COMPACTIFICATIONS OF SPLITTING MODELS OF PEL-TYPE SHIMURA VARIETIES — ERRATA

KAI-WEN LAN

- (1) In Choices 2.2.9, "there exist some $r \in \mathbb{Z}$ and $j \in J$ such that $\Lambda = p^r \Lambda_j$ " should be "there exist some integers $(r_{[\tau]})_{[\tau] \in \Upsilon/\sim}$ and $j \in J$ such that $\Lambda_{[\tau]} = p^{r_{[\tau]}}\Lambda_{j,[\tau]}$, for all $[\tau] \in \Upsilon/\sim$, where $\Lambda_{[\tau]}$ and $\Lambda_{j,[\tau]}$ are the direct factors of Λ and Λ_j , respectively, as in (2.1.7)", and " p^{p_0} " should be " p^{r_0} ".
- (2) In the second paragraph of the proof of Prop. 2.2.11, the definitions of A_{Λ} and $f_{\Lambda,\Lambda'}: A_{\Lambda} \to A_{\Lambda'}$ (from the seventh to the ninth sentences) should become the following: "Hence, for any $j \in J$, with $\Lambda_j = L_j \bigotimes_{\mathbb{Z}} \mathbb{Z}_p$ in $L \bigotimes_{\mathbb{Z}} \mathbb{Q}_p$,

and for any $r \in \mathbb{Z}$, we can define $A_{p^r\Lambda_j}$ to be the abelian scheme A_j over \vec{S} . In general, for each $\Lambda \in \mathscr{L}$ such that $\Lambda_{[\tau]} = p^{r_{[\tau]}}\Lambda_{\mathbf{j},[\tau]}$ for some integers $(r_{[\tau]})_{[\tau]\in\Upsilon/\sim}$ and $\mathbf{j}\in\mathbf{J}$, for all $[\tau]\in\Upsilon/\sim$, as in Choices 2.2.9, there exists some $r \in \mathbb{Z}$ such that $r \geq r_{[\tau]}$, for all $[\tau] \in \Upsilon/\sim$, in which case we have a finite locally free subgroup scheme $\mathcal{K} := \prod_{[\tau]\in\Upsilon/\sim} (\vec{A}_{\mathbf{j}}[p^{r-r_{[\tau]}}])_{[\tau]}$ of

 $\vec{A_j}$ over \vec{S} , and we can define A_{Λ} to be the abelian scheme $\vec{A_j}/\mathcal{K}$ over \vec{S} , with a canonically induced isogeny $f_{p^r\Lambda_j,\Lambda}: A_{p^r\Lambda_j} \to A_{\Lambda}$. For any $\Lambda' \in \mathscr{L}$ such that $\Lambda \subset \Lambda'$ and $\Lambda'_{[\tau]} = p^{r'_{[\tau]}}\Lambda_{j',[\tau]}$ for some integers $(r'_{[\tau]})_{[\tau]\in\Upsilon/\sim}$ and $j' \in J$, for all $[\tau] \in \Upsilon/\sim$, as in Choices 2.2.9, so that we have a similarly defined isogeny $f_{p^{r'}\Lambda_{j'},\Lambda'}: A_{p^{r'}\Lambda_{j'}} \to A_{\Lambda'}$, we define $f_{\Lambda,\Lambda'}: A_{\Lambda} \to A_{\Lambda'}$ to be the \mathbb{Q}^{\times} -isogeny given by the composition of $f_{p^{r'}\Lambda_{j'},\Lambda'} \circ \vec{f_{j,j'}} \circ f_{p^r\Lambda_{j,\Lambda}}^{-1}$ with multiplication by $p^{r-r'}$ on $A_{\Lambda'}$. At any geometric point $\bar{s} \to S$, the level structures $\alpha_{\mathcal{H}_j}$ and $\alpha_{\mathcal{H}_{j'}}$ compatibly induce isomorphisms matching the submodules $(L_j \otimes \mathbb{Z}^p) \times \Lambda$ and $(L_{j'} \otimes \mathbb{Z}^p) \times \Lambda'$ of $L \otimes \mathbb{A}^{\infty} \cong (L \otimes \mathbb{A}^{\infty,p}) \times$ $(L \otimes \mathbb{Q}_p)$ with the submodules $T A_{\Lambda,\bar{s}}$ and $T A_{\Lambda',\bar{s}}$ of $V A_{\bar{s}}$, respectively, so that the conditions in Definition 2.2.1 hold over the open dense subscheme S of \vec{S} , and therefore also over the whole \vec{S} ."

(3) In the third paragraph of the proof of Prop. 2.2.11, the first two sentences should become the following: "For any $j_0 \in J$, since $\Lambda_{j_0} \subset p^{r_0}\Lambda_0$ (see Choices 2.2.9), we have an isogeny $f_{p^{-r_0}\Lambda_{j_0},\Lambda_0} : A_{p^{-r_0}\Lambda_{j_0}} = \vec{A}_{j_0} \to A_{\Lambda_0}$, as in the previous paragraph, and we can define the \mathbb{Q}^{\times} -polarization $\lambda_{\Lambda_0} : A_{\Lambda_0} \to A_{\Lambda_0}^{\vee}$ to be $(f_{p^{-r_0}\Lambda_{j_0},\Lambda_0}^{\vee})^{-1} \circ \vec{\lambda}_{j_0} \circ f_{p^{-r_0}\Lambda_{j_0},\Lambda_0}^{-1}$. Since the level structure $\alpha_{\mathcal{H}_{j_0}}$ matches the submodules $(L \otimes \hat{\mathbb{Z}}^p) \times \Lambda_0$ and $(L^{\#} \otimes \hat{\mathbb{Z}}^p) \times \Lambda_0^{\#}$ of $L \otimes \mathbb{A}^{\infty} \cong$ $(L \otimes \mathbb{A}^{\infty,p}) \times (L \otimes \mathbb{Q}_p)$ with the submodules $T A_{\Lambda_0,\bar{s}}$ and $T A_{\Lambda_0,\bar{s}}^{\vee}$ of $V A_{\bar{s}}$, respectively, for each geometric point $\bar{s} \to S$, and since $\Lambda_0 \subset \Lambda_0^{\#}$ (see

Published in Trans. Amer. Math. Soc. 370 (2018), no. 4, pp. 2463–2515, doi:10.1090/tran/7088.

KAI-WEN LAN

Lemma 2.2.2), the \mathbb{Q}^{\times} -isogeny λ_{Λ_0} defined above is a $\mathbb{Z}^{\times}_{(p)}$ -multiple of an isogeny over S, and hence is also a $\mathbb{Z}^{\times}_{(p)}$ -multiple of an isogeny over \vec{S} , again by [12, Prop. 3.3.1.5] and the noetherian normality of \vec{S} ."

(4) The proof of Lem. 3.1.1 should become the following: "By [12, Lem. 3.4.3.1 and Prop. 3.3.1.5], any $\mathbb{Z}_{(p)}^{\times}$ -isogeny of abelian schemes over $\mathsf{M}_{\mathcal{H}}$ (uniquely) extends to a $\mathbb{Z}_{(p)}^{\times}$ -isogeny of semi-abelian schemes over $\mathsf{M}_{\mathcal{H},\Sigma}^{\text{tor}}$ as soon as the source extends. Hence, the assertion of the lemma does not depend on the choice of A_{Λ} in its $\mathbb{Z}_{(p)}^{\times}$ -isogeny class. Therefore, as in the proof of Proposition 2.2.11, for each $\Lambda \in \mathscr{L}$ such that $\Lambda_{[\tau]} = p^{r_{[\tau]}} \Lambda_{j,[\tau]}$ for some integers $(r_{[\tau]})_{[\tau] \in \Upsilon/\sim}$ and $j \in J$, for all $[\tau] \in \Upsilon/\sim$, as in Choices 2.2.9, and for $r \in \mathbb{Z}$ such that $r \geq r_{[\tau]}$, for all $[\tau] \in \Upsilon/\sim$, we can take A_{Λ} to be \vec{A}_j/\mathcal{K} , where $\mathcal{K} = \prod_{[\tau] \in \Upsilon/\sim} (\vec{A}_j[p^{r-r_{[\tau]}}])_{[\tau]}$. Since \vec{A}_j extends to a semi-

abelian scheme \vec{A}_{j}^{ext} with additional structures over $\vec{\mathsf{M}}_{\mathcal{H},\Sigma}^{\text{tor}}$ by [13, Thm. 11.2] and [15, Thm. 6.1], \mathcal{K} also extends to the closed subgroup scheme $\mathcal{K}^{\text{ext}} := \prod_{[\tau] \in \Upsilon/\sim} (\vec{A}_{j}^{\text{ext}}[p^{r-r_{[\tau]}}])_{[\tau]}$ of \vec{A}_{j}^{ext} , which is quasi-finite and flat over

 $\vec{\mathsf{M}}_{\mathcal{H},\Sigma}^{\mathrm{tor}}$. Thus, we can define $A_{\Lambda}^{\mathrm{ext}}$ to be $\vec{A}_{j}^{\mathrm{ext}}/\mathcal{K}^{\mathrm{ext}}$, by [12, Lem. 3.4.3.1, Prop. 3.3.1.5, and the same local argument as in the proof of Thm. 3.4.3.2]."

- (5) The proof of Prop. 3.1.2 should become: "In the proof of Lemma 3.1.1, the quotient $\vec{A}_{j}^{\text{ext}} \to A_{\Lambda}^{\text{ext}} = \vec{A}_{j}^{\text{ext}}/\mathcal{K}^{\text{ext}}$, where $\mathcal{K}^{\text{ext}} = \prod_{[\tau] \in \Upsilon/\sim} (\vec{A}_{j}^{\text{ext}}[p^{r-r_{[\tau]}}])_{[\tau]}$, induces morphisms $(\underline{\text{Lie}}_{\vec{A}_{j}^{\text{ext}},\vee/\vec{M}_{\mathcal{H},\Sigma}^{\text{tor}}})_{[\tau]} \to \underline{\text{Lie}}_{A_{\Lambda}^{\text{ext}},\vee/\vec{M}_{\mathcal{H},\Sigma}^{\text{tor}}}$ and $\underline{\text{Lie}}_{\vec{A}_{j}^{\text{ext}}/\vec{M}_{\mathcal{H},\Sigma}^{\text{tor}}} \to \underline{\text{Lie}}_{A_{\Lambda}^{\text{ext}}/\vec{M}_{\mathcal{H},\Sigma}^{\text{tor}}}$ that can be canonically identified with multiplication by $p^{r-r_{[\tau]}}$ on $(\underline{\text{Lie}}_{\vec{A}_{j}^{\text{ext}},\vee/\vec{M}_{\mathcal{H},\Sigma}^{\text{tor}}})_{[\tau]}$ and $\underline{\text{Lie}}_{\vec{A}_{j}^{\text{ext}}/\vec{M}_{\mathcal{H},\Sigma}^{\text{tor}}}$, respectively, for each $[\tau] \in \Upsilon/\sim$. Thus, by decomposing everything into factors indexed by $[\tau] \in \Upsilon/\sim$ as in Section 2.1, the proposition follows from [15, Prop. 7.15] (which was based on a reduction first to the case where Σ is induced by auxiliary choices as in [13, Sec. 7], and then to the good reduction case as in [11, Prop. 6.9])."
- (6) In the proof of Lem. 3.2.22, the first sentence should become "First consider the special case where Λ = p^rL_j ⊗ Z_p, for some r ∈ Z and j ∈ J. By the construction of A^{ext}_Λ = A^{ext}_j and A^{ext,∨}_Λ = A^{ext,∨}_J over M^{tor}_{H,Σ}, which was based on [13, Lem. 11.1 and Thm. 11.2] and [15, Thm. 6.1] (or more precisely [15, Lem. 5.19 and Prop. 5.20]), their pullbacks to (M^{tor}_{H,Σ})[∧]_{Z[(Φ_H,δ_H,σ)]} are isomorphic to the pullbacks of the Mumford families [©]G_j and [©]G[∨]_J over X^{*}_{Φ_H,δ_{H,σ} (see [12, Def. 6.2.5.28] and [13, (8.29)]), respectively." After the next sentence, "Then T_j, T[∨]_j, ... we want" should be more precisely "In this case, T_j, T[∨]_j ... we want", and we need to insert a new sentence after this: "For general Λ ∈ ℒ, as in the proof of Lemma 3.1.1, we have an isogeny A^{*}_j → A^{ext}_Λ of semi-abelian schemes over M^{*}_{H,Σ}, for some j ∈ J, which induces isogenies of Raynaud extensions and of dual Raynaud extensions, by the constructions in [12, Sec. 3.3.3, 3.4.1, and 3.4.4], which give the desired T_Λ, T[∨]_Λ, (3.2.23), and (3.2.24) over (M^{*}_{H,Σ})[∧]_Z." Finally, in the last}

 $\mathbf{2}$

ERRATA

sentence, "it suffices to note that for the polarization $\lambda_{\Lambda_0} : A_{\Lambda_0} \to A_{\Lambda_0}^{\vee}$ in Lemma 2.2.2, and for the $j_0 \in \mathscr{L}$ such that $\Lambda_0 = p^{r_0} L_{j_0} \underset{\mathbb{Z}}{\otimes} \mathbb{Z}_p$ for some $r_0 \in \mathbb{Z}$, we have a commutative diagram" should become "it suffices to note that, in the proof of Proposition 2.2.11, the polarization $\lambda_{\Lambda_0} : A_{\Lambda_0} \to A_{\Lambda_0}^{\vee}$ in Lemma 2.2.2 is defined to be $(f_{p^{-r_0}\Lambda_{j_0},\Lambda_0}^{\vee})^{-1} \circ \vec{\lambda}_{j_0} \circ f_{p^{-r_0}\Lambda_{j_0},\Lambda_0}^{-1}$ over $\vec{M}_{\mathcal{H}}$, for any $j_0 \in \mathscr{L}$ (satisfying $\Lambda_{j_0} \subset p^{r_0}\Lambda_0$ as in Choices 2.2.9), which (uniquely) extends to $(f_{p^{-r_0}\Lambda_{j_0},\Lambda_0}^{\text{ext}})^{-1} \circ \vec{\lambda}_{j_0}^{\text{ext}} \circ (f_{p^{-r_0}\Lambda_{j_0},\Lambda_0}^{\text{ext}})^{-1}$ (with the superscript "ext" denoting the unique extensions of homomorphisms of semi-abelian schemes) over the noetherian normal scheme $\vec{M}_{\mathcal{H},\Sigma}^{\text{tor}}$ (by [12, Prop. 3.3.1.5]), and we have a commutative diagram".

- (7) In the third paragraph of Thm. 3.4.1(4), the notation K for Frac(V) conflicts with the notation of K in earlier parts of the theorem. It should be changed to \tilde{K} (or some other symbol that has not been used).
- (8) In Lem. 4.4.5, "a finite abelian group H_n of order prime to p" should be "a finite étale commutative group scheme H_n of order prime to p over $\vec{\mathsf{M}}_{\mathcal{H}}^{\mathsf{Z}_{\mathcal{H}}, \operatorname{spl}}$ ".

UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN 55455, USA *Email address:* kwlan@math.umn.edu