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Abstract. We construct integral models of toroidal compactifications of PEL-

type Shimura varieties with projective cone decompositions as normalizations
of certain explicit blowups of the corresponding minimal compactifications,

generalizing works of Tai’s, Chai’s, Faltings and Chai’s, and the author’s in

zero or good reduction characteristics. We show that such integral models still
enjoy many features of the good reduction theory, regardless of the levels and

ramifications involved.
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1. Introduction

In the works of Tai’s [1, Ch. IV, Sec. 2], Chai’s [4, Ch. IV], Faltings and Chai’s [5,
Ch. V, Sec. 5], and the author’s [15, Sec. 7.3] in zero or good reduction characteris-
tics, it was shown that, with the notation in [15], when the level H of the relevant
Shimura variety or PEL moduli problem MH is neat, the toroidal compactifica-
tion Mtor

H,Σ defined by a compatible collection Σ of projective cone decompositions

(satisfying certain other running assumptions in each of the works) is canonically
isomorphic to the normalization Mtor

H,d0pol
of some explicit blowup of the minimal

compactification Mmin
H , where pol is a compatible collection of polarization functions

for the corresponding Σ, and where d0 ≥ 1 is some integer depending on pol.
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In this article, we will show that, when the image Hp of H under the canoni-
cal homomorphism G(Ẑ)→ G(Ẑp) is neat, such normalizations of blowups provide

p-integral models ~Mtor
H,d0pol

of toroidal compactifications of PEL-type Shimura va-
rieties in all characteristics, which still enjoy many features of the good reduction
theory, regardless of the levels and ramifications involved at p. For example, we
will show that they admit stratifications by locally closed subschemes, with formal
completions along the strata comparable with the completions of certain putative
boundary charts parameterizing degeneration data of PEL structures, extending
the familiar ones in zero and good reduction characteristics. We will also show that
they carry semi-abelian schemes which are universal in a sense that can be made
precise using the theory of degeneration of PEL structures developed in [5] and [15].

The idea will be to make use of the integral models ~Mtor
H,Σ′ constructed by taking

normalizations over good reduction auxiliary models as in [18, Sec. 7] (where the Σ′

here is the Σ there), which were constructed only for those Σ′ induced by certain

auxiliary ones; and compare them with ~Mtor
H,d0pol

with the help of the putative

boundary charts as in [18, Sec. 8] defined for some common projective smooth

refinements Σ′′ of Σ and Σ′. As a result, we can construct ~Mtor
H,Σ (with desired

properties) not just for those Σ’s induced by auxiliary ones as in [18, Sec. 7], but
for all projective Σ’s (satisfying the mild [15, Cond. 6.2.5.25]).

While for many applications the choices of cone decompositions hardly matter,
such a construction still has the following advantages.

Firstly, we now have a uniform construction of integral models of toroidal com-
pactifications in arbitrarily ramified characteristics, for a large and familiar class
of cone decompositions which can be qualitatively described, without the need to
even mention any auxiliary choices of good reduction models of toroidal compact-
ifications. While it is still true that we need the auxiliary models in the proofs,
the fact that the constructions and results can be formulated without them is not
meaningless. By more practically knowing which cone decompositions are allowed
in the constructions, we can more easily generalize arguments involving simultane-
ous refinements of cone decompositions (see, for example, [14, Prop. 3.19]). Hence,
we consider the construction here a practical improvement over that in [18].

Secondly, we can write down invertible sheaves over the integral models of
toroidal compactifications that are relatively ample over the corresponding inte-
gral models of minimal compactifications (see Corollary 6.7 below). Such relatively
ample invertible sheaves have played crucial roles in many of our earlier works in
good reduction characteristics, such as [20], [21], and [17]. (See, for example, the
results in Section 8.) We believe that they should be provided in any sufficiently
complete theory of toroidal and minimal compactifications.

Thirdly, even for Ag, the Siegel moduli of principally polarized abelian schemes
of relative dimension g, it is not clear whether one can construct its toroidal com-
pactification, with the usual expected properties (other than smoothness), for all
(possibly nonsmooth) cone decompositions (see [24, Rem. 4.1.10]). Although we
have not addressed this issue either—indeed, our assumption that the level is neat
trivially ruled out Ag—at least at neat levels, the construction in this article will
allow all projective cone decompositions satisfying the relatively mild [15, Cond.
6.2.5.25]. (In particular, even in good reduction characteristics, we will obtain in-
tegral models of toroidal compactifications not already constructed in [5] and [15].)
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Fourthly, except at places where we consider semi-abelian schemes over the in-
tegral models of toroidal compactifications, the rest of the arguments will not just
work for the PEL-type setting, but also for more general types of Shimura vari-
eties, as soon as good integral models of the minimal compactifications and some
(possibly rather restrictive) classes of good toroidal compactifications have been
constructed.

Here is an outline of this article.
In Section 2, we introduce the PEL moduli problem MH at level H in char-

acteristic zero, and review the notion of compatible collections of projective cone
decompositions and their polarization functions, which we denote by the symbols Σ
and pol, respectively, and summarize (after some minor modification or correction)
certain known facts in the literature that will be used later. (We also take this
opportunity to fix a minor error in the literature; see Remark 2.15 below.)

In Section 3, we construct certain integral models ~Mtor
H,dpol of toroidal compactifi-

cations of MH as normalizations NBl ~JH,dpol(
~Mmin
H ) of certain blowups of the integral

models ~Mmin
H of minimal compactifications of MH constructed in [18, Sec. 6], along

some coherent O~Mmin
H

-ideals ~JH,dpol defined by multiples dpol of pol, for d ∈ Z≥1.

In Section 4, for each representative (ΦH, ZH) of cusp label for MH, which define

some stratum ~Z[(ΦH,ZH)] of ~Mmin
H , by studying the pullback of ~JH,dpol to certain

putative boundary chart ~XΦH,δH/ΓΦH (based on the constructions in [15, Sec. 6.2]

and [18, Sec. 8]), we show that there is a canonical morphism from ~XΦH,δH/ΓΦH to

(~Mtor
H,dpol)

∧
~Z[(ΦH,ZH)]

, the formal completion of ~Mtor
H,dpol along the preimage of ~Z[(ΦH,ZH)]

in ~Mtor
H,dpol, for all sufficiently divisible d.

In Section 5, we show that such canonical morphisms are isomorphisms for all
sufficiently divisible d. Then we deduce from this and from general facts about

blowups that, for all sufficiently divisible d, the schemes ~Mtor
H,dpol are canonically

isomorphic to each other. Henceforth, we may and we shall abusively write ~Mtor
H,Σ

instead of ~Mtor
H,dpol. (It will be justified later that ~Mtor

H,Σ does not depend on pol at

all.) Moreover, the above-mentioned isomorphisms allow us to stratify ~Mtor
H,Σ by

locally closed subschemes with familiar parameterizations and incidence relations

(as in [15, Thm. 6.4.1.1(2)]), such that the formal completions of ~Mtor
H,Σ along the

strata are canonically isomorphic to the corresponding formal completions of the
putative boundary charts. Based on this, by a descent argument as in [18, Sec. 11],
we show that the tautological objects over MH extend to semi-abelian degenerating

families over ~Mtor
H,Σ.

In Section 6, we summarize our main results in Theorem 6.1, in a format similar
to those of [15, Thm. 6.4.1.1 and 7.2.4.3]. Moreover, in the same theorem, we also

state and prove that ~Mtor
H,Σ is universal among base schemes carrying semi-abelian

degenerations of certain patterns determined by Σ. In particular, up to canonical

isomorphism, ~Mtor
H,Σ depends only on Σ, but not on pol. (This, finally, justifies the

notation of ~Mtor
H,Σ.) The statements are admittedly very lengthy, but in practice we

have found it more useful to have a place where almost all important information
can be found. We also include the Corollary 6.7 concerning invertible sheaves over
~Mtor
H,Σ that are relatively ample over ~Mmin

H , and record some byproducts concerning

local properties along the boundary (as in [18, Sec. 14]).
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In Section 7, we explain how the functorial morphisms and Hecke actions in [18,
Sec. 13] can be defined for the toroidal compactifications constructed here. We also
record some important facts about higher direct images of structural sheaves and
boundary ideals under the canonical morphisms between toroidal compactifications,
and about the canonical extensions of relative first de Rham homology groups of
the tautological abelian schemes over the integral models.

In Section 8, we show that, under mild assumptions on the coefficient modules,
the analogue of the vanishing of higher direct images under the canonical morphisms
from toroidal compactifications to minimal compactifications as in [17, Thm. 3.9]
remain valid in the context of this article. (Such vanishing have played crucial
roles in several recent developments in the constructions of p-adic automorphic
forms and p-adic Galois representations. See the overviews in [10], [16, Sec. 8.2],
[19], and [17]. The generalization here is not completely routine, because it allows
nonordinary loci and arbitrary levels and ramifications.) When O⊗

Z
Q is a simple

Q-algebra, we also show that the analogue of Koecher’s principle as in [17, Thm.
2.3] holds here. (Both of these allow general coefficient rings not necessarily flat
over Z(p).)

We shall follow [15, Notation and Conventions] unless otherwise specified. While
for practical reasons we cannot explain everything we need from [15], we recommend
the reader to make use of the reasonably detailed index and table of contents there,
when looking for the numerous definitions. We recommend that the reader go
through the review materials in [14, Sec. 1; see also the errata] before reading
Section 2 below. It is not necessary to have completely mastered the techniques in
[18] before reading this article.

2. Projective cone decompositions

Suppose we have an integral PEL datum (O, ?, L, 〈 · , · 〉, h0), where O is an
order in a semisimple algebra finite-dimensional over Q, together with a positive
involution ?, and where (L, 〈 · , · 〉, h0) is a PEL-typeO-lattice as in [15, Def. 1.2.1.3],
which defines a group functor G over Spec(Z) as in [15, Def. 1.2.1.6], the reflex
field F0 (as a subfield of C) as in [15, Def. 1.2.5.4], and a moduli problem MH
over S0 := Spec(F0) as in [15, Def. 1.4.1.4] (with 2 = ∅ there). Suppose that L
satisfies [15, Cond. 1.4.3.10]. (This is harmless in practice, as explained in [15,
Rem. 1.4.3.9].)

Definition 2.1 (cf. [15, Cond. 6.3.3.2 and Def. 6.3.3.4]). A compatible collection
of admissible rational polyhedral cone decomposition data for MH is a
complete set Σ = {ΣΦH}[(ΦH,δH)] of compatible choices of ΣΦH (satisfying [15,
Cond. 6.2.5.25]) such that, for every surjection (ΦH, δH) � (Φ′H, δ

′
H) of represen-

tatives of cusp labels, the cone decompositions ΣΦH and ΣΦ′H
define a surjection

(ΦH, δH,ΣΦH) � (Φ′H, δ
′
H,ΣΦ′H

) as in [15, Def. 6.2.6.4].

Definition 2.2. We shall say that a compatible collection Σ in Definition 2.1 is
smooth if the cone decomposition ΣΦH is smooth as in [15, Def. 6.1.1.12], for each
representative (ΦH, δH) of cusp label for MH.

Remark 2.3. Every Σ induced by some auxiliary choices as in [15, Sec. 7] is a
(possibly nonsmooth) compatible collection as in Definition 2.1.
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Remark 2.4. We remind the reader that, for each representative (ΦH, δH) of cusp
label, the cone decomposition ΣΦH is a decomposition (satisfying certain proper-
ties) of the set PΦH of positive semi-definite O⊗

Z
R-valued Hermitian pairings with

rational radicals over some O⊗
Z
Q-module defined by ΦH. (See the beginning of [15,

Sec. 6.2.5], and the references from there to earlier sections in [15].) In addition to
our recommendation of [14, Sec. 1] at the end of Section 1, the reader might also
find the review materials in [16, Sec. 1.1.1, 1.1.2, 1.2.1, 1.2.2, and 1.3.1] helpful.

Definition 2.5 (see [15, Def. 7.3.1.1]). Let ΣΦH = {σj}j∈J be any ΓΦH-admissible
rational polyhedral cone decomposition of PΦH . An (invariant) polarization
function on PΦH for the cone decomposition ΣΦH is a ΓΦH-invariant continuous
piecewise linear function polΦH : PΦH → R≥0 such that:

(1) polΦH is linear (i.e., coincides with a linear function) on each cone σj in
ΣΦH . (Therefore, polΦH(tx) = tpolΦH(x) for all x ∈ PΦH and t ∈ R≥0.)

(2) polΦH((PΦH∩S∨ΦH)−{0}) ⊂ Z>0. (Therefore, polΦH(x) > 0 for all nonzero
x in PΦH .)

(3) polΦH is linear (in the above sense) on a rational polyhedral cone σ in PΦH

if and only if σ is contained in some cone σj in ΣΦH .
(4) For all x, y ∈ PΦH , we have polΦH(x+ y) ≥ polΦH(x) + polΦH(y). This is

called the convexity of polΦH .

If such a polarization function exists, then we say that the ΓΦH-admissible rational
polyhedral cone decomposition ΣΦH is projective.

Proposition 2.6 (cf. [1, Ch. II], [5, p. 173], and [15, Prop. 7.3.1.2]). Suppose
polΦH : PΦH → R≥0 is any polarization function as in Definition 2.5.

(1) KpolΦH
:= {x ∈ PΦH : polΦH(x) ≥ 1} is a convex subset of PΦH −{0} such

that R≥1 ·KpolΦH
= KpolΦH

and R≥0 ·KpolΦH
⊃ PΦH , whose closure KpolΦH

in (SΦH)∨R is a cocore in the context of [1, Ch. II, Sec. 5]. For simplicity,
we shall also call KpolΦH

a cocore.

(2) The dual K∨polΦH
:= {x ∈ SΦH ⊗Z

R : 〈x, y〉 ≥ 1 ∀y ∈ KpolΦH
} of KpolΦH

is a convex subset in (R≥0 · PΦH)◦, the interior of R≥0 · PΦH , such that
R≥1 ·K∨polΦH = K∨polΦH

and R>0 ·KpolΦH
= (R≥0 ·PΦH)◦, which is a core

in the context of [1, Ch. II, Sec. 5].
(3) The top-dimensional cones σ in the cone decomposition ΣΦH correspond

bijectively to the vertices ` of the core K∨polΦH
, which are linear forms whose

restrictions to each σ coincide with the restriction of polΦH to σ.

Definition 2.7 (cf. [15, Def. 7.3.1.3]). We say that a compatible collection Σ =
{ΣΦH}[(ΦH,δH)] as in Definition 2.1 is projective if it satisfies the following con-
dition: There is a compatible collection pol = {polΦH : PΦH → R≥0}[(ΦH,δH)]

of polarization functions labeled by representatives (ΦH, δH) of cusp labels, each
polΦH being a polarization function of the cone decomposition ΣΦH in Σ (see Def-
inition 2.5), which are compatible in the following sense: For every surjection
(ΦH, δH) � (Φ′H, δ

′
H) of representatives of cusp labels (see [15, Def. 5.4.2.12]) in-

ducing an embedding PΦ′H
↪→ PΦH , we have polΦH |PΦ′H

= polΦ′H . In this case,

because of condition (3) of Definition 2.5, we also say that Σ is induced by pol.

Proposition 2.8 (cf. [15, Prop. 6.3.3.5 and 7.3.1.4] and [16, Prop. 1.2.2.17]).
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(1) A compatible choice Σ of admissible rational polyhedral cone decomposition
data for MH, as in Definition 2.1, exists. Moreover, we may assume that
Σ is smooth as in Definition 2.2, or projective as in Definition 2.7, or both.

(2) Given any Σ and Σ′, we can find a common refinement for them, which
we may require to be smooth, or projective, or both. The same is true if
we allow varying levels or twists by Hecke actions (see [15, Def. 6.4.2.8 and
6.4.3.2]). We may assume that this common refinement is invariant under
any choice of an open compact subgroup H′ of G(A∞) normalizing H.

Proof. See the proof of [16, Prop. 1.2.2.17] and the references made there (to [25,
5.21, 5.23, 5.24, 5.25] and [12, Ch. I, Sec. 2, Thm. 11 on pp. 33–35]). �

Remark 2.9. By the last statement of [9, Prop. 3.4], since we have assumed (for
simplicity) that the auxiliary compatible collections of cone decompositions in [15,
Sec. 7] are all projective, the induced Σ there is projective as in Definition 2.7.

Lemma 2.10 (cf. [5, Ch. V, Lem. 5.3] and [15, Lem. 7.3.1.7]). Let Σ and pol

be as in Definition 2.7. For each open compact subgroup H of G(Ẑ), there is an
open compact subgroup H′ ⊂ H (which can be taken to be normal) such that the

compatible collections Σ(H′) = {ΣΦH′}[(ΦH′ ,δH′ )] and pol(H
′) = {polΦH′}[(ΦH′ ,δH′ )]

defined in [15, Constr. 7.3.1.6] for MH′ satisfy the following condition: For each
lifting ΦH′ = (X,Y, φ, ϕ−2,H′ , ϕ0,H′) of ΦH = (X,Y, φ, ϕ−2,H, ϕ0,H) to level H′,
and for each vertex `0 of K∨polΦH′

corresponding to a top-dimensional cone σ0 in

ΣΦH′ , we have

(2.11) 〈`0, x〉 < 〈γ · `0, x〉

for all x ∈ σ0 ∩P+
ΦH′

and all γ ∈ ΓΦH′ such that γ 6= 1.

Lemma 2.12 (cf. [5, Ch. V, Lem. 5.4]). Let σ be a top-dimensional cone in
ΣΦH , which corresponds to a vertex `σ,0 of K∨polΦH

. Then there exist elements

`σ,1, . . . , `σ,nσ of SΦH ∩K∨polΦH (which are not necessarily vertices of K∨polΦH
) such

that

(2.13) R≥0 · σ∨ =
∑

`∈SΦH ∩K
∨
polΦH

R≥0 · (`− `σ,0) =
∑

1≤i≤nσ

R≥0 · (`σ,i − `σ,0).

Proof. Let τ1, . . . , τr be all the one-dimensional faces of σ. For each 1 ≤ j ≤ r, con-
sider the unique element yj of τj such that S∨ΦH ∩ τj = Z≥1 ·yj , so that KpolΦH

∩ τj =

R≥1 · (polΦH(yj)
−1yj). For each j, let Lj := {x ∈ SΦH ⊗Z

R : 〈x, yj〉 = polΦH(yj)}.
Then `σ,0 is the intersection of L1, . . . , Lr by definition, and Lj ∩K∨polΦH is a top-

dimensional face of KpolΦH
for each j, whose vertices are in SΦH ∩K∨polΦH because

yj ∈ S∨ΦH and polΦH takes integral values on S∨ΦH . Consequently, the R≥0-span of
`− `σ,0 for all ` ∈ K∨polΦH can be identified with the two outside members of (2.13),

for some finitely many `σ,1, . . . , `σ,nσ ∈ SΦH ∩K∨polΦH , as desired. �

Remark 2.14 (cf. [5, Ch. V, Sec. 5, p. 175, Rem.]). The integral version of Lemma
2.12 is not true in general. We cannot replace R≥0 with Z≥0 in (2.13). This
difference is immaterial because we are taking normalizations of the blowups we
consider. (But this is one of the reasons that we have to take normalizations.)
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Remark 2.15 (Erratum). The literal statements of [5, Ch. V, Lem. 5.4], which
are stronger than those of Lemma 2.12, are unfortunately flawed. For example, if
P+

ΦH
= R>0 = σ, then there are no other top-dimensional cones at all, and hence [5,

Ch. V, Lem. 5.4] asserts that σ∨ = {0}—but σ∨ is certainly nonzero. This error was
inherited from a similar error in [1, Ch. IV, Sec. 2, p. 330] (which was still present
in the recent revision in [2, Ch. IV, Sec. 2, p. 211]), and was in turn inherited by [5,
Ch. V, Lem. 5.5] and [15, Lem. 7.3.1.9]. Nevertheless, all of these can be fixed by
slightly weakening their statements, by also allowing some of `σ,1, . . . , `σ,nσ to be
non-vertices as in Lemma 2.12, which still suffice for the proofs in [1, Ch. IV, Sec.
2], [5, Ch. V, Sec. 5], and [15, Sec. 7.3.3] (after relatively minor changes). (See the
errata of [15] and the latest revision of [13], both available at the author’s website.)

3. Main constructions

Construction 3.1 (cf. [15, Def. 7.3.3.1]). Let Σ be a compatible collection that is
projective, with a compatible collection pol of polarization functions, and let Σ′′ be
a projective smooth refinement of Σ (which always exists by Proposition 2.8), as in
Definitions 2.1, 2.2, and 2.7. (If Σ is already smooth, we may take Σ′′ to be Σ itself.)
Let Mtor

H,Σ′′ be as in [15, Thm. 6.4.1.1 and 7.2.4.3] (which is a scheme projective and

smooth over S0 = Spec(F0)). By [15, Thm. 6.4.1.1(3)], the complement D∞,H,Σ′′ of
MH in Mtor

H,Σ′′ (with its reduced structure) is a relative Cartier divisor with normal
crossings, each of whose irreducible components is an irreducible component of
some Z[(ΦH,δH,σ)] that is the closure of some strata Z[(ΦH,δH,σ)] labeled by the
equivalence class [(ΦH, δH, σ)] of some triple (ΦH, δH, σ) with σ a one-dimensional
cone in the cone decomposition Σ′′ΦH of PΦH . Let H,pol,Σ′′ be the invertible sheaf

of ideals over Mtor
H,Σ′′ supported on D∞,H,Σ′′ such that the order of H,pol,Σ′′ along

each Z[(ΦH,δH,σ)] is the value of polΦH at the Z>0-generator of σ ∩ S∨ΦH for some
(and hence every) representative (ΦH, δH, σ). This is well defined because of the
compatibility condition for pol = {polΦH}[(ΦH,δH)] as in Definition 2.7. For each
d ∈ Z≥1, let dpol denote the compatible collection of polarization functions defined
by multiplying all polarization functions in the collection pol by d. Then we have
a canonical isomorphism H,dpol,Σ′′ ∼= ⊗ dH,pol,Σ′′ .

Lemma 3.2. In Construction 3.1, suppose there exists a refinement Σ′ of Σ such
that Σ′′ is a refinement of Σ′, and such that Mtor

H,Σ′ is also defined (either as in [15,

Thm. 6.4.1.1] when Σ′ is smooth, or as in [18, (7.10)] when Σ′ is induced by some
auxiliary choices), with a canonical proper surjection Mtor

H,Σ′′ → Mtor
H,Σ′ (as in [15,

Prop. 6.4.2.3] or [18, Lem. 9.8]). Then the coherent OMtor
H,Σ

-ideal

(3.3) H,dpol,Σ′ := (Mtor
H,Σ′′ → Mtor

H,Σ′)∗H,dpol,Σ′′

is invertible, and depends only on Σ′. Thus, if Σ′ can be taken to be Σ itself, then

(3.4) H,dpol := (Mtor
H,Σ′′ → Mtor

H,Σ)∗H,dpol,Σ′′

is invertible and independent of the choice of Σ′′.

Proof. Since invertibility of coherent sheaves can be checked by pullback to comple-
tions by fpqc descent (cf. [7, VIII, 1.11]), it suffices to show that, for each represen-
tative (ΦH, δH) of cusp label for MH and for each σ ∈ Σ′ΦH satisfying σ ⊂ P+

ΦH
, the

pullback of H,dpol to (Mtor
H,Σ′)

∧
Z[(ΦH,δH,σ)]

∼= XΦH,δH,σ (by [15, Thm. 6.4.1.1(5)] or [18,

Thm. 10.13]) is invertible. Also, since the canonical morphism Mtor
H,Σ′′ → Mtor

H,Σ′ is
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proper, by [8, III-1, 4.1.5], taking direct images commute with pulling back to formal
completions of the target. Consider (as in [18, (10.5), (10.6), (10.7), (10.8)]) the for-
mal completion X′′ΦH,δH,σ of ΞΦH,δH(σ)′′ := ∪

τ∈Σ′′ΦH
,τ⊂σ

ΞΦH,δH(τ) along the closed

subscheme Ξ′′ΦH,δH,σ := ∪
τ∈Σ′′ΦH

,τ⊂σ
ΞΦH,δH,τ , which induces a canonical proper sur-

jection X′′ΦH,δH,σ → XΦH,δH,σ which can be identified (as explained in the proof of

[18, Thm. 10.13]) with the pullback of Mtor
H,Σ′′ → Mtor

H,Σ′ to (Mtor
H,Σ′)

∧
Z[(ΦH,δH,σ)]

.

By the same argument as in the second paragraph of [15, proof of
Thm. 7.3.3.4(1)], the pullback of H,dpol,Σ′′ to the open formal subscheme
X′′ΦH,δH,τ := X′′ΦH,δH,σ ×

ΞΦH,δH (σ)′′
ΞΦH,δH(τ) of X′′ΦH,δH,σ corresponds to the

sub-OCΦH,δH
-module ⊕̂

〈`,y〉≥dpolΦH (y),∀y∈τ
ΨΦH,δH(`) of OX′′ΦH,δH,τ

∼= ⊕̂
`∈τ∨

ΨΦH,δH(`),

and hence (by [8, III-1, 4.1.5]) the pullback of H,dpol to XΦH,δH,σ corresponds to the
sub-OCΦH,δH

-module ⊕̂
〈`,y〉≥dpolΦH (y),∀y∈σ

ΨΦH,δH(`) of OXΦH,δH,σ
∼= ⊕̂

`∈σ∨
ΨΦH,δH(`)

(where the sums ⊕̂ all denote the formal completions with respect to the topology
induced by that of XΦH,δH,σ), which is invertible because the restriction of polΦH
to any cone in ΣΦH is a linear function by definition (see (1) of Definition 2.5),
and because Σ′ΦH and Σ′′ΦH are refinements of ΣΦH . �

Definition 3.5 (see [15, Sec. 7.3]; cf. [5, Ch. V]). For any H, Σ, pol, and Σ′′ as
in Construction 3.1, and for each d ∈ Z≥1, let

(3.6) JH,dpol := J (d)
H,pol := (

∮
H,Σ′′)∗(

⊗ d
H,pol)

∼= (
∮
H,Σ′′)∗H,dpol,

where the canonical morphism
∮
H,Σ′′ : Mtor

H,Σ′′ → Mmin
H is as in [15, Thm. 7.2.4.1(3)].

Then we also define

(3.7) Mtor
H,dpol := NBlJH,dpol(M

min
H ),

where NBl · ( · ) denotes the normalization of the blowup (see [15, Def. 7.3.2.1]).

Remark 3.8. We introduced the notation J (d)
H,pol for the sake of consistency with

[5, Ch. V] and [15, Sec. 7.3]. Later we will mainly use JH,dpol and H,dpol in our
exposition. Note that JH,dpol is a coherent OMmin

H
-ideal because

∮
H,Σ′′ is proper and

because the canonical morphism OMmin
H
→ (

∮
H,Σ′′)∗OMtor

H,Σ′′
is an isomorphism. By

Lemma 3.2, JH,dpol does not depend on the choice of Σ′′, and coincides with the

JH,dpol = J (d)
H,pol in [15, Sec. 7.3] when Σ is (projective and) smooth.

Let us introduce the following condition for any Σ and pol (cf. [15, Lem. 7.3.1.7])
as in Definition 2.7:

Condition 3.9. (See [15, Cond. 7.3.3.3]; cf. [1, Ch. IV, Sec. 2, p. 329] and [5, Ch.
V, Sec. 5, p. 178].) For each representative (ΦH, δH) of cusp label for MH and each
vertex `0 of K∨polΦH

corresponding to a top-dimensional cone σ0, we have

〈`0, x〉 < 〈γ · `0, x〉

for all x ∈ σ0 ∩P+
ΦH

and all γ ∈ ΓΦH such that γ 6= 1.

Then we have the following prototype for the later constructions and results:
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Theorem 3.10 (see [15, Thm. 7.3.3.4] and [16, Thm. 1.3.1.10]; cf. [1, Ch. IV, Sec.
2.1, Thm.] and [5, Ch. V, Thm. 5.8]). Suppose H is neat, and suppose Σ is projective
smooth with a compatible collection pol of polarization functions, as in Definitions
2.1, 2.2, and 2.7. For each d ∈ Z≥1, suppose H,dpol is defined over Mtor

H,Σ as in

Construction 3.1 (with Σ′′ = Σ there), or equivalently as in (3.4) (by Lemma 3.2),
and suppose JH,dpol is defined over Mmin

H as in Definition 3.5. Then there exists

d0 ∈ Z≥1 such that the canonical morphism
∮ −1

H,Σ JH,d0pol · OMtor
H,Σ
→ H,d0pol of

coherent OMtor
H,Σ

-ideals is an isomorphism, and such that the canonical morphism

NBlJH,d0pol
(
∮
H,Σ) : Mtor

H,Σ → Mtor
H,d0pol

= NBlJH,d0pol
(Mmin
H ) over S0 = Spec(F0),

induced by the universal property of the normalization of blowup (see [15, Def.
7.3.2.2]), is an isomorphism. In particular, Mtor

H,Σ is a scheme projective over S0.
If Condition 3.9 is satisfied, then the above are true for all d0 ∈ Z≥3.

Remark 3.11. Theorem 3.10 serves as a prototype, but will not be needed in the
later constructions and proofs. The results we will obtain, however, have no explicit
control on the possible d0’s even when Condition 3.9 is satisfied.

Construction 3.12. Let p > 0 be any rational prime number. Let H, Σ, pol, Σ′′,
H,dpol,Σ′′ , H,dpol, and JH,dpol be as in Construction 3.1, Lemma 3.2, and Definition
3.5, for each d ∈ Z≥1, with the additional running assumption that the image Hp
of H under the canonical homomorphism G(Ẑ) → G(Ẑp) is neat (which means,
a fortiori, that H is also neat; the neatness of Hp was the running assumption in

[18]). Let ~MH and ~Mmin
H be constructed over ~S0 = Spec(OF0,(p)) as in [18, Prop.

6.1 and 6.4], with a fixed choice of some lattice collection {(gj, Lj, 〈 · , · 〉j)}j∈J as in
[18, Sec. 2]. (In what follows, all objects denoted with an arrow on the top will

mean the p-integral versions over ~S0 = Spec(OF0,(p)) of the analogous characteristic
zero objects over S0 = Spec(F0), often constructed using certain auxiliary choices.)

For each d ∈ Z≥1, let ~JH,dpol be the coherent O~Mmin
H

-ideal defining the schematic

closure in ~Mmin
H of the closed subscheme of Mmin

H defined by the coherent OMmin
H

-ideal

JH,dpol; and let (cf. (3.7) and [16, Prop. 2.2.2.1])

(3.13) ~Mtor
H,dpol := NBl ~JH,dpol(

~Mmin
H ).

By construction, ~Mtor
H,dpol is a normal scheme projective and flat over ~S0 =

Spec(OF0,(p)). When Σ is (projective and) smooth, by Theorem 3.10, there is

some d0 ∈ Z≥1 such that Mtor
H,Σ
∼= Mtor

H,d0pol
∼= ~Mtor

H,d0pol
×
~S0

S0 over S0 = Spec(F0).

Our goal is to show that there also exists some (possibly much larger) d ∈ Z≥1

such that ~Mtor
H,dpol satisfies sufficiently many desired properties, extending as many

as possible those in [15, Thm. 6.4.1.1] in the good reduction case, which will then

force ~Mtor
H,dpol to be canonical—i.e., depending only on Σ and the linear algebraic

data involved in the construction of ~MH, but not on the choices of pol and d.

4. Formal local description of ideal sheaves

Lemma 4.1. Suppose x̄ is a geometric point over the [(ΦH, δH)]-stratum
~Z[(ΦH,δH)]

∼= ~MZH
H of ~Mmin

H (see [18, Thm. 12.1 and 12.6]). Let
(ΦH, δH) be any representative of the cusp label [(ΦH, δH)]. As in [18,
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Prop. 12.14], let (~Mmin
H )∧x̄ denote the completion of the strict localiza-

tion of ~Mmin
H at x̄, let (~Z[(ΦH,δH)])

∧
x̄ := ~Z[(ΦH,δH)] ×

~Mmin
H

(~Mmin
H )∧x̄ , and let

(~MZH
H )∧x̄ := ~MZH

H ×
~Z[(ΦH,δH)]

(~Z[(ΦH,δH)])
∧
x̄ . For each ` ∈ SΦH , let ( ~FJ

(`)

ΦH,δH
)∧x̄ denote

the pullback of ~FJ
(`)

ΦH,δH
:= (~CΦH,δH → ~MZH

H )∗(~ΨΦH,δH(`)) under the canonical

morphism (~MZH
H )∧x̄ → ~MZH

H , where ~ΨΦH,δH(`) is as in [18, Prop. 8.7]. Then the

pullback ( ~JH,dpol)∧x̄ of the O~Mmin
H

-ideal ~JH,dpol to (~Mmin
H )∧x̄ can be identified with

the subsheaf of O(~Mmin
H )∧x̄

∼=
( ∏
`∈P∨ΦH

( ~FJ
(`)

ΦH,δH
)∧x̄
)ΓΦH consisting of sections whose

nonzero terms are supported on those ` ∈ d ·K∨polΦH (see (2) of Proposition 2.6).

Proof. By definition (see [8, I, 9.5.1 and 9.5.4]), since the canonical morphism

Mmin
H → ~Mmin

H is quasi-compact and separated, the O~Mmin
H

-ideal ~JH,dpol
is the kernel of O~Mmin

H
→ (Mmin

H → ~Mmin
H )∗

(
OMmin

H
/JH,dpol

)
, and the for-

mation of such a kernel is compatible with flat base change. Therefore,
by taking any geometric point x̄′ of Z[(ΦH,δH)] specializing to x̄ such that

(Mmin
H )∧x̄′ → (~Mmin

H )∧x̄ is defined, it follows that ( ~JH,dpol)∧x̄ is the kernel of

O(~Mmin
H )∧x̄

→ ((Mmin
H )∧x̄′ → (~Mmin

H )∧x̄ )∗
(
O(Mmin

H )∧
x̄′
/(JH,dpol)∧x̄′

)
, and it suffices to show

that (JH,dpol)∧x̄′ corresponds to the subsheaf of O(Mmin
H )∧

x̄′
∼=
( ∏
`∈P∨ΦH

(FJ
(`)
ΦH,δH

)∧x̄′
)ΓΦH

consisting of sections whose nonzero terms are supported on those ` ∈ d ·K∨polΦH .

Then the assertion follows from Proposition 2.6 and from the same argument as
in the proof of [15, Thm. 7.3.3.4(1)], by computing (JH,dpol)∧x̄′ using the pullback
of the proper morphism

∮
H,Σ′′ : Mtor

H,Σ′′ → Mmin
H to (Mmin

H )∧x̄′ (by [8, III-1, 4.1.5]),

which shows that (JH,dpol)∧x̄′ is (by abuse of language) the common intersection of
the O(CΦH,δH )∧

x̄′
-modules ⊕̂

〈`,y〉≥dpolΦH (y),∀y∈σ
(ΨΦH,δH(`))∧x̄′ (see the proof of Lemma

3.2), for all σ ∈ Σ′′ΦH ∈ Σ′′ satisfying σ ⊂ P+
ΦH

, which has the desired form. �

Let us fix once and for all a collection {`σ,i}σ,i as in Lemma 2.12, where σ runs
through all top-dimensional cones in ΣΦH , and where i runs through integers from
0 to nσ, such that nγσ = nσ and `γσ,i = `σ,i, for all γ ∈ ΓΦH and 0 ≤ i ≤ nσ.

Lemma 4.2. With the above choice of the collection {`σ,i}σ,i, there exists dpolΦH
∈

Z≥1 such that, for each top-dimensional cone σ in ΣΦH , for each integer i such

that 0 ≤ i ≤ nσ, for each geometric point x̄ over the [(ΦH, δH)]-stratum ~Z[(ΦH,δH)]

of ~Mmin
H as in Lemma 4.1, and for each d ∈ Z≥1 · dpolΦH , the invertible sheaf

(~ΨΦH,δH(d·`σ,i))∧x̄ ∼= (~ΨΦH,δH(`σ,i)
⊗ d)∧x̄ over (~CΦH,δH)∧x̄ is very ample, and hence is

generated by its global sections, which can be canonically identified with the sections

of ( ~FJ
(d·`σ,i)
ΦH,δH

)∧x̄ over (~MZH
H )∧x̄ .

Proof. Since ~Mmin
H and its strata (as in [18, Thm. 12.1 and 12.6]) are quasi-compact

and separated over ~S0, and since there are only finitely many ΓΦH-orbits of cones
in ΣΦH (by its admissibility), it suffices to show that, for each ` ∈ SΦH ∩K∨polΦH ,

the invertible sheaf ~ΨΦH,δH(`) over ~CΦH,δH is relatively ample over ~MZH
H . By
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Proposition 2.6, each such ` lies in the interior (R≥0 · PΦH)◦ of R≥0 · PΦH .
Therefore, there exists some N ∈ Z≥1 such that N · ` is the image of some
(`j,aux)j∈J ∈

∏
j∈J

SΦHj,aux
under the morphism (SΦHj,aux

)Q � (SΦH)Q in [18,

(5.21)], so that ~ΨΦH,δH(`)⊗N ∼= ~ΨΦH,δH(N · `) is isomorphic to the pullback of

�
j∈J

ΨΦHj,aux
,δHj,aux

(`j,aux) under the finite morphism ~CΦH,δH →
∏
j∈J

CΦHj,aux
,δHj,aux

in [18, (8.6)], where `j,aux lies in the interior of R≥0 · PΦHj,aux
for each j ∈ J.

Since each such ΨΦHj,aux
,δHj,aux

(`j,aux) over CΦHj,aux
,δHj,aux

is relatively ample

over M
ZHj,aux

Hj,aux
by the same argument as in the proof of [15, Thm. 7.3.3.4(1)], the

pullback ~ΨΦH,δH(N · `) of �
j∈J

ΨΦHj,aux
,δHj,aux

(`j,aux) to ~CΦH,δH is also relatively

ample over ~MZH
H ; and so is ~ΨΦH,δH(`), as desired. �

Remark 4.3. If (~CΦH,δH)∧x̄ → (~MΦH
H )∧x̄ is an abelian scheme torsor, then it suffices

to take dpolΦH
= 3, by Lefschetz’s theorem (see, for example, [23, Sec. 17, Thm., p.

163] for the very ampleness of the pullback of (~ΨΦH,δH(d · `0))∧x̄ to the fiber over x̄,
and see [23, Sec. 5] and [8, III-2, 7.7.5 and 7.7.10] for the base change argument).

However, (~CΦH,δH)∧x̄ → (~MΦH
H )∧x̄ is not an abelian scheme torsor in general.

Definition 4.4. We define dpol to be the smallest d ∈ Z≥1 such that, for every
representative (ΦH, δH) of cusp label for MH, there exists some dpolΦH

∈ Z≥1 as

in Lemma 4.2 such that d ∈ Z≥1 · dpolΦH . (Note that each dpolΦH
can be chosen to

depend only on the cusp label represented by (ΦH, δH), and there are only finitely
many cusp labels for MH.)

Construction 4.5. Let (ΦH, δH) be any representative of cusp label for MH. For
each σ ∈ ΣΦH , as in [15, Sec. 6.2.5] and [18, Sec. 8], we define

(4.6) ~ΞΦH,δH(σ) := Spec
O~CΦH,δH

(
⊕

`∈σ∨
~ΨΦH,δH(`)

)
,

(4.7) ~ΞΦH,δH,σ := Spec
O~CΦH,δH

(
⊕

`∈σ⊥
~ΨΦH,δH(`)

)
,

and

(4.8) ~XΦH,δH,σ := (~ΞΦH,δH(σ))∧~ΞΦH,δH,σ
.

(These constructions do not require σ to be either smooth or induced by some
auxiliary choices.) As in [15, Sec. 6.2.5], let us also define the toroidal embedding

(4.9) ~ΞΦH,δH ↪→ ~ΞΦH,δH,ΣΦH
= ∪
σ∈ΣΦH

~ΞΦH,δH(σ)

using the cone decomposition ΣΦH (cf. [15, Thm. 6.1.2.8]), and define ~XΦH,δH,ΣΦH

to be the formal completion of ~ΞΦH,δH,ΣΦH
along the union of ~ΞΦH,δH,σ for all

σ ∈ ΣΦH satisfying σ ⊂ P+
ΦH

. For each such σ, we also define

(4.10) ~X◦ΦH,δH,σ := ~ΞΦH,δH(σ) ×
~ΞΦH,δH,ΣΦH

~XΦH,δH,ΣΦH
.

By their constructions, by [18, Prop. 8.14] (for the case of ~ΞΦH,δH(σ)), and by [8,
IV-2, 7.8.3], these schemes and formal schemes are all normal (i.e., all the local rings
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are normal). By definition, we have canonical morphisms ~XΦH,δH,σ → ~X◦ΦH,δH,σ →
~XΦH,δH,ΣΦH

, where the second one is an open immersion of formal schemes. We
shall tacitly extend such definitions to the cases with other cone decompositions.

Lemma 4.11. Suppose Σ′ and Σ′′ are two compatible collections as in Definition
2.1 such that Σ′′ is a refinement of Σ′. Then there is a canonical proper morphism
~ΞΦH,δH,Σ′′ΦH

→ ~ΞΦH,δH,Σ′ΦH
inducing a canonical proper surjection

(4.12) ~XΦH,δH,Σ′′ΦH
→ ~XΦH,δH,Σ′ΦH

.

Proof. These follow from the definitions of the toroidal embeddings. �

Lemma 4.13. For any compatible collection Σ′ for which ~Mtor
H,Σ′ is constructed as

in [18, Sec. 7], we have canonical morphisms

(4.14) ~XΦH,δH,Σ′ΦH
→ ~XΦH,δH,Σ′ΦH

/ΓΦH
∼→ (~Mtor

H,Σ′)
∧
~Z[(ΦH,δH)]

→ (~Mmin
H )∧~Z[(ΦH,δH)]

,

where (~Mtor
H,Σ′)

∧
~Z[(ΦH,δH)]

is the formal completion of ~Mtor
H,Σ′ along the preimage of

~Z[(ΦH,δH)] in ~Mtor
H,Σ′ (see [18, Thm. 12.1]), and where the third morphism (4.14) is

the proper surjection induced by the canonical (necessarily proper and surjective)

morphism ~∮
H,Σ′ : ~Mtor

H,Σ′ → ~Mmin
H as in [18, Thm. 7.11].

Proof. Let us construct the canonical isomorphism in (4.14). By construction, the

formal scheme ~XΦH,δH,Σ′ΦH
is covered by its open formal subschemes ~X◦ΦH,δH,ρ,

for ρ ∈ Σ′ΦH satisfying ρ ⊂ P+
ΦH

, each of which carries tautological tuples as in
[18, (8.25)], so that, by Mumford’s construction as in [15, Sec. 6.2.5], we have

the corresponding Mumford families over ~X◦ΦH,δH,ρ (cf. [15, Sec. 6.2.5] and [18,

(8.29)]), which induces compatible morphisms ~X◦ΦH,δH,ρ → ~Mtor
H,Σ′ by the univer-

sal property of ~Mtor
H,Σ′ as in [18, Thm. 7.14 and 11.4], which patch together and

define a canonical morphism ~XΦH,δH,Σ′ΦH
/ΓΦH → (~Mtor

H,Σ′)
∧
~Z[(ΦH,δH)]

. On the other

hand, the pullbacks of the tautological tuples over ~Mtor
H,Σ′ (as in [18, Thm. 11.4])

to (~Mtor
H,Σ′)

∧
~Z[(ΦH,δH)]

define degeneration data parameterized by ~XΦH,δH,Σ′ΦH
/ΓΦH ,

which induce a canonical morphism (~Mtor
H,Σ′)

∧
~Z[(ΦH,δH)]

→ ~XΦH,δH,Σ′ΦH
/ΓΦH . These

two canonical morphisms are inverses of each other by applying [15, Thm. 5.3.1.19]
(to degenerating families of types MHj , for all j ∈ J), which only require the affine
open formal subschemes to have good generic characteristics. Hence they are both
isomorphisms as desired. �

Lemma 4.15. For each representative (ΦH, δH) of cusp label for MH, there exist
canonical morphisms

(4.16) ~XΦH,δH,ΣΦH
→ ~XΦH,δH,ΣΦH

/ΓΦH → (~Mmin
H )∧~Z[(ΦH,δH)]

,

where (~Mmin
H )∧~Z[(ΦH,δH)]

is the formal completion of ~Mmin
H along the locally closed

subscheme ~Z[(ΦH,δH)] (cf. the explanation in [15, Thm. 6.4.1.1(5)]), and where the
second morphism is proper and surjective, satisfying the following characterizing

property: Suppose Σ′ is any compatible collection for which ~Mtor
H,Σ′ is constructed
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as in [18, Sec. 7], and suppose Σ′′ is any common refinement of Σ and Σ′ (which
exists by Proposition 2.8). Then the composition of the canonical proper surjection

(4.17) ~XΦH,δH,Σ′′ΦH
→ ~XΦH,δH,ΣΦH

(cf. Lemma 4.11) with (4.16) coincides with the composition of canonical morphisms

(4.18) ~XΦH,δH,Σ′′ΦH
→ ~XΦH,δH,Σ′ΦH

→ ~XΦH,δH,Σ′ΦH
/ΓΦH → (~Mmin

H )∧~Z[(ΦH,δH)]

(cf. Lemmas 4.11 and 4.13).

Proof. Let Σ′ and Σ′′ be as in the statement of the lemma, so that (4.17) and (4.18)

are defined. Then the proper surjection ~XΦH,δH,Σ′′ΦH
/ΓΦH → (~Mmin

H )∧~Z[(ΦH,δH)]

induced by (4.18) factors as a composition of the proper surjection
~XΦH,δH,Σ′′ΦH

/ΓΦH → ~XΦH,δH,ΣΦH
/ΓΦH induced by (4.17) with an induced

proper surjection ~XΦH,δH,ΣΦH
/ΓΦH → (~Mmin

H )∧~Z[(ΦH,δH)]
, which is the desired

second morphism in (4.16), because by [18, Prop. 12.14] so does its pullback to the

completions of strict local rings of ~Mmin
H at geometric points over ~Z[(ΦH,δH)]. �

Proposition 4.19. For each representative (ΦH, δH) of cusp label, there
exists some d0 ∈ Z≥1, which can be taken to be any d0 ∈ Z≥1 · dpolΦH (see

Lemma 4.2) when Condition 3.9 holds, such that, for any d ∈ Z≥1 · d0, the

pullback of ~JH,dpol under the composition of (4.16) with the canonical morphism

(~Mmin
H )∧~Z[(ΦH,δH)]

→ ~Mmin
H is the invertible sheaf over ~XΦH,δH,ΣΦH

whose restriction

to each open formal subscheme ~X◦ΦH,δH,σ corresponds to the sub-O~CΦH,δH
-module

⊕̂
〈`,y〉≥dpolΦH (y),∀y∈σ

~ΨΦH,δH(`) of O~X◦ΦH,δH,σ
∼= ⊕̂

`∈σ∨
~ΨΦH,δH(`). Hence, by the

universal property of ~Mtor
H,dpol = NBl ~JH,dpol(

~Mmin
H ) (see (3.13)), the canonical

morphisms (4.16) lift to canonical morphisms

(4.20) ~XΦH,δH,ΣΦH
→ ~XΦH,δH,ΣΦH

/ΓΦH → (~Mtor
H,dpol)

∧
~Z[(ΦH,δH)]

,

where (~Mtor
H,dpol)

∧
~Z[(ΦH,δH)]

denotes (as usual) the formal completion of ~Mtor
H,dpol along

the (locally closed) preimage of ~Z[(ΦH,δH)] in ~Mtor
H,dpol, and where the second mor-

phism is proper and surjective.

Proof. By Lemma 2.10, there exists a normal open compact subgroup H′ of H
such that Condition 3.9 is satisfied by the induced Σ(H′) = {ΣΦH′}[(ΦH′ ,δH′ )] and
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pol(H
′) = {polΦH′}[(ΦH′ ,δH′ )] as in [15, Constr. 7.3.1.6]. Then we have a commuta-

tive diagram

(4.21)
∐

[(ΦH′ ,δH′ )] lifts [(ΦH,δH)]

(~XΦH′ ,δH′ ,ΣΦH′
/ΓΦH′ )

��

// ~XΦH,δH,ΣΦH
/ΓΦH

��∐
[(ΦH′ ,δH′ )] lifts [(ΦH,δH)]

(~Mmin
H′ )∧~Z[(ΦH′ ,δH′ )]

��

// (~Mmin
H )∧~Z[(ΦH,δH)]

��

~Mmin
H′

// ~Mmin
H

of canonical morphisms, in which the horizontal arrows induce an isomorphism
from the quotients of the objects at level H′ (at the left-hand sides) by H/H′ to
the objects at level H (at the right-hand sides). If the assertions of Proposition
4.19 are true at level H′ (with all notation accordingly denoted with a prime) when
d′ ∈ Z≥1 · d′0 for some d′0 ∈ Z≥1 · dpolΦH′ , by taking norms of local generators with

respect to the action of H/H′, the corresponding assertions are also true at level
H when d ∈ Z≥1 · d0 for d0 := #(H/H′) · d′0. Hence, we may and we shall assume
that Condition 3.9 holds, and that d ∈ Z≥1 · dpolΦH .

For each open formal subscheme ~X◦ΦH,δH,σ of ~XΦH,δH,ΣΦH
, for some σ ∈ ΣΦH

satisfying σ ⊂ P+
ΦH

, since ~X◦ΦH,δH,σ is an open formal subscheme of ~X◦ΦH,δH,τ for
any top-dimensional cone τ in ΣΦH having σ as a face, we may and we shall assume
that σ is top-dimensional, which corresponds to some vertex `0 of K∨polΦH

(see (3)

of Proposition 2.6) in the sense that polΦH(y) = 〈`0, y〉 for all y ∈ σ.

Let x̄ be any geometric point of ~MZH
H
∼= ~Z[(ΦH,δH)]. (We shall adopt the same

notation system as in Lemma 4.1.) Since

(4.22) (SΦH ∩(d ·K∨polΦH )) + σ∨ ⊂ d · `0 + σ∨ = {〈`, y〉 ≥ dpolΦH(y),∀y ∈ σ}

by Lemma 2.12, we can write each section f of ( ~J (d)
H,pol)

∧
x̄ ⊂

( ∏
`∈P∨ΦH

( ~FJ
(`)

ΦH,δH
)∧x̄
)ΓΦH

(see [18, Prop. 12.14] and Lemma 4.1) as a formal sum f =
∑

`∈d·`0+σ∨
f (`), where

each f (`) is a section of ( ~FJ
(`)

ΦH,δH
)∧x̄ . Since f is ΓΦH -invariant, it decomposes as a

formal sum f =
∑

[`]∈(ΓΦH ·(d·`0+σ∨))/ΓΦH

f [`] of subseries f [`] =
∑
`∈[`]

f (`), where each

[`] is by definition the ΓΦH -orbit of some ` ∈ d · `0 + σ∨. Since the largest ideal of

definition of O~X◦ΦH,δH,σ
∼= ⊕̂

`∈σ∨
~ΨΦH,δH(`) consists of sections whose nonzero terms

are supported on those `’s in σ∨0+ := ∩
τ a face of σ, τ⊂P+

ΦH

τ∨0 , and since σ∨0+ contains

P∨ΦH−{0} (because each τ∨0 as above does), we see that f [d·`0] =
∑

γ∈ΓΦH

f (γ·(d·`0)) is

a leading subseries of f in the sense that f − f [d·`0] has a higher degree than f [d·`0]

in the natural grading of ⊕̂
`∈σ∨

(~ΨΦH,δH(`))∧x̄ defined by the above ideal of definition

of ⊕̂
`∈σ∨

~ΨΦH,δH(`). Since Condition 3.9 holds by assumption, f (d·`0) is a leading
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term of f [d·`0] in the sense that f [d·`0] − f (d·`0) (or equivalently f − f (d·`0)) has a

higher degree than f (d·`0) in the natural grading of ⊕̂
`∈σ∨

(~ΨΦH,δH(`))∧x̄ . (These are

abused terminologies because the leading subseries or terms might be zero.)

Suppose f1, . . . , fk are sections of ( ~JH,dpol)∧x̄ generating ( ~JH,dpol)∧x̄ such that

their respective leading terms f
(d·`0)
1 , . . . , f

(d·`0)
k generate ( ~FJ

(d·`0)

ΦH,δH
)∧x̄ . Since

d ∈ Z≥1 · dpolΦH by assumption, by Lemma 4.2, the pullbacks of f
(d·`0)
1 , . . . , f

(d·`0)
k

to (~X◦ΦH,δH,σ)∧x̄ generates the pullback of (~ΨΦH,δH(d · `0))∧x̄ , while the pullbacks

of f1, . . . , fk generate the (coherent ideal) pullback of ( ~JH,dpol)∧x̄ . By (4.22),
this last pullback is invertible and corresponds to the sub-O(~CΦH,δH )∧x̄

-module

⊕̂
〈`,y〉≥dpolΦH (y),∀y∈σ

(~ΨΦH,δH(`))∧x̄ of O(~X◦ΦH,δH,σ
)∧x̄
∼= ⊕̂

`∈σ∨
(~ΨΦH,δH(`))∧x̄ . Since x̄ is

arbitrary, the proposition follows, by fpqc descent (cf. [7, VIII, 1.11]). �

Corollary 4.23. Suppose d ∈ Z≥1 such that, for each representative (ΦH, δH) for
MH, it is divisible by some integer d0 as in Proposition 4.19. Suppose Σ′′ is a
projective smooth refinement of the Σ induced by pol. Then there is a canonical
proper surjective morphism

(4.24) Mtor
H,Σ′′ → Mtor

H,dpol

such that, for each representative (ΦH, δH) of cusp label for MH, we have a com-
mutative diagram

(4.25) XΦH,δH,Σ′′ΦH

can.

��

can. // XΦH,δH,ΣΦH

(4.20)⊗
Z
Q

��

can. // ~XΦH,δH,ΣΦH

(4.20)

��

Mtor
H,Σ′′ (4.24)

// Mtor
H,dpol can.

// ~Mtor
H,dpol

(where XΦH,δH,ΣΦH
:= ~XΦH,δH,ΣΦH

⊗
Z
Q and XΦH,δH,Σ′′ΦH

:= ~XΦH,δH,Σ′′ΦH
⊗
Z
Q—or

they can be more directly constructed using toroidal embeddings of ΞΦH,δH).

Proof. For any representative (ΦH, δH) of cusp label for MH, since d is divisible by

some d0 as in Proposition 4.19, the pullback of ~JH,dpol to ~XΦH,δH,ΣΦH
is invertible,

and so its further pullback to XΦH,δH,Σ′′ΦH
is also invertible. By the definition of

~JH,dpol (see Construction 3.12), and by the characterizing property of (4.16) in
Lemma 4.15, this pullback to XΦH,δH,Σ′′ΦH

is canonically isomorphic to the pullback

of JH,dpol under the composition of the canonical morphism XΦH,δH,Σ′′ΦH
→ Mtor

H,Σ′′

(given by the universal property [15, Thm. 6.4.1.1(6)], by the same argument of the
proof of [15, Thm. 6.4.1.1(5)]) with the canonical morphism

∮
H,Σ′′ : Mtor

H,Σ′′ → Mmin
H

(as in [15, Prop. 7.2.4.1(3)]). By fpqc descent (cf. [7, VIII, 1.11]), this shows that the
pullback of JH,dpol under

∮
H,Σ′′ is invertible, and hence

∮
H,Σ′′ lifts to the desired

canonical morphism (4.24), which is necessarily proper surjective and makes the
diagram (4.25) commutative. �

5. Stratification and completions

Proposition 5.1. In Proposition 4.19, up to replacing d0 with a multiple, we can
assert additionally that the second morphism in (4.20) is an isomorphism.
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It is convenient to first introduce the following consequence of Proposition 5.1:

Corollary 5.2. Suppose d, d′ ∈ Z≥1 such that, for each representative (ΦH, δH) of
cusp label for MH, they are both divisible by some integer d0 as in Proposition 5.1.
Then the canonical morphisms

(5.3) ~Mtor
H,dd′pol → ~Mtor

H,dpol

and

(5.4) ~Mtor
H,dd′pol → ~Mtor

H,d′pol

induced by the canonical morphisms ~J d′H,dpol → ~JH,dd′pol and ~J dH,d′pol → ~JH,dd′pol
between coherent O~Mmin

H
-ideals are both isomorphisms. Consequently, up to canoni-

cal isomorphism, ~Mtor
H,dpol does not depend on the precise choice of d ∈ Z≥1 · dpolΦH .

Proof. This is because, by Proposition 5.1, for each stratum ~Z[(ΦH,δH)] of ~Mmin
H ,

(5.3) and (5.4) induce isomorphisms (~Mtor
H,dd′pol)

∧
~Z[(ΦH,δH)]

→ (~Mtor
H,dpol)

∧
~Z[(ΦH,δH)]

and (~Mtor
H,dd′pol)

∧
~Z[(ΦH,δH)]

→ (~Mtor
H,d′pol)

∧
~Z[(ΦH,δH)]

over the formal completion

(~Mmin
H )∧~Z[(ΦH,δH)]

. �

Now we begin with some reduction step:

Lemma 5.5. It suffices to prove Proposition 5.1 under the additional assumption
that Condition 3.9 holds, and that d ∈ Z≥1 · dpolΦH .

Proof. Suppose that we are in the context of the first paragraph of the proof of
Proposition 4.19, that the assertions of Propositions 4.19 and 5.1 and hence of
Corollary 5.2 are true at level H′ (with all notation accordingly denoted with a
prime) when d′ ∈ Z≥1 · d′0 for some d′0 ∈ Z≥1 · dpolΦH′ , and that the assertions of

Proposition 4.19 are true at level H when d ∈ Z≥1 ·d0 for some d0 ∈ Z≥1 ·d′0. Then
the commutative diagram (4.21) induces a similar commutative diagram

(5.6)
∐

[(ΦH′ ,δH′ )] lifts [(ΦH,δH)]

(~XΦH′ ,δH′ ,ΣΦH′
/ΓΦH′ )

o
��

// ~XΦH,δH,ΣΦH
/ΓΦH

��∐
[(ΦH′ ,δH′ )] lifts [(ΦH,δH)]

(~Mtor
H′,dpol(H′))

∧
~Z[(ΦH′ ,δH′ )]

��

// (~Mtor
H,dpol)

∧
~Z[(ΦH,δH)]

��

~Mmin
H′

// ~Mmin
H

of canonical morphisms, in which the top and bottom horizontal arrows induce
an isomorphism from the quotients of the objects at level H′ (at the left-hand
sides) by H/H′ to the objects at level H (at the right-hand sides), and in which
the middle horizontal arrow is defined and H/H′-equivariant for the following rea-

son: Let ~d (resp. ~ ′d) be the invertible ideal pullback of ~JH,dpol (resp. ~JH,dpol(H′))
under ~Mtor

H,dpol → ~Mmin
H (resp. ~Mtor

H′,dpol(H′) →
~Mmin
H′ ). Then the ideal pullback of

~JH,dpol under the composition ~Mtor
H′,dpol(H′) →

~Mmin
H′ → ~Mmin

H of canonical mor-

phisms coincides with ~ ′d , because its further pullback under each isomorphism
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~XΦH′ ,δH′ ,ΣΦH′
/ΓΦH′

∼→ (~Mtor
H′,dpol(H′))

∧
~Z[(ΦH′ ,δH′ )]

coincides with the pullback of ~d

under the composition ~XΦH′ ,δH′ ,ΣΦH′
/ΓΦH′ → ~XΦH,δH,ΣΦH

/ΓΦH → ~Mtor
H,dpol of

canonical morphisms, whose restriction to each open formal subscheme ~X◦ΦH′ ,δH′ ,τ
(for τ ∈ ΣΦH′ satisfying τ ⊂ P+

ΦH′
) corresponds to the sub-O~CΦH′ ,δH′

-module

⊕̂
〈`,y〉≥dpolΦH′ (y),∀y∈σ′

~ΨΦH′ ,δH′ (`) of O~X◦ΦH′ ,δH′ ,τ
∼= ⊕̂

`∈τ∨
~ΨΦH′ ,δH′ (`). Hence, by the

universal property of ~Mtor
H,dpol = NBl ~JH,dpol(

~Mmin
H ) as a normalization of blowup, we

have a canonical morphism

(5.7) ~Mtor
H′,dpol(H′) → ~Mtor

H,dpol

under which the ideal pullback of ~d is ~ ′d , which is H/H′-equivariant (because all
objects involved are) and induces the middle horizontal arrow in (5.6).

The ideal pullback of ~d to ~Mtor
H′,dpol(H′)/(H/H

′) under the canonical morphism

induced by (5.7) coincides with
((
~Mtor
H′,dpol(H′) →

~Mtor
H′,dpol(H′)/(H/H

′)
)
∗ ~
′
d

)H/H′
,

because their pullbacks under each canonical isomorphism ~XΦH,δH,ΣΦH
/ΓΦH

∼→(
~Mtor
H′,dpol(H′)/(H/H

′)
)∧
~Z[(ΦH,δH)]

induced by (5.6) correspond to the same

sub-O~CΦH,δH
-module ⊕̂

〈`,y〉≥dpolΦH (y),∀y∈σ
~ΨΦH,δH(`) of O~X◦ΦH,δH,σ

∼= ⊕̂
`∈σ∨

~ΨΦH,δH(`)

over each open formal subscheme ~X◦ΦH,δH,σ (for σ ∈ ΣΦH satisfying σ ⊂ P+
ΦH

).

Therefore, by Corollary 5.2, and by [5, Ch. V, Lem. 5.9 and 5.10, and Prop.
5.13] (cf. [1, Ch. IV, Sec. 2, p. 327, Lem.] or [2, Ch. IV, Sec. 2, Lem. 2.14], and
[15, Prop. 7.3.2.3]), up to replacing d0 with some multiple, we may and we shall

assume that (5.7) identifies ~Mtor
H,dpol with the quotient of ~Mtor

H′,dpol(H′) by H/H′, so

that (5.6) also induces the isomorphisms ~XΦH,δH,ΣΦH
/ΓΦH

∼→ (~Mtor
H,dpol)

∧
~Z[(ΦH,δH)]

,

as desired. �

Proof of Proposition 5.1. By Lemma 5.5, we may and we shall assume that Condi-
tion 3.9 holds, and that d ∈ Z≥1 · dpolΦH .

Let x̄ be an arbitrary geometric point of ~MZH
H
∼= ~Z[(ΦH,δH)]. (We shall adopt the

same notation system as in Lemma 4.1.) Consider the proper morphism

(5.8) (~XΦH,δH,ΣΦH
)∧x̄/ΓΦH → (~Mtor

H,dpol)
∧
x̄ .

induced by (4.20). It suffices to show that (5.8) is an isomorphism.

By the definition of ~Mtor
H,dpol as the normalization of a blowup, since the formation

of normalizations is compatible with pullbacks to the formal completions of strict

local rings for excellent schemes, (~Mtor
H,dpol)

∧
x̄ has an open covering by affine open

formal subschemes {Uf}f labeled by nonzero sections f of ( ~JH,dpol)∧x̄ , where each

Uf is tautological for the pullback of ~JH,dpol to be an invertible ideal generated by
f , which only depends on sufficiently high powers of f . Concretely, let R denote the

ring of global sections of O(~Mmin
H )∧x̄

∼=
( ∏
`∈P∨ΦH

( ~FJ
(`)

ΦH,δH
)∧x̄
)ΓΦH , which is a noetherian

normal domain, and let J denote the R-ideal of global sections of ( ~JH,dpol)∧x̄ ; then
Uf ∼= Spf(R(f)), where R(f) is the integral closure in Frac(R) of the subring of
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Frac(R) generated by R and by fractions of the form f−k
∏

0≤j<k
gj , where gj ∈ J ,

for all 0 ≤ j < k.
For each such f , let us write it as a formal sum f =

∑
`∈SΦH ∩(d·K∨polΦH

)

f (`), where

each f (`) is a section of ( ~FJ
(`)

ΦH,δH
)∧x̄ , which can be further decomposed as a formal

sum f =
∑

[`]∈(SΦH ∩(d·K∨polΦH
))/ΓΦH

f [`] of subseries f [`] =
∑
`∈[`]

f (`), where each [`] is

by definition the ΓΦH-orbit of some ` ∈ SΦH ∩(d · K∨polΦH ). Note that ΓΦH acts

freely on d ·K∨polΦH , because (by Proposition 2.6) any element of d ·K∨polΦH can be

identified with some positive-definite pairing over some Y ⊗
Z
R (as in [15, Sec. 6.2.5]),

whose stabilizer in ΓΦH can be identified with a discrete subgroup of a compact
orthogonal subgroup of GLR(Y ⊗

Z
R), which must be finite and hence trivial, by the

neatness of H.
In order to give an open covering of (~Mtor

H,dpol)
∧
x̄ , we only need a collection of

f ’s such that every section g of ( ~JH,dpol)∧x̄ has a sufficiently high power which lies
in the subideal generated by the collection. Consequently, we only need those f ’s
such that f [`] 6= 0 only for one ΓΦH -orbit [`] = [`0], represented by some `0, and
we may and we shall assume furthermore that `0 is a vertex of d ·K∨polΦH , which is

equal to d · `τ,0 for some vertex `τ,0 of K∨polΦH
corresponding to a top-dimensional

τ in ΣΦH . Let Vf(`0) denote the maximal open formal subscheme of (~CΦH,δH)∧x̄
over which f (`0) is a generator of the pullback of ~ΨΦH,δH(`0), and let Wf(`0) denote

the preimage of Vf(`0) under the canonical morphism (~X◦ΦH,δH,τ )∧x̄ → (~CΦH,δH)∧x̄ .
By the proof of Proposition 4.19, Wf(`0) is the preimage of Uf under the canonical

morphism (~X◦ΦH,δH,τ )∧x̄ → (~Mtor
H,dpol)

∧
x̄ induced by (5.8), so that we have a canonical

morphism

(5.9) Wf(`0) → Uf .

Since f is ΓΦH -invariant, for each γ ∈ ΓΦH , the similarly defined canonical mor-
phism Wf(γ`0) → Uf is compatible with (5.9) and with the canonical isomorphism

γ : Wf(`0)
∼→Wf(γ`0) induced by the isomorphism γ : ~X◦ΦH,δH,τ

∼→ ~X◦ΦH,δH,γτ .

With the collection {`σ,i}σ,i chosen in the paragraph preceding Lemma 4.2, there
are `τ,1, . . . , `τ,nτ in SΦH ∩K∨polΦH such that R≥0 · τ∨ =

∑
1≤i≤nτ

R≥0 · (`τ,i− `τ,0) (cf.

(2.13)). Since d ∈ Z≥1 · dpolΦH , by Lemma 4.2, the sections of ( ~FJ
(d·`τ,i)
ΦH,δH

)∧x̄ generate

(~ΨΦH,δH(d·`τ,i))∧x̄ over (~CΦH,δH)∧x̄ , for each integer i such that 0 ≤ i ≤ nτ . For each

section g(d·`τ,i) of ( ~FJ
(d·`τ,i)
ΦH,δH

)∧x̄ , the formal sum gi = g[d·`τ,i] =
∑

γ∈ΓΦH

γg(d·`τ,i), where

γg(d·`τ,i) is a section of ( ~FJ
(d·(γ`τ,i))
ΦH,δH

)∧x̄ for each γ ∈ ΓΦH , defines an element of J ,

and so f−1gi defines an element of R(f). (Since ΓΦH acts freely on d ·K∨polΦH , there

is no cancellation among different terms in the formal sum gi =
∑

γ∈ΓΦH

γg(d·`τ,i).)
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Let V be any complete discrete valuation ring with valuation υ : Inv(V )→ Z and
with an algebraically closed residue field k, and let z : Spf(V ) → Uf be any mor-
phism. Without loss of generality, up to replacing `0 with another representative in
its ΓΦH -orbit, we have υ(f (`0)) ≤ υ(g(`)) for all g =

∑
`∈SΦH ∩(d·K∨polΦH

)

g(`) ∈ J and all

` ∈ SΦH ∩(d·K∨polΦH ). By applying this to formal sums gi =
∑

γ∈ΓΦH

γg(d·`τ,i) as in the

previous paragraph, for all 0 ≤ i ≤ nτ , we have υ(f (`0)) ≤ υ(g(d·`τ,i)) for every sec-

tion g(d·`τ,i) of ( ~FJ
(d·`τ,i)
ΦH,δH

)∧x̄ . By Lemma 4.2 again, the sections (f (`0))−1g(d·`τ,i) gen-

erate (~ΨΦH,δH(d·(`τ,i−`τ,0)))∧x̄ over Vf(`0) . Since R≥0 ·τ∨ =
∑

1≤i≤nτ
R≥0 ·(`τ,i−`τ,0),

it follows that any y : Spf(V ) → Uf as above necessarily uniquely lifts to a mor-
phism y : Spf(V ) → Wf(`0) via the canonical morphism (5.9). Since V and y
are arbitrary, this shows, in particular, that Wf(`0) is the preimage of Uf under
the proper morphism (5.8). Since both Wf(`0) and Uf are affine, this forces the
morphism (5.9) to be finite, which is induced by some finite homomorphism

(5.10) R(f) = Γ(Uf ,OUf )→ Γ(Wf(`0) ,OW
f(`0)

) ∼= ⊕̂
`∈σ∨

Γ(Vf(`0) , (~ΨΦH,δH(`))∧x̄ )

of R-algebras. Since R(f) is noetherian normal by construction, the above unique
liftability (for arbitrary V and y) also shows that (5.10) induces an isomorphism
between the total rings of fractions, and so (5.10) and (5.9) are isomorphisms.

Thus, the inverse of (5.9) defines a local inverse of (5.8) over Uf , which is (up to
canonical isomorphism) independent of the choice of `0 in its ΓΦH -orbit [`0]. Since

(~Mtor
H,dpol)

∧
x̄ is covered by such Uf ’s, (5.8) is an isomorphism, as desired. �

Corollary 5.11. Suppose d ∈ Z≥1 such that, for each representative (ΦH, δH)
for MH, it is divisible by some integer d0 as in Proposition 5.1. Suppose that
~Mtor
H,Σ is constructed as in [18, Sec. 7] (which means that the Σ induced by pol is

also induced by some auxiliary choices of cone decompositions there). Then the

canonical morphism ~∮
H,Σ : ~Mtor

H,Σ → ~Mmin
H lifts to a canonical isomorphism

(5.12) ~Mtor
H,Σ

∼→ ~Mtor
H,dpol.

Proof. By Lemma 4.13, we have ~XΦH,δH,ΣΦH
/ΓΦH

∼= (~Mtor
H,Σ)∧~Z[(ΦH,δH)]

, for each rep-

resentative (ΦH, δH) of cusp label for MH. By Proposition 4.19, and by the same

argument as in the proof of Corollary 4.23, the pullback of ~JH,dpol to ~Mtor
H,Σ under

~∮
H,Σ is invertible. Hence, by the universal property of the normalization of blowup

(see [15, Def. 7.3.2.1]), ~
∮
H,Σ induces a canonical morphism NBl ~JH,dpol(

~∮
H,Σ) :

~Mtor
H,Σ → ~Mtor

H,dpol = NBl ~JH,dpol(
~Mmin
H ), which is an isomorphism because, for each

representative (ΦH, δH) of cusp label for MH, its pullback (~Mtor
H,Σ)∧~Z[(ΦH,δH)]

→

(~Mtor
H,dpol)

∧
~Z[(ΦH,δH)]

is, by Proposition 5.1. �

Definition 5.13. By abuse of notation, we shall henceforth denote any ~Mtor
H,dpol in

Proposition 5.1 and Corollary 5.2 as ~Mtor
H,Σ, and adjust all related notation accord-

ingly. We shall denote the canonical morphism ~Mtor
H,Σ → ~Mmin

H by ~
∮
H,Σ, or simply
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by ~∮
H when the context is clear. (To fully justify such notation, we will show in

(6) of Theorem 6.1 below that ~Mtor
H,Σ does not depend on the choice of pol.)

Remark 5.14. By Corollary 5.11, this is justified even when ~Mtor
H,Σ has already been

constructed in [18, Sec. 7] for the Σ induced by pol.

Proposition 5.15. Let ~Mtor
H,Σ be as in Definition 5.13, and let ~Z[(ΦH,δH,σ)] denote

the isomorphic image of the locally closed subscheme ~ΞΦH,δH,σ of ~XΦH,δH,ΣΦH
/ΓΦH

under the composition of the second morphism in (4.20) (which is an isomorphism

by Proposition 5.1) with the canonical morphism (~Mtor
H,Σ)∧~Z[(ΦH,δH)]

→ ~Mtor
H,Σ, for

any representative (ΦH, δH, σ) of [(ΦH, δH, σ)]. Then ~Z[(ΦH,δH,σ)] is well defined

and locally closed in ~Mtor
H,Σ (with admits the canonical structure of a reduced locally

closed subscheme of ~Mtor
H,Σ), and we have a stratification

(5.16) ~Mtor
H,Σ =

∐
[(ΦH,δH,σ)]

~Z[(ΦH,δH,σ)]

in which the [(Φ′H, δ
′
H, σ

′)]-stratum Z[(Φ′H,δ
′
H,σ

′)] lies in the closure of the

[(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] if and only if [(ΦH, δH, σ)] is a face of
[(Φ′H, δ

′
H, σ

′)] as in [15, Thm. 6.3.2.14 and Rem. 6.3.2.15].
By construction, we have a canonical isomorphism

(5.17) (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

∼= ~XΦH,δH,σ

inducing a canonical isomorphism

(5.18) ~Z[(ΦH,δH,σ)]
∼= ~ΞΦH,δH,σ.

Moreover, the canonical morphism ~∮
H,Σ : ~Mtor

H,Σ → ~Mmin
H maps ~Z[(ΦH,δH,σ)] to

~Z[(ΦH,δH)], and induces a surjection ~Z[(ΦH,δH,σ)] � ~Z[(ΦH,δH)] which can be canon-

ically identified with the canonical surjection ~ΞΦH,δH,σ � ~MZH
H (via (5.18) and the

canonical isomorphism ~Z[(ΦH,δH)]
∼= ~MZH

H in [18, Thm. 12.16]).
If Σ′′ is as in Corollary 4.23, then the morphism (4.24) maps the stratum

Z[(ΦH,δH,τ)] of Mtor
H,Σ′′ (defined as in [15, Thm. 6.4.1.1(2)]) to the stratum

Z[(ΦH,δH,σ)] := ~Z[(ΦH,δH,σ)]⊗
Z
Q of Mtor

H,Σ := ~Mtor
H,Σ⊗Z

Q (where ~Mtor
H,Σ is defined as

in Definition 5.13) whenever τ ∈ Σ′′ΦH ∈ Σ′′ is contained in σ ∈ ΣΦH ∈ Σ in P+
ΦH

.
Moreover, each Z[(ΦH,δH,σ)] is the union of the images of all such Z[(ΦH,δH,τ)].

Proof. By the stratification by locally closed subschemes ~Mmin
H =

∐
[(ΦH,δH)]

~Z[(ΦH,δH)]

(see [18, Thm. 12.1]), and by Proposition 5.1, each ~Z[(ΦH,δH,σ)] is locally closed

in ~Mtor
H,Σ, and we have a disjoint union as in (5.16). Moreover, the assertions in

the second paragraph (of the proposition) also follow from Proposition 5.1, and
the assertions in the last paragraph follow from Corollary 4.23. Thanks to the

isomorphism (5.18), the characteristic zero fiber Z[(ΦH,δH,σ)] of ~Z[(ΦH,δH,σ)] is dense

in ~Z[(ΦH,δH,σ)], because the analogous assertion for ~ΞΦH,δH,σ is true (cf. [18, Cor.
10.15]). Consequently, by the assertions in the last paragraph, the locally closed
subschemes in (5.16) satisfy the desired incidence relation, because the (finer) strata
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of Mtor
H,Σ′′ satisfy the analogous incidence relation as in [15, Thm. 6.4.1.1(2)], for

any projective smooth refinement Σ′′ of Σ. �

Lemma 5.19 (cf. [18, Lem. 11.1]). Suppose (ΦH, δH, σ), where σ ⊂ P+
ΦH

and
σ ∈ ΣΦH , is as in [15, Def. 6.2.6.1], and suppose [(ΦH, δH, σ)] 6= [(0, 0, {0})]. Let U

be any open subscheme of ~Mtor
H,Σ that is a union of strata and contains ~Z[(ΦH,δH,σ)]

as a closed subscheme; and let U ′ be the complement of ~Z[(ΦH,δH,σ)] in U , which nec-

essarily contains ~Z[(0,0,{0})] = ~MH because [(ΦH, δH, σ)] 6= [(0, 0, {0})] (see Propo-

sition 5.15). By definition, the formal completion U of U along ~Z[(ΦH,δH,σ)] can be

canonically identified with
(
~Mtor
H,Σ
)∧
~Z[(ΦH,δH,σ)]

, so that we have a canonical isomor-

phism ~XΦH,δH,σ
∼→ U given by (5.17). Suppose j ∈ J, and suppose the tautological

object (Aj, λj, ij, αHj
) over MHj

∼= MH (see [18, (2.1)]) extends to a degenerating
family (Gj,U ′ , λj,U ′ , ij,U ′ , αHj,U ′) of type MHj

over U ′ (see [15, Def. 5.3.2.1]), where
αHj,U ′ is only required to be defined over MH. Then this degenerating family further
extends to a degenerating family (Gj,U , λj,U , ij,U , αHj,U ) of type MHj over U .

Proof. Let Σ′′ be any projective smooth refinement of Σ. Consider (as in [18,
(10.5), (10.6), (10.7), (10.8)]; see also the proof of Lemma 3.2) the formal
completion X′′ΦH,δH,σ of ΞΦH,δH(σ)′′ := ∪

τ∈Σ′′ΦH
,τ⊂σ

ΞΦH,δH(τ) along the closed

subscheme Ξ′′ΦH,δH,σ := ∪
τ∈Σ′′ΦH

,τ⊂σ
ΞΦH,δH,τ , which induces a canonical proper

morphism X′′ΦH,δH,σ → XΦH,δH,σ. Then X′′ΦH,δH,σ is also the formal completion

of ∪
τ∈Σ′′ΦH

,τ⊂σ
X◦ΦH,δH,τ along Ξ′′ΦH,δH,σ. By the same argument as in the proof

of [15, Thm. 6.4.1.1(5)], by [15, Thm. 6.4.1.1(6)], the Mumford families carried
by X′′ΦH,δH,σ induces a canonical isomorphism X′′ΦH,δH,σ

∼= (Mtor
H,Σ′′)

∧
Z′′

[(ΦH,δH,σ)]
,

where Z′′[(ΦH,δH,σ)] := ∪
τ∈Σ′′ΦH

,τ⊂σ
Z[(ΦH,δH,τ)]. Since this isomorphism is induced

by the universal property in [15, Thm. 6.4.1.1(6)], for each affine open formal
subscheme Spf(R′′) of X′′ΦH,δH,σ, the pullback of ΞΦH,δH under the induced

morphism Spec(R′′) → Ξ′′ΦH,δH,σ coincides with the pullback of MH under the

induced morphism Spec(R′′) → ~Mtor
H,Σ′′ . Consequently, by Corollary 4.23, for each

affine open subscheme Spec(R) of U inducing an affine open subscheme Spf(R∧, I)

of ~XΦH,δH,σ
∼= U, with canonical morphisms Spec(R∧) → Spec(R) → U , there

is a canonical isomorphism over the preimage of MH in Spec(R∧) between the
pullbacks of the tautological object (Aj, λj, ij, αHj

) over MHj
∼= MH and of the

Mumford family (♥ ~Gj,
♥~λj,

♥~ij,
♥~αHj

) over ~XΦH,δH,σ (cf. [15, Sec. 6.2.5] and [18,
(8.29)]). Then the lemma follows from the same descent argument as in the proof
of [18, Lem. 11.1] (which was based on [7, VIII, 7.8] and [22, Thm. 1.1]). �

Proposition 5.20 (cf. [18, Thm. 11.2]). For each j ∈ J, there exists a degenerating

family (~Gj, ~λj,~ij, ~αHj) of type MHj over ~Mtor
H,Σ (see [15, Def. 5.3.2.1]), whose pullback

to MH ∼= MHj
(see [18, (2.1)]) is isomorphic to the tautological object (Aj, λj, ij, αHj

)

over MHj
, and whose pullback to ~MH is isomorphic to the degenerating family of

type MHj over ~MH which was denoted ( ~Aj, ~λj,~ij, ~αHj) in [18, Prop. 6.1]. (The

notation of ~λj, ~ij, and ~αHj
is abusive and dependent on the context.) For each

(ΦH, δH, σ), the pullback of (~Gj, ~λj,~ij, ~αHj
) to ~XΦH,δH,σ via the canonical morphism
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(5.17) is canonically isomorphic to the Mumford family (♥ ~Gj,
♥~λj,

♥~ij,
♥~αHj

) over
~XΦH,δH,σ (cf. [15, Sec. 6.2.5] and [18, (8.29)]).

Proof. The same argument as in the proof of [18, Thm. 11.2] works here, with the
stratification in [18, Thm. 9.13] there replaced with the stratification (5.18) here,
and with [18, Lem. 11.1] there replaced with Lemma 5.19 here. �

6. Main results

Theorem 6.1 (cf. [15, Thm. 6.4.1.1 and 7.2.4.1(3)–(5)]). For each open com-

pact subgroup H of G(Ẑ) whose image Hp under the canonical homomorphism

G(Ẑ) → G(Ẑp) is neat, for each choice of lattice collection {(gj, Lj, 〈 · , · 〉j)}j∈J

as in [18, Sec. 2], and for each projective compatible choice Σ = {ΣΦH}[(ΦH,δH)]

of admissible rational polyhedral cone decomposition data as in Definitions 2.1 and

2.7, there is a normal scheme ~Mtor
H,Σ projective and flat over ~S0 = Spec(OF0,(p)),

containing the scheme ~MH as in [18, Prop. 6.1] as an open fiberwise dense sub-

scheme, together with a tautological degenerating family (~Gj, ~λj,~ij, ~αHj) of type MHj

over ~Mtor
H,Σ (see [15, Def. 5.3.2.1]), for each j ∈ J, where ~αHj

is defined only over the

open dense subscheme MH ∼= ~MH⊗
Z
Q of ~Mtor

H,Σ, such that we have the following:

(1) For each j ∈ J, the pullback of (~Gj, ~λj,~ij, ~αHj
) to ~MH is the tautological

tuple ( ~Aj, ~λj,~ij, ~αHj) over ~MH as in [18, Prop. 6.1].
(2) (Compare with [18, Prop. 7.11].) There exists a canonical proper surjection

~∮
H,Σ : ~Mtor

H,Σ → ~Mmin
H (over ~S0), where ~Mmin

H is as in [18, Prop. 6.4]. If Σ′ is

a refinement of Σ, then there exists a canonical morphism ~Mtor
H,Σ′ → ~Mtor

H,Σ

compatible with ~∮
H,Σ′ and ~∮

H,Σ. If we denote by ω~Mtor
H,Σ,J

the pullback of

the ample invertible sheaf ω~Mmin
H ,J over ~Mmin

H as in [18, Prop. 6.4], then it

is canonically isomorphic to ⊗
j∈J

ω
⊗ aj

~Mtor
H,Σ,j

, where ω~Mtor
H,Σ,j

:= ∧top Lie∨~Gj/~Mtor
H,Σ

and where aj is as in [18, Lem. 5.30, and Prop. 6.1 and 6.4], for each

j ∈ J, and we have ~Mmin
H
∼= Proj

(
⊕
k≥0

Γ(~Mtor
H,Σ, ω

⊗ k
~Mtor
H,Σ,J

)
)

. Moreover, ω~Mtor
H,Σ,j

descends to an invertible sheaf ω~Mmin
H ,j over ~Mmin

H , for each j ∈ J, and the

above canonical isomorphism ω~Mtor
H,Σ,J

∼= ⊗
j∈J

ω
⊗ aj

~Mtor
H,Σ,j

over ~Mtor
H,Σ descends to

a canonical isomorphism ω~Mmin
H ,J

∼= ⊗
j∈J

ω
⊗ aj

~Mmin
H ,j

over ~Mmin
H .

(3) (Compare with [18, Thm. 9.13, and Cor. 10.18 and 11.9].) ~Mtor
H,Σ has a

stratification by locally closed subschemes

(6.2) ~Mtor
H,Σ =

∐
[(ΦH,δH,σ)]

~Z[(ΦH,δH,σ)],

with [(ΦH, δH, σ)] running through a complete set of equivalence classes of
(ΦH, δH, σ) (as in [15, Def. 6.2.6.1]) with σ ⊂ P+

ΦH
and σ ∈ ΣΦH ∈ Σ.

(Here ZH is suppressed in the notation by [15, Conv. 5.4.2.5].)
In this stratification, the [(Φ′H, δ

′
H, σ

′)]-stratum Z[(Φ′H,δ
′
H,σ

′)] lies in the

closure of the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] if and only if [(ΦH, δH, σ)]
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is a face of [(Φ′H, δ
′
H, σ

′)] as in [15, Thm. 6.3.2.14 and Rem. 6.3.2.15]. The

analogous assertion holds after pullback to fibers over ~S0.

The [(ΦH, δH, σ)]-stratum ~Z[(ΦH,δH,σ)] is flat over ~S0 and normal, and

is isomorphic to the support of the formal scheme ~XΦH,δH,σ for any rep-

resentative (ΦH, δH, σ) of [(ΦH, δH, σ)]. The formal scheme ~XΦH,δH,σ ad-
mits a canonical structure as the completion of an affine toroidal embedding
~ΞΦH,δH(σ) (along its σ-stratum ~ΞΦH,δH,σ) of a torus torsor ~ΞΦH,δH over a

scheme ~CΦH,δH flat over ~S0 and normal. The scheme ~CΦH,δH is proper (and

surjective) over a finite cover ~MΦH
H of the boundary version ~MZH

H of ~MH (cf.

[18, Prop. 7.4]). (Note that ZH and the isomorphism class of ~MZH
H depend

only on the class [(ΦH, δH, σ)], but not on the choice of the representative
(ΦH, δH, σ).)

In particular, ~MH = ~Z[(0,0,{0})] is an open fiberwise dense stratum in this
stratification.

(4) (Compare with [18, Thm. 10.13 and 11.12, and Cor. 10.16].) The for-

mal completion (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

of ~Mtor
H,Σ along its [(ΦH, δH, σ)]-stratum

~Z[(ΦH,δH,σ)] is canonically isomorphic to the formal scheme ~XΦH,δH,σ for
any representative (ΦH, δH, σ) of [(ΦH, δH, σ)].

For any open immersion Spf(R, I) → ~XΦH,δH,σ inducing morphisms

Spec(R)→ ~ΞΦH,δH(σ) and Spec(R)→ ~Mtor
H,Σ (via the above-mentioned iso-

morphism), the preimage of ~ΞΦH,δH under Spec(R)→ ~ΞΦH,δH(σ) coincides

with the preimage of ~MH under Spec(R)→ ~Mtor
H,Σ.

For each j ∈ J, the pullback to (~Mtor
H,Σ)∧~Z[(ΦH,δH,σ)]

of the degenerating

family (~Gj, ~λj,~ij, ~αHj
) over ~Mtor

H,Σ is canonically isomorphic to the Mumford

family (♥ ~Gj,
♥~λj,

♥~ij,
♥~αHj

) over ~XΦH,δH,σ (cf. [15, Def. 6.2.5.28] and [18,
(8.29)]), after we identify the bases using the above-mentioned isomorphism.

(5) (Compare with [18, Cor. 10.15, and Thm. 12.1 and 12.16].) The stratifica-

tion (6.2) is compatible with the stratification of ~Mmin
H as in [18, Thm. 12.1

and 12.16], in the sense that the restriction of the proper surjection ~∮
H,Σ

in (2) to the stratum ~Z[(ΦH,δH,σ)] of ~Mtor
H,Σ induces a surjection to the stra-

tum ~Z[(ΦH,δH)] of ~Mmin
H , which can be identified with the composition of the

canonical isomorphism ~Z[(ΦH,δH,σ)]
∼→ ~ΞΦH,δH,σ (induced by the canonical

isomorphism in (4)), the structural morphism ~ΞΦH,δH,σ → ~MZH
H , and the

isomorphism ~MZH
H
∼→ ~Z[(ΦH,δH)] given by [18, Thm. 12.16]. In particular, it

is proper and surjective if σ is top-dimensional in P+
ΦH
⊂ (SΦH)∨R.

(6) (Compare with [18, Thm. 7.14 and 11.4].) Let S be an irreducible noetherian

normal scheme over ~S0, with generic point η, which is equipped with a
morphism

(6.3) η → MH.

Let (Aη, λη, iη, αH,η) denote the pullback of the tautological object of MH to
η under (6.3). Suppose that, for each j ∈ J, we have a degenerating family

(G†j , λ
†
j , i
†
j , α
†
Hj

) of type MHj
over S, whose pullback (Gj,η, λj,η, ij,η, αHj,η)
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to η defines a morphism

(6.4) η → MHj

by the universal property of MHj
, which we assume to coincide with the

composition of (6.3) with the canonical isomorphism MH ∼= MHj
given by

[18, (2.1)].
Then (6.3) (necessarily uniquely) extends to a morphism

(6.5) S → ~Mtor
H,Σ

(over ~S0) if the following condition is satisfied at each geometric point s̄ of
S:

Consider any dominant morphism Spec(V ) → S centered at s̄, where
V is a complete discrete valuation ring with fraction field K, algebraically
closed residue field k, and discrete valuation υ. By the semistable
reduction theorem (see, for example, [15, Thm. 3.3.2.4]), up to replacing
K with a finite extension field and replacing V accordingly, we may
assume that the pullback of Aη to Spec(K) extends to a semi-abelian
scheme G‡ over Spec(V ). By the theory of Néron models (see [3];
cf. [26, IX, 1.4], [5, Ch. I, Prop. 2.7], or [15, Prop. 3.3.1.5]), the
pullback of (Aη, λη, iη, αH,η) to Spec(K) extends to a degenerating family

(G‡, λ‡, i‡, α‡H) of type MH over Spec(V ), where α‡H is defined only over
Spec(K), which defines an object of DEGPEL,MH(V ) corresponding to a

tuple (B‡, λB‡ , iB‡ , X
‡, Y ‡, φ‡, c‡, c∨,‡, τ ‡, [α\,‡H ]) in DDPEL,MH(V ) under

[15, Thm. 5.3.1.19]. Then we have a fully symplectic-liftable admissible

filtration Z
‡
H determined by [α\,‡H ]. Moreover, the étale sheaves X‡ and Y ‡

are necessarily constant, because the base ring V is strict local. Hence it
makes sense to say we also have a uniquely determined torus argument

Φ‡H at level H for Z
‡
H. On the other hand, we have objects ΦH(G‡),

SΦH(G‡), and B(G‡) (see [15, Constr. 6.3.1.1]), which define objects Φ‡H,

SΦ‡H
, and in particular B‡ : SΦ‡H

→ Inv(V ) over the special fiber. Then

υ ◦B‡ : SΦ‡H
→ Z defines an element of S∨

Φ‡H
, where υ : Inv(V )→ Z is the

homomorphism induced by the discrete valuation of V .
Then the condition is that, for each Spec(V ) → S as above (centered

at s̄), and for some (and hence every) choice of δ‡H, there is a cone σ‡

in the cone decomposition ΣΦ‡H
of PΦ‡H

such that σ‡ contains all υ ◦ B‡

obtained in this way. (As explained in the proof of [15, Prop. 6.3.3.11], we
may assume that σ‡ is minimal among such choices; also, it follows from
the positivity of τ ‡ that σ‡ ⊂ P+

Φ‡H
. Then the extended morphism (6.5)

maps s̄ to a geometric point over ~Z[(Φ‡H,δ
‡
H,σ

‡)]; conversely, this property

also characterizes the stratum ~Z[(Φ‡H,δ
‡
H,σ

‡)] of ~Mtor
H,Σ.)

In particular, since this condition involves only Σ, the scheme ~Mtor
H,Σ

depends (up to canonical isomorphism) only on the compatible collection Σ
induced by pol and on the linear algebraic data in [18, Sec. 2], but not on
the choice of pol or on any auxiliary choices made in [18, Sec. 7].
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Proof. Let ~Mtor
H,Σ be as in Definition 5.13, which is projective by construction

(see Construction 3.12). By Proposition 5.20, it carries the tautological families

(~Gj, ~λj,~ij, ~αHj
) of type MHj

, which satisfy the assertion (1).

As for the assertion (2), the existence of the morphism ~∮
H,Σ and the canonical

isomorphism ~Mmin
H
∼= Proj

(
⊕
k≥0

Γ(~Mtor
H,Σ, ω

⊗ k
~Mtor
H,Σ,J

)
)

follow from the fact that (by

abuse of language) the canonical proper surjective morphism ~∮
H,Σ : ~Mtor

H,Σ → ~Mmin
H

is its own Stein factorization (see [8, III-1, 4.3.3 and 4.3.4]), because ~Mtor
H,Σ and

~Mmin
H are normal, and because ~

∮
H,Σ is generically an isomorphism (over MH).

The assertions (3), (4), and (5) follow from Propositions 5.15 and 5.20, and from
the same argument as in the proof of [18, Cor. 10.16], except for the statement
in assertion (3) that the stratification satisfies the same incidence relations after

pullback to fibers over ~S0 (which will be proved two paragraphs below).
Let us prove the assertion (6). Since the desired extensibility is a local question

(because ~Mtor
H,Σ is separated over ~S0), we may replace S with the spectrum of the

completion R of the strict local ring of S at an arbitrary geometric point s̄, and
assume that it is local with s̄ as a closed point. Let K := Frac(R), so that η ∼=
Spec(K). By applying [15, Thm. 5.3.1.19] (to degenerating families of types MHj

,
for all j ∈ J), and by the same argument as in the proof of [15, Prop. 6.2.5.11], there
exists a canonical morphism η → ΞΦH,ZH , which extends to a canonical morphism

S → ~ΞΦH,ZH(σ) mapping s̄ to ~ΞΦH,ZH,σ and lifts to a canonical morphism S →
~XΦH,ZH,σ exactly when the condition in the second last paragraph of the assertion
(6) (cf. the second last paragraphs of [15, Thm. 6.4.1.1(6)] and [18, Thm. 7.14]) is

satisfied (at s̄), under which the degenerating families (G†j , λ
†
j , i
†
j , α
†
Hj

) over S are

the pullbacks of the Mumford families over ~XΦH,ZH,σ, for all j ∈ J. By Proposition
5.20, and by [5, Ch. I, Prop. 2.7] or [15, Prop. 3.3.1.5], the composition of any such

morphism S → ~XΦH,ZH,σ with the canonical morphism ~XΦH,ZH,σ → ~Mtor
H,Σ (induced

by (5.17)) gives the desired extension S → ~Mtor
H,Σ of (6.3).

Then the statement in the assertion (3) that the stratification satisfies the same

incidence relations after pullback to fibers over ~S0 follows from same argument as
in the proof of [18, Cor. 11.9].

Finally, let us complete the proof of the assertion (2). If Σ′ is a refinement of Σ,

then the existence of the canonical morphism ~Mtor
H,Σ′ → ~Mtor

H,Σ (which is necessarily

compatible with ~
∮
H,Σ′ and ~

∮
H,Σ because all of them extend the identity morphism

over the dense subscheme ~MH) follows from the assertion (6). In order to show

that ω~Mtor
H,Σ,J

∼= ⊗
j∈J

ω
⊗ aj

~Mtor
H,Σ,j

, since the canonical morphisms ~Mtor
H,Σ′ → ~Mtor

H,Σ as above

are their own Stein factorizations, or equivalently since the canonical morphisms

O~Mtor
H,Σ
→ (~Mtor

H,Σ′ → ~Mtor
H,Σ)∗O~Mtor

H,Σ′
are isomorphisms, by [15, Lem. 7.2.2.1], we

may replace Σ (up to a common projective refinement) with one that is induced by
some auxiliary choices as in [15, Sec. 7] (see Remarks 2.3 and 2.9), in which case the

desired isomorphism follows from [18, Prop. 7.11]. Since the proper morphism ~∮
H,Σ

is its own Stein factorization (by what we have shown in the second paragraph of

this proof), or equivalently since the canonical morphism O~Mmin
H
→ (~

∮
H,Σ)∗O~Mtor

H,Σ
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is an isomorphism, by [15, Lem. 7.2.2.1] again, it remains to show that ω~Mtor
H,Σ,j

descends to an invertible sheaf ω~Mmin
H ,j over ~Mmin

H , for each j ∈ J; or, rather, that the

pushforward (~
∮
H,Σ)∗ω~Mtor

H,Σ,j
is an invertible sheaf. By [8, III-1, 4.1.5] (since ~

∮
H,Σ is

proper) and by fpqc descent (cf. [7, VIII, 1.11]), as in the proof of [15, Thm. 7.2.4.1],

it suffices to note that, for each (ΦH, δH, σ) defining a stratum ~Z[(ΦH,δH,σ)] as in

the assertion (3), the pullback of ω~Mtor
H,Σ,j

to ~XΦH,δH,σ descends to the invertible

sheaf (∧top
Z Xj)⊗

Z
(∧top Lie∨~Bj/~M

ZH
H

) over ~MZH
H (cf. [15, Lem. 7.1.2.1] and its proof),

where Xj is part of the torus argument ΦHj associated with ΦH as in [18, (3.3)],

and where ~Bj is part of the tautological family ( ~Bj, λ ~Bj
, i ~Bj

, ~ϕ−1,Hj
) over ~MZH

H as in

[18, Prop. 7.4]. �

Corollary 6.6. In Corollary 4.23, if the Σ induced by pol is already smooth (and
satisfies [15, Cond. 6.3.3.2]) as in Definition 2.2, and if we take Σ′′ = Σ there, then
the canonical morphism (4.24) is an isomorphism, and the stratification of Mtor

H,Σ
in [15, Thm. 6.4.1.1(2)] coincides with the one induced by (5.16).

Proof. This is because, by [18, Lem. 3.21], the universal properties of Mtor
H,Σ in [15,

Thm. 6.4.1.1(6)] and in (6) of Theorem 6.1 imply each other. �

Corollary 6.7. Let H and Σ be as in Theorem 6.1. There exists an effective

Carter divisor D′ over ~Mtor
H,Σ, with D′red = ~Mtor

H,Σ − ~MH (with its canonical reduced

closed subscheme structure) such that O~Mtor
H,Σ

(−D′) is relatively ample over ~Mmin
H ,

with respect to the canonical morphism ~∮
H,Σ : ~Mtor

H,Σ → ~Mmin
H .

Proof. This follows from the definition of ~Mtor
H,Σ as ~Mtor

H,dpol = NBl ~JH,dpol(
~Mmin
H ) (see

Definition 5.13), because the pullback of ~JH,dpol to ~Mtor
H,Σ is of the form O~Mtor

H,Σ
(−D′)

as in the statement of the corollary, by Propositions 4.19 and 5.1. �

By the same arguments as in the proofs of [18, Prop. 14.1 and 14.2, and Cor.
14.4], we obtain the following:

Proposition 6.8. Suppose Σ is smooth as in Definition 2.2. Then ~MH is regular

if and only if ~MH,Σ is.

Proposition 6.9. Let P be the property of being one of the following: reduced,
geometrically reduced, normal, geometrically normal, Cohen–Macaulay, (R0), geo-
metric (R0), (R1), geometric (R1), and (Si), one property for each i ≥ 0 (see [8,

IV-2, 5.7.2 and 5.8.2]). Then the fiber of ~Mtor
H,Σ → ~S0 over some point s of ~S0

satisfies property P if and only if the corresponding fiber of the open subscheme
~MH → ~S0 over s does. If Σ is smooth as in [15, Def. 6.3.3.4], then P can also be
the property of being one of the following: regular, geometrically regular, (Ri), and
geometrically (Ri), one property for each i ≥ 0.

Corollary 6.10. Suppose that ~MH → ~S0 has geometrically normal fibers. Then all

geometric fibers of ~Mtor
H,Σ → ~S0 have the same number of connected components, and

the same is true for ~MH → ~S0. (The analogous statements are true if we consider
irreducible components instead of connected components.)
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7. Functorial properties and Hecke twists

For most of this section (except for Proposition 7.15 and its proof), as in [18,
Sec. 13], for the sake of clarity, we shall abusively denote all objects constructed
using {(gj, Lj, 〈 · , · 〉j)}j∈J by an additional subscript J.

Proposition 7.1 (cf. [18, Prop. 13.7 and 13.9]). With the setting as in [18, Prop.
13.1], suppose moreover that Σ and Σ′ are compatible choices of admissible rational
polyhedral cone decomposition data for MH and MH′ , respectively, which are pro-
jective as in Definitions 2.1 and 2.7, such that Σ is a 1-refinement of Σ′ as in [15,
Def. 6.4.3.3]. (The definition there naturally generalizes to the case of nonsmooth
cone decompositions.) Then there is a canonical projective morphism

(7.2) ~Mtor
H,Σ,J → ~Mtor

H′,Σ′,J′

extending the canonical proper morphism [18, (13.2)] and is compatible with
the canonical morphism [18, (13.5)] under the canonical projective morphisms
~∮
H,Σ,J : ~Mtor

H,Σ,J → ~Mmin
H,J and ~∮

H′,Σ′,J′ : ~Mtor
H′,Σ′,J′ → ~Mmin

H′,J′ , which maps the

[(ΦH, δH, σ)]-stratum ~Z[(ΦH,δH,σ)],J of ~Mtor
H,Σ,J to the [(Φ′H′ , δH′ , σ

′)]-stratum
~Z[(Φ′H′ ,δH′ ,σ

′)],J′ of ~Mtor
H′,Σ′,J′ if and only if there are representatives (ΦH, δH, σ)

and (Φ′H′ , δ
′
H′ , σ

′) of [(ΦH, δH, σ)] and [(Φ′H′ , δ
′
H′ , σ

′)], respectively, such that
(ΦH, δH, σ) is a 1-refinement of (Φ′H′ , δ

′
H′ , σ

′) as in [15, Def. 6.4.3.1].

Proof. By the universal property of ~Mtor
H′,Σ′,J′ as in (6) of Theorem 6.1, the canoni-

cal morphism [18, (13.2)] extends to a canonical morphism (7.2), under which the

subcollection {(~Gj, ~λj,~ij, ~αH′j)}j∈J′ of {(~Gj, ~λj,~ij, ~αH′j)}j∈J over ~Mtor
H,Σ,J is the pull-

back of the corresponding collection over ~Mtor
H′,Σ′,J′ , which maps ~Z[(ΦH,δH,σ)],J to

~Z[(Φ′H′ ,δH′ ,σ
′)],J′ if and only if the condition as in the proposition holds. It is then

compatible with the canonical morphism [18, (13.5)], by (2) of Theorem 6.1. �

Proposition 7.3 (cf. [18, Prop. 13.15]). Given any collection {(gj, Lj, 〈 · , · 〉j)}j∈J

satisfying the conditions imposed by an open compact subgroup H ⊂ G(Ẑ) as in [18,

Sec. 2], suppose that H′ ⊂ G(Ẑ) contains both H and g−1Hg, and that g−1
j Hgj sta-

bilizes Lj⊗
Z
Ẑ for all j ∈ J, so that {(gj, Lj, 〈 · , · 〉j)}j∈J also satisfies the conditions

imposed by H′. Then the collection {(gεgj, Lj, 〈 · , · 〉j)}(ε,j)∈{0,1}× J satisfies the con-
dition imposed by H as well, and we have two canonical projective morphisms as
in [18, (13.16) and (13.17)]. Given any projective Σ′ as in Definitions 2.1 and 2.7,
there exist some refinement Σ of Σ′ such that the two canonical projective mor-
phisms [18, (13.16)] extend to two canonical projective morphisms

(7.4) ~[1]
tor
, ~[g]

tor
: ~Mtor
H,Σ,{0,1}× J → ~Mtor

H′,Σ′,J

compatible with the two canonical projective morphisms [18, (13.18)].

The morphism ~[1]
tor

(resp. ~[g]
tor

) in (7.4) maps the [(ΦH, δH, σ)]-stratum
~Z[(ΦH,δH,σ)],{0,1}× J of ~Mtor

H,Σ,{0,1}× J to the [(Φ′H′ , δH′ , σ
′)]-stratum ~Z[(Φ′H′ ,δH′ ,σ

′)],J

of ~Mtor
H′,Σ′,J if and only if there are representatives (ΦH, δH, σ) and (Φ′H′ , δ

′
H′ , σ

′)

of [(ΦH, δH, σ)] and [(Φ′H′ , δ
′
H′ , σ

′)], respectively, such that (ΦH, δH, σ) is a
1-refinement (resp. g-refinement) of (Φ′H′ , δ

′
H′ , σ

′) as in [15, Def. 6.4.3.1].
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Proof. This follows from Proposition 7.1 and the same argument as in [18, Ex.
13.14] (with (J, J0) there replaced with ({0, 1}× J, J) here). �

Proposition 7.5. The morphism (7.2) induces canonical morphisms

(7.6) O~Mtor
H′,Σ′,J′

→ (~Mtor
H,Σ,J → ~Mtor

H′,Σ′,J′)∗O~Mtor
H,Σ,J

and

(7.7) I~Mtor
H′,Σ′,J′

→ (~Mtor
H,Σ,J → ~Mtor

H′,Σ′,J′)∗I~Mtor
H,Σ,J

,

where I~Mtor
H,Σ,J

(resp. I~Mtor
H′,Σ′,J′

) denotes the coherent O~Mtor
H,Σ,J

-ideal (resp.

O~Mtor
H′,Σ′,J′

-ideal) defining the boundary ~Mtor
H,Σ,J − ~MH,J (resp. ~Mtor

H′,Σ′,J′ − ~MH′,J′)

with its canonical reduced subscheme structure. When H′ is a normal subgroup
of H, the finite group H/H′ acts on the right-hand side of (7.6) (resp. (7.7))
and identifies the left-hand side with the H/H′-invariants in the right-hand side.
Moreover, we have

(7.8) Ri(~Mtor
H,Σ,J → ~Mtor

H′,Σ′,J′)∗O~Mtor
H,Σ,J

= 0

and

(7.9) Ri(~Mtor
H,Σ,J → ~Mtor

H′,Σ′,J′)∗I~Mtor
H,Σ,J

= 0,

for all i > 0. The analogous statements for the two morphisms (7.4) are also true.

Proof. By the same argument as in the proof of Lemma 4.13, and by (6) of

Theorem 6.1, ~XΦH,δH,ΣΦH ,J
/ΓΦH carries Mumford families (cf. [15, Sec. 6.2.5]

and [18, (8.29)]) which are isomorphic to the pullback of the tautological

objects over ~Mtor
H,Σ,J under the composition of the canonical isomorphism

~XΦH,δH,ΣΦH ,J
/ΓΦH

∼→ (~Mtor
H,Σ,J)∧~Z[(ΦH,δH)],J

(see Proposition 5.1) with the canonical

morphism (~Mtor
H,Σ,J)∧~Z[(ΦH,δH)],J

→ ~Mtor
H,Σ,J. The similar statement for ~Mtor

H′,Σ′,J′ is

also true. Hence, since the morphism (7.2) is induced by the universal property of
~Mtor
H′,Σ′,J′ as in (6) of Theorem 6.1, it induces the canonical proper morphism

(7.10)
∐

(ΦH,δH) lifts (Φ′H′ ,δ
′
H′ )

(~XΦH,δH,ΣΦH ,J
/ΓΦH)→ ~XΦ′H′ ,δ

′
H′ ,Σ

′
ΦH′

,J′/ΓΦ′H′
,

which is the formal completion of the canonical proper morphism

(7.11)
∐

(ΦH,δH) lifts (Φ′H′ ,δ
′
H′ )

(~ΞΦH,δH,ΣΦH ,J
/ΓΦH)→ ~ΞΦ′H′ ,δ

′
H′ ,Σ

′
ΦH′

,J′/ΓΦ′H′
.

Since the morphisms (7.2), (7.10), and (7.11) are all proper, by [8, III-1, 4.1.5],
it suffices to prove the obvious analogues of the statements of the proposition for
(7.11). Since the canonical morphism

(7.12) O~CΦH,δH,J′
→ (~CΦH,δH,J → ~CΦH,δH,J′)∗O~CΦH,δH,J

is an isomorphism by Zariski’s main theorem (see [8, III-1, 4.4.3, 4.4.11]) and by

noetherian normality of ~CΦH,δH,J and ~CΦH,δH,J′ (note the change from J to J′ in the
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subscripts), it suffices to prove the analogues of the statements for the morphism

(7.13)
∐

(ΦH,δH) lifts (Φ′H′ ,δ
′
H′ )

~ΞΦH,δH,ΣΦH ,J
′/ΓΦH → ~ΞΦ′H′ ,δ

′
H′ ,Σ

′
ΦH′

,J′/ΓΦ′H′
,

now with the same J′; or rather the analogues for the morphism

(7.14)
⋃

(ΦH,δH) lifts (Φ′H′ ,δ
′
H′ ), σ∈ΣΦH , σ⊂σ′

~ΞΦH,δH,J′(σ)→ ~ΞΦ′H′ ,δ
′
H′ ,J

′(σ′)

for each σ′ ∈ ΣΦ′H′
, which then follow from the arguments in [12, Ch. I, Sec. 3,

especially p. 44, Cor. 2] (cf. the proof of [15, Lem. 7.1.1.4]), as usual. �

(From now on, for simplicity, we shall again drop J from the subscripts.)

Proposition 7.15. For each j ∈ J, the locally free sheaves HdR
1 ( ~Aj/~MH) and

HdR
1 ( ~A∨j /

~MH) over ~MH, where ~Aj is as in [18, Prop. 6.1], extends to locally free

sheaves HdR
1 ( ~Aj/~MH)can and HdR

1 ( ~A∨j /
~MH)can over ~Mtor

H,Σ, with a canonical pairing

(7.16) HdR
1 ( ~Aj/~MH)can×HdR

1 ( ~A∨j /
~MH)can → O~Mtor

H,Σ

(necessarily uniquely) extending the canonical pairing

(7.17) HdR
1 ( ~Aj/~MH)×HdR

1 ( ~A∨j /
~MH)→ O~MH

.

(Here we have ignored the Tate twists for simplicity, which can be compatibly rein-
stated when needed in applications.) Moreover, the canonical exact sequences

(7.18) 0→ Lie∨~A∨j /~MH
→ HdR

1 ( ~Aj/~MH)→ Lie ~Aj/~MH
→ 0

and

(7.19) 0→ Lie∨~Aj/~MH
→ HdR

1 ( ~A∨j /
~MH)→ Lie ~A∨j /~MH

→ 0

over ~MH extend to canonical short exact sequences

(7.20) 0→ Lie∨~G∨j /~Mtor
H,Σ
→ HdR

1 ( ~Aj/~MH)can → Lie~Gj/~Mtor
H,Σ
→ 0

and

(7.21) 0→ Lie∨~Gj/~Mtor
H,Σ
→ HdR

1 ( ~A∨j /
~MH)can → Lie~G∨j /~Mtor

H,Σ
→ 0

over ~Mtor
H,Σ, where ~Gj and ~G∨j are the semi-abelian schemes as in Theorem

6.1, which are compatible with each other in the sense that the sheaves
Lie∨~G∨j /~Mtor

H,Σ
and Lie∨~Gj/~Mtor

H,Σ
in (7.18) and (7.19) (viewed as submodules of the

middle terms) are annihilators of each other under the pairing (7.16), and the

canonically induced morphisms HdR
1 ( ~Aj/~MH)can/Lie∨~G∨j /~Mtor

H,Σ
→ (Lie∨~Gj/~Mtor

H,Σ
)
∨

and

HdR
1 ( ~A∨j /

~MH)can/Lie∨~Gj/~Mtor
H,Σ
→ (Lie∨~G∨j /~Mtor

H,Σ
)
∨

can be identified with the identity

morphisms on Lie~Gj/~Mtor
H,Σ

and Lie~G∨j /~Mtor
H,Σ

, respectively.

Proof. Let us first show that HdR
1 ( ~Aj/~MH) and HdR

1 ( ~A∨j /
~MH) extend to locally

free sheaves HdR
1 ( ~Aj/~MH)can and HdR

1 ( ~A∨j /
~MH)can over ~Mtor

H,Σ, with short exact

sequences (7.20) and (7.21) extending (7.18) and (7.19), respectively.

Let Σ′ be any compatible collection for which ~Mtor
H,Σ′ is constructed as in [18, Sec.

7], and let Σ′′ be any common projective smooth refinement of Σ and Σ′ (which
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exists by Proposition 2.8), so that (by (2) of Theorem 6.1) we have canonical

morphisms ~
∮

Σ′′,Σ
: ~Mtor

H,Σ′′ → ~Mtor
H,Σ and ~∮

Σ′′,Σ′
: ~Mtor

H,Σ′′ → ~Mtor
H,Σ′ . By Propo-

sition 7.5 (with H = H′ and J = J′ there), we have (~
∮

Σ′′,Σ
)∗O~Mtor

H,Σ′′
∼= O~Mtor

H,Σ
,

(~
∮

Σ′′,Σ′
)∗O~Mtor

H,Σ′′
∼= O~Mtor

H,Σ′
, Ri(~

∮
Σ′′,Σ

)∗O~Mtor
H,Σ′′

= 0, and Ri(~
∮

Σ′′,Σ′
)∗O~Mtor

H,Σ′
= 0,

for all i > 0. Therefore, if HdR
1 ( ~Aj/~MH) extends to a locally free sheaf over ~Mtor

H,Σ′ ,

which we abusively also denote by HdR
1 ( ~Aj/~MH)can, with a short exact sequence

0→ Lie∨~G∨j /~Mtor
H,Σ′
→ HdR

1 ( ~Aj/~MH)can → Lie~Gj/~Mtor
H,Σ′
→ 0

extending (7.18) over ~Mtor
H,Σ′ , where the same symbols ~Gj and ~G∨j abusively also

denote the semi-abelian schemes extending ~Aj and ~A∨j over ~Mtor
H,Σ′ , then we have a

similar short exact sequence

0→ Lie∨~G∨j /~Mtor
H,Σ
→ (~

∮
Σ′′,Σ

)∗(
~∮

Σ′′,Σ′
)∗HdR

1 ( ~Aj/~MH)can → Lie~Gj/~Mtor
H,Σ
→ 0,

which shows that (~
∮

Σ′′,Σ
)∗(
~∮

Σ′′,Σ′
)∗HdR

1 ( ~Aj/~MH)can is the desired locally free ex-

tension of HdR
1 ( ~Aj/~MH) over ~Mtor

H,Σ. Similarly, the corresponding assertion for

HdR
1 ( ~A∨j /

~MH) is also true. Hence, it suffices to construct the locally free exten-

sions over ~Mtor
H,Σ′ . (If ~Mtor

H,Σ is already constructed in [18, Sec. 7], then we can take

Σ′ = Σ, in which case the reference to Theorem 6.1 is not really necessary.)

By [18, Lem. 9.8] and [14, Prop. 6.9], the pullback HdR
1 (Aj/MH) of HdR

1 ( ~Aj/~MH)

to MH extends to a locally free sheaf HdR
1 (Aj/MH)can over Mtor

H,Σ′′ , together with
a short exact sequence

0→ Lie∨G∨j /Mtor
H,Σ′′

→ HdR
1 (Aj/MH)can → LieGj/Mtor

H,Σ′′
→ 0

over Mtor
H,Σ′′ , extending the canonical short exact sequence

0→ Lie∨A∨j /MH → HdR
1 (Aj/MH)→ LieAj/MH → 0

over MH, where Gj and G∨j are semi-abelian schemes over Mtor
H,Σ′′ extending Aj and

A∨j , respectively. Let
∮

Σ′′,Σ′
: Mtor
H,Σ′′ → Mtor

H,Σ′ denote the canonical morphism as

in [18, (9.9)]. Then the same argument as in the previous paragraph shows that

(
∮

Σ′′,Σ′
)∗H

dR
1 (Aj/MH)can is locally free. Thus, HdR

1 (Aj/MH) extends to a locally

free sheaf E over the open subscheme ~MH ∪Mtor
H,Σ′ of ~Mtor

H,Σ′ , whose complement

is a closed subscheme of codimension at least two (because ~MH is open fiberwise

dense in ~Mtor
H,Σ′ , by [18, Cor. 10.18]; cf. Theorem 6.1). Similarly, HdR

1 (A∨j /MH) also

extends to a locally free sheaf over ~MH ∪Mtor
H,Σ′ . Let us denote the canonical open

immersion ~MH ∪Mtor
H,Σ′ → ~Mtor

H,Σ′ by j. Since ~Mtor
H,Σ′ is noetherian and normal by

construction, it is (S2) by Serre’s criterion (see [8, IV-2, 5.8.6]). Therefore, by [6,

VIII, Prop. 3.2], j∗E is a coherent sheaf over ~Mtor
H,Σ′ ; and, by [11, Prop. 1.11 and

Thm. 3.8], j∗E ∼= F if there exists any locally free extension F of E over ~Mtor
H,Σ′ .

Consequently, it suffices to show that

HdR
1 (A

× aj,1

j ×
MHj

(A∨j )× aj,2/MH) ∼= HdR
1 (Aj/MH)⊕ aj,1 ⊕HdR

1 (A∨j /MH)⊕ aj,2
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extends to a locally free sheaf over ~Mtor
H,Σ′ for some integers aj,1 > 0 and aj,2 ≥ 0

as in [18, Lem. 4.1]. By [18, Prop. 4.12], under the morphism MH → MHj,aux

induced by [18, (6.2)], HdR
1 (A

× aj,1

j ×
MHj

(A∨j )× aj,2/MH) is canonically isomorphic

to the pullback of the sheaf HdR
1 (Aj,aux/MHj,aux

) over MHj,aux
; and, under any

morphism ~Mtor
H,Σ′ → Mtor

Hj,aux,Σj,aux
as in [18, (7.8)], any locally free extension of the

latter sheaf over Mtor
Hj,aux,Σj,aux

pulls back to a locally free extension of the former

over ~Mtor
H,Σ′ . Thus, it suffices to note that, by [14, Prop. 6.9] again, the latter

extends to the locally free sheaf HdR
1 (Aj,aux/MHj,aux)can over Mtor

Hj,aux,Σj,aux
. Since

the auxiliary polarization λj,aux : Aj,aux → A∨j,aux is prime-to-p (by assumption),
the corresponding assertion for the dual abelian schemes is also true.

Thus, we have constructed the desired locally free extensions over ~Mtor
H,Σ′ , and

hence also over ~Mtor
H,Σ, with short exact sequences as in (7.20) and (7.21), extending

(7.18) and (7.19), respectively. Since ~Mtor
H,Σ is noetherian normal, to construct the

canonical pairing (7.16) extending (7.17), with the desired compatibility with (7.20)
and (7.21) as in the statement of the proposition, it suffices to construct it over

Mtor
H,Σ ∪ ~MH; or, rather, over Mtor

H,Σ′′ ∪ ~MH, by the same pushforward argument as

above; or, rather, just over Mtor
H,Σ′′ . This, again, follows from [14, Prop. 6.9]. �

8. Vanishing of higher direct images, and Koecher’s principle

As in [15, Sec. 7.1.2], let ~pΦH,ZH : ~CΦH,δH → ~MZH
H denote the structural mor-

phism. As in [17, Sec. 6], let P∨,+ΦH
:= {` ∈ SΦH : 〈`, y〉 > 0,∀y ∈ PΦH − {0}}.

Lemma 8.1. There exist infinitely many integers n prime to p such that, for each
such n, there exists a finite étale commutative group scheme Hn of order prime

to p over ~MZH
H acting on ~CΦH,δH via morphisms compatible with ~pΦH,ZH , inducing

canonical morphisms ~CΦH,δH → ~CΦH,δH/Hn
∼→ ~CΦH,δH over ~MZH

H , whose compo-

sition we denote as [n], such that [n]∗~ΨΦH,δH(`) ∼= ~ΨΦH,δH(n2`) ∼= ~ΨΦH,δH(`)⊗n
2

,
for each ` ∈ SΦH . Moreover, for any OF0,(p)-algebra R, the canonical morphism

(8.2) ~ΨΦH,δH(`) ⊗
OF0,(p)

R→ [n]∗(~ΨΦH,δH(n2`) ⊗
OF0,(p)

R)

defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of Hn-invariants (cf. [23, p. 72, Cor.]).

Proof. Let m ≥ 1 be any integer such that ker(Gj(Ẑ) → Gj(Z/mZ)) ⊂ Hj and
such that multiplication by m annihilates the analogues for MHj

(see [18, Sec.

3]) of the finite étale group schemes π0(
...
CΦ1/M

Z1
1 ) as in [15, Prop. 6.2.2.4], for

all j ∈ J. By the construction of CΦH,δH
∼= CΦHj

,δHj
(see [15, Sec. 6.2.3–6.2.4]),

for each of the infinitely many integers n that are prime to p and congruent to
1 moduli m2, and for each j ∈ J, the multiplication by n on the tautological
tuple (cHj

, c∨Hj
) (which is an orbit of objects at level m satisfying certain lifta-

bility and pairing conditions that are unaffected by multiplication by n, because
of the choice of m) induces a canonical morphism [n] : CΦH,δH → CΦH,δH over

MΦH
H
∼= M

ΦHj

Hj
(which is then also a morphism over MZH

H
∼= M

ZHj

Hj
), which can be

realized as a quotient of CΦH,δH by a finite étale subgroup scheme Hn of order
prime to p. Up to replacing m with a (positive) multiple, the canonical morphisms
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[n] : CΦHj,aux
,δHj,aux

→ CΦHj,aux
,δHj,aux

are similarly defined by multiplication by

n on the tautological tuples (cHj,aux , c
∨
Hj,aux

), for all j ∈ J, which are naturally

compatible with the above morphism [n] : CΦH,δH → CΦH,δH via the canonical

morphism [18, (8.5)]. Therefore, by the construction of ~CΦH,δH (see [18, Prop.

8.4]), the action of Hn on CΦH,δH extends to an action of Hn on ~CΦH,δH , which
also induces the multiplication by n on the tautological tuple (~cHj

,~c∨Hj
), for all J;

and the induced finite morphism ~CΦH,δH/Hn → ~CΦH,δH between noetherian nor-
mal schemes is necessarily an isomorphism, because it is so in characteristic zero,
by Zariski’s main theorem (see [8, III-1, 4.4.3, 4.4.11]). As for the canonical isomor-

phisms [n]∗~ΨΦH,δH(`) ∼= ~ΨΦH,δH(n2`) ∼= ~ΨΦH,δH(`)⊗n
2

, they exist over CΦH,δH by

the construction in [15, Sec. 6.2.4], and they extend over ~CΦH,δH by the argument
in the proof of [18, Prop. 8.7] (for extending the EΦH -torsor ΞΦH,δH → CΦH,δH to

the EΦH -torsor ~ΞΦH,δH → ~CΦH,δH). Finally, since the order of Hn is invertible in
the base ring OF0,(p), the canonical morphism (8.2) admits a splitting (by descent
and) by taking averages under Hn-action, as in the proof of [23, p. 72, Cor.]. Conse-
quently, its left-hand side can be identified with a direct summand of its right-hand
side, consisting of Hn-invariants, as desired. �

Proposition 8.3. Suppose ` ∈ P∨,+ΦH
. Then Ri(~pΦH,ZH)∗(~ΨΦH,δH(`) ⊗

OF0,(p)

R) = 0

for all i > 0 and all OF0,(p)-algebra R.

Proof. Since ~pΦH,ZH is proper and since ~MZH
H is quasi-projective over

~S0 = Spec(OF0,(p)), by the usual limit argument (cf. [15, Thm. 1.3.1.3] and the
references made there), we may and we shall assume that R is noetherian. For

any such `, as explained in the proof of Lemma 4.2, the invertible sheaf ~ΨΦH,δH(`)

over ~CΦH,δH is relatively ample over ~MZH
H . Since ~pΦH,ZH is proper and since ~MZH

H
is of finite type over the noetherian ring OF0,(p), there exists some integer N0 ≥ 1

(depending on R) such that Ri(~pΦH,ZH)∗(~ΨΦH,δH(N`) ⊗
OF0,(p)

R) = 0 for all i > 0

and N ≥ N0. Let n be any integer considered in Lemma 8.1 such that n2 ≥ N0.

Then Ri(~pΦH,ZH)∗(~ΨΦH,δH(`) ⊗
OF0,(p)

R) = 0 for all i > 0, because it is a direct

summand of Ri(~pΦH,ZH)∗(~ΨΦH,δH(n2`) ⊗
OF0,(p)

R) = 0, by Lemma 8.1. �

Proposition 8.4. Suppose that SΦH
∼= Z, that ` ∈ SΦH is negative,

and that the morphism ~pΦH,ZH has positive-dimensional fibers. Then

(~pΦH,ZH)∗(~ΨΦH,δH(`) ⊗
OF0,(p)

R) = 0 for all OF0,(p)-algebra R.

Proof. As in the proof of Proposition 8.3, we may and we shall assume that R

is noetherian. Suppose that (~pΦH,ZH)∗(~ΨΦH,δH(`) ⊗
OF0,(p)

R) 6= 0. Since ~pΦH,ZH is

proper, by Grothendieck’s fundamental theorem [8, III-1, 4.1.5], there exists some

morphism U = Spec(R0)→ ~MZH
H ⊗
OF0,(p)

R, where R0 is an Artinian local ring whose

residue field we denote by k0, and some nonzero f in Γ(Ũ , ~ΨΦH,δH(`)|Ũ ), where
~ΨΦH,δH(`)|Ũ denotes the pullback of ~ΨΦH,δH(`) under the canonical morphism Ũ :=
~CΦH,δH ×

~M
ZH
H

U → ~CΦH,δH . By Lemma 8.1, for each integer n considered there, f has
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nonzero image fn in Γ(Ũ , ~ΨΦH,δH(n2`)|Ũ ) under the canonical morphism induced

by (8.2), where ~ΨΦH,δH(n2`)|Ũ denotes the similar pullback of ~ΨΦH,δH(n2`).

Since Ũ is noetherian, by using primary decompositions of zero ideals in noe-
therian rings of sections over affine open subschemes, there exists an integer N ≥ 1
such that, for each open subscheme V of Ũ and each nonzero h in OŨ (V ), there
exists some x ∈ V such that h has a nonzero pullback to Spec(OŨ,x/m

N
x ), where

mx denotes the maximal ideal of the local ring OŨ,x. (We will use similar notation

without further explanation.) Moreover, for each x as above, there is some asso-

ciated point y of V (i.e., y ∈ Ass(OV ); see [8, IV-2, 3.1.1]) whose closure {y} in
V contains x such that h also has a nonzero pullback to Spec(OŨ,y/m

N
y ). Since

invertible sheaves are locally trivial, the analogous statements are true for their
sections. (The same N works for all invertible sheaves over Ũ .)

Since ~pΦH,ZH has positive-dimensional fibers by assumption, for any integer n
considered in Lemma 8.1, each geometric fiber of the morphism [n] there has car-
dinality increasing with n2, because (under the Hn-action) the number of values
of the tautological tuple (~cHj

,~c∨Hj
) over each geometric fiber also does. If f has

nonzero pullbacks to Spec(OŨ,x/m
N
x ) only at some closed points x, which are nec-

essarily associated points of Ũ , then fn has nonzero pullbacks to Spec(OŨ,x/m
N
x )

only when x is in the preimage of these closed points under [n]. But this is impos-
sible because, for all sufficiently large n, such a preimage cannot be supported on
the finitely many closed associated points of Ũ . Since there are only finitely many
associated points of Ũ , there exists one of them with positive-dimensional closure
{y} in Ũ and with an infinite sequence n1 < n2 < · · · of integers considered in
Lemma 8.1 such that fni has nonzero pullback to Spec(OŨ,y/m

N
y ) for all i ≥ 1. Up

to replacing R0 with a flat extension, we may and we shall assume that its residue
field k0 is algebraically closed with uncountable cardinality. Then the closed points
in {y}, which are all k0-points, cannot be a countable union of its proper closed

subsets, and hence there exist mutually distinct closed k0-points xj in {y}, indexed

by integers 1 ≤ j ≤ r for some integer r > lengthR0
(Γ(Ũ ,OŨ )) (which is possible

because ~pΦH,ZH is proper and R0 is Artinian), such that fni has nonzero pullback

to Spec(OŨ,xj/m
N
xj ) for all i ≥ 1 and all 1 ≤ j ≤ r.

Consider the (coherent) OŨ -ideal I := ker
(
OŨ � ⊕

1≤j≤r
(OŨ,xj/m

N
xj )
)
. Since `

is negative, ~ΨΦH,δH(−`) is relatively ample over ~MZH
H , as explained in the proof of

Proposition 8.3. Hence, by Serre vanishing [8, III-1, 2.2.1], there exists some suf-

ficiently large i0 ≥ 1 such that H1(Ũ , ~ΨΦH,δH(−n2
i0
`)|Ũ ⊗

OŨ

I ) = 0, and so that

Γ(Ũ , ~ΨΦH,δH(−n2
i0
`)|Ũ ) → ⊕

1≤j≤r

(
~ΨΦH,δH(−n2

i0
`)|Ũ ⊗

OŨ

(OŨ,xj/m
N
xj )
)

is surjective.

For each 1 ≤ j ≤ r, let gj be any element of Γ(Ũ , ~ΨΦH,δH(−n2
i0
`)|Ũ ) such that its

image in ~ΨΦH,δH(−n2
i0
`)|Ũ ⊗

OŨ

(OŨ,xj′/m
N
xj′

) is 1 (resp. 0) when j = j′ (resp. j 6= j′),

for all 1 ≤ j′ ≤ r. If g =
∑

1≤j≤r
cjgj for some cj ∈ R0, then fni0 g =

∑
1≤j≤r

cjfni0 gj

is a global section of ~ΨΦH,δH(n2
i0
`)|Ũ ⊗

OŨ

~ΨΦH,δH(−n2
i0
`)|Ũ ∼= OŨ whose image in

OŨ,xj/m
N
xj is cjfni0 , which is nonzero when cj ∈ R×0 , for each 1 ≤ j ≤ r. This

shows that lengthR0
(Γ(Ũ ,OŨ )) ≥ r, contradicting the choice of r, as desired. �
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Definition 8.5 (cf. [17, Cor. 5.8]). Let R be an OF0,(p)-algebra. We say that a

quasi-coherent sheaf E over ~Mtor
H,Σ is formally canonical (resp. formally sub-

canonical) (over R) if it satisfies the following condition: Suppose x̄ is a geometric

point over the [(ΦH, δH)]-stratum ~Z[(ΦH,δH)] of ~Mmin
H as in [18, Thm. 12.1], which

is canonically isomorphic to ~MZH
H by [18, Thm. 12.16]. Then there exists a quasi-

coherent sheaf E0,x̄ over (~CΦH,δH)∧x̄ satisfying the following properties:

(1) For each σ ∈ ΣΦH satisfying σ ⊂ P+
ΦH

, the pullback E ∧ of E to

the affine formal subscheme (~X◦ΦH,δH,σ)∧x̄ of (~XΦH,δH,ΣΦH
)∧x̄ (via the

canonical morphisms induced by (4.20); see Proposition 5.1) is of the

form ⊕̂
`∈?

((~ΨΦH,δH(`))∧x̄ ⊗
O(~CΦH,δH

)∧x̄

E0,x̄) (as an O(~CΦH,δH )∧x̄
-module), where

? = σ∨ (resp. ? = σ∨+), where σ∨+ is the intersection of τ∨0 (in SΦH) for τ
running through faces of σ in ΣΦH (including σ itself).

(2) There is a finite exhaustive filtration on E0,x̄ whose graded pieces are isomor-

phic to pullbacks of quasi-coherent sheaves over ~S0 = Spec(OF0,(p)) associ-

ated with finite R-modules, under the structural morphism (~CΦH,δH)∧x̄ → ~S0.

Theorem 8.6 (vanishing of higher direct images; cf. [17, Thm. 3.9]). Suppose R

is an OF0,(p)-algebra, and suppose that E is a quasi-coherent sheaf over ~Mtor
H,Σ that

is formally canonical (resp. formally subcanonical) over R, as in Definition 8.5.
Let D′ be as in Corollary 6.7, and let E (−nD′) := E ⊗

O~Mtor
H,Σ

O~Mtor
H,Σ

(−nD′), for each

integer n. Then Ri(~
∮
H,Σ)∗E (−nD′) = 0 for all i > 0 and n > 0 (resp. n ≥ 0).

Proof. Thanks to Theorem 6.1, which provides almost the same axiomatic setup

in [17, Sec. 4], except that ~CΦH,δH → ~MZH
H is in general not an abelian scheme

torsor over a finite cover of ~MZH
H ; and thanks to Proposition 8.3, which implies the

analogue of [17, Lem. 6.1] for the context here; the same argument as in the proof
of [17, Thm. 3.9] also works here (see Remark 8.9 below). �

Theorem 8.7 (Koecher’s principle; cf. [17, Thm. 2.3]). Suppose O⊗
Z
Q is a simple

algebra over Q. Suppose R is an OF0,(p)-algebra, and suppose that E is a quasi-

coherent sheaf over ~Mtor
H,Σ that is formally canonical over R, as in Definition 8.5.

For each open subset Umin of ~Mmin
H , consider its preimage U tor in ~Mtor

H,Σ under

the canonical morphisms ~∮
H,Σ, and its preimage U in ~MH under the canonical

morphism ~MH → ~Mmin
H . Then the canonical restriction map

(8.8) Γ(U tor,E |Utor)→ Γ(U,E |U )

is a bijection, except when both dim(MH) = 1 and Umin − U 6= ∅ hold.

Proof. As in the proof of Theorem 8.6, thanks to Theorem 6.1, and thanks to
Proposition 8.4, which implies the analogue of [17, Lem. 6.2] for the context here
(under the assumption that O⊗

Z
Q is a simple algebra over Q), the same argument

as in the proof of [17, Thm. 2.3] also works here (see Remark 8.9 below). �

Remark 8.9. While we assumed in [17] that Σ is not only projective but also smooth,
the arguments there were carried out up to replacing Σ with its smooth refinements
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(see [17, Rem. 4.17]). Hence they also work for possibly nonsmooth Σ’s in the
contexts of Theorems 8.6 and 8.7. Note that [17] was written for the smooth
integral models in [5] and [15], where Σ was always assumed to be smooth.

Remark 8.10. However, since the proof of [17, Thm. 2.5] made use of Serre duality,
we cannot easily generalize the higher Koecher’s principle to the context here. In
general, we do not yet know whether it is still true in ramified characteristics.
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