see Theorems 4.3.16
and 4.5.26 below).

4.3. Pink’s formula. The goal of this subsection is to generalize [72, Thm. 5.3.1].
We will first state its original form for automorphic étale sheaves (see Theorem
4.3.10 below), and then its generalization for tensor products with well-positioned
complexes (see Theorem 4.3.16 below).

Let us start with some preparations. For simplicity, in this subsection, let us
make the following assumptions (although some of them can be relaxed):

Assumption 4.3.1. (1) In all cases, assume that H = H`,pU`(`r)Hp, where

H`,p ⊂ G(Ẑ`,p) and Hp ⊂ G(Zp) are open compact subgroups, and where
U`(`r) := ker(G(Z`)→ G(Z/`rZ)), for some r ≥ 1.

(2) In Cases (Sm), (Nm), or (Spl), also assume that O⊗
Z
Q involves no factor

of type D (as in [36, Def. 1.2.1.15]), so that G⊗
Z
Q is connected.

(3) In Case (Sm), assume in addition that ` 6∈ 2. (This is forced by the condi-
tion (1) above when r > 1.)

(4) In Cases (Nm), (Spl), and (Hdg), assume in addition that C → Z is an
abelian scheme torsor (of constant relative dimension) over a finite étale
cover, for each Z (cf. Remark 2.1.8). In Cases (Nm) and (Spl), this is
true, for example, when we assume that H is a principal level, and that we
are in the setting preceding Lemma 2.1.9. (See also Remark 2.1.11). In
Case (Hdg), this is true, for example, when p > 2 and Hp is a maximal
hyperspecial open compact subgroup of G(Qp) (see [50, Sec. 4.3 and 5.3]).

Lemma 4.3.2. Under Assumption 4.3.1, there exists a system of open compact

subgroups H(`r
′
) ⊂ H, labeled by integers r′ ≥ r, such that:

(1) For each r′ ≥ r, we have H(`r
′
) = H`,pU`(`r

′
)Hp, where H`,p and Hp are

as above, and where U`(`r
′
) := ker(G(Z`)→ G(Z/`r′Z)).

(2) By writing H′ = H(`r
′
) for simplicity, the corresponding canonical mor-

phisms XH′ → XH and their boundary analogues Ξ′ → Ξ, C ′ → C and
Z′ → Z are finite étale. The morphisms C → Z and C ′ → Z′ are abelian
scheme torsors over finite étale covers of the base schemes, and the mor-
phisms Ξ → C and Ξ′ → C ′ are torus torsors. The induced morphism
C ′ → C ×

Z
Z′ is étale locally over Z′ the multiplication by `r

′−r on an abelian

scheme, and the canonical morphism Ξ′ → Ξ×
C
C ′ is Zariski locally over C ′

the multiplication by `r
′−r on a torus.

Proof. Part (1) of the lemma is just the definition of H(`r
′
) ⊂ H, for each r′ ≥ r.

It remains to verify the assertions in part (2) of the lemma. In Case (Sm), these
follow from the constructions in [36, Sec. 6.2.2–6.2.4; see also the errata]. In Cases

(Nm) and (Spl), since H/H′ ∼= U`(`r)/U`(`r
′
), we can define relative moduli C ′,mod

and Ξ′,mod over C and Ξ parameterizing the `-power parts of the degenerations of
level structures, as in [36, Sec. 6.2.4] (see also [42, Sec. 1.3.2]), which are finite étale
over C and Ξ, respectively, and have the desired property as (instead of C ′ and Ξ′)
in the last sentence of the lemma. Then the induced morphisms C ′ → C ′,mod and
Ξ′ → Ξ′,mod are isomorphisms by Zariski’s main theorem, because they are finite
morphisms between normal schemes which induce isomorphisms in characteristic
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zero. In Case (Hdg), these follow from the boundary descriptions in characteristic
zero in [50, Sec. 2.1] (based on [4] and [71]) and in characteristic p in [50, Sec.
4.1–4.2]. �

Let Z be a stratum of Xmin
H .

In Cases (Sm), (Nm), or (Spl), the stratum Z is associated with some cusp
label [(ZH,ΦH, δH)], which determines an H-orbit ZH of a fully symplectic liftable

filtration Z = {Z−i}i∈Z on L⊗
Z
Ẑ (see [36, Def. 5.2.7.1 and 5.4.2.4]). Then we fix

the choices of P and V = {V−i}i∈Z as in Lemma 3.3.6, where V−2⊗
Q
A∞ lies in the

H-orbit of Z−2⊗
Z
Q, and define various groups as in Definition 3.3.8.

In Case (Hdg), it is the consequence of the characteristic zero theory in [5] and
[71] that the stratum Z is associated with some parabolic subgroup P of G⊗

Z
Q

whose image in each simple factor of (G⊗
Z
Q)ad is either the whole factor or a

proper maximal parabolic subgroup. Let U and M denote the unipotent radical
and the Levi quotient of P, respectively. Then we have an exact sequence 1 →
Gh → M → Gl → 1, where Gh defines the boundary analogue of XH, which is a
finite cover of Z in [71] and [50]. (Unlike in PEL cases, we do not have M ∼= Gl×Gh

in general.) In what follows, we will not be as precise as in Cases (Sm), (Nm), and
(Spl), but only state the bare minimum for the application of Pink’s arguments in
[72].

Remark 4.3.3. The group Γ in Proposition 2.1.2 is by definition a subgroup of
Gl(Q). Even in Cases (Sm), (Nm), or (Spl), where M ∼= Gl×Gh, it is generally not
true that HM coincides with the semi-direct product Hl oHh or H′l nH′h (see [36,
Def. 5.3.1.4 and 5.3.1.1, and the errata], and see [42, Def. 1.2.1.11 and 1.2.1.12]),
and Γ′ := Γ∩Hl is a finite index subgroup of Γ which is generally different from Γ.
This discrepancy between Γ and Γ′ defines a finite étale cover of Z in characteristic
zero, which is consistent with the consideration in [71, Sec. 6.3] (cf. Definition 4.3.4
below). Nevertheless, in Cases (Sm), (Nm), or (Spl), Γ′ = Γ when and exactly when
M ∼= Gl×Gh induces a direct product HM

∼= Hl×Hh, in which case Hl = H′l and
H′h = Hh,Φ = Hh. This is the case, for example, when H is a principal level (and
when the technical assumption [36, Cond. 1.4.3.10] is satisfied).

Consider any algebraic representation ξ of G⊗
Z
Q on a finite-dimensional vector

space Vξ over Q̄`, with an associated étale sheaf Vξ over XH, as explained in [45, Sec.
3.1] (which is consistent with [72, Sec. 1 and 4.9]). The association is functorial
and also applies to complexes V of algebraic representations of G⊗

Z
Q on finite-

dimensional vector spaces over Q̄`, with associated complexes V of Q̄`-étale sheaves
over XH. For each algebraic group ( · ) over Q, let Db( · , Q̄`) denote the bounded
derived category of algebraic representations of ( · ) on finite-dimensional vector
spaces over Q̄`. Then the above association induces a functor from Db(G⊗

Z
Q, Q̄`)

to Db
c(XH, Q̄`) (see the beginning of Section 4.1).

Following [72, Sec. 5.2], let us introduce the following definitions:

Definition 4.3.4. For the group Γ in Proposition 2.1.2 associated with Z, consider
the Stein factorization

Cst := Spec
OZ

((C → Z)∗OC)→ Z,
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with an induced action of Γ. Then we denote by Γ′ the largest (finite index) subgroup
of Γ which acts trivially on Cst. (In Cases (Sm), (Nm), and (Spl), this is the same
Γ′ as in Remark 4.3.3.)

Definition 4.3.5. Let u := Lie U(Q`) denote the Lie algebra of the `-adic analytic
Lie group U(Q`). For each V ∈ Db(P, Q̄`), we denote by RInv(u, V ) the object of
Db(M, Q̄`) whose cohomology computes the Lie algebra cohomology of V .

Definition 4.3.6. For each object V ∈ Db(M, Q̄`), we denote by RInv(Γ′, V ) the
object of Db(Gh, Q̄`) whose cohomology computes the group cohomology of V .

Remark 4.3.7. In Cases (Sm), (Nm), or (Spl), the boundary stratum Z and its
finite cover Cst are analogues of XH associated with Gh at levels Hh,Φ and H′h,

respectively, and we have Cst/(Γ/Γ′)
∼→ Z. In Case (Hdg), it is only the Cst in

Definition 4.3.4 that is associated with Gh, but we still have Cst/(Γ/Γ′)
∼→ Z. In

all cases, the constructions in [45, Sec. 3.1] and [72, Sec. 1 and 4.9] associate an
object of Db

c(C
st, Q̄`) with any RInv(Γ′, V ) as in Definition 4.3.6, which admits an

action of Γ/Γ′ and defines an object of Db
c(Z, Q̄`) (cf. [71, (1.10) and (4.7)]) because

Cst → Z is étale by assumption (see (4) of Assumption 4.3.1).

Definition 4.3.8. For each object V ∈ Db(G⊗
Z
Q, Q̄`), we define

(4.3.9) V \Z := RInv(Γ′, RInv(u, V |P))

as in Definition 4.3.6, with an associated object V\Z of Db
c(Z, Q̄`) as in Remark 4.3.7.

When V is represented by an algebraic representation Vξ of G⊗
Z
Q on a finite-

dimensional vector space over Q̄`, we denote by V \ξ,Z the unique representative of

V \Z which is a direct sum of shifts of algebraic representations of Gh on finite-
dimensional vector spaces over Q̄` (which exists because Gh is reductive), and by

V\ξ,Z the associated direct sum of shifts of Q̄`-étale sheaves over Z representing V\Z.

As usual, we shall also denote by Vξ, Vξ, V \ξ,Z, and V\ξ,Z the induced objects in the
derived categories.

Suppose T is just a point. Let imin : ZT → (Xmin
H )T and itor : Z̃T → (Xtor

H,Σ)T (resp.

jmin : (XH)T ↪→ (Xmin
H )T and jtor : (XH)T ↪→ (Xtor

H,Σ)T) denote the canonical locally

closed (resp. open) immersions, which satisfy imin =
∮
◦itor and jmin =

∮
◦jtor,

where
∮

:= (
∮
H,Σ)T : (Xtor

H,Σ)T → (Xmin
H )T is as in (1) of Theorem 2.3.2.

Theorem 4.3.10 (Pink). Let Vξ be an algebraic representation of G⊗
Z
Q on a

finite-dimensional vector space over Q̄`, which defines Vξ etc as in Definition 4.3.8.

For simplicity, we shall denote by the same symbols the pullbacks of Vξ and V\ξ,Z
under T→ S. Then, under Assumption 4.3.1, there exists a canonical isomorphism

(4.3.11) imin,∗Rjmin
∗ Vξ

∼→ V\ξ,Z

in Db
c(ZT, Q̄`). More precisely, by the proper base change theorem (see [3, XII, 5.1]),

we have a canonical isomorphism

(4.3.12) imin,∗Rjmin
∗ Vξ

∼→ R
∮
Z,∗ i

tor,∗Rjtor
∗ Vξ,
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where
∮
Z

: Z̃T → ZT is the pullback of
∮

. Then the upshot is the existence of an
isomorphism

(4.3.13) R
∮
Z,∗ i

tor,∗Rjtor
∗ Vξ

∼→ V\ξ,Z,

which depends only on Vξ|P, such that (4.3.11) is the composition

(4.3.14) imin,∗Rjmin
∗ Vξ

(4.3.12)
∼→ R

∮
Z,∗ i

tor,∗Rjtor
∗ Vξ

(4.3.13)
∼→ V\ξ,Z.

As level varies, such isomorphisms are compatible with Hecke actions of elements
of P(A∞) (when defined). (In characteristic p, we usually cannot expect the Hecke
actions to be defined for all elements of P(A∞).)

Proof. The existence of the canonical isomorphism (4.3.11) follows from [72, Thm.
4.2.1 and Prop 5.2.1], while the later explanatory statements are based on the proofs
there. (We could have referred to [72, Thm. 5.3.1] when the simplifying assumption
HQ = HCKP there is satisfied, which corresponds to the assumption that Γ = Γ′

in our setting; cf. [72, paragraph after (3.7.4)], Remark 4.3.3, and Definition 4.3.4.)
Although they were stated only over Spec(F0), the same arguments there work as
long as there are systems of minimal and toroidal compactifications with the same
axiomatic properties as in [72, Sec. 3.7–3.11; see also Sec. 4.9], which is the case
here, by considering higher principal levels at `, thanks to Lemma 4.3.2. �

Remark 4.3.15. The proof of Theorem 4.3.10 in [72] is consistent with the one here:
In Cases (Sm), (Nm), and (Spl), this is because of the comparisons in [34, Thm.
4.1.1 and 5.1.1; see also the errata] and in [37]. In Case (Hdg), this is because [50]
and [72] were based on the same characteristic zero results in [71].

Let Y be a well-positioned subset of (XH)T, with associated Y\ = {Y\Z}Z as in
Definition 2.2.1. Let Ymin and Ytor

Σ be its partial minimal and toroidal compacti-
fications, as in Definition 2.3.1, with the canonical proper surjection

∮
Y

:=
∮
Y,Σ

:

Ytor
Σ → Ymin, as in Theorem 2.3.2. Let imin

Y : YZ → Ymin and itor
Y : YZ̃ → Ytor

Σ (resp.
jmin
Y : Y ↪→ Ymin and jtor

Y : Y ↪→ Ytor
Σ ) denote the canonical locally closed (resp.

open) immersions, which satisfy imin
Y =

∮
Y
◦itor

Y and jmin
Y =

∮
Y
◦jtor. Now we can

formulate our generalization of Theorem 4.3.10:

Theorem 4.3.16. Let F be a well-positioned complex over Ytor
Σ , equipped with a

collection F \ = {(F \Z, ιZ)}Z as in Definition 4.1.3. Let Vξ be an algebraic represen-
tation of G⊗

Z
Q on a finite-dimensional vector space over Q̄`. Let FY, Vξ,Y, and

V\ξ,YZ
denote the pullbacks of F , Vξ, and V\ξ,Z (see Definition 4.3.8) to Y, Y, and YZ,

respectively. Then, under Assumption 4.3.1, there exists a canonical isomorphism

(4.3.17) imin,∗
Y Rjmin

Y,∗ (Vξ,Y
L
⊗FY)

∼→ V\ξ,YZ

L
⊗F \Z

in Db
c(YZ, Q̄`). As level varies, such isomorphisms are compatible with actions of

elements of P(A∞) when they are defined on some collections of Y and F \Z (which
is possible by Lemma 4.1.12).

In order to prove Theorem 4.3.16, we need some further preparations.

Lemma 4.3.18. There is a canonical isomorphism

(4.3.19) imin,∗
Y Rjmin

Y,∗ (Vξ,Y
L
⊗FY)

∼→ R
∮
YZ,∗ i

tor,∗
Y Rjtor

Y,∗(Vξ,Y
L
⊗FY),
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where
∮
YZ

: YZ̃ → YZ is the pullback of
∮
Y

.

Proof. This follows from the proper base change theorem (see [3, XII, 5.1]). �

Lemma 4.3.20. Let Λ be as in the beginning of Section 4.1. Suppose f : T → T ′ is
a morphism between schemes of residue characteristics prime to `, which we assume
to be separated and of finite type over some regular scheme of dimension ≤ 1.
Suppose G ∈ Db

c(T,Λ) and H ∈ Db
c(T
′,Λ). Then there is a canonical morphism

(4.3.21) (Rf∗G)
L
⊗H → Rf∗(G

L
⊗(f∗H))

in Db
c(T
′,Λ).

Proof. By adjunction, we have a canonical morphism f∗Rf∗G → G, which induces
a canonical morphism

f∗((Rf∗G)
L
⊗H)

∼→ (f∗Rf∗G)
L
⊗(f∗H)→ G

L
⊗(f∗H),

which in turn induces the desired morphism (4.3.21). �

Consequently, we have a canonical morphism

(4.3.22) (Rjtor
Y,∗Vξ,Y)

L
⊗F → Rjtor

Y,∗(Vξ,Y
L
⊗FY).

Lemma 4.3.23. In Lemma 4.3.20, suppose that f : T → T ′ is a morphism between
schemes of finite type over S0 = Spec(k) for some field k, which is étale locally of
the form f = g ×

S0

IdS : T = E ×
S0

S ↪→ T ′ = E′ ×
S0

S, where g : E → E′ is a

morphism between schemes separated and of finite type over S0, and where S is
of finite type over S0. Suppose moreover that such an étale local factorization of
f can be chosen such that G and H are the pullbacks of some L ∈ Db

c(E,Λ) and
M∈ Db

c(S,Λ), respectively. Then (4.3.21) is an isomorphism.

Proof. Up to étale localization, we may identify the morphism (4.3.21) with the

Künneth morphism (Rg∗L)
L

�
S0

M→ Rf∗(L
L

�
S0

M), which is an isomorphism by [6,

4.2.7]. �

Remark 4.3.24. In Lemma 4.3.20, when f is compactifiable, we have a canonical

isomorphism (Rf!G)
L
⊗H ∼→ Rf!(G

L
⊗(f∗H)), which is the well-known projection

formula (see [3, XVII, 5.2.9]), by the proper base change theorem (see [3, XVII,
5.2.2]). However, such a formula is false in general for Rf∗ instead of Rf!.

Corollary 4.3.25. The canonical morphism (4.3.22) is an isomorphism.

Proof. For each Z, let UZ = {(U i, aUi , a
\

Ui,E(σi)
)}i∈IZ be as in Definition 4.1.3. Let

Ui denote the common preimage of XH and E in U i (see Corollary 2.1.7), and let
aYUi : YUi := Ui ×

XH
Y → Y, aYUi

: YUi := U i ×
Xtor
H,Σ

Ytor
Σ → Ytor

Σ , JUi : YUi ↪→ YUi ,

and a\YUi
: YUi → Y\Z denote the induced canonical morphisms. In order to show

that (4.3.22) is an isomorphism, by étale localization, it suffices to show that, for
each Z and each i ∈ IZ as above, the induced morphism

(4.3.26) (RJUi,∗a
∗
YUi
Vξ,Y)

L
⊗(a∗YUi

F)→ RJUi,∗a
∗
YUi

(Vξ,Y
L
⊗FY)
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is an isomorphism, for each i ∈ I. Since Vξ is lisse, by using the isomorphism

ιUi : a∗YUi
F ∼→ a\,∗YUi

F \Z as in (4.1.5), this follows from Lemma 4.3.23, as desired. �

Lemma 4.3.27. It suffices to prove Theorem 4.3.16 when Y = (XH)T.

Proof. Let J : Y → (XH)T and JZ : YZ → ZT denote the canonical morphisms. By
[3, XVII, 5.1.2 and 5.1.6], we have

JZ,!i
min,∗
Y Rjmin

Y,∗ (Vξ,Y
L
⊗FY) ∼= imin,∗Rjmin

∗ (J!(Vξ,Y
L
⊗FY)).

Since J!(Vξ,Y
L
⊗FY) ∼= Vξ

L
⊗(J!FY) and JZ,!(V\ξ,YZ

L
⊗F \Z) ∼= V\ξ,Z

L
⊗(JZ,!F \Z) because

Vξ and V\ξ,Z are direct sums of shifted lisse sheaves, we are reduced to constructing

(4.3.17) when Y, F , and F \Z are replaced with (XH)T, J!F , and JZ,!F \Z, respectively.
Hence, this lemma follows from (1) of Lemma 4.2.1. �

Proof of Theorem 4.3.16. By Lemma 4.3.27, we may and we shall assume that Y =
(XH)T. In this case, the desired (4.3.17) is the following composition

imin,∗
Y Rjmin

Y,∗ (Vξ,Y
L
⊗FY)

(4.3.19)
∼→ R

∮
YZ,∗ i

tor,∗
Y Rjtor

Y,∗(Vξ,Y
L
⊗FY)

R
∮
YZ,∗

itor,∗
Y (4.3.22)−1

∼→ R
∮
YZ,∗ i

tor,∗
Y ((Rjtor

Y,∗Vξ,Y)
L
⊗F)

can.
∼→R

∮
YZ,∗((i

tor,∗
Y Rjtor

Y,∗Vξ,Y)
L
⊗(itor,∗

Y F))

R
∮
YZ,∗

(Id⊗ ιZ)

∼→ R
∮
YZ,∗((i

tor,∗
Y Rjtor

Y,∗Vξ,Y)
L
⊗(
∮ ∗
YZ
F \Z))

proj.
∼→ (R

∮
YZ,∗ i

tor,∗
Y Rjtor

Y,∗Vξ,Y)
L
⊗F \Z

(4.3.13)
∼→ V\ξ,YZ

L
⊗F \Z,

(4.3.28)

where (4.3.13) is applicable because Y = (XH)T and so Y\Z = ZT; where (4.3.22) is
an isomorphism by Corollary 4.3.25; and where the isomorphism denoted “proj.”
is based on the well-known projection formula (see [3, XVII, 5.2.9] and Remark
4.3.24), which is applicable because

∮
YZ,∗ is proper. �

Remark 4.3.29. Instead of using Lemma 4.3.27 and (4.3.13), we could have directly

established the isomorphism R
∮
YZ,∗ i

tor,∗
Y Rjtor

Y,∗Vξ,Y
∼→ V\ξ,YZ

needed in the last step

of (4.3.28), without assuming Y = (XH)T, by the same argument as in the proof of
Theorem 4.3.10, thanks to Theorem 2.3.2, Proposition 2.4.2, and Lemma 4.3.2.

Remark 4.3.30. Theorems 4.3.10 and 4.3.16 have analogues over Z`—we then need
to replace the Lie algebra cohomology in Definitions 4.3.5 and 4.3.8 by continuous
group cohomology. (See [72, Thm. 4.2.1].)

Remark 4.3.31. We have seen in Theorem 4.3.16 that imin,∗
Y Rjmin

Y,∗ (Vξ,Y
L
⊗FY), for

any well-positioned complex F , is canonically isomorphic to the (derived) tensor

product of V\ξ,YZ
and F \Z, where V\ξ,YZ

is the pullback of the complex V\ξ,Z essentially

defined in [72]. This is intriguing because the minimal compactification is far from
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being a product near the boundary. As a consequence of this sheaf-theoretic product
structure, we see that the following problems are, at least intuitively, unrelated:

(1) Studying the bad reduction of a Shimura variety at p, or studying its nearby
cycles, or studying the constant sheaves or intersection complexes on nat-
ural stratifications such as the Newton or Ekedahl–Oort ones.

(2) Studying the behavior of such complexes near the boundary strata of the
minimal compactification.

Remark 4.3.32. By Theorem 4.3.16, under Assumption 4.3.1, V\ξ,YZ

L
⊗F \Z is uniquely

determined by F and Vξ, for an arbitrary Vξ. When Vξ = Q̄` is the trivial repre-

sentation, V \ξ,Z has a direct summand Q̄` in degree zero, by “Lieberman’s trick”.

(This is a representation-theoretic statement independent of the consideration of

integral models.) Therefore, F \Z is uniquely determined by V\ξ,YZ

L
⊗F \Z in this case,

and also by F (cf. Remark 4.1.10).

4.4. Mantovan’s formula with boundary terms. The goal of this subsection
is to present a generalization of [51, Sec. 8, Thm. 22] and [52, Thm. 3.1] in a way
different from our previous one [45, Thm. 6.32], which also shows certain boundary
terms. (See Theorem 4.4.7 and Remark 4.4.13 below.)

Let us resume the context of Section 3.3. Assume moreover that p is a good
prime for the integral PEL datum (O, ?, L, 〈 · , · 〉, h0) as in [36, Def. 1.4.1.1]; that
we are in Case (Nm) with the trivial collection J = {j0} with {(gj0 , Lj0 , 〈 · , · 〉j0)} =
{(1, L, 〈 · , · 〉)}, as in [38, Ex. 2.3]; and that O⊗

Z
Q is simple and involves no factor

of type D, in the sense of [36, Def. 1.2.1.15]. (This is the setting in [45, Sec. 6.3].)
In this case, (G⊗

Z
Q)ad is also simple over Q. Let us also import Assumption 4.3.1

from Section 4.3. For the sake of concreteness, let us fulfil the requirement in
Assumption 4.3.1 that C → Z is an abelian scheme torsor for each Z by assuming
that H is a principal level, by Lemma 2.1.9. This will be harmless for our purpose
in this subsection, because principal levels are cofinal among all choices of levels.

Suppose S = Spec(OK), where K is the v-adic completion of F0 at a place
v|p. Consider the nearby cycle functors RΨXH etc defined by some compatible
choices of geometric points η̄ = Spec(K̄) and s̄ above the generic and special points
η = Spec(K) and s of S, respectively, as in [45, Sec. 5.1]. For each b ∈ B(G⊗

Z
Qp),

and for each irreducible algebraic representation ξ of G⊗
Z
Q on a finite-dimensional

vector space Vξ over Q̄`, recall that Mantovan proved the following formula (see
[45, Thm. 6.26], with H running over a cofinal system of higher levels, such as all
higher principal levels)

(4.4.1)
∑
i

(−1)i [Hi
ét,c(X

b
s̄, (RΨX(Vξ))|Xbs̄)] =

∑
j

(−1)j Eb([Hj
ét,c(Ig

b,Vξ)])

between virtual representations of G(A∞,p)×G(Qp)+×WK , where

G(Qp)+ := {gp ∈ G(Qp) : g−1
p (L⊗

Z
Zp) ⊂ L⊗

Z
Zp}

is a sub-monoid of G(Qp) (cf. [51, p. 599]), where Igb is the limit of the so-called
Igusa varieties over certain central leaf of Xbs̄, and where Eb is the so-called Mantovan
functor. (For more details, see [45, Sec. 6.3] and the references there to [51], [52],
and other works.)



68 KAI-WEN LAN AND BENOÎT STROH

Let Z be a stratum of Xmin
H , which is associated with some parabolic subgroup

P of G⊗
Z
Q, as in Lemma 3.3.6, with its various quotients of subgroups defined in

Definition 3.3.8. Since O⊗
Z
Q is simple by assumption, P is either all of G⊗

Z
Q,

or a proper maximal parabolic subgroup of G⊗
Z
Q. For each b ∈ B(G⊗

Z
Qp), by

Proposition 3.3.9 and its proof, Y := (XH)bs is a well-positioned subset of (XH)s,

associated with the collection Y\ := {Y\Z := Zbs}Z, where Zbs is either the empty

subset or the Newton stratum Zbhs of Zs. In the latter case, (XH)bs 6= ∅, and b
is the image of some bP ∈ B(P⊗

Q
Qp), with image bM = (bl, bh) in B(M⊗

Q
Qp) ∼=

B(Gl⊗
Q
Qp)×B(Gh⊗

Q
Qp). Conversely, by the construction of Mumford families,

every bh ∈ B(Gh⊗
Q
Qp) such that Zbhs is nonempty comes from some b ∈ B(G⊗

Z
Qp)

as above. For such Y and Y\, let (Xtor
H,Σ)bs := Ytor

Σ be defined as in Definition 2.3.1.

By Lemmas 4.2.1 and 4.2.10, RΨXtor
H,Σ

(Q̄`)|(Xtor
H,Σ)bs̄

is a well-positioned complex

over (Xtor
H,Σ)s̄, equipped with the collection {RΨZ(Q̄`)|Zbs̄}Z. By abuse of notation,

we shall still denote their extensions by zero to the whole schemes (Xtor
H,Σ)s̄ and

Zs̄, respectively, by the same symbols. Therefore, by Theorem 4.3.16, we have an
isomorphism

(4.4.2) imin,∗
s̄ Rjmin

s̄,∗ (Vξ
L
⊗RΨXH(Q̄`)|(XH)bs̄

)
∼→ V\ξ,Z

L
⊗RΨZ(Q̄`)|Zbs̄

in Db
c(Zs̄, Q̄`), where Vξ and V\ξ,Z also denote their pullbacks to (XH)s̄ and Zs̄,

respectively. Note that (4.4.2) is not just an isomorphism in Db
c(Zs̄, Q̄`), but also

an isomorphism in Db
c(Zs̄× η̄, Q̄`), because the proof of Theorem 4.3.16 only uses

canonical isomorphisms which are compatible with the actions of Gal(k(η̄)/k(η)) =
Gal(K̄/K) (cf. Lemma 4.2.10 and its proof).

Since Vξ is lisse, the canonical morphism Vξ
L
⊗RΨXH(Q̄`) → RΨXH(Vξ) is

an isomorphism in Db
c((XH)s̄× η̄, Q̄`). Similarly, since the complex V\ξ,Z is a

direct sum of shifted lisse sheaves (see Definition 4.3.8), the canonical morphism

V\ξ,Z
L
⊗RΨZ(Q̄`)→ RΨZ(V\ξ,Z) is an isomorphism in Db

c(Zs̄× η̄, Q̄`). Hence, (4.4.2)
can be rewritten as an isomorphism

(4.4.3) imin,∗
s̄ Rjmin

s̄,∗ (RΨXH(Vξ)|(XH)bs̄
)
∼→ RΨZ(V\ξ,Z)|Zbs̄

in Db
c(Zs̄, Q̄`), where RΨXH(Vξ)|(XH)bs̄

and RΨZ(V\ξ,Z)|Zbs̄ abusively denote their ex-

tensions by zero to the whole schemes (XH)s̄ and Zs̄.

As H ⊂ G(Ẑ) varies among principal levels, the attached HP := H∩P(A∞),
HU := H∩U(A∞), HM := HP/HU, and Hh := (M(A∞) → Gh(A∞))(HM) (see
Definition 3.3.8 and Remark 4.3.3) vary accordingly among principal levels in the
respective ambient groups. We can also consider a projective system of higher level
analogues of Z, as H′h = Hh,Φ = Hh ⊂ Gh(A∞) vary among principal levels, which

we abusively denote as Ẑ.
However, to formulate the boundary version of (4.4.1), it is better to consider

the Gl(A∞)-orbit of Ẑ (which is a disjoint union of locally closed subsets in the
limit of the projective system Xmin = {Xmin

H }H parameterized by principal levels
H), which we abusively denote as XP. The elements of Gl(A∞) act by twisting
the torus arguments in the cusp labels, without changing the associated filtration
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Z. The finite level object XP,H is the disjoint union of all Z (the strata of Xmin
H )

parameterized by cusp labels [(ZH,ΦH, δH)] with the same underlying H-orbit ZH,
where ZH⊗

Z
Q has stabilizer P⊗

Q
A∞. Such cusp labels [(ZH,ΦH, δH)] are in bijection

with Gl(Q)\Gl(A∞)/H′l = Gl(Q)\Gl(A∞)/Hl. The generic fiber (XP)η admits
an action of P(A∞) with trivial restriction to U(A∞), and the induced action of
M(A∞) ∼= P(A∞)/U(A∞) ∼= Gl(A∞)×Gh(A∞) is the combination of the action of

Gl(A∞) as above and the action of Gh(A∞) on Ẑη.
Since P+/R×>0

∼= Gl(R)/Ul,∞ (where Ul,∞ is the stabilizer of some element of
P+) is a Riemannian symmetric space associated with Gl(R), the group cohomology
of Γ can be computed using the cohomology of the manifold Γ\P+/R×>0. By putting

together the V\ξ,Z over each Z at level H, each of which being a cohomology complex

of Γ, we obtain the cohomology complex over Gl(Q)\Gl(A)/Ul,∞Hl. Thus, by

taking limit over all principal levels H, we obtain a limit V\ξ,P over XP, which

admits an admissible action of Gl(A∞).
Suppose that b ∈ B(G⊗

Z
Qp) is the image of some bP ∈ B(P⊗

Q
Qp) with image

bM = (bl, bh) in B(M⊗
Q
Qp) ∼= B(Gl⊗

Q
Qp)×B(Gh⊗

Q
Qp). Then we can define (XP)bhs

to be the Gl(A∞)-orbit of Ẑbhs , the preimage of Zbhs , and write symbolically

(4.4.4) imin,∗
P,s̄ Rjmin

s̄,∗ (RΨX(Vξ)|Xbs̄)
∼→ RΨXP(V\ξ,P)|

(XP)
bh
s̄
.

By applying the analogue of (4.4.1) to XP, we obtain the following equality∑
i

(−1)i [Hi
ét,c((XP)s̄, i

min,∗
P,s̄ Rjmin

s̄,∗ (RΨX(Vξ)|Xbs̄))]

=
∑
j

(−1)j Ebh([Hj
ét,c(Ig

bh
P ,V

\
ξ,P)])

(4.4.5)

between virtual representations of Gl(A∞)×Gh(A∞,p)×Gh(Qp)+×WK , where
Gh(Qp)+ is the sub-monoid of Gh(Qp) analogous to the sub-monoid G(Qp)+ of

G(Qp), where IgbhP is the analogous limit of Igusa varieties over (XP)bhs̄ (whose

pullback to Ẑs is the usual one associated with Gh, over some chosen central leaf

at the bottom level), where each Hj
ét,c(Ig

bh
P ,V

\
ξ,P) admits an admissible/continuous

action of Gl(A∞)×Gh(A∞,p)× Jbh(Qp)×WK , and where
(4.4.6)
Ebh : Groth(Gl(A∞)×Gh(A∞,p)× Jbh(Qp))→ Groth(Gl(A∞)×Gh(A∞)×WK).

is the combination of the identity functor on Groth(Gl(A∞)) and the corresponding
Mantovan functor for Gh (cf. [45, (6.20)]).

Theorem 4.4.7 (cf. [51, Sec. 8, Thm. 22] and [52, Thm. 3.1], and also [45, Thm.
6.26 and 6.32]). For each b ∈ B(G⊗

Z
Qp), we have an equality∑

i

(−1)i [Hi
ét(Xs̄, (RΨX(Vξ))|Xbs̄)]

=
∑

P

Ind
G(A∞)
P(A∞)

(∑
j

(−1)j Ebh([Hj
ét,c(Ig

bh
P ,V

\
ξ,P)])

)(4.4.8)

between virtual representations of G(A∞,p)×G(Qp)+×WK , where the sum over P
runs over a complete (finite) set of representatives of conjugacy classes of (rational)



70 KAI-WEN LAN AND BENOÎT STROH

parabolic subgroups of G⊗
Z
Q that is either (proper) maximal or G⊗

Z
Q itself such

that b ∈ B(G⊗
Z
Qp) is the image of some bP ∈ B(P⊗

Q
Qp) with image bM = (bl, bh)

in B(M⊗
Q
Qp) ∼= B(Gl⊗

Q
Qp)×B(Gh⊗

Q
Qp). (Note that bh depends on P.)

Overall, we have an equality∑
i

(−1)i [Hi
ét(Xs̄, RΨX(Vξ))]

=
∑

P

Ind
G(A∞)
P(A∞)

( ∑
bh∈B(Gh⊗

Q
Qp)

∑
j

(−1)j Ebh([Hj
ét,c(Ig

bh
P ,V

\
ξ,P)])

)
(4.4.9)

between virtual representations of G(A∞,p)×G(Qp)+×WK , and an equality∑
i

(−1)i [Hi
ét(Xη̄,Vξ)]

=
∑

P

Ind
G(A∞)
P(A∞)

( ∑
bh∈B(Gh⊗

Q
Qp)

∑
j

(−1)j Ebh([Hj
ét,c(Ig

bh
P ,V

\
ξ,P)])

)
(4.4.10)

between virtual representations of G(A∞)×WK , where the sums over P run over
a complete (finite) set of representatives of conjugacy classes of (rational) parabolic
subgroups of G⊗

Z
Q that is either (proper) maximal or G⊗

Z
Q itself.

Proof. Let Xmin denote the limit of Xmin
H over principal levels H ⊂ G(Ẑ). By [37,

Prop. A.5.8 and A.5.9], we have a stratification
∐
P

(
G(A∞) · XP

)
of Xmin, where

the disjoint union is over the same P’s as in the second paragraph of the statement
of the theorem, and where P(A∞) is the stabilizer of XP in G(A∞). By (2) of
Proposition 2.1.2, the same are true over the fibers over s̄. By Proposition 3.3.9,
(XP)s̄ contains some nonempty Zbs̄ only when b ∈ B(G⊗

Z
Qp) is the image of some

bP ∈ B(P⊗
Q
Qp). Thus, we obtain the equality (4.4.8) between virtual representa-

tions of G(A∞,p)×G(Qp)+×WK by summing the parabolic inductions of (4.4.5)
over the same P’s as in the first paragraph of the statement of the theorem.

As in [45, (6.24)], we have an equality∑
i

(−1)i [Hi
ét(Xs̄, RΨX(Vξ))]

=
∑

b∈B(G⊗
Q
Qp)

∑
i

(−1)i [Hi
ét(X

b
s̄, (RΨX(Vξ))|Xbs̄)]

(4.4.11)

between virtual representations of G(A∞)×WK . By combining the contributions
from all b ∈ B(G⊗

Z
Qp), we obtain the equality (4.4.9) between virtual

representations of G(A∞,p)×G(Qp)+×WK . Thus, by [45, Cor. 5.20 and Rem.
5.35], we obtain (4.4.10) as an equality between virtual representations of
G(A∞,p)×G(Qp)+×WK , which then extends to the desired equality between
virtual representations of G(A∞)×WK (cf. [51, Sec. 8]). �

Remark 4.4.12. The term Hi
ét(Xs̄, (RΨX(Vξ))|Xbs̄) in (4.4.9) differs from both

Hi
ét(X

b
s̄, (RΨX(Vξ))|Xbs̄) and Hi

ét,c(X
b
s̄, (RΨX(Vξ))|Xbs̄) in general.
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Remark 4.4.13. Compared with its analogue for
∑
i

(−1)i [Hi
ét,c(Xη̄,Vξ)] in [45,

(6.33)], the formula (4.4.10) is more elaborate and contains the additional (bound-
ary cohomology) terms parameterized by all proper maximal parabolic subgroups
P of G⊗

Z
Q, although (in theory) these two formulae imply each other by duality.

Remark 4.4.14. Here is an alternative argument for establishing the equality
(4.4.10) (which does not rely on Proposition 3.3.9 and Theorem 4.3.16): By
applying the analogues of [45, Cor. 5.20, Rem. 5.35, and (6.24)] and (4.4.1) for
XP, we obtain an equality∑

i

(−1)i [Hi
ét,c((XP)η̄,V\ξ,P)]

=
∑

bh∈B(Gh⊗
Q
Qp)

∑
j

(−1)j Ebh([Hj
ét,c(Ig

bh
P ,V

\
ξ,P)])

(4.4.15)

between virtual representations of Gl(A∞)×Gh(A∞,p)×Gh(Qp)+×WK , which
extends to an equality between virtual representations of Gl(A∞)×Gh(A∞)×WK ,
by the same explanation as in [51, Sec. 8]. By Theorem 4.3.10 (the original theorem
of Pink’s), we can rewrite (4.4.15) as an equality∑

i

(−1)i [Hi
ét,c((XP)η̄, i

min,∗
P,η̄ Rjmin

η̄,∗ Vξ)]

=
∑

bh∈B(Gh⊗
Q
Qp)

∑
j

(−1)j Ebh([Hj
ét,c(Ig

bh
P ,V

\
ξ,P)])

(4.4.16)

between virtual representations of Gl(A∞)×Gh(A∞)×WK . Thus, we obtain the
desired equality (4.4.10) by summing the parabolic inductions of (4.4.16) over the
same P’s as in the second paragraph of Theorem 4.4.7. However, such an argument
cannot isolate the contribution of a single Newton stratum as in (4.4.8).

4.5. Morel’s formula. The goal of this subsection is to generalize Morel’s results
concerning restrictions to boundary strata of intersection complexes of automor-
phic étale sheaves in [58, Sec. 5.2], [59, Sec. 4.2], and [61, Sec. 1.4] (see also [60]),
and their variants in [80, Sec. 9], [81], and [82], to the case of general tensor prod-
ucts of automorphic étale sheaves with well-positioned pure perverse sheaves. (See
Theorems 4.5.26 and 4.5.37 below.)

We shall resume the context of Section 4.3, with Assumption 4.3.1, because our
generalization of Morel’s results depends on our generalization of Pink’s formula
there, just as the original results of Morel’s depend on the original formula of Pink’s.
For simplicity, we shall make the following assumption in this subsection:

Assumption 4.5.1. We are in Cases (Sm), (Nm), or (Spl), and C → Z is an
abelian scheme torsor for each Z.

Recall that, in Section 4.3, we have extended the construction in [45, Prop. 3.2]
to a functor from Db(G⊗

Z
Q, Q̄`) to Db

c(XH, Q̄`), and we have similar constructions

over each stratum Z of Xmin
H .

Let Q̄ denote the algebraic closure of Q in C, and fix a choice of a field homo-
morphism Q̄ ↪→ Q̄`. Since we will be working with weights, it is more convenient
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to work with Db(G⊗
Z
Q̄, Q̄`), which is isomorphic to Db(G⊗

Z
Q, Q̄`) (via the above

choice of Q̄ ↪→ Q̄`).
The h0 : C→ EndO⊗

Z
R(L⊗

Z
R) in Assumption 2.1.1 (cf. [36, Def. 1.2.1.3]) induces

by restriction a central cocharacter Gm⊗
Z
R→ G⊗

Z
R, whose reciprocal descends to

a cocharacter w : Gm⊗
Z
Q → G⊗

Z
Q (cf. [14, 1.1.1] for the general definition). For

simplicity, we shall also denote by w the base change Gm⊗
Z
Q̄→ G⊗

Z
Q̄.

Definition 4.5.2. We say a complex V ∈ Db(G⊗
Z
Q̄, Q̄`) is pure of weight

−a ∈ Z if, by pullback under the cocharacter w, the group Gm⊗
Z
Q̄ acts on Hn(V )

via the character x 7→ xa+n, for each n ∈ Z.

Example 4.5.3. The representation L⊗
Z
Q̄` of G⊗

Z
Q̄ (with its tautological action,

placed in degree zero) is pure of weight 1.

Lemma 4.5.4. Suppose V ∈ Db(G⊗
Z
Q̄, Q̄`) is pure of weight −a ∈ Z as in Def-

inition 4.5.2, with associated complex V ∈ Db
c(XH, Q̄`). For each functorial point

s̄ = Spec(k)→ S, where k is a perfect field of characteristic p, the pullback Vs̄ of V
to (XH)s̄ is mixed of weight a (cf. [15, Def. 6.2.2]). More precisely, Hn(Vs̄) is lisse
and pointwise pure of weight a+ n, for each n ∈ Z (see [15, Def. 1.2.2]).

Proof. This follows from [45, Prop. 3.2] and [72, Prop. 5.6.2 and Lem. 5.6.6]. �

Remark 4.5.5. Beware that in general V is not pure (as in [15, Def. 6.2.4]) when
(XH)s̄ is not smooth (over s̄). Nevertheless, the restriction of Vs̄ to every smooth
subscheme of (XH)s̄ is pure of weight a (see [15, Ex. 6.2.5(b)]).

Lemma 4.5.6. Consider any t = Spec(k)→ S, where k is a field of characteristic p
that is either algebraically closed or finite. Let V ∈ Db(G⊗

Z
Q̄, Q̄`) be pure of weight

−a ∈ Z, with associated V ∈ Db
c(XH, Q̄`), whose pullback to (XH)t we abusively

denote by the same symbols. Let F be a pure shifted perverse sheaf of weight b ∈ Z
over (XH)t. Then V

L
⊗F is pure of weight a + b, and is isomorphic to a direct

sum of shifted perverse sheaves. If V is concentrated in degree zero, and if F is a

perverse sheaf, then V
L
⊗F is also a perverse sheaf.

Proof. The tensor product V
L
⊗F is isomorphic to a direct sum of shifted

perverse sheaves because the fibered category of perverse sheaves is a category
module over the symmetric monoidal fibered category of lisse sheaves. Consider
V ∨ := RHom(V, Q̄`) in Db(G⊗

Z
Q̄, Q̄`), with associated V∨ := RHom(V, Q̄`) in

Db
c(XH, Q̄`). In order to show that V

L
⊗F is pure of weight a + b, it suffices to

note that V
L
⊗F is mixed of weight ≤ a+ b (by Lemma 4.5.4), and that

D(XH)t(V
L
⊗F) ∼= RHom(V

L
⊗F ,K(XH)t)

∼= V∨
L
⊗RHom(F ,K(XH)t)

∼= V∨
L
⊗D(XH)t(F)
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is mixed of weight ≤ −a − b. (See [6, 5.1.13 and 5.1.14].) If V is concentrated in

degree zero, then V is a lisse sheaf concentrated in degree zero, and hence V
L
⊗F is

a perverse sheaf if F is. �

Let Z be a stratum of Xmin
H , which is associated with some (rational) parabolic

subgroup P of G⊗
Z
Q, as in Lemma 3.3.6, which is the stabilizer of a symplectic

filtration V = {V−i}i∈Z of L⊗
Z
Q such that V−2⊗

Q
A∞ lies in the H-orbit of Z−2⊗

Z
Q

for some representative Z = {Z−i}i∈Z of ZH.

Definition 4.5.7. Consider a collection C = {Z(c)}c of strata of Xmin
H containing

the open stratum XH. Then the incidence relation among the strata of Xmin
H induces

a partial order on the indices c by declaring that c ≤ c′ whenever Z
(c) ⊂ Z

(c′)
. We

say that C is a chain if such an induced partial ordering is a total ordering. We
say that a chain C ends with Z, in which case we write C � Z, if Z is the (unique)
minimal element in C .

Lemma 4.5.8. Suppose V−2 and Z−2 are as above, and suppose C = {Z(c)}c � Z
as in Definition 4.5.7. Let c0 > c1 > · · · > cr be a total ordering of all the indices
of C , so that XH = Z(c0) and Z = Z(cr). Then there exists a filtration

(4.5.9) 0 = V
(c0)
−2 ( V

(c1)
−2 ( · · · ( V

(cr)
−2 = V−2,

which induces by base change a filtration

(4.5.10) 0 = V
(c0)
−2 ⊗Q

A∞ ( V
(c1)
−2 ⊗Q

A∞ ( · · · ( V
(cr)
−2 ⊗Q

A∞ = V−2⊗
Q
A∞ = Z−2⊗

Z
Q,

whose H-orbit depends only on C . The stabilizer Q of (4.5.9) in G⊗
Z
Q is a parabolic

subgroup satisfying the following conditions (cf. Definition 3.3.8):

(1) U ⊂ Q ⊂ P, and so the unipotent radical UQ of Q contains U, and the
Levi quotient MQ := Q/UQ can be identified with the Levi quotient of the
parabolic subgroup Q/U of M.

(2) There is a canonical homomorphism Q/U → Gh, which is surjective and
canonically splits.

(3) Ql := ker((Q/U) → Gh) is a (rational) parabolic subgroup of Gl, with
unipotent radical UQl

∼= UQ/U and Levi quotient MQl := Ql/UQl .

Conversely, any (rational) parabolic subgroup of G⊗
Z
Q satisfying these conditions

define a chain linking XH and Z as in Definition 4.5.7.

Proof. Since the incidence relations among the strata of Zmin are the same as their
restrictions to the characteristic zero fibers, the existence of the filtrations (4.5.9)
and (4.5.10) follows from [36, Thm. 7.2.4.1(4) and Lem. 5.4.2.11]. The bijection be-
tween the filtrations as in (4.5.9) and the parabolic subgroups Q of G⊗

Z
Q satisfying

the above conditions then follows from [37, Prop. A.5.8 and Lem. A.4.3]. �

Remark 4.5.11. By Lemma 4.5.8, such chains correspond to the strata of the re-
ductive Borel–Serre compactification of (the analytification of) XH ⊗

R0

C above the

stratum Z ⊗
R0

C of Xmin
H ⊗

R0

C, where the base changes are defined by any ring homo-

morphism R0 → C. (See [9, Sec. III.6 and III.10, and Prop. III.15.2 and III.15.4].)
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Definition 4.5.12. For each C and Q as in Lemma 4.5.8, we define

(4.5.13) r(Q) := r(C ) := (#C )− 1.

We also define ΓQ to be the image of Γ∩Ql(Q) (see Definition 4.3.4) under the
canonical morphism Ql(Q)→ MQl(Q), and uQ := Lie UQ(Q`).

Lemma 4.5.14. For any other choice Q′ instead of Q as in Lemma 4.5.8, with
ΓQ′ and uQ′ defined as in Definition 4.5.12, there are isomorphisms ΓQ

∼→ ΓQ′

and uQ
∼→ uQ′ of groups and `-adic analytic Lie groups, respectively, inducing

isomorphisms between their cohomology.

Proof. This is because (4.5.9) determines and is determined by (4.5.10), and the
H-orbit of the latter depends only on C . �

Let C and Q be as in Lemma 4.5.8. For each 0 ≤ i ≤ r(Q), the stabilizer P(i) of

V
(i)
−2 in G⊗

Z
Q is a parabolic subgroup associated with Z(ci) as in Lemma 3.3.6. By

definition, we have Q = ∩
0≤i≤r(Q)

P(i). Moreover, there exists a homomorphism

(4.5.15) sQ :
∏

0≤i≤r(Q)

(Gm⊗
Z
Q̄)→ Q⊗

Q
Q̄

which induces a cocharacter

(4.5.16) sQ,(i) : Gm⊗
Z
Q̄→ Q⊗

Q
Q̄

from the i-th factor such that sQ,(i) acts

(1) on V
(ci)
−2 ⊗Q

Q̄ by x 7→ x2;

(2) on ((V
(ci)
−2 )⊥/V

(ci)
−2 )⊗

Q
Q̄ by x 7→ x; and

(3) on ((L⊗
Z
Q)/(V

(ci)
−2 )⊥)⊗

Q
Q̄ by x 7→ 1;

for each 0 ≤ i ≤ r(Q). (These are base changes of the graded pieces for the filtration

0 = V
(ci)
−3 ⊂ V

(ci)
−2 ⊂ (V

(ci)
−2 )⊥ = V

(ci)
−1 ⊂ V

(ci)
0 = L⊗

Z
Q.) Such homomorphisms

(4.5.15) and (4.5.16) exist because the filtration (4.5.9) splits. Moreover, the Levi
quotient Q → MQ admits a splitting with image in the centralizer of the image
of the homomorphism (4.5.15), or equivalently the centralizer of the images of the
cocharacters (4.5.16), for all 0 ≤ i ≤ r(Q). From now on, we shall also view MQ as
a Levi subgroup of Q using such a splitting.

For each a ∈ Z, for each 0 ≤ i ≤ r(Q), and for each V ∈ Db(MQ⊗
Z
Q̄, Q̄`), which

we canonically view as an object in Db(Q⊗
Q
Q̄, Q̄`) by pullback under the canonical

homomorphism Q→ MQ, we define

(4.5.17) w
Q,(i)
≥a (V ) :=

∑
a′≥a

(
subcomplex of V on which sQ,(i) acts by x 7→ xa

′ )
and

(4.5.18) w
Q,(i)
<a (V ) :=

∑
a′<a

(
subcomplex of V on which sQ,(i) acts by x 7→ xa

′ )
,
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which are again objects of Db(MQ⊗
Z
Q̄, Q̄`), because MQ (as a Levi subgroup of Q)

lies in the centralizer of the image of sQ,(i). Since (4.5.15) is the product of (4.5.16)
as i varies, the truncation operators as in (4.5.17) and (4.5.18) also commute with
each other as i varies.

For each 0 ≤ i ≤ r(Q), consider

(4.5.19) dQ,(i) := dim(Z(ci)
η )

(which does not depend on the choice of S). For each a ∈ Z and each V ∈
Db(MQ⊗

Q
Q̄, Q̄`), consider the subcomplex

(4.5.20) V ≤aQ := w
Q,(r(Q))
≥dQ,(r(Q))−a w

Q,(r(Q)−1)
<dQ,(r(Q)−1)−a · · ·w

Q,(2)
<dQ,(2)−a w

Q,(1)
<dQ,(1)−a(V )

in Db(MQ⊗
Z
Q̄, Q̄`). The assignment of V ≤aQ to V defines an exact functor

(4.5.21) ( · )≤aQ : Db(MQ⊗
Z
Q̄, Q̄`)→ Db(MQ⊗

Z
Q̄, Q̄`).

Definition 4.5.22. Let C and Q be as in Lemma 4.5.8, and let ΓQ and uQ be as
in Definition 4.5.12. For each a ∈ Z, and for each object V in Db(G⊗

Z
Q, Q̄`), we

define

(4.5.23) V \,≤aC := RInv(ΓQ, (RInv(uQ, V |Q))≤aQ ),

which is a complex in Db(Gh⊗
Z
Q̄, Q̄`), whose isomorphism class depends only on

C , but not on the choice of Q, by Lemma 4.5.14. Then the constructions in [45,

Sec. 3.1] and [72, Sec. 1 and 4.9] associate a complex V\,≤aC in Db
c(Z, Q̄`) (cf. Remark

4.3.7 and Definition 4.3.8) with V \,≤aC .

We need one last technical preparation:

Lemma 4.5.24. Suppose T = Spec(k), where k is a field that is either alge-
braically closed or finite. Let Y be a well-positioned subset of (XH)T, with asso-

ciated Y\ = {Y\Z}Z as in Definition 2.2.1, and with partial minimal and toroidal
compactifications Ymin and Ytor

Σ as in Definition 2.3.1 and Theorem 2.3.2. Suppose

that F is a perverse sheaf over Ytor
Σ , equipped with a collection F \ = {(F \Z, ιZ)}Z

as in Definition 4.1.3, such that F \Z[dZ] is a perverse sheaf over Z, where dZ :=
dim((XH)T)− dim(ZT), for each Z.

Now let us fix the choice of Z. Suppose we have the morphisms

Ztor → Zmin ∼→ Z→ Xmin
H ,

which induce

Ytor
Z → Ymin

Z
∼→ YZ → Ymin,

as in Lemma 2.3.16 and its proof. Then, under the assumption (see Assumptions

4.3.1 and 4.5.1) that Y\C′ → Y\Z′ is an abelian scheme torsor (of constant relative
dimension) for each stratum Z′ of Zmin, there exists a well-positioned perverse sheaf

G over Ztor, equipped with a collection G\ = {(G\Z′ , ι′Z′)}Z′ indexed by the strata Z′

in Z, such that G\Z′ = F \Z′ [dZ] for each Z′, and such that the pullbacks of ιZ′ [d
Z] and

ι′Z′ to Z′×
Z

Ztor
[σ] , for some top-dimensional σ ∈ Σ+

Z as in the proof of Lemma 2.3.16,

coincide with each other.
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Proof. As in the proof of Lemma 4.2.13, since the fibered category of perverse
sheaves is a stack (see [6, 2.2.19]), it suffices to construct G and ι′Z′ over the étale

boundary charts of Ztor. Let Z′ be any stratum of Z. Suppose that we have already
defined G over the largest open subscheme of Ztor containing all stratum Z′′ of Z
that contain Z′ in its closure but differ from Z′, and defined ι′Z′′ and its extensions
over some U ′Z′′ as in Definition 4.1.3, for all such Z′′. (When Z′ = Z, we simply have

G|Z = F \Z[dZ], with ι′Z and its extensions being the identity morphisms.)
Let x be a point of a stratum Z′[τ ′′] of Ztor

[σ] , which lies above a point y of a stratum

Z′[τ ′] of Ztor above Z′. By using nested approximation as in the proof of [45, Prop.

4.3], there exist a torus homomorphism E′′ → E′ and an abelian scheme torsor
C ′′ → C ′, and representatives τ ′′ and τ ′ of [τ ′′] and [τ ′], respectively, such that
there exists a commutative diagram

(4.5.25) Ztor
[σ]

��

U
′′

oo

��

// E′′(τ ′′) ×
Spec(Z)

C ′′

��

Ztor U
′

oo // E′(τ ′) ×
Spec(Z)

C ′

in which the squares are both Cartesian, and in which the horizontal morphisms
define compatible étale neighborhoods of x and y such that the preimages of Z and

E′ ×
Spec(Z)

C ′ coincide as an open subscheme U ′ of U
′
; such that the preimages of

Z[σ], E
′′ ×

Spec(Z)
C ′′, and U ′ coincide as an open subscheme U ′′ of U

′′
; and such that

the pullbacks of the horizontal étale morphisms under the canonical morphisms
Z′×

Z

Ztor → Ztor and E′(τ ′)+ ×
Spec(Z)

C ′ → E′(τ ′) ×
Spec(Z)

C ′ (when defined) are open

immersions. Up to replacing U
′
and U

′′
with open subschemes, we may assume that

all étale morphisms above have connected geometric fibers. Then there exists an

étale morphism U
′′′ → U

′′
with connected geometric fibers such that the pullback

of ιZ and ιZ′ extend to isomorphisms

ιU ′′′ : (YU ′′′ → Ytor
Σ )∗F ∼→ (YU ′′′ → Y\Z)∗F \Z

and

ιU ′′′ : (YU ′′′ → Ytor
Σ )∗F ∼→ (YU ′′′ → Y\Z′)

∗F \Z′

(see Definition 4.1.3), where U ′′′ denotes the preimage of U ′′ in U
′′′

, and where

YU ′′′ := U ′′′ ×
Xtor
H,Σ

Ytor
Σ and YU ′′′ := U

′′′ ×
Xtor
H,Σ

Ytor
Σ .

Let G\Z′,U ′ denote the pullback of G\Z′ = F \Z′ [dZ] to YZ,U ′ := U ′ ×
Ztor

Ytor
Z , which is

a shifted perverse sheaf because U ′ → Z′ is smooth of constant relative dimension.
Since Z[σ]

∼= C → Z is smooth of constant relative dimension, the further pullback

G\Z′,U ′′′ of G\Z′,U ′ to YU ′′′ , which coincides with the pullback of G\Z′ under YU ′′′ → YZ′ ,
is also a shifted perverse sheaf. Using the isomorphisms ιU ′′′ and ιU ′′′ above up to

shifting, the pullback of F \Z[dZ] under YU ′′′ → Y\Z is isomorphic to G\Z′,U ′′′ . Since

U ′′′ → U ′ is smooth and has connected geometric fibers, by [6, 4.2.5 and 4.2.6.2],

this uniquely descends to an isomorphism between F \Z′ [dZ] and G\Z′,U ′ over the image
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of YU ′′′ in YZ′ . Hence, the pullback G\
Z′,U

′ of G\Z′ to YZ,U
′ := U

′ ×
Ztor

Ytor
Z , which

necessarily has no support in YZ,U
′ − YZ,U ′ , defines an extension of the partially

defined G over the image of YU ′′′ → YZ,U
′ . By varying x (and y), we obtain étale

neighborhoods which induce an open covering of the preimage of Z′ in Ztor, and
hence by descent an extension of G over a larger open subscheme containing this
preimage, with the desired ι′Z′ and its extensions over some collection UZ′ as in
Definition 4.1.3. Thus, by inductively repeating this process until we exhaust all
strata Z′ of Z, the lemma follows. �

Now we are ready to state and prove our generalizations of Morel’s results:

Theorem 4.5.26. Suppose T = Spec(k), where k is a finite field of characteristic

p. Let Y be a well-positioned subset of (XH)T, with associated Y\ = {Y\Z}Z as in
Definition 2.2.1, and with partial minimal and toroidal compactifications Ymin and
Ytor

Σ as in Definition 2.3.1 and Theorem 2.3.2.
Suppose that V = Vξ is an algebraic representation of G⊗

Z
Q on a

finite-dimensional vector space over Q̄` that is pure of weight −a ∈ Z (as in
Definition 4.5.2), and that F is a well-positioned pure perverse sheaf of weight

b ∈ Z over Ytor
Σ , equipped with a collection F \ = {(F \Z, ιZ)}Z as in Definition

4.1.3 such that F \Z[−dZ] is a pure perverse sheaf of weight b − dZ over Y\Z, where

dZ := dim((XH)T)− dim(ZT), for each Z.
Let Z be a stratum of Xmin

H . Let imin, imin
Y , etc be defined as in the paragraphs

preceding Theorems 4.3.10 and 4.3.16. Let FY, VY, and V\,≤aC ,YZ
denote the pullbacks

of F , V, and V\,≤aC (see Definition 4.5.22) to Y, Y, and YZ, respectively. Then,
under Assumptions 4.3.1 and 4.5.1, we have an equality

(4.5.27) [imin,∗
Y jmin

Y,!∗(VY
L
⊗FY)] =

∑
C�Z

(−1)r(C )−1 [V\,≤aC ,YZ

L
⊗F \Z]

in the Grothendieck group of Db
c(YZ, Q̄`). (See Definitions 4.5.7, 4.5.12, and

4.5.22.)

Proof. We shall closely follow the arguments in [59, especially the proofs of 4.2.1
and 4.2.3]. Let w≤a+b and w>a+b denote the weight truncation functors defined in

[59, Sec. 3.1, p. 36]. By Lemma 4.5.6, VY
L
⊗FY is a pure perverse sheaf of weight

a+ b. Therefore, by [59, 3.1.4], there is a canonical isomorphism

(4.5.28) jmin
Y,!∗(VY

L
⊗FY)

∼→ w≤a+bRj
min
Y,∗ (VY

L
⊗FY)

in Db
c(Y

min, Q̄`). For each C = {Z(c)}c with indices ordered as

c0 > c1 > · · · > cr(C )

as in Lemma 4.5.8, and for each 0 ≤ i ≤ r(C ), let i
(i)
C : YZ(ci) → Ymin denote the

canonical morphism, so that i
(0)
C = jmin

Y and i
(r(C ))
C = imin

Y . By [59, 3.1.3 and 3.3.4;
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cf. 3.3.5], we have an equality

[imin,∗
Y w≤a+bRj

min
Y,∗ (VY

L
⊗FY)] =

∑
C�Z

(−1)r(C )−1 [w≤a+b i
(r(C )),∗
C Ri

(r(C )−1)
C ,∗

w>a+b i
(r(C )−1),∗
C · · ·Ri(2)

C ,∗ w>a+b i
(2),∗
C Ri

(1)
C ,∗ w>a+b i

(1),∗
C Rjmin

Y,∗ (VY
L
⊗FY)]

(4.5.29)

in the Grothendieck group of Db
c(YZ, Q̄`).

Let Q be as in Lemma 4.5.8, which is ∩
0≤i≤r(C )

P(i) as in the paragraph following

Lemma 4.5.14. For each 0 ≤ i ≤ r(C ), let U(i), M(i), G
(i)
l , and G

(i)
h be defined

as in Definition 3.3.8 for P(i), with ΓP(i) ⊂ G
(i)
l (Q) defined by the corresponding

Z(ci) as in Definition 4.3.4, and let u(i) := Lie U(i)(Q`). Let Q(i) := ∩
0≤j≤i

P(j),

let UQ(i) denote the unipotent radical of Q(i), and let uQ(i) := Lie UQ(i)(Q`).
Let Q

(i)
l := ker((Q(i)/U(i)) → G

(i)
h ), which is a parabolic subgroup of G

(i)
l , with

unipotent radical U
Q

(i)
l

:= UQ(i)/U(i) and Levi quotient M
Q

(i)
l

:= Q
(i)
l /U

Q
(i)
l

(cf.

Lemma 4.5.8). Let ΓQ(i) be the image of ΓP(i) ∩Q
(i)
l (Q) under the canonical ho-

momorphism Q
(i)
l (Q) → M

Q
(i)
l

(Q) (cf. Definition 4.5.12). When i ≥ 1, also con-

sider the canonical homomorphism Q(i)/U(i−1) → G
(i−1)
h , whose kernel is Q

(i−1)
l ,

and whose image is a parabolic subgroup P
(i)
h of G

(i−1)
h , with unipotent radical

U
(i)
h
∼= U(i)/(U(i) ∩U(i−1)) ∼= UQ(i)/UQ(i−1) and Levi quotient M

(i)
h
∼= G

(i)
h,l×G

(i)
h ,

where G
(i)
h,l := M

Q
(i)
l

/M
Q

(i−1)
l

. (Note that we have U(0) = 1, G
(0)
h = G⊗

Z
Q, Q

(0)
l = 1,

U
Q

(0)
l

= 1, and M
Q

(0)
l

= 1.) Let Γ
P

(i)
h

be the image of ΓQ(i) under the canonical

morphism M
Q

(i)
l

→ G
(i)
h,l, and let u

(i)
h := Lie U

(i)
h (Q`). By definition, we have

Γ
P

(i)
h

∼= ΓQ(i)/ΓQ(i−1) and u
(i)
h
∼= uQ(i)/uQ(i−1) . We also have M

Q
(i)
l

∼=
∏

1≤j≤i
G

(j)
h,l

and MQl
∼=

∏
1≤i≤r(C )

G
(i)
h,l.

Suppose that, for some 1 ≤ i < r(C ), we have a canonical isomorphism

i
(i),∗
C Ri

(i−1)
C ,∗ w>a+b · · ·Ri(1)

C ,∗w>a+b i
(1),∗
C Ri

(0)
C ,∗(VY

L
⊗FY)

∼= V\,≤a,pre
C ,Y

Z(ci)

L
⊗F \

Z(ci)

(4.5.30)

in Db
c(YZ(ci) , Q̄`), where V\,≤a,pre

C ,Y
Z(ci)

is associated with

(4.5.31) RInv(ΓQ(i) , w
Q,(i−1)
<dQ,(i−1)−a · · ·w

Q,(1)
<dQ,(1)−a(RInv(uQ(i) , V |Q(i))))

in Db(G
(i)
h ⊗Z

Q̄, Q̄`) (cf. Definition 4.3.8 and (4.5.20)). When i = 1, this is just

Theorem 4.3.16 (with no truncation needed in (4.5.31)).

Since F \
Z(ci)

[−dZ(ci)

] is a pure perverse sheaf of weight b− dZ(ci)

over YZ(ci) , and

since dQ,(i) = dZ(ci) , by the analogue of Lemma 4.5.6 for Z(c1), and by [59, the proof
of 4.1.2, based on 2.1.4] (cf. Lemma 4.5.4), we have a canonical isomorphism

(4.5.32) w>a+b(V\,≤a,pre
C ,Y

Z(ci)

L
⊗F \

Z(ci)
) ∼= V\,≤aC ,Y

Z(ci)

L
⊗F \

Z(ci)
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in Db
c(YZ(ci) , Q̄`), where V\,≤aC ,Y

Z(c1)
is associated with

(4.5.33) RInv(ΓQ(i) , w
Q,(i)
<dQ,(i)−a · · ·w

Q,(1)
<dQ,(1)−a(RInv(uQ(i) , V |Q(i))))

in Db(G
(i)
h ⊗Z

Q̄, Q̄`).

Since Γ
P

(i+1)
h

∼= ΓQ(i+1)/ΓQ(i) , since ΓQ(i) ⊂ M
Q

(i)
l

(Q), since M
Q

(i)
l

commutes

with G
(i)
h and hence also with U

(i+1)
h , and since the cocharacters sQ,(1), . . . , sQ,(i)

act trivially on u
(i+1)
h

∼= uQ(i+1)/uQ(i) , we have a canonical isomorphism

RInv(Γ
P

(i+1)
h

, w
Q,(i)
<dQ,(i)−aRInv(u

(i+1)
h ,

(RInv(ΓQ(i) , w
Q,(i−1)
<dQ,(i−1)−a · · ·w

Q,(1)
<dQ,(1)−a(RInv(uQ(i) , V |Q(i)))))|

P
(i+1)
h

))

∼= RInv(ΓQ(i+1) , w
Q,(i)
<dQ,(i)−a · · ·w

Q,(1)
<dQ,(1)−a(RInv(uQ(i+1) , V |Q(i+1)))).

(4.5.34)

By Lemmas 2.3.16 and 4.5.24, and by applying Theorem 4.3.16 to the pullback to

YZ(ci+1) of R(YZ(ci) ↪→ Ymin
Z(ci)

)∗(V\,≤aC ,Y
Z(ci)

L
⊗F \

Z(ci)
), we obtain (4.5.30) with i replaced

with i + 1. In the final step, when i + 1 = r(C ), so that Z(cr(C)) = Z, the same
argument for showing (4.5.32) gives a canonical isomorphism

(4.5.35) w≤a+b(V\,≤a,pre
C ,Y

Z
(cr(C))

L
⊗F \Z) ∼= V\,≤aC ,YZ

L
⊗F \Z

in Db
c(YZ, Q̄`), and hence we obtain a canonical isomorphism

w≤a+b i
(r(C )),∗
C Ri

(r(C )−1)
C ,∗ w>a+b · · ·Ri(1)

C ,∗ w>a+bi
(1),∗
C Ri

(0)
C ,∗(VY

L
⊗FY)

∼= V\,≤aC ,YZ

L
⊗F \Z.

(4.5.36)

in Db
c(YZ, Q̄`). Now, just combine (4.5.28), (4.5.29), and (4.5.36). �

Theorem 4.5.37. Suppose that V = Vξ and −a ∈ Z are as in Theorem 4.5.26. Let
d := dim((XH)η). Consider the nearby cycle functors RΨXH etc defined by some
compatible choices of geometric points η̄ and s̄ above the generic and special points
η and s of S, respectively, as in [45, Sec. 5.1], where S = Spec(OK), and where K
is the v-adic completion of F0 at some place v|p, as in Section 4.4. Then, under
Assumptions 4.3.1 and 4.5.1, we have an equality

(4.5.38) [imin,∗
s̄ jmin

s̄,!∗RΨXH(V[d])] =
∑
C�Z

(−1)r(C )−1 [V\,≤aC ,Zs̄

L
⊗RΨZ(Q̄`)[d]]

in the Grothendieck group of Db
c(Zs̄× η̄, Q̄`).

Proof. We shall closely follow [81], with additional inputs from [62] and [45, Sec. 5],
and from this article. Since the argument is global, let us consider MH, Mmin

H , etc
over Spec(F0) as in Assumption 2.1.1. Note that these are the generic fibers for the
analogues of XH, Xmin

H , etc, with the base scheme S replaced with some analogue
over Spec(OF0,(q)) for any good prime q 6= p for (O, ?, L, 〈 · , · 〉, h0) and H (in the
sense that H is maximal hyperspecial at q).

Consider the categories M(MH), M(Mmin
H ), etc of horizontal perverse sheaves

which admit weight filtrations, as in [62, 6.1]. For V = Vξ as in Theorem 4.5.26, the
associated sheaf V[d] over MH (which can be defined using any analogues of XH as
above over Spec(OF0,(q)) for some good q 6= p) is an object inM(XH), and it follows
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from [62, 8.1.4] and the same argument of the proof of Theorem 4.5.26 (with F and

F \Z being Q̄`[d] for each Z) that, after pullback from Spec(F0) to η = Spec(K), we
have an equality

(4.5.39) [imin,∗
η jmin

η,!∗ (V[d])] =
∑
C�Z

(−1)r(C )−1 [V\,≤aC ,Zη
[d]]

in the Grothendieck group of Db
c(Zη, Q̄`), and hence also an equality

(4.5.40) [jmin
η,!∗ (V[d])] =

∑
Z′

∑
C ′�Z′

(−1)r(C
′)−1 [i′,min

η,! V
\,≤a
C ′,Z′η

[d]]

in the Grothendieck group of Db
c((X

min
H )η, Q̄`), where the objects associated with

Z′ are denoted with an additional prime.
By [45, Thm. 5.26], we have a canonical isomorphism

(4.5.41) RΨXmin
H
jmin
η,!∗ (V[d])

∼→ jmin
s̄,!∗RΨXH(V[d])

in Db
c((X

min
H )s̄× η̄, Q̄`). For each Z′, by decomposing the canonical morphism i′,min :

Z′ → Xmin
H as a composition of the open immersion Z′ ↪→ Z′,min and the closed

immersion Z′,min → Xmin
H using Lemma 2.3.16, by applying [45, Thm. 5.23] to

Z′ ↪→ Z′,min, and by the proper base change theorem (cf. [3, XII, 5.1] and [16, XIII,
(2.1.7.1)]), we have a canonical isomorphism

(4.5.42) i′,min
s̄,! RΨZ′(V\,≤aC ′,Z′η

)
∼→ RΨXmin

H
(i′,min
η,! V

\,≤a
C ′,Z′η

)

in Db
c((X

min
H )s̄× η̄, Q̄`). On the other hand, since V\,≤aC ′,Z′η

is quasi-isomorphic to a

direct sum of shifted lisse sheaves, we have a canonical isomorphism

(4.5.43) V\,≤aC ′,Zs̄

L
⊗RΨZ′(Q̄`)

∼→ RΨZ′(V\,≤aC ′,Z′η
)

in Db
c(Z
′
s̄× η̄, Q̄`) (as we have seen in Section 4.4). Thus, we obtain the equality

(4.5.44) [jmin
s̄,!∗RΨXH(V[d])] =

∑
Z′

∑
C ′�Z′

(−1)r(C
′)−1 [i′,min

s̄,! (V\,≤aC ′,Z′s̄

L
⊗RΨZ′(Q̄`)[d])]

in the Grothendieck group of Db
c((X

min
H )s̄× η̄, Q̄`) by combining (4.5.39), (4.5.41),

(4.5.42), and (4.5.43). By applying imin,∗
s̄ to (4.5.44), we also obtain the equality

(4.5.38) in the Grothendieck group of Db
c(Zs̄× η̄, Q̄`), as desired. �

Remark 4.5.45. In order to establish (4.5.39) and (4.5.40), instead of resorting to
results in [62], we may proceed as in the proof of [82, 1.4.8] and resort to Laumon’s
Cebotarev density theorem for perverse sheaves as in [47, 1.1.2] (or rather an ana-
logue of it), by applying Theorem 4.5.26 to Y = (XH)s and F = Λ(Xtor

H,Σ)s [d] (for

some smooth Σ), after replacing XH etc with their analogues over Spec(OF0,(q)),
for all good primes q - p`.

Corollary 4.5.46. With the same setting as in Theorem 4.5.37, the perverse sheaf
jmin
s̄,!∗ (RΨXH(V[d])) has no support contained in the boundary of (Xmin

H )s̄.

Proof. As in the case of (4.5.43), we have a canonical isomorphism

(4.5.47) V
L
⊗RΨXH(Q̄`[d])

∼→ RΨXH(V[d])

in Db
c((XH)s̄× η̄, Q̄`). Since Assumption 4.5.1 implies Assumption 3.7.7, by Lemma

3.7.9, Proposition 3.7.13, and Lemma 4.2.23, we have the following facts: The pure
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isotypic subquotients of RΨXH(Q̄`[d]) extend to well-positioned perverse sheaves
Fα over (Xtor

H,Σ)s̄, labeled by some index α. Each such Fα is equipped with a

collection F \α = {(F \α,Z, ια,Z)}Z, where F \α,Z[−dZ] is a pure isotypic subquotient of

RΨZ(Q̄`[dZ]), with dZ := dim(Zη) and dZ := d − dZ as usual, for each Z. Since

Fα and F \α,Z have isomorphic pullbacks to schemes U smooth over Z of relative

dimension dZ, they have the same weight. Moreover, pure isotypic subquotients of

RΨZ(Q̄`[dZ]) are exactly such F \α,Z[−dZ], over all α. By applying Theorem 4.5.26

to such Fα and F \α,Z, by summing up identities like (4.5.27) over all Z and α

(which have the same form regardless of the possibly varying weights of Fα), and
by (4.5.44) and (4.5.47), we obtain an identity

(4.5.48) [jmin
s̄,!∗ (RΨXH(V[d]))] =

∑
α

[jmin
s̄,!∗ (V

L
⊗(Fα|(XH)s̄))]

in the Grothendieck group of Db
c((X

min
H )s̄× η̄, Q̄`). For each α, since V is quasi-

isomorphic to a direct sum of shifted lisse sheaves, and since Fα is the middle
perversity extension of a shifted (pure isotypic) lisse étale sheaf over an irreducible

smooth scheme, jmin
!∗ (V

L
⊗(Fα|(XH)s̄)) has no support contained in the boundary of

(Xmin
H )s̄. Thus, the corollary follows from (4.5.48), as desired. �
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81. , Erratum à “sur une conjecture de Kottwitz au bord”, Ann. Sci. Ecole Norm. Sup. (4)

46 (2013), no. 6, 1023–1024.
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