COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES

IN RAMIFIED CHARACTERISTICS

KAI-WEN LAN

ABSTRACT. We show that, by taking normalizations over certain auxiliary
good reduction integral models, one obtains integral models of toroidal and
minimal compactifications of PEL-type Shimura varieties which enjoy many
features of the good reduction theory studied as in the earlier works of Faltings
and Chai’s and the author’s. We treat all PEL-type cases uniformly, with no
assumption on the level, ramifications, and residue characteristics involved.
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1. INTRODUCTION

In recent years, we have witnessed a rapid development in the arithmetic applica-
tions of noncompact Shimura varieties, in which the integral models of toroidal and
minimal compactifications have played important roles. So far such applications
have almost always assumed that there are some bottom levels at which the integral
models have good reductions, which is the case when the residue characteristics are
unramified in all linear algebraic data involved, so that the Shimura varieties in
question have smooth integral models which can be constructed and compactified
using the theories of deformation and degeneration as in [10] and [30].

Nevertheless, as remarked in the introduction of [31], since the theory of degen-
eration developed in [42], [10], and [30] works as long as the generic characteristic
is good (and as long as the base of degenerations are noetherian normal), there
is, a priori, no reason that we cannot consider integral models of Shimura vari-
eties and their compactifications with bad reductions. Also, recent breakthroughs
in the theory of local models have shown that, even when allowing rather deep
ramifications, it is not so unreasonable to consider integral models of Shimura va-
rieties defined by taking normalizations of the (schematic) closures of the images
of characteristic zero Shimura varieties in certain auxiliary good reduction integral
models. (For simplicity, we shall just say that such integral models are constructed
“by taking normalizations of certain auxiliary good reduction integral models”, or
just “by normalization”.) This is because a large class of useful models defined
by representing moduli problems can be shown to be normal, or close to being so,
in the sense that the closures of their characteristic zero fibers are normal. Since
the theory of degeneration works well over noetherian normal base schemes, the
time seems ripe for systematically studying the construction of integral models of
compactifications by normalization.

Let us be more precise about the integral models we will consider (without ex-
plicit definitions, to be given later in the main text). Consider any PEL moduli
problem My, over Fy (the reflex field of the PEL datum defining My ), as in [30, Sec.
1.4.1] (with O = @ there), parameterizing tuples (4, \, 4, a3 ), where A is an abelian
scheme over some base scheme, A : A — AV is a polarization, ¢ is an endomorphism
structure, and ay is a level-H structure. Here H is an open compact subgroup of
G(Z), where the group functor G over Spec(Z) is defined as in [30, Def. 1.2.1.6].
Let p > 0 be any rational prime number. For technical simplicity, let us assume
that the image H? of H under the canonical homomorphism G(Z) — G(ZP) is
neat. Consider a collection of auxiliary moduli problems {My,; ... }jes, where each
M3, s 18 @ good reduction moduli problem over Op, ;. () (the ring of p-integers in
the reflex field Fp jaux of the PEL datum defining My, , . ), defined as in [30} Sec.
1.4.1] (with O = {p} there), parameterizing tuples (A; aux, Ajaux; 1j,aux> OH; aux )
with morphisms My — My %) Q between moduli problems defined by assigning

j,aux
(A auwe Ajauxs 4,auxs O anx) 10 (A, A4, a9¢) (in a way that will be made explicit),
where (Ajaux, Ajaux) is a prime-to-p polarized abelian scheme defined by (A, \),
using Zarhin’s trick when A is not prime to p, where i,,x is the restriction of i to a
subalgebra unramified at p, and where as; .. is a (possibly lower) level structure
away from p induced by ay; (up to Hecke twist). Then we construct a p-integral

model |\7IH, 3 of My, as the normalization of [] My, . under the canonical morphism
jed
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M3 — [] M#; .- (The use of a collection {My; . }ies takes care of the consider-
jed

ation of multichains of isogenies as in [51, Ch. 3], or of more general collections of
quasi-isogenous polarized abelian schemes.) We similarly define p-integral models
of toroidal and minimal compactifications of My using the toroidal and minimal
compactifications of the auxiliary moduli problems constructed as in [30, Ch. 6 and
7]. For simplicity, we shall call these integral models rather than p-integral models.
(We obtain models over the whole integer ring, or any localizations of it, by similar
considerations.)

For example, if My, is the modular curve (over Q) of principal level n, where
n = ngp" for some integer ny > 3 prime to p and for some integer » > 0, then
we can take Mj; aux (where J is a singleton {jo}) to be the modular curve (over
Zypy) of principal level m for any integer m > 3 dividing ng. (This is essentially
the same approach taken in [9, III, Def. 3.3].) For another example, if My is the
Siegel moduli (over Q) of genus g, degree de (possibly divisible by p), and principal
level n for some integer n = nop” as above, then we can take Mj; aux (where J is a
singleton {jo}) to be the principally polarized Siegel moduli (over Z,)) of genus 8¢
and principal level m, for any integer m > 3 dividing ng. For yet another example,
if My is a unitary Shimura variety with endomorphisms by a maximal order of a
CM field totally ramified at p, and with Iwahori level structures (at p) realized by
chains of (p-power-degree) isogenies A = Ag — A; — -+ — A,,, = A of abelian
schemes with compatible additional structures, then we can take J to be any subset
of {0,1,...,m}, and {M; aux}jes to be a collection of principally polarized Siegel
moduli, with the morphism My — Mj aux given by applying Zarhin’s trick to A;
(and its polarization), by forgetting the endomorphism structure, and by retaining
only the level structure away from p, for each j € J. Different choices of the subset
J generally define different MH) 1’s by normalization. (It might be helpful to take a
quick look at Examples[2.3] and [13.12] without studying them in detail.)

This article aims at showing that many features of the good reduction theory
as in [30] extend to the integral models of toroidal and minimal compactifications
constructed by normalization, despite that fact that the constructions (as explained
above) are rather crude. We will justify the folklore belief that “the toroidal bound-
ary should be no more singular than the interior”, without studying the interior.

We will show that, by taking normalizations over certain auxiliary good reduction
integral models of toroidal compactifications (as above), we obtain integral mod-
els of toroidal compactifications associated with certain compatible collections of
(possibly nonsmooth) induced cone decompositions, whose local properties in terms
of geometric normality of fibers and Cohen—Macaulayness are nevertheless as nice
as the integral models of Shimura varieties defined by normalization. Moreover,
these integral models of toroidal and minimal compactifications admit boundary
stratifications analogous to the ones in good characteristics (including zero), and
the completions of the integral models of toroidal compactifications along their
strata can be explicitly compared with the completions of certain putative bound-
ary charts parameterizing degeneration data of PEL structures. These assertions
will be proved with essentially no assumption on the integral PEL data defining
the moduli problems. (We will only need [30, Cond. 1.4.3.10] to hold, which can
always be achieved by slightly modifying the choices of integral PEL data.)

As examples of applications of our results, we will combine our results with
related results in the theory of local models in the ramified case, and show that
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certain integral models of toroidal and minimal compactifications have the same
number of geometric irreducible components in their generic and special fibers. We
also show the density of ordinary loci in certain deeply ramified cases, by combining
the above with the technique for showing nonemptiness as in [31, Sec. 6.3.3].

Here is an outline of the article.

In Section[2] we review the basic setting for the definition of our PEL-type moduli
problems in characteristic zero, which will be called PEL-type Shimura varieties for
the sake of simplicity, despite the well-known issue of the failure of Hasse’s principle.
(This is harmless because the canonical models as in [I8] and [49], which are based
on the construction in [2], are open and closed in the complex fibers of our models;
see [28].) For the sake of completeness, we also consider collections of lattices
twisted by group actions, which define moduli problems for collections of abelian
schemes with PEL structures related to each other by Q*-isogenies (i.e., quasi-
isogenies; see [30, Def. 1.3.1.16 and 1.3.1.17]). (Our theory applies, in particular,
to the parahoric setting in [51] and in later works built on it.)

In Section 3] we explain how the association of degeneration data behaves under
Q*-isogenies defined by the collections of lattices introduced in Section The
assertions in this section are perhaps unsurprising, but the explanations for them
are quite elaborate. Since the technical difficulties in this section are rather different
from those in later sections, we suggest that first-time readers skip this section.

In Sections [4] and [f] we introduce certain auxiliary choices of good reduction
integral models of PEL-type Shimura varieties, together with their toroidal and
minimal compactifications. In Section [6] we define integral models of the Shimura
varieties in question, together with their minimal compactifications, by taking nor-
malizations of (products of) such auxiliary good reduction integral models. (See
Propositions and ) For the integral models of Shimura varieties thus defined,
we can easily show that they are independent of the auxiliary choices in Sections
[ and ] However, for the integral models of the minimal compactifications, our
argument is rather indirect, and we will have to wait until many other results are
proved; see Section below. The materials in these three sections follow closely
those in [31] Sec. 2.1.1, 2.1.2, and 2.2.1], except that we have to consider auxiliary
choices compatibly associated with the collections of lattices.

In Section [7} we define certain toroidal compactifications of the integral models
of Shimura varieties, with compatible collections of cone decompositions induced by
those of the auxiliary toroidal compactifications, and show that they satisfy certain
universal property generalizing the one in [30, Thm. 6.4.1.1(6)]. (See Theorem
) Such a universal property is the foundation for all our later arguments.

In Section [§] we construct putative boundary charts, and show that certain
formal schemes defined by them admit canonical morphisms to the toroidal com-
pactifications defined by normalization. In Section [9] we show that the images of
the underlying topological maps of such morphisms are locally closed and define
stratifications of the toroidal compactifications defined by normalization, with prop-
erties as in characteristic zero as in [30, Thm. 6.4.1.1(2)]. (See Theorem [9.13]) In
Section [T0} we show that the canonical morphisms from the formal schemes defined
by putative boundary charts to the toroidal compactifications defined by normal-
ization induce isomorphisms from the former to the formal completions of the latter
along the (locally closed) image strata. (See Theorem ) Such isomorphisms
will play important roles in subsequent sections. It follows that the special fibers
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of integral models defined by normalization are dense in the corresponding special
fibers of toroidal compactifications defined by normalization. (See Corollary )

In Section we show that the tautological objects over our moduli problems
in characteristic zero, which are collections of abelian schemes with PEL structures
related to each other by Q*-isogenies, uniquely extends to collections of semi-
abelian schemes equipped with similar structures over the toroidal compactifica-
tions in mixed characteristics defined by normalization. (See Theorem [I1.2}) We
also improve the universal property in Theorem and show that the toroidal
compactifications defined by normalization are independent of the auxiliary choices
in Sections |4 and [5| (See Theorem and Corollary [T1.7})

In Section [I2] we show that the minimal compactifications defined by normaliza-
tion admit stratifications with properties as in characteristic zero as in [30, Thm.
7.2.4.1 (4) and (5)]. (See Theorems and [12.16]) It follows that the special
fibers of integral models defined by normalization are dense in the corresponding
special fibers of minimal compactifications defined by normalization. (See Corollary
and Remark ) Consequently, we can finally show that the integral models
of minimal compactifications defined by normalization are also independent of the
auxiliary choices in Sections[4] and 5] (See Corollary [12.7])

In Section [I3] we study the morphisms induced functorially by varying the levels,
collections of lattices, and cone decompositions, and work out some examples. In
particular, we obtain morphisms extending the ones in characteristic zero defining
Hecke correspondences among Shimura varieties. (See Proposition [13.15])

In Section [T4] we show that the local properties of the toroidal compactifica-
tions defined by normalization are as nice as the integral models of Shimura vari-
eties themselves, when it comes to the geometric normality of fibers and Cohen—
Macaulayness (and also the regularity and geometric regularity of fibers when the
cone decompositions are smooth). (See Propositions and See also Corol-
lary for some well-known application.) We also work out some examples,
based on the theory of local models, where such results apply. (See Lemmas
and ) In Section we show the density of ordinary loci in some of such
examples. (See Proposition and Corollary )

In Section we conclude the article with some remarks comparing the results
in this article with other known results, including our own earlier ones.

The arguments in this article will be built on the theory developed in [30],
and some familiarity with the theory there will be necessary. The readers may
find the summaries, explanations, and reformulations in [29] Sec. 1] and [31], Sec.
1.1, 1.2, 1.3.1, and 1.3.2] helpful. The notation system in this article is probably
more complicated than it absolutely has to be, but we have chosen to make it
consistent with most of those in [30] and [3I] (and other works dependent on them),
so that readers already familiar with them will not have to learn a completely new
notation system. We will make it clear when we occasionally do introduce some
simplifications.

We shall follow [30, Notation and Conventions] unless otherwise specified. While
for practical reasons we are unable to review all notions we have inherited from [30]
and [31], we recommend that the readers make use of the reasonably detailed indices
and tables of contents of these works when looking for the numerous definitions.
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2. BASIC SETTING

Suppose we have an integral PEL datum (O,*,L,(-, ), ho), where O is an
order in a semisimple algebra finite-dimensional over Q, together with a positive
involution *, and where (L, (-, - ), ho) is a PEL-type O-lattice as in [30, Def. 1.2.1.3],
where (-, ) : L x L — Z(1) is an alternating pairing satisfying (bz,y) = (z, b*y)
for any x,y € L and b € O, together with an R-algebra homomorphism hgy : C —
End@@,R(L%R) satisfying (ho(z)z,y) = (x, ho(2°)y) for any x,y € L and z € C,

Z

and satisfying (2mv/—1) "z, ho(v/=1)x) > 0 for any nonzero z € L. (In [30, Def.
1.2.1.3] ho was denoted by h.) Such a tuple (O, %, L, (-, -), hg) is an integral version
of the PEL datum (B, *,V, (-, -), hg) in [26] and related works.

The datum of (O, *, L, (-, -), ho) defines a group functor G over Spec(Z) (as in
[30, Def. 1.2.1.6]), and defines the reflex field Fy (as in [30, Def. 1.2.5.4]). In what
follows, we will allow Fj to be any finite extension field of the reflex field. (The
theory works for any such extension field.)

Let H be an open compact subgroup of G(Z). By [30, Def. 1.4.1.4] (with O = (
there), the data of (L, (-, -),hg) and H define a moduli problem My over Sy =
Spec(Fp), parameterizing tuples (A, \, 4, ay ) over schemes S over Sy, where:

1
(2) A: A — AV is a polarization.

(3) i: O — Endg(A) is an O-endomorphism structure as in [30, Def. 1.3.3.1].
(4)

Lie 4 /8 with its O ® Q-module structure given by i satisfies the determi-
zZ

nantal condition in [30, Def. 1.3.4.1] given by (L®R, (-, -), hg).
Z
(5) arpy is an (integral) level-H structure of (A4, A, i) of type (L®Z, (-, -)) as in
zZ
[30, Def. 1.3.7.6].

By [30, Thm. 1.4.1.11 and Cor. 7.2.3.10], My is an algebraic stack separated,
smooth, and of finite type over Sy, which is representable by a scheme quasi-
projective (and smooth) over So when H is neat. (See [49, Sec. 0.6] or [30, Def.
1.4.1.8] for the definition of neatness.)

Given the above (O, , L, (-, -),hg) and H C G(Z), suppose moreover that we
have a nonempty collection {(gj, L, (-, - )j) }jes, where for each j € J the triple
(g5, Lj, (-, -);) consists of the following data:

(1) gj € G(A™).
(2) L; C L®Q is a O-lattice.
Z
(3) (-, ) LjxLj — Z(1) is an alternating pairing such that (-, -); %)Q is a
QZ-multiple of (-, -) ®Q (when both are viewed as Q(1)-valued pairings
Z
on L ®Q), which defines a group functor G; over Spec(Z) (as in [30, Def.
Z

1.2.1.6]), equipped with a canonical isomorphism
GJ’ RQ=GRQ.
Z z

(4) By also viewing ho as a polarization of (Lj, (-, -)j,Z(1)), as in [30, Def.
1.2.1.2], (Lj, (-, -);j, ho) is also a PEL-type O-lattice as in [30, Def. 1.2.1.3].
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(5) Let us denote by #; the preimage of gj_lﬂgj under the canonical isomor-
phism Gj(A™) 22 G(A™). Then we require that H; C Gj(Z), or equivalently
that the action of gj_l’ng stabilizes the submodule L; ®7Z of L®A>.

Z Z

Moreover, as in [30, Cond. 1.4.3.10], we shall assume that there exists some maximal
order 0" in O ®Q containing O such that, for every j € J, the action of O on L;
Z

extends to an action of O’.

For each j € J, we have a moduli problem My, defined by the integral PEL datum
(O,%,Lj, (-, -)j, ho) as in [30, Def. 1.4.1.4] (with O = () there), parameterizing
tuples (Aj, Aj,ij, az;;) over schemes S over Sg as above (but with (L%Z,(~, )

replaced with (L;j ® Z, (-, -);) in the definition of level-H; structures), and where
- .

(2.1) My 5 My,

is a canonical isomorphism given by [30, Prop. 1.4.3.4 and Cor. 1.4.3.8], realized
by sending objects parameterized by My to their isogeny twists. (A special case of
this will be spelled out in Section )

Remark 2.2. While My, and My, are canonically isomorphic to each other,
their tautological abelian schemes differ by a Q*-isogeny, which is generally not
a Z(Xp )—isogeny. We will see in the next few sections that different My, ’s are
associated with naturally different auxiliary integral models.

Ezample 2.3 (simplest case). Suppose J = {jo} is a singleton, with the simplest
choice (gjy, Liy, (5 - )jo) = (1, L, (-, -)). In this case, we will study (mixed charac-
teristics) degenerations of objects parameterized by M.

Ezample 2.4 (parahoric levels at p). Suppose that p > 0 is a rational prime number,
that O ® Q) is simple, and that O ® Z,, is a maximal order in O ®Q,. Suppose
z z z

J=1{jo,j1,---,jm} is a finite totally ordered set, with
jo <j1 < <jms
such that g; = 1 for all j € J, and such that
L=1Ly C Ly € CLj,

=

are proper sublattices of 1L which are representatives of some self-dual periodic
lattice chain considered in [5I, Ch. 3]. (We can allow general O ® Q, and consider
Z

multichains—we focus on the special case here only for the sake of simplicity of
exposition.) Suppose that H = HPH,, where H? is a neat open compact subgroup
of G(ZP), and where H, := NG;(Z,), with G;(Z,) abusively denoting the image
of Gj(Zp) in G(Qp) under the canonical isomorphism G;(Qp) = G(Qp). Then
My, with its additional structures given by the isomorphisms , for all j € J,
parameterizes chains of isogenies

A=A, = 4, — - =4, —A

Jm
(whose composition is the multiplication by p on A) satisfying certain additional
conditions, and extends to a moduli problem over So == Spec(Op,,(p)) given by the
moduli scheme of chains of isogenies between abelian schemes (with additional PEL
structures) as in [51] and later works built on it. In this case, we will study (mixed
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characteristics) degenerations of such chains of isogenies. While this enriched mod-
uli problem in characteristic zero is canonically isomorphic to My and is finite over
Mswa;(z,) for each j € J, the extended moduli problem in mixed characteristics
is in general not finite over any mixed characteristics moduli problem extending
MHPGJ’ (Zp)-

Ezample 2.5 (Hecke twists). Suppose J = {jo,j1} has two elements, and suppose
(gjovLjovA< T >j0) = (1, L,(-, ")) and (gjlejl’ () '>j1) = (9,L,(-, -)) for some
g € G(Z). In this case, we will study (mixed characteristics) degenerations of
Q*-isogenies
fo(A N g ay) — (AN a1y,
realizing the Hecke twists of (A, A, i, ay) by g (see [30, Sec. 6.4.3]). More generally,
given any collection {(gj, L;, (-, - )j) }jes, we can introduce a twice-larger collection
{(¢°g;, L;, (-, '>j)}(e,j)€{0a1}A>< 3/, provided that both gjlegj and gjflg_l’i-[ggj sta-
bilize the submodule L; ® Z of L ® A>, for each j € J'. In this case, we will study
z Z
(mixed characteristics) degenerations of Q*-isogenies
fj : (Aj, )\j, ij, Oéq.[j) — (A;, )\;, Z'J{, C%;ferjg)
realizing the Hecke twists of (A;, Ay, ij, a; ), for all j € J', which are related to each
other via Q*-isogenies.

In what follows, we shall fix the choice of a rational prime number p > 0, and we
shall assume that the image HP of # under the canonical homomorphism G(Z) —
G(ZP) is neat (which means, a fortiori, that # is also neat). Then #; and its image
H} under the canonical morphism G; (Z) — Gj(Zp) are also neat, for every j € J.

We suggest that first-time readers take, for simplicity, J = {jo} (a singleton) and
(Gios Ligs (-5 )30) = (L, L, (-, -)) (with no nontrivial Hecke twist) as in Example
and ignore all the indices j (and products indexed by them) in the exposition.
Furthermore, they might assume that the pairing (-, -) is self-dual at p, so that
Zarhin’s trick is not needed. The key points are already novel under these two
simplifying assumptions.

3. QUASI—ISOGENY TWISTS OF DEGENERATIONS

In this section, let us fix the choice of an index j € J.
Let V be a complete discrete valuation ring with fraction field K and alge-
braically closed residue field k. Suppose that there exists a morphism

71 := Spec(K) — My.

By abuse of notation, let us denote by (G, Ay, iy, a2 ) the pullback of the tauto-
logical object over My under this morphism. By the semistable reduction theorem
(see, for example, [30, Thm. 3.3.2.4]), up to replacing K with a finite extension
field and replacing V' accordingly, we may assume that G, extends to a semi-
abelian scheme G over Spec(V). By the theory of Néron models (see []; cf. [52]
IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5]), (G, Ay, in, p,y) extends to
a degenerating family (G, \, 4, ay) of type My over Spec(V'), where ayy is defined
only over n = Spec(K), which defines an object of DEGpgg, m,, (V') corresponding
to a tuple
(B Ap,in, X, Y, 6,¢,¢”,7,[0))
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in DDpgr,m,, (V) under [30, Thm. 5.3.1.19]. Since the base ring V is strict local,
the étale sheaves X and Y are necessarily constant, which we shall denote by X
and Y, respectively.

Let 7 — My be any geometric point above n — My;. Then a4, can be identified
with the 71 (n, 7)-invariant H-orbit of some symplectic isomorphism

G7: LOL S TGy,
z
(cf. [30, Lem. 1.3.6.5]), which induces the (5, 7)-invariant H-orbit of the induced
symplectic isomorphism

an @A LA™ 3 VG,
5 7

The image of L; ® Z under (d; @ A®) o gy : Lo A® 5 VG, is an open compact
Z 7 zZ

subgroup of V Gy, which is m(n, 77)-invariant because the preimage 7; of gj_lﬂgj

under the canonical isomorphism Gj(A*) 22 G(A™) is contained in G;(Z). Hence,
by [30, Lem. 1.3.5.2], we have a Q*-isogeny

fim 1 (Gs Ayyin) = (Gims Ay i)

over 7, together with the (7, 7j)-invariant H;-orbit of a symplectic isomorphism

OAzj,ﬁ : Lj ®Z = TGJ";]

Z
such that the induced symplectic isomorphism
OAéj’ﬁ Q@A™ : Lj RA® S VGJ";,

2, zZ

satisfies the characterizing property

OAljﬁ %AOO = V(fj) o (6(77 %}AOO) e} gj'

Up to replacing \j 5 with a QZ,-multiple, the m(n,7)-invariant H;-orbit of G; 5
induces a level-#H; structure asg,, for (Gj,,Ajy,,4,), which defines an object
(Gim> Ajins B,m, @345,) of Myy () parameterized by a morphism n — My,. By
the proofs of [30, Prop. 1.4.3.4 and Cor. 1.4.3.8], this is just the composition of
n — My, with .

By the theory of Néron models again, the above Q*-isogeny f;, extends to a
Q*-isogeny

fi (G A1) = (G, Ay, ).

Together with the level-H; structure oy , defined only over 7, which we abusively
denote by ay;, we obtain a degenerating family (Gj, Aj, 4j, az;;) of type My, over
Spec(V'), which defines an object of DEGPEL,MHJ_ (V) corresponding to a tuple

(ij)‘ijinXjanv¢jacjvcjv77—jv [QE{JD

in DDpEL’MHj (V) under [30, Thm. 5.3.1.19]. Again, the étale sheaves X, and Y,
are necessarily constant, which we shall denote by X; and Y], respectively.

Using the canonical isomorphism , and using the equivalences of
categories given by [30, Thm. 5.3.1.19] as above, we know that the object
(B, A\g,ip, X,Y,¢,c,cV, T, [ag_t]) in DDpgr,m,, (V) determines and is determined
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by the object (Bj, )\Bj s iBj s Xj, }/j, d)j, Cj, ij, Tjy [ag_LJ]) in DDPEL,MHj (V) For our
purpose, we will need a more explicit relation between these objects. Let

 _ - N Y
a’H - (Z'H7@72,7-[’9071,7{7900,7{’67{707'[707-[77—7{)

be any representative of [agi].
By construction, Zy is the H-orbit of the pullback Z of the geometric filtration
0C TT; C TGL C TGy under d; : LOZ 5 TGy Since a5, @A™ = V(fj;) 0
Z Z

(Gg ® A™) o g5, the pullback Z;j of the geometric filtration 0 C TT; C T G% Cc TGy
Z

under G, : L@Z =5 T Gy is related to Z by
Z
Zj,—i = (97" (2 gAC"’)) N(L; %Z)

for all ¢, whose H;j-orbit is independent of the choices, which we abusively denote
by Zz;,. (This notation is abusive because Zy; is the H;-orbit of Z;, not Z.) Thus
we have a well-defined assignment
(31) Zy — Zij,
which is bijective because Z3; is also determined by Z4;. By construction, we have
isomorphisms

g2 RA>® 5 Zj,—; Q@A™

y/ 2

for all 4, which induce isomorphisms

Gr_i(g;) : Gr*, QA® 5 Gr?
7

J—1

® A,
Z

By construction, X and Y are the character groups of the torus parts T and TV
of G* and G*f, respectively. Consider the submodule (v(g;)~" Gr_a(g;))(Gr®,) of
Gr?,®A>. By [30, Lem. 5.4.3.6 and 5.4.3.7], there exists a unique O-lattice X;

2

in X (EZQ Q, together with the canonical isomorphism fj x : Xj % Q5 X %)Q and a
canonically induced isomorphism ¢ _s : Grﬁ2 5 Hom; (X; %)Z, 7(1)) such that
Pj,—2 %’Am =("fix ©AT) 0 (P2 %Am) o (v(g) ™" Gra(gy))-
Similarly, there exists a unique O-lattice Y in Y’ %}Q, together with the canonical
isomorphism fijy : Y %@ 5Y; %Q and a canonically induced isomorphism ;g :
Gro 3Y; ® 7 such that
©i.0 %Am = (fiy @A%) o (v %AC’O) o (Gro(gy))-

Then X; and Yj are canonically isomorphic to the character groups of the torus parts
T; and ij of G? and G’jv’h7 respectively, such that the morphisms f; x and fjy are
induced by the Q*-isogenies fj v : T — Tj and fjrv : T} — T" induced by fj : G —
Gj and f : G — GV, respectively. By abuse of notation, let (¢_2 2;,¢0%;) be
induced by the H;-orbit of (¢; _2,%j0), and let (¢22,Hj,¢_17ﬂj,cpaﬂj) be induced
by the H;-orbit of (¢j,—2,¥j.—1,¥j.0)-
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Consider the unique r; € Q% such that v(g)({-, -><§A°°) = rju((-, ) %AOO)

for some u € Z*. Then there is a unique homomorphism ¢; : Y; < Xj such that
b %@ = ij1 J}% o ((;5% Q)o fj’}}, which is induced by the pairing Gl@2 X Gr(z)j —
Z(1) induced by (-, -)j : Lj x Ly — Z(1).

Thus we have obtained well-defined assignments of torus arguments

(3.3) Py = (XY, 0,0 0n,00n) = Pu; = (X5, Y5, 05, 02,9, Po,x;)

and of the orbits above the abelian parts

(34) (b’;: = (Xa Ya d)? 9022,Ha (pa:H) = (b’;"\-zJ = (XJ7 }/jv ¢j7 @zQ,HJ- ’ 908:’,'-[j )a

where the latter induces the former. By the above construction and by the definition
of I'g,, and dej as the respective automorphism groups of ®3;, and ®4,, (see [30,
Def. 6.2.4.1 and 5.4.1.6]), we also obtain a canonical isomorphism

(35) Fq)H :> F‘I)'HJ. .

Accordingly, we have a canonical isomorphism
~ @

(3.6) M3 5 M,/

covering a canonical isomorphism

~ Zy.

3.2 MZr 5 M,
H H;

(over Sy = Spec(Fp)) and equivariant with , which matches the object
(¢™2.945 P03¢) Parameterized by M;E” — M7 with the object (‘sz,HjMPoN,Hj)
parameterized by I\/I:f:j — sz_j. The tautological object (B,Ap,ip,p—1,2)
over I\/IZH and the pullback of the tautological object (Bj,Ap;,ip;,¥»—1;)
over M are related via a Q*-isogeny fjp : (B,Ap,ig) — (Bj,Ap;,iB;)
(canonlcally induced by the above Q*-isogeny fi : (G,\,i) — (GJ,)\j,ij), or
rather by the corresponding Q*-isogeny fju : (G N0 — (Gh,)\?, J) induced
by taking Raynaud extensions), where p_13; (resp. ¢_1 ;) is induced by the
m1(n, 7)-invariant H-orbit of v_; := Gr_ 1(64”) Gr*, 5 TB; = (T Gq)/( T5)
(resp. Hj-orbit of ¢; 1 := Gr_i(d;5) : G, 3 TB 7= (T Gh )/ (TTj 7)) (cf. the
proofs of [30, Prop. 1.4.3.4 and Cor. 1.4.3.8]).

If we take any splitting d; of Z;, and abusively denote its H;-orbit by d4;, then
we obtain a cusp label [(Z4;, @3, 63;;)]. Thus we have a well-defined assignment

(3.7) [(Z31, 3, 030)] = [(Zag;5 Py, Og;)]-

Let us fix once and for all the choices of ¢; for all pairs (Z;, ®; ), Wthh determine
the choices of 03, for all pairs (Z3;, ®3;,). Then the assignment (3.7) is induced by
an assignment of representatives of cusp labels

(3.8) (Za, P, 030) = (Zagy, Py, Onay)-

By the definition of the group Sg,, (see [30, (6.2.3.5), Conv. 6.2.3.20, Lem.
6.2.4.4]) and by [28] Cor. 3.6.10], we can identify elements of Hom(Ss,,,Z(1)) with
maps in Y ®Z — Homj (X ®Z,7(1)) (satisfying certain additional conditions),

Z Z
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and we can identify elements H € Hom(Sq,,,Z(1)) with elements h € H which
induce maps

) 5t
Gr*,oGr* e Cri=Gr* S LeZ Mol 3 Gt = Gr*, ® Gr%, @ Gr}
Z Z

1 h
given by ( 1 jo) in block-matrix form (acting on column vectors from the left)

with hog : Grg — Gr?, induced by

%o h®Z Y_2

Gt 3 Y®Z 5 Homy(X®7Z,2(1) 5 Grt,.
Z Z

This identification depends not on the choice of §, but on the choices of Z and
(¢p—2,%0), which is canonical (only) up to the action of I'g,,. Similarly, we have
an identification between elements H; € Hom(Sq>Hj,Z(1)) and elements h; € Hj;,
depending not on the choice of d;, but on the choices of Z; and (pj,—2, ¢j,0), which
is canonical (only) up to the action of I'g,, . Nevertheless, if Z; and (gj,-2,¢j0)
are determined by Z and (p_s,p0) as above, then the above identifications are
compatible with the isomorphisms H — gj_l?—lgj = H; (by definition of H;), and
we have a canonical isomorphism Hom(Se,,,Z(1)) = Hom(Sqmj,Z(l)) of abelian
groups equivariant with , which induces canonical isomorphisms

(3.9) Sq),{j = S,

(3.10) (S¢Hj)@ = Say, %Q = (Sa, )0 = Say, %Qv
(3'11) (Sfbﬂ)f\é = (S‘I’Hj )67

(3.12) (Sen)¥ 7 (Sa Y-

and

(3.13) Eg,, = Hom(Se,,, Gm) = Eg,, = Hom(S@Hj ,Gm),

which are compatible with each other and compatibly equivariant with (3.5)). If

we identify elements of (Sa,, )¢ (resp. (Sa,, )g) with Hermitian pairings on ¥ @ Q
; zZ

(resp. Y; %Q) as in [30, Sec. 6.2.5], then (3.11) is defined by pullback under the

inverse of fjy : Y @Q = Y; ®Q. Hence (3.12)) preserves the positive definiteness
Z Z

and semi-definiteness of pairings, and maps Pg,, (resp. Pgﬂ) to Pg,, (resp. P};H_ )
J

By [30, Lem. 5.4.2.11], the representative (Zz;,®#;,d%;) of the cusp label

[(Z34;, P2, 03, )] uniquely determines a representative

ag{j = (ZHJ ’ <P22,’Hj ’ (10—1,’Hj ’ ()00N77-LJ ’ 57‘[j ) CHJ* ’ C?\{Lj ’ THJ‘)

of [O‘g-tj]a where Zy;,, O350 P—1Hy PO and d3;; are as above. It remains to

relate (c;{j,c;/{j,ﬁ.tj) to (cp, ¢y, ™). For this purpose, let us also fix some repre-

sentatives Z, ® = (X,Y, ¢, ¢0_2,90), and ¢_; in their H-orbits, which induce Z;,

®; = (X, Y], ¢, 05,—2,¥i0), and ¢; _1 by the procedures explained above.
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By comparing the universal properties (as in [31, Lem. 1.3.2.11 and Prop.

Dy,
1.3.2.12]) of Ce,5, — M3 and Cor 50, — MH?J, there is a canonical
isomorphism

(3.14) Car6n = Oy o

(over Sg = Spec(Fp)) compatible with (3.6) and equivariant with (3.5), which
matches the object (cy,cy) parameterized by Ca,.6,, — M3 with the object
(C'H],CH) parameterized by C‘Im b, M i Concretely, by [31, Lem. 1.3.2.11
and Prop. 1.3.2.12], the pair (cH7 cH) is equwalent to a tuple

(GA, M- GE — GYRi n,ﬁw)

over 1, where the subtuple (GE7, )\57 : GE? — GTVI’h, ZE]) is determined by two homo-
morphisms ¢, : Y — B, and ¢, : X — B, compatible with each other under the
homomorphisms ¢ : Y < X and Ap, : B, — B%/ , and where 65—1,77 is equivalent to
the 1 (n, f])—invariant ‘H-orbit of a triple

Br= (B2 TG B0 2% S TG 0k 2(1) 3 T Gug),
where Z# is the filtration on the dual lattice L# ® Z defined by
Z

7% = (Z_; @ A®)N(L* QL)
7 Z

for each ¢, such that B%’O and Bg’#’o are compatible with each other under the

canonical morphisms induced by Z_; — VAl

7, and M, inducing the above-chosen

@_2, w_1, and @y on the graded pieces, and such that o h = v(p-1). Under

~

the homomorphism ( % ®A®) o g gi Yz, ®A®) — VG%, the image of
Z Z
Zj 1= (gj_l(Z_l ®A°°)) N(L; ®Z) is a m(n, 7)-invariant open compact subgroup
7 Z

of VG%, which induces a Q*-isogeny thn : GE7 — Gjh,n' Similarly, under the
homomorphism (35—7’#’0 @ A®) o (v(g;) " tg) : gjfl(Z,l QA®) 5 VG,\—;’U, the image
7 Z

of Zfil = (gj_l(Z_l%Aoo)) ﬂ(LJ#%)Z) is a my(n,7)-invariant open compact

subgroup of VGg’h, which induces a Q*-isogeny (fj\jf)_l : G',VI’h — Gj\f;]h. Here
Gh and Gv’h are determined by two homomorphisms ¢, : Y; — BV and
J7 X = B ;,n compatible with each other under the homomorphisms ¢; : Y <—> X;

and A, , : Bj, — BJ »» Which induce a homomorphism

XL G = G

im
Let
Bi’g (Zi1 > TGth7
and

B0z S TGy
denote the induced isomorphlsrns7 and let

’Djh,ﬁ 1= v(pj,-1)-
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Then the H;-orbit of

. (480, ~ b An#0 . SH# Vil sb L5 ~

B = Big 1 21 = TGy B 1 201 = TGR7, 05+ 2(1) = T Gy
is w1 (n, 7)-invariant and induces the ,BE_[J, , such that the tuple

b bl Vi g b
(Gjm’Ajm ’ Gjm - Gjm’zjm’ﬁﬂm)
over 7 corresponds to the pair (CHJ.,CXLJ_). (Note that the choices of ¢ and d; play
no role in the comparison between /3’% and thf].)
Similarly, by comparing the universal properties (as in [3I, Lem. 1.3.2.28 and

Prop. 1.3.2.31]) of Ea,,,5, = Cos.05 a0d By 5, = Cayy, 64, - there is a canonical
isomorphism

~

(315) E'<I>7.¢,57.¢ — E‘D;{j 75Hj )

(over So = Spec(Fp)) compatible with (3.14]) and equivariant with (3.5)) and (3.13)),
which matches the object 73, parameterized by Eg,, 5,, — Cao,, s, With the object
Ty, parameterized by E<1>Hj Sy = Cq,,{j,g%j. Concretely, by [31, Lem. 1.3.2.28 and
Prop. 1.3.2.31], the triple (cy, ¢, ) is equivalent to a tuple

(GA, M2 GE — G2l 7y, Bru)

over 7. Here the subtuple (GE],)\%J%) is as in the previous paragraph, and 7, :

~ 1) . . . . -
ly x xp — (c)]/ X cn)*Pg( ) is a trivialization of biextensions which induces two
n n

homomorphisms ¢, : ¥ — GE; and ¢, : X — G,v,’h compatible with each other under

the homomorphisms ¢ : ¥ — X and )\% : GE, — Gx % which allow us to recover

the modules T G5 and T G%/ as extensions of Y ® Z and X ® Z by T G% and T G%/’h,
Z zZ

respectively, together with the morphism T(\;) : TG — T G,YI inducing ¢ ® Z and
Z

T()\%) on the graded pieces, without having to recover Gy, G, and \y : Gy — Gy
themselves. Based on these, 8y, is equivalent to the 7y (7, 7)-invariant H-orbit of
a triple

such that /3% and B# 0 are compatible with each other under the canonical mor-
phisms induced by L — L# and T(A5), which induce the above-chosen ¢_s, ¢_1,
and g on the graded pieces, and such that 05 = v(p_1). Such a triple Bﬁ induces
a triple B,% as above; in particular, it induces the Q*-isogenies fjhn : GE, — G?,n
and ( fj\%h)_1 : G,\;’“ — ij;]h in the previous paragraph. Together with the iso-
morphisms fj x : Xy%@ = X%Q and fjy : Y%Q = Yj%(@, they induce a

c e . . ~ Vv A\« p®(—1)
trivialization 75, @ 1y, x x;,n = (¢f, >; Cin) 7DBM

] of biextensions which induces

two homomorphisms ¢;,, : ¥ — GE7 and L;{n X = Gx % compatible with each other

under the homomorphisms ¢; : ¥j — Xj and )\jhm : Gi77 — ij,;,h, which allows us to

recover the modules T Gj ; and T Gy, as extensions of ¥; @ Zand X;@Z by T Gjh 7
; 2 5 ,
and TGJ-\f#, respectively, together with the morphism T(); ;) : TGj; — TG/,
inducing ¢; ® Z and T()\EJ 77) on the graded pieces, without having to recover Gj g,
7 :
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GY5, and Aj 5 : Gj 5 — Gy, themselves; and to recover the canonical isomorphisms
V(fin): VGy = VGjqand V(f5)"": VG — V Gy, without having to recover

the Q*-isogenies f;; : Gy — Gj 5 and (f)7)7" : GY — Gy, themselves. Let

0 .

o Lj Q;Z — TGj,;]
denote the restriction of

V(fin) o (B®A®)ogi: LOA® 3 VG],
7 7
to Li ® Z, and let
7

A#H0 L TH#H o5 ™ Vv
ﬁj,ﬁ : Lj %Z — TG77
denote the restriction of

VU)o (B @A) 0 (vlg) L) L¥ A 3V G,
Z

37

to Lj# ®7Z. (The images of these restrictions are T Gj 5 and T GY
z

{7+ Tespectively, by

checking the images on the graded pieces.) Let
U5 = v(pj_1).
Then the H;-orbit of
By = (B L <§>Z S TG 870 LY ® 75 TGY, 050 2(1) 5 T Guyy)
is 1 (n, n)-invariant and induces the (4, , such that the tuple

v,h o
(G?m’ )‘J?m : Gin - Gj,nh’lin’Tia"’ﬁHjm)

over 7 corresponds to the triple (cy;, c}/{j S TH;)-

Lemma 3.16. If v : Inv(V) — Z is the homomorphism induced by the discrete val-
uation of V, where Inv(V') denotes the group of invertible V -submodules of K, and
if we denote by B : S¢,, — Inv(V) (resp. B : Say, — Inv(V)) the homomorphism
defined by Ty (resp. 7j), or rather T, (resp. Tj,), as in [30, Constr. 6.3.1.1], then
@' maps the element vo B : Sg,, — Z of SEI/)H to a QZq-multiple of the element
vo Bj: S@Hj —7Z Ofsgﬂj .

Proof. This follows from the above argument. Alternatively, it suffices to note
that the collection of all multiples of ¢, : ¥;, — GE; determines the collection of all

multiples of ¢j , : Yj, — Gjhn7 via the isomorphism fjy : Y ®Q 5 Y; ® Q and the
’ Z Z
Q*-isogeny fjhm : GE7 — Gj-hm. O

The Eg,, -torsor structure of Z¢,, 5,, = Ca,, .5, allows us to identify the push-
forward of 0=, , ~(under the structural morphism Zg,, 5, — Ca,,sy,) With an

Oc,,, 5, -algebra given by the direct sum &  Wq,, 5, (£), and allows us to define,
’ t€Sa,,

for each nondegenerate rational polyhedral cone o C (Sg,, )%, an affine toroidal
embedding

® ‘II(I)H:(SH (f)

(3.17) Edg,.80 Sy 00 (0) = Specﬁ%%éH (ZEJV ),




16 KAI-WEN LAN

where

oV :={l €8S, : (l,y) >0y o}
as usual (see [30, Def. 6.1.1.8]). Similarly, for each nondegenerate rational polyhe-
dral cone 0j C (Sa,, )i, we have an affine toroidal embedding

3.18 Edy. 0. Sd4. .64 (05) == Spec

( ) HjOH; H; HJ( .]) 760(1,%{57_% ZJEUJ-V j

Since (3.15)) is equivariant with (3.13]), it induces a canonical isomorphism from

the pushforward of & ¥g,, 5,0 to & Vs, s, (¢;), which maps the push-
£€Sq,, li€Say,, S

forward of W, 5, (¢) to W, s, (¢;) when {; is mapped to £ under (3.9). Con-

sequently, if oy is the image of o under (3.12), in which case ¢V is the image of
515 (

ajv under (3.9), then the isomorphism ( necessarily uniquely) extends to an

isomorphism
(3.19) Edy,00(0) = E‘?Hj 0w (o3)
compatible with (3.14)), (3.15)), (3.17), and (3.18).

Let

ot :={le8Ss, : (,y) =0Vy o}

as usual (see [30, Def. 6.1.2.5]) and let X4,, 5,0 denote the formal completion of
3, 6, (0) along the o-stratum

@ o, (z)).

Edyy 60,0 = OpeC (
ﬁc@q—péﬂ leot

Similarly, let .'£¢Hj75,{j,oj denote the formal completion of E¢Hj75Hj (0;) along the
oj-stratum

':‘q)’Hj ’S’Hj ,0j = Specﬁc ( ®J_ \Ijq)’HivJH]v (gj))'
P On @jEUJ. ’ ’

If o; is the image of ¢ under 1l then 1) maps Za,,,54,,0 1O E@Hj B340 and
induces an isomorphism

(320) x‘I’HﬁH,U = x‘b’Hj 109;,0j

compatible with and .

By the theory of two-step degenerations (see [I0, Ch. III, Sec. 10] and [30, Sec.
4.5.6]), the above argument also shows that the assignments and are
compatible with the formation of surjections as in [30, Def. 5.4.2.12 and 5.4.2.13].

Lemma 3.21. Suppose ¥ = {Xa, }(@,,6,) 15 a compatible choice of admis-
sible smooth rational polyhedral cone decomposition data for My as in [30)
Cond. 6.3.3.2 and Def. 6.3.3.4]. Then there exists a unique compatible choice
Xy = {2¢Hj }[(@Hj 52)] of admissible smooth rational polyhedral cone decomposition
data for My, such that, for each representative (Z3y, ®3,,03,) of cusp label for My,
which induces a representative (Zyy;, P, 0%;) of cusp label for My, via , the
cone decomposition Z@Hj of Sa,,. 15 the image of the cone decomposition s,
of Sa,, under any isomorphism (3.12)) as above. In this case, we say that ¥; is
induced by X. Consequently, we also have canonical isomorphisms

(3.22) M, 55 M
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and
(3.23) ut—= M%n

(over So = Spec(Fy)) between the toroidal and minimal compactifications for My
and My; (see [30, Thm. 6.4.1.1 and 7.2.4.1]), which are compatible with each other
under the canonical morphisms

. tor min
$y M5y — MY
and
. tor min
fﬂj tME s, — M,

and with the canonical isomorphism (2.1). When (Zy, @3, 0%) and (Zy,, Py, 024, )
are as above such that oj is the image of o under (3.12)), the morphism (3.22)
tor

maps the [(Zy, 0w, 0)]-stratum Z((z,, s,,.0)) of M’y to the [(Zy;, 6u;, 0y)]-stratum
Z((z4. 5. ,07)] Of MY o, and induces a canonical isomorphism
e ARE]

L((231.6.0)] = Li(224; 00;.09)]
Moreover, under the canonical isomorphisms

A
Mtor ~x
( ”’Z)Zuzn,s%oﬂ Pa,dr.e

and

(M2 5,);

o~ x
= ADy . 09,0
Z[(Zva‘;vaoj)l H; 10550

given by [30, Thm. 6.4.1.1(5)], the canonical isomorphism

A ~ A
(Mgg’rz)zuz,{,a%on - (Mg({?’zi)z[(

induced by (3.22)) can be identified with the canonical isomorphism (3.20)). Accord-
ingly, the morphism |D maps the [(Z3, 0n)]-stratum Zz,, s,y of M to the
[(Z3s;, 0w, )]-stratum Zz,, 5,y of M%j,“, and induces a canonical isomorphism

N b J J

Z”Hj ’E'H-j 03]

Zi(230,600) = Li(2o; 50,

Proof. The canonical isomorphism exists and satisfies the desired proper-
ties by comparing the universal properties of My and M%_‘Z;Zj as in [30, Thm.
6.4.1.1(6)], by comparing the induced degeneration data over complete discrete val-
uation rings, as explained in this section thus far, and by comparing the Mumford
families as in the proof of [30, Thm. 6.4.1.1(5)]. Consequently, the canonical iso-
morphism exists and satisfies the desired properties because the minimal
compactifications are isomorphic to the respective projective spectra of rings of
global sections of powers of Hodge invertible sheaves, as in [30, Thm. 7.2.4.1(3)],
and because the stratifications of the minimal compactifications are compatible
with those of the toroidal compactifications as in [30, Thm. 7.2.4.1(5)]. O

4. AUXILIARY CHOICES OF SMOOTH MODULI PROBLEMS
For each j € J, let Lj# denote the dual lattice of L; in Ly ® Q = L®Q with
zZ z
respect to the pairing (-, - ); valued in Z(1) (as in [30] Def. 1.1.4.11]).
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Lemma 4.1. Suppose j € J. For each integer d; > 1, there exist integers aj; > 0
and a;2 > 0, and a positive definite symmetric bilinear pairing
(4.2) (-, )¢ 78(aj1+a52) o 7O(aj1+a52) _y 7
satisfying the following properties:
(1) Suppose [LJ# : Lj] = d?. Under the canonical embedding

(43) B L 1P (e
induced by Ly — LJ#, the alternating pairing (-, -); (-, -)j on

L@(aj,1+aj,2) ~ Lj ®Z€B(aj,1+aj,2)
J Z

extends to an alternating pairing (-, - )i aux 0N Lj aux valued in Z(1) that is
self-dual at p in the sense that p{ [Lfaux L aux)-

(2) Let W be a (relative) abelian scheme over an algebraic stack S, and let
Aw = W — WY be a polarization such that deg(A\w) = d7. Let

w2 .= Wwx(aata2)

aux °
and
wY

aux

= W>< aj 1 X(W\/)X aj_yz’
S

which are fiber products over S; and let

Fr=1dg ™t XA 2 WAL — WL
s
Then Aw : W — WV and the morphism
(4.4) (-, )J* . 70(a514a5,2) X 7®(aj1+aj,2)
canonical induced by (-, -); induce a polarization
)‘Y%V,aux : WaAux — WaAu,)\c/

(¢f. 29, Lem. 2.5, 2.6, and 2.9, and their proofs]), and

)‘YYV,aux = (fv)_l o )‘I%V,aux © f : Wv — WV,\/

aux aux

is a polarization (not just a Q™ -polarization) of degree prime to p. More-
over, we can arrange that deg()\gv7aux) depends only on d; and the choices
of (aj1,a52) and (-, -);, but not on W and Ay .

If p 1 dj, then we take (ajq1,aj2) = (1,0) and take (-, -); : ZxZ — Z to be the
pairing sending (1,1) to 1. Otherwise, we take (a;1,aj2) = (4,4), and take (-, -);

to be defined by some 2 X 2 matriz ( tlx Uzz) over My(Z) such that *zx = di — 1.

Proof. The statement is obvious when p { d;. Otherwise, we can arrange that

(-, + )jaux is self-dual (at every prime) by the proof of Zarhin’s trick (as in [61} Sec.
X1 —X2 —I3 —T4

2] and [39, IX, 1.1]), by taking = = <§§ o _‘?2) for any integers x1, 22, T3, 24
T4 —XT3 T2 Ty

such that 27 + 23+ 23 + 23 = df — 1, which exist by the fact (due to Lagrange) that
every nonnegative integer can be written as the sum of four squares of integers. [
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Lemma 4.5. Let (Z,\z) be any polarized abelian scheme over a scheme S. Given
any integer d; > 1, let us fix the choices of (aj1,ai2) and (-, -)j as in Lemma
4.1l Then the functor that assigns to each scheme T over S the set of isomorphism
classes of polarized abelian schemes (W, A\w ) over T such that deg(Aw) = dj2 and
(Z,\z) >S<T = (Wotso My aux) over T, where (Wi, My auy) @8 defined by (W, Aw)

aux’

as in of Lemma H is representable by a scheme finite over S.
Proof. By [41], Sec. 16], deg(A\z) = d?,,, for some integer dj aux > 1. The assertion

aux
to prove is trivially true unless the Ccinstruction in of Lemma assigns to each
pair (W, Aw) of genus g and polarization degree d.2 a pair (W, A\ auy) Of genus
gj,aux = (@51 + a;,2)g and polarization degree dJ aux- Hence it suffices to treat the
universal case, which we explain as follows.

Consider the Siegel moduli Ay g, (resp. Ay, ,...d;..ux) Of genus g (resp. gj aux) and
polarization degree alJ2 (resp. dJ2 aux) which is an algebraic stack separated and of
finite type over Spec(Z) (see [39, VII, 4.3] or [0, Def. 1.1 and Rem. 1.2]). The
assignment of pairs (Wi, A\jyaux) to pairs (W, Ay) parameterized by A, 4, as in

of Lemma is functorial, and defines (by universal property) a morphism
(4.6) Ag.d; = Ag; e

In order to prove the lemma, it suffices to show that is finite.

Suppose V is the spectrum of a discrete valuation ring V with fraction field
K. Suppose (Wk, Aw,x) is an object of Ay 4, (Spec(K)), and suppose the corre-
sponding object (W, ks My aux.ic) OF Ag; suends aux (SPEC(K)) extends to an object
(Wi vs AW.auxv) Of .AgJ asd, aux(Spec( )). By the semistable reduction theorem
(see, for example, [30, Thm. 3.3.2.4]), up to replacing K with a finite extension field
and replacing V accordingly, we may assume that Wy extends to a semi-abelian
scheme Wy over Spec(V'). By the theory of Néron models (see []; cf. [52] IX, 1.4],
[10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5]), the isogeny

_ i x(ajitaj2) v
fK aux K — WK — aux, K

extends to an isogeny

W‘;<(aj,1+aj,2) N
and (since a; 1+ a;,2 > 0) this is possible only when Wy is an abelian scheme; also,
the polarization Aw, x extends to a polarization Aw,y of Wy . Consequently, we

have an object (Wy, Aw,v) of Ay 4, (SpeC(V)), which must correspond to the unique
extension (Wi v, Afy auxv) Of ( AMW.aux, ) (Up to unique isomorphism, by

aux,V»

a aux K>
the theory of Néron models again, or by the separateness of Ay, .. 4 ...). Hence

(4.6) is proper by the valuative criterion (and the fact that Ay g4 and A
are separated and of finite type over Spec(Z)).

In order to show that is finite, it suffices to show that the induced proper
morphism

(4.7 Ayg.d; QZ@ ZE - A

Jj,aux; J aux

SZ[;]

9j,aux, J aux

is finite for at least two integers n prime to each other. For each n > 3, the algebraic
stack A ® Z[ | admits a finite étale cover by the quasi-projective scheme

. P A deﬁned as in [43, Ch. 7], parameterizing isomorphisms Z® 29%.avx 5
Z|n] for each object (Z, Az) of A ® Z[L]. (In order to avoid confusion with

9j,aux,dj,aux

gj,au)u j,aux
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our later terminologies, we refrain from calling such isomorphisms level structures,
because they are not required to respect the pairings on both sides.) Similarly,
the algebraic stack Ay 4 % Z[%] admits a finite étale cover by the quasi-projective

~

scheme Ay g, n.n parameterizing two isomorphisms vy, : Z% 29 5 Win] and ,/ :
Z®29 = WV[n] for each object (W, Aw) of Agq. (This is even more naive—
the two isomorphisms 7, and +,’ are not required to be related to each other
under Ay.) By assigning to each object (W, Aw,vn,7y) of Ag d;nn the object
(Wi M Y 7% X () %2 of A

aux?’

(4'8) Ag,djﬂl,n — Agj,au:udj,aux;n

lifting . Then it suffices to show that is finite, or rather just quasi-affine,
by [14], 11I-1, 4.4.2].

Let wy and WAy, oy e
Agdynn and Ag | a. . n, Tespectively, defined by the top exterior powers of
the duals of the relative Lie algebras of the tautological abelian schemes, which
are ample by [39, IX, 3.1]. By [39, IX, 2.4] and by the construction of (4.g),
the pullback of a positive power of w Ag, ey aaern to Ag d;n,n is isomorphic to a
positive power of wy, ,. .- By [I4 II, 5.1.6], these show that is quasi-affine,
as desired. ]

we obtain a proper morphism

gj,auxydj,auxﬂ'L’

denote the Hodge invertible sheaves over

g,dj,n,n n

Any choices of (aj1,a;2) and (-, -); as in Lemma [4.1] for all j € J, allow us to
define the following auxiliary data:
(1) Oaux is any subring of O stabilized by *, with induced involution *»=x such
that Oaux ® Q is a semisimple algebra (finite dimensional) over Q.
Z

(2) For each j € J, we have Lj aux and (-, - )j aux as in Lemma which defines
a group functor Gj aux over Spec(Z). Moreover, we have the polarization
hoj,aux Of (Ljauxs (-5 - )j,auxs Z(1)) (as in [30, Def. 1.2.1.2]) canonically in-
duced by hg by the isomorphism

Li pux @R =2 [P@1F%52) g R o [@(ai1tai2) g R
jraux & i 2 =
induced by (4.3), which defines an integral PEL datum
(Oamm *aux, L_Lauxv < Tyt >j;aux, hO,j;dux)

as in the beginning of Section

Suppose moreover that, for every j € J, the prime p is good for the integral
PEL datum (Oaux, *aux; Ljauxs {5 - )j,auxs 0,j,aux) as in [30, Def. 1.4.1.1], which
is possible because we already know that p 1 [Lfaux ¢ Ljaux)- Moreover, sup-
pose that there exists a maximal order O/, in (’)auX%(@ containing O,,x such

that, for every j € J, the action of Ouux on Lj aux extends to an action of O,

(see [30, Cond. 1.4.3.10] and the definition of {(g;, L;, (-, - )j) }jes in Section .
These are possible, for example, by taking O,,x = Z with trivial involution *awx,
From now on, we shall fix the auxiliary choices of {(aj1,aj,2)}ies, {(-, - )j}jes, and
{(Oaux, Faux Lj,aux; < Tyt >j,auxv hO,j,aux)}je.]-

Lemma 4.9. With the assumptions as above, for each j € J, the assignment

(g,7) = (g™ @t x(rfg™h)*®2,r)
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defines an injective homomorphism
(4.10) Gj — Gj,aux

of algebraic group functors over Spec(Z), which is compatible with the similitude
characters and induces an injective homomorphism G;(Z) — Gj aux(Z).

Proof. The assignment is injective because aj; > 0, and defines a homomorphism
as asserted because O, is a subring of O, because *»vx is the restriction of *, and
because (z,mg™"y) = (gz,y) = (2, ‘gy). O

Lemma 4.11. For each j € J, the reflex field Fy; aux defined by the integral PEL
datum (Oaux, *aux;, Liauxs {5 * )j,auxs R0,j,aux) (see [26, p. 389] or [30, Def. 1.2.5.4])
is contained in Fy (as subfields of C).

Proof. In this proof, we may and we shall assume that Fj is exactly the reflex

field defined by (O, *,L, (-, -),ho). Since hg;aux is canonically induced by hg

by the isomorphism Lj aux @ R = L®1+a52) 9 R induced by l) we have a
Z Z

canonical isomorphism Vj ; aux = VOGB(“J"IMJ*Q) as Oaux ® C-modules, where V; (resp.
V2
V0,j,aux) is the maximal submodule of L ® C (resp. Lj aux ® C) on which hg(z) (resp.
Z Z

hoj,aux(2)) acts by 1® 2. By [30, Cor. 1.2.5.6], Fy (resp. Fpjaux) is the subfield
of C generated over Q by the traces Trc(b|Vp) for b € O (resp. Tre(b|Vo j,aux) for
b € Oaux). Hence Fy j aux is contained in Fy, as desired. O

For each j € J, suppose that H; aux is an open compact subgroup of Gj aux(ZP).
Then we have the moduli problem My . defined by the integral PEL datum
(Oaux, *auxs Ljaux, (5 *)j,auxs 10 jaux) and Hj aux over Spec(Og, ;... (p), as in [30,
Def. 1.4.14] (with O = {p} there). By [30, Thm. 1.4.1.11 and Cor. 7.2.3.10]
again, My, . is an algebraic stack separated, smooth, and of finite type over
Spec(OF, ; aux.(p))» Which is representable by a scheme quasi-projective (and smooth)
over Spec(Or, ; ....(p)) When H; .ux is neat. (Our notation system here is slightly
different from the one in [3I, Ch. 2]: For simplicity, we dropped the superscripts

[19e})

p” in the notation of auxiliary objects.)

Proposition 4.12. With assumptions as above, for each j € J, suppose H; aux s
an open compact subgroup of Gjaux(ZP) containing the image of H; under the ho-
momorphism Gj(Z) — Gj,aux(zp) given by 1' Then there is a finite morphism

(413) MH — MHj.aux ®@,
Z

which is the composition of (2.1) with a morphism
(4.14) May = Moy, ©Q

under which the pullback (A, Aaux i awo 4y, .0) 0f the tautological object
(Aj awe Ajauxs G,auxs O aux) 0ver My, o to My, satisfies the following properties

(in terms of the tautological object (Aj, A, ij, cizy;) over My, ):

. ) X aj, ) .
(1) A ,ux is isomorphic to A{ ™ " (AY)* @2 for the same integers (aj 1, a;2)

J
as in Lemma [A.1], which is equipped with an isogeny
fi o A o= AXlETa2) gy

j,aux * j j,aux
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induced by Nj : Aj — Ay

(2) The polarization N, = A, . — Ajv’aix coincides with the composition
(fV)"to Aﬁaux o f (as Q*-isogenies), where )\jA)aux : A%aux — AjA,é\l/;x 18

induced by \j: Ay — A and (-, -); as in [2)) of Lemma [4.1]
(3) The isogeny f; above is compatible with the Oaux-actions defined by the
O aux-structure 12+ Opgux — EndMHj (A2, ..) induced by the restriction of

J,aux j,aux

ij: 0 — EndMHj (4;) to Oaux, and by i7 .+ Oaux — EndMHj (AY )
(4) At each geometric point 5 of My, the level structure asy induces an

H;-orbit of isomorphisms
Gs: LiQZ S T Ay,
Z
which in turn induces an H; aux-orbit of isomorphisms

~PB(a; 1+a; ~
af@t ) g poor [ @ AP SVAT
7 Z
(which makes sense because, by assumption, H; is mapped into H; aux under

the homomorphism G;j (Z) — Ci.aux(ZP) given by (.10)). On the other
hand, the level structure aqv_[j ... induces an H;j aux-orbit of isomorphisms

AV,p 0o,p . T. 00,p ™ v
a§ @ A : L.]7auX ® A - V Aj,a.ux,E'
/g Z
These two H; aux-orbits of isomorphisms coincide.

Suppose we replace H; aux with an open compact subgroup ’ij,aux still containing

the image of H; under the homomorphism G;j (Z) — Gj’aux(zp) given by (4.10).
Then the morphism My, — MHJ{ ®Q thus obtained is compatible with (4.13
,aux Z

and the canonical morphism My,  @Q — My, | Q.
faux 3 aux
The morphisms (4.13), for all j € J, induce a morphism
4.15 My — M. .
(4.15) H E e §Q

Proof. Let us first construct the morphism (4.14). Let (4;, Aj,4j, az;) be the tau-
tological object over My, as in the statement of the proposition. Let A, ., AY
A8 A and f be defined by (4;, Aj) as in of Lemma (with S = My,

j,aux? 7Yj,aux?
there). Since O,ux C O and since the involution *»ux is the restriction of *, the
b

O-structure 4; : O — Endw,,, (4;) of (4, A;) induces an O,yx-structure
£ : Oaux — EndMHj (AjA,aux)

Zj,aux

A A ich i ; S
of (AP, Afaux ), Which in turn induces an Oaux % Q-structure

ijv,aux : Oaux ng) Q — EndMHj (Ajv,aux) QZQ Q
of (AY e Ao as in [30, Def. 1.3.3.1] by

j,aux? 7Yj,aux
i aux(b) 1= f 00 (b) 0 f 7

for each b € Ouux-
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At each geometric point 5 of My j, the level structure asy; lifts to some
O ® Z-equivariant isomorphism
Z

Gs: LiQZ 5T Ay,
Z

which induces an O,yux ® Z-equivariant isomorphism

al = @it (pPatan) 9LSTA

J,aux,s

and an O,y ® A*-equivariant isomorphism
Z

§A(g”%oo . (L@(ajri-uq 2))®Aoo HVA‘]Aauxe

(all matching similitudes, implicitly). By [30, Lem. 1.3.5.2], under the isomorphism

Gs @A™ 1 L ®A°° = V A 5, the polarization (as an O-equivariant isogeny) A; s :
z

Ajs — A - corresponds to the open compact subgroup L# ® 7 of L; ®A°° Hence

the restriction of @5 ® A induces an Oyux ® Z—eqmvarlant 1somorph1sm
7 z

o?sY:LJauX®Z—>TAJauxs
Since the choices of 5 and &z are arbitrary, by [30, Lem. 1.3.5.2] again, the

Oaux ® Q-structure iy, above induces an Opux-structure

7 : Oaux — EndMHj (Av

j,aux j,aux)

of (AY, ., Al

i aux Moreover, by forgetting the factor at p, the @Y above induces an

3, aux)
Oaux @ /2 equivariant isomorphism
7

Q7" Ljaux %ZP 5 TP AY

j,aux,s*
Since the H;-orbit of ds is 71 (Myy, 5)- 1nvar1ant and since H; is mapped to a sub-
group of H; aux under the homomorphism G;j ( ) — G;, aux(Zp) given by (4.10)), the

Hj aux-orbit [aF F]y ... of dg 7 is 1 (Mg, ) invariant. By [30, Prop. 1.4. 3 4] the
tuple (A7, A s 1 auxs [0 P17 00 ) defines an object

j,aux’ Vj,aux? “j,aux?
v v v
(A_],auxv/\J,auxv’LJ,aux’ Hj,aux)

of My, ... over My, which satisfies the properties described in the proposition by
its very construction.
We would like to show that Lie,y /y,, with its O ® Q-module structure given
J

j,aux

satisfies the determinantal condition given by

(Lj,aux % R, < Tyt >j,auxa hO,j,aux)

by 7Y

j,aux

as in [30, Def. 1.3.4.1]. Since this condition is closed by definition, and is open
in characteristic zero by [30, Lem. 1.2.5.11], it suffices to verify it at each C-point

t of My Let (A, Ajtyd56) and (AY, i A austr 4 aux,e) denote the respective
pullbacks of (Aj, Aj,4j) and (A7, s A ausxs 4 aux) t0 such a C-point ¢. By [30, Lem.
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1.2.5.11] again, since Lie 4 y,, with its O @ Q-module structure given by i satisfies
j Z
the determinantal condition given by

(LJ§R7<'7 '>jﬂh0)g(L%R7<'7 '>7h0)a

we have Liea, , = Vp as O @ C-modules, and it suffices to note that
' z

i &~ TLieD % s @aj2 o T0(a514a52) A
as Oaux ® C-modules (cf. the proof of Lemma [4.11)).
z

Thus we have obtained the desired by the moduli interpretation of My, ...,
whose pre-composition with gives the desired The morphism be-
tween algebraic stacks is schematic and finite by Lemma|4.5| (for the abelian schemes
and polarizations), by [30, Prop. 1.3.3.7] (for the endomorphism structures), and by
the fact that the level structures are defined by isomorphisms between finite étale
group schemes; hence so is the morphism . O

Lemma 4.16. With assumptions as above, suppose the image HP of H under the
canonical homomorphism G(Z) — G(ZP) is neat (which means, a fortiori, that H is
also neat). Then, for eachj € J, there exists a neat open compact subgroup H; aux of

Gj,aux(ZP) such that H; is mapped to a subgroup of H; aux under the homomorphism
Gj(Z) — GMUX(ZP) given by .

Proof. Since H; is the preimage of gjfl'ng under the canonical isomorphism
G;j(A%>) = G(A™), the assumption implies that, for each j € J, the image ’HJP of
H; under the canonical homomorphism Gj(Z) — Gj(Z) is also neat. Let ng > 3
be an integer prime to p such that ’H,JP contains

UP (no) = ker(Gj(ZP) — Gj(ZP /noZP) = G;(Z/noZ)),
and let H; aux be generated by
Ui aux (o) = ker(Gj aux(ZP) — Gjaux(ZP /noZP) = Gjaux(Z/10Z))
and the image of H} under the injective homomorphism GJ(ZP ) = Gj aux (ZP) given
by (4.10). Then every element of H;aux is congruent modulo ny to the image of
some element of Hf , which is neat as explained above; and so H; aux is also neat,
by definition (see [49, Sec. 0.6] or [30, Def. 1.4.1.8]), and by Serre’s lemma that no
nontrivial root of unity can be congruent to 1 modulo n if n > 3. (]
5. AUXILIARY CHOICES OF TOROIDAL AND MINIMAL COMPACTIFICATIONS

Let us fix a choice of j € J in the following paragraphs. Each symplectic ad-

missible filtration Zj = {Z;j _;}; of L ® Z (see [30, Sec. 1.2.6]) induces a symplectic
Z

admissible filtration Z;j aux = {Zj aux,—i }i of Ljaux ® ZP by setting
: : >

(5.1) Zj aux,—i ‘= ((Z®(q'i‘1+a'i’2)) @Aoo,p) N (Lj,aux %Zp)
Z

J,—1
as submodules of Lj aux ® AP, If Z; is fully symplectic (see [30, Def. 5.2.7.1]),
Z
which means Z; extends to a symplectic filtration Zj o = {Zj_ia}:; of Li®A,
Z

then Zj aux = {Zjaux,—i}i also extends to a filtration Zj aux,.ar = {Zj aux,—i,a» }; o0
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Lj aux ®AP by setting Zj aux,—iar := ZJ@S? IQ—MJ 2) & AP, These definitions are com-
A

patlble with the actions of G;j(A?) and Gjaux(AP) (and with the homomorphism
G;i(AP) = Gj aux(AP) given by (4.10)), and are compatible with reductions modulo
n for any integer n > 1 prime to p. Thus, there is a well-defined assignment
(52) Zj — Zj,aux~
If &; = (X;,Y;, &5, ¢j,—2, ¥j,0) is a torus argument of Z; (see [30, Def. 5.4.1.3]), then
we define
L @D aj1 @D aj,2
Xj,aux = XJ ’ GBYE ’
and
@ aj ® aj
}/j,aux = }/J Mg X 2
Lemma 5.3. With the setting as above, there exist canonically induced morphisms
¢]7dux Y j,aux — X],duxa
Gj.awx,—2 : Grog™ 55 Homy (X aux ® ZF, ZP (1)),
Z

and
Zjaux ™ >
¥j,aux,0 * Gr()']’ — Y},aux ng V/d

making
(I)j,aux = (Xj,auxa Y},auxv ij,aux» Pj,aux,—25 ij,aux,o)
a torus argument of Z; sux, and making the diagrams

®]1@¢€B]2

®(aj,1+ )
(5.4) Y S GRS ¥

¢j®(')');\{ \{;‘j,aux

x ®(aj1+a;2) OX] aux
! Id®Jl@¢®aJ2 7

(Grh,)®(as1+as.2) Grlp

w?i? atag, 2>J{ szj,aux,z

(Homg, (X; %vazp(l)))ea(% St 2()IW)HOH1 o (Xiaux @ 27, 27 (1))

and

(5.6) (Griny®(ajatas)C 5 Gyliew

sal@é“l a1ty 2{ zle,aux,o
Y;

- & 7P)®(a5,1+4a5,2)
(Yio2) e

commutative, where (-, )i is canonically induced by (-, -); as in Lemma ,

Proof. These follow from Lemma [£.1] and from the construction of the filtration

Zj,aux,—i in " above. 0
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Let us take any splitting 0; aux of Zj aux, and abusively denote its H; aux-orbit by
OH; aux- Since H;j is mapped into H; aux under the homomorphism

G;j (Z) - Gj,auX(Zp)

given by (4.10)), and since the above assignments are compatible with the formations
of orbits, we obtain a well-defined assignment of cusp labels

(5'7) [(ZHj ) (I)Hj ’ (57‘13' )] = [(ZHj,aux’ cI)Hj,aux7 6Hj,aux)]'

Let us fix once and for all the choices of J;j aux for all pairs (Zj aux, Pj,aux), which
determine the choices of dy;; . for all pairs (Z4; ..., P#; .., ). Then (5.7) is induced
by an assignment of representatives of cusp labels

(5‘8) (ZHj ) (I)Hj ) 57'lj) = (ZHj,aux7 ¢Hj,aux7 6Hj,aux)'

Moreover, by Lemma tensor products with the symmetric bilinear pairing
(-, -);j in Lemma {.1} induce an embedding

(5.9) (S, ) = (Ser, o ¥ = y®(+, )

j,aux
(by forgetting the compatibility of the pairings with O, but retaining only the
compatibility of the pairings with Oaux). Since (-, -); is positive definite, the
embedding
(5'10) (S‘I’H )]R — (S‘i’H )]1%

j,aux

induced by 1) maps Pg, (resp. P;ﬁ%) to Po,, (resp. PgH ). The dual of

j,aux

(5.9) gives a surjection

(5.11) (Sas )0 = Sy, Q= (S o,

j,aux j,aux

which induces a homomorphism

(5.12) Swy, ... = Say,-

The composition of and gives an assignment
(5.13) (2205 Pr, 01) = (2345 > Py s O )
of representatives of cusp labels, which induces the assignment
(5.14) [(Z31, P, 630)] 7 (2245 > P2 s O )]

of cusp labels, which is the composition of (3.7) and (5.7). Suppose (Zx, Py, dx)
is mapped to (Za,, Py, ,5% in By pre- or post-composition of the maps

(-9, (5-10), -, and Wlth (]3 11)), (3:12), (3.10), and (3.9), respectively,

we obtaln the maps

(5.15) (S‘PH>Q — (S‘I’HJ aux )6’
(5.16) (Ses ) = (San, . K
(5.17) (Ses, .. )a > (Ses)e,
and

(518) SQH. — Sq)’;.p

j,aux
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which are compatible with each other, where (5.16) maps Pg, (resp. Pgﬂ) to
P@H (resp. P+ ). By taking products over the indices j € J, these maps

B9, (B16), BT7), wnd (5-18) induce the maps

v

(519) (S‘I)H Q — H S(I)Hj,aux )Q7

jed
(520) (S‘PH)]E — H(S‘PHL&“X )I[\éﬂ

jel
(5.21) [1Se, .. )e = (Sas)e,

jeJ
and
(522) H S(I)Hj,aux — S‘PH’
jeJ
respectively, which are compatible with each other, where (5.20) maps Pg,, (resp.
P;,)to HJ Pg,, .. (resp. HJ Pgnj - ). Given a nondegenerate rational polyhedral
Je JE

cone 0j aux in Py, (resp. Py, ) foreach j € J, the pullback of ] oj,aux under
,aux j,a JEJ
(5.20) is either empty or a nondegenerate rational polyhedral cone o in Pg,, (resp.

P3, ). (However, o might not be smooth even when 0j aux is for all j € J.)

Definition 5.23. Suppose j € J. Let Ej (resp. ¥jaux) be a compatible choice
of admissible smooth rational polyhedral cone decomposition data for My, (resp.
Mg, ) as in [30, Cond. 6.3.3.2 and Def. 6.3.3.4]. We say that 3j and X aux are
compatible with each other if, for each representative (Zs;, ®4;, 611,) of cusp label
of MH, fwith assigned representative (Zay; .. PH; s OH; aue) O cusp label of My, ..
as in , the image of each o € E¢H under the embedding (5 1s contained in
some cone Ojaux € E@H . In this case we say that (Py;. aux75HJ w0 aux) 45 as-
signed to (P, 0%, 05), and (since this is compatible with the equivalence relations)
we also say that [(®yy; mx,é;.[] awr T3, aux)] 18 assigned to [(Pyy,0%;,05)]. Suppose
Y is induced by ¥ as in Lemma [3.21), and that oj € E@H is the image of some

0 € So,, under (312). Then we also say that (Py; .., (5;{]1&“, 0 aux) 15 assigned to
(P, 094, 0), and that [(Pr; s O e Taux)] 15 assigned to [(Pyy, 03, 0)].

Proposition 5.24. With assumptions as in Proposition for each j € J, there
exists compatible choices Xy (resp. Lj aux) of admissible smooth rational polyhedral
cone decomposition data for My, (resp. My, ) such that ¥; and ¥j .ux are com-
patible with each other as in Definition and such that the morphism
canonically extends to a morphism

(5.25) M%‘if M3Z) S ©
which is the composition of (3.22) with a morphism
(526) M%-(zjr ZJ — MHJ aux7zj aux ® Q

extending (4.14), where Mgfgfz, Mg_‘zizj, and I\/Igfzjrmm72“1‘lx are toroidal compactifi-
cations of My, My, and My, ., respectively, as in [30, Thm. 6.4.1.1]. Under

the morphism 1 (resp. (5.26), the [(Py, 03, 0)]-stratum Zia,, 5,0y of M5’
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(resp. the [(®yy,0%;,05)]-stratum Z[@Hj,g,{jm)] of M%—Zr,zj) is mapped to the

(P2 s> OH; wurs Tj,aux )| -Stratum Z[(cpHJ e ) e 1)) of M%f[jr’auxjj’aux ezactly
when the equivalence class [(Pyy; ,..r 0% auxs Oj,aux)] 95 assigned to the equivalence
class [(Py, 0%, 0)] (resp. [(Py, 0%;,05)]) as in Definition ,

Let (Gj, Ay, 15, az;) (1esp. (Gjauxs Ajauxs 4j,auxs O 40 ) denote the degenerating
family of type My, (resp. My, ..) over M%_‘Z;Ej (resp. M%_‘zjr ) as in [30, Thm.

',auxaz' au

6.4.1.1]. Then the pullback of Gjaux to My (under (5.26)) is isomorphic to

X a; . .
G, i Mtx (Gj\/)x %2, and the pullback of (Gjaux: Ajauxs 4j,auxs OH; 4oy ) 10 M%fif,gj
.] J

satisfies analogues of the characterizing properties in Proposition . (In fact,
by 62, IX, 1.4], [I0, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5], the last pullback
is determined up to unique isomorphism by its restriction to My, which is then
characterized by the properties stated in Proposition M)

The morphisms , for allj € J, induce a morphism

(5.27) Mig's = [T M3 sy ©Q

jed
extending (4.15)).

Proof. Let us fix the choice of j € J. As in of Lemma and as in the
proof of Propos1t10n consider GJ aux (= Gx(aJ 1+aJ 2) LGV = (ij)x(aj,l +aj2)

j,aux
v — (X VX aj 2 Vi,V V)X aj1 X aj,2 :
Gj,aux . Gj tsf (G ) e and GJ aux ° (GJ ) ) tgf Gj s which are
M’Hj, MH .

177
fiber products over Mg_‘zr,z , whose pullbacks to My can be canonically identified

with A% AMY AV and A7V | respectively. Consider

J,aux’ J,aux’ J,aux’ J,aux’
aj 1 aJ 2 A v
fr=1dg" x PG = G
Mg

and
s xR GTY Gl

j j,aux j,aux?
whose pullbacks to My, are dual isogenies of each other. Let A%, . be defined by

Aj and the morphism (-, -)] as in Lemma and let

j,aux

i e © Qaux — Ender (Gfaux)

j,aux

be induced by the restriction of 45 to Oaux. By (2) of Lemma and by [52] IX,
1.4], [10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5],

Nawe = () oA w0 f £ GY e = G

jraux

is an isogeny (not just a Q*-isogeny) of degree prime to p whose pullback to My,
is a polarization, and we have an

ijv,aux : Oaux = EndngJf',Ej (ij,aux)
uniquely extending its pullback to My;. Together with the oz?v_[j o Over My,
constructed in the proof of Proposition [{:12] we obtain a degenerating family
(GY i auxs O, ou) O type My . over Mg—?;,zj'

j,aux’ J aux’ “j,aux’



COMPACTIFICATIONS IN RAMIFIED CHARACTERISTICS 29

\ v v v tor : 3 : 3
To show that (G aux: A auwx: 1 auxs ¥ au) — M37, s, is canonically isomorphic

to the pullback of (Gjaux, Ajauxs G,auc OH; ) — Mg-cl)jr,aux,Ej,aux under a canoni-
cally determined morphism , we need to verify the condition as in [30, Thm.
6.4.1.1(6)].

In the association of degeneration data, over any Spec(V) — M';_‘fjr’zj such that
V' is a complete discrete valuation ring with algebraically closed residue field k£ and
valuation v : Inv(V') — Z, and such that Spec(Frac(V')) is mapped to a point s of

My, and for any lifting &5 : L; @ Z 5 TGj s at a geometric point 5 above s, the
: Z

(noncanonical) filtration Z; is defined to be the pullback of the geometric filtration

0CTTs C TG“ C T Gj,s, whose Hj-orbit Zy; is uniquely determined by ;.

If we define 4y : L, aux@Z?’ 5 TP GY

j,aux,s

4.12} then the filtration ZLaux defined by Z; as in agrees with the pullback
of the geometric filtration 0 C TP T c TP Gv s C TPGY

j,aux,s j,aux,s j,aux,s?

by &z as in the proof of Proposition

because
this last geometric filtration on TP GJ aux,s 18 induced by the geometric filtration

0cvePTy cVPGYE CcVPGY _on VPGY whose pullback under the

j,aux,s j,aux,s j,aux,s j,aux,8§?
isomorphism V(f) : VP GE, . « = VP GY,, s agrees with the geometric filtration
0C VPTH s C VP GJAath s C VPGP, s on VPGP, o (which naturally agrees

with the geometric filtration induced by 0 C V1j s C VGh C VGj;s on VGjs).
Suppose, under the equivalence of categories in [30} Thm 5.3.1.19],

(5.28) (B, A;s iy, X5, Vi, ¢4, 65, ¢ 5 73, [04311-])
is the object in DDPELMHj (V') associated with the object in DEGpEL’MHj (V) de-

fined by the pullback of the degenerating family (Gj, A, ij, asy;) over M%’;Ei under
some morphism Spec(V) — M'qj_’fjr’zj as above, and suppose

D

is the object in DDpgy, Mg, (V) associated with the object in DEGpgy, Mn - (V)
defined by the pullback of the degenerating family (GJ awes A auso 6 auxo ozH ) over
M3¢ s, under the same Spec(V) — Mg .. Then is induced by (5.28) in a
precise sense (whose details we omit), and we have the following' Under the assign—
me, the cusp label [(Zy;, @3, = (Xj, Y], &5, 02,2, Po,3;), 0%;)] determined
by (5.28) gives the cusp label [(Zy; .., P o> 0% aux )] determined by (5.29). Given
any representative (Zz, ®3,0%;) of [(Zy;, Py, 0%;)], the assignment (5.8)) gives
a representative (Za; ..o Pr; aus 01 awe) OF (27 auns PHj auns 01 e ). With such
choices of (ZHJ , Py, 57.[J) and (ZHJ aue> P s O, o)y 1

By : Sa,, — Inv(V)

. Y% i
(529) (Bj,aUX7 )\Bj,aux7 ZBj,auxz Xj,aux; Y},aux; Cj,aux; cj,aux’ 7-j,'a»ux; [OKH

j,aux

and
Bj aux : Say, — Inv(V)

j,aux

are determined by (5.28) and (5.29)), respectively, then (5.9) maps
UOBj:S@Hj —)Z‘—)Q

to

v 0 Bjaux : Sa —7Z—=>0Q

Hj,aux
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because A, is induced by Aj and (-, -);. Consequently, if v o B; defines an
clement of oj € Xg,, , and if the image of o; under (5.10) is contained in some
Oj,aux € quj ? then v o Bj.ux defines an element of 0 aux.

Thus, if ¥; and Y sux are compatible with each other as in Definition by
considering all morphisms Spec(V) — Mg—?f,zj as above, we see that the degen-
erating family (Gy aux: Aauc: 1 aux @9, .., ) Satisfies the condition as in [30, Thm.

6.4.1.1(6)], as desired. O

Consider the invertible sheaves
R top =V
Whtgery, += A LleG/,\,%rZ

over My, and, for each j € J,

. Atop « vV

g s, = N LG g
tor

over MHJ,,EJ_ and

= /\top Lieéj,aux/M%’"

j,aux>

Wptor

H =

j,aux>~j,aux

Zj,aux

tor
over MHj,au:mEj,aux' We shall denote the pullback of Wtger,, (resp. wMg_(zerE.ﬁ resp.

Wyter ) to My (resp. My, resp. My, ) by wwm,, (resp. Wiy, TESP. Wy, )
j,aux ’

which is independent of the choice of ¥ (resp. X, resp. Xj aux)-

Lemma 5.30. Suppose j € J. The pullback OfwM;g_r . under the canonical isomor-
=
phism li 18 isomorphic to Wher, - There exists an integer 1 < a;j o < 2 such that

the pullback of wﬁ%’o . to M, (resp. I\/IE:Z;ZJ) under the morphism (5.25
T awe T, aux
(resp. (5.26)) is isomorphic to Wwd (resp. Ww2a ), where
M'H,E M’Hj,):j

aj := aj0(aj1 + a52).
We may take ajo = 1 when a; 2 is even.

We shall henceforth fix a choice of a;j o (for each j € J).

Proof of Lemma [0.30, The first assertion is because the pullback of G under ([3.22])
is Q*-isogenous to G. As for the second assertion, consider also the invertible sheaf

/ . Atop 1:,.V
w = NP Lie r .
M;gj{zj ij/Mngj‘Ej
By Proposition , the pullback of wytor to M%_‘zjr 5;, is canonically isomor-
j,aux 3, aux ’
phic to
a; .
w®to“r,1 ® Wptor )® 42
MH- p] Mtor M
%5 M j*

By [39, IX, 2.4, and its proof], there exists an integer 1 < a;j ¢ < 2 such that

® aj,0 /
Migh . = (ng;;

® aj,o0
’Hj,Ej ) ’

=j

w

Hence, up to replacing a;j o with 1 when a; 2 is even, the lemma follows. O
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For each j € J, let M%iux denote the minimal compactification of My .
as in [30, Thm. 7.2.4.1], which is by construction a projective variety over
Spec(OF, ; aux,(p)) cOntaining My, | as an open subscheme, under the assumption
that H; aux is neat. By [30, Thm. 7.2.4.1(3)], wwtgr,, and wyer - descend to ample

=
invertible sheaves Whpin and mem over Mmln and M%;n, respectively, and we have

(5.31) MIin = Proj (k@OT(Mgﬁfza S!L ))
and
(5.32) MmmNPrOJ< 2, (M;‘Zj,zj w,%fc]zr )),

which are compatible with the canonical isomorphisms ({3.22)) and -, and with
the canonical isomorphism in Lemma W between C(JMggrE and the pullback of

wyor - under || Similarly, wter descends to an ample invertible sheaf
’Hj .)Dj

Hj,aux 2j,aux

Wmmin — over M . and we have

j,aux

k
(5.33) Mmj“aux = PrOJ( (M'ﬁraux,zj,aux 3“); T 1‘,,‘))'

Proposition 5.34. With assumptions as in Proposition [£.12], for each j € J, there
exists a morphism
(5.35) mh MR ©Q
aux o
extending (4.13]) and compatible with (5.25)), which is the composition of (3.23)) with

a morphism

(5.36) I = ME | ©Q

extending (4.14) and compatible with (5.26)). Under the morphism (5.35)) (resp.

(5-36), the [(P,dn)]-stratum Zye,, 5,y of M (resp. (P, 0n; )]-stratum
Z((®44;.5%,)] of Mﬁ:n) is mapped to the [(Py; .., 0%, wue)]-Stratum Zjp,,

j,aux)? j,aux 5Hj,aux)]

of M%;naux exactly when the cusp label (P aux,éq.[J )] 1S assigned to the cusp

label [(Pyy, 0%)] (resp. [(CIDHj,éHj)]) as in - resp. . (with the filtrations
Zy, Zy;, and Zyy .. suppressed in the notation). If ajo > 1 and aj > 1 are

integers as in Lemma |5.30], then the pullback of wﬁﬁff to M%i“ (resp. Mﬁ;‘,“) 18
H

j,aux

i)

canonically isomorphic to W@ Mmm

Mmm L (resp. w

The morphisms - foralljelJ, mduce a morphism

5.37 Mmin min

(5.37) o H M o %@
jed

extending (4.15) and compatible with ( -

Consequently, M s the mormalization of ] Mmln Q in My under the
jed

®Q induced by (4.13) and the canonical morphisms

morphism My — ] Mmma
jel

MHJ,M,X RQ — My" %@ for allj € J.
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Proof. The first two paragraphs follow from Proposition [5.24] from Lemma [5.30}

and from the universal properties of the projective spectra (5.31) and (5.33)).

. . ® aj.o0 . min . RKaj; .
For each j € J, since wy,nin  is ample over M”Hj,aux’ SINCe Wi 18 ample over

. Hj aux
M3, and since the pullback of the former is canonically isomorphic to the latter,
the canonical morphism from M%in to the normalization of [] Mﬁi“ ®Qin My is

JEJ ,aux 7
finite. Since both of them are normal, and since they share an open dense subscheme
My, the third paragraph follows from Zariski’s main theorem (see [14] I1I-1, 4.4.3,
4.4.11]), as desired. O

6. MINIMAL COMPACTIFICATIONS DEFINED BY NORMALIZATION

Proposition 6.1. Let |\7|H denote the normalization of [[ My
jed

m My under

the morphism
(6.2) Mo = [ [ Mag o
jeJ
induced by . Then M?—L s a mormal algebraic stack flat over
Sy = Spec(Op,,(p))

equipped with a canonical isomorphism |\7|H X So = My, over So, and with a canon-
So
ical finite morphism

(6.3) My = [ [ Mag o
jed
extending (4.15)) and (6.2)).

For each j € J, the tautological tuple (Aj,Nj,ij, ;) over My, = My
(see 1D extends to a degenerating family (A’j,Xj,Zj@Hj) of type My over
My (see [30, Def. 5.3.2.1]), where (A},Xj) is a polarized abelian scheme with
an  O-structure 5; such that mg,/m with its O ® Zp)-module  structure

i Z

given by i; satisfies the determinantal condition in [30, Def. 1.3.4.1] given by
(Li®R, (-, -),ho) = (LR, (-, -),ho), and where dy is defined only over My,
Z z

If we denote by ([l;aumXj_raux,aaux,d'%’a“x) the pullback of the tautological tuple
(A auxs Ajauxs 1, auxs O auy ) 0VEr My, o under the morphism M?—Lj = My
induced by , then (/_1;-,&“,(, ijaux) is isomorphic to the polarized abelian scheme
([fiaux, va,aux) defined by (4;, XJ) as in (2)) of Lemma i; is the unique extension
of i; over the noetherian normal base scheme My (by [52, IX, 1.4], [I0, Ch. I,
Prop. 2.7], or [30, Prop. 3.3.1.5]), and dy; ,,, is determined by a3y in the sense
that its further pullback to My, = My, is determined by oy, as in Proposition Ff_ﬁl
Then the invertible sheaf Wy, over My, = My, extends to the invertible sheaf
“Nigej " AP @ZTJ/MH
over MH- For each j € J, let ajo > 1 and a; > 1 be integers as in Lemma m

and let ay := Y aj. Then the invertible sheafwlgz" over My extends to the ample
jed
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invertible sheaf

® aj
Wy = Q w-
#,J jes Muj
over My, where each wg “ is canonically isomorphic to the pullback ofw® 0 un-
Ho, J,aux
der the morphism My, — My, . induced by l.b and where wy_ 5 is canonically

® aj,o

Hj,aux

isomorphic to the pullback of & Wy

We obtain the same normalzzatzon I\_/IH (up to canonical isomorphism) satisfy-
ing the analogous properties if, for each j € J, we replace H;aux with any neat
open compact subgroup of Gj,aux(Zp) still containing the image of Hj under the
homomorphism G;i(Z) = Gj aux(ZP) given by .

Up to canonical isomorphism, MH depends only on the choices of linear algebraic
data in Section 2, but not on the auwiliary choices in Sections [ and [

Proof. The first paragraph is self-explanatory. As for the second paragraph, except
for the ampleness of Wi, 3> 1t suffices to show that, for each j € J, the tautolog-
ical (4j,);) over My, = My extends to some polarized abelian scheme (A},Xj)
over My. (Once this is shown, the remainder of the paragraph will follow from
the uniqueness of extensions by [62, IX, 1.4], [I0, Ch. I, Prop. 2.7], or [30, Prop.
3.3.1.5].) Since the genus of A; and the polarization degree of \; is determined by
the level structure ayy;, the tautological (A;, Aj) over My, defines (by forgetting the
additional structures) a morphism from My, to the Siegel moduli A, g4, of genus
g = 31kg(L;) = 1 1ky(L) and polarization degree dZ = [LJ# : Lj], which induces a
finite morphism
My — Ag,dj %Q

by [30, Prop. 1.3.3.7, Cor. 2.2.2.8, and Prop. 2.2.2.9]. Similarly, the tautological

(Aj auxs Aj,aux) defines a morphism from My, . to the Siegel moduli Ay, .. d; ... Of
genus gjaux = 3 kz(Ljaux) and (prime-to-p) polarization degree d?,,. = | o

L; aux], which induces a finite morphism
M'H- . — A

j,aux 9j,aux, J aux

®Z()

As explained in the proof of Lemma the construction as in of Lemma

defines a finite morphism Ay 4, — Ay, ..x.d;j.aux- BY comparing the universal prop-

erties, the composition My, — My, ®Q — Ay | di 2o ® Q of finite morphisms
> : :

j,aux

® Q of finite mor-

gj,aux; J aux

®Z(p are finite, it

coincides with the composition My, — A, 4, ®Q — A
z
and My,  — A

j,aux gj,aux,dj, aux

phisms. Since Ay 4 — A

Jj,aux, J aux
follows that M;.L is canonically isomorphic to the normalization of [] Ay 4 ® Lp)
jed
under the canonical morphism My, — [] Ay 4, ® Zpy- In particular, for each j € J,
jeJ
the tautological object (Aj, \;) over My, = My extends to an object (/Yj, XJ) pa-
rameterized by the canonical morphism |\7|7.¢ — Ay,q; induced by the canonical
morphism MH — [I Ayg,q;- This also shows, as in the last paragraph of the state-
jed

ment of the proposition, that |\7IH is canonical and independent of the auxiliary
choices.
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Except for the quasi-projectivity of [I\7IH] over §0, and for the ampleness of Wi, 3
when H is neat, both of which will follow from Proposition [6.4] below, the remaining
statements of the proposition are self-explanatory. ([

Although Proposition is stated without any reference to compactifications,
the easiest way to show the quasi-projectivity of [My] over Sp, and the ampleness
of Wiy, 3 when H is neat, is to introduce the minimal compactifications. (This is a

natural consideration because this is what the minimal compactifications in [3] did
over C.)

Proposition 6.4. Let I\_/’Iﬁin denote the normalization of T] Mﬁznau n Mﬁin under
jes e
the morphism

min min
(6.5) M — [T ™M
jeJ
induced by lb Then M,“_iin is a mormal scheme projective and flat over §o =
Spec(Op, () equipped with a canonical isomorphism M3 x Sg = M over So =

So
Spec(Fy), and with a canonical finite morphism

(6.6) m‘“ — | [ My

jed o
extending (5.37) and (6.5| -

By construction, My, is an open dense subscheme of Mmln because My, , .. is an
open dense subscheme of l\/Imzflaux (by [B0, Thm. 7.2.4.1], undeT the assumption that
H and Hjaux are neat), for allj € J.

For each j € J, let aj 0 > 1 and aj > 1 be the integers as in Lemma and let

ay := Y a; as in Proposition . Then, for each j € J, the invertible sheaf w,ﬁﬁ
jelJ j

over My, = My, and the invertible sheafmef,, over Mmi_n = Mﬁin compatibly extend

to an invertible sheaf over Mmm, which we denote by wmn,fn . by abuse of notation,

which is canonically isomorphic to the pullback ofwﬁ,ﬁﬁ,,o to |\7|'7“iin, whose pullback

j,aux

®ay

©ay Moreover, the invertible sheaf Wi,

to Mq.[ is canonically isomorphic to Wi
H)

extends to the invertible sheaf

® aj
Wiimin 3 1= @ Wi
jed M »)
oo .
over MY, which is canonically isomorphic to the pullback of X w0
jeJ Hj,aux
(Wi This Wgmin 5 %8 ample and induces a canonical isomorphism
H 9

under

min ~v mm ®k
M3, PrOJ( P(ME™, W, J))

We obtain the same normalization M%i“ (up to canonical isomorphism) satis-
fying the analogous properties if, for each j € J, we replace Hjaux with any neat
open compact subgroup of Gjaux(ZP) still containing the image of H; under the
homomorphism C;(Z) — G aux(ZP) given by (4.10).
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As in the case of |\7IH in Proposition it is also true that, up to canonical
isomorphism, M%in depends only on the choices of the linear algebraic data in
Section [2] but not on the auxiliary choices in Sections ] and [}] However, the proof
of this is somewhat indirect and will be postponed until Corollary below.

Proof of Proposition [6.4, By construction as a normalization, Mmln is normal and
equipped with the ﬁmte morphism . For each j € J, let us define the com-
® a_]

® ®a ® aj
4 of Wy “ and wo . to be the pullback of w,od:°
M mJ M M?—t»
H j,aux
) ©a .
the morphism Mmln — Mﬁ;r‘aux induced by (16.6]), so that Wrimin j = ®J wmjjnj is
, ’ j€ Ho

the pullback of & w24 under the finite morphism . (This is consistent

mon extension w_- under

Mmin
Hj,aux

with Lemma 5.30) Since g,ﬁi;,o is ample over M%‘_“ for all j € J, the pull-
H ,aux

j,aux

back Wyjmin 3 of X wﬁ,ﬁff under is also ample. This shows in particular
H jed H

j,aux

that l\_/‘lﬁin is projective over §0. Since the structural sheaf of Mmin is normal and

hence has no p-torsion, it is also flat over §0. Since the pullback of & wﬁ,ﬁfn‘)

jjaux
to ] My .. is canonically isomorphic to & wM 4.0 jts further pullback to MH,
JEJ _] aux
which is canonically isomorphic to the pullback of Wigmin_y by construction, is canon-
min,
ically isomorphic to Wiy, (by the part of Proposition we have proved). The
remaining statements of the proposition are self-explanatory. O

Now the proof of Proposition is also complete.

Remark 6.7. In our constructions (including ones to be give below), taking nor-
malizations will never introduce pathologies, either because we are talking integral
closures in (products of) separable field extensions (see [36, Sec. 33, Lem. 1]), or
because the schemes in questions are all excellent (being a localization of a scheme
of finite type over Z; see [35, Sec. 31-34] for more discussions).

For each stratum Zys,,s,) as in [30, Thm. 7.2.4.1(4)], consider its closure

Z[@%MH in M%i“ and its closure Z[(¢H75H)] in Mmm. Then we define a locally
closed subscheme

N4
N4

(6.8) Zi(@y,00)] = (IR ) R U

(PH S94)] '¢— '1)%1 6’ )]

[(P%,0%)]

of Mﬁin. By definition, we have the following;:

Lemma 6.9. If Z|4,,5,) i cimtained in the closure Z[@/w%)] of Z[(qyw%)},
then Z[(%,g,{)] is contained in z[(¢;{7%)], and the latter agrees with the closure
of Z(@y,.54,)]-

Remark 6.10. We shall call Z[@H’(;H)] the [(Py, % )]-stratum from now on, although

we will have to wait until Theorems [I2.1] and [I2:16] below to see that it does satisfy
the familiar properties as in [30, Thm. 7.2.4.1 (4) and (5)].
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7. TOROIDAL COMPACTIFICATIONS DEFINED BY NORMALIZATION

For each j € J, and for each (Zy;, Py, 0%;) inducing (Za; ..o PH; aues 0% aux) @S
in (5.8), we have a boundary version

Zy

(7.1) My = My ©Q

Hj,aux 7

of (4.14) (see [30, Def. 5.4.2.6 and the errata]), whose composition with (3.2]) gives
the boundary version

(7.2) M = My ©Q

of (4.13]). These morphisms (7.2)), for all j € J, induce the boundary version

(7.3) Mz - [] M;’ffi‘j ©Q

jedJ
of (T5).

- Zy,

Proposition 7.4. Let M%” denote the normalization of [] I\/I;;Jjaux mn I\/IErL“ under
i ,aux

the morphism

(7.5) Mz — T My
jed
induced by , which is equipped with a canonical finite morphism
(7.6) Nz — T My
jeJ
compatible with and . Then the tautological tuple (Bj, Ap;,iB;, P—1,3;)

Zy. ~ A . . e . - 1 Z
over I\/IHjJ = M3 extends to a degenerating family (Bj, /\gj,lgj,sﬁ—l,ﬂj) over M5},

Zau,
where ¢_1 34, is defined only over M}ZJ = M?_L” (¢f. Proposition . Up to canon-

ical isomorphism, I\ﬁgf does not depend on the precise choices of {H;aux}ics. (We
will omit such justifications for similar constructions later.)

j,aux

j,aux

Proof. The proof is similar to the one for MH in Proposition O

For each j € J, suppose X aux = {Za,,

j,aux

}[(q;.Hj o 7 )] is a compatible choice
of admissible smooth rational polyhedral cone décompc;sition data for My, .. as
in [30, Def. 6.3.3.4], and suppose Mg-(t),-r.aux,zj,aux is the toroidal compactification of
Mz, ... as in [30, Thm. 6.4.1.1]. For simplicity, we shall assume that ¥ .y is
projective as in [30, Def. 7.3.1.3], so that (under the assumption that H;aux is
neat) M%-(Z;,aux,Zj,aux is a scheme projective and smooth over Spec(Op,; ....(») (see
[30, Thm. 7.3.3.4]).

For each representative (Zy, @y, 0% ) of cusp label of My, we define a (possibly
nonsmooth) rational polyhedral cone decomposition ¥¢,, of Pg,, by pulling back
the cones {[] 0jaux : Tjaux € qu]_ Vi€ J} under the map (5.20)), which sat-

jeJ ’
isfies [30, Cond. 6.2.5.25] with respect to I'g,, (so that the analogue of [30), Lem.
6.2.5.27] applies) when each Loy, ,,, satisfies [30, Cond. 6.2.5.25] with respect to
@3y, s and we define a compatible choice ¥ of (possibly nonsmooth) admissible
rational polyhedral cone decomposition data for My by having (Z, P4, d%) run
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through all such representatives. (Although we have only considered smooth cone
decompositions in [30, Def. 6.3.3.4], the definition naturally generalizes to the case
of nonsmooth cone decompositions.) For each j € J, the compatible choice ¥ for
My, also induces a compatible choice ¥ for My, as in Lemma

Let Mtor denote the normalization of [] Mgfzjr suesSjame Mgy under the mor-

jed
phism
(7.7) MH - H Mg'ct);,auxazj,aux
jeJ
induced by lb and by the canonical morphisms My . = — Mtofdux’zj .., for all

j € J, which is naturally a scheme over §0 = Spec(Op,,(p)) and equipped with a
canonical finite morphism

(7.8) M3 = [IM5 5
jed

compatible with and . (This is similar to the considerations in, for ex-
ample, [37], [59], [38], [25], and [34], although they have not explicitly considered
a product of auxiliary toroidal compactifications as we do.) A priori, this is an
abuse of notation, because the definition uses {¥; aux }jes rather than the induced
Y. (Nevertheless, we will justify this in Theorem [7.14] below.)

Lemma 7.9. With the setting as above, the scheme Mto’r is proper and flat over
§0, Moreover, the morphisms (6.2) and induce a canonical open immersion

(7.10) |\7|H — |\7|§3r2,

and the image of (7 is dense in Mtor and coincides with the preimage of

[1 M ... under the canomcal morphism 1.) Consequently, we may and we shall
jeJ

identify |\7I7.L with its image under 1) and view it as an open dense subscheme
Of Mtor

Proof. The proper flatness of Mtor over Sy follows from the construction of

I\/Ito’r by normalization, and from the proper smoothness of M* S aue OVET

J aux;

Spec((’) Fojaw(p)) for €ach j € J. The remaining statements of the lemma follow

from the construction of I\_/IH by normalization (see Proposition and from
Zariski’s main theorem (see [I4] III-1, 4.4.3, 4.4.11]). O

Proposition 7.11 (cf. [30, Thm. 7.2.4.1(3)]). Consider the canonical morphism
(7.12) o, NS — Mg
induced by the canonical morphism fH : Mgfzjraux’zj . Mmln forallje ]

(by the constructions of Mtor and M%in as normalizations; see Pmposztwn .
Let Wter,, 3 denote the pullback of Weimin g (see Proposition . Then Wter,. 3

is canonically isomorphic to the pullback of &J wﬁﬂo under 1) and the
HJ aux: EJ aux

canonical morphism

t t ®k
M or — PI’OJ( £20 (M'i-cl)r27 Mmf27‘]))
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induces a canonical isomorphism

“min ~u . \Jtor Rk
e o 5 )

(compatible with the canonical morphism (7.12))).
Proof. Since Wijimin g is canomcally isomorphic to the pullback of @J wﬁ,ﬁfn"
j€ M5 aux

(see Proposition , and since WMmggr is canonically isomorphic to

under

j,aux>~j,aux

¢ ' . .
the pullback of wymin  to M?-‘ijr,aux,Ej,aux’ for each j € J, it follows that wM%i’fva is

j,aux

canonically isomorphic to the pullback of X waf;D under |i
J Hj aux:Zj,aux

Since 1} is an isomorphism over MH (see Lemma 7 the pullback of
Weitgr, 3 to My is ample, and hence we can identify My with an open subscheme

of Pr03< I‘(Mg_‘zrg,wgt’; J)), which is necessarily dense because My, is open

and dense in I\/I%’rz. Since wyjior ; descends to an ample invertible sheaf over
H,E
. v Rk . . .
Proj (kegoF(ngfE,wmtor J)) the induced canonical proper morphism (see
Proposition [6.4)

tor Rk Amin ~ . min |, ®k
(713)  Proj((& Ty wil, ) = W™ = Proj( @ T(ME™ Wik, )

is finite (see [I4} 11, 5.1.6, and III-1, 4.4.2]), which induces the identity morphism on
I\/IH by restriction. Since Mm‘n is noetherian and normal, is an isomorphism
by Zariski’s main theorem (see [14, T1I-1, 4.4.3, 4.4.11]), as deslred |

Theorem 7.14 (cf. [30, Thm. 6.4.1.1(6)]). With the setting as above, let S be an
irreducible noetherian normal scheme over So = Spec(Op, (p)), with generic point
1, which is equipped with a morphism

(7.15) n — My.

Let (A, Ay, in, igy.) denote the pullback of the tautological object of My to n under
(7.15). Suppose that, for each j € J, we have a degenerating family

(G1 il aidj,m)

J,aux’ _],aux’ J,aux?
of type My, ... over S, whose pullback
(Gj,aux,nu )\j,aux,nv Z'j,aux,na aHj,aux,n)
to n defines a morphism

(7.16) N = Mg

by the universal property of My, ... These morphisms (7.16)), for all j € J, induce
a morphism

(7.17) 1= [ Mg -
jed

Suppose moreover that (7.17) is the composition of (7.15) with the morphism (6.2))
induced by (4.15). Then (7.15)) (necessarily uniquely) extends to a morphism

(7.18) S — Mg
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if and only if the following condition is satisfied at each geometric point § of S':

Consider any dominant morphism Spec(V) — S centered at 3, where V is a
complete discrete valuation ring with fraction field K, algebraically closed residue
field k, and discrete valuation v. By the semistable reduction theorem (see, for
example, [30, Thm. 3.3.2.4]), up to replacing K with a finite extension field and
replacing V- accordingly, we may assume that the pullback of A, to Spec(K) extends
to a semi-abelian scheme G* over Spec(V). By the theory of Néron models (see
[; of. 62, IX, 1.4], [I0, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5]), the pullback of
(Ap, A, iy, g ) to Spec(K) extends to a degenerating family

(G4, Ai,ii,ail)

of type My over Spec(V'), where aﬁ_[ is defined only over Spec(K), which defines

an object of DEGpgr,m,, (V) corresponding to a tuple

(B >\B177’B¢7 7i 7¢:|: Ti’[a’t;:[i])

in DDpgr, My, (V) under [30, Thm. 5.3.1.19].

Then we have a fully symplectic-liftable admissible filtration Z;;{ determined by
[agf]. Moreover, the étale sheaves X* and Y+ are necessarily constant, because the
base ring V is strict local. Hence it makes sense to say we also have a uniquely
determined torus argument @; at level H for Z;.

On the other hand, we have objects ®,,(G%), Ss,, (1), and B(G*) (see [30, Con-

str. 6.3.1.1]), which define objects (I)fru Sq);, and in particular
BY: Sy — Inv(V)

over the special fiber. Then
voBY: St = Z
H

defines an element of SY ot where v : Inv(V') — Z is the homomorphism induced by

the discrete valuation ofV

Then the condition is that, for each Spec(V) — S as above (centered at 3), and
for some (and hence every) choice of 57-0 there is a cone ot in the cone decom-
position E@% of Pcbi such that @ contains all v o BY obtained in this way. (As

explained in the proof of [30, Prop. 6.3.3.11], we may assume that o* is minimal
among such choices; also, it follows from the positivity of 7% that o C P‘L 2

In particular, since this condition involves only %, it follows that the scheme
M%‘jfz depends (up to canonical isomorphism) only on X, but not the choice of the
{3 aux }jes inducing 3.

Proof. Let Spec(V) — S be any morphism as in the statement of the proposition.
For each j € J, let (Aj,777)\j7777ij7"7’aij77) denote the pullback of the tauto-
logical object of My, to 1 under the composition of (7.15) with (2.1). Since
(A, Ay iy, a3y) induces (Aj oy, Ay, i3, @3;.) Via a Q*-isogeny, by the theory of
Néron models, the pullback of (4j,, Aj.;, 4y, @3;.n) to Spec(K) also extends to a
degenerating family
(Gi )\i -t ;C_L )

1) J’
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of type My, over Spec(V'), where ozg_[j is defined only over Spec(K), which defines

an object of DEGpELJ\/.Hj (V') corresponding to a tuple
(Bf Agivig. X1,V 6] ol o 7 o))

in DDpgLM,,, (V) under [30, Thm. 5.3.1.19]; moreover, we may and we shall assume
that the cusp label determined by the object in DDpEL My, (V) is represented by the
( o va‘svi-[j) assigned to (Zg_l, @%, 6;) via , and that the induced morphism
vo Bji € S:I/);H.- is a Q% -multiple of the image of vo B € S;: under (3.12) (see

H
Lemma [3.16]) .
For each j € J, let (G it

j,aux’ ]a‘ux7 ]otux’a’y‘-[bel -~

) denote the pullback of the degen-
erating family (GJTMX,/\J aux,ij aux’o‘;ij.aux) under the Spec(V) — S above, which

defines an object of DEGprL.M,, (V). Under [30, Thm. 5.3.1.19], this corre-
sponds to an object of DDpgy, Mag, (V), which in particular determines a cusp

label [(Zi _ 7@;1]- ,(ﬁij )] and an element v o BJ aux € Sy for some repre-
,aux ,aux H
i i

sentative (Z:t s P30, O34, dux) of [(Z% ax? @;:{J s (5?_[ )] By the construction

of ([#.15), the assumptlon that (7.17) is the composition of 5) with the morphism
(6-2

) induced by (4.15]) means that (G’Laux n> Ajaux,n» 4, aux,1m Oéf;.ljyauxm) is induced by
(Ajns Ajns G, 0345,n) I the same way as (A, A auxo 1 awx: O, 0, ) 18 induced by

jaux? 7Yj,aux? “j,aux’

(4j, Aj, 5, aigy; ) in Proposition Therefore, by the theory of Néron models again,
(Gjt J— )\]i,auXV ]i O a%jvaux) is similarly induced by (Gi )\]i, i, o
ity of the association of degeneration data, the above object in DDPEL Mo, (V)
is also induced by the object in DDPEL,MHJ, (V) determined by (Gf, )\Ji, Ji, oy, ) in
the statement of the proposition. Hence, up to modifying the choice of the rep-
resentative (Z%j amx,CIﬁHj aux,é?i_tj _..) above, we may and we shall assume that it

is assigned to 2711_,@)?1{_,671{_ via (5.8), and that (5.10) maps v o B} € SY, to
J J J J ol
H

j,aux

). By functorial-

vo B! €S,

j,aux
Hj,zmx
Thus, for each j € J, the representative Zi 7<I>1 751 is assigned to
aux’ © Hjaux? " Hjaux
(z},, ®3,,0%,) via (5.13), and (5.16) maps v o Bi e SV tovo B;:aux € S;i
j,aux

Suppose there exists a morphism S — M%fgfz extendlng . For each j € J,

its Composition with the canonical morphism Mgf[rz — M%i’raux - induced by

defines a morphism S — Mmjrdux 5 aue OXtending By 52, IX, 1.4],
[10 Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5], this forces the degenerating fam-
ily (GJJr aux,)\;r auxs b, aux?o‘;r-tj‘aux) of type My, .., over S to be isomorphic to the

pullback of the tautological degenerating family (G} aux, Ajaux, &j,auxs QH; 4ux) OVET
Mior . By [30, Thm. 6.4.1.1(6)], there is some o}, € i such that

Hj,aux:2j,aux J,aux Hj,aux
the closure O'Ji aux Of UJ aux 11 (Sq;Hj’wx)ﬁ contains all v o Bjiaux Let ot € E@ﬁi be
the pullback of [] o under the map (5.20). Then & contains all v o B as in

J aux

jedJ
the statement of the proposition.
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Conversely, suppose that there exist of € ¥ ; such that &+ contains all v o B
H

as in the statement of the theorem. By definition, there exist aji,aux

€ Eqﬁ{ , for

j,aux

all j € J, such that o* is the pullback of ] ol under the map (|5.20). Hence, for
jeJ

j,aux

. 1 . .t .
eachje J,allvo Bj’aux as above are contained in T5 aux and it follows from [30),

Thm. 6.4.1.1(6)] that there is a canonical morphism
(7.19) S — MY"

j,aux>>j,aux

under which the degenerating family (G}:aux, )\;r,aux, i}:aux, a;r{j’aux) is the pullback of
the tautological degenerating family (G| aux; Aj,auxs 4, auxs O 4ux ) OVET M;‘l’;“x’zjyaux.
(Although the universal property in [30, Thm. 6.4.1.1(6)] is defined using all mor-
phisms Spec(V) — S centered at a geometric point § of S, the condition that there

. —1 . 1 .
is some o7, € Eq,% such that o7, contains all v o Bj,,, can be verified
j,aux

up to replacing K with a finite extension field and replacing V' accordingly.) The
morphisms ([7.19)), for all j € J, induce a canonical morphism

(7.20) S JIMS s
jed

Since ([7.17)) is the composition of ([7.15) with (6.2]) by assumption, the morphism
|| induced the desired morphism 1) by the definition of M%%, as the nor-

malization of HJ M%-(er,aux,Zj,aux in My under the morphism 1) as desired. O
JjE

8. PUTATIVE BOUNDARY CHARTS

The goal of this section is to construct the schemes Mff[”, Co,.60) Edyy,600

§¢H75H (o), and é'q),_‘,g,_ho, and the formal scheme i(p%(g%a over |\7|§_£” (whose mean-
ings will be explained below), which will be useful for defining a locally closed
subscheme Z(g,, 5,,,0)] of Mig'y;, and for describing the formal completion of M%",

along Z((@,,,6,,0)], in the next two sections.

Proposition 8.1. Let M;’* be as in Proposition . Let |\7I;{_’L” denote the normal-

. . Dy aux .
ization of [] My, ™™ in M3 under the morphism
: j,aux
jed

(ij,aux
(8:2) M3 = 1T Ma
jed
defined by comparing the universal properties of My = MHJ,J (see 1) and
By,
MH?S:" , for allj € J (see [30), Def. 5.4.2.6 and the errata]; ¢f. [31, Lem. 1.3.2.5 and
the paragraph preceding it]). Then the morphism (8.2)) induces a finite morphism

(8.3) Mg — T My
jeJ

compatible with l) and the canonical morphism l\_/’la"H — |\7|§_LH extending the
canonical finite étale morphism M;};’* — M;“ s also finite.
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Proof. The canonical morphism Mq’” — MZ is finite because so are the canonical

morphisms M H— MZH and M Tiaus M i, , for all j € J. (]
Proposition 8.4. Let Cq>H 5, denote the normalization of [] (& S in
JEJ ,aux
Co,, .5, under the morphism
(8~5) O@Hﬁu — 11 C‘I’Hj,auxﬁ?{j,aux
JE

defined by comparing the universal properties of Cs,, 5, = Cq)H e (see (3 )
and Ca,, oy, Jorallj e (pammetemzmg the additional ob]ects (cH ,C3,)

j,aux’
QHV aux
and (€3 o> 3y, ) OVET MIH = My, " and M . =, respectively; cf. [31, Lem.

1.3.2.11 and Prop. 1.3.2.12]). Then the morphzsm induces a finite morphism

(8.6) C@H,(;H — HC@H
jed

j,aux’ 5’Hj,aux

compatible with |i and the canonical morphism 6¢H75H — M;{fﬁ extending the
canonical abelian scheme torsor Ce,, s, — M;};” is proper.

Proof. The canonical morphism Cs,, 5,, — Mi“ is proper because so are the canon-

By
ical morphism: MH n — M, for all j . g
cal morphisms Cg,, 5,, — and Cayy oy, Hywun o foralljeJ

Proposition 8.7. Let = qu 5, denote the normalization of HJHq)H] e e 1
j€
Z4,,6,, under the morphism
(8.8) Zdqyy 0y H:¢ijaux’5njyaux
j€J

defined by comparing the universal properties of Ea, 55, = Zaqy, by, (see (3.15)) and
, for allj € J (parameterizing the additional structures Ta; and T3, .
0Ver By b5y = By by, 0N By by 5 Tespectively, without their respective
positive conditions; cf. [31, Lem. 1.3.2.28 and Prop. 1.3.2.31]). Then the morphism
(8.8) induces a finite morphism

(8'9) :<DH’6H - H‘:‘@Hj,aux76?{j,aux
jed

'_'q:"H

Js 1ux76’H] aux

compatible with , and the canonical morphism éqmm — C;@H,(;H extending
the canonical morphism Za,, 5, — Ca,, .5, also admits a canonical extension of
the Eg,, -torsor structure of the latter (see [30, Thm. 6.4.1.1(5)]), where Eg,, is the
split torus with character group So., .

The Eg,, -torsor structure of E@%M defines a canonical homomorphism

(8.10) Sa,, — Pic(Ca,,.5,) - £ Vg, 5, (0),

giving for each £ € Sg,, an invertible sheaf \f/@%gﬂ (€) over C_"qm,g,{ (up to isomor-
phism), together with isomorphisms

Rosntw Vs (O) @ Va5, (0) 5 Fay s, (C+0)

Coqy.69
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for all £,0' € Sa,,, satisfying the necessary compatibilities with each other making
&) \I/<1>H 5, (£) an ﬁdp s -algebra, such that
HOH

l€Ss,,

(8.11) Zonon =Spec, (@ Tays,0)
cd)?{v‘s?{ ZESq),H

(cf. [30, Prop. 6.2.4.7 and (6.2.4.8); see also the errata)).
The canonical morphism

(8.12) By 60 — (H E@Hj’auxﬁﬂj’aux) x Copom
jed jI;IJ Cq’”_j ,aux ’6Hj Jaux
induced by and is equivariant with the finite homomorphism
(8.13) Eg, — HE%J_,W
jeJ

dual to (b.22)), which is finite because (5.21) is surjective. If (5.22) maps
(b.aux)ies € I1 Sasy, . 0 € € Sa,, then Vo, 5, (L) is isomorphic to the pullback
eJ ,aux

j
of & \I/q)HJ w2745 (4,aux) under .

Proof. By the universal propertles of 2,5, and = X ST T , for all j € J
the canonical morphism (8.8]) is equivariant with the finite homomorphlsm
Suppose that the Eq,H—torsor Eay,00 — Co,, .5, extends to some Eqm-torsor over

C’<1>H 55, Which is finite over [] Eq,, . Then this extension must be isomor-

jed
phic to the §¢H75H defined by normalization as in the statement of the proposition,
and the canonically induced morphism (8.12) must be equivariant with the ho-
momorphism (8.13). As usual, for each ¢ € Sg,,, we define Ug,, 5,,(¢) to be the
subsheaf of (Eg,,.5,, — Cabpy.50 ) O=, i OB which Eg,, acts by the character

5’”_] ,aux

j,aux’

4; for £,0' € Sg,,, we define Aq> 54,000 10 be the isomorphism induced by the
ﬁé¢ -algebra structure of (S, 5, = Cabyy .50 ) O=, i Then the remaining
assertlons of the proposition follow from the constructlons

It remains to show that the Fg,-torsor Es,, 5, — Ca,, s, extends to some

, which we shall abu-

Eg,, -torsor over O@H 5, that is finite over [] Eq,, .

jeJ
sively denote by éqmﬁ,{. Take any jo € J, and take any integer n > 1 such that
Uy, (n) := ker(Gj, (Z) — Gj,(Z/nZ) = CG;,(Z/nZ)) C H;,. Let H' be the pullback of
U, (n) under the canonical homomorphism G(A>) =2 G;,(A>), and let (®yy, d3/)
be any cusp label for My lifting (®4, 7). By the construction in [30, Sec. 6.2.4
and the errata], and by Zariski’s main theorem (see [14, I11-1, 4.4.3, 4.4.11]), we can
construct f@%g,{ — C_’:p%g,{ as an equivariant quotient of éi’wﬁw — 6¢H/75H,, as

201

j,aux’

soon as the latter is known. Hence, we may replace H with H’. Since C_"q,%(;,{ can be
alternatively constructed by normalization over some product of naive moduli (cf.
the proof of Proposition[6.1]and the construction of Cg, in [30 Sec. 6.2.3]), we may

assume that the tautological structure (¢j,, : +Xj, — BJO, o | 1Y;, — Bj,) over
Coy,6, extends to some (G, @ LX;, — BJO, o D1y, — BJO) over C¢H75H (cf.

Proposition [7.4]). By the same constructlon of =4, as in [30, Sec. 6.2.3], the naive
structures 7j, , (without pairing and liftability conditions) are parameterized by
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some & — Ca,, 5, which factors as the composition of a Eg, -torsor & — = and a
torsor = — 6®H,5H under a finite group £’ of multiplicative type. By comparing
universal properties, there is a canomcal E@H equivariant morphism Zg,, s, — =,
which induces a morphism Cg,, 5,, =+ = . On the other hand, up to replacing the
groups H;.aux With finite index principal level subgroups, for all j € J, and replacing

n with a multiple if necessary, the pullback Zax of [] Za,, to C_’:p%g,{

€l
can be embedded in some similar composmon Saux = Saux — C@H’(;H of torsors

under [] Edm and a finite group of multiplicative type, respectively, together
jeJ e
with a finite morphism = — = ,ux equivariant with the finite homomorphism (8.13)),

whose pre-composition with the above morphism Z¢,, 5,, — = lands in Z,,x. Since

j,aux’ 6Hj,aux

=~ . - . iy
Co,, .5, is noetherian and normal, the above morphism Cg,, 5,, — = extends to

— —

. = ! . .
a section Cg,, 5, — = of the above morphism = — Cg,, s,,, under which the
pullback of the Eg,,-torsor = — =’ defines an Eg,, -torsor extension Zg,, 5, over

Clpry 50, With a finite morphism to [] Zg,, as desired. O

cJ J, axllx’ér){_],aux7
J

Proposition 8.14. Suppose that 0jaux € Yo, , for each j € J, and that o €
Ya,, is the pullback of [] 0jaux under the map (5.20). Consider the affine toroidal

H
jed
embedding as in (3.17), which extends to the affine toroidal embedding
(8.15) Ebsin > Ep.sn () = Spec,_ ( @ o, s, (z))
Cay 64 HETY

over C_‘:p%(;w where the tnvertible sheaves @@H’gﬂ (£) are as in [30, Prop. 6.2.4.7
and (6.2.4.8); see also the errata] as well. Then the canonical morphism

(8.16) Ear.0n(0) = Caysy

zs faithfully flat and has geometmcally normal and Cohen— Macaulay fibers, and
qu 5, 18 fiberwise dense in Eg,, 5,,(0). If o is smooth then is smooth and
surjective. Moreover, whether o is smooth or not, & ._q>H,

canonically isomorphic to the normalization of [] Ea,,
jeJ

(o ) is mormal and is
(03,aux) 11 Edyy b5

sy \O

i, aux’ts’H'j,aux

under the composition

— (8-8) — can. —_
(8.17) _‘CDH’BH H Hq)Hj,aux ’6Hj,aux - H Hq)Hj,aux 7(S”"‘j,aux (U‘]’aux)7

jed jed
which (necessarily uniquely) extends to a finite morphism

(8.18) Bar,5(0) = [ [ o o5, (Taux)
jeJ
under which = qu 5, 15 the preimage of [ Ew,,
jeJ

e ) e ? inducing the same 1@)

Proof. Over open subsets of Cg,, 5, over which the invertible sheaves \I_}q>H75H (£) are

free for all ¢ € Sg,, (which is possible because Sg,, is finitely generated), the global

sections of the Oz~ -algebra @ \II@H 5, (£) is the localization of the global
PHHOH

€<1>H

sections of the 05 -algebra & \Ilq;.H 5, (0) at a multiplicative subset generated
Pr0n teav '
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by finitely many elements (which is possible because ¢V is finitely generated; cf.

[24, Ch. I, Sec. 1, Lem. 2]). Hence the morphism (8.15)) is an open immersion. The

canonical morphism (8.16) is flat because the &5~ -algebra @ Ty, 5, (0) is a
HOH leoV

direct sum of invertible sheaves over C"@H’(;H. By [24, Ch. I, Sec. 1, Thm. 1’ and 2],
the fibers of are geometrically normal, and contain the corresponding fibers
of Eg,,.5,, as nonempty open dense subsets. By [22, Thm. 1] (cf. [23, Thm. 4.1]),
the fibers of are Cohen-Macaulay. If ¢ is smooth, then is smooth
because it is flat and has geometrically regular fibers, by [24, Ch. I, Sec. 1, Thm.
4]. Whether o is smooth or not, since is faithfully flat and of finite type, and
since C_"q,%(;,{ is noetherian and normal, it follows from the normality of the fibers
of (8.16) and from [35, 21.E] that g, 5, (0) is also normal.

By the definition of Zg, 5, (see Proposition , the normalization of

HE¢Hj s (0j,aux) In Za,,.5,, under the composition (8.17) can be
jeJ ’

identified with the normalization of [] Eg,,
jed

On

j,aux

. (0j,aux) I Eq,, 5, under the

composition

= - can. TT =
(8.19) _‘CDH’(SH H ‘_‘@’Hj,aux’é’Hj,aux - H ‘_‘@’Hj,aux’aﬂj,aux (U‘]’aux)'
jes jes

Thus it suffices to show that E'@H,(;H (o) is canonically isomorphic to this normaliza-
tion, or that (8.19) extends to a finite morphism as in (8.18]). Since the Qs¢-span

of 0V is the image of the Qso-span of [] afaux under the map (5.21)) (see [I8] Lem.
jeJ
3.2]), this follows from the last paragraph of Proposition as desired. O

Let o and {0j,aux }jes be as in Proposition Let
of =={l€Se, : ({,y) >0Vy € o}
and
ot ={eSs, : (L,y)=0Vyco}=a"/oy
as usual (seei [30, Def. 6.1.1.8 and 6.1.2.5]). Consider the formal completion
X®,,,60,0 of 23,5, (0) along its closed subscheme

é‘I’HﬁH,U = Specﬁ ( D \Ij(I)H,(SH (E))’

Cagy 69, MEOTT

which extends the formal completion Xs,, 5,,,0 0f Ea,,,6, () along its closed sub-

scheme Eg,, 5,,,0 = Spec D Yoy, 6 (E)); and consider the formal com-

ﬁcq’ﬂﬁy (ZEO'L

OH; ux 1 Tiaux)ic of le_l = PH; qux OH
J

pletion X(q,,. (0j,aux) along its closed sub-

,aux’ j,aux

scheme [[ Ze,,. .

jey e
group o1, which is the quotient of Eg,, dual to the subgroup o+ of Sg,,, as in [30,
Thm. 7.2.4.1(5)]. By construction, the canonical morphisms ., 5,0 — Ca,,.54

Consider the split torus Eg,, , with character

OH; aux T aux ”

and Z¢,, 5,0 = Cay, s, are (compatible) Eg,, ,-torsors.

Lemma 8.20. The subscheme Zg.,, 5,0 0f Sa,,.5,(0) is the preimage (with its

reduced structure) of [] E,,. under the canonical finite morphism

€3 J,aux’éﬂj,aux’o-jva“x
J
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(18.18) of schemes, and the induced canonical morphism

(8.21) Xoo 60,0 = x(‘bﬂjyaux75ij.dux70'j,auX)j€J
of formal schemes is finite. (We cannot expect 2o, s,,,o to be the schematic preim-

age of H] By, e 5 because such a preimage is not reduced in general.)
je

x2%j,aux’
Proof. 1t suffices to show that Eg,, 5, - is the preimage (with its reduced structure)
of 1 Zay. 60 . under (8.18]).
jEJ j,aux j,aux
By definition, the closed subscheme Zg,, 5,0 Of Ea, .5, (0) is de-
fined by the 0= -ideal corresponding to the Ok -submodule
Eayy.69(0) Cagon

Jj,aux

zg?;g Ve, 5, (£) of the ﬁ(j@wé“—algebra egv Vo, 5, (). Similarly, for each

j € J, the closed subscheme
is defined by the 0Oz

= ; of = O;
éHj«aux’éHjﬂaux’a-"aux <I>”"‘j,aux’(S”"‘J',aux( j,aux)

IR (07.aux)-ideal  corresponding  to  the
j,aux j,aux
Oc, N -submodule & Vo, o (b aux) of the
M aux OH aux 0} aux €(03,mu )Y j,aux 1OHj aux
ﬁcq)%j,aux'&%j,aux _algebra 0 EEBO.V \I]q)Hj,aux’éHj,aux (gj’aux). Slnce
J,aux j,aux
v v
(JTorau)” =TT o au
jed jed
and
vVo_ v 1
([T = (T] 7%a) = (LT o00)
jeJ jel jed
(where “—” means set subtraction), the closed subscheme [] Zq,, s, -
i j,aux j,aux ’
jed
of T1 E®i, 005, aue (Tjaux) Is defined by the Oz, . (g),.,)-ideal corre-
jed : ! jET j,aux j,aux
sponding to the &'y Cop  omy. -submodule
jed j,aux j,aux
D X Ve, NS (gj,allx)
\2 _]EJ J,aux Jj,aux
((Zj,aux)jeJ) € ( I1 Uj,aux)o
jed
of the 011 Cop oy -algebra
i P aux M aux
(jlegj ‘I]“I’Hj,aux M5 aux (Ej,aux)) :

((éj,aux)jg) € (jl;[J Uj,aux) !

\

Since the Qsg-span of o (resp. o) is the image of the Qs-span of (H O‘j’aux)o

j€d
(resp. (I ajﬁaux)l) under the map (5.21)) (cf. the proof of Proposition [8.14)), the
jeJ

desired assertion follows from the last paragraph of Proposition [8.7 (]

As explained in [30)}, Sec. 6.2.5], using the language of relative schemes (see [17]),

for each j € J, the formal scheme X(q,, 5, o ..m05es Carries a tautological
j,aux 9%, aux 173,
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tuple

(8 22) (ZHj,au;u (Xj,auxa Y},auxa (Z)j,auxv gOzQﬂ‘h‘,aux’ SOS:Hj,aux)’
. . v
Bj,auX7 AB‘j,aux7 UBj aux s (pfl,Hj,aux)a 5Hj,aux7 (CHj,aux7 CH; aux? THj,aux))’
where (9753, 905, ,..) induces the (022 w90, M) 0ue) I Prgy - Let us
denote the pullback of 1) t0 Xo,,.65,0 DY

( ) (ZHj,amu (Xj,auXa Y},auxa (bj,auxv 95’:2 JHj aux? 5587-[3- aux)

8.23 ~
(Bjauw: A, oo 18, e PooH ) O s (F) s CH; s Ty )
Similarly, for each j € J, the formal scheme Xa,, 5,0 = Xayy d5,.0; (see (3.20))
carries a tautological tuple

(ZHj ) (XJ7 1/jv ¢J7 9022,7-[j ’ QOON,’H_, )7

(8.24) _
(Bja )‘Bj y UB;s P—1,H; )7 6'Hj ) (CHJ' ) c7\ftj » TH; ))a

where (90:“27%,@&7_“) induces the (©_2 4, P0,3;) in ®3;, which extends to a tau-
tological tuple

(Zwy, (X5, Y5, 05, B0 30, Boony )

(8.25)
(B, Agig P-15), 0nys (G Gy, Ty)

over the formal scheme .’{@%5%0, where (75 3., Fop,) and F_1 5, are defined

only over Xg,,,

oo = Xty 6.0, and where (G, , T) is defined only over

X on0 = Xauou.0 but nevertheless induces a tuple (&, ¢, 7
all of Xg,, 5,0, which in turn induces the tuple (€},aux & auxs Thaux) induced by
(6Hj,aux’ é;/'[j’aux’ 7_—‘,"Lj,aux)'
By construction, (8.23) is induced by (8.25) in the following sense:
(1) (ZHj,a\lx’ ®Hj‘aux = (XJ aux, Y ,aux» ¢)J aux; P—2 7‘[1 aux? CPO,Hj,aux)v 6Hj,aux) is in-
duced by (Z"vacb’;‘-lj ( K J7¢J7§0 2’HJ7§00’H Via
(2) (ija“x’)‘ﬁj,aux’iﬁj,aux’(pflﬂivauﬁ is induced by (B )\B Vi -1 ).
(3) (234 nue> Po2; ) 18 induced by (G5 5, 555, ) by forgettmg the factors
at p and by forming the H; aux-orbits.
(4) (G2 > Crty s THjaue) 18 also induced by (G, &y, Tr;) by forgetting the
factors at p and by forming the H; aux-orbits.
As explained in [30, Sec. 6.2.5], the tautological tuples (8.22)), (8.23)), (8.24), and
(8.25|) define the respective Mumford families

7j) defined over

(826) (Oijaux, QQ/\j,auxa QQZ.j,au)u OO‘HJ 1ux) - x(‘bﬂj aux’ 6'Hj,auXao'j,aux)j€J’
(8.27) (Uéj,auxa ij,auxa E3,auxa U&Hj,aux) - :%‘1)7-175%70’

(828) (OGI’ O)‘lv j O‘HJ) - xq’%ﬁnﬁ = x‘l’n 105,05

and

(8.29) (Q?Gp QQ)\]? i, 047-[ ) — Xayy,60,0

where Od’;.[j is defined only over %qm,gwg %)Q X Xy 60,0 = xqmj,sﬂj,aj-
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Remark 8.30. Although o was assumed to be smooth in [30, Sec. 6.2.5], the ar-
gument there only requires the excellent normality of Eg,, s,, (0) and Eg,, s, (0),
which we have shown in Proposition [8.14

For all j € J, by the functoriality of Mumford’s construction, we know that

(8.27) is canonically isomorphic to the pullback of (8.26) under (8.21f); that (8.28)
is canonically isomorphic to the pullback of (8.29); and that (8.27)) is induced by

1} By the universal property of M‘;fzjraux’zj ... as in [30, Thm. 6.4.1.1(6)], the
Mumford families (8.26)), for all j € J, induce a canonical morphism

<831) x(cb’!-tj’aux76’Hj1aux7‘7j>au>c)j€‘] - H Mg-([)iaux,ilj,aux‘

jeJ
Similarly, since (8.27) is canonically isomorphic to the pullback of (8.26]) for each
j € J, the Mumford families (8.27)), for all j € J, induce a morphism

(8.32) i‘i’ﬂﬁn,a - H Mgfzjr,auxazj,aux7

jeJ
which coincides with the composition of with . Since is induced
by for each j € J, by the universal property of l\_/‘l'fj._‘zrE as in Proposition
the morphism lifts to a morphism

(833) £¢’H75’H70’ - Mg—?fﬁh

whose composition with ([7.8)) is (8.32).

9. STRATIFICATIONS OF TOROIDAL COMPACTIFICATIONS

The main goal of this section is to show that an analogue of [30, Thm. 6.4.1.1(2)]
is true for I\_/’Ig‘j’“Z (see Theorem below).

Definition 9.1. For each (Py,dy,0) as in [30, Def. 6.2.6.1] such that o C P$H

tor

and o0 € Xg,,, let Z[(‘i,%(;%a)] denote the subset of I\_/I’H’E consisting of all points t
satisfying the follow property: For any morphism Spec(V) — ngfz, where V is a
complete discrete valuation ring with fraction field K, algebraically closed residue
field k, and discrete valuation v, which maps the generic point Spec(K) to some
mazimal point (see [I5, 0, 2.1.2]) of My and maps the special point Spec(k) to
t, there exist some (Z;*L{,@;*L_L,é;:{) and some ot € E‘I)i as in Theorem where
ot is minimal among all choices, such that [(@%,5%01)] = [(Py, o3, 0)] (i.e.,
(@i,cﬁ[,oi) and (Dy, 6y, 0) are equivalent as in [30, Def. 6.2.6.1]).

Remark 9.2. As explained in the proof of [30, Prop. 6.3.3.11], the requirement that
ot is minimal among all choices implies that vo BY € o%, not just in the closure 7*.

tor

Lemma 9.3. The underlying set of I\_/'I%E is the disjoint union of Z[(QH,5H7U)], with
[(D3, 0%, 0)] running through a complete set of equivalence classes of (g, dy,0)
(as in [30, Def. 6.2.6.1]) with o C P;[H and o € Xg,, € X.

Proof. The fact that l\7|§_‘zrE is the union as in the statement of the lemma follows
from Theorem Since I\7IP,,_‘L”E is noetherian and normal, given any point ¢ of
I\7I§_‘Zf2, all morphisms Spec(V) — |\7|§_‘zrE as in Deﬁnition (for some V) that
map the special point to ¢ must map the generic point to the same maximal point
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n of My. Let us denote by (A, A, 4y, azn ) the object parameterized by the
canonical morphism  — My. Since the assignment of [(‘1)2{, (53{, o+)] to a morphism
Spec(V) — l\_/‘lg_‘zrE as in Theorem m is determined by the degeneration of the
pullback of (A, Ay, iy, p,n) to Spec(K), which is unchanged under faithfully flat

extensions of discrete valuation rings V/, it follows that [(@;f{, 5%, ot)] depends only
on t. Hence the union in the statement of the lemma is disjoint, as desired. ([l

Lemma 9.4. For each (Pyy,03,0) (as in [30, Def. 6.2.6.1]) such that o C Pg%

and o € Yo, € X, the subset Z[(qm’g%g)] of Mgft’rz is the (set-theoretic) image of
the morphism

(95) écbﬂvéﬂao- — Mg_fx
induced by (8.33)).

Proof. Since {j is induced by the universal property of I\_/I’gi’fz, the image of 1'

lies in Z’[(%,EW)] by definition. Conversely, let ¢ be any point of 2[@%

viewed as a point of Mig's;. Let

53,0 also

(9.6) Spec(V) — Mig's,

be as in Definition [0.1] which maps the special point to ¢, such that the pullback
of the tautological object over My to the generic point of Spec(V') extends to a de-
generating family (GT, AT, i, a;_[) of type My, over Spec(V'), which defines an object
of DEGpg1,m,, (V) corresponding to an object in DDpgr, m,, (V) under [30, Thm.
5.3.1.19]. For each j € J, as explained in the proof of Theorem the pullback
of the tautological object over My, to the generic point of Spec(V') also extends to
a degenerating family (GJT, )\JT, z';[, aLJ_) of type My, over Spec(V'), which defines an
object of DEGPEL,MHj (V') corresponding to an object in DDPELMHj (V') under [30L
Thm. 5.3.1.19]. Since t is a point of Z[(%gw)], these objects in DDpELMHj V),
for all j € J, induce objects parameterized by iq,%(;%a as in ll so that the
degenerating families (GJT, )\J-T, ijT, a;{j) are isomorphic to the respective pullbacks of
the Mumford families , for all j € J, under a uniquely determined morphism

(9.7) SPE(V) = Xy .0

Since 1) is induced by the universal property of I\7IE:Z’;Z, its pre-composition with

(9.7) is induced by (9.6). Therefore ¢ lies in the image of (9.5), as desired. O

Lemma 9.8. With the setting as above, suppose that X' is any compatible choice
of admissible smooth rational polyhedral cone decomposition data as in [30, Def.
6.3.3.4], which defines a smooth toroidal compactification M%f[fz, as in [30, Thm.
6.4.1.1], and suppose that X' is a refinement of ¥ as in [30, Def. 6.4.2.2] (with the
roles of ¥ and X' there interchanged; such ¥/ always exists by compatibly refining
the cone decompositions X, as in the proof of [30, Prop. 6.3.3.5]). Let I\/Igfz,rE =

Mg_‘ZE%Q, which we view as an open subscheme of M%fz. Then there exists a

canonical proper surjective morphism

(9.9) Mgf[fg, — M;f[’fg,
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mapping Z((@,, s,y to

Z((@0,600,0)) = L[(@30,60,00] T Mi's

whenever T € ¥y € ¥ is contained in 0 € ¥g, € ¥ in PgH, Moreover, each
Z((®4,,5,,0)] 1S the union of the images of all such Zjq,, s, - In particular, the
open dense stratum Zjo,0,{0})] of M';_‘Zfz is the isomorphic image of the open dense
stratum Zj0,0,{0})] = Mun of Mg_‘t’fz,, which must coincide with the open dense sub-

scheme My = My @ Q of Mg, = I\_/’IEr‘zrE ®Q (see Lemma .
> : :

Consequently, the subsets Z[(@H75H7a)] of MH s, with [(®yy,09,0)] running
through all equivalence classes as in [30, Def. 6.2.6.1], are locally closed and define
a stratification of M, as in [30, Thm. 6.4.1.1(2)] (with incidence relations
described as in the second paragraph there, and with My = Z o {0}y being an
open dense stratum). Then each Zys,,s,.0) admils the structure of a locally
closed subscheme of Mi's, (with its reduced structure).

Proof. The canonical morphism exists by Proposition (with the ¥ there
given by the ¥/ here) and by comparing the universal properties of M} oy and Mto}r
n [30, Thm. 6.4.1.1(6)] and Theorem respectively, which is proper because
M%9"., is proper over So.

Suppose ¢’ is any point of the subset Zs,, s, of Mmrz,7 which is mapped
to some point ¢ of Mtor Suppose Spec(V) — I\/lgg sv is any morphism, where
V is a complete dlscrete valuation ring with fraction feld K, algebraically closed
residue field k, and discrete valuation v, which maps the generic point Spec(K)
to some maximal point of My, and maps the special point Spec(k) to ¢'. Then its
composition with defines a morphism Spec(V) — M%_‘zrz as in Definition
and it follows that ¢ lies on the subset Zjg,, 5,,) Of Mﬁz, by [B0, Thm. 6.4.1.1
(5) and (6)] (and the property of the Mumford family (G, Y\, “i, Yay) carried
by X¢,,,6,,,~ for each representative (P4, 02, 7) of [(Pw, I, 7)])-

On the other hand, suppose ¢ is a point of Zjg,, s5,,0)- By definition, there
exists some morphism Spec(V) — My, as in the statement of Definition for
some (Zg_t7 <I>;7t_l7(51 ) and some ot e Y.p: as in Theorem where ot is minimal
among such choices, such that [(@fm 5;,01)] = [(Py, 03, 0)]. Since is proper,
Spec(V') — Mig's; lifts to some morphism Spec(V) — M§";,. Since ¢* is minimal
among such choices, we have v o Bt € ot C P+ (not just in the closure ), and

’H
hence vo Bt € 7t C PJr for some ¥ € E’ . By [30, Thm. 6.4.1.1(6)] and its
proof based on [30 Prop 6 3.3.11], Spec(V) — Mg_‘ZfE, must map the special point
Spec(k) of Spec(V) to the [(@%,5;{[,71)]—stratum Z[(‘i’iﬁ%fi)} of M§%'s;,.
Thus we have shown that each Z((,, s, 5) is the union of the images of all

Z{(,,,5,,7)) With 7 € ¥ € ¥’ contained in 0 € ¥g,, € ¥ in P} . The remaining
assertions of the lemma then follow from this and from Lemma O

Remark 9.10. The notation in Lemma might be confusing, because M%f[fz, and

I\/I%_‘ZfE (and also Z{(@,,,5,,7)] and Z{(@,,.5,,0)]) are defined rather differently. This
will be justified in Corollary [T1.8] below.
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Lemma 9.11. For each (P, 03,0) (as in [30, Def. 6.2.6.1]) such that o C Pgﬂ
and o € Yg,, €3, the subset Z((s,, 5,,.5)) of Z[@H’g%g)] is dense in Z[(q,%(;%g)].

Proof. This follows from Lemma because éqm,g%g is smooth over é@H’éH and

hence is flat over Spec(Z,)) (see Lemma 8.20)). O

Lemma 9.12. For each j € J, suppose that (Zyq; .., Pr; e OH;. mx) is induced by

(Zg, Py, 03¢) as in l} and that 0 aux € E@H and 0j,aux C P b, S0 that
ux j,aux

the locally closed stratum Zi,,. s 1s defined as in
iaus0 0 aux

[30, Thm. 6.4.1.1(2)]. Suppose o € Xg,, is the pullback of T] 0jaux under (5.20),
jed

which lies in P+ because 0 ux C P+HJ . foralljeJ. Then Z[(q;.H 530,0)] 1S open

) Of Mtor

10j,aux Hj,aux;2j,aux

and closed in the preimage of the locally closed stratum [] Zj(a,,.

jed
of T1 Mt"]r ! under the finite morphism (|7 . Consequently, Z[(q’nﬁn,ﬂ)] also
i Jaux

admits the structure of a reduced locally closed subscheme of Mﬁr‘[)rz

j,aux ’6’Hj,aux 10'j‘aux)]

Proof. By comparing the universal properties (as in Theorem and Definition
1| for Z[(@,H 51,0, and as in [30, Thm. 6.4.1.1(6) and its proof based on Prop.
6 3.3. 11] for Zjw,. s o1.au)]> for all j € J), the canonical morphism |D

j,aux 2 9Hj aux

[( 7 ] 1j aux éH‘ 30 aux)]’ a‘Ild tlle iIlteI SeCl iOl (@) tl i age (@)
j,au jyaux’7Jy € f
‘l' “ltll | l Z 76H- 30j,a ux)] ]'S t] . f SuCh imag S. [(‘I/ ,5/ , ,)] iS
]E] ;aux j,aux s € umnion o (6 I 2
[( tj,aux 19H; 2T aux)]7 :hEIl tlle O'Illu“ i—l"aIlkS (@) [((PH 9 67{)] d
J,au jyaux )y an

jed
[(®%, 0%,)] have the same magnitude (see [30, Def. 5.4.2.7 and 6.3.3.7]), because they
induce the same [(®3; ..., 0%, ..,.)] (for any j € J), and hence none of [(®y, 0%, 0)]
and [(®),,0%,,0')] can be a face of the other (as in [30, Def. 6.3.2.14]), because
o is assumed to be minimal among all choices in Definition By Lemma
this shows that Z((s,, 5,,0)) is open and closed in the preimage (Wlth its reduced

structure) of H Z[(@ 3, o8y ws i) UDET |.| By Lemmas and [9.11] it

follows that Z[(@H 51,0)] is also open and closed in the preimage (with its reduced

structure) of H Z((®a. 5y 0] UDET 1] as desired. O
§ a0 s,

Theorem 9.13 (cf. [30, Thm. 6.4.1.1(2)]). With the setting as above, I\7I§_‘ZrE has a
stratification by locally closed subschemes

Migs = I Ziewswor:
[(®2,0%¢,0)]
with [(®y,0%,0)] running through a complete set of equivalence classes of
(Pyy,09,0) (as in [B0, Def. 6.2.6.1]) with o C P$H and 0 € Yy, € X, where
each stratum z[(q)%[;%g)] is as in Definition and Lemma . (Here the
notation “[]” only means a set-theoretic disjoint union. The algebro-geometric
structure is still that of Mtor .) In this stratification, the [(®%,,0%,,0")]-stratum
Z[(q’w‘sw‘")] lies in the closure of the [(®, o3, 0)]-stratum Z[(%,éw)] if and
only if [(Py,0n,0)] is a face of [(PYy,04,0")] as in [0, Def. 6.3.2.14] (see also
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[30, Rem. 6.3.2.15)). The open dense subscheme My of Mtor (see Lemma
coincides with the [(0,0,{0})]-stratum Z[(O,o,{o})] in this stmtzﬁcation.

Proof. By Lemma l\_/‘IP,,fL’rE = (@ %J . Z[(%M,o)], with [(®y,d3,0)] running
HHOH O

through all equivalence classes, with o C P;ﬁn and ¢ € Y¥g,, € ¥. By defini-
tion, the assignment of [(®3; .. 0% aue> Tjaux)] t0 [(P2s, 024, 0)] as in Definition
respects the incidence relations as in [30, Def. 6.3.2.13], for each j € J. There-
fore, by Lemmas @ and [0:12] in order to show that the above union defines a
stratification of M;_‘ZTE with the desired incidence relation described as in the second
paragraph of this proposition, it suffices to note that, by Lemma[0.8] its pullback to
M = M%_‘zrz ®Q does. Similarly, in order to show that the subscheme Z[(o 0,{0})]

of I\/IEr‘z,rE 001n01des with I\/IH, it suffices to note that, by Lemma the subscheme
Z[(O,O,{O})] = Z[(070){0})] (% Q of M%_cz)rz = M%—?TE (%) Q coincides with Mq.[ >~ My % Q. O

Remark 9.14. In Theorems and |12.16| below, we will see that the corresponding
analogues of [30, Thm. 7.2.4.1 (4) and (5)] are also true for M¥;™.

10. COMPARISON OF FORMAL COMPLETIONS

The main goal of this section is to show that an analogue of [30, Thm. 6.4.1.1(5)]
is true for M3y, (see Theorem (10.13 below).
Let z[(q)%(;%g)] be the [(®y, 03, 0)]-stratum of Mggrz as in Theorem Con-

sider the formal completion (M%‘t’rz)g

’ [(®34,69(,0)]
[30, Thm. 6.4.1.1(5)], to form the formal completion along a given locally closed
stratum, we first remove the other strata appearing in the closure of this stratum
from the total space, and then form the formal completion of the remaining space
along this stratum.) Then the canonical finite morphism (7.8]) of schemes induces

a canonical finite morphism

of M'E;Z’E along Z[@%(g%g)]. (As in

(10.1) (M) 5

A
tor
( j j )
Z[(<1>H 89450)] . Hj,aux:2j,aux I Z[(q)

j€ed s A a0y aus Thau)]

of formal schemes.
By [30, Thm. 6.4.1.1(5)], the morphism (8.31]) induces a canonical isomorphism

A
™~ tor
(102) %(q:"HJ aux’ ’vaaux-,a'j,aux)jEJ - ( MHj,auvaj,aux)

jed jI;IJZ[(q)”j,aux’éﬂj,aux"’ivaux)]
By Lemma the morphism (8 induces a morphism
(10.3) }Iq,H Sai0 (Mtor )

Zi(@4,55,001

which is compatible with (8.21]) and (10.1]) by construction. The pullback of (10.3])
to characteristic zero defines a morphism

(10.4) Xay,00.0 = (MiT's)

Let X' be as in Lemma so that we have the canonical proper surjective
morphism Mi's,, — M0, as in (9.9). Consider

10.5 = f= U =
( ) Dgq,09 (o) rexy. mCo D3y,09 (7),

A

Zi( @y 690,00
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the toroidal embedding of Z¢,, 5,, defined by gluing the affine toroidal embeddings
Eay,,00(7) as in [30, Sec. 6.2.5], with 7 running through the cones in X5 that are
contained in ¢. Then there is a canonical proper morphism

(10.6) Hdyy,6u (‘7), — Edyy,0n (0)
(cf. [24, Ch. I, Sec. 2, Thm. 8]), which induces the identity morphism on Eg,, s,

by restriction. The preimage of the closed o-stratum Zg., 5,0 of Ea,, s, (o) under
this proper morphism (with its reduced structure) is the union

10.7 = = U S Sy re
( ) Dy ,09,0 TGE&,H,TCU H0H,T

Let X4, 5,,.» denote the formal completion of Zg,, 5,, (0)" along its closed subscheme

)

Eilm,éu,a' Then (10.6) induces a proper morphism

(10.8) Xy 50,0 — Xbo 60,0
By the same argument as in [30, Sec. 6.2.5], we also have a Mumford family
(10.9) (VG X, i, V) = X 50000

which is canonically isomorphic to the pullback of the above Mumford family ({8.28])
under the morphism |D Let us denote by Zf(q,% 532,0)] the preimage (with its

reduced structure) of Zyp,, 5, ,0) under . By Lemma W Z'[@H’&H’J)] is the
union of Zj(g,, s, With the same 7’s as in (10.5). Then (9.9) induces a proper
morphism

10.1 Vi M) :

(10.10) (M3 )ZE@H,&H,G)} = ( H’Z)Z[@wuwn

By the same argument as in the proofs of [30, Thm. 6.4.1.1(5)] and [29], Prop. 4.3],
which are based on [30, Thm. 6.4.1.1(6)], there is a canonical isomorphism

~ or \A
(10.11) X, 0.0 — (M)

!
Zi(@y630,0)]

such that the Mumford family ((10.9) is the pullback of the tautological degenerating
family (G, A, i, agy) over M%‘jfz, under the composition of (10.11)) with the canonical

. A . .
morphism (Mgfzrz,)z, — MY%,,. Hence we have a commutative diagram
’ [(Pgy,63,0)] ’
([To-13) A
/ tor
. —_—
(10.12) bone — ~ — M)z,
[(®3y.034,0)]
10.8[ llo.lo
A
xq) s s (Mtor.
HoOHT @04 ( H’Z)Z[(éq{,éﬂ,o‘)]

by the universal properties of the objects involved.

Theorem 10.13 (cf. [30, Thm. 6.4.1.1(5)]). With the setting as above, the mor-
phism (10.3)) is an isomorphism.

Proof. Since (8.21]) and (10.1)) are finite, and since (10.2)) is an isomorphism, (10.3)) is
also finite; that is, under ([10.3)), the preimage of each affine open formal subscheme
Spf(R,I) of (Mggfz)/i\[(P . in %q,%(;%g is isomorphic to Spf(R, I) for some finite

- SHOH I -

R-algebra R and for I :=1-R C R (cf. [14, 1II-1, 5.1.4]). In order to show that
(10.3) is an isomorphism, it suffices to show that, over each such Spf(R,I), the
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finite morphism Spec(R) — Spec(R) induced by is an isomorphism. Since
M%‘fz and é@%(gﬂ (¢) are flat over Sy and excellent normal, R and R are flat over
Z(py and noetherian normal. Hence, by Zariski’s main theorem (see 14, 111-1, 4.4.3,
4.4.11]), it suffices to show that the induced finite homomorphism

(10.14) R2Q— R®Q
Z Z

is an isomorphism.

Let 4 := Spf(R®Q,I® Q) and i = Spf(R@Q,f@@), the latter being the
Z Z Z Z

preimage of the former under the (finite) morphism (10.4), so that (10.14) can
be identified with the canonical homomorphism T'({, Oy) — T'(, Og). Let W
(resp. ') denote the preimage of & (resp. {) under (10.10) (resp. (10.8))), with

the induced structure of an open formal subscheme of (M%_‘Zrz/)z, (resp.
’ [(®gy,69,0)]
X% 5. ). By [14] III-1, 4.1.5] and by Zariski’s main theorem (see [14, III-1, 4.4.3,
HOH O

4.4.11)), since the proper morphism induces by restriction the identity mor-
phism on the open dense subscheme My, and since M‘;_‘z s is noetherian and normal
by construction, the canonical morphism I'(4, Oy) — T'(4l', Oy ) is an isomorphism.
Similarly, since the proper morphism induces by restriction the identity mor-
phism on the open dense subscheme Zg,, 5,,, and since Eg,, 5, (0) is noetherian
and normal by construction, the canonical morphism I'(§L, 0g) — NI Og) is an
isomorphism. Since the diagram is commutative, the morphism
induces an isomorphism ' 5 1. Combining all of these, the canonical homo-
morphism F(ﬂ ﬁu) — (4, Og) can be identified with the canonical isomorphism
LW, 0y) S T(W, 0 &), and it follows that is an isomorphism, as de-
sired. (]

Corollary 10.15. With the setting as above, Z[@%MU)} is canonically isomorphic
to the scheme i@n S1,0 in Lemma which is an E@H o-torsor over the scheme

C’<1>H 54, broper over M * (see Proposztzons and 8.4). Consequently, Z[@H 544,0)]
is smooth over C‘iw 5, and hence it is ﬂat over So and normal because C’q>H 5w

is. Moreover, Z[(q)% )] s proper over MHH if o is top-dimensional in P;CH -

5,
(Sa,, ), in which case o = {0} and the torus Es,, , is trivial.

Proof. The ﬁrst assertion follows from Theorem [I0.13] because the canonical iso-
morphlsm ) between formal schemes necessarily induces a canonical isomor-
phism S, 55,0 = Z[(q),H 5,0)] between the supporting schemes (with their reduced
structures). The remaining assertions are self-explanatory. O

Corollary 10.16. For each j € J, let (G aux, )\Laux,z?j,aux, A2 ) — Mg_‘ZfE denote
the pullback of the tautological tuple (Gj aux, Aj,aux; 7j,auxs OH; aux) OVET M%—?jr,m,x,z

j,aux

under the canonical morphism |\7|§:er = M35 induced by . Consider
any open immersion

—tor \A
(10.17) Spf(R, 1) = (M3x)7, o
where R s a noetherian domain which is complete with respect to some ideal I.
Then the preimage of MH under the canonical morphism Spec(R) — M’ggrz induced
by is the mazimal open subscheme of Spec(R) over which the pullback of
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G aux s an abelian scheme for at least one (and hence for every) j € J, which
coincides with the preimage of E,, 5, under the canonical morphism Spec(R) —

E,,.0, (0) induced by the composition of (10.17) with the inverse of (10.3).

Proof. This is because is defined by the universal property of I\_/’Ig‘jr2 as in
Theorem using the Mumford families , for all j € J; because a fiber
product of semi-abelian schemes is isogenous to an abelian scheme exactly when all
the factors are abelian schemes; and because the Mumford families (whose
self-fiber products induce by isogeny) are abelian schemes exactly over the
preimage of éqm,gﬂ, by the last assertion in Proposition [

Corollary 10.18. My @ F,, is dense in M5, @ F,,.
Z =z

Proof. This follows from Proposition Theorem Theorem [10.13] and
Corollary [10.16 |

11. SEMI-ABELIAN EXTENSIONS OF TAUTOLOGICAL OBJECTS

The main goal of this section is to show that, for each j € J, the degenerating
family of type My, over My, in Proposition further extends to a degenerating

family of the same type over |\7|§_‘zrE (see Theorem |11.2| below). As a byproduct, we
will also improve Theorem (see Theorem below), and deduce from this
that, up to canonical isomorphism, the scheme MY, constructed in Section |7 is

independent of the auxiliary choices in Sections and (see Corollary below).

Lemma 11.1. Suppose (Py,03,0), where o C PgH and o € Xg,,, is as in [30,
Def. 6.2.6.1], and suppose [(Py,dx,0)] # [(0,0,{0})]. Let U be any open sub-
scheme of Mg‘{’fz that is a union of strata and contains Zj(q,, 5,0y as a closed

subscheme; and let U’ be the complement of 2’[@%5%0)] in U, which necessarily
contains Z[(O,o,{o})] = My, because [(Dy, 03, 0)] # [(0,0,{0})] (see Theorem ,
By definition, the formal completion U of U along Z’[@H’g%(,)] can be canonically
identified with (M’ggrz)%\

. N ’ [(®3¢.63,0)]
phism Xo,, 5,0 — Y given by () Suppose j € J, and suppose the tautological
object (Aj, A, ij, az;) over My, = My (see (2.1)) extends to a degenerating family
(Gjur Moy ig,ur, g ur) of type My, over U’ (see [30), Def. 5.3.2.1]), where oy, v
is only required to be defined over My. Then this degenerating family further ex-
tends to a degenerating family (Gju, \j,u, 4,0, a;,u) of type My, over U.

Proof. By the construction of , and by the construction of the morphisms in-
volved in the commutative diagram , for each affine open subscheme Spec(R)
of U inducing an affine open subscheme Spf(R",I) of Z%qm’g%o = 4, with canon-
ical morphisms Spec(R") — Spec(R) — U, there is a canonical isomorphism over
the preimage of My in Spec(R”") between the pullbacks of the tautological object
(Aj, Ay, 45, agy;) over My, = My and the Mumford family (@GHJ-7 Q?Xj7 oz} QQo‘Z;.Lj)
over Z%qm,g“,g (see (8.29)). Since I\_/'IgfzrE is excellent normal, both R and R" are
noetherian normal (see [14, IV-2, 7.8.3.1]). By [62| IX, 1.4], [I0, Ch. I, Prop.
2.7], or [30, Prop. 3.3.1.5], the above canonical isomorphism uniquely extends to a
canonical isomorphism over the preimage of U’ in Spec(R”") between the pullbacks
of (Gj,ur, \j,ur, 45,07, ap;,u) and (Qéj ij, Uf_i}, U&Hj), which induces a canonical

. By Theorem |10.13}, we have a canonical isomor-
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isomorphism between the pullbacks of the relative ample (Ide,U/ o) P, and
(Idoéj, Oxj)*P@@j (see [52, XI, 1.13] and [30, Thm. 3.4.3.2, Prop. 3.3.2.2, and
Thm. 3.3.2.3]). Therefore, by the theory of fpqc descent (see [I3| VIII, 7.8] and
[40, Thm. 1.1]), the pullback of (Gj v, Aju-, 4,07, aw;,ur) to the preimage of U’ in
Spec(R) extends to a degenerating family of type M over Spec(R), whose pullback
to Spec(R") is canonically isomorphic to the pullback of (Oéj, @Xj, O%;, QQ62%.).
Since such extensions over affine open subschemes of U are unique up to canonical
isomorphism, they are compatible with each other and define a degenerating family
(Gj,u, Nj,u, iU, az,,u) of My, over U, as in the statement of the lemma. O

Theorem 11.2. For each j € J, there is a degenerating family (@j,xj,{;,d'yj) of
type My, over l\7|§_‘t’rE (see [30, Def. 5.3.2.1]), whose pullback to M3 = My, (see
(2-1))) is isomorphic to the tautological object (Aj, A;, i3, aHj) over My, and whose
pullback to |\7]7.¢ is isomorphic to the degenerating family of type My, over |\7]7.¢
which was denoted (A},Xj,%},@'%j) in Proposition . (The notations for Xj, Z},
and dy; have been, unfortunately, overloaded and dependent on the conteat.) For
each (P, 69, 0), the pullback of(@j, Xj, %;, ;) to .’%¢H15H,U via (see Theorem
18 camonically isomorphic to the Mumford family .

Proof. Using the incidence relation among the locally closed strata of |\7|§3rZ in
Theorem we can write M%_‘Z’Z as a finite increasing union Uy C Uy C --- of

open subschemes such that Uy = MH and such that, for each ¢ > 0, the complement
of U; in U, is some stratum Z[ ®40,65,0)] closed in U;y 1. Then the theorem follows
by repeatedly applying Lemma with (U,U’) = (U;41,U;) for (finitely many)
increasing ¢ > 0. O

Remark 11.3. The usual approximation and gluing arguments in [10] Ch VI] and
[30, Sec. 6.3] play no role in the proofs of Lemma and Theorem This is
because we constructed the base scheme M%f[’rg by takmg normahzatlons in certain
auxiliary models of proper smooth toroidal compactifications, and the approxima-
tion and gluing arguments are already used in the construction of such auxiliary
models. On the contrary, since the approximation and gluing arguments require
the extended Kodaira—Spencer morphisms to be defined, it is not even clear how
they should work for the generally very singular local charts constructed in Section

Bl

Theorem 11.4 f [30, Thm. 6.4.1.1(6)] and Theorem [7.14). With the setting
as in Theorem let S be an irreducible noetherian normal scheme over SO =
Spec(Or,, () wzth generic point 1, which is equipped with a morphism

(11.5) n— My.

Let (A, Ay, iy, igy,) denote the pullback of the tautological object of My ton under
|| Suppose that, for each j € J, we have a degenerating family (GJT, )\JT, JT, gy )
of type My, over S, whose pullback (Gj .y, i, i, 3;,n) to 1 defines a morphzsm

(11.6) 1 — My,

by the universal property of M., which we assume to coincide with the composition

of (11.5) with (2.1). Then (11.5) (necessarily uniquely) extends to a morphism
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S — |\7|§r‘2rZ (over §0) if and only if the same condition in the second last paragraph
of Theorem is satisfied at each geometric point 5 of S.

Proof. For each j € J, by the same construction as in the proof of Proposition

the degenerating family (GJT, )\JT, JT, ) of type My, over S induces a degenerating

family (GJJr _— )\JT s ';auw a;{j’aux) of type My ...
to unique isomorphism by its restriction to 7, by the noetherian normality of S and
by [62, IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5]. Hence this theorem

follows from Theorems [T.14] and [[1.2 O

over S, which is determined up

Corollary 11.7. Up to canonical isomorphism, the scheme Mtor constructed in
Section [7] depends only on the choices of the linear algebraic data in Section [2], but
not on the auziliary choices in Sections [ and [5]

Proof. This is because the improved universal property of Mggrz in Theorem m
does not involve the auxiliary choices in Sections [] and [f at all. [l

Corollary 11.8. In Lemma if ¥ is already smooth (and satisfies [30, Cond.
6.3.3.2]) as in [B0, Def. 6.3.3.4], and if we take ' = X there, then the canonical
morphism is an isomorphism, identifying the subschemes Z(4,, 5, o) on both
sides, so that the stratification of Mto there coincides with the one in [30, Thm.
6.4.1.1(2)]. (This finally justifies the notatzon of Mgf,ffz and Zj(@,, 5,,0)) there.)

Proof. This is because, by Lemma the universal properties of M5y, and Mig's,
in [30, Thm. 6.4.1.1(6)] and Theorem respectively, imply each other. O

Corollary 11.9 (generalization of Corollary [10.18)). If [(®,,0%,,0")] is a face of
[(Ps, 034, 0)] (see [30, Def. 6.3.2.14 and Thm. 6.4.1.1(2)]), in which case z[@%a%”)]

is contained in the closure of Z’[@;{’%,Ul)] n I\_/IEr‘L’fE, then Z'[@H,(;H’,,)] %Fp s also

contained in the closure of Z'[(%(;;H,a,)] ®F, in Mgf[’rz ®F,.
zZ i/

Proof. Suppose s is a point, of z[(qm,g%g)] ®F,. By Corollary[10.15} s can be iden-
Z

tified with a point ¢ of é@%gwg ®TF,, where (g, %, 0) is some representative of
Z

(P, 69, 0)]. Let (9%, 064,,0") be a representative of [(P},, 07, 0')]. By assumption,
there is a surjection from (®%,,0%,) to (®3,0%) such that the induced morphism
P.:pH, — Pg,, maps o’ to a face 7 of 0. Let Spf(R, I) be an affine open subscheme of

%%{757{ - WhObe underlying topological space contains t. Let ¢’ be any pomt in the
preimage of g, 5,,.- ©F, under the canonical morphism Spec(R) — Zg,,.5,,(0)
VA
such that ¢ is contained in the closure of ¢'. By considering the pullback of the
Mumford family to the localization of Spec(R) at ¢’, by the theory of two-step de-
generations (see [10, Ch. III, Sec. 10] and [30, Sec. 4.5.6]), by the defining property
of Z[(q,/ 4,,00] @S in Definition and by the universal property of Mﬁfzrz as in
Theorems 7.14] and |1 the canonical morphism Spec(R) — M';_‘zfz maps t’ to a

point s’ of Z[(@;{75;{,0/)] %Fp, so that s is contained in the closure of s’. Since s

is arbitrary, Z’[(q,wgw,)] ®F, is contained in the closure of z[(‘b%’%"")] ®F,, as
Z Z
desired. g
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12. STRATIFICATIONS OF MINIMAL COMPACTIFICATIONS

The main goal of this section is to show that analogues of [30, Thm. 7.2.4.1 (4)
and (5)] are true for MJ™ (see Theorems and [12.16| below).

Theorem 12.1 (cf. [0, Thm. 7.2.4.1 (4) and (5)]). With the setting as above,
the locally closed subschemes Z[@H sn)] of M’mm (see , cf. Lemma and
Remark |6 -, with [(Py, 0% )] running through a complete set of cusp labels, form
a stratification
Mﬁm = H Z[(CDH,&H)]
(@ ,02)]

of I\_/Iqm{i“, such that the [(®Y,04,)]-stratum Z'[(%%)] lies in the closure of the
[(Py, 03¢)]-stratum Z[(¢H75H)] if and only if there is a surjection from the cusp
label [(®%,, 0%,)] to the cusp label [(Py, 09,)] as in [30, Def. 5.4.2.13]. (The notation
‘17 only means a set-theoretic disjoint union. The algebro-geometric structure is
still that of M;“{‘in.) The open dense subscheme I\_/IH of M%i“ (see Proposition
coincides with the [(0,0)]-stratum Z[(Op)].

For each representative (Zy1, ®y, dy) of cusp label and for each o € Xg,, such
that o C Pg , the restriction of (7.12)) to the [(Pyy, 03, 0)]-stratum z[(qm,g%g)] of

M%‘{)Z as in Theorem [9.13| induces a canonical surjection

=

(12.2) z[(%,an,o)] = L[(®3,65,)]

Proof. The morphism (|7 is proper and surjective because ng 5, is proper over

So, and because the restriction of (7 induces the identity morphism on My By
Lemma[9.§] for any smooth reﬁnement Y/ of 3, and for each (Z3;, ®3;, %) and o as

in the statement of the proposition, Z{4,, s,,.0) = z[(q,%(g%g)] ® Q is the union of
Z

the images of the strata Zg,, s, ,r) under , with 7 running through the cones
in 3%, that are contained in o.

Let Whtgr,, denote the pullback of Wi By Propositions and [7.11 w,%if,}

is canonically isomorphic to the pullback of mer Bt where a3 = ;Iaj is as in
JE

Pr0p051t10n Moreover, since ([9.9) is defined by the universal property of Mg(jfz

(by Proposition [5.24| and Theorem |7.14), the invertible sheaf wsgi}:/ over Mij._‘z’rz,

R ajy
Mtor .

us denote by f%,z : MH 5 = Mmln the morphlsm induced by (7 , and denote
by nyz, 0 M, — ME™ the morphism (for M§s,) in [30, Thm. 7.2.4.1(3)].
Then it follows from Proposition and from [30, Thm. 7.2.4.1(3)] that fH,E’
coincides with the composition of 1@} with f?—(,z' Since the restriction of fH’E,
induces a surjective morphism from each Z(s,, 5,7 as in the first paragraph to the
stratum Z(g,, 5,y of M3 (see [30, Thm. 7.2.4.1(5)]), it follows that fy,z induces
a surjective morphism from Li(®3,61,0)) $0 L@y, 5)]-

is canonically isomorphic to the pullback of w For the sake of clarity, let

Since Z[(‘PH 53,0)] = Z[(‘1>H757{> ® Q is dense in Z[((b%,&q{,a)] by Lemma|9.11} and

since is proper and surJectlve it follows from the above (Wlth Z[@H’g% )]
running through all strata of M%_‘zrz) that Z((s,, 5, 1s isomorphic to Z[(@H 5] ®Q
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and is dense in Z[((@H,gﬂ)], that M%in is the union of Z[(q,%)(;”)] with [(P, 0% )]
running through all cusp labels of My, and that this union defines a stratification

of I\Z%i“. (Then the incidence relations as in the statement of the proposition are
forced by those of the stratification of MJ™ as in [30, Thm. 7.2.4.1(4)].)
By combining all of these, the last paragraph of the theorem also follows. O

Remark 12.3. Theorem is rather incomplete compared with [30, Thm. 7.2.4.1
(4) and (5)]. It will be complemented by Theorem [12.16 below.

Nevertheless, there are already several useful consequences of Theorem [12.1
Corollary 12.4 (cf. Corollary [L1.9). If there is a surjection from [(®y,03)] to
[(®%y,05,)] (see [30, Def. 5.4.2.13 and Thm. 7.2.4.1(4)]), in which case Zy®,, 5, i5

contained in the closure of Z[(‘;,;w%)] m M%i“, then z[(@%(gﬂ)] %)IFP is also contained
in the closure of Zyas, 5, %FP in M %Fp.
Proof. This follows from Corollary and Theorem ([
Corollary 12.5. |\7IH ®F, is dense in Mﬁi“ QF,.

Z Z

Proof. This is a special case of Corollary [[2.4] One can also deduce this more
directly from Corollary [10.18| and Theorem d

Remark 12.6. Corollary can also be proved by constructing elevators as in [27],
which can be viewed as a minimalistic analogue of the boundary charts constructed
in Section[§] See the proof of [31, Prop. 2.2.1.7] for the special case where J = {jo}

and (gj,, Lio, (-, )jo) = (1, L, (-, -)) are as in Example
Corollary 12.7. Up to canonical isomorphism, the scheme l\_/’lﬁin constructed in

Proposition [6.4] depends only on the choices of the linear algebraic data in Section
2l but not on the auziliary choices in Sections [ and [

Proof. By Pr0p0s1t10n and Corollary . Mmln is flat over Z(,) and is noether-
ian normal, and the complement of MH U Mmln in M”nn is of codimension at least

two. Hence the canonical restriction morphlsm

min |, @k min
(12.8) D", Wik, ) = T (i UME™,

is an isomorphism for each & > 0. By Propositions [6.1 and [6.4] the right-hand side
of - 12.8) depends only on the choices of linear algebraic data in Section Since

Mmln = PI‘OJ( (Mmln ok )) by Proposition the corollary follows. [

Mmm J|MH U Mm‘“)

Mmm J

By Proposition IT_ITI, Wyiter_ 5 18 canonically isomorphic to the pullback of
o H, 2
aj,o 7
Jgj M o under 1) By [B2] IX, 1.4], [I0, Ch. I, Prop. 2.7], or [30, Prop.
3.3.1.5], for each j € J, the degenerating family (Gj,/\j,g;,d’yj) in Theorem
induces (up to canonical isomorphism) the pullback of the tautological tuple

. . ;. tor \ A tor T e w
(G} ,aux Aj,aus G,auxs O3 ) OVEr M52 S M3¢'s,, because it is so over My,.

Hence, by the same argument as in the)proof of Lemma [5.30} based on [39] IX,
2.4, and its proof], we have

® a;
Wi = Qws
Miers,d Pesatel /Mtor ’
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where
. Atop 1:,V
WA aer = AP Lies -
GJ/M;{,E Gj/M%-(Zfz;
for each j € J. Thus, if we set
R S o
Gy= 16,
jeJ

where the products are fiber products over I\ﬁgj’r27 then we have

Y

N ~ aAtop 13 R
wM%-‘Zfz’J = A LleGJ/Méifg‘

Lemma 12.9. The fibers of (7.12)) are all geometrically connected. The isomor-
phism class of the abelian part of Gy is constant on each geometric fiber of ||

Proof. The first assertion is because wgo. ; is the pullback of the ample invertible
H,3

sheaf Wijmin g (see Propositions and , so that is its own Stein factor-
ization (see [14] III-1, 4.3.3 and 4.3.4]), by the normality of Mﬂi“ and by Zariski’s
main theorem (see [14} 111-1, 4.4.3, 4.4.11]). The second assertion then follows from
[30, Prop. 7.2.1.2], by the same arguments as in the beginning of [30} Sec. 7.2.3]. O

In the remainder of this section, our goal is to prove Theorem [12.16] which
complements Theorem and gives a more precise description of the strata.
For each (P, 074, 0) (as in [30, Def. 6.2.6.1]) such that o C P};H and o € Yo, €

¥, let Ywy denote the pullback of Wyjtor_ 5 under |i Let
H,
EJ = H B’jx aj,
jed

where the products are fiber products over l\_}lﬁ Consider the invertible sheaf

(VI top ® aj top 1:,.V
= AP X AP Lies -
Wi (J.(?]( z" Xj) )sz( ﬁBJ/Mgng)
over I\7I§_Z* By the same argument as in the proof of [30, Lem. 7.1.2.1], “wy is

canonically isomorphic to the pullback of owg. By considering the Fourier—Jacobi
expansions and by the same arguments as in [30}, Sec. 7.1.2], we obtain the following:

Proposition 12.10 (cf. [30, Prop. 7.1.2.13]). For each k > 0, and for each
/e F(l\_}lg_i’fz,wQ@k ), the pullback of f to the [(Py, O3, 0)]-stratum Z[@H’gﬂ,g)]

M5 J
of Mggrz is constant along the fibers of the structural morphism
(12.11) Zi(@r .00 = Barg e = My
(see Corollary [10.15| for the first isomorphism).

Corollary 12.12 (cf. [30, Cor. 7.2.3.12]). The morphism (12.2) factors through
(12.11)) and induces a canonical surjection

(12.13) MZR > Zi(0y.50)]-

This surjection is finite and induces a canonical isomorphism from |\7|§{H to the
normalization of Z((@,,,5,,)]-
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Proof. The first assertion follows from Proposition [[2.10] Since the isomorphism
class of the abelian part of Gy is constant on each geometric fiber of @ (see
Lemma , it follows from the finiteness of that the induced morphism
is quasi-finite. Since induces the canonical isomorphism M?_[” =
Z[($,,,5,,)] in characteristic zero (see [30, Cor. 7.2.3.18]), the second assertion follows
from Zariski’s main theorem (see [14} I11-1, 4.4.3, 4.4.11]). O

Proposition 12.14 (cf. [30, Prop. 7.2.3.16]). Let T be a geometric point of M%i“
over the [(®3, 63,)]-stratum Zya,, 5, Let (ME™)2 denote the completion of the
strict localization of M%in at x, let

(Zi@r50))5 = L)) X (ME™)Z,

M;x.zin
and let . ~ .
(M3)7 = M3 % (Zap,500))5-

Z((@gq.69)]
(¢
For each { € Sg,,, let (@;LM)Q denote the pullback of

= () - - .
ﬂtb;{,&{ = (C‘:DH,(S’H - M?{H)*(\IJ‘PHﬁH (6))

under the canonical morphism (I\/Ifrt“)%\ — I\/Ii”. Then we have a canonical isomor-
phism

o = (0) Loy
(1215) ﬁ(m?{m)é\ = ( H (méy,éu)%\) ’
EGP;H
where

Pgﬂ = {E € So,, : <€,y> >0Vy e P@H}
as usual, which is adic if we interpret the product on the right-hand side as the

completion of the elements that are finite sums with respect to the ideal generated

- (0
by the elements without constant terms (i.e., with trivial projection to (@5}2"5%)@).

Then (12.15)) induces a homomorphism
- (0) r
(Bdg, 6,)z) "™ = O

(M) 20
whose source is canonically isomorphic to ﬁ(mzH)A (by Corollary|12.12| and Zariski’s
H )z
main theorem; see [14, 111-1, 4.4.3, 4.4.11]). This defines a structural morphism
(M™)3 = (M5,

whose pre-composition with the canonical morphism (Z’[(%,é,{)])g — (|\7|§£}m)g de-
fines a canonical morphism

(Zi@ssn)e = (M3,
which is an isomorphism because its pre-composition with the completion
(M52 = (Zi@w.s0)7

of (12.13)) is the identity morphism on (l\_/’lfrzi)%\ So, this last completion of (12.13)

is also an isomorphism.

Proof. The same argument as in the proof of [30, Prop. 7.2.3.16] works here. (We do
not need to know a priori that (12.13)) induces a bijection on geometric points.) O
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Theorem 12.16 (cf. [30, Thm. 7.2.4.1 (4) and (5)]; continuation of Theorem
. In the first paragraph of Theorem each [(Py, 0y )]-stratum yA B20.690)]
h

is canonically isomorphic to MZ“. In the second paragraph of Theorem [12.1|, the
canonical surjection can be identified with the composition of the canonical
zsomorphzsm Z[(%{,M,rf)] = qu 5.0 in Corollary the structural morphism
quﬂswg — M , and the isomorphism MH — Z[(¢H,5H)] mentioned above. In
particular, it is proper if o is top-dimensional in P;H C (Say k-

Proof. Since (|12.2)) is the composition of (12.11)) with (12.13)), it suffices to show

that (12.13]) is an isomorphism. Since this assertion can be verified over formal
completions of strict local rings, it follows from Proposition O

13. FUNCTORIAL PROPERTIES AND HECKE TWISTS

In this section, for the sake of clarity, we shall abusively denote all objects
constructed using {(gj, L, (-, - )j) }jes by an additional subscript J, such as My ;.

Proposition 13.1. Suppose that H C H' and J C J, and that the subcollec-

tion {(g;, L, (-, - )i) Yiew of {(g5, Ly, (-, - )j) ies satisfies the analogous conditions
defined by H' as in Section . Then there is a canonical morphism

(132) I\_/]'HJ — '\_/]7.[/7‘]/
extending the canonical morphism
(133) My — My

Proof. This follows from the proof of Proposition because I\7IH7 3 (resp. |\7IH/7 )
is the normalization of H Ay.d; ®Z(p) (resp. H Ay 4, ®Z(p)) under the canoni-

cal morphism My — H Agd ®Z(p) (resp. MH/ — I Agq ®Z( y), and because

jeJ’
My — [ Ag.q; ®Z and My — ] Ag.q, ®Z( y are compatible with the canon-
jed jeJ’
ical morphisms 13.3 and [[ Ag.q, @ Zpy — [ Aga; @ Zp)- O
jeJ Z jeJy Z

Proposition 13.4. With the setting as in Proposition there is a canonical
morphism

(13.5) Mzif; — Mny,
extending the canonical morphisms (|1 and
(13.6) m”‘ — Mm‘“.

Proof. This is because, by Corollary |1 we may assume that Hjaux C H .
and that the morphisms M%™ — T] M’mm ' and M — ] M3 used in the

jed jeudaus
constructions of M;jif]‘ and Mﬁi,“], (see Proposition are compatible with the
canonical morphisms (13.6) and [] Mmln = I Mmln . O
ied : jegr i

Proposition 13.7. With the setting as in Proposition suppose moreover that
Y and ¥’ are compatible choices of admissible rational polyhedral cone decomposition
data for My and My, respectively, which are induced by certain auxiliary collec-
tions {¥; auxtjes and {X5 ., }iey, as in Section |7 such that ¥ is a 1-refinement of
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Y as in [30, Def. 6.4.3.3]. (The definition there naturally generalizes to the case of
nonsmooth cone decompositions.) Then there is a canonical morphism

(13.8) |\7|t°rE g |\7|§3/r sy

extending the canonical morphisms (|1 and s compatzble with ( under the

min

canonical morphisms f,H 5 M';_‘ZTE 5= Mmln and 557{’ 3 MH, I s MH, o

Proof. The morphism (|1 exists because, by Theorem M‘;_‘Z w,j carries the

collection of degenerating families {(GJ7 )\J7 ZJ, @34;) }jes, which induces a collection

{(GJ, )\J,ZJ, diyy; 1) }iey satisfying the universal property of I\/IH, sv.3» as in Theorems

7.14] and |1 4l To show that (13.8]) is compatible with -, it suffices to note
that, by Corollary [11.7, we may assume that H; aux C 'H’ aux and that ¥ .. is a
L-refinement of ¥ . for each j € J’, so that (13.8) and 1} together with the

morphisms f 2.y and 397{, y/» are compatibly induced by the canonical morphisms

tor tor min mln
H Hj.auxxzj,au - H M ,E" and 1_.[ MHJ aux — H M N |:|
jed , jeyr _]dL\X j,aux jed jeJr Jd,ux

Proposition 13.9. Under , the [(P3, 0%, )]—stmtum z[(‘bq{,ﬁq{,o)]J of
Mgfx,J is mapped to the [(®Yy,0r,0")]-stratum Z[(q)/ 830,003 Of Mf;-y 2y

if and only if there are representatives (P, d0%,0) and (P4, 04,0") of the
equivalence classes [(Py,01,0)] and [(®y,,0%,,0")], respectively, such that
(Pyy, 094,0) is a 1- reﬁnement of( 0%, 0') as in [30, Def. 6.4.3.1]. Aceordingly

(cf. Theorem ', under , the | <I>H75H)] stratum Z[(@H 5,0 of Mﬁ“j 18
mapped to the [(®%,, 0%, )]-stratum Z[(q)/ RBIRL of I\/IH, v if and only if there
are representatives (®3,02,) and (@’HM ;_L,) of the cusp labels [(Py,0n)] and
(Y, 0%,)], respectively, such that (P H,,(SH,) is 1 assigned to (Py, %) as in [30)
Def. 5.4.3.9]. Consequently, the morphism is projective, because it is the
pullback of the projective morphism 1) to the [(O, 0)]-stratum Z 01,57 = My 3
of Mz,

Proof. The statement for the morphism (13.8) follows from the defining property

of the strata in Definition (9.1} by comparing the universal properties of Mg‘fz 3

and l\_/’lﬁr‘z,r’z,’y as in Theorems [7.14] and [11.4, By Theorem , the statement for

the morphism (13.5)) then follows from the one for (13.8). The statement for the
morphism (|13.2) is self-explanatory. (]

Remark 13.10. Although the morphisms (|13.3]) and (13.6]) in characteristic zero are
always finite, the extended morphisms (13.2) and (13.5) in mixed characteristics
are projective but not finite in general (even when H = #H').

Ezample 13.11 (simplest case; continuation of Example [2.3)). Suppose J = {jo}
and (g, Lio» (-5 *)jo) = (L, L, (-, -)) are as in Example (We shall suppress
the subscript J for simplicity.) Let H? be the image of H under the canonical
homomorphism G(Z) — G(ZP) as usual. Consider the naive moduli problem Mz
parameterizing tuples (A, A, i, az») over schemes S over Spec(Op, (), Where:

(1) A— S is an abelian scheme of relative dimension g := § rkz(L).
(2) A: A — AV is a polarization of degree d? := [L# : L.
(3) i: O < Endg(A) is an O-endomorphism structure as in [30, Def. 1.3.3.1].
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(4) Liey g with its O ® Z;,)-module structure given by i satisfies the determi-
Z

nantal condition in [30, Def. 1.3.4.1] given by (L®R, (-, -), hg).
zZ
(5) azp is an (integral) level-HP structure of (A, X, i) of type (L®ZP, (-, -))
Z
as in [30, Def. 1.3.7.6], except that we do not require the degree of A to be
prime to p. (See [31l Def. 3.3.1.4] for a similar consideration.)
We consider this moduli problem naive, because there is no level structure at p,

and so there is little control on the finite locally free group scheme ker(\)[p™]
beyond its rank. Nevertheless, the canonical morphism My, — Ay 4 ®Z(,) as in
Z

the proof of Proposition [6.1] factors as a composition My — Myr — Ag,d @ Zp)
v

of canonical forgetful morphisms, where the second one is schematic and finite by
[30, Prop. 1.3.3.7] (for the endomorphism structures), and by the fact that the
level structures (away from p) are defined by isomorphisms between finite étale
group schemes. Therefore, |\7|H is canonically isomorphic to the normalization of
My under the canonical morphism My, — My». Moreover, the tautological tuple
(/_1', X, Z) over MH (see Proposition is canonically isomorphic to the pullback of
the tautological tuple (A, \,4) over My» under the induced morphism |\7IH — M.

If H = HPG(Z,), then the canonical morphism My, — My» ® Q is open and closed
(p)

by the same argument as in the proof of [30, Lem. 1.4.4.2]. In this case, if Muy»
is flat over Spec(Z(,)) and normal, or if the schematic closure M;p of Mu» ®Q in
z

My» is normal, then the induce(j morphism MH — M;p is also an open and closed
immersion, which implies that My, is just the schematic closure of My in Myp» (or
rather M;p) In this case, we can deduce the local properties of My (in additional
to normality) from those of the local model of MLP (For example, see the proofs of
Lemmas and below.) Then I\7I2i“ and Mgffz give compactifications of the

largest “relevant” open and closed subscheme of i\'/i;p, enjoying the various good
features we have shown in this article.

Ezample 13.12 (parahoric levels at p; continuation of Example . Let us re-
sume the context of Example For each 0 < ¢ < m, let J; := {j;}, and let
M; = HPGj,(Zy). By Propositions and for each such i, we have a
canonical projective morphism My j — My, 5, (which is not finite in general). As
explained in Example the target space I\7|H J, is canonically isomorphic to
the normalization of some naive moduli problem My j, under the canonical mor-
phism My, — i\'/.lym 1,, and the argument there also implies that I\7|H7 J is canonically

isomorphic to the normalization of [] Mge, s, under the canonical morphism
0<i<m

My — [I Mu, — [I Murs,. (We introduce the subscript J; to emphasize
0<i<m 0<i<m

that its definition uses the lattice Lj,.) Therefore, we have canonical finite mor-

phisms My ;3 — ] My, 5, — I M’HPJ Moreover, for each 0 < i < m, the
0<i<m 0<i<m

tautological tuple (A'J,Xj,al) over MHJ (see Proposition D is canonically iso-
morphic to the pullback of the tautological tuple (4;,, Aj, , 4;,) over My j, under the
induced morphism My j, — M’}-Lp J,, whose further pullback to My j is canonically
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isomorphic to the tautological tuple (/YJZ, in, z:l) (abusively denoted by the same
symbols) over MH J. On the other hand, by considering (periodic) isogeny chains
of polarized abelian schemes (with compatible additional structures) as in [51} Def.
6.9], we obtain a naive moduli problem Mgz j, which carries (up to periodicity) a
tautological isogeny chain
A=A = 4 == 4, — A

(with compatible additional structures) and admits a canonical forgetful morphism
M5 — Mar,, for each 0 < i < m, under which the tautological (4;,, \;,, ij,)
over i\'/'Isz J is canonically isomorphic to the pullback of the tautological (A;,, A;,, %)
over MH;: J,- Since I\_/IH 7 is noetherian normal, the tautological isogeny chain over
My (see Example canonically extends to an isogeny chain

/Y:ffm —>/le — - —>AJm — A
(with compatible additional structures) over My ; (see [52, IX, 1.4], [I0, Ch.
I, Prop. 2.7], or [30, Prop. 3.3.1.5]), where each (A'J-,”in,i}i) is the tautologi-
cal one over l\_/]q.[] By the universal property of i\'/.l’;{p“], we obtain a canon-
ical morphism MH’J — Mzp,; under which the above extended isogeny chain
(with its compatible additional structures) over |\7|H7 J is canonically isomorphic
to the pullback of the tautological one over My ;. Now consider the composition

|\7IH,J — Murg = [I Mas,s, of the morphisms we have just defined. By def-
0<i<m

inition, the tautological tuple (Ah,)\h,zh) over I\_/IH J is canonically isomorphic to
the pullback of the tautological tuple (A;,, \;,,;,) over My j, under the induced
morphism MH ] — Mq{p 1,- Hence, the last composition coincides with the earlier

composition M’HJ — H MHM] — I Mu»j,, which is finite. (It is cru-
0<i<m 0<i<m

cial that the product runs over all indices 0 < i < m.) Consequently, the above
canonical morphism MH, ] = i\'/iy;n 7 is finite, and so I\_/IH J is canonically isomor-
phic to the normalization of MHP’J under the canonical morphism My — i\'/'lg.[p’g.
Moreover, since H = HPH,,, where H, = oL Gjy,(Z,), the canonical morphism

My — i\'/iq.[p7 1®Q is open and closed by the same argument as in the proof of [30
zZ

Lem. 1.4.4.2] (cf. Example [13.11). If My j is flat over Spec(Z,)) and normal (see,

for example, [T2, Thm. 2.1] and [33] Lem. 4.1.18]), or if the schematic closure i\'/i;pyJ
of MHP,J ®Q in MHP,J is normal (see, for example, [45, Thm. B], [46, Thm. 12.2],
7

and [48, Thm. 1.1 and 1.2]), then the induced morphism I\_/I’HJ — i\'/i;p”] is also an
open and closed immersion. In particular, we can deduce the local properties of

I\_/IH J (in additional to normality) from those of the local model of M;p 3. There-
fore, M,“{“‘j and MH 5 J give compactifications of the largest “relevant” open and

closed subscheme of MHPJ (cf. Example [13.11]).

Lemma 13.13. Given any collection {(g;, L;, (-, '>‘)}ieJ satisfying the conditions
imposed by an open compact subgmup H C G(Z) as in Section suppose
g € G(A™) satisfies g~'Hg C G(Z). Let us formally set J := J, so that
{(g7 g5, Li, {, - )j}ies is a collection with respect to g~ Hg as in Section . Then
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we have a canonical isomorphism '\7"7.[7J = |\7|971H97J/ extending the canonical
isomorphism My = My-194 realized by sending objects parameterized by My
to their Hecke twists by g (see [30, Sec. 6.4.3]; ¢f. [30, Prop. 1.4.3.4 and Rem.
1.4.3.11]).

Proof. This is because both |\7]7.¢ 7 and M g-171g,3» are constructed by normalization
using the same collection of auxiliary models My, for My, forje J=1J'. O

j,aux

Ezample 13.14 (Hecke twists; continuation of Example [2.5). First let us sup-

pose J = {jo,j1} has two elements, with (gj,, Lj,, (-, -)j,) = (1, L,(-,-)) and
(950, Li,, (-5 )50) = (9, L, (-, -)) for some g € G(Z), as in the first half of Ex-
ample [2 . Let Jo := {jo} and J; := {j1}. Suppose H' C G(Z) contains both H
and g~ 'Hg. By Proposition we have two canonical morphisms

'\7|H,J - |\7|H,J0
and

MH,J — MH’JI = M971H97J0

(where the last isomorphism uses Lemma [13.13] since g~'g;, = 1 = gj,), which

induce two canonical morphisms
[1]7 [g] : MH,J — MH’,JO
extending the two finite morphisms
[1] : M’H — MH’

and
[g] : Mq.[ = Mg—l’Hg — Mq.[/

defining the Hecke correspondence defined by ¢ in characteristic zero. By Propo-
sition the two morphisms [f] and [5] are projective, but they are not finite
in general. (Nevertheless, they are finite when g € G(A™?) x G(Z,). See Propo-
sition below.) By Propositions and they extend to two canonical

morphisms

- min _— mi

17 [ < Mg — Mg
which lift to two canonical morphisms

- tor - tor

1l gl er =7 7 M?—L/ . Jo"
(Part of the assertion is that there do exist the compatible choices 3 and ¥’ of cone
decompositions. This is because we can just take X to be induced by ¥’ and the
twist of ¥’ by g. Therefore, up to refinements, we always have enough compatible
choices of cone decompositions for defining morphisms extending the Hecke corre-
spondence defined by g in characteristic zero.) More generally, for any collection
{(9°95, L, (-, - )j) }(e.j)e{o.1} x 3 attached to a collection {(gj, Lj, (-, - )j)}jey as in
the second half of Example[2.5] we also have similar morphisms extending the Hecke
correspondence defined by ¢ in characteristic zero. Given the importance of these
morphisms, let us spell out the precise statements, with some minor modifications
of notation:
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Proposition 13.15. Given any collection {(gj, L, (-, - )i) }jes satisfying the con-

ditions imposed by an open compact subgroup H C G(Z) as in Section |2, suppose

that H' C G(Z) contains both H and g~ 'Hg, and that gjfl'H/gj stabilizes L; @ Z
Z

for all j € J, so that {(gj, Lj, (-, - )j) }jes also satisfies the condition imposed by
H' as in Section . Then the collection {(9°g;, Lj, (-, - )j) }(ej)ef0,1} x 7 satisfies the
condition imposed by H as well, and we have two canonical projective morphisms

(13.16) [IL [é_ﬂ : MH,{O,l} xJ = |\7|7-L/,J
extending the two canonical finite morphisms

[1] : My — My
and

[g] : M'H :> Mg—lq.[g — M'HI
defining the Hecke correspondence defined by g in characteristic zero, which extend
to two canonical projective morphisms

- min - min -

(13.17) A el MEoy <s — Mmm :

Given any X' such that M%—%Z/,J is defined, there also exist some X such that Mg_‘ng,J
is defined, and such that the two canonical projective morphisms (13.16)) extend to
two canonical projective morphisms

— tor - tor —

(13.18) 109 M oy o — M5
compatible with the two canonical projective morphisms (13.17)).
— tor —_tor

The morphism [1]  (resp. [g] ) in (13.18) maps the [(Py,dx,0)]-stratum
Z[(% s 011 x5 of MY (o 1y oy to the (@Y, 60, 0")]-stratum Zigar 5, 00,3
of |\/|7r£,7z,7J if and only if there are representatives (®y,09,0) and (P, 04,,0")
of the equivalence classes [(®y,02,0)] and (P, 0%,,0")], respectively, such
that (Py, 094,0) is a 1-refinement (resp. g-refinement) of (®4,,0%,,0") as in [30}
Def. 6.4.3.1]. Accordingly (cf. Theorem [12.1)), the morphism [1]™™ (resp. [g]™")
in (13.17) maps the [(Py,0n)]-stratum Zja,, 5,013 x5 Of Mﬁt{{lo,l}xJ to the
(D%, 0%/)]-stratum Z[@;{”g;{,)m of I\_/'an_}i,f‘J if and only if there are representatives
(P, 09¢) and (DY, 0%,,) of the cusp labels [(Pyy, 69¢)] and [(PY,.,0%,,)], respectively,
such that (®%,,,04,) is 1-assigned (resp. g-assigned) to (P3q,0%) as in [30, Def.

5.4.3.9]. Consequently, the morphism [f] (resp. [;]) in (13.16) is the pullback of
the projective morphzsm [I]mm (resp. [;]mm) in (13.17) to the [(0,0)]-stratum
Z[(Q 0], = MH/ J Of M%}n .

Proof. These follow from Propositions [13.1] [13.4] [13.7, and [13.9] by the same argu-
ments as in Example[13.14] (with (J, Jo) there replaced with ({0,1} x J,J) here). O

Proposition 13.19. In Proposition [13.15], if g € G(A™P) ><(‘ﬁJ Gi(Zy)), then the
jeJ -
morphisms in (13.16) and (13.17)) are finite.

Proof. Under the morphlsm [1 ] (resp. [g ]) in 1} the pullback of the tautological
tuple (AJ, )\J, s Qd3q;) over MH/ 7 is canonically isomorphic to the tautological tuples

(A(m)’ )\(E,J), (e)> aH(E,”) over MH,{O,l} x 7, where e = 0 (resp. e = 1), for each j € J,
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and where the level structures are only required to be defined over the characteristic
zero fibers. Since My, 10,1} x 5 is noetherian normal, for each j € J, the Q*-isogeny

fj : (AJ7)\J7ZJ7aHJ) = (A(O,j)?)\((],j))i(o,j)7aH(07j)> (Aj/a)‘jaijaa —1H; g)

over My, = My, = My, realizing the Hecke twists of by g (see Example [2.5)
canonically extends to a Q*-isogeny

f:]" : (Aiiv)\jvaad'ﬁﬂj) = (A(O,J a/\(O ])77'(01) a?‘l(oj))

= (AL, X8, @ 0) = (A A L) G )

over My, (017 5 (see [52, IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5]).
(So far we have not used the assumption on g. In this generality, I\_/'IHJ carries the
degenerating family (Atj,;\_]-,f},o'z'ﬂj) of type My, extending the tautological tuple
(Aj, Aj, ij, agg;) over Mgy = My, for each j € J, but not necessarily any extension
of the Hecke twist (Aj, Aj, ij, af 1y )

For each j € J, under the assumption that g € G(A*?) x Gj(Z,), the Q*-isogeny
fj is in fact a ZE; )—isogeny. Hence, there exists an integer N; prime to p such that
N;fj is an isogeny prime to p. Let us fix the choice of such an Nj, and consider
K; := ker(Nj f;), which is contained in A;[N/] for some integer N/ prime to p. Since
M35 is noetherian normal, the schematic closure K;j of Kj in the finite étale group
scheme f_fj [N]] is also finite étale, and so the isogeny Njfj : Aj — A} extends to
an isogeny ffj — /13 = Ej/I?j, whose multiplication by Nj*1 defines a Z(Xp)—isogeny
f : A' — /17 extending f;. Moreover, /_1;’ is equipped with the additional structures

)\J'7 z, and a 13,4 OVeT '\_/l"H’J (see [62] IX, 1.4], [I0, Ch. I, Prop. 2.7], or [30, Prop.
3.3.1.5)), where the level structure d,-14,, is only required to be defined over the

characteristic zero fiber. By the construction of I\_/I»Hy{l} « J, there is a canonical
morphism

— —

s: My g =My 0y x5 — I\7|H,{1} x J

such that the tuple (A’ )\J’ , _';’, ! 1y g) over |\7IH 7 is canonically isomorphic to the
pullback of (A(1J)7)\(1J) z(ld),aq{(l ;) over MH {1} xJ- Since the induced mor-
phlsm (Id, s) : I\/Iq.[ j] = I\/IH {0} xJ — I\/IfH {0} xJ X MH (1} xJ 18 tr1v1ally finite,
MH 7 is canonically isomorphic to the normalization of MH {0} xJ X MH {1} x J un-
der the canonical morphism MH — I\/IH {0} xJ X I\/IH {1} x J, and hence the canon-
ical morphism MH {01} xJ — MH 7 is an isomorphism. Therefore, the morphism
[f] : I\/I»H (01} xJ — MH/ 7 in is finite, because it is the composition of
the canonical isomorphism MH 40,1} xJ — MH j with the canonical finite mor-
phism M’H7J — MH/, . A bnmlar argument also shows that the morphism [;] :
I\_/IH (0,1} xJ — MH/ 7 in is finite.

For eachJ €, con81der the degeneratlng family (Gj, X, 7, dyq;) over M'qj_‘fz 1 (see

Theorem , which extends the tautological tuple (AJ,)\J,zJ,ozH) over MH I
where % denotes (temporarily) any compatible collection of cone decompositions
that is a l-refinement of ¥’. Since g € G(A™7P) x Gj(Z,), by essentially the same
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argument as above, the Z(Xp)—isogeny
fj : (Aj,)\j,ij,d'j) (AJI7>\JI7ZJ/,O_Z —1ng)

over M’H,J extends to a Z(Xp)—isogeny

Fror (G N, 35, ) — (Gl XL Gg-190,)

Yy

over Mggrz 3- By Theorem , up to replacing ¥ with a further refinement, there
exists a canonical morphism

MHrE 3= M%‘Zfz,m} xJ Mfft)fz,{u x J
(extending the morphism s above) such that the tuple (GJ’,)\J,ZJ’, ”’_17{ g)
I\_/’Igg‘fE 5 is canonically isomorphic to the pullback of the tautological degenerating

over

family (G(1J a J)77,(1 1§ O, ) over MH 1y x I This morphism s** then induces
a canonical morphlsm

s MY = Mﬁl?o}xJ - My {1y x

(also extending the morphism s above). Hence, by essentially the same normal-
ization argument as before, the canonical morphism Mﬁiffo,l} g = M,"{“‘J1 is an

. . . e min . . . . .
isomorphism, and the morphism [1] in | is finite. A similar argument also
shows that the morphism [;]m1 : M {01}y x g M‘ﬁ‘,“] in (13.17)) is finite. O

14. LOCAL PROPERTIES

Proposition 14.1. Suppose ¥ is smooth as in [30, Def. 6.3.3.4]. Then My is
regular if and only if M%-CL),YZ 18

Proof. Suppose 0 € Yg,, and o C P;[H for some representative (ZH,<I>7{,5H) of

cusp label. Since Mggrz and = qu 5, (0) are excellent, by Theorems and (1
by Corollarym and by [14] TV-2, 7.8. 3 1], it suffices to show that, 1f ois smooth

then Eg,, 5, (0) is regular if and only if = Hq,ﬂ o is. By Proposition L, under the
assumption that o is smooth, Eq,, s, (0) = Ca,,.s,, is smooth and surJectlve which
is faithfully flat and has geometrically regular fibers by definition. In this case, by
[35, 21.D], the open subscheme Eg,, 5,, of Za,,.5, (o) is regular if and only if the
base scheme C_"qm,(;,{ is, and if and only if the whole scheme fqm,(;,{ (o) is. O

The argument above can be slightly improved and show much more:

Proposition 14.2. Let P be the property of being one of the following: reduced,
geometrically reduced, normal, geometrically normal, Cohen—Macaulay, (Ry), geo-
metric (Ry), (R1), geometric (R1), and (S;), one property for each i > 0 (see [14,
IV-2, 5.7.2 and 5.8.2]). Then the fiber of l\_/l'gfzrE — Sy = Spec(Op,,(p)) over some
point s of So satisfies property P if and only if the corresponding fiber of the open
subscheme l\_}IH — §0 over s does. If ¥ is smooth as in [30, Def. 6.3.3.4], then P can
also be the property of being one of the following: regular, geometrically regular,
(R;), and geometrically (R;), one property for each i > 0.
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Proof. Suppose ¢ € Xg,, and o C P;ﬁﬂ for some representative (ZH,Q)H,(SH) of
cusp label. Since |\/|tor and f@H 5, (0) are excellent, by Theorems and |1 m
by Corollary [10.16], and by [14, TV-2, 7.8.3.1], it suffices to show that the fiber of
qu 50 — SO above s satisfies property P if and only if the corresponding fiber of
Hcp,”;ﬂ( ) — So above s does. By [35, 21.C, 21.D, and 21. E] since the torus torsor
Edy.60 — Cay,.s, is smooth and surjective, and since g, 5, (0) = Capy.o, i
flat and has geometrically normal and Cohen—Macaulay fibers by Propos1t10n
which is smooth when ¥ (or rather o) is smooth, the fiber of Eg,, 5, — So above
s satisfies property P if and only if the fiber of Cqm,(;,{ — So above s does, and so
if and only if the fiber of éq,,“;,{ (o) = S over s also does, as desired. ]

Remark 14.3. By [35] 21.C], since |\7|7.[ is noetherian and since Sy = Spec(Or,, ()

is Cohen—Macaulay, the flat morphism '\_/"’H — S has Cohen—Macaulay fibers if and
only if the scheme My is Cohen—Macaulay.

Corollary 14.4. Suppose that l\_/lq.[ — §0 has geometrically normal fibers. Then
all geometric fibers of I\/lto — Sy have the same number of connected components,

and the same is true for MH —So and M%m —Sp. (The analogous statements are
true if we consider irreducible components instead of connected components.)

Proof. By the analogue of Zariski’s connectedness theorem in [8, Thm. 4.17], the
assertions for M%sz follow from Lemma E and Proposition Then the asser-

tions for My follow by Corollary |10.18, The assertions for l\_/lin follow from those
for I\/Iij,_‘z’rE and My, and from Lemma and Corollaries [10.18 and O

Let us record some examples where I\_/lH — §0 has geometrically normal

and Cohen—-Macaulay fibers. For these examples, we shall take J = {jo} and
(G505 Lios (-5 )io) = (1,L, (-, -)) asin Example As a sanity check, let us begin
with the following:
Remark 14.5. Suppose p is a good prime for (O, %, L, (-, ), hp) as in [30, Def.
1.4.1.1]. Then Zarhin’s trick is not needed because p { [L# : L]. Suppose H = HPH,,
with H? C G(ZP) and H, = G(Z,). Then the moduli problem My in Example
is no longer naive, and gives the same My as in [30, Def. 1.4.1.4]. By [30,
Lem. 1.4.4.2], we have an open and closed immersion l\_/lH — My, and it follows
from the smoothness of My» — §0 that l\7l;.¢ — §0 is also smooth, and hence satisfies
all the properties in Proposition

We will need some deep inputs from the theory of local models in the following
nontrivial examples. The following is an important special case considered in, for
example, [19] (the actual assumptions there are more restrictive):

Lemma 14.6. Suppose H = HPH, with H? C G(ZP) and H, = G(Z,). Then
l\_/lH — Sy has geometrically normal and Cohen—Macaulay fibers if the integral
PEL datum (O,%,L,{-, ), hg) is defined as follows, and if J = {jo} and
(gj()? Ljov < Tyt >jo) - (17 L, < * >) are as in Example -'

(1) O = OF is the mazimal order given by the ring of integers in a CM number
field F, with totally real subfield F* and with the nontrivial involution *
induced by the complex conjugation, such that every prime of F* above p
is unramified in F. (But p may still be arbitrarily ramified in FT.)
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(2) L= (Diﬁé}z(l))@" ® O®" for some integer n > 0.
(3) (-, ) : LxL — Z(1) is the self-dual pairing defined by the composition of
the trace map Tro 7, Diffa}z(l) — Z(1) with the skew-Hermitian pairing

- ) 0 1d,,
LxL— lefo/Z( ) defined by the matriz (_ d, 0 )
(4) ho:C — Endogr(LQR) is defined by
Z Z

_ . 21 1dy, —29((2my/—1) 0 1d,,)
Z—Zl+m22HhO(Z) = (ZQ(Ian(27T\/j]-)1) 2 1d,, > s

where 2mv/—1 : Z = Z(1) and (2m/—1)"' : Z(1) = Z stand for the iso-
morphisms defined by the choice of \/—1 in C, and where the matrixz acts

(symbolically) on elements (5) of LR by left multiplication.
Z

Proof. As explained in Example by the construction of I\_/IH, it admits an
open and closed immersion to the (schematic) closure of the characteristic zero
fiber in a naive moduli problem, as soon as this closure is known to be normal.
Since the base changes of G and (ResoF+ 2z GLayn) X Gy, from Z to the ring W(pr)
of Witt vectors are isomorphic to each other, by the theory of local models (see [51],
pp. 88-95)), it follows from [45] Thm. B] that My, is normal and that the fibers of
My — S are geometrically normal and Cohen—-Macaulay, as desired. (]

Lemma 14.7. Suppose H = HPH, with H? C G(ZP) and H, = G(Z,). Then
I\_/IH — §0 has geometrically normal and Cohen—Macaulay fibers if the integral
PEL datum (O,%,L,{-, ), hg) is defined as follows, and if J = {jo} and
(Gjos Lios (-5 - )3) = (1, L, (-, -)) are as in Example .'

(1) O = O is the maximal order given by the ring of integers in a totally real

number field F, with the trivial involution *
(2) L, (-, ), and hg are defined as in Lemma [14.6]

Proof. Since base changes of G and Resp,, /7 GSpy,, from Z to the ring W(]Fp) of
Witt vectors are isomorphic to each other up to center, by the same argument as
in the proof of Lemmam, and by the theory of local models (see [51], pp. 88— 95])
it follows from [46, Thm. 12.2] that My, is normal and that the fibers of My — Sg
are geometrically normal and Cohen-Macaulay, as desired. (]

15. DENSITY OF ORDINARY LOCI

In this section, we will need some input from [3I]. (We will freely cite definitions
and basic results in [3I] without repeating them in detail.) We shall assume that
J ={jo} and (gjo, JO,<~, )jo) = (1,L,(-, -)) as in Example 2.3] In this case, the
definitions of MfH, M%m, etc in this article agree with those in [31, in particular
Sec. 2.2.1]. Let (Mmm%lﬁ‘ yfullord and (My %)IB‘ ylullord he defined as in [31, Sec.

6.3.2].

Proposition 15.1. Suppose that there exists a fully symplectic admissible filtra-
tion Z on L ® Z with respect to (L, (-, -)) such that Gr*, = Z_1/Z_o = {0}; that
7
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the morphism MHPG(ZP) — §0 has geometrically normal fibers; and that the al-
gebra O R Q involves no simple factor of type D as in [30, Def. 1.2.1.15]. Then
Z

(Mm@ )l gnd (Myy @ Fp) ™0 are nonempty and dense in M&™ @ F,, and
z z z

I\_/IH ®F,, respectively.
Z

Proof. Without loss of generality, we may replace X with HPG(Z,) and assume that
|\7IH — §0 has geometrically normal fibers, because the nonemptiness and density
assertions are preserved under the finite morphism '\7'7.[ — MHPG(ZP) in this case.
(For the density assertion, see, for example, [35, 5.E, Thm. 5 v)].) Moreover, by
Corollary [12.5| the assertion for (I\7IH % IF,)full-ord and |\7IH %)IFP follows form the one

for (l\_/lﬁin @ F,)futlord and I\_/I'ﬁin ®Fp, and so it suffices to prove the latter.
zZ Z

Consider any l\_/l'gfzrE as in Section (7] and let (ngfz)fUII‘ord denote the preimage
of (MIin @ F,)full-ord ypder (7.12). By the argument of [31, Sec. 6.3.1 and 6.3.2],
Z

(I\_/'Igf[’fz)f““'ord is also the locus where the pullback G’jo,aux of the tautological semi-
abelian scheme Gj; aux over Mgfzjro s Bjg e 18 OTdinATY (see [31l Def. 3.1.1.2]).

Let (Zy, Py, %) be a representative of cusp label such that Z; is the H-orbit
of some Z such that Gr®, = {0} as in the statement of the proposition. By The-

orem [10.13| for any o € Xg,, such that o C P};H, since 1) 1_s: induced by
(8.33) (whose composition with 1) is ), the pullback of Gj, aux to the
[(P3, Iy, 0)]-stratum Z’[(%MJH of l\_/’IEr‘ZrZ is a split torus with character group

Xjj, aux, which is ordinary by definition. So Z[(‘bu,én,o)] ®F, C (I\_/’Igft’rE ® [, )full-ord,
Z il

and therefore z[@,%(gﬂ)} ®F, C (m;{iinéblﬁ‘p)f“ll'ord (by Theorem [12.1). (This is
zZ zZ

essentially the same argument as in the proof of [31, Cor. 6.3.3.2].) Thus, in
order to show that (M3 @F,)fullord j5 dense in MM @ F,, it suffices to show
Z Z

that every irreducible component of Mﬁi“ ®]Fp has a nonempty intersection with
zZ

Z[(¢H75H)] %Fp for some (Zy, P4, 6% ) as above. Since Z[(¢H,5H)] is closed in M%in

because Gr? ; = {0} (see Theorem , by Corollary it suffices to show that
cach irreducible component of M @ C 2 M @ C has a nonempty intersection
Z Z

with Zj(a,, 5, ® C = Z[(%,(;H)] ® C for some (Zy, Py, d%) as above.
Z Z
Since O ® Q involves no simple factor of type D, and since the condition Gr? | =
z

{0} forces the rank of each Q-simple factor of L to be even, it follows from the
calculation in [26, Sec. 8, p. 400] that the so-called failure of Hasse’s principle does
not occur for My,. Hence every Z such that Gr*; = {0} must come from some
filtration V of L%Q as in [31) Lem. 1.2.3.1 and (1.2.3.2)] such that Gr', = {0}.

This implies the desired assertion in the previous paragraph by comparison with
the complex analytic construction in [3, Thm. 10.11] and [49 Sec. 6.2], as in [28|
Thm. 5.1.1]. O

Corollary 15.2. Suppose we are in the setting of either of Remark [I4.5]
Lemma [14.6] or Lemma [14.7.  In the setting of Remark we assume
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moreover that p splits completely in the reflex field Fy defined by the integral PEL
datum (O, %, L,(-, ), ho) as in [30, Def. 1.2.5.4]. Then (ME"@F,)fulord gnd
7

('\7'7.[ ®]Fp)f““'°rd are nonempty and dense in l\_}lﬁin ®F, and MH ®Fy,, respectively.
zZ Z zZ

Proof. In the setting of either of Remark [I4.5] Lemmal[I4.6] or Lemmal[I4.7] we have
H = HPG(Z,) for some neat open compact subgroup H? of G(Z?). (Nevertheless,
as explained in the proof of Proposition[I5.1] the cases of other levels can be reduced
to this case.) If p is a good prime as in Remark then it follows from [60] (as
explained in the beginning of [31} Sec. 6.3.3]) that (My % F,,)fullord i nonempty and

dense in My @ F,, and that (Mﬂi“ @ F,)fullord g also dense in I\_/IEin ®F,, because
z Z zZ

I\_/IH ® I, is dense in I\_/I'ﬁi“ ®F, by Corollary [12.50 In the setting of either of Lemma
Z Z
14.6) or Lemma the desired assertions follow from Proposition [15.1 O

Remark 15.3. When #J > 1, we do not expect (|\7If;.[ @F,)fulkerd 6 he dense in
Z

M %]Fp in general. See [54] and [20, Cor. 3.11.3 and Sec. 3.12] for examples where

the ordinary loci are nonempty but not dense.

16. CONCLUDING REMARKS

Let us compare the results obtained in this article with the main results in [30] in
the good reduction case. (We shall not compare our results in this article with those
in works earlier than [30]. See the introduction of [30] for an indirect comparison.)

Remark 16.1. Compared with [30, Thm. 6.4.1.1], which is the main result on in-
tegral models of toroidal compactifications in the good reduction case, the results
obtained in this article achieved the following:

(1) For sufficiently many compatible choices ¥ of admissible (possibly non-
smooth) rational polyhedral cone decompositions allowing the consideration
of Hecke actions (in a somewhat subtle sense; see Examples [2.5] and
and Proposition , we can define the toroidal compactifications M%‘fz
of My, which carry a collection of degeneration families (éj, Xj, Zi, dyy;) of
types My, for all j € J, extending the tautological tuples over My, = My,
by Theorem This generalizes [30, Thm. 6.4.1.1(1)].

(2) The scheme I\/I%f[fZ is proper but certainly not smooth in general. By Propo-

Sition the local property of M%f[’rg is as nice as the one of MH, in terms
of normality (by construction), geometric normality of fibers, and Cohen—
Macaulayness (or more generally the properties of fibers considered there).
(3) The stratification we obtained in Theorem generalizes [30, Thm.
6.4.1.1(2)]. Since the strata are generally not smooth over Sy, there are
some subtleties that needs to be—and can be—addressed. For example,
by Corgllary each stratum is flat over So and normal; by Corollary

10.18, My (}ZNFP is open and dense in M%_‘Zfz QZNFP.

(4) While we cannot assert that the boundary I\_/Igf[)rz — My (with its reduced
structure) is a normal crossings divisor as in [30, Thm. 6.4.1.1(3)], the
formal local description along the boundary strata will still be given by
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the analogue of [30, Thm. 6.4.1.1(5)] below. (One can also introduce the
language of log structures, but we have not spelled that out.)

(5) We do not have an analogue of [30, Thm. 6.4.1.1(4)] because the extended
Kodaira—Spencer morphism is generally undefined in our context.

(6) The comparison of formal completions we obtained in Theorem gen-
eralizes [30, Thm. 6.4.1.1(5 )]

(7) The universal property of I\/Itor we obtained in Theorems and
generalizes [30, Thm. 6.4.1. 1(6)]

(8) While the very construction of Mtor in Section ﬁ depends on the auxiliary
choices in Sectlonsl and[f] by Corollary [L1.7] up to canonical isomorphism,
the resulted Mgfifz is in fact independent of the auxiliary choices.

Remark 16.2. Compared with [30, Thm. 7.2.4.1], which is the main result on in-
tegral models of minimal compactifications in the good reduction case, the results
obtained in this article achieved the following:

(1) Essentlally by construction, the scheme l\/lrnln is projective and flat over

S = Spec(Op,,(p)), and Mmln contains My as an open dense subscheme.
This generalizes [30, Thm. 7 2.4.1(1)].
(2) Also essentially by construction, some power of the Hodge invertible sheaf

wwm,, over My extends to an ample invertible sheaf wgmin 5 over Mﬂi“. This
H
generalizes [30, Thm. 7.2.4.1(2)].
(3) The assertion in Proposition|7.11|that Mi™ = PI‘OJ( 2 (M';_‘zrz, w&F ))

M32sd
generalizes part of [30, Thm. 7.2.4.1(3)].

(4) The stratification we obtained in Theorems and [12.16| generalizes [30),
Thm. 7.2.4.1 (4) and (5)]. By Corollary (see also Remark [12.6]),

MH ® IF,, is open and dense in |\/|mln ® Fp.

(5) Whlle the very construction of Mﬁm in Proposition depends on the
auxiliary choices in Sections [d] and [] by Corollary up to canoni-
cal isomorphism, the resulted Mﬁin is in fact independent of the auxiliary
choices.

Thus, perhaps surprisingly, many features of the “good reduction” theory in [30]
extend to the “bad reduction” theory for constructions by normalization, regardless
of the ramification, levels, and polarization degrees involved. (Nevertheless, for this
to be useful, the input from the theory of local models is often crucial, as we have
seen in the examples in Sections [14] and See Remarks and below.)

Remark 16.3. (This remark was updated after we received the latest revision of
[34] on February 25, 2015.) The same constructions by taking normalizations of
good reduction auxiliary models have been considered in [34] for general Hodge-
type Shimura varieties, and results similar to ours have been obtained under the
additional assumption that the level H is ezactly the preimage of [] Hj aux under
jed

the homomorphism G(A®) — [] Gjaux(A™) induced by (4.10), using a rather

jeJ
different method based on rationality properties of Hodge tensors. Nevertheless,
our methods are closer to those in [10] and [30], and hence are logically simpler
(because the Hodge-type methods in [34] also depend on [10] and [30]). Moreover,
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we allow the level H to be arbitrarily high at p, and we have shown that all the
geometric objects constructed by normalization are independent of the auxiliary
choices. (Such independence seems rather subtle—and perhaps not meaningful—in
general Hodge-type cases.) In these regards, our results are not yet subsumed by
the latest version of [34], and the semi-abelian degenerations parameterized by our
integral models of toroidal compactifications might be useful in certain applications.

Remark 16.4. The toroidal and minimal compactifications constructed in [55] and
[56] are for the Siegel moduli with parahoric levels at p defined by linear algebraic
data that are otherwise split, in which case the naive moduli problems as in Ex-
ample are not naive and define good integral models. The constructions rely
crucially on the assertion that the integral models (before compactification) are
normal, which is shown there using results of [44] and [12]. The Siegel moduli with
pro-p-Iwahoric levels at p have also been considered in [57]. Again, the construc-
tions crucially rely on the assertion that the integral models before compactification
are normal, which is shown there using results of [44], [12], and [2I]. In fact, these
integral models with Iwahoric and pro-p-Iwahoric levels at p have been shown to
be normal and Cohen—-Macaulay. If we use the constructions in this article instead,
then we obtain the same (projective normal) minimal compactifications as in [50]
and [57], and sufficiently many (but not all) normal and Cohen-Macaulay toroidal
compactifications as in [55] and [57], which admit stratifications and formal local
descriptions compatible with those in [10] and [30] in characteristic zero.

Remark 16.5. Local models for moduli problems of abelian schemes with PEL struc-
tures at parahoric levels at p (as in Examples and have been extensively
studied in the last two decades. (See the survey articles [50], [16], and [47], and
see [62] and [48] for some important recent developments.) In all cases where the
local models are known to be flat and normal, our constructions give toroidal and
minimal compactifications for them, with local properties of the toroidal compact-
ifications such as the normality of geometric fibers and Cohen—Macaulayness (or
more generally the properties of fibers considered in Proposition as nice as the
integral models before compactification, and with stratifications and formal local
descriptions compatible with those in [I0] and [30] in characteristic zero.

Remark 16.6. It remains unclear what one can really say about substantially higher
levels. The simple-minded but indirect constructions by normalization do produce
reasonably good models for arbitrary levels, as we have shown in this article. But
for many applications one will still need to relate them to some more meaningful
or direct constructions. We do not have a good strategy at this moment.
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