
COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES

IN RAMIFIED CHARACTERISTICS

KAI-WEN LAN

Abstract. We show that, by taking normalizations over certain auxiliary

good reduction integral models, one obtains integral models of toroidal and
minimal compactifications of PEL-type Shimura varieties which enjoy many

features of the good reduction theory studied as in the earlier works of Faltings

and Chai’s and the author’s. We treat all PEL-type cases uniformly, with no
assumption on the level, ramifications, and residue characteristics involved.
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1. Introduction

In recent years, we have witnessed a rapid development in the arithmetic applica-
tions of noncompact Shimura varieties, in which the integral models of toroidal and
minimal compactifications have played important roles. So far such applications
have almost always assumed that there are some bottom levels at which the integral
models have good reductions, which is the case when the residue characteristics are
unramified in all linear algebraic data involved, so that the Shimura varieties in
question have smooth integral models which can be constructed and compactified
using the theories of deformation and degeneration as in [10] and [30].

Nevertheless, as remarked in the introduction of [31], since the theory of degen-
eration developed in [42], [10], and [30] works as long as the generic characteristic
is good (and as long as the base of degenerations are noetherian normal), there
is, a priori, no reason that we cannot consider integral models of Shimura vari-
eties and their compactifications with bad reductions. Also, recent breakthroughs
in the theory of local models have shown that, even when allowing rather deep
ramifications, it is not so unreasonable to consider integral models of Shimura va-
rieties defined by taking normalizations of the (schematic) closures of the images
of characteristic zero Shimura varieties in certain auxiliary good reduction integral
models. (For simplicity, we shall just say that such integral models are constructed
“by taking normalizations of certain auxiliary good reduction integral models”, or
just “by normalization”.) This is because a large class of useful models defined
by representing moduli problems can be shown to be normal, or close to being so,
in the sense that the closures of their characteristic zero fibers are normal. Since
the theory of degeneration works well over noetherian normal base schemes, the
time seems ripe for systematically studying the construction of integral models of
compactifications by normalization.

Let us be more precise about the integral models we will consider (without ex-
plicit definitions, to be given later in the main text). Consider any PEL moduli
problem MH over F0 (the reflex field of the PEL datum defining MH), as in [30, Sec.
1.4.1] (with 2 = ∅ there), parameterizing tuples (A, λ, i, αH), where A is an abelian
scheme over some base scheme, λ : A→ A∨ is a polarization, i is an endomorphism
structure, and αH is a level-H structure. Here H is an open compact subgroup of
G(Ẑ), where the group functor G over Spec(Z) is defined as in [30, Def. 1.2.1.6].
Let p > 0 be any rational prime number. For technical simplicity, let us assume
that the image Hp of H under the canonical homomorphism G(Ẑ) → G(Ẑp) is
neat. Consider a collection of auxiliary moduli problems {MHj,aux

}j∈J, where each
MHj,aux

is a good reduction moduli problem over OF0,j,aux,(p) (the ring of p-integers in
the reflex field F0,j,aux of the PEL datum defining MHj,aux

), defined as in [30, Sec.
1.4.1] (with 2 = {p} there), parameterizing tuples (Aj,aux, λj,aux, ij,aux, αHj,aux

),
with morphisms MH → MHj,aux

⊗
Z
Q between moduli problems defined by assigning

(Aj,aux, λj,aux, ij,aux, αHj,aux) to (A, λ, i, αH) (in a way that will be made explicit),
where (Aj,aux, λj,aux) is a prime-to-p polarized abelian scheme defined by (A, λ),
using Zarhin’s trick when λ is not prime to p, where iaux is the restriction of i to a
subalgebra unramified at p, and where αHj,aux

is a (possibly lower) level structure
away from p induced by αH (up to Hecke twist). Then we construct a p-integral

model ~MH,J of MH as the normalization of
∏
j∈J

MHj,aux
under the canonical morphism
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MH →
∏
j∈J

MHj,aux
. (The use of a collection {MHj,aux

}j∈J takes care of the consider-

ation of multichains of isogenies as in [51, Ch. 3], or of more general collections of
quasi-isogenous polarized abelian schemes.) We similarly define p-integral models
of toroidal and minimal compactifications of MH using the toroidal and minimal
compactifications of the auxiliary moduli problems constructed as in [30, Ch. 6 and
7]. For simplicity, we shall call these integral models rather than p-integral models.
(We obtain models over the whole integer ring, or any localizations of it, by similar
considerations.)

For example, if MH is the modular curve (over Q) of principal level n, where
n = n0p

r for some integer n0 ≥ 3 prime to p and for some integer r ≥ 0, then
we can take Mj0,aux (where J is a singleton {j0}) to be the modular curve (over
Z(p)) of principal level m for any integer m ≥ 3 dividing n0. (This is essentially
the same approach taken in [9, III, Def. 3.3].) For another example, if MH is the
Siegel moduli (over Q) of genus g, degree d2

j (possibly divisible by p), and principal

level n for some integer n = n0p
r as above, then we can take Mj0,aux (where J is a

singleton {j0}) to be the principally polarized Siegel moduli (over Z(p)) of genus 8g
and principal level m, for any integer m ≥ 3 dividing n0. For yet another example,
if MH is a unitary Shimura variety with endomorphisms by a maximal order of a
CM field totally ramified at p, and with Iwahori level structures (at p) realized by
chains of (p-power-degree) isogenies A = A0 → A1 → · · · → Am = A of abelian
schemes with compatible additional structures, then we can take J to be any subset
of {0, 1, . . . ,m}, and {Mj,aux}j∈J to be a collection of principally polarized Siegel
moduli, with the morphism MH → Mj,aux given by applying Zarhin’s trick to Aj

(and its polarization), by forgetting the endomorphism structure, and by retaining
only the level structure away from p, for each j ∈ J. Different choices of the subset

J generally define different ~MH,J’s by normalization. (It might be helpful to take a
quick look at Examples 2.3, 2.4, 13.11, and 13.12, without studying them in detail.)

This article aims at showing that many features of the good reduction theory
as in [30] extend to the integral models of toroidal and minimal compactifications
constructed by normalization, despite that fact that the constructions (as explained
above) are rather crude. We will justify the folklore belief that “the toroidal bound-
ary should be no more singular than the interior”, without studying the interior.

We will show that, by taking normalizations over certain auxiliary good reduction
integral models of toroidal compactifications (as above), we obtain integral mod-
els of toroidal compactifications associated with certain compatible collections of
(possibly nonsmooth) induced cone decompositions, whose local properties in terms
of geometric normality of fibers and Cohen–Macaulayness are nevertheless as nice
as the integral models of Shimura varieties defined by normalization. Moreover,
these integral models of toroidal and minimal compactifications admit boundary
stratifications analogous to the ones in good characteristics (including zero), and
the completions of the integral models of toroidal compactifications along their
strata can be explicitly compared with the completions of certain putative bound-
ary charts parameterizing degeneration data of PEL structures. These assertions
will be proved with essentially no assumption on the integral PEL data defining
the moduli problems. (We will only need [30, Cond. 1.4.3.10] to hold, which can
always be achieved by slightly modifying the choices of integral PEL data.)

As examples of applications of our results, we will combine our results with
related results in the theory of local models in the ramified case, and show that
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certain integral models of toroidal and minimal compactifications have the same
number of geometric irreducible components in their generic and special fibers. We
also show the density of ordinary loci in certain deeply ramified cases, by combining
the above with the technique for showing nonemptiness as in [31, Sec. 6.3.3].

Here is an outline of the article.
In Section 2, we review the basic setting for the definition of our PEL-type moduli

problems in characteristic zero, which will be called PEL-type Shimura varieties for
the sake of simplicity, despite the well-known issue of the failure of Hasse’s principle.
(This is harmless because the canonical models as in [18] and [49], which are based
on the construction in [2], are open and closed in the complex fibers of our models;
see [28].) For the sake of completeness, we also consider collections of lattices
twisted by group actions, which define moduli problems for collections of abelian
schemes with PEL structures related to each other by Q×-isogenies (i.e., quasi-
isogenies; see [30, Def. 1.3.1.16 and 1.3.1.17]). (Our theory applies, in particular,
to the parahoric setting in [51] and in later works built on it.)

In Section 3, we explain how the association of degeneration data behaves under
Q×-isogenies defined by the collections of lattices introduced in Section 2. The
assertions in this section are perhaps unsurprising, but the explanations for them
are quite elaborate. Since the technical difficulties in this section are rather different
from those in later sections, we suggest that first-time readers skip this section.

In Sections 4 and 5, we introduce certain auxiliary choices of good reduction
integral models of PEL-type Shimura varieties, together with their toroidal and
minimal compactifications. In Section 6, we define integral models of the Shimura
varieties in question, together with their minimal compactifications, by taking nor-
malizations of (products of) such auxiliary good reduction integral models. (See
Propositions 6.1 and 6.4.) For the integral models of Shimura varieties thus defined,
we can easily show that they are independent of the auxiliary choices in Sections
4 and 5. However, for the integral models of the minimal compactifications, our
argument is rather indirect, and we will have to wait until many other results are
proved; see Section 12 below. The materials in these three sections follow closely
those in [31, Sec. 2.1.1, 2.1.2, and 2.2.1], except that we have to consider auxiliary
choices compatibly associated with the collections of lattices.

In Section 7, we define certain toroidal compactifications of the integral models
of Shimura varieties, with compatible collections of cone decompositions induced by
those of the auxiliary toroidal compactifications, and show that they satisfy certain
universal property generalizing the one in [30, Thm. 6.4.1.1(6)]. (See Theorem
7.14.) Such a universal property is the foundation for all our later arguments.

In Section 8, we construct putative boundary charts, and show that certain
formal schemes defined by them admit canonical morphisms to the toroidal com-
pactifications defined by normalization. In Section 9, we show that the images of
the underlying topological maps of such morphisms are locally closed and define
stratifications of the toroidal compactifications defined by normalization, with prop-
erties as in characteristic zero as in [30, Thm. 6.4.1.1(2)]. (See Theorem 9.13.) In
Section 10, we show that the canonical morphisms from the formal schemes defined
by putative boundary charts to the toroidal compactifications defined by normal-
ization induce isomorphisms from the former to the formal completions of the latter
along the (locally closed) image strata. (See Theorem 10.13.) Such isomorphisms
will play important roles in subsequent sections. It follows that the special fibers
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of integral models defined by normalization are dense in the corresponding special
fibers of toroidal compactifications defined by normalization. (See Corollary 10.18.)

In Section 11, we show that the tautological objects over our moduli problems
in characteristic zero, which are collections of abelian schemes with PEL structures
related to each other by Q×-isogenies, uniquely extends to collections of semi-
abelian schemes equipped with similar structures over the toroidal compactifica-
tions in mixed characteristics defined by normalization. (See Theorem 11.2.) We
also improve the universal property in Theorem 7.14 and show that the toroidal
compactifications defined by normalization are independent of the auxiliary choices
in Sections 4 and 5. (See Theorem 11.4 and Corollary 11.7.)

In Section 12, we show that the minimal compactifications defined by normaliza-
tion admit stratifications with properties as in characteristic zero as in [30, Thm.
7.2.4.1 (4) and (5)]. (See Theorems 12.1 and 12.16.) It follows that the special
fibers of integral models defined by normalization are dense in the corresponding
special fibers of minimal compactifications defined by normalization. (See Corollary
12.5 and Remark 12.6.) Consequently, we can finally show that the integral models
of minimal compactifications defined by normalization are also independent of the
auxiliary choices in Sections 4 and 5. (See Corollary 12.7.)

In Section 13, we study the morphisms induced functorially by varying the levels,
collections of lattices, and cone decompositions, and work out some examples. In
particular, we obtain morphisms extending the ones in characteristic zero defining
Hecke correspondences among Shimura varieties. (See Proposition 13.15.)

In Section 14, we show that the local properties of the toroidal compactifica-
tions defined by normalization are as nice as the integral models of Shimura vari-
eties themselves, when it comes to the geometric normality of fibers and Cohen–
Macaulayness (and also the regularity and geometric regularity of fibers when the
cone decompositions are smooth). (See Propositions 14.1 and 14.2. See also Corol-
lary 14.4 for some well-known application.) We also work out some examples,
based on the theory of local models, where such results apply. (See Lemmas 14.6
and 14.7.) In Section 15, we show the density of ordinary loci in some of such
examples. (See Proposition 15.1 and Corollary 15.2.)

In Section 16, we conclude the article with some remarks comparing the results
in this article with other known results, including our own earlier ones.

The arguments in this article will be built on the theory developed in [30],
and some familiarity with the theory there will be necessary. The readers may
find the summaries, explanations, and reformulations in [29, Sec. 1] and [31, Sec.
1.1, 1.2, 1.3.1, and 1.3.2] helpful. The notation system in this article is probably
more complicated than it absolutely has to be, but we have chosen to make it
consistent with most of those in [30] and [31] (and other works dependent on them),
so that readers already familiar with them will not have to learn a completely new
notation system. We will make it clear when we occasionally do introduce some
simplifications.

We shall follow [30, Notation and Conventions] unless otherwise specified. While
for practical reasons we are unable to review all notions we have inherited from [30]
and [31], we recommend that the readers make use of the reasonably detailed indices
and tables of contents of these works when looking for the numerous definitions.
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2. Basic setting

Suppose we have an integral PEL datum (O, ?, L, 〈 · , · 〉, h0), where O is an
order in a semisimple algebra finite-dimensional over Q, together with a positive
involution ?, and where (L, 〈 · , · 〉, h0) is a PEL-type O-lattice as in [30, Def. 1.2.1.3],
where 〈 · , · 〉 : L×L → Z(1) is an alternating pairing satisfying 〈bx, y〉 = 〈x, b?y〉
for any x, y ∈ L and b ∈ O, together with an R-algebra homomorphism h0 : C →
EndO⊗

Z
R(L⊗

Z
R) satisfying 〈h0(z)x, y〉 = 〈x, h0(zc)y〉 for any x, y ∈ L and z ∈ C,

and satisfying (2π
√
−1)−1〈x, h0(

√
−1)x〉 > 0 for any nonzero x ∈ L. (In [30, Def.

1.2.1.3] h0 was denoted by h.) Such a tuple (O, ?, L, 〈 · , · 〉, h0) is an integral version
of the PEL datum (B, ?, V, 〈 · , · 〉, h0) in [26] and related works.

The datum of (O, ?, L, 〈 · , · 〉, h0) defines a group functor G over Spec(Z) (as in
[30, Def. 1.2.1.6]), and defines the reflex field F0 (as in [30, Def. 1.2.5.4]). In what
follows, we will allow F0 to be any finite extension field of the reflex field. (The
theory works for any such extension field.)

Let H be an open compact subgroup of G(Ẑ). By [30, Def. 1.4.1.4] (with 2 = ∅
there), the data of (L, 〈 · , · 〉, h0) and H define a moduli problem MH over S0 =
Spec(F0), parameterizing tuples (A, λ, i, αH) over schemes S over S0, where:

(1) A→ S is an abelian scheme.
(2) λ : A→ A∨ is a polarization.
(3) i : O ↪→ EndS(A) is an O-endomorphism structure as in [30, Def. 1.3.3.1].
(4) LieA/S with its O⊗

Z
Q-module structure given by i satisfies the determi-

nantal condition in [30, Def. 1.3.4.1] given by (L⊗
Z
R, 〈 · , · 〉, h0).

(5) αH is an (integral) level-H structure of (A, λ, i) of type (L⊗
Z
Ẑ, 〈 · , · 〉) as in

[30, Def. 1.3.7.6].

By [30, Thm. 1.4.1.11 and Cor. 7.2.3.10], MH is an algebraic stack separated,
smooth, and of finite type over S0, which is representable by a scheme quasi-
projective (and smooth) over S0 when H is neat. (See [49, Sec. 0.6] or [30, Def.
1.4.1.8] for the definition of neatness.)

Given the above (O, ?, L, 〈 · , · 〉, h0) and H ⊂ G(Ẑ), suppose moreover that we
have a nonempty collection {(gj, Lj, 〈 · , · 〉j)}j∈J, where for each j ∈ J the triple
(gj, Lj, 〈 · , · 〉j) consists of the following data:

(1) gj ∈ G(A∞).
(2) Lj ⊂ L⊗

Z
Q is a O-lattice.

(3) 〈 · , · 〉j : Lj×Lj → Z(1) is an alternating pairing such that 〈 · , · 〉j⊗
Z
Q is a

Q×>0-multiple of 〈 · , · 〉⊗
Z
Q (when both are viewed as Q(1)-valued pairings

on L⊗
Z
Q), which defines a group functor Gj over Spec(Z) (as in [30, Def.

1.2.1.6]), equipped with a canonical isomorphism

Gj⊗
Z
Q ∼= G⊗

Z
Q.

(4) By also viewing h0 as a polarization of (Lj, 〈 · , · 〉j,Z(1)), as in [30, Def.
1.2.1.2], (Lj, 〈 · , · 〉j, h0) is also a PEL-type O-lattice as in [30, Def. 1.2.1.3].
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(5) Let us denote by Hj the preimage of g−1
j Hgj under the canonical isomor-

phism Gj(A∞) ∼= G(A∞). Then we require thatHj ⊂ Gj(Ẑ), or equivalently

that the action of g−1
j Hgj stabilizes the submodule Lj⊗

Z
Ẑ of L⊗

Z
A∞.

Moreover, as in [30, Cond. 1.4.3.10], we shall assume that there exists some maximal
order O′ in O⊗

Z
Q containing O such that, for every j ∈ J, the action of O on Lj

extends to an action of O′.
For each j ∈ J, we have a moduli problem MHj defined by the integral PEL datum

(O, ?, Lj, 〈 · , · 〉j, h0) as in [30, Def. 1.4.1.4] (with 2 = ∅ there), parameterizing

tuples (Aj, λj, ij, αHj) over schemes S over S0 as above (but with (L⊗
Z
Ẑ, 〈 · , · 〉)

replaced with (Lj⊗
Z
Ẑ, 〈 · , · 〉j) in the definition of level-Hj structures), and where

(2.1) MH
∼→ MHj

is a canonical isomorphism given by [30, Prop. 1.4.3.4 and Cor. 1.4.3.8], realized
by sending objects parameterized by MH to their isogeny twists. (A special case of
this will be spelled out in Section 3.)

Remark 2.2. While MH and MHj are canonically isomorphic to each other,
their tautological abelian schemes differ by a Q×-isogeny, which is generally not
a Z×(p)-isogeny. We will see in the next few sections that different MHj

’s are

associated with naturally different auxiliary integral models.

Example 2.3 (simplest case). Suppose J = {j0} is a singleton, with the simplest
choice (gj0 , Lj0 , 〈 · , · 〉j0) = (1, L, 〈 · , · 〉). In this case, we will study (mixed charac-
teristics) degenerations of objects parameterized by MH.

Example 2.4 (parahoric levels at p). Suppose that p > 0 is a rational prime number,
that O⊗

Z
Qp is simple, and that O⊗

Z
Zp is a maximal order in O⊗

Z
Qp. Suppose

J = {j0, j1, . . . , jm} is a finite totally ordered set, with

j0 < j1 < · · · < jm,

such that gj = 1 for all j ∈ J, and such that

L = Lj0 ( Lj1 ( · · · ( Ljm

are proper sublattices of 1
pL which are representatives of some self-dual periodic

lattice chain considered in [51, Ch. 3]. (We can allow general O⊗
Z
Qp and consider

multichains—we focus on the special case here only for the sake of simplicity of
exposition.) Suppose that H = HpHp, where Hp is a neat open compact subgroup

of G(Ẑp), and where Hp := ∩Gj(Zp), with Gj(Zp) abusively denoting the image
of Gj(Zp) in G(Qp) under the canonical isomorphism Gj(Qp) ∼= G(Qp). Then
MH, with its additional structures given by the isomorphisms (2.1), for all j ∈ J,
parameterizes chains of isogenies

A = Aj0 → Aj1 → · · · → Ajm → A

(whose composition is the multiplication by p on A) satisfying certain additional

conditions, and extends to a moduli problem over ~S0 := Spec(OF0,(p)) given by the
moduli scheme of chains of isogenies between abelian schemes (with additional PEL
structures) as in [51] and later works built on it. In this case, we will study (mixed
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characteristics) degenerations of such chains of isogenies. While this enriched mod-
uli problem in characteristic zero is canonically isomorphic to MH and is finite over
MHpGj(Zp) for each j ∈ J, the extended moduli problem in mixed characteristics
is in general not finite over any mixed characteristics moduli problem extending
MHpGj(Zp).

Example 2.5 (Hecke twists). Suppose J = {j0, j1} has two elements, and suppose
(gj0 , Lj0 , 〈 · , · 〉j0) = (1, L, 〈 · , · 〉) and (gj1 , Lj1 , 〈 · , · 〉j1) = (g, L, 〈 · , · 〉) for some

g ∈ G(Ẑ). In this case, we will study (mixed characteristics) degenerations of
Q×-isogenies

f : (A, λ, i, αH)→ (A′, λ′, i′, α′g−1Hg)

realizing the Hecke twists of (A, λ, i, αH) by g (see [30, Sec. 6.4.3]). More generally,
given any collection {(gj, Lj, 〈 · , · 〉j)}j∈J′ , we can introduce a twice-larger collection

{(gεgj, Lj, 〈 · , · 〉j)}(ε,j)∈{0,1}× J′ , provided that both g−1
j Hgj and g−1

j g−1Hggj sta-

bilize the submodule Lj⊗
Z
Ẑ of L⊗

Z
A∞, for each j ∈ J′. In this case, we will study

(mixed characteristics) degenerations of Q×-isogenies

fj : (Aj, λj, ij, αHj)→ (A′j, λ
′
j, i
′
j, α
′
g−1Hjg

)

realizing the Hecke twists of (Aj, λj, ij, αHj), for all j ∈ J′, which are related to each
other via Q×-isogenies.

In what follows, we shall fix the choice of a rational prime number p > 0, and we
shall assume that the image Hp of H under the canonical homomorphism G(Ẑ)→
G(Ẑp) is neat (which means, a fortiori, that H is also neat). Then Hj and its image

Hpj under the canonical morphism Gj(Ẑ)→ Gj(Ẑp) are also neat, for every j ∈ J.

We suggest that first-time readers take, for simplicity, J = {j0} (a singleton) and
(gj0 , Lj0 , 〈 · , · 〉j0) = (1, L, 〈 · , · 〉) (with no nontrivial Hecke twist) as in Example
2.3, and ignore all the indices j (and products indexed by them) in the exposition.
Furthermore, they might assume that the pairing 〈 · , · 〉 is self-dual at p, so that
Zarhin’s trick is not needed. The key points are already novel under these two
simplifying assumptions.

3. Quasi-isogeny twists of degenerations

In this section, let us fix the choice of an index j ∈ J.
Let V be a complete discrete valuation ring with fraction field K and alge-

braically closed residue field k. Suppose that there exists a morphism

η := Spec(K)→ MH.

By abuse of notation, let us denote by (Gη, λη, iη, αH,η) the pullback of the tauto-
logical object over MH under this morphism. By the semistable reduction theorem
(see, for example, [30, Thm. 3.3.2.4]), up to replacing K with a finite extension
field and replacing V accordingly, we may assume that Gη extends to a semi-
abelian scheme G over Spec(V ). By the theory of Néron models (see [4]; cf. [52,
IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5]), (Gη, λη, iη, αH,η) extends to
a degenerating family (G,λ, i, αH) of type MH over Spec(V ), where αH is defined
only over η = Spec(K), which defines an object of DEGPEL,MH(V ) corresponding
to a tuple

(B, λB , iB , X, Y , φ, c, c
∨, τ, [α\H])
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in DDPEL,MH(V ) under [30, Thm. 5.3.1.19]. Since the base ring V is strict local,
the étale sheaves X and Y are necessarily constant, which we shall denote by X
and Y , respectively.

Let η̄ → MH be any geometric point above η → MH. Then αH,η can be identified
with the π1(η, η̄)-invariant H-orbit of some symplectic isomorphism

α̂η̄ : L⊗
Z
Ẑ ∼→ TGη̄

(cf. [30, Lem. 1.3.6.5]), which induces the π1(η, η̄)-invariant H-orbit of the induced
symplectic isomorphism

α̂η̄ ⊗
Ẑ
A∞ : L⊗

Z
A∞ ∼→ VGη̄.

The image of Lj⊗
Z
Ẑ under (α̂η̄ ⊗

Ẑ
A∞) ◦ gj : L⊗

Z
A∞ ∼→ VGη̄ is an open compact

subgroup of VGη̄, which is π1(η, η̄)-invariant because the preimage Hj of g−1
j Hgj

under the canonical isomorphism Gj(A∞) ∼= G(A∞) is contained in Gj(Ẑ). Hence,
by [30, Lem. 1.3.5.2], we have a Q×-isogeny

fj,η : (Gη, λη, iη)→ (Gj,η, λj,η, ij,η)

over η, together with the π1(η, η̄)-invariant Hj-orbit of a symplectic isomorphism

α̂j,η̄ : Lj⊗
Z
Ẑ ∼→ TGj,η̄

such that the induced symplectic isomorphism

α̂j,η̄ ⊗
Ẑ
A∞ : Lj⊗

Z
A∞ ∼→ VGj,η̄

satisfies the characterizing property

α̂j,η̄ ⊗
Ẑ
A∞ = V(fj) ◦ (α̂η̄ ⊗

Ẑ
A∞) ◦ gj.

Up to replacing λj,η̄ with a Q×>0-multiple, the π1(η, η̄)-invariant Hj-orbit of α̂j,η̄

induces a level-Hj structure αHj,η for (Gj,η, λj,η, ij,η), which defines an object
(Gj,η, λj,η, ij,η, αHj,η) of MHj

(η) parameterized by a morphism η → MHj
. By

the proofs of [30, Prop. 1.4.3.4 and Cor. 1.4.3.8], this is just the composition of
η → MH with (2.1).

By the theory of Néron models again, the above Q×-isogeny fj,η extends to a
Q×-isogeny

fj : (G,λ, i)→ (Gj, λj, ij).

Together with the level-Hj structure αHj,η defined only over η, which we abusively
denote by αHj

, we obtain a degenerating family (Gj, λj, ij, αHj
) of type MHj

over
Spec(V ), which defines an object of DEGPEL,MHj

(V ) corresponding to a tuple

(Bj, λBj
, iBj

, X j, Y j, φj, cj, c
∨
j , τj, [α

\
Hj

])

in DDPEL,MHj
(V ) under [30, Thm. 5.3.1.19]. Again, the étale sheaves X j and Y j

are necessarily constant, which we shall denote by Xj and Yj, respectively.
Using the canonical isomorphism (2.1), and using the equivalences of

categories given by [30, Thm. 5.3.1.19] as above, we know that the object

(B, λB , iB , X, Y, φ, c, c
∨, τ, [α\H]) in DDPEL,MH(V ) determines and is determined
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by the object (Bj, λBj
, iBj

, Xj, Yj, φj, cj, c
∨
j , τj, [α

\
Hj

]) in DDPEL,MHj
(V ). For our

purpose, we will need a more explicit relation between these objects. Let

α\H = (ZH, ϕ
∼
−2,H, ϕ−1,H, ϕ

∼
0,H, δH, cH, c

∨
H, τH)

be any representative of [α\H].
By construction, ZH is the H-orbit of the pullback Z of the geometric filtration

0 ⊂ TTη̄ ⊂ TG\η̄ ⊂ TGη̄ under α̂η̄ : L⊗
Z
Ẑ ∼→ TGη̄. Since α̂j,η̄ ⊗

Ẑ
A∞ = V(fj,η̄) ◦

(α̂η̄ ⊗
Ẑ
A∞) ◦ gj, the pullback Zj of the geometric filtration 0 ⊂ TTη̄ ⊂ TG\η̄ ⊂ TGη̄

under α̂η̄ : L⊗
Z
Ẑ ∼→ TGη̄ is related to Z by

Zj,−i =
(
g−1

j (Z−i⊗
Ẑ
A∞)

)
∩(Lj⊗

Z
Ẑ)

for all i, whose Hj-orbit is independent of the choices, which we abusively denote
by ZHj . (This notation is abusive because ZHj is the Hj-orbit of Zj, not Z.) Thus
we have a well-defined assignment

(3.1) ZH 7→ ZHj ,

which is bijective because ZH is also determined by ZHj
. By construction, we have

isomorphisms

gj : Z−i⊗
Ẑ
A∞ ∼→ Zj,−i⊗

Ẑ
A∞

for all i, which induce isomorphisms

Gr−i(gj) : GrZ−i⊗
Ẑ
A∞ ∼→ GrZj,−i⊗

Ẑ
A∞.

By construction, X and Y are the character groups of the torus parts T and T∨

of G\ and G∨,\, respectively. Consider the submodule
(
ν(gj)

−1 Gr−2(gj)
)
(Gr

Zj

−2) of

GrZ−2⊗
Ẑ
A∞. By [30, Lem. 5.4.3.6 and 5.4.3.7], there exists a unique O-lattice Xj

in X ⊗
Z
Q, together with the canonical isomorphism fj,X : Xj⊗

Z
Q ∼→ X ⊗

Z
Q and a

canonically induced isomorphism ϕj,−2 : Gr
Zj

−2
∼→ HomẐ(Xj⊗

Z
Ẑ, Ẑ(1)) such that

ϕj,−2⊗
Ẑ
A∞ = ( tfj,X ⊗

Z
A∞) ◦ (ϕ−2⊗

Ẑ
A∞) ◦ (ν(gj)

−1 Gr−2(gj)).

Similarly, there exists a unique O-lattice Yj in Y ⊗
Z
Q, together with the canonical

isomorphism fj,Y : Y ⊗
Z
Q ∼→ Yj⊗

Z
Q and a canonically induced isomorphism ϕj,0 :

Gr
Zj

0
∼→ Yj⊗

Z
Ẑ such that

ϕj,0⊗
Ẑ
A∞ = (fj,Y ⊗

Z
A∞) ◦ (ϕ0⊗

Ẑ
A∞) ◦ (Gr0(gj)).

Then Xj and Yj are canonically isomorphic to the character groups of the torus parts

Tj and T∨j of G\j and G∨,\j , respectively, such that the morphisms fj,X and fj,Y are

induced by the Q×-isogenies fj,T : T → Tj and fj,T∨ : T∨j → T∨ induced by fj : G→
Gj and f∨j : G∨j → G∨, respectively. By abuse of notation, let (ϕ−2,Hj

, ϕ0,Hj
) be

induced by the Hj-orbit of (ϕj,−2, ϕj,0), and let (ϕ∼−2,Hj
, ϕ−1,Hj , ϕ

∼
0,Hj

) be induced

by the Hj-orbit of (ϕj,−2, ϕj,−1, ϕj,0).
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Consider the unique rj ∈ Q×>0 such that ν(g)(〈 · , · 〉⊗
Z
A∞) = rju(〈 · , · 〉j⊗

Z
A∞)

for some u ∈ Ẑ×. Then there is a unique homomorphism φj : Yj ↪→ Xj such that

φj⊗
Z
Q = r−1

j f−1
j,X ◦ (φ⊗

Z
Q) ◦ f−1

j,Y , which is induced by the pairing Gr
Zj

−2×Gr
Zj

0 →

Ẑ(1) induced by 〈 · , · 〉j : Lj×Lj → Z(1).
Thus we have obtained well-defined assignments of torus arguments

(3.3) ΦH = (X,Y, φ, ϕ−2,H, ϕ0,H) 7→ ΦHj
= (Xj, Yj, φj, ϕ−2,Hj

, ϕ0,Hj
)

and of the orbits above the abelian parts

(3.4) Φ∼H = (X,Y, φ, ϕ∼−2,H, ϕ
∼
0,H) 7→ Φ∼Hj

= (Xj, Yj, φj, ϕ
∼
−2,Hj

, ϕ∼0,Hj
),

where the latter induces the former. By the above construction and by the definition
of ΓΦH and ΓΦHj

as the respective automorphism groups of ΦH and ΦHj (see [30,

Def. 6.2.4.1 and 5.4.1.6]), we also obtain a canonical isomorphism

(3.5) ΓΦH
∼→ ΓΦHj

.

Accordingly, we have a canonical isomorphism

(3.6) MΦH
H

∼→ M
ΦHj

Hj

covering a canonical isomorphism

(3.2) MZH
H
∼→ M

ZHj

Hj

(over S0 = Spec(F0)) and equivariant with (3.5), which matches the object

(ϕ∼−2,H, ϕ
∼
0,H) parameterized by MΦH

H → MZH
H with the object (ϕ∼−2,Hj

, ϕ∼0,Hj
)

parameterized by M
ΦHj

Hj
→ M

ZHj

Hj
. The tautological object (B, λB , iB , ϕ−1,H)

over MZH
H and the pullback of the tautological object (Bj, λBj

, iBj
, ϕ−1,Hj

)

over M
ZHj

Hj
are related via a Q×-isogeny fj,B : (B, λB , iB) → (Bj, λBj

, iBj
)

(canonically induced by the above Q×-isogeny fj : (G,λ, i) → (Gj, λj, ij), or

rather by the corresponding Q×-isogeny f \j : (G\, λ\, i\) → (G\j , λ
\
j , i

\
j ) induced

by taking Raynaud extensions), where ϕ−1,H (resp. ϕ−1,Hj
) is induced by the

π1(η, η̄)-invariant H-orbit of ϕ−1 := Gr−1(α̂η̄) : GrZ−1
∼→ TBη̄ ∼= (TG\η̄)/(TTη̄)

(resp. Hj-orbit of ϕj,−1 := Gr−1(α̂j,η̄) : Gr
Zj

−1
∼→ TBj,η̄

∼= (TG\j,η̄)/(TTj,η̄)) (cf. the

proofs of [30, Prop. 1.4.3.4 and Cor. 1.4.3.8]).
If we take any splitting δj of Zj, and abusively denote its Hj-orbit by δHj , then

we obtain a cusp label [(ZHj
,ΦHj

, δHj
)]. Thus we have a well-defined assignment

(3.7) [(ZH,ΦH, δH)] 7→ [(ZHj ,ΦHj , δHj)].

Let us fix once and for all the choices of δj for all pairs (Zj,Φj), which determine
the choices of δHj

for all pairs (ZHj
,ΦHj

). Then the assignment (3.7) is induced by
an assignment of representatives of cusp labels

(3.8) (ZH,ΦH, δH) 7→ (ZHj
,ΦHj

, δHj
).

By the definition of the group SΦH (see [30, (6.2.3.5), Conv. 6.2.3.20, Lem.

6.2.4.4]) and by [28, Cor. 3.6.10], we can identify elements of Hom(SΦH , Ẑ(1)) with

maps in Y ⊗
Z
Ẑ → HomẐ(X ⊗

Z
Ẑ, Ẑ(1)) (satisfying certain additional conditions),
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and we can identify elements H ∈ Hom(SΦH ,Z(1)) with elements h ∈ H which
induce maps

GrZ−2⊕GrZ−1⊕GrZ0 = GrZ
δ
∼→ L⊗

Z
Ẑ h→ L⊗

Z
Ẑ
δ−1

∼→ GrZ = GrZ−2⊕GrZ−1⊕GrZ0

given by
(

1 h20
1

1

)
in block-matrix form (acting on column vectors from the left)

with h20 : GrZ0 → GrZ−2 induced by

GrZ0

ϕ0
∼→ Y ⊗

Z
Ẑ
h⊗

Z
Ẑ
→ HomẐ(X ⊗

Z
Ẑ, Ẑ(1))

ϕ−1
−2
∼→ GrZ−2 .

This identification depends not on the choice of δ, but on the choices of Z and
(ϕ−2, ϕ0), which is canonical (only) up to the action of ΓΦH . Similarly, we have
an identification between elements Hj ∈ Hom(SΦHj

,Z(1)) and elements hj ∈ Hj,

depending not on the choice of δj, but on the choices of Zj and (ϕj,−2, ϕj,0), which
is canonical (only) up to the action of ΓΦHj

. Nevertheless, if Zj and (ϕj,−2, ϕj,0)

are determined by Z and (ϕ−2, ϕ0) as above, then the above identifications are

compatible with the isomorphisms H ∼→ g−1
j Hgj

∼→ Hj (by definition of Hj), and

we have a canonical isomorphism Hom(SΦH ,Z(1))
∼→ Hom(SΦHj

,Z(1)) of abelian

groups equivariant with (3.5), which induces canonical isomorphisms

(3.9) SΦHj

∼→ SΦH ,

(3.10) (SΦHj
)Q := SΦHj

⊗
Z
Q ∼→ (SΦH)Q := SΦH ⊗Z

Q,

(3.11) (SΦH)∨Q
∼→ (SΦHj

)∨Q,

(3.12) (SΦH)∨R
∼→ (SΦHj

)∨R ,

and

(3.13) EΦH = Hom(SΦH ,Gm)
∼→ EΦHj

= Hom(SΦHj
,Gm),

which are compatible with each other and compatibly equivariant with (3.5). If
we identify elements of (SΦH)∨Q (resp. (SΦHj

)∨Q) with Hermitian pairings on Y ⊗
Z
Q

(resp. Yj⊗
Z
Q) as in [30, Sec. 6.2.5], then (3.11) is defined by pullback under the

inverse of fj,Y : Y ⊗
Z
Q ∼→ Yj⊗

Z
Q. Hence (3.12) preserves the positive definiteness

and semi-definiteness of pairings, and maps PΦH (resp. P+
ΦH

) to PΦHj
(resp. P+

ΦHj
).

By [30, Lem. 5.4.2.11], the representative (ZHj
,ΦHj

, δHj
) of the cusp label

[(ZHj
,ΦHj

, δHj
)] uniquely determines a representative

α\Hj
= (ZHj

, ϕ∼−2,Hj
, ϕ−1,Hj

, ϕ∼0,Hj
, δHj

, cHj
, c∨Hj

, τHj
)

of [α\Hj
], where ZHj

, ϕ∼−2,Hj
, ϕ−1,Hj

, ϕ∼0,Hj
, and δHj

are as above. It remains to

relate (cHj , c
∨
Hj
, τHj) to (cH, c

∨
H, τH). For this purpose, let us also fix some repre-

sentatives Z, Φ = (X,Y, φ, ϕ−2, ϕ0), and ϕ−1 in their H-orbits, which induce Zj,
Φj = (Xj, Yj, φj, ϕj,−2, ϕj,0), and ϕj,−1 by the procedures explained above.
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By comparing the universal properties (as in [31, Lem. 1.3.2.11 and Prop.

1.3.2.12]) of CΦH,δH → MΦH
H and CΦHj

,δHj
→ M

ΦHj

Hj
, there is a canonical

isomorphism

(3.14) CΦH,δH
∼→ CΦHj

,δHj

(over S0 = Spec(F0)) compatible with (3.6) and equivariant with (3.5), which

matches the object (cH, c
∨
H) parameterized by CΦH,δH → MΦH

H with the object

(cHj
, c∨Hj

) parameterized by CΦHj
,δHj
→ M

ΦHj

Hj
. Concretely, by [31, Lem. 1.3.2.11

and Prop. 1.3.2.12], the pair (cH, c
∨
H) is equivalent to a tuple

(G\η, λ
\
η : G\η → G∨,\η , i\η, β

\
H,η)

over η, where the subtuple (G\η, λ
\
η : G\η → G∨,\η , i\η) is determined by two homo-

morphisms cη : Y → B∨η and c∨η : X → Bη compatible with each other under the

homomorphisms φ : Y ↪→ X and λBη : Bη → B∨η , and where β\H,η is equivalent to

the π1(η, η̄)-invariant H-orbit of a triple

β̂\η̄ = (β̂\,0η̄ : Z−1
∼→ TG\η̄, β̂

\,#,0
η̄ : Z#

−1
∼→ TG∨,\η̄ , ν̂\η̄ : Ẑ(1)

∼→ T Gm,η̄),

where Z# is the filtration on the dual lattice L#⊗
Z
Ẑ defined by

Z
#
−i := (Z−i⊗

Ẑ
A∞)∩(L#⊗

Z
Ẑ)

for each i, such that β̂\,0η̄ and β̂\,#,0η̄ are compatible with each other under the

canonical morphisms induced by Z−i → Z
#
−i and λ\, inducing the above-chosen

ϕ−2, ϕ−1, and ϕ0 on the graded pieces, and such that ν̂\η̄ = ν(ϕ−1). Under

the homomorphism (β̂\,0η̄ ⊗
Ẑ
A∞) ◦ gj : g−1

j (Z−1⊗
Ẑ
A∞)

∼→ VG\η̄, the image of

Zj,−1 =
(
g−1

j (Z−1⊗
Ẑ
A∞)

)
∩(Lj⊗

Z
Ẑ) is a π1(η, η̄)-invariant open compact subgroup

of VG\η̄, which induces a Q×-isogeny f \j,η : G\η → G\j,η. Similarly, under the

homomorphism (β̂\,#,0η̄ ⊗
Ẑ
A∞) ◦ (ν(gj)

−1gj) : g−1
j (Z−1⊗

Ẑ
A∞)

∼→ VG∨,\η̄ , the image

of Z
#
j,−1 =

(
g−1

j (Z−1⊗
Ẑ
A∞)

)
∩(L#

j ⊗Z
Ẑ) is a π1(η, η̄)-invariant open compact

subgroup of VG∨,\η̄ , which induces a Q×-isogeny (f∨,\j,η )−1 : G∨,\η → G∨,\j,η . Here

G\j,η and G∨,\j,η are determined by two homomorphisms cj,η : Yj → B∨j,η and

c∨j,η : X → Bj,η compatible with each other under the homomorphisms φj : Yj ↪→ Xj

and λBj,η : Bj,η → B∨j,η, which induce a homomorphism

λ\j,η : G\j,η → G∨,\j,η .

Let

β̂\,0j,η̄ : Zj,−1
∼→ TG\j,η̄

and

β̂\,#,0j,η̄ : Z#
j,−1

∼→ TG∨,\η̄

denote the induced isomorphisms, and let

ν̂\j,η̄ := ν(ϕj,−1).
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Then the Hj-orbit of

β̂\j,η̄ := (β̂\,0j,η̄ : Zj,−1
∼→ TG\j,η̄, β̂

\,#,0
j,η̄ : Z#

j,−1
∼→ TG∨,\η̄ , ν̂\j,η̄ : Ẑ(1)

∼→ T Gm,η̄)

is π1(η, η̄)-invariant and induces the β\Hj,η
such that the tuple

(G\j,η, λ
\
j,η : G\j,η → G∨,\j,η , i

\
j,η, β

\
Hj,η

)

over η corresponds to the pair (cHj
, c∨Hj

). (Note that the choices of δ and δj play

no role in the comparison between β̂\η̄ and β̂\j,η̄.)

Similarly, by comparing the universal properties (as in [31, Lem. 1.3.2.28 and
Prop. 1.3.2.31]) of ΞΦH,δH → CΦH,δH and ΞΦHj

,δHj
→ CΦHj

,δHj
, there is a canonical

isomorphism

(3.15) ΞΦH,δH
∼→ ΞΦHj

,δHj
,

(over S0 = Spec(F0)) compatible with (3.14) and equivariant with (3.5) and (3.13),
which matches the object τH parameterized by ΞΦH,δH → CΦH,δH with the object
τHj parameterized by ΞΦHj

,δHj
→ CΦHj

,δHj
. Concretely, by [31, Lem. 1.3.2.28 and

Prop. 1.3.2.31], the triple (cH, c
∨
H, τH) is equivalent to a tuple

(G\η, λ
\
η : G\η → G∨,\η , i\η, τη, βH,η)

over η. Here the subtuple (G\η, λ
\
η, i

\
η) is as in the previous paragraph, and τη :

1Y ×X,η
∼→ (c∨η ×

η
cη)∗P⊗(−1)

Bη
is a trivialization of biextensions which induces two

homomorphisms ιη : Y → G\η and ι∨η : X → G∨,\η compatible with each other under

the homomorphisms φ : Y ↪→ X and λ\η : G\η → G∨,\η , which allow us to recover

the modules TGη̄ and TG∨η̄ as extensions of Y ⊗
Z
Ẑ and X ⊗

Z
Ẑ by TG\η̄ and TG∨,\η̄ ,

respectively, together with the morphism T(λη̄) : TGη̄ → TG∨η̄ inducing φ⊗
Z
Ẑ and

T(λ\η̄) on the graded pieces, without having to recover Gη̄, G∨η̄ , and λη̄ : Gη̄ → G∨η̄
themselves. Based on these, βH,η is equivalent to the π1(η, η̄)-invariant H-orbit of
a triple

β̂η̄ = (β̂0
η̄ : L⊗

Z
Ẑ ∼→ TGη̄, β̂

#,0
η̄ : L#⊗

Z
Ẑ ∼→ TG∨η̄ , ν̂η̄ : Ẑ(1)

∼→ T Gm,η̄)

such that β̂0
η̄ and β̂#,0

η̄ are compatible with each other under the canonical mor-

phisms induced by L → L# and T(λη̄), which induce the above-chosen ϕ−2, ϕ−1,

and ϕ0 on the graded pieces, and such that ν̂η̄ = ν(ϕ−1). Such a triple β̂η̄ induces

a triple β̂\η̄ as above; in particular, it induces the Q×-isogenies f \j,η : G\η → G\j,η
and (f∨,\j,η )−1 : G∨,\η → G∨,\j,η in the previous paragraph. Together with the iso-

morphisms fj,X : Xj⊗
Z
Q ∼→ X ⊗

Z
Q and fj,Y : Y ⊗

Z
Q ∼→ Yj⊗

Z
Q, they induce a

trivialization τj,η : 1Yj×Xj,η
∼→ (c∨j,η ×

η
cj,η)∗P⊗(−1)

Bj,η
of biextensions which induces

two homomorphisms ιj,η : Y → G\η and ι∨j,η : X → G∨,\η compatible with each other

under the homomorphisms φj : Yj ↪→ Xj and λ\j,η : G\j,η → G∨,\j,η , which allows us to

recover the modules TGj,η̄ and TG∨j,η̄ as extensions of Yj⊗
Z
Ẑ and Xj⊗

Z
Ẑ by TG\j,η̄

and TG∨,\j,η̄ , respectively, together with the morphism T(λj,η̄) : TGj,η̄ → TG∨j,η̄
inducing φj⊗

Z
Ẑ and T(λ\j,η̄) on the graded pieces, without having to recover Gj,η̄,
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G∨j,η̄, and λj,η̄ : Gj,η̄ → G∨j,η̄ themselves; and to recover the canonical isomorphisms

V(fj,η̄) : VGη̄ → VGj,η̄ and V(f∨j,η̄)−1 : VG∨η̄ → VG∨j,η̄, without having to recover

the Q×-isogenies fj,η̄ : Gη̄ → Gj,η̄ and (f∨j,η̄)−1 : G∨η̄ → G∨j,η̄ themselves. Let

β̂0
j,η̄ : Lj⊗

Z
Ẑ ∼→ TGj,η̄

denote the restriction of

V(fj,η̄) ◦ (β̂0
η̄ ⊗

Ẑ
A∞) ◦ gj : L⊗

Ẑ
A∞ ∼→ VG\j,η̄

to Lj⊗
Z
Ẑ, and let

β̂#,0
j,η̄ : L#

j ⊗Z
Ẑ ∼→ TG∨η̄

denote the restriction of

V(f∨j,η̄)−1 ◦ (β̂#,0
η̄ ⊗

Ẑ
A∞) ◦ (ν(gj)

−1gj) : L#⊗
Z
A∞ ∼→ VG∨j,η̄

to L#
j ⊗Z

Ẑ. (The images of these restrictions are TGj,η̄ and TG∨j,η̄, respectively, by

checking the images on the graded pieces.) Let

ν̂j,η̄ := ν(ϕj,−1).

Then the Hj-orbit of

β̂j,η̄ := (β̂0
j,η̄ : Lj⊗

Z
Ẑ ∼→ TGj,η̄, β̂

#,0
j,η̄ : L#

j ⊗Z
Ẑ ∼→ TG∨η̄ , ν̂j,η̄ : Ẑ(1)

∼→ T Gm,η̄)

is π1(η, η̄)-invariant and induces the βHj,η such that the tuple

(G\j,η, λ
\
j,η : G\j,η → G∨,\j,η , i

\
j,η, τj,η, βHj,η)

over η corresponds to the triple (cHj , c
∨
Hj
, τHj).

Lemma 3.16. If υ : Inv(V )→ Z is the homomorphism induced by the discrete val-
uation of V , where Inv(V ) denotes the group of invertible V -submodules of K, and
if we denote by B : SΦH → Inv(V ) (resp. Bj : SΦHj

→ Inv(V )) the homomorphism

defined by τH (resp. τj), or rather τη (resp. τj,η), as in [30, Constr. 6.3.1.1], then
(3.11) maps the element υ ◦B : SΦH → Z of S∨ΦH to a Q×>0-multiple of the element
υ ◦Bj : SΦHj

→ Z of S∨ΦHj
.

Proof. This follows from the above argument. Alternatively, it suffices to note
that the collection of all multiples of ιη : Yη → G\η determines the collection of all

multiples of ιj,η : Yj,η → G\j,η, via the isomorphism fj,Y : Y ⊗
Z
Q ∼→ Yj⊗

Z
Q and the

Q×-isogeny f \j,η : G\η → G\j,η. �

The EΦH -torsor structure of ΞΦH,δH → CΦH,δH allows us to identify the push-
forward of OΞΦH,δH

(under the structural morphism ΞΦH,δH → CΦH,δH) with an

OCΦH,δH
-algebra given by the direct sum ⊕

`∈SΦH

ΨΦH,δH(`), and allows us to define,

for each nondegenerate rational polyhedral cone σ ⊂ (SΦH)∨R , an affine toroidal
embedding

(3.17) ΞΦH,δH ↪→ ΞΦH,δH(σ) := Spec
OCΦH,δH

(
⊕

`∈σ∨
ΨΦH,δH(`)

)
,
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where

σ∨ := {` ∈ SΦH : 〈`, y〉 ≥ 0 ∀y ∈ σ}
as usual (see [30, Def. 6.1.1.8]). Similarly, for each nondegenerate rational polyhe-
dral cone σj ⊂ (SΦHj

)∨R , we have an affine toroidal embedding

(3.18) ΞΦHj
,δHj

↪→ ΞΦHj
,δHj

(σj) := Spec
OCΦHj

,δHj

(
⊕

`j∈σ∨j
ΨΦHj

,δHj
(`j)
)
.

Since (3.15) is equivariant with (3.13), it induces a canonical isomorphism from
the pushforward of ⊕

`∈SΦH

ΨΦH,δH(`) to ⊕
`j∈SΦHj

ΨΦHj
,δHj

(`j), which maps the push-

forward of ΨΦH,δH(`) to ΨΦHj
,δHj

(`j) when `j is mapped to ` under (3.9). Con-

sequently, if σj is the image of σ under (3.12), in which case σ∨ is the image of
σ∨j under (3.9), then the isomorphism (3.15) (necessarily uniquely) extends to an
isomorphism

(3.19) ΞΦH,δH(σ)
∼→ ΞΦHj

,δHj
(σj)

compatible with (3.14), (3.15), (3.17), and (3.18).
Let

σ⊥ := {` ∈ SΦH : 〈`, y〉 = 0 ∀y ∈ σ}
as usual (see [30, Def. 6.1.2.5]) and let XΦH,δH,σ denote the formal completion of
ΞΦH,δH(σ) along the σ-stratum

ΞΦH,δH,σ := Spec
OCΦH,δH

(
⊕

`∈σ⊥
ΨΦH,δH(`)

)
.

Similarly, let XΦHj
,δHj

,σj
denote the formal completion of ΞΦHj

,δHj
(σj) along the

σj-stratum

ΞΦHj
,δHj

,σj
:= Spec

OCΦHj
,δHj

(
⊕

`j∈σ⊥j
ΨΦHj

,δHj
(`j)
)
.

If σj is the image of σ under (3.12), then (3.19) maps ΞΦH,δH,σ to ΞΦHj
,δHj

,σj and

induces an isomorphism

(3.20) XΦH,δH,σ
∼→ XΦHj

,δHj
,σj

compatible with (3.14) and (3.19).
By the theory of two-step degenerations (see [10, Ch. III, Sec. 10] and [30, Sec.

4.5.6]), the above argument also shows that the assignments (3.7) and (3.8) are
compatible with the formation of surjections as in [30, Def. 5.4.2.12 and 5.4.2.13].

Lemma 3.21. Suppose Σ = {ΣΦH}[(ΦH,δH)] is a compatible choice of admis-
sible smooth rational polyhedral cone decomposition data for MH as in [30,
Cond. 6.3.3.2 and Def. 6.3.3.4]. Then there exists a unique compatible choice
Σj = {ΣΦHj

}[(ΦHj
,δHj

)] of admissible smooth rational polyhedral cone decomposition

data for MHj
such that, for each representative (ZH,ΦH, δH) of cusp label for MH,

which induces a representative (ZHj
,ΦHj

, δHj
) of cusp label for MHj

via (3.8), the
cone decomposition ΣΦHj

of SΦHj
is the image of the cone decomposition ΣΦH

of SΦH under any isomorphism (3.12) as above. In this case, we say that Σj is
induced by Σ. Consequently, we also have canonical isomorphisms

(3.22) Mtor
H,Σ

∼→ Mtor
Hj,Σj
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and

(3.23) Mmin
H

∼→ Mmin
Hj

(over S0 = Spec(F0)) between the toroidal and minimal compactifications for MH
and MHj

(see [30, Thm. 6.4.1.1 and 7.2.4.1]), which are compatible with each other
under the canonical morphisms ∮

H : Mtor
H,Σ → Mmin

H

and ∮
Hj

: Mtor
Hj,Σj

→ Mmin
Hj

,

and with the canonical isomorphism (2.1). When (ZH,ΦH, δH) and (ZHj
,ΦHj

, δHj
)

are as above such that σj is the image of σ under (3.12), the morphism (3.22)
maps the [(ZH, δH, σ)]-stratum Z[(ZH,δH,σ)] of Mtor

H,Σ to the [(ZHj , δHj , σj)]-stratum

Z[(ZHj
,δHj

,σj)] of Mtor
Hj,Σj

, and induces a canonical isomorphism

Z[(ZH,δH,σ)]
∼→ Z[(ZHj

,δHj
,σj)].

Moreover, under the canonical isomorphisms(
Mtor
H,Σ
)∧
Z[(ZH,δH,σ)]

∼= XΦH,δH,σ

and (
Mtor
Hj,Σj

)∧
Z[(ZHj

,δHj
,σj)]

∼= XΦHj
,δHj

,σj

given by [30, Thm. 6.4.1.1(5)], the canonical isomorphism(
Mtor
H,Σ
)∧
Z[(ZH,δH,σ)]

∼→
(
Mtor
Hj,Σj

)∧
Z[(ZHj

,δHj
,σj)]

induced by (3.22) can be identified with the canonical isomorphism (3.20). Accord-
ingly, the morphism (3.23) maps the [(ZH, δH)]-stratum Z[(ZH,δH)] of Mmin

H to the

[(ZHj
, δHj

)]-stratum Z[(ZHj
,δHj

)] of Mmin
Hj

, and induces a canonical isomorphism

Z[(ZH,δH)]
∼→ Z[(ZHj

,δHj
)].

Proof. The canonical isomorphism (3.22) exists and satisfies the desired proper-
ties by comparing the universal properties of Mtor

H,Σ and Mtor
Hj,Σj

as in [30, Thm.

6.4.1.1(6)], by comparing the induced degeneration data over complete discrete val-
uation rings, as explained in this section thus far, and by comparing the Mumford
families as in the proof of [30, Thm. 6.4.1.1(5)]. Consequently, the canonical iso-
morphism (3.23) exists and satisfies the desired properties because the minimal
compactifications are isomorphic to the respective projective spectra of rings of
global sections of powers of Hodge invertible sheaves, as in [30, Thm. 7.2.4.1(3)],
and because the stratifications of the minimal compactifications are compatible
with those of the toroidal compactifications as in [30, Thm. 7.2.4.1(5)]. �

4. Auxiliary choices of smooth moduli problems

For each j ∈ J, let L#
j denote the dual lattice of Lj in Lj⊗

Z
Q ∼= L⊗

Z
Q with

respect to the pairing 〈 · , · 〉j valued in Z(1) (as in [30, Def. 1.1.4.11]).
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Lemma 4.1. Suppose j ∈ J. For each integer dj ≥ 1, there exist integers aj,1 > 0
and aj,2 ≥ 0, and a positive definite symmetric bilinear pairing

(4.2) ( · , · )j : Z⊕(aj,1+aj,2)×Z⊕(aj,1+aj,2) → Z

satisfying the following properties:

(1) Suppose [L#
j : Lj] = d2

j . Under the canonical embedding

(4.3) L
⊕(aj,1+aj,2)
j ↪→ Lj,aux := L

⊕ aj,1

j ⊕(L#
j )⊕ aj,2

induced by Lj ↪→ L#
j , the alternating pairing 〈 · , · 〉j⊗( · , · )j on

L
⊕(aj,1+aj,2)
j

∼= Lj⊗
Z
Z⊕(aj,1+aj,2)

extends to an alternating pairing 〈 · , · 〉j,aux on Lj,aux valued in Z(1) that is

self-dual at p in the sense that p - [L#
j,aux : Lj,aux].

(2) Let W be a (relative) abelian scheme over an algebraic stack S, and let
λW : W →W∨ be a polarization such that deg(λW ) = d2

j . Let

WM
aux := W×(aj,1+aj,2)

and

WO
aux := W× aj,1 ×

S
(W∨)× aj,2 ,

which are fiber products over S; and let

f := Id
× aj,1

W ×
S
λ
× aj,2

W : WM
aux →WO

aux.

Then λW : W →W∨ and the morphism

(4.4) ( · , · )∗j : Z⊕(aj,1+aj,2) ∼→ Z⊕(aj,1+aj,2)

canonical induced by ( · , · )j induce a polarization

λMW,aux : WM
aux →WM,∨

aux

(cf. [29, Lem. 2.5, 2.6, and 2.9, and their proofs]), and

λOW,aux := (f∨)−1 ◦ λMW,aux ◦ f : WO
aux →WO,∨

aux

is a polarization (not just a Q×-polarization) of degree prime to p. More-
over, we can arrange that deg(λOW,aux) depends only on dj and the choices

of (aj,1, aj,2) and ( · , · )j, but not on W and λW .

If p - dj, then we take (aj,1, aj,2) = (1, 0) and take ( · , · )j : Z×Z → Z to be the
pairing sending (1, 1) to 1. Otherwise, we take (aj,1, aj,2) = (4, 4), and take ( · , · )j

to be defined by some 2× 2 matrix
(

1 x
tx d2

j

)
over M4(Z) such that txx = d2

j − 1.

Proof. The statement is obvious when p - dj. Otherwise, we can arrange that
〈 · , · 〉j,aux is self-dual (at every prime) by the proof of Zarhin’s trick (as in [61, Sec.

2] and [39, IX, 1.1]), by taking x =

( x1 −x2 −x3 −x4
x2 x1 −x4 x3
x3 x4 x1 −x2
x4 −x3 x2 x1

)
for any integers x1, x2, x3, x4

such that x2
1 +x2

2 +x2
3 +x2

4 = d2
j −1, which exist by the fact (due to Lagrange) that

every nonnegative integer can be written as the sum of four squares of integers. �
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Lemma 4.5. Let (Z, λZ) be any polarized abelian scheme over a scheme S. Given
any integer dj ≥ 1, let us fix the choices of (aj,1, aj,2) and ( · , · )j as in Lemma
4.1. Then the functor that assigns to each scheme T over S the set of isomorphism
classes of polarized abelian schemes (W,λW ) over T such that deg(λW ) = d2

j and

(Z, λZ)×
S
T ∼= (WO

aux, λ
O
W,aux) over T , where (WO

aux, λ
O
W,aux) is defined by (W,λW )

as in (2) of Lemma 4.1, is representable by a scheme finite over S.

Proof. By [41, Sec. 16], deg(λZ) = d2
j,aux for some integer dj,aux ≥ 1. The assertion

to prove is trivially true unless the construction in (2) of Lemma 4.1 assigns to each
pair (W,λW ) of genus g and polarization degree d2

j a pair (WO
aux, λ

O
W,aux) of genus

gj,aux = (aj,1 + aj,2)g and polarization degree d2
j,aux. Hence it suffices to treat the

universal case, which we explain as follows.
Consider the Siegel moduli Ag,dj

(resp. Agj,aux,dj,aux
) of genus g (resp. gj,aux) and

polarization degree d2
j (resp. d2

j,aux), which is an algebraic stack separated and of

finite type over Spec(Z) (see [39, VII, 4.3] or [6, Def. 1.1 and Rem. 1.2]). The
assignment of pairs (WO

aux, λ
O
W,aux) to pairs (W,λW ) parameterized by Ag,dj

as in

(2) of Lemma 4.1 is functorial, and defines (by universal property) a morphism

(4.6) Ag,dj
→ Agj,aux,dj,aux

.

In order to prove the lemma, it suffices to show that (4.6) is finite.
Suppose V is the spectrum of a discrete valuation ring V with fraction field

K. Suppose (WK , λW,K) is an object of Ag,dj(Spec(K)), and suppose the corre-
sponding object (WO

aux,K , λ
O
W,aux,K) of Agj,aux,dj,aux

(Spec(K)) extends to an object

(WO
aux,V , λ

O
W,aux,V ) of Agj,aux,dj,aux

(Spec(V )). By the semistable reduction theorem

(see, for example, [30, Thm. 3.3.2.4]), up to replacing K with a finite extension field
and replacing V accordingly, we may assume that WK extends to a semi-abelian
scheme WV over Spec(V ). By the theory of Néron models (see [4]; cf. [52, IX, 1.4],
[10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5]), the isogeny

fK : WM
aux,K = W

×(aj,1+aj,2)
K →WO

aux,K

extends to an isogeny

W
×(aj,1+aj,2)
V →WO

aux,V ,

and (since aj,1 + aj,2 > 0) this is possible only when WV is an abelian scheme; also,
the polarization λW,K extends to a polarization λW,V of WV . Consequently, we
have an object (WV , λW,V ) of Ag,dj(Spec(V )), which must correspond to the unique
extension (WO

aux,V , λ
O
W,aux,V ) of (WO

aux,K , λ
O
W,aux,K) (up to unique isomorphism, by

the theory of Néron models again, or by the separateness of Agj,aux,dj,aux
). Hence

(4.6) is proper by the valuative criterion (and the fact that Ag,dj and Agj,aux,dj,aux

are separated and of finite type over Spec(Z)).
In order to show that (4.6) is finite, it suffices to show that the induced proper

morphism

(4.7) Ag,dj ⊗Z
Z[ 1

n ]→ Agj,aux,dj,aux ⊗Z
Z[ 1

n ]

is finite for at least two integers n prime to each other. For each n ≥ 3, the algebraic
stack Agj,aux,dj,aux

⊗
Z
Z[ 1

n ] admits a finite étale cover by the quasi-projective scheme

Agj,aux,dj,aux,n, defined as in [43, Ch. 7], parameterizing isomorphisms Z⊕ 2gj,aux
∼→

Z[n] for each object (Z, λZ) of Agj,aux,dj,aux
⊗
Z
Z[ 1

n ]. (In order to avoid confusion with
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our later terminologies, we refrain from calling such isomorphisms level structures,
because they are not required to respect the pairings on both sides.) Similarly,
the algebraic stack Ag,dj ⊗

Z
Z[ 1

n ] admits a finite étale cover by the quasi-projective

scheme Ag,dj,n,n parameterizing two isomorphisms γn : Z⊕ 2g ∼→ W [n] and γ∨n :

Z⊕ 2g ∼→ W∨[n] for each object (W,λW ) of Ag,dj
. (This is even more naive—

the two isomorphisms γn and γ∨n are not required to be related to each other
under λW .) By assigning to each object (W,λW , γn, γ

∨
n ) of Ag,dj,n,n the object

(WO
aux, λ

O
W,aux, γ

× aj,1
n ×(γ∨n )× aj,2) of Agj,aux,dj,aux,n, we obtain a proper morphism

(4.8) Ag,dj,n,n → Agj,aux,dj,aux,n

lifting (4.7). Then it suffices to show that (4.8) is finite, or rather just quasi-affine,
by [14, III-1, 4.4.2].

Let ωAg,dj,n,n
and ωAgj,aux,dj,aux,n

denote the Hodge invertible sheaves over

Ag,dj,n,n and Agj,aux,dj,aux,n, respectively, defined by the top exterior powers of
the duals of the relative Lie algebras of the tautological abelian schemes, which
are ample by [39, IX, 3.1]. By [39, IX, 2.4] and by the construction of (4.8),
the pullback of a positive power of ωAgj,aux,dj,aux,n

to Ag,dj,n,n is isomorphic to a

positive power of ωAg,dj,n,n
. By [14, II, 5.1.6], these show that (4.8) is quasi-affine,

as desired. �

Any choices of (aj,1, aj,2) and ( · , · )j as in Lemma 4.1, for all j ∈ J, allow us to
define the following auxiliary data:

(1) Oaux is any subring of O stabilized by ?, with induced involution ?aux , such
that Oaux⊗

Z
Q is a semisimple algebra (finite dimensional) over Q.

(2) For each j ∈ J, we have Lj,aux and 〈 · , · 〉j,aux as in Lemma 4.1, which defines
a group functor Gj,aux over Spec(Z). Moreover, we have the polarization
h0,j,aux of (Lj,aux, 〈 · , · 〉j,aux,Z(1)) (as in [30, Def. 1.2.1.2]) canonically in-
duced by h0 by the isomorphism

Lj,aux⊗
Z
R ∼= L

⊕(aj,1+aj,2)
j ⊗

Z
R ∼= L⊕(aj,1+aj,2)⊗

Z
R

induced by (4.3), which defines an integral PEL datum

(Oaux, ?aux, Lj,aux, 〈 · , · 〉j,aux, h0,j,aux)

as in the beginning of Section 2.

Suppose moreover that, for every j ∈ J, the prime p is good for the integral
PEL datum (Oaux, ?aux, Lj,aux, 〈 · , · 〉j,aux, h0,j,aux) as in [30, Def. 1.4.1.1], which

is possible because we already know that p - [L#
j,aux : Lj,aux]. Moreover, sup-

pose that there exists a maximal order O′aux in Oaux⊗
Z
Q containing Oaux such

that, for every j ∈ J, the action of Oaux on Lj,aux extends to an action of O′aux

(see [30, Cond. 1.4.3.10] and the definition of {(gj, Lj, 〈 · , · 〉j)}j∈J in Section 2).
These are possible, for example, by taking Oaux = Z with trivial involution ?aux .
From now on, we shall fix the auxiliary choices of {(aj,1, aj,2)}j∈J, {( · , · )j}j∈J, and
{(Oaux, ?aux, Lj,aux, 〈 · , · 〉j,aux, h0,j,aux)}j∈J.

Lemma 4.9. With the assumptions as above, for each j ∈ J, the assignment

(g, r) 7→ (g× aj,1 ×(r tg−1)× aj,2 , r)
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defines an injective homomorphism

(4.10) Gj → Gj,aux

of algebraic group functors over Spec(Z), which is compatible with the similitude

characters and induces an injective homomorphism Gj(Ẑ)→ Gj,aux(Ẑ).

Proof. The assignment is injective because aj,1 > 0, and defines a homomorphism
as asserted because Oaux is a subring of O, because ?aux is the restriction of ?, and
because 〈x, rg−1y〉 = 〈gx, y〉 = 〈x, tgy〉. �

Lemma 4.11. For each j ∈ J, the reflex field F0,j,aux defined by the integral PEL
datum (Oaux, ?aux, Lj,aux, 〈 · , · 〉j,aux, h0,j,aux) (see [26, p. 389] or [30, Def. 1.2.5.4])
is contained in F0 (as subfields of C).

Proof. In this proof, we may and we shall assume that F0 is exactly the reflex
field defined by (O, ?, L, 〈 · , · 〉, h0). Since h0,j,aux is canonically induced by h0

by the isomorphism Lj,aux⊗
Z
R ∼= L⊕(aj,1+aj,2)⊗

Z
R induced by (4.3), we have a

canonical isomorphism V0,j,aux
∼= V

⊕(aj,1+aj,2)
0 as Oaux⊗

Z
C-modules, where V0 (resp.

V0,j,aux) is the maximal submodule of L⊗
Z
C (resp. Lj,aux⊗

Z
C) on which h0(z) (resp.

h0,j,aux(z)) acts by 1⊗ z. By [30, Cor. 1.2.5.6], F0 (resp. F0,j,aux) is the subfield
of C generated over Q by the traces TrC(b|V0) for b ∈ O (resp. TrC(b|V0,j,aux) for
b ∈ Oaux). Hence F0,j,aux is contained in F0, as desired. �

For each j ∈ J, suppose that Hj,aux is an open compact subgroup of Gj,aux(Ẑp).
Then we have the moduli problem MHj,aux defined by the integral PEL datum
(Oaux, ?aux, Lj,aux, 〈 · , · 〉j,aux, h0,j,aux) and Hj,aux over Spec(OF0,j,aux,(p)), as in [30,
Def. 1.4.1.4] (with 2 = {p} there). By [30, Thm. 1.4.1.11 and Cor. 7.2.3.10]
again, MHj,aux

is an algebraic stack separated, smooth, and of finite type over
Spec(OF0,j,aux,(p)), which is representable by a scheme quasi-projective (and smooth)
over Spec(OF0,j,aux,(p)) when Hj,aux is neat. (Our notation system here is slightly
different from the one in [31, Ch. 2]: For simplicity, we dropped the superscripts
“p” in the notation of auxiliary objects.)

Proposition 4.12. With assumptions as above, for each j ∈ J, suppose Hj,aux is

an open compact subgroup of Gj,aux(Ẑp) containing the image of Hj under the ho-

momorphism Gj(Ẑ)→ Gj,aux(Ẑp) given by (4.10). Then there is a finite morphism

(4.13) MH → MHj,aux
⊗
Z
Q,

which is the composition of (2.1) with a morphism

(4.14) MHj
→ MHj,aux

⊗
Z
Q

under which the pullback (AO
j,aux, λ

O
j,aux, i

O
j,aux, α

O
Hj,aux

) of the tautological object

(Aj,aux, λj,aux, ij,aux, αHj,aux
) over MHj,aux

to MHj
satisfies the following properties

(in terms of the tautological object (Aj, λj, ij, αHj) over MHj):

(1) AO
j,aux is isomorphic to A

× aj,1

j ×
MHj

(A∨j )× aj,2 for the same integers (aj,1, aj,2)

as in Lemma 4.1, which is equipped with an isogeny

fj : AM
j,aux := A

×(aj,1+aj,2)
j → AO

j,aux
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induced by λj : Aj → A∨j .

(2) The polarization λOj,aux : AO
j,aux → AO,∨

j,aux coincides with the composition

(f∨)−1 ◦ λMj,aux ◦ f (as Q×-isogenies), where λMj,aux : AM
j,aux → AM,∨

j,aux is

induced by λj : Aj → A∨j and ( · , · )j as in (2) of Lemma 4.1.

(3) The isogeny fj above is compatible with the Oaux-actions defined by the
Oaux-structure iMj,aux : Oaux → EndMHj

(AM
j,aux) induced by the restriction of

ij : O → EndMHj
(Aj) to Oaux, and by iOj,aux : Oaux → EndMHj

(AO
j,aux).

(4) At each geometric point s̄ of MHj
, the level structure αHj

induces an
Hj-orbit of isomorphisms

α̂s̄ : Lj⊗
Z
Ẑ ∼→ TAj,s̄,

which in turn induces an Hj,aux-orbit of isomorphisms

α̂
⊕(aj,1+aj,2)
s̄ ⊗

Ẑ
A∞,p : Lj,aux⊗

Z
A∞,p ∼→ VAO

j,aux,s̄

(which makes sense because, by assumption, Hj is mapped into Hj,aux under

the homomorphism Gj(Ẑ) → Gj,aux(Ẑp) given by (4.10)). On the other
hand, the level structure αO

Hj,aux
induces an Hj,aux-orbit of isomorphisms

α̂O,p
s̄ ⊗

Ẑp
A∞,p : Lj,aux⊗

Z
A∞,p ∼→ VAO

j,aux,s̄.

These two Hj,aux-orbits of isomorphisms coincide.

Suppose we replace Hj,aux with an open compact subgroup H′j,aux still containing

the image of Hj under the homomorphism Gj(Ẑ) → Gj,aux(Ẑp) given by (4.10).
Then the morphism MHj → MH′j,aux

⊗
Z
Q thus obtained is compatible with (4.13)

and the canonical morphism MH′j,aux
⊗
Z
Q→ MHj,aux ⊗

Z
Q.

The morphisms (4.13), for all j ∈ J, induce a morphism

(4.15) MH →
∏
j∈J

MHj,aux
⊗
Z
Q.

Proof. Let us first construct the morphism (4.14). Let (Aj, λj, ij, αHj) be the tau-
tological object over MHj

as in the statement of the proposition. Let AM
j,aux, AO

j,aux,

λMj,aux, λOj,aux, and f be defined by (Aj, λj) as in (2) of Lemma 4.1 (with S = MHj

there). Since Oaux ⊂ O and since the involution ?aux is the restriction of ?, the
O-structure ij : O → EndMHj

(Aj) of (Aj, λj) induces an Oaux-structure

iMj,aux : Oaux → EndMHj
(AM

j,aux)

of (AM
j,aux, λ

M
j,aux), which in turn induces an Oaux⊗

Z
Q-structure

iOj,aux : Oaux⊗
Z
Q→ EndMHj

(AO
j,aux)⊗

Z
Q

of (AO
j,aux, λ

O
j,aux) as in [30, Def. 1.3.3.1] by

iOj,aux(b) := f ◦ iMj,aux(b) ◦ f−1

for each b ∈ Oaux.



COMPACTIFICATIONS IN RAMIFIED CHARACTERISTICS 23

At each geometric point s̄ of MH,j, the level structure αHj
lifts to some

O⊗
Z
Ẑ-equivariant isomorphism

α̂s̄ : Lj⊗
Z
Ẑ ∼→ TAj,s̄,

which induces an Oaux⊗
Z
Ẑ-equivariant isomorphism

α̂M
s̄ := α̂

⊕(aj,1+aj,2)
s̄ : (L

⊕(aj,1+aj,2)
j )⊗

Z
Ẑ ∼→ TAM

j,aux,s̄

and an Oaux⊗
Z
A∞-equivariant isomorphism

α̂M
s̄ ⊗

Ẑ
A∞ : (L

⊕(aj,1+aj,2)
j )⊗

Z
A∞ ∼→ VAM

j,aux,s̄

(all matching similitudes, implicitly). By [30, Lem. 1.3.5.2], under the isomorphism

α̂s̄⊗
Ẑ
A∞ : Lj⊗

Z
A∞ ∼→ VAj,s̄, the polarization (as an O-equivariant isogeny) λj,s̄ :

Aj,s̄ → A∨j,s̄ corresponds to the open compact subgroup L#
j ⊗Z

Ẑ of Lj⊗
Z
A∞. Hence

the restriction of α̂M
s̄ ⊗

Ẑ
A∞ induces an Oaux⊗

Z
Ẑ-equivariant isomorphism

α̂O
s̄ : Lj,aux⊗

Z
Ẑ ∼→ TAO

j,aux,s̄.

Since the choices of s̄ and α̂s̄ are arbitrary, by [30, Lem. 1.3.5.2] again, the
Oaux⊗

Z
Q-structure iOj,aux above induces an Oaux-structure

iOj,aux : Oaux → EndMHj
(AO

j,aux)

of (AO
j,aux, λ

O
j,aux). Moreover, by forgetting the factor at p, the α̂O

s̄ above induces an

Oaux⊗
Z
Ẑp-equivariant isomorphism

α̂O,p
s̄ : Lj,aux⊗

Z
Ẑp ∼→ TpAO

j,aux,s̄.

Since the Hj-orbit of α̂s̄ is π1(MHj
, s̄)-invariant, and since Hj is mapped to a sub-

group of Hj,aux under the homomorphism Gj(Ẑ)→ Gj,aux(Ẑp) given by (4.10), the

Hj,aux-orbit [α̂O,p
s̄ ]Hj,aux of α̂O,p

s̄ is π1(MHj , s̄)-invariant. By [30, Prop. 1.4.3.4], the

tuple (AO
j,aux, λ

O
j,aux, i

O
j,aux, [α̂

O,p
s̄ ]Hj,aux

) defines an object

(AO
j,aux, λ

O
j,aux, i

O
j,aux, α

O
Hj,aux

)

of MHj,aux over MHj , which satisfies the properties described in the proposition by
its very construction.

We would like to show that LieAO
j,aux/MHj

with its O⊗
Z
Q-module structure given

by iOj,aux satisfies the determinantal condition given by

(Lj,aux⊗
Z
R, 〈 · , · 〉j,aux, h0,j,aux)

as in [30, Def. 1.3.4.1]. Since this condition is closed by definition, and is open
in characteristic zero by [30, Lem. 1.2.5.11], it suffices to verify it at each C-point
t of MHj

. Let (Aj,t, λj,t, ij,t) and (AO
j,aux,t, λ

O
j,aux,t, i

O
j,aux,t) denote the respective

pullbacks of (Aj, λj, ij) and (AO
j,aux, λ

O
j,aux, i

O
j,aux) to such a C-point t. By [30, Lem.
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1.2.5.11] again, since LieAj/MHj
with its O⊗

Z
Q-module structure given by i satisfies

the determinantal condition given by

(Lj⊗
Z
R, 〈 · , · 〉j, h0) ∼= (L⊗

Z
R, 〈 · , · 〉, h0),

we have LieAj,t
∼= V0 as O⊗

Z
C-modules, and it suffices to note that

LieAO
j,aux,t

∼= Lie
⊕ aj,1

Aj,t
⊕Lie

⊕ aj,2

A∨j,t
∼= V

⊕(aj,1+aj,2)
0

∼= V0,j,aux

as Oaux⊗
Z
C-modules (cf. the proof of Lemma 4.11).

Thus we have obtained the desired (4.14) by the moduli interpretation of MHj,aux
,

whose pre-composition with (2.1) gives the desired (4.13). The morphism (4.14) be-
tween algebraic stacks is schematic and finite by Lemma 4.5 (for the abelian schemes
and polarizations), by [30, Prop. 1.3.3.7] (for the endomorphism structures), and by
the fact that the level structures are defined by isomorphisms between finite étale
group schemes; hence so is the morphism (4.13). �

Lemma 4.16. With assumptions as above, suppose the image Hp of H under the
canonical homomorphism G(Ẑ)→ G(Ẑp) is neat (which means, a fortiori, that H is
also neat). Then, for each j ∈ J, there exists a neat open compact subgroup Hj,aux of

Gj,aux(Ẑp) such that Hj is mapped to a subgroup of Hj,aux under the homomorphism

Gj(Ẑ)→ Gj,aux(Ẑp) given by (4.10).

Proof. Since Hj is the preimage of g−1
j Hgj under the canonical isomorphism

Gj(A∞) ∼= G(A∞), the assumption implies that, for each j ∈ J, the image Hpj of

Hj under the canonical homomorphism Gj(Ẑ) → Gj(Ẑp) is also neat. Let n0 ≥ 3
be an integer prime to p such that Hpj contains

Upj (n0) := ker(Gj(Ẑp)→ Gj(Ẑp/n0Ẑp) = Gj(Z/n0Z)),

and let Hj,aux be generated by

Uj,aux(n0) := ker(Gj,aux(Ẑp)→ Gj,aux(Ẑp/n0Ẑp) = Gj,aux(Z/n0Z))

and the image of Hpj under the injective homomorphism Gj(Ẑp)→ Gj,aux(Ẑp) given

by (4.10). Then every element of Hj,aux is congruent modulo n0 to the image of
some element of Hpj , which is neat as explained above; and so Hj,aux is also neat,

by definition (see [49, Sec. 0.6] or [30, Def. 1.4.1.8]), and by Serre’s lemma that no
nontrivial root of unity can be congruent to 1 modulo n if n ≥ 3. �

5. Auxiliary choices of toroidal and minimal compactifications

Let us fix a choice of j ∈ J in the following paragraphs. Each symplectic ad-
missible filtration Zj = {Zj,−i}i of Lj⊗

Z
Ẑ (see [30, Sec. 1.2.6]) induces a symplectic

admissible filtration Zj,aux = {Zj,aux,−i}i of Lj,aux⊗
Z
Ẑp by setting

(5.1) Zj,aux,−i :=
(
(Z
⊕(aj,1+aj,2)
j,−i )⊗

Ẑ
A∞,p

)
∩
(
Lj,aux⊗

Z
Ẑp
)

as submodules of Lj,aux⊗
Z
A∞,p. If Zj is fully symplectic (see [30, Def. 5.2.7.1]),

which means Zj extends to a symplectic filtration Zj,A = {Zj,−i,A}i of Lj⊗
Z
A,

then Zj,aux = {Zj,aux,−i}i also extends to a filtration Zj,aux,Ap = {Zj,aux,−i,Ap}i on
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Lj,aux⊗
Z
Ap, by setting Zj,aux,−i,Ap := Z

⊕(aj,1+aj,2)
j,−i,A ⊗

A
Ap. These definitions are com-

patible with the actions of Gj(Ap) and Gj,aux(Ap) (and with the homomorphism
Gj(Ap)→ Gj,aux(Ap) given by (4.10)), and are compatible with reductions modulo
n for any integer n ≥ 1 prime to p. Thus, there is a well-defined assignment

(5.2) Zj 7→ Zj,aux.

If Φj = (Xj, Yj, φj, ϕj,−2, ϕj,0) is a torus argument of Zj (see [30, Def. 5.4.1.3]), then
we define

Xj,aux := X
⊕ aj,1

j ⊕Y ⊕ aj,2

j

and
Yj,aux := Y

⊕ aj,1

j ⊕X⊕ aj,2

j .

Lemma 5.3. With the setting as above, there exist canonically induced morphisms

φj,aux : Yj,aux ↪→ Xj,aux,

ϕj,aux,−2 : Gr
Zj,aux

−2
∼→ HomẐ(Xj,aux⊗

Z
Ẑp, Ẑp(1)),

and
ϕj,aux,0 : Gr

Zj,aux

0
∼→ Yj,aux⊗

Z
Ẑp

making
Φj,aux := (Xj,aux, Yj,aux, φj,aux, ϕj,aux,−2, ϕj,aux,0)

a torus argument of Zj,aux, and making the diagrams

(5.4) Y
⊕(aj,1+aj,2)
j

� �
Id
⊕ aj,1
Yj

⊕φ
⊕ aj,2
j
//

� _

φj⊗( · , · )∗j
��

Yj,aux� _

φj,aux

��

X
⊕(aj,1+aj,2)
j Xj,aux

? _

Id
⊕ aj,1
Xj

⊕φ
⊕ aj,2
j

oo

(5.5)

(Gr
Zj

−2)⊕(aj,1+aj,2) // //

ϕ
⊕(aj,1+aj,2)

j,−2
o
��

Gr
Zj,aux

−2

ϕj,aux,−2o
��

(HomẐp(Xj⊗
Z
Ẑp, Ẑp(1)))⊕(aj,1+aj,2)

(Id
⊕ aj,1
Xj

⊕φ
⊕ aj,2
j )∗
// // HomẐp(Xj,aux⊗

Z
Ẑp, Ẑp(1))

and

(5.6) (Gr
Zj

0 )⊕(aj,1+aj,2) �
�

//

ϕ
⊕(aj,1+aj,2)

j,0
o
��

Gr
Zj,aux

0

ϕj,aux,0o
��

(Yj⊗
Z
Ẑp)⊕(aj,1+aj,2) �

�

Id
⊕ aj,1
Yj

⊕φ
⊕ aj,2
j

// Yj,aux⊗
Z
Ẑp

commutative, where ( · , · )∗j is canonically induced by ( · , · )j as in Lemma 4.1.

Proof. These follow from Lemma 4.1 and from the construction of the filtration
Zj,aux,−i in (5.1) above. �
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Let us take any splitting δj,aux of Zj,aux, and abusively denote its Hj,aux-orbit by
δHj,aux . Since Hj is mapped into Hj,aux under the homomorphism

Gj(Ẑ)→ Gj,aux(Ẑp)

given by (4.10), and since the above assignments are compatible with the formations
of orbits, we obtain a well-defined assignment of cusp labels

(5.7) [(ZHj
,ΦHj

, δHj
)] 7→ [(ZHj,aux

,ΦHj,aux
, δHj,aux

)].

Let us fix once and for all the choices of δj,aux for all pairs (Zj,aux,Φj,aux), which
determine the choices of δHj,aux for all pairs (ZHj,aux ,ΦHj,aux). Then (5.7) is induced
by an assignment of representatives of cusp labels

(5.8) (ZHj ,ΦHj , δHj) 7→ (ZHj,aux ,ΦHj,aux , δHj,aux).

Moreover, by Lemma 5.3, tensor products with the symmetric bilinear pairing
( · , · )j in Lemma 4.1 induce an embedding

(5.9) (SΦHj
)∨Q ↪→ (SΦHj,aux

)∨Q : y 7→ y⊗( · , · )j

(by forgetting the compatibility of the pairings with O, but retaining only the
compatibility of the pairings with Oaux). Since ( · , · )j is positive definite, the
embedding

(5.10) (SΦHj
)∨R ↪→ (SΦHj,aux

)∨R

induced by (5.9) maps PΦHj
(resp. P+

ΦHj
) to PΦHj,aux

(resp. P+
ΦHj,aux

). The dual of

(5.9) gives a surjection

(5.11) (SΦHj,aux
)Q := SΦHj,aux

⊗
Z
Q � (SΦHj

)Q,

which induces a homomorphism

(5.12) SΦHj,aux
→ SΦHj

.

The composition of (3.8) and (5.8) gives an assignment

(5.13) (ZH,ΦH, δH) 7→ (ZHj,aux ,ΦHj,aux , δHj,aux)

of representatives of cusp labels, which induces the assignment

(5.14) [(ZH,ΦH, δH)] 7→ [(ZHj,aux ,ΦHj,aux , δHj,aux)]

of cusp labels, which is the composition of (3.7) and (5.7). Suppose (ZH,ΦH, δH)
is mapped to (ZHj

,ΦHj
, δHj

) in (3.8). By pre- or post-composition of the maps
(5.9), (5.10), (5.11), and (5.12) with (3.11), (3.12), (3.10), and (3.9), respectively,
we obtain the maps

(5.15) (SΦH)∨Q ↪→ (SΦHj,aux
)∨Q,

(5.16) (SΦH)∨R ↪→ (SΦHj,aux
)∨R ,

(5.17) (SΦHj,aux
)Q � (SΦH)Q,

and

(5.18) SΦHj,aux
→ SΦH ,
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which are compatible with each other, where (5.16) maps PΦH (resp. P+
ΦH

) to

PΦHj,aux
(resp. P+

ΦHj,aux
). By taking products over the indices j ∈ J, these maps

(5.15), (5.16), (5.17), and (5.18) induce the maps

(5.19) (SΦH)∨Q ↪→
∏
j∈J

(SΦHj,aux
)∨Q,

(5.20) (SΦH)∨R ↪→
∏
j∈J

(SΦHj,aux
)∨R ,

(5.21)
∏
j∈J

(SΦHj,aux
)Q � (SΦH)Q,

and

(5.22)
∏
j∈J

SΦHj,aux
→ SΦH ,

respectively, which are compatible with each other, where (5.20) maps PΦH (resp.
P+

ΦH
) to

∏
j∈J

PΦHj,aux
(resp.

∏
j∈J

P+
ΦHj,aux

). Given a nondegenerate rational polyhedral

cone σj,aux in PΦHj,aux
(resp. P+

ΦHj,aux
) for each j ∈ J, the pullback of

∏
j∈J

σj,aux under

(5.20) is either empty or a nondegenerate rational polyhedral cone σ in PΦH (resp.
P+

ΦH
). (However, σ might not be smooth even when σj,aux is for all j ∈ J.)

Definition 5.23. Suppose j ∈ J. Let Σj (resp. Σj,aux) be a compatible choice
of admissible smooth rational polyhedral cone decomposition data for MHj (resp.
MHj,aux

) as in [30, Cond. 6.3.3.2 and Def. 6.3.3.4]. We say that Σj and Σj,aux are
compatible with each other if, for each representative (ZHj

,ΦHj
, δHj

) of cusp label
of MHj

with assigned representative (ZHj,aux
,ΦHj,aux

, δHj,aux
) of cusp label of MHj,aux

as in (5.8), the image of each σj ∈ ΣΦHj
under the embedding (5.10) is contained in

some cone σj,aux ∈ ΣΦHj,aux
. In this case we say that (ΦHj,aux

, δHj,aux
, σj,aux) is as-

signed to (ΦHj
, δHj

, σj), and (since this is compatible with the equivalence relations)
we also say that [(ΦHj,aux

, δHj,aux
, σj,aux)] is assigned to [(ΦHj

, δHj
, σj)]. Suppose

Σj is induced by Σ as in Lemma 3.21, and that σj ∈ ΣΦHj
is the image of some

σ ∈ ΣΦH under (3.12). Then we also say that (ΦHj,aux
, δHj,aux

, σj,aux) is assigned to
(ΦH, δH, σ), and that [(ΦHj,aux

, δHj,aux
, σj,aux)] is assigned to [(ΦH, δH, σ)].

Proposition 5.24. With assumptions as in Proposition 4.12, for each j ∈ J, there
exists compatible choices Σj (resp. Σj,aux) of admissible smooth rational polyhedral
cone decomposition data for MHj (resp. MHj,aux) such that Σj and Σj,aux are com-
patible with each other as in Definition 5.23, and such that the morphism (4.13)
canonically extends to a morphism

(5.25) Mtor
H,Σ → Mtor

Hj,aux,Σj,aux
⊗
Z
Q,

which is the composition of (3.22) with a morphism

(5.26) Mtor
Hj,Σj

→ Mtor
Hj,aux,Σj,aux

⊗
Z
Q

extending (4.14), where Mtor
H,Σ, Mtor

Hj,Σj
, and Mtor

Hj,aux,Σj,aux
are toroidal compactifi-

cations of MH, MHj
, and MHj,aux

, respectively, as in [30, Thm. 6.4.1.1]. Under
the morphism (5.25) (resp. (5.26)), the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] of Mtor

H,Σ
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(resp. the [(ΦHj
, δHj

, σj)]-stratum Z[(ΦHj
,δHj

,σj)] of Mtor
Hj,Σj

) is mapped to the

[(ΦHj,aux
, δHj,aux

, σj,aux)]-stratum Z[(ΦHj,aux
,δHj,aux

,σj,aux)] of Mtor
Hj,aux,Σj,aux

exactly

when the equivalence class [(ΦHj,aux , δHj,aux , σj,aux)] is assigned to the equivalence
class [(ΦH, δH, σ)] (resp. [(ΦHj

, δHj
, σj)]) as in Definition 5.23.

Let (Gj, λj, ij, αHj
) (resp. (Gj,aux, λj,aux, ij,aux, αHj,aux

)) denote the degenerating
family of type MHj (resp. MHj,aux) over Mtor

Hj,Σj
(resp. Mtor

Hj,aux,Σj,aux
) as in [30, Thm.

6.4.1.1]. Then the pullback of Gj,aux to Mtor
Hj,Σj

(under (5.26)) is isomorphic to

G
× aj,1

j ×
Mtor
Hj,Σj

(G∨j )× aj,2 , and the pullback of (Gj,aux, λj,aux, ij,aux, αHj,aux
) to Mtor

Hj,Σj

satisfies analogues of the characterizing properties in Proposition 4.12. (In fact,
by [52, IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5], the last pullback
is determined up to unique isomorphism by its restriction to MHj

, which is then
characterized by the properties stated in Proposition 4.12.)

The morphisms (5.25), for all j ∈ J, induce a morphism

(5.27) Mtor
H,Σ →

∏
j∈J

Mtor
Hj,aux,Σj,aux

⊗
Z
Q

extending (4.15).

Proof. Let us fix the choice of j ∈ J. As in (2) of Lemma 4.1 and as in the

proof of Proposition 4.12, consider GM
j,aux := G

×(aj,1+aj,2)
j , GM,∨

j,aux := (G∨j )×(aj,1+aj,2),

GO
j,aux := G

× aj,1

j ×
Mtor
Hj,Σj

(G∨j )× aj,2 , and GO,∨
j,aux := (G∨j )× aj,1 ×

Mtor
Hj,Σj

G
× aj,2

j , which are

fiber products over Mtor
Hj,Σj

, whose pullbacks to MH can be canonically identified

with AM
j,aux, AM,∨

j,aux, AO
j,aux, and AO,∨

j,aux, respectively. Consider

f := Id
aj,1

Gj
×

Mtor
Hj,Σj

λ
aj,2

j : GM
j,aux → GO

j,aux

and

f∨ := Id
aj,1

G∨j
×

Mtor
Hj,Σj

λ
aj,2

j : GO,∨
j,aux → GM,∨

j,aux,

whose pullbacks to MHj
are dual isogenies of each other. Let λMj,aux be defined by

λj and the morphism ( · , · )∗j as in Lemma 4.1, and let

iMj,aux : Oaux → EndMtor
Hj,Σj

(GM
j,aux)

be induced by the restriction of ij to Oaux. By (2) of Lemma 4.1, and by [52, IX,
1.4], [10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5],

λOj,aux := (f∨)−1 ◦ λMj,aux ◦ f : GO
j,aux → GO,∨

j,aux

is an isogeny (not just a Q×-isogeny) of degree prime to p whose pullback to MHj

is a polarization, and we have an

iOj,aux : Oaux → EndMtor
Hj,Σj

(GO
j,aux)

uniquely extending its pullback to MHj . Together with the αO
Hj,aux

over MHj

constructed in the proof of Proposition 4.12, we obtain a degenerating family
(GO

j,aux, λ
O
j,aux, i

O
j,aux, α

O
Hj,aux

) of type MHj,aux
over Mtor

Hj,Σj
.
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To show that (GO
j,aux, λ

O
j,aux, i

O
j,aux, α

O
Hj,aux

) → Mtor
Hj,Σj

is canonically isomorphic

to the pullback of (Gj,aux, λj,aux, ij,aux, αHj,aux
) → Mtor

Hj,aux,Σj,aux
under a canoni-

cally determined morphism (5.26), we need to verify the condition as in [30, Thm.
6.4.1.1(6)].

In the association of degeneration data, over any Spec(V ) → Mtor
Hj,Σj

such that

V is a complete discrete valuation ring with algebraically closed residue field k and
valuation υ : Inv(V ) → Z, and such that Spec(Frac(V )) is mapped to a point s of

MHj
, and for any lifting α̂s̄ : Lj⊗

Z
Ẑ ∼→ TGj,s̄ at a geometric point s̄ above s, the

(noncanonical) filtration Zj is defined to be the pullback of the geometric filtration

0 ⊂ TTj,s̄ ⊂ TG\j,s̄ ⊂ TGj,s̄, whose Hj-orbit ZHj
is uniquely determined by αHj

.

If we define α̂O,p
s̄ : Lj,aux⊗

Z
Ẑp ∼→ TpGO

j,aux,s̄ by α̂s̄ as in the proof of Proposition

4.12, then the filtration Zj,aux defined by Zj as in (5.1) agrees with the pullback

of the geometric filtration 0 ⊂ Tp TO
j,aux,s̄ ⊂ TpGO,\

j,aux,s̄ ⊂ TpGO
j,aux,s̄, because

this last geometric filtration on TpGO
j,aux,s̄ is induced by the geometric filtration

0 ⊂ Vp TO
j,aux,s̄ ⊂ VpGO,\

j,aux,s̄ ⊂ VpGO
j,aux,s̄ on VpGO

j,aux,s̄, whose pullback under the

isomorphism V(f) : VpGM
j,aux,s̄

∼→ VpGO
j,aux,s̄ agrees with the geometric filtration

0 ⊂ Vp TM
j,aux,s̄ ⊂ VpGM,\

j,aux,s̄ ⊂ VpGM
j,aux,s̄ on VpGM

j,aux,s̄ (which naturally agrees

with the geometric filtration induced by 0 ⊂ V Tj,s̄ ⊂ VG\j,s̄ ⊂ VGj,s̄ on VGj,s̄).

Suppose, under the equivalence of categories in [30, Thm. 5.3.1.19],

(5.28) (Bj, λBj
, iBj

, Xj, Yj, φj, cj, c
∨
j , τj, [α

\
Hj

])

is the object in DDPEL,MHj
(V ) associated with the object in DEGPEL,MHj

(V ) de-

fined by the pullback of the degenerating family (Gj, λj, ij, αHj) over Mtor
Hj,Σj

under

some morphism Spec(V )→ Mtor
Hj,Σj

as above, and suppose

(5.29) (Bj,aux, λBj,aux
, iBj,aux

, Xj,aux, Yj,aux, cj,aux, c
∨
j,aux, τj,aux, [α

\
Hj,aux

])

is the object in DDPEL,MHj,aux
(V ) associated with the object in DEGPEL,MHj,aux

(V )

defined by the pullback of the degenerating family (GO
j,aux, λ

O
j,aux, i

O
j,aux, α

O
Hj,aux

) over

Mtor
Hj,Σj

under the same Spec(V ) → Mtor
Hj,Σj

. Then (5.29) is induced by (5.28) in a

precise sense (whose details we omit), and we have the following: Under the assign-
ment (5.7), the cusp label [(ZHj ,ΦHj = (Xj, Yj, φj, ϕ−2,Hj , ϕ0,Hj), δHj)] determined
by (5.28) gives the cusp label [(ZHj,aux ,ΦHj,aux , δHj,aux)] determined by (5.29). Given
any representative (ZHj

,ΦHj
, δHj

) of [(ZHj
,ΦHj

, δHj
)], the assignment (5.8) gives

a representative (ZHj,aux
,ΦHj,aux

, δHj,aux
) of [(ZHj,aux

,ΦHj,aux
, δHj,aux

)]. With such
choices of (ZHj

,ΦHj
, δHj

) and (ZHj,aux
,ΦHj,aux

, δHj,aux
), if

Bj : SΦHj
→ Inv(V )

and

Bj,aux : SΦHj,aux
→ Inv(V )

are determined by (5.28) and (5.29), respectively, then (5.9) maps

υ ◦Bj : SΦHj
→ Z ↪→ Q

to

υ ◦Bj,aux : SΦHj,aux
→ Z ↪→ Q
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because λMj,aux is induced by λj and ( · , · )j. Consequently, if υ ◦ Bj defines an

element of σj ∈ ΣΦHj
, and if the image of σj under (5.10) is contained in some

σj,aux ∈ ΣΦHj,aux
, then υ ◦Bj,aux defines an element of σj,aux.

Thus, if Σj and Σj,aux are compatible with each other as in Definition 5.23, by
considering all morphisms Spec(V ) → Mtor

Hj,Σj
as above, we see that the degen-

erating family (GO
j,aux, λ

O
j,aux, i

O
j,aux, α

O
Hj,aux

) satisfies the condition as in [30, Thm.

6.4.1.1(6)], as desired. �

Consider the invertible sheaves

ωMtor
H,Σ

:= ∧top Lie∨G/Mtor
H,Σ

over Mtor
H,Σ and, for each j ∈ J,

ωMtor
Hj,Σj

:= ∧top Lie∨Gj/Mtor
Hj,Σj

over Mtor
Hj,Σj

and

ωMtor
Hj,aux,Σj,aux

:= ∧top Lie∨Gj,aux/Mtor
Hj,aux,Σj,aux

over Mtor
Hj,aux,Σj,aux

. We shall denote the pullback of ωMtor
H,Σ

(resp. ωMtor
Hj,Σj

, resp.

ωMtor
Hj,aux

) to MH (resp. MHj
, resp. MHj,aux

) by ωMH (resp. ωMHj
, resp. ωMHj,aux

),

which is independent of the choice of Σ (resp. Σj, resp. Σj,aux).

Lemma 5.30. Suppose j ∈ J. The pullback of ωMtor
Hj,Σj

under the canonical isomor-

phism (3.22) is isomorphic to ωMtor
H,Σ

. There exists an integer 1 ≤ aj,0 ≤ 2 such that

the pullback of ω
⊗ aj,0

Mtor
Hj,aux,Σj,aux

to Mtor
H,Σ (resp. Mtor

Hj,Σj
) under the morphism (5.25)

(resp. (5.26)) is isomorphic to ω
⊗ aj

Mtor
H,Σ

(resp. ω
⊗ aj

Mtor
Hj,Σj

), where

aj := aj,0(aj,1 + aj,2).

We may take aj,0 = 1 when aj,2 is even.

We shall henceforth fix a choice of aj,0 (for each j ∈ J).

Proof of Lemma 5.30. The first assertion is because the pullback of Gj under (3.22)
is Q×-isogenous to G. As for the second assertion, consider also the invertible sheaf

ω′Mtor
Hj,Σj

:= ∧top Lie∨G∨j /Mtor
Hj,Σj

.

By Proposition 5.24, the pullback of ωMtor
Hj,aux,Σj,aux

to Mtor
Hj,Σj

is canonically isomor-

phic to

ω
⊗ aj,1

Mtor
Hj,Σj

⊗
Mtor
Hj,Σj

(ω′Mtor
Hj,Σj

)⊗ aj,2 .

By [39, IX, 2.4, and its proof], there exists an integer 1 ≤ aj,0 ≤ 2 such that

ω
⊗ aj,0

Mtor
Hj,Σj

∼= (ω′Mtor
Hj,Σj

)⊗ aj,0 .

Hence, up to replacing aj,0 with 1 when aj,2 is even, the lemma follows. �
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For each j ∈ J, let Mmin
Hj,aux

denote the minimal compactification of MHj,aux

as in [30, Thm. 7.2.4.1], which is by construction a projective variety over
Spec(OF0,j,aux,(p)) containing MHj,aux as an open subscheme, under the assumption
that Hj,aux is neat. By [30, Thm. 7.2.4.1(3)], ωMtor

H,Σ
and ωMtor

Hj,Σj
descend to ample

invertible sheaves ωMmin
H

and ωMmin
Hj

over Mmin
H and Mmin

Hj
, respectively, and we have

(5.31) Mmin
H
∼= Proj

(
⊕
k≥0

Γ(Mtor
H,Σ, ω

⊗ k
Mtor
H,Σ

)
)

and

(5.32) Mmin
Hj
∼= Proj

(
⊕
k≥0

Γ(Mtor
Hj,Σj

, ω⊗ k
Mtor
Hj,Σj

)
)
,

which are compatible with the canonical isomorphisms (3.22) and (3.23), and with
the canonical isomorphism in Lemma 5.30 between ωMtor

H,Σ
and the pullback of

ωMtor
Hj,Σj

under (3.22). Similarly, ωMtor
Hj,aux,Σj,aux

descends to an ample invertible sheaf

ωMmin
Hj,aux

over Mmin
Hj,aux

, and we have

(5.33) Mmin
Hj,aux

∼= Proj
(
⊕
k≥0

Γ(Mtor
Hj,aux,Σj,aux

, ω⊗ k
Mtor
Hj,aux,Σj,aux

)
)
.

Proposition 5.34. With assumptions as in Proposition 4.12, for each j ∈ J, there
exists a morphism

(5.35) Mmin
H → Mmin

Hj,aux
⊗
Z
Q

extending (4.13) and compatible with (5.25), which is the composition of (3.23) with
a morphism

(5.36) Mmin
Hj
→ Mmin

Hj,aux
⊗
Z
Q

extending (4.14) and compatible with (5.26). Under the morphism (5.35) (resp.
(5.36)), the [(ΦH, δH)]-stratum Z[(ΦH,δH)] of Mmin

H (resp. [(ΦHj , δHj)]-stratum

Z[(ΦHj
,δHj

)] of Mmin
Hj

) is mapped to the [(ΦHj,aux
, δHj,aux

)]-stratum Z[(ΦHj,aux
,δHj,aux

)]

of Mmin
Hj,aux

exactly when the cusp label [(ΦHj,aux
, δHj,aux

)] is assigned to the cusp

label [(ΦH, δH)] (resp. [(ΦHj
, δHj

)]) as in (5.14) (resp. (5.7)) (with the filtrations
ZH, ZHj , and ZHj,aux suppressed in the notation). If aj,0 ≥ 1 and aj ≥ 1 are

integers as in Lemma 5.30, then the pullback of ω
⊗ aj,0

Mmin
Hj,aux

to Mmin
H (resp. Mmin

Hj
) is

canonically isomorphic to ω
⊗ aj

Mmin
H

(resp. ω
⊗ aj

Mmin
Hj

).

The morphisms (5.35), for all j ∈ J, induce a morphism

(5.37) Mmin
H →

∏
j∈J

Mmin
Hj,aux

⊗
Z
Q

extending (4.15) and compatible with (5.27).
Consequently, Mmin

H is the normalization of
∏
j∈J

Mmin
Hj,aux

⊗
Z
Q in MH under the

morphism MH →
∏
j∈J

Mmin
Hj,aux

⊗
Z
Q induced by (4.13) and the canonical morphisms

MHj,aux
⊗
Z
Q→ Mmin

Hj,aux
⊗
Z
Q for all j ∈ J.
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Proof. The first two paragraphs follow from Proposition 5.24, from Lemma 5.30,
and from the universal properties of the projective spectra (5.31) and (5.33).

For each j ∈ J, since ω
⊗ aj,0

Mmin
Hj,aux

is ample over Mmin
Hj,aux

, since ω
⊗ aj

Mmin
H

is ample over

Mmin
H , and since the pullback of the former is canonically isomorphic to the latter,

the canonical morphism from Mmin
H to the normalization of

∏
j∈J

Mmin
Hj,aux

⊗
Z
Q in MH is

finite. Since both of them are normal, and since they share an open dense subscheme
MH, the third paragraph follows from Zariski’s main theorem (see [14, III-1, 4.4.3,
4.4.11]), as desired. �

6. Minimal compactifications defined by normalization

Proposition 6.1. Let ~MH denote the normalization of
∏
j∈J

MHj,aux
in MH under

the morphism

(6.2) MH →
∏
j∈J

MHj,aux

induced by (4.15). Then ~MH is a normal algebraic stack flat over

~S0 := Spec(OF0,(p))

equipped with a canonical isomorphism ~MH×
~S0

S0
∼= MH over S0, and with a canon-

ical finite morphism

(6.3) ~MH →
∏
j∈J

MHj,aux

extending (4.15) and (6.2).
For each j ∈ J, the tautological tuple (Aj, λj, ij, αHj

) over MHj
∼= MH

(see (2.1)) extends to a degenerating family ( ~Aj, ~λj,~ij, ~αHj
) of type MHj

over
~MH (see [30, Def. 5.3.2.1]), where ( ~Aj, ~λj) is a polarized abelian scheme with

an O-structure ~ij such that Lie ~Aj/~MHj
with its O⊗

Z
Z(p)-module structure

given by ~ij satisfies the determinantal condition in [30, Def. 1.3.4.1] given by
(Lj⊗

Z
R, 〈 · , · 〉, h0) ∼= (L⊗

Z
R, 〈 · , · 〉, h0), and where ~αHj is defined only over MHj .

If we denote by ( ~Aj,aux, ~λj,aux,~ij,aux, ~αHj,aux
) the pullback of the tautological tuple

(Aj,aux, λj,aux, ij,aux, αHj,aux
) over MHj,aux

under the morphism ~MHj
→ MHj,aux

induced by (6.3), then ( ~Aj,aux, ~λj,aux) is isomorphic to the polarized abelian scheme

( ~AO
j,aux,

~λOj,aux) defined by ( ~Aj, ~λj) as in (2) of Lemma 4.1, ~ij is the unique extension

of ij over the noetherian normal base scheme ~MH (by [52, IX, 1.4], [10, Ch. I,
Prop. 2.7], or [30, Prop. 3.3.1.5]), and ~αHj,aux is determined by αHj in the sense
that its further pullback to MHj

∼= MH is determined by αHj as in Proposition 4.12.
Then the invertible sheaf ωMHj

over MHj
∼= MH extends to the invertible sheaf

ω~MH,j := ∧top Lie∨~Aj/~MH

over ~MH. For each j ∈ J, let aj,0 ≥ 1 and aj ≥ 1 be integers as in Lemma 5.30,

and let aJ :=
∑
j∈J

aj. Then the invertible sheaf ω⊗ aJ

MH
over MH extends to the ample
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invertible sheaf

ω~MH,J := ⊗
j∈J

ω
⊗ aj

~MH,j

over ~MH, where each ω
⊗ aj

~MH,j
is canonically isomorphic to the pullback of ω

⊗ aj,0

MHj,aux
un-

der the morphism ~MH → MHj,aux
induced by (6.3), and where ω~MH,J is canonically

isomorphic to the pullback of �
j∈J

ω
⊗ aj,0

MHj,aux
under (6.3).

We obtain the same normalization ~MH (up to canonical isomorphism) satisfy-
ing the analogous properties if, for each j ∈ J, we replace Hj,aux with any neat

open compact subgroup of Gj,aux(Ẑp) still containing the image of Hj under the

homomorphism Gj(Ẑ)→ Gj,aux(Ẑp) given by (4.10).

Up to canonical isomorphism, ~MH depends only on the choices of linear algebraic
data in Section 2, but not on the auxiliary choices in Sections 4 and 5.

Proof. The first paragraph is self-explanatory. As for the second paragraph, except
for the ampleness of ω~MH,J, it suffices to show that, for each j ∈ J, the tautolog-

ical (Aj, λj) over MHj
∼= MH extends to some polarized abelian scheme ( ~Aj, ~λj)

over ~MH. (Once this is shown, the remainder of the paragraph will follow from
the uniqueness of extensions by [52, IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop.
3.3.1.5].) Since the genus of Aj and the polarization degree of λj is determined by
the level structure αHj , the tautological (Aj, λj) over MHj defines (by forgetting the
additional structures) a morphism from MHj to the Siegel moduli Ag,dj of genus

g = 1
2 rkZ(Lj) = 1

2 rkZ(L) and polarization degree d2
j = [L#

j : Lj], which induces a
finite morphism

MHj → Ag,dj ⊗
Z
Q.

by [30, Prop. 1.3.3.7, Cor. 2.2.2.8, and Prop. 2.2.2.9]. Similarly, the tautological
(Aj,aux, λj,aux) defines a morphism from MHj,aux

to the Siegel moduli Agj,aux,dj,aux
of

genus gj,aux = 1
2 rkZ(Lj,aux) and (prime-to-p) polarization degree d2

j,aux = [L#
j,aux :

Lj,aux], which induces a finite morphism

MHj,aux
→ Agj,aux,dj,aux

⊗
Z
Z(p).

As explained in the proof of Lemma 4.5, the construction as in (2) of Lemma 4.1
defines a finite morphism Ag,dj

→ Agj,aux,dj,aux
. By comparing the universal prop-

erties, the composition MHj
→ MHj,aux

⊗
Z
Q→ Agj,aux,dj,aux

⊗
Z
Q of finite morphisms

coincides with the composition MHj
→ Ag,dj

⊗
Z
Q→ Agj,aux,dj,aux

⊗
Z
Q of finite mor-

phisms. Since Ag,dj
→ Agj,aux,dj,aux

and MHj,aux
→ Agj,aux,dj,aux

⊗
Z
Z(p) are finite, it

follows that ~MH is canonically isomorphic to the normalization of
∏
j∈J

Ag,dj
⊗
Z
Z(p)

under the canonical morphism MH →
∏
j∈J

Ag,dj
⊗
Z
Z(p). In particular, for each j ∈ J,

the tautological object (Aj, λj) over MHj
∼= MH extends to an object ( ~Aj, ~λj) pa-

rameterized by the canonical morphism ~MH → Ag,dj induced by the canonical

morphism ~MH →
∏
j∈J

Ag,dj
. This also shows, as in the last paragraph of the state-

ment of the proposition, that ~MH is canonical and independent of the auxiliary
choices.
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Except for the quasi-projectivity of [~MH] over ~S0, and for the ampleness of ω~MH,J
when H is neat, both of which will follow from Proposition 6.4 below, the remaining
statements of the proposition are self-explanatory. �

Although Proposition 6.1 is stated without any reference to compactifications,

the easiest way to show the quasi-projectivity of [~MH] over ~S0, and the ampleness
of ω~MH,J when H is neat, is to introduce the minimal compactifications. (This is a

natural consideration because this is what the minimal compactifications in [3] did
over C.)

Proposition 6.4. Let ~Mmin
H denote the normalization of

∏
j∈J

Mmin
Hj,aux

in Mmin
H under

the morphism

(6.5) Mmin
H →

∏
j∈J

Mmin
Hj,aux

induced by (5.37). Then ~Mmin
H is a normal scheme projective and flat over ~S0 =

Spec(OF0,(p)) equipped with a canonical isomorphism ~Mmin
H ×

~S0

S0
∼= Mmin

H over S0 =

Spec(F0), and with a canonical finite morphism

(6.6) ~Mmin
H →

∏
j∈J

Mmin
Hj,aux

extending (5.37) and (6.5).

By construction, ~MH is an open dense subscheme of ~Mmin
H , because MHj,aux

is an

open dense subscheme of Mmin
Hj,aux

(by [30, Thm. 7.2.4.1], under the assumption that

H and Hj,aux are neat), for all j ∈ J.
For each j ∈ J, let aj,0 ≥ 1 and aj ≥ 1 be the integers as in Lemma 5.30, and let

aJ :=
∑
j∈J

aj as in Proposition 6.1. Then, for each j ∈ J, the invertible sheaf ω
⊗ aj

MHj

over MHj
∼= MH and the invertible sheaf ω

⊗ aj

Mmin
Hj

over Mmin
Hj

∼= Mmin
H compatibly extend

to an invertible sheaf over ~Mmin
H , which we denote by ω

⊗ aj

~Mmin
H ,j

by abuse of notation,

which is canonically isomorphic to the pullback of ω
⊗ aj,0

Mmin
Hj,aux

to ~Mmin
H , whose pullback

to ~MH is canonically isomorphic to ω
⊗ aj

~MH,j
. Moreover, the invertible sheaf ω⊗ aJ

MH

extends to the invertible sheaf

ω~Mmin
H ,J := ⊗

j∈J
ω
⊗ aj

~Mmin
H ,j

over ~Mmin
H , which is canonically isomorphic to the pullback of �

j∈J
ω
⊗ aj,0

Mmin
Hj,aux

under

(6.6). This ω~Mmin
H ,J is ample and induces a canonical isomorphism

~Mmin
H
∼= Proj

(
⊕
k≥0

Γ(~Mmin
H , ω⊗ k~Mmin

H ,J
)
)
.

We obtain the same normalization ~Mmin
H (up to canonical isomorphism) satis-

fying the analogous properties if, for each j ∈ J, we replace Hj,aux with any neat

open compact subgroup of Gj,aux(Ẑp) still containing the image of Hj under the

homomorphism Gj(Ẑ)→ Gj,aux(Ẑp) given by (4.10).
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As in the case of ~MH in Proposition 6.1, it is also true that, up to canonical

isomorphism, ~Mmin
H depends only on the choices of the linear algebraic data in

Section 2, but not on the auxiliary choices in Sections 4 and 5. However, the proof
of this is somewhat indirect and will be postponed until Corollary 12.7 below.

Proof of Proposition 6.4. By construction as a normalization, ~Mmin
H is normal and

equipped with the finite morphism (6.6). For each j ∈ J, let us define the com-

mon extension ω
⊗ aj

~Mmin
H ,j

of ω
⊗ aj

MHj
and ω

⊗ aj

Mmin
Hj

to be the pullback of ω
⊗ aj,0

Mmin
Hj,aux

under

the morphism ~Mmin
H → Mmin

Hj,aux
induced by (6.6), so that ω~Mmin

H ,J = ⊗
j∈J

ω
⊗ aj

~Mmin
H ,j

is

the pullback of �
j∈J

ω
⊗ aj,0

Mmin
Hj,aux

under the finite morphism (6.6). (This is consistent

with Lemma 5.30.) Since ω
⊗ aj,0

Mmin
Hj,aux

is ample over Mmin
Hj,aux

for all j ∈ J, the pull-

back ω~Mmin
H ,J of �

j∈J
ω
⊗ aj,0

Mmin
Hj,aux

under (6.6) is also ample. This shows in particular

that ~Mmin
H is projective over ~S0. Since the structural sheaf of ~Mmin

H is normal and

hence has no p-torsion, it is also flat over ~S0. Since the pullback of �
j∈J

ω
⊗ aj,0

Mmin
Hj,aux

to
∏
j∈J

MHj,aux is canonically isomorphic to �
j∈J

ω
⊗ aj,0

MHj,aux
, its further pullback to ~MH,

which is canonically isomorphic to the pullback of ω~Mmin
H ,J by construction, is canon-

ically isomorphic to ω~MH,J (by the part of Proposition 6.1 we have proved). The

remaining statements of the proposition are self-explanatory. �

Now the proof of Proposition 6.1 is also complete.

Remark 6.7. In our constructions (including ones to be give below), taking nor-
malizations will never introduce pathologies, either because we are talking integral
closures in (products of) separable field extensions (see [36, Sec. 33, Lem. 1]), or
because the schemes in questions are all excellent (being a localization of a scheme
of finite type over Z; see [35, Sec. 31–34] for more discussions).

For each stratum Z[(ΦH,δH)] as in [30, Thm. 7.2.4.1(4)], consider its closure

Z[(ΦH,δH)] in Mmin
H and its closure ~Z[(ΦH,δH)] in ~Mmin

H . Then we define a locally
closed subscheme

(6.8) ~Z[(ΦH,δH)] := ~Z[(ΦH,δH)] − ∪
Z[(ΦH,δH)]*Z[(Φ′H,δ

′
H)]

~Z[(Φ′H,δ
′
H)]

of ~Mmin
H . By definition, we have the following:

Lemma 6.9. If Z[(ΦH,δH)] is contained in the closure Z[(Φ′H,δ
′
H)] of Z[(Φ′H,δ

′
H)],

then ~Z[(ΦH,δH)] is contained in ~Z[(Φ′H,δ
′
H)], and the latter agrees with the closure

of ~Z[(Φ′H,δ
′
H)].

Remark 6.10. We shall call ~Z[(ΦH,δH)] the [(ΦH, δH)]-stratum from now on, although
we will have to wait until Theorems 12.1 and 12.16 below to see that it does satisfy
the familiar properties as in [30, Thm. 7.2.4.1 (4) and (5)].
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7. Toroidal compactifications defined by normalization

For each j ∈ J, and for each (ZHj
,ΦHj

, δHj
) inducing (ZHj,aux

,ΦHj,aux
, δHj,aux

) as
in (5.8), we have a boundary version

(7.1) M
ZHj

Hj
→ M

ZHj,aux

Hj,aux
⊗
Z
Q

of (4.14) (see [30, Def. 5.4.2.6 and the errata]), whose composition with (3.2) gives
the boundary version

(7.2) MZH
H → M

ZHj,aux

Hj,aux
⊗
Z
Q

of (4.13). These morphisms (7.2), for all j ∈ J, induce the boundary version

(7.3) MZH
H →

∏
j∈J

M
ZHj,aux

Hj,aux
⊗
Z
Q

of (4.15).

Proposition 7.4. Let ~MZH
H denote the normalization of

∏
j∈J

M
ZHj,aux

Hj,aux
in MZH

H under

the morphism

(7.5) MZH
H →

∏
j∈J

M
ZHj,aux

Hj,aux

induced by (7.3), which is equipped with a canonical finite morphism

(7.6) ~MZH
H →

∏
j∈J

M
ZHj,aux

Hj,aux

compatible with (7.3) and (7.5). Then the tautological tuple (Bj, λBj
, iBj

, ϕ−1,Hj
)

over M
ZHj

Hj

∼= MZH
H extends to a degenerating family ( ~Bj, λ ~Bj

, i ~Bj
, ~ϕ−1,Hj

) over ~MZH
H ,

where ~ϕ−1,Hj is defined only over M
ZHj

Hj

∼= MZH
H (cf. Proposition 6.1). Up to canon-

ical isomorphism, ~MZH
H does not depend on the precise choices of {Hj,aux}j∈J. (We

will omit such justifications for similar constructions later.)

Proof. The proof is similar to the one for ~MH in Proposition 6.1. �

For each j ∈ J, suppose Σj,aux = {ΣΦHj,aux
}[(ΦHj,aux

,δHj,aux
)] is a compatible choice

of admissible smooth rational polyhedral cone decomposition data for MHj,aux
as

in [30, Def. 6.3.3.4], and suppose Mtor
Hj,aux,Σj,aux

is the toroidal compactification of

MHj,aux
as in [30, Thm. 6.4.1.1]. For simplicity, we shall assume that Σj,aux is

projective as in [30, Def. 7.3.1.3], so that (under the assumption that Hj,aux is
neat) Mtor

Hj,aux,Σj,aux
is a scheme projective and smooth over Spec(OF0,j,aux,(p)) (see

[30, Thm. 7.3.3.4]).
For each representative (ZH,ΦH, δH) of cusp label of MH, we define a (possibly

nonsmooth) rational polyhedral cone decomposition ΣΦH of PΦH by pulling back
the cones {

∏
j∈J

σj,aux : σj,aux ∈ ΣΦHj,aux
,∀j ∈ J} under the map (5.20), which sat-

isfies [30, Cond. 6.2.5.25] with respect to ΓΦH (so that the analogue of [30, Lem.
6.2.5.27] applies) when each ΣΦHj,aux

satisfies [30, Cond. 6.2.5.25] with respect to

ΦHj,aux
; and we define a compatible choice Σ of (possibly nonsmooth) admissible

rational polyhedral cone decomposition data for MH by having (ZH,ΦH, δH) run
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through all such representatives. (Although we have only considered smooth cone
decompositions in [30, Def. 6.3.3.4], the definition naturally generalizes to the case
of nonsmooth cone decompositions.) For each j ∈ J, the compatible choice Σ for
MH also induces a compatible choice Σj for MHj

, as in Lemma 3.21.

Let ~Mtor
H,Σ denote the normalization of

∏
j∈J

Mtor
Hj,aux,Σj,aux

in MH under the mor-

phism

(7.7) MH →
∏
j∈J

Mtor
Hj,aux,Σj,aux

induced by (6.2) and by the canonical morphisms MHj,aux → Mtor
Hj,aux,Σj,aux

, for all

j ∈ J, which is naturally a scheme over ~S0 = Spec(OF0,(p)) and equipped with a
canonical finite morphism

(7.8) ~Mtor
H,Σ →

∏
j∈J

Mtor
Hj,aux,Σj,aux

compatible with (6.2) and (7.7). (This is similar to the considerations in, for ex-
ample, [37], [59], [38], [25], and [34], although they have not explicitly considered
a product of auxiliary toroidal compactifications as we do.) A priori, this is an
abuse of notation, because the definition uses {Σj,aux}j∈J rather than the induced
Σ. (Nevertheless, we will justify this in Theorem 7.14 below.)

Lemma 7.9. With the setting as above, the scheme ~Mtor
H,Σ is proper and flat over

~S0. Moreover, the morphisms (6.2) and (7.7) induce a canonical open immersion

(7.10) ~MH → ~Mtor
H,Σ,

and the image of (7.10) is dense in ~Mtor
H,Σ and coincides with the preimage of∏

j∈J

MHj,aux under the canonical morphism (7.8). Consequently, we may and we shall

identify ~MH with its image under (7.10), and view it as an open dense subscheme

of ~Mtor
H,Σ.

Proof. The proper flatness of ~Mtor
H,Σ over ~S0 follows from the construction of

~Mtor
H,Σ by normalization, and from the proper smoothness of Mtor

Hj,aux,Σj,aux
over

Spec(OF0,j,aux,(p)) for each j ∈ J. The remaining statements of the lemma follow

from the construction of ~MH by normalization (see Proposition 6.1) and from
Zariski’s main theorem (see [14, III-1, 4.4.3, 4.4.11]). �

Proposition 7.11 (cf. [30, Thm. 7.2.4.1(3)]). Consider the canonical morphism

(7.12) ~∮
H : ~Mtor

H,Σ → ~Mmin
H

induced by the canonical morphism
∮
Hj,aux

: Mtor
Hj,aux,Σj,aux

→ Mmin
Hj,aux

for all j ∈ J

(by the constructions of ~Mtor
H,Σ and ~Mmin

H as normalizations; see Proposition 6.4).

Let ω~Mtor
H,Σ,J

denote the pullback of ω~Mmin
H ,J (see Proposition 6.4). Then ω~Mtor

H,Σ,J

is canonically isomorphic to the pullback of �
j∈J

ω
⊗ aj,0

Mtor
Hj,aux,Σj,aux

under (7.8), and the

canonical morphism

~Mtor
H,Σ → Proj

(
⊕
k≥0

Γ(~Mtor
H,Σ, ω

⊗ k
~Mtor
H,Σ,J

)
)
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induces a canonical isomorphism

~Mmin
H
∼= Proj

(
⊕
k≥0

Γ(~Mtor
H,Σ, ω

⊗ k
~Mtor
H,Σ,J

)
)

(compatible with the canonical morphism (7.12)).

Proof. Since ω~Mmin
H ,J is canonically isomorphic to the pullback of �

j∈J
ω
⊗ aj,0

Mmin
Hj,aux

under

(6.6) (see Proposition 6.4), and since ωMtor
Hj,aux,Σj,aux

is canonically isomorphic to

the pullback of ωMmin
Hj,aux

to Mtor
Hj,aux,Σj,aux

, for each j ∈ J, it follows that ω~Mtor
H,Σ,J

is

canonically isomorphic to the pullback of �
j∈J

ω
⊗ aj,0

Mtor
Hj,aux,Σj,aux

under (7.8).

Since (7.12) is an isomorphism over ~MH (see Lemma 7.9), the pullback of

ω~Mtor
H,Σ,J

to ~MH is ample, and hence we can identify ~MH with an open subscheme

of Proj
(
⊕
k≥0

Γ(~Mtor
H,Σ, ω

⊗ k
~Mtor
H,Σ,J

)
)

, which is necessarily dense because ~MH is open

and dense in ~Mtor
H,Σ. Since ω~Mtor

H,Σ,J
descends to an ample invertible sheaf over

Proj
(
⊕
k≥0

Γ(~Mtor
H,Σ, ω

⊗ k
~Mtor
H,Σ,J

)
)

, the induced canonical proper morphism (see

Proposition 6.4)

(7.13) Proj
(
⊕
k≥0

Γ(~Mtor
H,Σ, ω

⊗ k
~Mtor
H,Σ,J

)
)
→ ~Mmin

H
∼= Proj

(
⊕
k≥0

Γ(~Mmin
H , ω⊗ k~Mmin

H ,J
)
)

is finite (see [14, II, 5.1.6, and III-1, 4.4.2]), which induces the identity morphism on
~MH by restriction. Since ~Mmin

H is noetherian and normal, (7.13) is an isomorphism
by Zariski’s main theorem (see [14, III-1, 4.4.3, 4.4.11]), as desired. �

Theorem 7.14 (cf. [30, Thm. 6.4.1.1(6)]). With the setting as above, let S be an

irreducible noetherian normal scheme over ~S0 = Spec(OF0,(p)), with generic point
η, which is equipped with a morphism

(7.15) η → MH.

Let (Aη, λη, iη, αH,η) denote the pullback of the tautological object of MH to η under
(7.15). Suppose that, for each j ∈ J, we have a degenerating family

(G†j,aux, λ
†
j,aux, i

†
j,aux, α

†
Hj,aux

)

of type MHj,aux over S, whose pullback

(Gj,aux,η, λj,aux,η, ij,aux,η, αHj,aux,η)

to η defines a morphism

(7.16) η → MHj,aux

by the universal property of MHj,aux . These morphisms (7.16), for all j ∈ J, induce
a morphism

(7.17) η →
∏
j∈J

MHj,aux .

Suppose moreover that (7.17) is the composition of (7.15) with the morphism (6.2)
induced by (4.15). Then (7.15) (necessarily uniquely) extends to a morphism

(7.18) S → ~Mtor
H,Σ
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if and only if the following condition is satisfied at each geometric point s̄ of S:
Consider any dominant morphism Spec(V ) → S centered at s̄, where V is a

complete discrete valuation ring with fraction field K, algebraically closed residue
field k, and discrete valuation υ. By the semistable reduction theorem (see, for
example, [30, Thm. 3.3.2.4]), up to replacing K with a finite extension field and
replacing V accordingly, we may assume that the pullback of Aη to Spec(K) extends
to a semi-abelian scheme G‡ over Spec(V ). By the theory of Néron models (see
[4]; cf. [52, IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5]), the pullback of
(Aη, λη, iη, αH,η) to Spec(K) extends to a degenerating family

(G‡, λ‡, i‡, α‡H)

of type MH over Spec(V ), where α‡H is defined only over Spec(K), which defines
an object of DEGPEL,MH(V ) corresponding to a tuple

(B‡, λB‡ , iB‡ , X
‡, Y ‡, φ‡, c‡, c∨,‡, τ ‡, [α\,‡H ])

in DDPEL,MH(V ) under [30, Thm. 5.3.1.19].

Then we have a fully symplectic-liftable admissible filtration Z
‡
H determined by

[α\,‡H ]. Moreover, the étale sheaves X‡ and Y ‡ are necessarily constant, because the
base ring V is strict local. Hence it makes sense to say we also have a uniquely

determined torus argument Φ‡H at level H for Z
‡
H.

On the other hand, we have objects ΦH(G‡), SΦH(G‡), and B(G‡) (see [30, Con-

str. 6.3.1.1]), which define objects Φ‡H, SΦ‡H
, and in particular

B‡ : SΦ‡H
→ Inv(V )

over the special fiber. Then

υ ◦B‡ : SΦ‡H
→ Z

defines an element of S∨
Φ‡H

, where υ : Inv(V )→ Z is the homomorphism induced by

the discrete valuation of V .
Then the condition is that, for each Spec(V )→ S as above (centered at s̄), and

for some (and hence every) choice of δ‡H, there is a cone σ‡ in the cone decom-

position ΣΦ‡H
of PΦ‡H

such that σ‡ contains all υ ◦ B‡ obtained in this way. (As

explained in the proof of [30, Prop. 6.3.3.11], we may assume that σ‡ is minimal
among such choices; also, it follows from the positivity of τ ‡ that σ‡ ⊂ P+

Φ‡H
.)

In particular, since this condition involves only Σ, it follows that the scheme
~Mtor
H,Σ depends (up to canonical isomorphism) only on Σ, but not the choice of the

{Σj,aux}j∈J inducing Σ.

Proof. Let Spec(V )→ S be any morphism as in the statement of the proposition.
For each j ∈ J, let (Aj,η, λj,η, ij,η, αHj,η) denote the pullback of the tauto-

logical object of MHj to η under the composition of (7.15) with (2.1). Since
(Aη, λη, iη, αH,η) induces (Aj,η, λj,η, ij,η, αHj,η) via a Q×-isogeny, by the theory of
Néron models, the pullback of (Aj,η, λj,η, ij,η, αHj,η) to Spec(K) also extends to a
degenerating family

(G‡j , λ
‡
j , i
‡
j , α
‡
Hj

)
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of type MHj
over Spec(V ), where α‡Hj

is defined only over Spec(K), which defines

an object of DEGPEL,MHj
(V ) corresponding to a tuple

(B‡j , λB‡j
, iB‡j

, X‡j , Y
‡
j , φ
‡
j , c
‡
j , c
∨,‡
j , τ ‡j , [α

\,‡
Hj

])

in DDPEL,MHj
(V ) under [30, Thm. 5.3.1.19]; moreover, we may and we shall assume

that the cusp label determined by the object in DDPEL,MHj
(V ) is represented by the

(Z‡Hj
,Φ‡Hj

, δ‡Hj
) assigned to (Z‡H,Φ

‡
H, δ

‡
H) via (3.8), and that the induced morphism

υ ◦ B‡j ∈ S∨
Φ‡Hj

is a Q×>0-multiple of the image of υ ◦ B‡ ∈ S∨
Φ‡H

under (3.12) (see

Lemma 3.16).

For each j ∈ J, let (G‡j,aux, λ
‡
j,aux, i

‡
j,aux, α

‡
Hj,aux

) denote the pullback of the degen-

erating family (G†j,aux, λ
†
j,aux, i

†
j,aux, α

†
Hj,aux

) under the Spec(V ) → S above, which

defines an object of DEGPEL,MHj,aux
(V ). Under [30, Thm. 5.3.1.19], this corre-

sponds to an object of DDPEL,MHj,aux
(V ), which in particular determines a cusp

label [(Z‡Hj,aux
,Φ‡Hj,aux

, δ‡Hj,aux
)] and an element υ ◦B‡j,aux ∈ S∨

Φ‡Hj,aux

for some repre-

sentative (Z‡Hj,aux
,Φ‡Hj,aux

, δ‡Hj,aux
) of [(Z‡Hj,aux

,Φ‡Hj,aux
, δ‡Hj,aux

)]. By the construction

of (4.15), the assumption that (7.17) is the composition of (7.15) with the morphism
(6.2) induced by (4.15) means that (Gj,aux,η, λj,aux,η, ij,aux,η, αHj,aux,η) is induced by
(Aj,η, λj,η, ij,η, αHj,η) in the same way as (AO

j,aux, λ
O
j,aux, i

O
j,aux, α

O
Hj,aux

) is induced by

(Aj, λj, ij, αHj) in Proposition 4.12. Therefore, by the theory of Néron models again,

(G‡j,aux, λ
‡
j,aux, i

‡
j,aux, α

‡
Hj,aux

) is similarly induced by (G‡j , λ
‡
j , i
‡
j , α
‡
Hj

). By functorial-

ity of the association of degeneration data, the above object in DDPEL,MHj,aux
(V )

is also induced by the object in DDPEL,MHj
(V ) determined by (G‡j , λ

‡
j , i
‡
j , α
‡
Hj

) in

the statement of the proposition. Hence, up to modifying the choice of the rep-

resentative (Z‡Hj,aux
,Φ‡Hj,aux

, δ‡Hj,aux
) above, we may and we shall assume that it

is assigned to (Z‡Hj
,Φ‡Hj

, δ‡Hj
) via (5.8), and that (5.10) maps υ ◦ B‡j ∈ S∨

Φ‡Hj

to

υ ◦B‡j,aux ∈ S∨
Φ‡Hj,aux

.

Thus, for each j ∈ J, the representative (Z‡Hj,aux
,Φ‡Hj,aux

, δ‡Hj,aux
) is assigned to

(Z‡H,Φ
‡
H, δ

‡
H) via (5.13), and (5.16) maps υ ◦B‡ ∈ S∨

Φ‡H
to υ ◦B‡j,aux ∈ S∨

Φ‡Hj,aux

.

Suppose there exists a morphism S → ~Mtor
H,Σ extending (7.15). For each j ∈ J,

its composition with the canonical morphism ~Mtor
H,Σ → Mtor

Hj,aux,Σj,aux
induced by

(7.8) defines a morphism S → Mtor
Hj,aux,Σj,aux

extending (7.16). By [52, IX, 1.4],

[10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5], this forces the degenerating fam-

ily (G†j,aux, λ
†
j,aux, i

†
j,aux, α

†
Hj,aux

) of type MHj,aux
over S to be isomorphic to the

pullback of the tautological degenerating family (Gj,aux, λj,aux, ij,aux, αHj,aux) over

Mtor
Hj,aux,Σj,aux

. By [30, Thm. 6.4.1.1(6)], there is some σ‡j,aux ∈ ΣΦ‡Hj,aux

such that

the closure σ‡j,aux of σ‡j,aux in (SΦHj,aux
)∨R contains all υ ◦ B‡j,aux. Let σ‡ ∈ ΣΦ‡H

be

the pullback of
∏
j∈J

σ‡j,aux under the map (5.20). Then σ‡ contains all υ ◦ B‡ as in

the statement of the proposition.
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Conversely, suppose that there exist σ‡ ∈ ΣΦ‡H
such that σ‡ contains all υ ◦ B‡

as in the statement of the theorem. By definition, there exist σ‡j,aux ∈ ΣΦ‡Hj,aux

, for

all j ∈ J, such that σ‡ is the pullback of
∏
j∈J

σ‡j,aux under the map (5.20). Hence, for

each j ∈ J, all υ ◦ B‡j,aux as above are contained in σ‡j,aux, and it follows from [30,

Thm. 6.4.1.1(6)] that there is a canonical morphism

(7.19) S → Mtor
Hj,aux,Σj,aux

under which the degenerating family (G†j,aux, λ
†
j,aux, i

†
j,aux, α

†
Hj,aux

) is the pullback of

the tautological degenerating family (Gj,aux, λj,aux, ij,aux, αHj,aux
) over Mtor

Hj,aux,Σj,aux
.

(Although the universal property in [30, Thm. 6.4.1.1(6)] is defined using all mor-
phisms Spec(V )→ S centered at a geometric point s̄ of S, the condition that there

is some σ‡j,aux ∈ ΣΦ‡Hj,aux

such that σ‡j,aux contains all υ ◦ B‡j,aux can be verified

up to replacing K with a finite extension field and replacing V accordingly.) The
morphisms (7.19), for all j ∈ J, induce a canonical morphism

(7.20) S →
∏
j∈J

Mtor
Hj,aux,Σj,aux

.

Since (7.17) is the composition of (7.15) with (6.2) by assumption, the morphism

(7.20) induced the desired morphism (7.18) by the definition of ~Mtor
H,Σ as the nor-

malization of
∏
j∈J

Mtor
Hj,aux,Σj,aux

in MH under the morphism (7.7), as desired. �

8. Putative boundary charts

The goal of this section is to construct the schemes ~MΦH
H , ~CΦH,δH , ~ΞΦH,δH ,

~ΞΦH,δH(σ), and ~ΞΦH,δH,σ, and the formal scheme ~XΦH,δH,σ over ~MZH
H (whose mean-

ings will be explained below), which will be useful for defining a locally closed

subscheme ~Z[(ΦH,δH,σ)] of ~Mtor
H,Σ, and for describing the formal completion of ~Mtor

H,Σ

along ~Z[(ΦH,δH,σ)], in the next two sections.

Proposition 8.1. Let ~MZH
H be as in Proposition 7.4. Let ~MΦH

H denote the normal-

ization of
∏
j∈J

M
ΦHj,aux

Hj,aux
in MΦH

H under the morphism

(8.2) MΦH
H →

∏
j∈J

M
ΦHj,aux

Hj,aux

defined by comparing the universal properties of MΦH
H
∼= M

ΦHj

Hj
(see (3.6)) and

M
ΦHj,aux

Hj,aux
, for all j ∈ J (see [30, Def. 5.4.2.6 and the errata]; cf. [31, Lem. 1.3.2.5 and

the paragraph preceding it]). Then the morphism (8.2) induces a finite morphism

(8.3) ~MΦH
H →

∏
j∈J

M
ΦHj,aux

Hj,aux

compatible with (7.6), and the canonical morphism ~MΦH
H → ~MZH

H extending the

canonical finite étale morphism MΦH
H → MZH

H is also finite.
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Proof. The canonical morphism ~MΦH
H → ~MZH

H is finite because so are the canonical

morphisms MΦH
H → MZH

H and M
ΦHj,aux

Hj,aux
→ M

ZHj,aux

Hj,aux
, for all j ∈ J. �

Proposition 8.4. Let ~CΦH,δH denote the normalization of
∏
j∈J

CΦHj,aux
,δHj,aux

in

CΦH,δH under the morphism

(8.5) CΦH,δH →
∏
j∈J

CΦHj,aux
,δHj,aux

defined by comparing the universal properties of CΦH,δH
∼= CΦHj

,δHj
(see (3.14))

and CΦHj,aux
,δHj,aux

, for all j ∈ J (parameterizing the additional objects (cHj , c
∨
Hj

)

and (cHj,aux , c
∨
Hj,aux

) over MΦH
H
∼= M

ΦHj

Hj
and M

ΦHj,aux

Hj,aux
, respectively; cf. [31, Lem.

1.3.2.11 and Prop. 1.3.2.12]). Then the morphism (8.5) induces a finite morphism

(8.6) ~CΦH,δH →
∏
j∈J

CΦHj,aux
,δHj,aux

compatible with (8.3), and the canonical morphism ~CΦH,δH → ~MΦH
H extending the

canonical abelian scheme torsor CΦH,δH → MΦH
H is proper.

Proof. The canonical morphism ~CΦH,δH → ~MΦH
H is proper because so are the canon-

ical morphisms CΦH,δH → MΦH
H and CΦHj,aux

,δHj,aux
→ M

ΦHj,aux

Hj,aux
, for all j ∈ J. �

Proposition 8.7. Let ~ΞΦH,δH denote the normalization of
∏
j∈J

ΞΦHj,aux
,δHj,aux

in

ΞΦH,δH under the morphism

(8.8) ΞΦH,δH →
∏
j∈J

ΞΦHj,aux
,δHj,aux

defined by comparing the universal properties of ΞΦH,δH
∼= ΞΦHj

,δHj
(see (3.15)) and

ΞΦHj,aux
,δHj,aux

, for all j ∈ J (parameterizing the additional structures τHj
and τHj,aux

over ΞΦH,δH
∼= ΞΦHj

,δHj
and ΞΦHj,aux

,δHj,aux
, respectively, without their respective

positive conditions; cf. [31, Lem. 1.3.2.28 and Prop. 1.3.2.31]). Then the morphism
(8.8) induces a finite morphism

(8.9) ~ΞΦH,δH →
∏
j∈J

ΞΦHj,aux
,δHj,aux

compatible with (8.6), and the canonical morphism ~ΞΦH,δH → ~CΦH,δH extending
the canonical morphism ΞΦH,δH → CΦH,δH also admits a canonical extension of
the EΦH-torsor structure of the latter (see [30, Thm. 6.4.1.1(5)]), where EΦH is the
split torus with character group SΦH .

The EΦH-torsor structure of ~ΞΦH,δH defines a canonical homomorphism

(8.10) SΦH → Pic(~CΦH,δH) : ` 7→ ~ΨΦH,δH(`),

giving for each ` ∈ SΦH an invertible sheaf ~ΨΦH,δH(`) over ~CΦH,δH (up to isomor-
phism), together with isomorphisms

~∆∗ΦH,δH,`,`′ : ~ΨΦH,δH(`) ⊗
O~CΦH,δH

~ΨΦH,δH(`′)
∼→ ~ΨΦH,δH(`+ `′)
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for all `, `′ ∈ SΦH , satisfying the necessary compatibilities with each other making

⊕
`∈SΦH

~ΨΦH,δH(`) an O~CΦH,δH
-algebra, such that

(8.11) ~ΞΦH,δH
∼= Spec

O~CΦH,δH

(
⊕

`∈SΦH

~ΨΦH,δH(`)
)

(cf. [30, Prop. 6.2.4.7 and (6.2.4.8); see also the errata]).
The canonical morphism

(8.12) ~ΞΦH,δH →
(∏

j∈J

ΞΦHj,aux
,δHj,aux

)
×∏

j∈J

CΦHj,aux
,δHj,aux

~CΦH,δH

induced by (8.6) and (8.9) is equivariant with the finite homomorphism

(8.13) EΦH →
∏
j∈J

EΦHj,aux

dual to (5.22), which is finite because (5.21) is surjective. If (5.22) maps

(`j,aux)j∈J ∈
∏
j∈J

SΦHj,aux
to ` ∈ SΦH , then ~ΨΦH,δH(`) is isomorphic to the pullback

of �
j∈J

ΨΦHj,aux
,δHj,aux

(`j,aux) under (8.6).

Proof. By the universal properties of ΞΦH,δH and ΞΦHj,aux
,δHj,aux

, for all j ∈ J,

the canonical morphism (8.8) is equivariant with the finite homomorphism (8.13).
Suppose that the EΦH -torsor ΞΦH,δH → CΦH,δH extends to some EΦH -torsor over
~CΦH,δH which is finite over

∏
j∈J

ΞΦHj,aux
,δHj,aux

. Then this extension must be isomor-

phic to the ~ΞΦH,δH defined by normalization as in the statement of the proposition,
and the canonically induced morphism (8.12) must be equivariant with the ho-

momorphism (8.13). As usual, for each ` ∈ SΦH , we define ~ΨΦH,δH(`) to be the

subsheaf of (~ΞΦH,δH → ~CΦH,δH)∗O~ΞΦH,δH
on which EΦH acts by the character

`; for `, `′ ∈ SΦH , we define ~∆∗ΦH,δH,`,`′ to be the isomorphism induced by the

O~CΦH,δH
-algebra structure of (~ΞΦH,δH → ~CΦH,δH)∗O~ΞΦH,δH

. Then the remaining

assertions of the proposition follow from the constructions.
It remains to show that the EΦH -torsor ΞΦH,δH → CΦH,δH extends to some

EΦH -torsor over ~CΦH,δH that is finite over
∏
j∈J

ΞΦHj,aux
,δHj,aux

, which we shall abu-

sively denote by ~ΞΦH,δH . Take any j0 ∈ J, and take any integer n ≥ 1 such that

Uj0(n) := ker(Gj0(Ẑ)→ Gj0(Ẑ/nẐ) = Gj0(Z/nZ)) ⊂ Hj0 . Let H′ be the pullback of
Uj0(n) under the canonical homomorphism G(A∞) ∼= Gj0(A∞), and let (ΦH′ , δH′)
be any cusp label for MH′ lifting (ΦH, δH). By the construction in [30, Sec. 6.2.4
and the errata], and by Zariski’s main theorem (see [14, III-1, 4.4.3, 4.4.11]), we can

construct ~ΞΦH,δH → ~CΦH,δH as an equivariant quotient of ~ΞΦH′ ,δH′ → ~CΦH′ ,δH′ , as

soon as the latter is known. Hence, we may replaceH withH′. Since ~CΦH,δH can be
alternatively constructed by normalization over some product of naive moduli (cf.
the proof of Proposition 6.1 and the construction of

...
CΦn in [30, Sec. 6.2.3]), we may

assume that the tautological structure (cj0,n : 1
nXj0 → B∨j0 , c

∨
j0,n

: 1
nYj0 → Bj0) over

CΦH,δH extends to some (~cj0,n : 1
nXj0 → ~B∨j0 ,~c

∨
j0,n

: 1
nYj0 → ~Bj0) over ~CΦH,δH (cf.

Proposition 7.4). By the same construction of
...
ΞΦn as in [30, Sec. 6.2.3], the naive

structures ~τj0,n (without pairing and liftability conditions) are parameterized by
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some
...
Ξ → ~CΦH,δH which factors as the composition of a EΦH-torsor

...
Ξ →

...
Ξ
′

and a

torsor
...
Ξ
′ → ~CΦH,δH under a finite group

...
E
′

of multiplicative type. By comparing
universal properties, there is a canonical EΦH-equivariant morphism ΞΦH,δH →

...
Ξ,

which induces a morphism CΦH,δH →
...
Ξ
′
. On the other hand, up to replacing the

groups Hj,aux with finite index principal level subgroups, for all j ∈ J, and replacing

n with a multiple if necessary, the pullback Ξaux of
∏
j∈J

ΞΦHj,aux
,δHj,aux

to ~CΦH,δH

can be embedded in some similar composition
...
Ξaux →

...
Ξ
′
aux → ~CΦH,δH of torsors

under
∏
j∈J

EΦHj,aux
and a finite group of multiplicative type, respectively, together

with a finite morphism
...
Ξ →

...
Ξaux equivariant with the finite homomorphism (8.13),

whose pre-composition with the above morphism ΞΦH,δH →
...
Ξ lands in Ξaux. Since

~CΦH,δH is noetherian and normal, the above morphism CΦH,δH →
...
Ξ
′

extends to

a section ~CΦH,δH →
...
Ξ
′

of the above morphism
...
Ξ
′ → ~CΦH,δH , under which the

pullback of the EΦH -torsor
...
Ξ →

...
Ξ
′

defines an EΦH -torsor extension ~ΞΦH,δH over
~CΦH,δH , with a finite morphism to

∏
j∈J

ΞΦHj,aux
,δHj,aux

, as desired. �

Proposition 8.14. Suppose that σj,aux ∈ ΣΦHj,aux
, for each j ∈ J, and that σ ∈

ΣΦH is the pullback of
∏
j∈J

σj,aux under the map (5.20). Consider the affine toroidal

embedding as in (3.17), which extends to the affine toroidal embedding

(8.15) ~ΞΦH,δH ↪→ ~ΞΦH,δH(σ) := Spec
O~CΦH,δH

(
⊕

`∈σ∨
~ΨΦH,δH(`)

)
over ~CΦH,δH , where the invertible sheaves ~ΨΦH,δH(`) are as in [30, Prop. 6.2.4.7
and (6.2.4.8); see also the errata] as well. Then the canonical morphism

(8.16) ~ΞΦH,δH(σ)→ ~CΦH,δH

is faithfully flat and has geometrically normal and Cohen–Macaulay fibers, and
~ΞΦH,δH is fiberwise dense in ~ΞΦH,δH(σ). If σ is smooth, then (8.16) is smooth and

surjective. Moreover, whether σ is smooth or not, ~ΞΦH,δH(σ) is normal and is
canonically isomorphic to the normalization of

∏
j∈J

ΞΦHj,aux
,δHj,aux

(σj,aux) in ΞΦH,δH

under the composition

(8.17) ΞΦH,δH

(8.8)→
∏
j∈J

ΞΦHj,aux
,δHj,aux

can.→
∏
j∈J

ΞΦHj,aux
,δHj,aux

(σj,aux),

which (necessarily uniquely) extends to a finite morphism

(8.18) ~ΞΦH,δH(σ)→
∏
j∈J

ΞΦHj,aux
,δHj,aux

(σj,aux)

under which ~ΞΦH,δH is the preimage of
∏
j∈J

ΞΦHj,aux
,δHj,aux

, inducing the same (8.9).

Proof. Over open subsets of ~CΦH,δH over which the invertible sheaves ~ΨΦH,δH(`) are
free for all ` ∈ SΦH (which is possible because SΦH is finitely generated), the global

sections of the O~CΦH,δH
-algebra ⊕

`∈SΦH

~ΨΦH,δH(`) is the localization of the global

sections of the O~CΦH,δH
-algebra ⊕

`∈σ∨
~ΨΦH,δH(`) at a multiplicative subset generated
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by finitely many elements (which is possible because σ∨ is finitely generated; cf.
[24, Ch. I, Sec. 1, Lem. 2]). Hence the morphism (8.15) is an open immersion. The

canonical morphism (8.16) is flat because the O~CΦH,δH
-algebra ⊕

`∈σ∨
~ΨΦH,δH(`) is a

direct sum of invertible sheaves over ~CΦH,δH . By [24, Ch. I, Sec. 1, Thm. 1′ and 2],
the fibers of (8.16) are geometrically normal, and contain the corresponding fibers

of ~ΞΦH,δH as nonempty open dense subsets. By [22, Thm. 1] (cf. [23, Thm. 4.1]),
the fibers of (8.16) are Cohen–Macaulay. If σ is smooth, then (8.16) is smooth
because it is flat and has geometrically regular fibers, by [24, Ch. I, Sec. 1, Thm.
4]. Whether σ is smooth or not, since (8.16) is faithfully flat and of finite type, and

since ~CΦH,δH is noetherian and normal, it follows from the normality of the fibers

of (8.16) and from [35, 21.E] that ~ΞΦH,δH(σ) is also normal.

By the definition of ~ΞΦH,δH (see Proposition 8.7), the normalization of∏
j∈J

ΞΦHj,aux
,δHj,aux

(σj,aux) in ΞΦH,δH under the composition (8.17) can be

identified with the normalization of
∏
j∈J

ΞΦHj,aux
,δHj,aux

(σj,aux) in ~ΞΦH,δH under the

composition

(8.19) ~ΞΦH,δH

(8.9)→
∏
j∈J

ΞΦHj,aux
,δHj,aux

can.→
∏
j∈J

ΞΦHj,aux
,δHj,aux

(σj,aux).

Thus it suffices to show that ~ΞΦH,δH(σ) is canonically isomorphic to this normaliza-
tion, or that (8.19) extends to a finite morphism as in (8.18). Since the Q>0-span
of σ∨ is the image of the Q>0-span of

∏
j∈J

σ∨j,aux under the map (5.21) (see [18, Lem.

3.2]), this follows from the last paragraph of Proposition 8.7, as desired. �

Let σ and {σj,aux}j∈J be as in Proposition 8.14. Let

σ∨0 := {` ∈ SΦH : 〈`, y〉 > 0 ∀y ∈ σ}

and

σ⊥ := {` ∈ SΦH : 〈`, y〉 = 0 ∀y ∈ σ} ∼= σ∨/σ∨0

as usual (see [30, Def. 6.1.1.8 and 6.1.2.5]). Consider the formal completion
~XΦH,δH,σ of ~ΞΦH,δH(σ) along its closed subscheme

~ΞΦH,δH,σ := Spec
O~CΦH,δH

(
⊕

`∈σ⊥
~ΨΦH,δH(`)

)
,

which extends the formal completion XΦH,δH,σ of ΞΦH,δH(σ) along its closed sub-

scheme ΞΦH,δH,σ = Spec
OCΦH,δH

(
⊕

`∈σ⊥
ΨΦH,δH(`)

)
; and consider the formal com-

pletion X(ΦHj,aux
,δHj,aux

,σj,aux)j∈J
of
∏
j∈J

ΞΦHj,aux
,δHj,aux

(σj,aux) along its closed sub-

scheme
∏
j∈J

ΞΦHj,aux
,δHj,aux

,σj,aux
. Consider the split torus EΦH,σ with character

group σ⊥, which is the quotient of EΦH dual to the subgroup σ⊥ of SΦH , as in [30,
Thm. 7.2.4.1(5)]. By construction, the canonical morphisms ΞΦH,δH,σ → CΦH,δH

and ~ΞΦH,δH,σ → ~CΦH,δH are (compatible) EΦH,σ-torsors.

Lemma 8.20. The subscheme ~ΞΦH,δH,σ of ~ΞΦH,δH(σ) is the preimage (with its
reduced structure) of

∏
j∈J

ΞΦHj,aux
,δHj,aux

,σj,aux
under the canonical finite morphism
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(8.18) of schemes, and the induced canonical morphism

(8.21) ~XΦH,δH,σ → X(ΦHj,aux
,δHj,aux

,σj,aux)j∈J

of formal schemes is finite. (We cannot expect ~ΞΦH,δH,σ to be the schematic preim-
age of

∏
j∈J

ΞΦHj,aux
,δHj,aux

,σj,aux
, because such a preimage is not reduced in general.)

Proof. It suffices to show that ~ΞΦH,δH,σ is the preimage (with its reduced structure)
of
∏
j∈J

ΞΦHj,aux
,δHj,aux

,σj,aux under (8.18).

By definition, the closed subscheme ~ΞΦH,δH,σ of ~ΞΦH,δH(σ) is de-
fined by the O~ΞΦH,δH (σ)-ideal corresponding to the O~CΦH,δH

-submodule

⊕
`∈σ∨0

~ΨΦH,δH(`) of the O~CΦH,δH
-algebra ⊕

`∈σ∨
~ΨΦH,δH(`). Similarly, for each

j ∈ J, the closed subscheme ΞΦHj,aux
,δHj,aux

,σj,aux
of ΞΦHj,aux

,δHj,aux
(σj,aux)

is defined by the OΞΦHj,aux
,δHj,aux

(σj,aux)-ideal corresponding to the

OCΦHj,aux
,δHj,aux

-submodule ⊕
`j,aux∈(σj,aux)∨0

ΨΦHj,aux
,δHj,aux

(`j,aux) of the

OCΦHj,aux
,δHj,aux

-algebra ⊕
`j,aux∈σ∨j,aux

ΨΦHj,aux
,δHj,aux

(`j,aux). Since

(∏
j∈J

σj,aux

)∨
=
∏
j∈J

σ∨j,aux

and (∏
j∈J

σj,aux

)∨
0

=
(∏

j∈J

σ∨j,aux

)
−
(∏

j∈J

σ⊥j,aux

)
(where “−” means set subtraction), the closed subscheme

∏
j∈J

ΞΦHj,aux
,δHj,aux

,σj,aux

of
∏
j∈J

ΞΦHj,aux
,δHj,aux

(σj,aux) is defined by the O∏
j∈J

ΞΦHj,aux
,δHj,aux

(σj,aux)-ideal corre-

sponding to the O∏
j∈J

CΦHj,aux
,δHj,aux

-submodule

⊕(
(`j,aux)j∈J

)
∈
(∏

j∈J

σj,aux

)∨
0

(
�
j∈J

ΨΦHj,aux
,δHj,aux

(`j,aux)
)

of the O∏
j∈J

CΦHj,aux
,δHj,aux

-algebra

⊕(
(`j,aux)j∈J

)
∈
(∏

j∈J

σj,aux

)∨(�j∈J
ΨΦHj,aux

,δHj,aux
(`j,aux)

)
.

Since the Q>0-span of σ∨0 (resp. σ⊥) is the image of the Q>0-span of
(∏

j∈J

σj,aux

)∨
0

(resp.
(∏

j∈J

σj,aux

)⊥
) under the map (5.21) (cf. the proof of Proposition 8.14), the

desired assertion follows from the last paragraph of Proposition 8.7. �

As explained in [30, Sec. 6.2.5], using the language of relative schemes (see [17]),
for each j ∈ J, the formal scheme X(ΦHj,aux

,δHj,aux
,σj,aux)j∈J

carries a tautological
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tuple

(ZHj,aux
, (Xj,aux, Yj,aux, φj,aux, ϕ

∼
−2,Hj,aux

, ϕ∼0,Hj,aux
),

(Bj,aux, λBj,aux , iBj,aux , ϕ−1,Hj,aux), δHj,aux , (cHj,aux , c
∨
Hj,aux

, τHj,aux)),
(8.22)

where (ϕ∼−2,Hj,aux
, ϕ∼0,Hj,aux

) induces the (ϕ−2,Hj,aux
, ϕ0,Hj,aux

) in ΦHj,aux
. Let us

denote the pullback of (8.22) to ~XΦH,δH,σ by

(ZHj,aux , (Xj,aux, Yj,aux, φj,aux, ~ϕ
∼
−2,Hj,aux

, ~ϕ∼0,Hj,aux
),

( ~Bj,aux, λ ~Bj,aux
, i ~Bj,aux

, ~ϕ−1,Hj,aux), δHj,aux , (~cHj,aux ,~c
∨
Hj,aux

, ~τHj,aux)).
(8.23)

Similarly, for each j ∈ J, the formal scheme XΦH,δH,σ
∼= XΦHj

,δHj
,σj (see (3.20))

carries a tautological tuple

(ZHj
, (Xj, Yj, φj, ϕ

∼
−2,Hj

, ϕ∼0,Hj
),

(Bj, λBj , iBj , ϕ−1,Hj), δHj , (cHj , c
∨
Hj
, τHj)),

(8.24)

where (ϕ∼−2,Hj
, ϕ∼0,Hj

) induces the (ϕ−2,Hj
, ϕ0,Hj

) in ΦHj
, which extends to a tau-

tological tuple

(ZHj
, (Xj, Yj, φj, ~ϕ

∼
−2,Hj

, ~ϕ∼0,Hj
),

( ~Bj, λ ~Bj
, i ~Bj

, ~ϕ−1,Hj
), δHj

, (~cHj
,~c∨Hj

, ~τHj
))

(8.25)

over the formal scheme ~XΦH,δH,σ, where (~ϕ∼−2,Hj
, ~ϕ∼0,Hj

) and ~ϕ−1,Hj are defined

only over XΦH,δH,σ
∼= XΦHj

,δHj
,σj , and where (~cHj ,~c

∨
Hj
, ~τHj) is defined only over

XΦH,δH,σ
∼= XΦHj

,δHj
,σj but nevertheless induces a tuple (~cj,~c

∨
j , ~τj) defined over

all of ~XΦH,δH,σ, which in turn induces the tuple (~cj,aux,~c
∨
j,aux, ~τj,aux) induced by

(~cHj,aux
,~c∨Hj,aux

, ~τHj,aux
).

By construction, (8.23) is induced by (8.25) in the following sense:

(1) (ZHj,aux
,ΦHj,aux

= (Xj,aux, Yj,aux, φj,aux, ϕ−2,Hj,aux
, ϕ0,Hj,aux

), δHj,aux
) is in-

duced by (ZHj ,ΦHj = (Xj, Yj, φj, ϕ−2,Hj , ϕ0,Hj), δHj) via (5.8).

(2) ( ~Bj,aux, λ ~Bj,aux
, i ~Bj,aux

, ~ϕ−1,Hj,aux
) is induced by ( ~Bj, λ ~Bj

, i ~Bj
, ϕ−1,Hj

).

(3) (~ϕ∼−2,Hj,aux
, ~ϕ∼0,Hj,aux

) is induced by (~ϕ∼−2,Hj
, ~ϕ∼0,Hj

) by forgetting the factors

at p and by forming the Hj,aux-orbits.
(4) (~cHj,aux ,~c

∨
Hj,aux

, ~τHj,aux) is also induced by (~cHj ,~c
∨
Hj
, ~τHj) by forgetting the

factors at p and by forming the Hj,aux-orbits.

As explained in [30, Sec. 6.2.5], the tautological tuples (8.22), (8.23), (8.24), and
(8.25) define the respective Mumford families

(8.26) (♥Gj,aux,
♥λj,aux,

♥ij,aux,
♥αHj,aux

)→ X(ΦHj,aux
,δHj,aux

,σj,aux)j∈J
,

(8.27) (♥ ~Gj,aux,
♥~λj,aux,

♥~ij,aux,
♥~αHj,aux

)→ ~XΦH,δH,σ,

(8.28) (♥Gj,
♥λj,

♥ij,
♥αHj)→ XΦH,δH,σ

∼= XΦHj
,δHj

,σj

and

(8.29) (♥ ~Gj,
♥~λj,

♥~ij,
♥~αHj

)→ ~XΦH,δH,σ,

where ♥~αHj
is defined only over ~XΦH,δH,σ ⊗Z

Q ∼= XΦH,δH,σ
∼= XΦHj

,δHj
,σj

.
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Remark 8.30. Although σ was assumed to be smooth in [30, Sec. 6.2.5], the ar-

gument there only requires the excellent normality of ΞΦH,δH(σ) and ~ΞΦH,δH(σ),
which we have shown in Proposition 8.14.

For all j ∈ J, by the functoriality of Mumford’s construction, we know that
(8.27) is canonically isomorphic to the pullback of (8.26) under (8.21); that (8.28)
is canonically isomorphic to the pullback of (8.29); and that (8.27) is induced by
(8.29). By the universal property of Mtor

Hj,aux,Σj,aux
as in [30, Thm. 6.4.1.1(6)], the

Mumford families (8.26), for all j ∈ J, induce a canonical morphism

(8.31) X(ΦHj,aux
,δHj,aux

,σj,aux)j∈J
→
∏
j∈J

Mtor
Hj,aux,Σj,aux

.

Similarly, since (8.27) is canonically isomorphic to the pullback of (8.26) for each
j ∈ J, the Mumford families (8.27), for all j ∈ J, induce a morphism

(8.32) ~XΦH,δH,σ →
∏
j∈J

Mtor
Hj,aux,Σj,aux

,

which coincides with the composition of (8.21) with (8.31). Since (8.27) is induced

by (8.29) for each j ∈ J, by the universal property of ~Mtor
H,Σ as in Proposition 7.14,

the morphism (8.32) lifts to a morphism

(8.33) ~XΦH,δH,σ → ~Mtor
H,Σ,

whose composition with (7.8) is (8.32).

9. Stratifications of toroidal compactifications

The main goal of this section is to show that an analogue of [30, Thm. 6.4.1.1(2)]

is true for ~Mtor
H,Σ (see Theorem 9.13 below).

Definition 9.1. For each (ΦH, δH, σ) as in [30, Def. 6.2.6.1] such that σ ⊂ P+
ΦH

and σ ∈ ΣΦH , let ~Z[(ΦH,δH,σ)] denote the subset of ~Mtor
H,Σ consisting of all points t

satisfying the follow property: For any morphism Spec(V ) → ~Mtor
H,Σ, where V is a

complete discrete valuation ring with fraction field K, algebraically closed residue
field k, and discrete valuation υ, which maps the generic point Spec(K) to some
maximal point (see [15, 0, 2.1.2]) of MH and maps the special point Spec(k) to

t, there exist some (Z‡H,Φ
‡
H, δ

‡
H) and some σ‡ ∈ ΣΦ‡H

as in Theorem 7.14, where

σ‡ is minimal among all choices, such that [(Φ‡H, δ
‡
H, σ

‡)] = [(ΦH, δH, σ)] (i.e.,

(Φ‡H, δ
‡
H, σ

‡) and (ΦH, δH, σ) are equivalent as in [30, Def. 6.2.6.1]).

Remark 9.2. As explained in the proof of [30, Prop. 6.3.3.11], the requirement that
σ‡ is minimal among all choices implies that υ ◦B‡ ∈ σ‡, not just in the closure σ‡.

Lemma 9.3. The underlying set of ~Mtor
H,Σ is the disjoint union of ~Z[(ΦH,δH,σ)], with

[(ΦH, δH, σ)] running through a complete set of equivalence classes of (ΦH, δH, σ)
(as in [30, Def. 6.2.6.1]) with σ ⊂ P+

ΦH
and σ ∈ ΣΦH ∈ Σ.

Proof. The fact that ~Mtor
H,Σ is the union as in the statement of the lemma follows

from Theorem 7.14. Since ~Mtor
H,Σ is noetherian and normal, given any point t of

~Mtor
H,Σ, all morphisms Spec(V ) → ~Mtor

H,Σ as in Definition 9.1 (for some V ) that
map the special point to t must map the generic point to the same maximal point
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η of MH. Let us denote by (Aη, λη, iη, αH,η) the object parameterized by the

canonical morphism η → MH. Since the assignment of [(Φ‡H, δ
‡
H, σ

‡)] to a morphism

Spec(V ) → ~Mtor
H,Σ as in Theorem 7.14 is determined by the degeneration of the

pullback of (Aη, λη, iη, αH,η) to Spec(K), which is unchanged under faithfully flat

extensions of discrete valuation rings V , it follows that [(Φ‡H, δ
‡
H, σ

‡)] depends only
on t. Hence the union in the statement of the lemma is disjoint, as desired. �

Lemma 9.4. For each (ΦH, δH, σ) (as in [30, Def. 6.2.6.1]) such that σ ⊂ P+
ΦH

and σ ∈ ΣΦH ∈ Σ, the subset ~Z[(ΦH,δH,σ)] of ~Mtor
H,Σ is the (set-theoretic) image of

the morphism

(9.5) ~ΞΦH,δH,σ → ~Mtor
H,Σ

induced by (8.33).

Proof. Since (8.33) is induced by the universal property of ~Mtor
H,Σ, the image of (9.5)

lies in ~Z[(ΦH,δH,σ)] by definition. Conversely, let t be any point of ~Z[(ΦH,δH,σ)], also
viewed as a point of Mtor

H,Σ. Let

(9.6) Spec(V )→ Mtor
H,Σ

be as in Definition 9.1, which maps the special point to t, such that the pullback
of the tautological object over MH to the generic point of Spec(V ) extends to a de-

generating family (G†, λ†, i†, α†H) of type MH over Spec(V ), which defines an object
of DEGPEL,MH(V ) corresponding to an object in DDPEL,MH(V ) under [30, Thm.
5.3.1.19]. For each j ∈ J, as explained in the proof of Theorem 7.14, the pullback
of the tautological object over MHj to the generic point of Spec(V ) also extends to

a degenerating family (G†j , λ
†
j , i
†
j , α
†
Hj

) of type MHj over Spec(V ), which defines an

object of DEGPEL,MHj
(V ) corresponding to an object in DDPEL,MHj

(V ) under [30,

Thm. 5.3.1.19]. Since t is a point of ~Z[(ΦH,δH,σ)], these objects in DDPEL,MHj
(V ),

for all j ∈ J, induce objects parameterized by ~XΦH,δH,σ as in (8.25), so that the

degenerating families (G†j , λ
†
j , i
†
j , α
†
Hj

) are isomorphic to the respective pullbacks of

the Mumford families (8.29), for all j ∈ J, under a uniquely determined morphism

(9.7) Spf(V )→ ~XΦH,δH,σ.

Since (8.33) is induced by the universal property of ~Mtor
H,Σ, its pre-composition with

(9.7) is induced by (9.6). Therefore t lies in the image of (9.5), as desired. �

Lemma 9.8. With the setting as above, suppose that Σ′ is any compatible choice
of admissible smooth rational polyhedral cone decomposition data as in [30, Def.
6.3.3.4], which defines a smooth toroidal compactification Mtor

H,Σ′ as in [30, Thm.

6.4.1.1], and suppose that Σ′ is a refinement of Σ as in [30, Def. 6.4.2.2] (with the
roles of Σ and Σ′ there interchanged; such Σ′ always exists by compatibly refining
the cone decompositions ΣΦH as in the proof of [30, Prop. 6.3.3.5]). Let Mtor

H,Σ :=
~Mtor
H,Σ⊗Z

Q, which we view as an open subscheme of ~Mtor
H,Σ. Then there exists a

canonical proper surjective morphism

(9.9) Mtor
H,Σ′ → Mtor

H,Σ,
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mapping Z[(ΦH,δH,τ)] to

Z[(ΦH,δH,σ)] := ~Z[(ΦH,δH,σ)] ∩Mtor
H,Σ

whenever τ ∈ Σ′ΦH ∈ Σ′ is contained in σ ∈ ΣΦH ∈ Σ in P+
ΦH

. Moreover, each
Z[(ΦH,δH,σ)] is the union of the images of all such Z[(ΦH,δH,τ)]. In particular, the
open dense stratum Z[(0,0,{0})] of Mtor

H,Σ is the isomorphic image of the open dense

stratum Z[(0,0,{0})] = MH of Mtor
H,Σ′ , which must coincide with the open dense sub-

scheme MH ∼= ~MH⊗
Z
Q of Mtor

H,Σ = ~Mtor
H,Σ⊗Z

Q (see Lemma 7.9).

Consequently, the subsets Z[(ΦH,δH,σ)] of Mtor
H,Σ, with [(ΦH, δH, σ)] running

through all equivalence classes as in [30, Def. 6.2.6.1], are locally closed and define
a stratification of Mtor

H,Σ as in [30, Thm. 6.4.1.1(2)] (with incidence relations
described as in the second paragraph there, and with MH ∼= Z[(0,0,{0})] being an
open dense stratum). Then each Z[(ΦH,δH,σ)] admits the structure of a locally
closed subscheme of Mtor

H,Σ (with its reduced structure).

Proof. The canonical morphism (9.9) exists by Proposition 5.24 (with the Σ there
given by the Σ′ here) and by comparing the universal properties of Mtor

H,Σ′ and Mtor
H,Σ

in [30, Thm. 6.4.1.1(6)] and Theorem 7.14, respectively, which is proper because
Mtor
H,Σ′ is proper over S0.

Suppose t′ is any point of the subset Z[(ΦH,δH,τ)] of Mtor
H,Σ′ , which is mapped

to some point t of Mtor
H,Σ. Suppose Spec(V ) → Mtor

H,Σ′ is any morphism, where
V is a complete discrete valuation ring with fraction field K, algebraically closed
residue field k, and discrete valuation υ, which maps the generic point Spec(K)
to some maximal point of MH and maps the special point Spec(k) to t′. Then its
composition with (9.9) defines a morphism Spec(V ) → Mtor

H,Σ as in Definition 9.1,

and it follows that t lies on the subset Z[(ΦH,δH,σ)] of Mtor
H,Σ, by [30, Thm. 6.4.1.1

(5) and (6)] (and the property of the Mumford family (♥G, ♥λ, ♥i, ♥αH) carried
by XΦH,δH,τ for each representative (ΦH, δH, τ) of [(ΦH, δH, τ)]).

On the other hand, suppose t is a point of Z[(ΦH,δH,σ)]. By definition, there
exists some morphism Spec(V ) → Mtor

H,Σ as in the statement of Definition 9.1, for

some (Z‡H,Φ
‡
H, δ

‡
H) and some σ‡ ∈ ΣΦ‡H

as in Theorem 7.14, where σ‡ is minimal

among such choices, such that [(Φ‡H, δ
‡
H, σ

‡)] = [(ΦH, δH, σ)]. Since (9.9) is proper,
Spec(V ) → Mtor

H,Σ lifts to some morphism Spec(V ) → Mtor
H,Σ′ . Since σ‡ is minimal

among such choices, we have υ ◦ B‡ ∈ σ‡ ⊂ P+

Φ‡H
(not just in the closure σ‡), and

hence υ ◦ B‡ ∈ τ ‡ ⊂ P+

Φ‡H
for some τ ‡ ∈ Σ′

Φ‡H
. By [30, Thm. 6.4.1.1(6)] and its

proof based on [30, Prop. 6.3.3.11], Spec(V ) → Mtor
H,Σ′ must map the special point

Spec(k) of Spec(V ) to the [(Φ‡H, δ
‡
H, τ

‡)]-stratum Z[(Φ‡H,δ
‡
H,τ
‡)] of Mtor

H,Σ′ .

Thus we have shown that each Z[(ΦH,δH,σ)] is the union of the images of all

Z[(ΦH,δH,τ)] with τ ∈ Σ′ΦH ∈ Σ′ contained in σ ∈ ΣΦH ∈ Σ in P+
ΦH

. The remaining
assertions of the lemma then follow from this and from Lemma 9.3. �

Remark 9.10. The notation in Lemma 9.8 might be confusing, because Mtor
H,Σ′ and

Mtor
H,Σ (and also Z[(ΦH,δH,τ)] and Z[(ΦH,δH,σ)]) are defined rather differently. This

will be justified in Corollary 11.8 below.
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Lemma 9.11. For each (ΦH, δH, σ) (as in [30, Def. 6.2.6.1]) such that σ ⊂ P+
ΦH

and σ ∈ ΣΦH ∈ Σ, the subset Z[(ΦH,δH,σ)] of ~Z[(ΦH,δH,σ)] is dense in ~Z[(ΦH,δH,σ)].

Proof. This follows from Lemma 9.4, because ~ΞΦH,δH,σ is smooth over ~CΦH,δH and
hence is flat over Spec(Z(p)) (see Lemma 8.20). �

Lemma 9.12. For each j ∈ J, suppose that (ZHj,aux ,ΦHj,aux , δHj,aux) is induced by

(ZH,ΦH, δH) as in (5.13), and that σj,aux ∈ ΣΦHj,aux
and σj,aux ⊂ P+

ΦHj,aux
, so that

the locally closed stratum Z[(ΦHj,aux
,δHj,aux

,σj,aux)] of Mtor
Hj,aux,Σj,aux

is defined as in

[30, Thm. 6.4.1.1(2)]. Suppose σ ∈ ΣΦH is the pullback of
∏
j∈J

σj,aux under (5.20),

which lies in P+
ΦH

because σj,aux ⊂ P+
ΦHj,aux

for all j ∈ J. Then ~Z[(ΦH,δH,σ)] is open

and closed in the preimage of the locally closed stratum
∏
j∈J

Z[(ΦHj,aux
,δHj,aux

,σj,aux)]

of
∏
j∈J

Mtor
Hj,aux,Σj,aux

under the finite morphism (7.8). Consequently, ~Z[(ΦH,δH,σ)] also

admits the structure of a reduced locally closed subscheme of ~Mtor
H,Σ.

Proof. By comparing the universal properties (as in Theorem 7.14 and Definition

9.1 for ~Z[(ΦH,δH,σ)], and as in [30, Thm. 6.4.1.1(6) and its proof based on Prop.
6.3.3.11] for Z[(ΦHj,aux

,δHj,aux
,σj,aux)], for all j ∈ J), the canonical morphism (7.8)

maps ~Z[(ΦH,δH,σ)] to
∏
j∈J

Z[(ΦHj,aux
,δHj,aux

,σj,aux)], and the intersection of the image of

(7.8) with
∏
j∈J

Z[(ΦHj,aux
,δHj,aux

,σj,aux)] is the union of such images. If ~Z[(Φ′H,δ
′
H,σ

′)] is

also mapped to
∏
j∈J

Z[(ΦHj,aux
,δHj,aux

,σj,aux)], then the O-multi-ranks of [(ΦH, δH)] and

[(Φ′H, δ
′
H)] have the same magnitude (see [30, Def. 5.4.2.7 and 6.3.3.7]), because they

induce the same [(ΦHj,aux
, δHj,aux

)] (for any j ∈ J), and hence none of [(ΦH, δH, σ)]
and [(Φ′H, δ

′
H, σ

′)] can be a face of the other (as in [30, Def. 6.3.2.14]), because
σ is assumed to be minimal among all choices in Definition 9.1. By Lemma 9.8,
this shows that Z[(ΦH,δH,σ)] is open and closed in the preimage (with its reduced
structure) of

∏
j∈J

Z[(ΦHj,aux
,δHj,aux

,σj,aux)] under (7.8). By Lemmas 9.3 and 9.11, it

follows that ~Z[(ΦH,δH,σ)] is also open and closed in the preimage (with its reduced
structure) of

∏
j∈J

Z[(ΦHj,aux
,δHj,aux

,σj,aux)] under (7.8), as desired. �

Theorem 9.13 (cf. [30, Thm. 6.4.1.1(2)]). With the setting as above, ~Mtor
H,Σ has a

stratification by locally closed subschemes

~Mtor
H,Σ =

∐
[(ΦH,δH,σ)]

~Z[(ΦH,δH,σ)],

with [(ΦH, δH, σ)] running through a complete set of equivalence classes of
(ΦH, δH, σ) (as in [30, Def. 6.2.6.1]) with σ ⊂ P+

ΦH
and σ ∈ ΣΦH ∈ Σ, where

each stratum ~Z[(ΦH,δH,σ)] is as in Definition 9.1 and Lemma 9.12. (Here the
notation “

∐
” only means a set-theoretic disjoint union. The algebro-geometric

structure is still that of ~Mtor
H,Σ.) In this stratification, the [(Φ′H, δ

′
H, σ

′)]-stratum
~Z[(Φ′H,δ

′
H,σ

′)] lies in the closure of the [(ΦH, δH, σ)]-stratum ~Z[(ΦH,δH,σ)] if and

only if [(ΦH, δH, σ)] is a face of [(Φ′H, δ
′
H, σ

′)] as in [30, Def. 6.3.2.14] (see also
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[30, Rem. 6.3.2.15]). The open dense subscheme ~MH of ~Mtor
H,Σ (see Lemma 7.9)

coincides with the [(0, 0, {0})]-stratum ~Z[(0,0,{0})] in this stratification.

Proof. By Lemma 9.3, ~Mtor
H,Σ = ∪

[(ΦH,δH,σ)]

~Z[(ΦH,δH,σ)], with [(ΦH, δH, σ)] running

through all equivalence classes, with σ ⊂ P+
ΦH

and σ ∈ ΣΦH ∈ Σ. By defini-
tion, the assignment of [(ΦHj,aux , δHj,aux , σj,aux)] to [(ΦH, δH, σ)] as in Definition
5.23 respects the incidence relations as in [30, Def. 6.3.2.13], for each j ∈ J. There-
fore, by Lemmas 9.11 and 9.12, in order to show that the above union defines a

stratification of ~Mtor
H,Σ with the desired incidence relation described as in the second

paragraph of this proposition, it suffices to note that, by Lemma 9.8, its pullback to

Mtor
H,Σ = ~Mtor

H,Σ⊗Z
Q does. Similarly, in order to show that the subscheme ~Z[(0,0,{0})]

of ~Mtor
H,Σ coincides with ~MH, it suffices to note that, by Lemma 9.8, the subscheme

Z[(0,0,{0})] = ~Z[(0,0,{0})]⊗
Z
Q of Mtor

H,Σ = ~Mtor
H,Σ⊗Z

Q coincides with MH ∼= ~MH⊗
Z
Q. �

Remark 9.14. In Theorems 12.1 and 12.16 below, we will see that the corresponding

analogues of [30, Thm. 7.2.4.1 (4) and (5)] are also true for ~Mmin
H .

10. Comparison of formal completions

The main goal of this section is to show that an analogue of [30, Thm. 6.4.1.1(5)]

is true for ~Mtor
H,Σ (see Theorem 10.13 below).

Let ~Z[(ΦH,δH,σ)] be the [(ΦH, δH, σ)]-stratum of ~Mtor
H,Σ as in Theorem 9.13. Con-

sider the formal completion
(
~Mtor
H,Σ
)∧
~Z[(ΦH,δH,σ)]

of ~Mtor
H,Σ along ~Z[(ΦH,δH,σ)]. (As in

[30, Thm. 6.4.1.1(5)], to form the formal completion along a given locally closed
stratum, we first remove the other strata appearing in the closure of this stratum
from the total space, and then form the formal completion of the remaining space
along this stratum.) Then the canonical finite morphism (7.8) of schemes induces
a canonical finite morphism

(10.1)
(
~Mtor
H,Σ
)∧
~Z[(ΦH,δH,σ)]

→
(∏

j∈J

Mtor
Hj,aux,Σj,aux

)∧∏
j∈J

Z[(ΦHj,aux
,δHj,aux

,σj,aux)]

of formal schemes.
By [30, Thm. 6.4.1.1(5)], the morphism (8.31) induces a canonical isomorphism

(10.2) X(ΦHj,aux
,δHj,aux

,σj,aux)j∈J

∼→
(∏

j∈J

Mtor
Hj,aux,Σj,aux

)∧∏
j∈J

Z[(ΦHj,aux
,δHj,aux

,σj,aux)]

.

By Lemma 9.4, the morphism (8.33) induces a morphism

(10.3) ~XΦH,δH,σ →
(
~Mtor
H,Σ
)∧
~Z[(ΦH,δH,σ)]

,

which is compatible with (8.21) and (10.1) by construction. The pullback of (10.3)
to characteristic zero defines a morphism

(10.4) XΦH,δH,σ →
(
Mtor
H,Σ
)∧
Z[(ΦH,δH,σ)]

.

Let Σ′ be as in Lemma 9.8, so that we have the canonical proper surjective
morphism Mtor

H,Σ′ → Mtor
H,Σ as in (9.9). Consider

(10.5) ΞΦH,δH(σ)′ := ∪
τ∈Σ′ΦH

,τ⊂σ
ΞΦH,δH(τ),
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the toroidal embedding of ΞΦH,δH defined by gluing the affine toroidal embeddings
ΞΦH,δH(τ) as in [30, Sec. 6.2.5], with τ running through the cones in Σ′ΦH that are
contained in σ. Then there is a canonical proper morphism

(10.6) ΞΦH,δH(σ)′ → ΞΦH,δH(σ)

(cf. [24, Ch. I, Sec. 2, Thm. 8]), which induces the identity morphism on ΞΦH,δH

by restriction. The preimage of the closed σ-stratum ΞΦH,δH,σ of ΞΦH,δH(σ) under
this proper morphism (with its reduced structure) is the union

(10.7) Ξ′ΦH,δH,σ := ∪
τ∈Σ′ΦH

,τ⊂σ
ΞΦH,δH,τ .

Let X′ΦH,δH,σ denote the formal completion of ΞΦH,δH(σ)′ along its closed subscheme

Ξ′ΦH,δH,σ. Then (10.6) induces a proper morphism

(10.8) X′ΦH,δH,σ → XΦH,δH,σ.

By the same argument as in [30, Sec. 6.2.5], we also have a Mumford family

(10.9) (♥G, ♥λ, ♥i, ♥αH)→ X′ΦH,δH,σ,

which is canonically isomorphic to the pullback of the above Mumford family (8.28)
under the morphism (10.8). Let us denote by Z′[(ΦH,δH,σ)] the preimage (with its

reduced structure) of Z[(ΦH,δH,σ)] under (9.9). By Lemma 9.8, Z′[(ΦH,δH,σ)] is the

union of Z[(ΦH,δH,τ)] with the same τ ’s as in (10.5). Then (9.9) induces a proper
morphism

(10.10)
(
Mtor
H,Σ′

)∧
Z′

[(ΦH,δH,σ)]

→
(
Mtor
H,Σ
)∧
Z[(ΦH,δH,σ)]

.

By the same argument as in the proofs of [30, Thm. 6.4.1.1(5)] and [29, Prop. 4.3],
which are based on [30, Thm. 6.4.1.1(6)], there is a canonical isomorphism

(10.11) X′ΦH,δH,σ
∼→
(
Mtor
H,Σ′

)∧
Z′

[(ΦH,δH,σ)]

such that the Mumford family (10.9) is the pullback of the tautological degenerating
family (G,λ, i, αH) over Mtor

H,Σ′ under the composition of (10.11) with the canonical

morphism
(
Mtor
H,Σ′

)∧
Z′

[(ΦH,δH,σ)]

→ Mtor
H,Σ′ . Hence we have a commutative diagram

(10.12) X′ΦH,δH,σ
(10.11)

∼
//

(10.8)

��

(
Mtor
H,Σ′

)∧
Z′

[(ΦH,δH,σ)]

(10.10)

��

XΦH,δH,σ (10.4)
//
(
Mtor
H,Σ
)∧
Z[(ΦH,δH,σ)]

by the universal properties of the objects involved.

Theorem 10.13 (cf. [30, Thm. 6.4.1.1(5)]). With the setting as above, the mor-
phism (10.3) is an isomorphism.

Proof. Since (8.21) and (10.1) are finite, and since (10.2) is an isomorphism, (10.3) is
also finite; that is, under (10.3), the preimage of each affine open formal subscheme

Spf(R, I) of
(
~Mtor
H,Σ
)∧
~Z[(ΦH,δH,σ)]

in ~XΦH,δH,σ is isomorphic to Spf(R̃, Ĩ) for some finite

R-algebra R̃ and for Ĩ := I · R̃ ⊂ R̃ (cf. [14, III-1, 5.1.4]). In order to show that
(10.3) is an isomorphism, it suffices to show that, over each such Spf(R, I), the
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finite morphism Spec(R̃) → Spec(R) induced by (10.3) is an isomorphism. Since
~Mtor
H,Σ and ~ΞΦH,δH(σ) are flat over ~S0 and excellent normal, R and R̃ are flat over

Z(p) and noetherian normal. Hence, by Zariski’s main theorem (see [14, III-1, 4.4.3,
4.4.11]), it suffices to show that the induced finite homomorphism

(10.14) R⊗
Z
Q→ R̃⊗

Z
Q

is an isomorphism.
Let U := Spf(R⊗

Z
Q, I ⊗

Z
Q) and Ũ := Spf(R̃⊗

Z
Q, Ĩ ⊗

Z
Q), the latter being the

preimage of the former under the (finite) morphism (10.4), so that (10.14) can

be identified with the canonical homomorphism Γ(U,OU) → Γ(Ũ,OŨ). Let U′

(resp. Ũ′) denote the preimage of U (resp. Ũ) under (10.10) (resp. (10.8)), with

the induced structure of an open formal subscheme of
(
Mtor
H,Σ′

)∧
Z′

[(ΦH,δH,σ)]

(resp.

X′ΦH,δH,σ). By [14, III-1, 4.1.5] and by Zariski’s main theorem (see [14, III-1, 4.4.3,

4.4.11]), since the proper morphism (9.9) induces by restriction the identity mor-
phism on the open dense subscheme MH, and since Mtor

H,Σ is noetherian and normal

by construction, the canonical morphism Γ(U,OU)→ Γ(U′,OU′) is an isomorphism.
Similarly, since the proper morphism (10.6) induces by restriction the identity mor-
phism on the open dense subscheme ΞΦH,δH , and since ΞΦH,δH(σ) is noetherian

and normal by construction, the canonical morphism Γ(Ũ,OŨ) → Γ(Ũ′,OŨ′) is an
isomorphism. Since the diagram (10.12) is commutative, the morphism (10.11)

induces an isomorphism Ũ′
∼→ U′. Combining all of these, the canonical homo-

morphism Γ(U,OU) → Γ(Ũ,OŨ) can be identified with the canonical isomorphism

Γ(U′,OU′)
∼→ Γ(Ũ′,OŨ′), and it follows that (10.14) is an isomorphism, as de-

sired. �

Corollary 10.15. With the setting as above, ~Z[(ΦH,δH,σ)] is canonically isomorphic

to the scheme ~ΞΦH,δH,σ in Lemma 8.20, which is an EΦH,σ-torsor over the scheme
~CΦH,δH proper over ~MZH

H (see Propositions 8.1 and 8.4). Consequently, ~Z[(ΦH,δH,σ)]

is smooth over ~CΦH,δH , and hence it is flat over ~S0 and normal because ~CΦH,δH

is. Moreover, ~Z[(ΦH,δH,σ)] is proper over ~MZH
H if σ is top-dimensional in P+

ΦH
⊂

(SΦH)∨R, in which case σ⊥ = {0} and the torus EΦH,σ is trivial.

Proof. The first assertion follows from Theorem 10.13, because the canonical iso-
morphism (10.3) between formal schemes necessarily induces a canonical isomor-

phism ~ΞΦH,δH,σ
∼→ ~Z[(ΦH,δH,σ)] between the supporting schemes (with their reduced

structures). The remaining assertions are self-explanatory. �

Corollary 10.16. For each j ∈ J, let (~Gj,aux, ~λj,aux,~ij,aux, ~αHj,aux
)→ ~Mtor

H,Σ denote

the pullback of the tautological tuple (Gj,aux, λj,aux, ij,aux, αHj,aux
) over Mtor

Hj,aux,Σj,aux

under the canonical morphism ~Mtor
H,Σ → Mtor

Hj,aux,Σj,aux
induced by (7.8). Consider

any open immersion

(10.17) Spf(R, I)→
(
~Mtor
H,Σ
)∧
~Z[(ΦH,δH,σ)]

,

where R is a noetherian domain which is complete with respect to some ideal I.

Then the preimage of ~MH under the canonical morphism Spec(R)→ ~Mtor
H,Σ induced

by (10.17) is the maximal open subscheme of Spec(R) over which the pullback of
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~Gj,aux is an abelian scheme for at least one (and hence for every) j ∈ J, which
coincides with the preimage of ΞΦH,δH under the canonical morphism Spec(R) →
~ΞΦH,δH(σ) induced by the composition of (10.17) with the inverse of (10.3).

Proof. This is because (10.3) is defined by the universal property of ~Mtor
H,Σ as in

Theorem 7.14, using the Mumford families (8.27), for all j ∈ J; because a fiber
product of semi-abelian schemes is isogenous to an abelian scheme exactly when all
the factors are abelian schemes; and because the Mumford families (8.29) (whose
self-fiber products induce (8.27) by isogeny) are abelian schemes exactly over the

preimage of ~ΞΦH,δH , by the last assertion in Proposition 8.14. �

Corollary 10.18. ~MH⊗
Z
Fp is dense in ~Mtor

H,Σ⊗Z
Fp.

Proof. This follows from Proposition 8.14, Theorem 9.13, Theorem 10.13, and
Corollary 10.16. �

11. Semi-abelian extensions of tautological objects

The main goal of this section is to show that, for each j ∈ J, the degenerating

family of type MHj
over ~MH in Proposition 6.1 further extends to a degenerating

family of the same type over ~Mtor
H,Σ (see Theorem 11.2 below). As a byproduct, we

will also improve Theorem 7.14 (see Theorem 11.4 below), and deduce from this

that, up to canonical isomorphism, the scheme ~Mtor
H,Σ constructed in Section 7 is

independent of the auxiliary choices in Sections 4 and 5 (see Corollary 11.7 below).

Lemma 11.1. Suppose (ΦH, δH, σ), where σ ⊂ P+
ΦH

and σ ∈ ΣΦH , is as in [30,
Def. 6.2.6.1], and suppose [(ΦH, δH, σ)] 6= [(0, 0, {0})]. Let U be any open sub-

scheme of ~Mtor
H,Σ that is a union of strata and contains ~Z[(ΦH,δH,σ)] as a closed

subscheme; and let U ′ be the complement of ~Z[(ΦH,δH,σ)] in U , which necessarily

contains ~Z[(0,0,{0})] = ~MH because [(ΦH, δH, σ)] 6= [(0, 0, {0})] (see Theorem 9.13).

By definition, the formal completion U of U along ~Z[(ΦH,δH,σ)] can be canonically

identified with
(
~Mtor
H,Σ
)∧
~Z[(ΦH,δH,σ)]

. By Theorem 10.13, we have a canonical isomor-

phism ~XΦH,δH,σ
∼→ U given by (10.3). Suppose j ∈ J, and suppose the tautological

object (Aj, λj, ij, αHj
) over MHj

∼= MH (see (2.1)) extends to a degenerating family
(Gj,U ′ , λj,U ′ , ij,U ′ , αHj,U ′) of type MHj over U ′ (see [30, Def. 5.3.2.1]), where αHj,U ′

is only required to be defined over MH. Then this degenerating family further ex-
tends to a degenerating family (Gj,U , λj,U , ij,U , αHj,U ) of type MHj

over U .

Proof. By the construction of (10.3), and by the construction of the morphisms in-
volved in the commutative diagram (10.12), for each affine open subscheme Spec(R)

of U inducing an affine open subscheme Spf(R∧, I) of ~XΦH,δH,σ
∼= U, with canon-

ical morphisms Spec(R∧) → Spec(R) → U , there is a canonical isomorphism over
the preimage of MH in Spec(R∧) between the pullbacks of the tautological object

(Aj, λj, ij, αHj) over MHj
∼= MH and the Mumford family (♥ ~Gj,

♥~λj,
♥~ij,

♥~αHj)

over ~XΦH,δH,σ (see (8.29)). Since ~Mtor
H,Σ is excellent normal, both R and R∧ are

noetherian normal (see [14, IV-2, 7.8.3.1]). By [52, IX, 1.4], [10, Ch. I, Prop.
2.7], or [30, Prop. 3.3.1.5], the above canonical isomorphism uniquely extends to a
canonical isomorphism over the preimage of U ′ in Spec(R∧) between the pullbacks

of (Gj,U ′ , λj,U ′ , ij,U ′ , αHj,U ′) and (♥ ~Gj,
♥~λj,

♥~ij,
♥~αHj

), which induces a canonical
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isomorphism between the pullbacks of the relative ample (IdGj,U′ , λj,U ′)
∗PGj,U′ and

(Id♥ ~Gj
, ♥~λj)

∗P♥ ~Gj
(see [52, XI, 1.13] and [30, Thm. 3.4.3.2, Prop. 3.3.2.2, and

Thm. 3.3.2.3]). Therefore, by the theory of fpqc descent (see [13, VIII, 7.8] and
[40, Thm. 1.1]), the pullback of (Gj,U ′ , λj,U ′ , ij,U ′ , αHj,U ′) to the preimage of U ′ in
Spec(R) extends to a degenerating family of type MHj

over Spec(R), whose pullback

to Spec(R∧) is canonically isomorphic to the pullback of (♥ ~Gj,
♥~λj,

♥~ij,
♥~αHj).

Since such extensions over affine open subschemes of U are unique up to canonical
isomorphism, they are compatible with each other and define a degenerating family
(Gj,U , λj,U , ij,U , αHj,U ) of MHj

over U , as in the statement of the lemma. �

Theorem 11.2. For each j ∈ J, there is a degenerating family (~Gj, ~λj,~ij, ~αHj) of

type MHj
over ~Mtor

H,Σ (see [30, Def. 5.3.2.1]), whose pullback to MH ∼= MHj
(see

(2.1)) is isomorphic to the tautological object (Aj, λj, ij, αHj
) over MHj

, and whose

pullback to ~MH is isomorphic to the degenerating family of type MHj over ~MH

which was denoted ( ~Aj, ~λj,~ij, ~αHj
) in Proposition 6.1. (The notations for ~λj, ~ij,

and ~αHj
have been, unfortunately, overloaded and dependent on the context.) For

each (ΦH, δH, σ), the pullback of (~Gj, ~λj,~ij, ~αHj
) to ~XΦH,δH,σ via (10.3) (see Theorem

10.13) is canonically isomorphic to the Mumford family (8.29).

Proof. Using the incidence relation among the locally closed strata of ~Mtor
H,Σ in

Theorem 9.13, we can write ~Mtor
H,Σ as a finite increasing union U0 ⊂ U1 ⊂ · · · of

open subschemes such that U0 = ~MH and such that, for each i ≥ 0, the complement

of Ui in Ui+1 is some stratum ~Z[(ΦH,δH,σ)] closed in Ui+1. Then the theorem follows
by repeatedly applying Lemma 11.1, with (U,U ′) = (Ui+1, Ui) for (finitely many)
increasing i ≥ 0. �

Remark 11.3. The usual approximation and gluing arguments in [10, Ch. VI] and
[30, Sec. 6.3] play no role in the proofs of Lemma 11.1 and Theorem 11.2. This is

because we constructed the base scheme ~Mtor
H,Σ by taking normalizations in certain

auxiliary models of proper smooth toroidal compactifications, and the approxima-
tion and gluing arguments are already used in the construction of such auxiliary
models. On the contrary, since the approximation and gluing arguments require
the extended Kodaira–Spencer morphisms to be defined, it is not even clear how
they should work for the generally very singular local charts constructed in Section
8.

Theorem 11.4 (cf. [30, Thm. 6.4.1.1(6)] and Theorem 7.14). With the setting

as in Theorem 7.14, let S be an irreducible noetherian normal scheme over ~S0 =
Spec(OF0,(p)), with generic point η, which is equipped with a morphism

(11.5) η → MH.

Let (Aη, λη, iη, αH,η) denote the pullback of the tautological object of MH to η under

(7.15). Suppose that, for each j ∈ J, we have a degenerating family (G†j , λ
†
j , i
†
j , α
†
Hj

)

of type MHj
over S, whose pullback (Gj,η, λj,η, ij,η, αHj,η) to η defines a morphism

(11.6) η → MHj

by the universal property of MHj
, which we assume to coincide with the composition

of (11.5) with (2.1). Then (11.5) (necessarily uniquely) extends to a morphism
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S → ~Mtor
H,Σ (over ~S0) if and only if the same condition in the second last paragraph

of Theorem 7.14 is satisfied at each geometric point s̄ of S.

Proof. For each j ∈ J, by the same construction as in the proof of Proposition 5.24,

the degenerating family (G†j , λ
†
j , i
†
j , α
†
Hj

) of type MHj over S induces a degenerating

family (G†j,aux, λ
†
j,aux, i

†
j,aux, α

†
Hj,aux

) of type MHj,aux
over S, which is determined up

to unique isomorphism by its restriction to η, by the noetherian normality of S and
by [52, IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5]. Hence this theorem
follows from Theorems 7.14 and 11.2. �

Corollary 11.7. Up to canonical isomorphism, the scheme ~Mtor
H,Σ constructed in

Section 7 depends only on the choices of the linear algebraic data in Section 2, but
not on the auxiliary choices in Sections 4 and 5.

Proof. This is because the improved universal property of ~Mtor
H,Σ in Theorem 11.4

does not involve the auxiliary choices in Sections 4 and 5 at all. �

Corollary 11.8. In Lemma 9.8, if Σ is already smooth (and satisfies [30, Cond.
6.3.3.2]) as in [30, Def. 6.3.3.4], and if we take Σ′ = Σ there, then the canonical
morphism (9.9) is an isomorphism, identifying the subschemes Z[(ΦH,δH,σ)] on both
sides, so that the stratification of Mtor

H,Σ there coincides with the one in [30, Thm.

6.4.1.1(2)]. (This finally justifies the notation of Mtor
H,Σ and Z[(ΦH,δH,σ)] there.)

Proof. This is because, by Lemma 3.21, the universal properties of Mtor
H,Σ′ and Mtor

H,Σ
in [30, Thm. 6.4.1.1(6)] and Theorem 11.4, respectively, imply each other. �

Corollary 11.9 (generalization of Corollary 10.18). If [(Φ′H, δ
′
H, σ

′)] is a face of

[(ΦH, δH, σ)] (see [30, Def. 6.3.2.14 and Thm. 6.4.1.1(2)]), in which case ~Z[(ΦH,δH,σ)]

is contained in the closure of ~Z[(Φ′H,δ
′
H,σ

′)] in ~Mtor
H,Σ, then ~Z[(ΦH,δH,σ)]⊗

Z
Fp is also

contained in the closure of ~Z[(Φ′H,δ
′
H,σ

′)]⊗
Z
Fp in ~Mtor

H,Σ⊗Z
Fp.

Proof. Suppose s is a point of ~Z[(ΦH,δH,σ)]⊗
Z
Fp. By Corollary 10.15, s can be iden-

tified with a point t of ~ΞΦH,δH,σ ⊗Z
Fp, where (ΦH, δH, σ) is some representative of

[(ΦH, δH, σ)]. Let (Φ′H, δ
′
H, σ

′) be a representative of [(Φ′H, δ
′
H, σ

′)]. By assumption,
there is a surjection from (Φ′H, δ

′
H) to (ΦH, δH) such that the induced morphism

PΦH′ → PΦH maps σ′ to a face τ of σ. Let Spf(R, I) be an affine open subscheme of
~XΦH,δH,σ whose underlying topological space contains t. Let t′ be any point in the

preimage of ~ΞΦH,δH,τ ⊗Z
Fp under the canonical morphism Spec(R) → ~ΞΦH,δH(σ)

such that t is contained in the closure of t′. By considering the pullback of the
Mumford family to the localization of Spec(R) at t′, by the theory of two-step de-
generations (see [10, Ch. III, Sec. 10] and [30, Sec. 4.5.6]), by the defining property

of ~Z[(Φ′H,δ
′
H,σ

′)] as in Definition 9.1, and by the universal property of ~Mtor
H,Σ as in

Theorems 7.14 and 11.4, the canonical morphism Spec(R) → ~Mtor
H,Σ maps t′ to a

point s′ of ~Z[(Φ′H,δ
′
H,σ

′)]⊗
Z
Fp, so that s is contained in the closure of s′. Since s

is arbitrary, ~Z[(ΦH,δH,σ)]⊗
Z
Fp is contained in the closure of ~Z[(Φ′H,δ

′
H,σ

′)]⊗
Z
Fp, as

desired. �
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12. Stratifications of minimal compactifications

The main goal of this section is to show that analogues of [30, Thm. 7.2.4.1 (4)

and (5)] are true for ~Mmin
H (see Theorems 12.1 and 12.16 below).

Theorem 12.1 (cf. [30, Thm. 7.2.4.1 (4) and (5)]). With the setting as above,

the locally closed subschemes ~Z[(ΦH,δH)] of ~Mmin
H (see (6.8); cf. Lemma 6.9 and

Remark 6.10), with [(ΦH, δH)] running through a complete set of cusp labels, form
a stratification

~Mmin
H =

∐
[(ΦH,δH)]

~Z[(ΦH,δH)]

of ~Mmin
H , such that the [(Φ′H, δ

′
H)]-stratum ~Z[(Φ′H,δ

′
H)] lies in the closure of the

[(ΦH, δH)]-stratum ~Z[(ΦH,δH)] if and only if there is a surjection from the cusp
label [(Φ′H, δ

′
H)] to the cusp label [(ΦH, δH)] as in [30, Def. 5.4.2.13]. (The notation

“
∐

” only means a set-theoretic disjoint union. The algebro-geometric structure is

still that of ~Mmin
H .) The open dense subscheme ~MH of ~Mmin

H (see Proposition 6.4)

coincides with the [(0, 0)]-stratum ~Z[(0,0)].
For each representative (ZH,ΦH, δH) of cusp label and for each σ ∈ ΣΦH such

that σ ⊂ P+
ΦH

, the restriction of (7.12) to the [(ΦH, δH, σ)]-stratum ~Z[(ΦH,δH,σ)] of
~Mtor
H,Σ as in Theorem 9.13 induces a canonical surjection

(12.2) ~Z[(ΦH,δH,σ)] � ~Z[(ΦH,δH)].

Proof. The morphism (7.12) is proper and surjective because ~Mtor
H,Σ is proper over

~S0, and because the restriction of (7.12) induces the identity morphism on ~MH. By
Lemma 9.8, for any smooth refinement Σ′ of Σ, and for each (ZH,ΦH, δH) and σ as

in the statement of the proposition, Z[(ΦH,δH,σ)] = ~Z[(ΦH,δH,σ)]⊗
Z
Q is the union of

the images of the strata Z[(ΦH,δH,τ)] under (9.9), with τ running through the cones
in Σ′ΦH that are contained in σ.

Let ωMtor
H,Σ

denote the pullback of ωMmin
H

. By Propositions 6.4 and 7.11, ω⊗ aJ

Mtor
H,Σ

is canonically isomorphic to the pullback of ω~Mtor
H,Σ,J

, where aJ =
∑
j∈J

aj is as in

Proposition 6.1. Moreover, since (9.9) is defined by the universal property of Mtor
H,Σ

(by Proposition 5.24 and Theorem 7.14), the invertible sheaf ω⊗ aJ

Mtor
H,Σ′

over Mtor
H,Σ′

is canonically isomorphic to the pullback of ω⊗ aJ

Mtor
H,Σ

. For the sake of clarity, let

us denote by
∮
H,Σ : Mtor

H,Σ → Mmin
H the morphism induced by (7.12), and denote

by
∮
H,Σ′ : Mtor

H,Σ′ → Mmin
H the morphism (for Mtor

H,Σ′) in [30, Thm. 7.2.4.1(3)].

Then it follows from Proposition 7.11 and from [30, Thm. 7.2.4.1(3)] that
∮
H,Σ′

coincides with the composition of (9.9) with
∮
H,Σ. Since the restriction of

∮
H,Σ′

induces a surjective morphism from each Z[(ΦH,δH,τ)] as in the first paragraph to the

stratum Z[(ΦH,δH)] of Mmin
H (see [30, Thm. 7.2.4.1(5)]), it follows that

∮
H,Σ induces

a surjective morphism from Z[(ΦH,δH,σ)] to Z[(ΦH,δH)].

Since Z[(ΦH,δH,σ)] = ~Z[(ΦH,δH,σ)]⊗
Z
Q is dense in ~Z[(ΦH,δH,σ)] by Lemma 9.11, and

since (7.12) is proper and surjective, it follows from the above (with ~Z[(ΦH,δH,σ)]

running through all strata of ~Mtor
H,Σ) that Z[(ΦH,δH)] is isomorphic to ~Z[(ΦH,δH)]⊗

Z
Q
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and is dense in ~Z[(ΦH,δH)], that ~Mmin
H is the union of ~Z[(ΦH,δH)] with [(ΦH, δH)]

running through all cusp labels of MH, and that this union defines a stratification

of ~Mmin
H . (Then the incidence relations as in the statement of the proposition are

forced by those of the stratification of Mmin
H as in [30, Thm. 7.2.4.1(4)].)

By combining all of these, the last paragraph of the theorem also follows. �

Remark 12.3. Theorem 12.1 is rather incomplete compared with [30, Thm. 7.2.4.1
(4) and (5)]. It will be complemented by Theorem 12.16 below.

Nevertheless, there are already several useful consequences of Theorem 12.1.

Corollary 12.4 (cf. Corollary 11.9). If there is a surjection from [(ΦH, δH)] to

[(Φ′H, δ
′
H)] (see [30, Def. 5.4.2.13 and Thm. 7.2.4.1(4)]), in which case ~Z[(ΦH,δH)] is

contained in the closure of ~Z[(Φ′H,δ
′
H)] in ~Mmin

H , then ~Z[(ΦH,δH)]⊗
Z
Fp is also contained

in the closure of ~Z[(Φ′H,δ
′
H)]⊗

Z
Fp in ~Mmin

H ⊗
Z
Fp.

Proof. This follows from Corollary 11.9 and Theorem 12.1. �

Corollary 12.5. ~MH⊗
Z
Fp is dense in ~Mmin

H ⊗
Z
Fp.

Proof. This is a special case of Corollary 12.4. One can also deduce this more
directly from Corollary 10.18 and Theorem 12.1. �

Remark 12.6. Corollary 12.5 can also be proved by constructing elevators as in [27],
which can be viewed as a minimalistic analogue of the boundary charts constructed
in Section 8. See the proof of [31, Prop. 2.2.1.7] for the special case where J = {j0}
and (gj0 , Lj0 , 〈 · , · 〉j0) = (1, L, 〈 · , · 〉) are as in Example 2.3.

Corollary 12.7. Up to canonical isomorphism, the scheme ~Mmin
H constructed in

Proposition 6.4 depends only on the choices of the linear algebraic data in Section
2, but not on the auxiliary choices in Sections 4 and 5.

Proof. By Proposition 6.4 and Corollary 12.5, ~Mmin
H is flat over Z(p) and is noether-

ian normal, and the complement of ~MH ∪Mmin
H in ~Mmin

H is of codimension at least
two. Hence the canonical restriction morphism

(12.8) Γ(~Mmin
H , ω⊗ k~Mmin

H ,J
)→ Γ(~MH ∪Mmin

H , ω⊗ k~Mmin
H ,J
|~MH ∪Mmin

H
)

is an isomorphism for each k ≥ 0. By Propositions 6.1 and 6.4, the right-hand side
of (12.8) depends only on the choices of linear algebraic data in Section 2. Since
~Mmin
H
∼= Proj

(
⊕
k≥0

Γ(~Mmin
H , ω⊗ k~Mmin

H ,J
)
)

by Proposition 6.4, the corollary follows. �

By Proposition 7.11, ω~Mtor
H,Σ,J

is canonically isomorphic to the pullback of

�
j∈J

ω
⊗ aj,0

Mtor
Hj,aux,Σj,aux

under (7.8). By [52, IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop.

3.3.1.5], for each j ∈ J, the degenerating family (~Gj, ~λj,~ij, ~αHj) in Theorem 11.2
induces (up to canonical isomorphism) the pullback of the tautological tuple

(Gj,aux, λj,aux, ij,aux, αHj,aux) over Mtor
Hj,aux,Σj,aux

to ~Mtor
H,Σ, because it is so over MH.

Hence, by the same argument as in the proof of Lemma 5.30, based on [39, IX,
2.4, and its proof], we have

ω~Mtor
H,Σ,J

∼= ⊗
j∈J

ω
⊗ aj

~Gj/~Mtor
H,Σ

,
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where

ω~Gj/~Mtor
H,Σ

:= ∧top Lie∨~Gj/~Mtor
H,Σ

for each j ∈ J. Thus, if we set

~GJ :=
∏
j∈J

~G
× aj

j ,

where the products are fiber products over ~Mtor
H,Σ, then we have

ω~Mtor
H,Σ,J

∼= ∧top Lie∨~GJ/~Mtor
H,Σ

.

Lemma 12.9. The fibers of (7.12) are all geometrically connected. The isomor-

phism class of the abelian part of ~GJ is constant on each geometric fiber of (7.12).

Proof. The first assertion is because ω~Mtor
H,Σ,J

is the pullback of the ample invertible

sheaf ω~Mmin
H ,J (see Propositions 6.4 and 7.11), so that (7.12) is its own Stein factor-

ization (see [14, III-1, 4.3.3 and 4.3.4]), by the normality of ~Mmin
H and by Zariski’s

main theorem (see [14, III-1, 4.4.3, 4.4.11]). The second assertion then follows from
[30, Prop. 7.2.1.2], by the same arguments as in the beginning of [30, Sec. 7.2.3]. �

In the remainder of this section, our goal is to prove Theorem 12.16, which
complements Theorem 12.1 and gives a more precise description of the strata.

For each (ΦH, δH, σ) (as in [30, Def. 6.2.6.1]) such that σ ⊂ P+
ΦH

and σ ∈ ΣΦH ∈
Σ, let ♥ωJ denote the pullback of ω~Mtor

H,Σ,J
under (8.33). Let

~BJ :=
∏
j∈J

~B
× aj

j ,

where the products are fiber products over ~MZH
H . Consider the invertible sheaf

♥ω\J :=
(
⊗
j∈J

(
∧top
Z Xj

)⊗ aj
)
⊗
Z

(
∧top Lie∨~BJ/~Mtor

H,Σ

)
over ~MZH

H . By the same argument as in the proof of [30, Lem. 7.1.2.1], ♥ωJ is

canonically isomorphic to the pullback of ♥ω\J. By considering the Fourier–Jacobi
expansions and by the same arguments as in [30, Sec. 7.1.2], we obtain the following:

Proposition 12.10 (cf. [30, Prop. 7.1.2.13]). For each k ≥ 0, and for each

f ∈ Γ(~Mtor
H,Σ, ω

⊗ k
~Mtor
H,Σ,J

), the pullback of f to the [(ΦH, δH, σ)]-stratum ~Z[(ΦH,δH,σ)]

of ~Mtor
H,Σ is constant along the fibers of the structural morphism

(12.11) ~Z[(ΦH,δH,σ)]
∼= ~ΞΦH,δH,σ → ~MZH

H

(see Corollary 10.15 for the first isomorphism).

Corollary 12.12 (cf. [30, Cor. 7.2.3.12]). The morphism (12.2) factors through
(12.11) and induces a canonical surjection

(12.13) ~MZH
H � ~Z[(ΦH,δH)].

This surjection is finite and induces a canonical isomorphism from ~MZH
H to the

normalization of ~Z[(ΦH,δH)].
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Proof. The first assertion follows from Proposition 12.10. Since the isomorphism

class of the abelian part of ~GJ is constant on each geometric fiber of (7.12) (see
Lemma 12.9), it follows from the finiteness of (7.6) that the induced morphism

(12.13) is quasi-finite. Since (12.13) induces the canonical isomorphism MZH
H

∼→
Z[(ΦH,δH)] in characteristic zero (see [30, Cor. 7.2.3.18]), the second assertion follows
from Zariski’s main theorem (see [14, III-1, 4.4.3, 4.4.11]). �

Proposition 12.14 (cf. [30, Prop. 7.2.3.16]). Let x̄ be a geometric point of ~Mmin
H

over the [(ΦH, δH)]-stratum Z[(ΦH,δH)]. Let (~Mmin
H )∧x̄ denote the completion of the

strict localization of ~Mmin
H at x̄, let

(~Z[(ΦH,δH)])
∧
x̄ := ~Z[(ΦH,δH)] ×

~Mmin
H

(~Mmin
H )∧x̄ ,

and let
(~MZH
H )∧x̄ := ~MZH

H ×
~Z[(ΦH,δH)]

(~Z[(ΦH,δH)])
∧
x̄ .

For each ` ∈ SΦH , let ( ~FJ
(`)

ΦH,δH
)∧x̄ denote the pullback of

~FJ
(`)

ΦH,δH
:= (~CΦH,δH → ~MZH

H )∗(~ΨΦH,δH(`))

under the canonical morphism (~MZH
H )∧x̄ → ~MZH

H . Then we have a canonical isomor-
phism

(12.15) O(~Mmin
H )∧x̄

∼=
( ∏
`∈P∨ΦH

( ~FJ
(`)

ΦH,δH
)∧x̄

)ΓΦH
,

where
P∨ΦH := {` ∈ SΦH : 〈`, y〉 ≥ 0 ∀y ∈ PΦH}

as usual, which is adic if we interpret the product on the right-hand side as the
completion of the elements that are finite sums with respect to the ideal generated

by the elements without constant terms (i.e., with trivial projection to ( ~FJ
(0)

ΦH,δH
)∧x̄ ).

Then (12.15) induces a homomorphism(
( ~FJ

(0)

ΦH,δH
)∧x̄
)ΓΦH → O(~Mmin

H )∧x̄
,

whose source is canonically isomorphic to O
(~M

ZH
H )∧x̄

(by Corollary 12.12 and Zariski’s

main theorem; see [14, III-1, 4.4.3, 4.4.11]). This defines a structural morphism

(~Mmin
H )∧x̄ → (~MZH

H )∧x̄ ,

whose pre-composition with the canonical morphism (~Z[(ΦH,δH)])
∧
x̄ → (~Mmin

H )∧x̄ de-
fines a canonical morphism

(~Z[(ΦH,δH)])
∧
x̄ → (~MZH

H )∧x̄ ,

which is an isomorphism because its pre-composition with the completion

(~MZH
H )∧x̄ → (~Z[(ΦH,δH)])

∧
x̄

of (12.13) is the identity morphism on (~MZH
H )∧x̄ . So, this last completion of (12.13)

is also an isomorphism.

Proof. The same argument as in the proof of [30, Prop. 7.2.3.16] works here. (We do
not need to know a priori that (12.13) induces a bijection on geometric points.) �
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Theorem 12.16 (cf. [30, Thm. 7.2.4.1 (4) and (5)]; continuation of Theorem

12.1). In the first paragraph of Theorem 12.1, each [(ΦH, δH)]-stratum ~Z[(ΦH,δH)]

is canonically isomorphic to ~MZH
H . In the second paragraph of Theorem 12.1, the

canonical surjection (12.2) can be identified with the composition of the canonical

isomorphism ~Z[(ΦH,δH,σ)]
∼→ ~ΞΦH,δH,σ in Corollary 10.15, the structural morphism

~ΞΦH,δH,σ → ~MZH
H , and the isomorphism ~MZH

H
∼→ ~Z[(ΦH,δH)] mentioned above. In

particular, it is proper if σ is top-dimensional in P+
ΦH
⊂ (SΦH)∨R.

Proof. Since (12.2) is the composition of (12.11) with (12.13), it suffices to show
that (12.13) is an isomorphism. Since this assertion can be verified over formal
completions of strict local rings, it follows from Proposition 12.14. �

13. Functorial properties and Hecke twists

In this section, for the sake of clarity, we shall abusively denote all objects

constructed using {(gj, Lj, 〈 · , · 〉j)}j∈J by an additional subscript J, such as ~MH,J.

Proposition 13.1. Suppose that H ⊂ H′ and J′ ⊂ J, and that the subcollec-
tion {(gj, Lj, 〈 · , · 〉j)}j∈J′ of {(gj, Lj, 〈 · , · 〉j)}j∈J satisfies the analogous conditions
defined by H′ as in Section 2. Then there is a canonical morphism

(13.2) ~MH,J → ~MH′,J′

extending the canonical morphism

(13.3) MH → MH′

Proof. This follows from the proof of Proposition 6.1, because ~MH,J (resp. ~MH′,J′)
is the normalization of

∏
j∈J

Ag,dj
⊗
Z
Z(p) (resp.

∏
j∈J′
Ag,dj

⊗
Z
Z(p)) under the canoni-

cal morphism MH →
∏
j∈J

Ag,dj
⊗
Z
Z(p) (resp. MH′ →

∏
j∈J′
Ag,dj

⊗
Z
Z(p)), and because

MH →
∏
j∈J

Ag,dj
⊗
Z
Z(p) and MH′ →

∏
j∈J′
Ag,dj

⊗
Z
Z(p) are compatible with the canon-

ical morphisms (13.3) and
∏
j∈J

Ag,dj ⊗Z
Z(p) →

∏
j∈J′
Ag,dj ⊗Z

Z(p). �

Proposition 13.4. With the setting as in Proposition 13.1, there is a canonical
morphism

(13.5) ~Mmin
H,J → ~Mmin

H′,J′

extending the canonical morphisms (13.2) and

(13.6) Mmin
H → Mmin

H′ .

Proof. This is because, by Corollary 12.7, we may assume that Hj,aux ⊂ H′j,aux

and that the morphisms Mmin
H →

∏
j∈J

Mmin
Hj,aux

and Mmin
H′ →

∏
j∈J′

Mmin
H′j,aux

used in the

constructions of ~Mmin
H,J and ~Mmin

H′,J′ (see Proposition 6.4) are compatible with the

canonical morphisms (13.6) and
∏
j∈J

Mmin
Hj,aux

→
∏

j∈J′
Mmin
H′j,aux

. �

Proposition 13.7. With the setting as in Proposition 13.1, suppose moreover that
Σ and Σ′ are compatible choices of admissible rational polyhedral cone decomposition
data for MH and MH′ , respectively, which are induced by certain auxiliary collec-
tions {Σj,aux}j∈J and {Σ′j,aux}j∈J′ , as in Section 7, such that Σ is a 1-refinement of
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Σ′ as in [30, Def. 6.4.3.3]. (The definition there naturally generalizes to the case of
nonsmooth cone decompositions.) Then there is a canonical morphism

(13.8) ~Mtor
H,Σ,J → ~Mtor

H′,Σ′,J′

extending the canonical morphisms (13.2) and is compatible with (13.5) under the

canonical morphisms ~
∮
H,J : ~Mtor

H,Σ,J → ~Mmin
H,J and ~

∮
H′,J′ : ~Mtor

H′,Σ′,J′ → ~Mmin
H′,J′ .

Proof. The morphism (13.8) exists because, by Theorem 11.2, ~Mtor
H,Σ,J carries the

collection of degenerating families {(~Gj, ~λj,~ij, ~αHj
)}j∈J, which induces a collection

{(~Gj, ~λj,~ij, ~αH′j)}j∈J′ satisfying the universal property of ~Mtor
H′,Σ′,J′ as in Theorems

7.14 and 11.4. To show that (13.8) is compatible with (13.5), it suffices to note
that, by Corollary 11.7, we may assume that Hj,aux ⊂ H′j,aux and that Σj,aux is a

1-refinement of Σ′j,aux, for each j ∈ J′, so that (13.8) and (13.5), together with the

morphisms ~
∮
H,J and ~∮

H′,J′ , are compatibly induced by the canonical morphisms∏
j∈J

Mtor
Hj,aux,Σj,aux

→
∏

j∈J′
Mtor
H′j,aux,Σ

′
j,aux

and
∏
j∈J

Mmin
Hj,aux

→
∏

j∈J′
Mmin
H′j,aux

. �

Proposition 13.9. Under (13.8), the [(ΦH, δH, σ)]-stratum ~Z[(ΦH,δH,σ)],J of
~Mtor
H,Σ,J is mapped to the [(Φ′H′ , δH′ , σ

′)]-stratum ~Z[(Φ′H′ ,δH′ ,σ
′)],J′ of ~Mtor

H′,Σ′,J′

if and only if there are representatives (ΦH, δH, σ) and (Φ′H′ , δ
′
H′ , σ

′) of the
equivalence classes [(ΦH, δH, σ)] and [(Φ′H′ , δ

′
H′ , σ

′)], respectively, such that
(ΦH, δH, σ) is a 1-refinement of (Φ′H′ , δ

′
H′ , σ

′) as in [30, Def. 6.4.3.1]. Accordingly

(cf. Theorem 12.1), under (13.5), the [(ΦH, δH)]-stratum ~Z[(ΦH,δH)],J of ~Mmin
H,J is

mapped to the [(Φ′H′ , δ
′
H′)]-stratum ~Z[(Φ′H′ ,δ

′
H′ )],J

′ of ~Mmin
H′,J′ if and only if there

are representatives (ΦH, δH) and (Φ′H′ , δ
′
H′) of the cusp labels [(ΦH, δH)] and

[(Φ′H′ , δ
′
H′)], respectively, such that (Φ′H′ , δ

′
H′) is 1-assigned to (ΦH, δH) as in [30,

Def. 5.4.3.9]. Consequently, the morphism (13.2) is projective, because it is the

pullback of the projective morphism (13.5) to the [(0, 0)]-stratum ~Z[(0,0],J′ = ~MH′,J′

of ~Mmin
H′,J′ .

Proof. The statement for the morphism (13.8) follows from the defining property

of the strata in Definition 9.1, by comparing the universal properties of ~Mtor
H,Σ,J

and ~Mtor
H′,Σ′,J′ as in Theorems 7.14 and 11.4. By Theorem 12.1, the statement for

the morphism (13.5) then follows from the one for (13.8). The statement for the
morphism (13.2) is self-explanatory. �

Remark 13.10. Although the morphisms (13.3) and (13.6) in characteristic zero are
always finite, the extended morphisms (13.2) and (13.5) in mixed characteristics
are projective but not finite in general (even when H = H′).

Example 13.11 (simplest case; continuation of Example 2.3). Suppose J = {j0}
and (gj0 , Lj0 , 〈 · , · 〉j0) = (1, L, 〈 · , · 〉) are as in Example 2.3. (We shall suppress
the subscript J for simplicity.) Let Hp be the image of H under the canonical

homomorphism G(Ẑ)→ G(Ẑp) as usual. Consider the naive moduli problem
...
MHp

parameterizing tuples (A, λ, i, αHp) over schemes S over Spec(OF0,(p)), where:

(1) A→ S is an abelian scheme of relative dimension g := 1
2 rkZ(L).

(2) λ : A→ A∨ is a polarization of degree d2 := [L# : L].
(3) i : O ↪→ EndS(A) is an O-endomorphism structure as in [30, Def. 1.3.3.1].
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(4) LieA/S with its O⊗
Z
Z(p)-module structure given by i satisfies the determi-

nantal condition in [30, Def. 1.3.4.1] given by (L⊗
Z
R, 〈 · , · 〉, h0).

(5) αHp is an (integral) level-Hp structure of (A, λ, i) of type (L⊗
Z
Ẑp, 〈 · , · 〉)

as in [30, Def. 1.3.7.6], except that we do not require the degree of λ to be
prime to p. (See [31, Def. 3.3.1.4] for a similar consideration.)

We consider this moduli problem naive, because there is no level structure at p,
and so there is little control on the finite locally free group scheme ker(λ)[p∞]
beyond its rank. Nevertheless, the canonical morphism MH → Ag,d⊗

Z
Z(p) as in

the proof of Proposition 6.1 factors as a composition MH →
...
MHp → Ag,d⊗

Z
Z(p)

of canonical forgetful morphisms, where the second one is schematic and finite by
[30, Prop. 1.3.3.7] (for the endomorphism structures), and by the fact that the
level structures (away from p) are defined by isomorphisms between finite étale

group schemes. Therefore, ~MH is canonically isomorphic to the normalization of...
MHp under the canonical morphism MH →

...
MHp . Moreover, the tautological tuple

( ~A,~λ,~i) over ~MH (see Proposition 6.1) is canonically isomorphic to the pullback of

the tautological tuple (A, λ, i) over
...
MHp under the induced morphism ~MH →

...
MHp .

IfH = HpG(Zp), then the canonical morphism MH →
...
MHp ⊗

Z(p)

Q is open and closed

by the same argument as in the proof of [30, Lem. 1.4.4.2]. In this case, if
...
MHp

is flat over Spec(Z(p)) and normal, or if the schematic closure
...
M

+

Hp of
...
MHp ⊗

Z
Q in

...
MHp is normal, then the induced morphism ~MH →

...
M

+

Hp is also an open and closed

immersion, which implies that ~MH is just the schematic closure of MH in
...
MHp (or

rather
...
M

+

Hp). In this case, we can deduce the local properties of ~MH (in additional

to normality) from those of the local model of
...
M

+

Hp . (For example, see the proofs of

Lemmas 14.6 and 14.7 below.) Then ~Mmin
H and ~Mtor

H,Σ give compactifications of the

largest “relevant” open and closed subscheme of
...
M

+

Hp , enjoying the various good
features we have shown in this article.

Example 13.12 (parahoric levels at p; continuation of Example 2.4). Let us re-
sume the context of Example 2.4. For each 0 ≤ i ≤ m, let Ji := {ji}, and let
Hi := HpGji(Zp). By Propositions 13.1 and 13.9, for each such i, we have a

canonical projective morphism ~MH,J → ~MHi,Ji (which is not finite in general). As

explained in Example 13.11, the target space ~MHi,Ji is canonically isomorphic to

the normalization of some naive moduli problem
...
MHp,Ji under the canonical mor-

phism MHi →
...
MHp,Ji , and the argument there also implies that ~MH,J is canonically

isomorphic to the normalization of
∏

0≤i≤m

...
MHp,Ji under the canonical morphism

MH →
∏

0≤i≤m
MHi →

∏
0≤i≤m

...
MHp,Ji . (We introduce the subscript Ji to emphasize

that its definition uses the lattice Lji .) Therefore, we have canonical finite mor-

phisms ~MH,J →
∏

0≤i≤m
~MHj,Jj

→
∏

0≤i≤m

...
MHp,Ji . Moreover, for each 0 ≤ i ≤ m, the

tautological tuple ( ~Aji ,
~λji ,~iji) over ~MH,Ji (see Proposition 6.1) is canonically iso-

morphic to the pullback of the tautological tuple (Aji , λji , iji) over
...
MHp,Ji under the

induced morphism ~MH,Ji →
...
MHp,Ji , whose further pullback to ~MH,J is canonically
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isomorphic to the tautological tuple ( ~Aji ,
~λji ,~iji) (abusively denoted by the same

symbols) over ~MH,J. On the other hand, by considering (periodic) isogeny chains
of polarized abelian schemes (with compatible additional structures) as in [51, Def.
6.9], we obtain a naive moduli problem

...
MHp,J, which carries (up to periodicity) a

tautological isogeny chain

A = Aj0 → Aj1 → · · · → Ajm → A

(with compatible additional structures) and admits a canonical forgetful morphism...
MHp,J →

...
MHp,Ji , for each 0 ≤ i ≤ m, under which the tautological (Aji , λji , iji)

over
...
MHp,J is canonically isomorphic to the pullback of the tautological (Aji , λji , iji)

over
...
MHp,Ji . Since ~MH,J is noetherian normal, the tautological isogeny chain over

MH (see Example 2.4) canonically extends to an isogeny chain

~A = ~Aj0 → ~Aj1 → · · · → ~Ajm → ~A

(with compatible additional structures) over ~MH,J (see [52, IX, 1.4], [10, Ch.

I, Prop. 2.7], or [30, Prop. 3.3.1.5]), where each ( ~Aji ,
~λji ,~iji) is the tautologi-

cal one over ~MH,J. By the universal property of
...
MHp,J, we obtain a canon-

ical morphism ~MH,J →
...
MHp,J under which the above extended isogeny chain

(with its compatible additional structures) over ~MH,J is canonically isomorphic

to the pullback of the tautological one over
...
MHp,J. Now consider the composition

~MH,J →
...
MHp,J →

∏
0≤i≤m

...
MHp,Ji of the morphisms we have just defined. By def-

inition, the tautological tuple ( ~Aji ,
~λji ,~iji) over ~MH,J is canonically isomorphic to

the pullback of the tautological tuple (Aji , λji , iji) over
...
MHp,Ji under the induced

morphism ~MH,J →
...
MHp,Ji . Hence, the last composition coincides with the earlier

composition ~MH,J →
∏

0≤i≤m
~MHj,Jj

→
∏

0≤i≤m

...
MHp,Ji , which is finite. (It is cru-

cial that the product runs over all indices 0 ≤ i ≤ m.) Consequently, the above

canonical morphism ~MH,J →
...
MHp,J is finite, and so ~MH,J is canonically isomor-

phic to the normalization of
...
MHp,J under the canonical morphism MH →

...
MHp,J.

Moreover, since H = HpHp, where Hp = ∩
0≤i≤m

Gji(Zp), the canonical morphism

MH →
...
MHp,J⊗

Z
Q is open and closed by the same argument as in the proof of [30,

Lem. 1.4.4.2] (cf. Example 13.11). If
...
MHp,J is flat over Spec(Z(p)) and normal (see,

for example, [12, Thm. 2.1] and [33, Lem. 4.1.18]), or if the schematic closure
...
M

+

Hp,J
of

...
MHp,J⊗

Z
Q in

...
MHp,J is normal (see, for example, [45, Thm. B], [46, Thm. 12.2],

and [48, Thm. 1.1 and 1.2]), then the induced morphism ~MH,J →
...
M

+

Hp,J is also an
open and closed immersion. In particular, we can deduce the local properties of
~MH,J (in additional to normality) from those of the local model of

...
M

+

Hp,J. There-

fore, ~Mmin
H,J and ~Mtor

H,Σ,J give compactifications of the largest “relevant” open and

closed subscheme of
...
M

+

Hp,J (cf. Example 13.11).

Lemma 13.13. Given any collection {(gj, Lj, 〈 · , · 〉j)}j∈J satisfying the conditions

imposed by an open compact subgroup H ⊂ G(Ẑ) as in Section 2, suppose

g ∈ G(A∞) satisfies g−1Hg ⊂ G(Ẑ). Let us formally set J′ := J, so that
{(g−1gj, Lj, 〈 · , · 〉j}j∈J′ is a collection with respect to g−1Hg as in Section 2. Then
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we have a canonical isomorphism ~MH,J
∼→ ~Mg−1Hg,J′ extending the canonical

isomorphism MH
∼→ Mg−1Hg realized by sending objects parameterized by MH

to their Hecke twists by g (see [30, Sec. 6.4.3]; cf. [30, Prop. 1.4.3.4 and Rem.
1.4.3.11]).

Proof. This is because both ~MH,J and ~Mg−1Hg,J′ are constructed by normalization
using the same collection of auxiliary models MHj,aux

for MHj
, for j ∈ J = J′. �

Example 13.14 (Hecke twists; continuation of Example 2.5). First let us sup-
pose J = {j0, j1} has two elements, with (gj0 , Lj0 , 〈 · , · 〉j0) = (1, L, 〈 · , · 〉) and

(gj1 , Lj1 , 〈 · , · 〉j1) = (g, L, 〈 · , · 〉) for some g ∈ G(Ẑ), as in the first half of Ex-

ample 2.5. Let J0 := {j0} and J1 := {j1}. Suppose H′ ⊂ G(Ẑ) contains both H
and g−1Hg. By Proposition 13.1, we have two canonical morphisms

~MH,J → ~MH,J0

and
~MH,J → ~MH,J1

∼= ~Mg−1Hg,J0

(where the last isomorphism uses Lemma 13.13, since g−1gj1 = 1 = gj0), which
induce two canonical morphisms

~[1], ~[g] : ~MH,J → ~MH′,J0

extending the two finite morphisms

[1] : MH → MH′

and

[g] : MH
∼→ Mg−1Hg → MH′

defining the Hecke correspondence defined by g in characteristic zero. By Propo-

sition 13.9, the two morphisms ~[1] and ~[g] are projective, but they are not finite
in general. (Nevertheless, they are finite when g ∈ G(A∞,p)×G(Zp). See Propo-
sition 13.19 below.) By Propositions 13.4 and 13.7, they extend to two canonical
morphisms

~[1]
min

, ~[g]
min

: ~Mmin
H,J → ~Mmin

H′,J0
,

which lift to two canonical morphisms

~[1]
tor
, ~[g]

tor
: ~Mtor
H,Σ,J → ~Mtor

H′,Σ′,J0
.

(Part of the assertion is that there do exist the compatible choices Σ and Σ′ of cone
decompositions. This is because we can just take Σ to be induced by Σ′ and the
twist of Σ′ by g. Therefore, up to refinements, we always have enough compatible
choices of cone decompositions for defining morphisms extending the Hecke corre-
spondence defined by g in characteristic zero.) More generally, for any collection
{(gεgj, Lj, 〈 · , · 〉j)}(ε,j)∈{0,1}× J′ attached to a collection {(gj, Lj, 〈 · , · 〉j)}j∈J′ as in
the second half of Example 2.5, we also have similar morphisms extending the Hecke
correspondence defined by g in characteristic zero. Given the importance of these
morphisms, let us spell out the precise statements, with some minor modifications
of notation:
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Proposition 13.15. Given any collection {(gj, Lj, 〈 · , · 〉j)}j∈J satisfying the con-

ditions imposed by an open compact subgroup H ⊂ G(Ẑ) as in Section 2, suppose

that H′ ⊂ G(Ẑ) contains both H and g−1Hg, and that g−1
j H′gj stabilizes Lj⊗

Z
Ẑ

for all j ∈ J, so that {(gj, Lj, 〈 · , · 〉j)}j∈J also satisfies the condition imposed by
H′ as in Section 2. Then the collection {(gεgj, Lj, 〈 · , · 〉j)}(ε,j)∈{0,1}× J satisfies the
condition imposed by H as well, and we have two canonical projective morphisms

(13.16) ~[1], ~[g] : ~MH,{0,1}× J → ~MH′,J

extending the two canonical finite morphisms

[1] : MH → MH′

and

[g] : MH
∼→ Mg−1Hg → MH′

defining the Hecke correspondence defined by g in characteristic zero, which extend
to two canonical projective morphisms

(13.17) ~[1]
min

, ~[g]
min

: ~Mmin
H,{0,1}× J → ~Mmin

H′,J.

Given any Σ′ such that ~Mtor
H′,Σ′,J is defined, there also exist some Σ such that ~Mtor

H,Σ,J
is defined, and such that the two canonical projective morphisms (13.16) extend to
two canonical projective morphisms

(13.18) ~[1]
tor
, ~[g]

tor
: ~Mtor
H,Σ,{0,1}× J → ~Mtor

H′,Σ′,J

compatible with the two canonical projective morphisms (13.17).

The morphism ~[1]
tor

(resp. ~[g]
tor

) in (13.18) maps the [(ΦH, δH, σ)]-stratum
~Z[(ΦH,δH,σ)],{0,1}× J of ~Mtor

H,Σ,{0,1}× J to the [(Φ′H′ , δH′ , σ
′)]-stratum ~Z[(Φ′H′ ,δH′ ,σ

′)],J

of ~Mtor
H′,Σ′,J if and only if there are representatives (ΦH, δH, σ) and (Φ′H′ , δ

′
H′ , σ

′)

of the equivalence classes [(ΦH, δH, σ)] and [(Φ′H′ , δ
′
H′ , σ

′)], respectively, such
that (ΦH, δH, σ) is a 1-refinement (resp. g-refinement) of (Φ′H′ , δ

′
H′ , σ

′) as in [30,

Def. 6.4.3.1]. Accordingly (cf. Theorem 12.1), the morphism [1]
min

(resp. [g]
min

)

in (13.17) maps the [(ΦH, δH)]-stratum ~Z[(ΦH,δH)],{0,1}× J of ~Mmin
H,{0,1}× J to the

[(Φ′H′ , δ
′
H′)]-stratum ~Z[(Φ′H′ ,δ

′
H′ )],J

of ~Mmin
H′,J if and only if there are representatives

(ΦH, δH) and (Φ′H′ , δ
′
H′) of the cusp labels [(ΦH, δH)] and [(Φ′H′ , δ

′
H′)], respectively,

such that (Φ′H′ , δ
′
H′) is 1-assigned (resp. g-assigned) to (ΦH, δH) as in [30, Def.

5.4.3.9]. Consequently, the morphism ~[1] (resp. ~[g]) in (13.16) is the pullback of

the projective morphism ~[1]
min

(resp. ~[g]
min

) in (13.17) to the [(0, 0)]-stratum
~Z[(0,0],J = ~MH′,J of ~Mmin

H′,J.

Proof. These follow from Propositions 13.1, 13.4, 13.7, and 13.9, by the same argu-
ments as in Example 13.14 (with (J, J0) there replaced with ({0, 1}× J, J) here). �

Proposition 13.19. In Proposition 13.15, if g ∈ G(A∞,p)×( ∩
j∈J

Gj(Zp)), then the

morphisms in (13.16) and (13.17) are finite.

Proof. Under the morphism ~[1] (resp. ~[g]) in (13.16), the pullback of the tautological

tuple ( ~Aj, ~λj,~ij, ~αHj
) over ~MH′,J is canonically isomorphic to the tautological tuples

( ~A(ε,j), ~λ(ε,j),~i(ε,j), ~αH(ε,j)
) over ~MH,{0,1}× J, where ε = 0 (resp. ε = 1), for each j ∈ J,
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and where the level structures are only required to be defined over the characteristic

zero fibers. Since ~MH,{0,1}× J is noetherian normal, for each j ∈ J, the Q×-isogeny

fj : (Aj, λj, ij, αHj
) = (A(0,j), λ(0,j), i(0,j), αH(0,j)

)→ (A′j, λ
′
j, i
′
j, α
′
g−1Hjg

)

over MH ∼= MHj
= MH(0,j)

realizing the Hecke twists of by g (see Example 2.5)

canonically extends to a Q×-isogeny

~fj : ( ~Aj, ~λj,~ij, ~αHj
) = ( ~A(0,j), ~λ(0,j),~i(0,j), ~αH(0,j)

)

→ ( ~A′j,
~λ′j,~i

′
j, ~α
′
g−1Hjg

) = ( ~A(1,j), ~λ(1,j),~i(1,j), ~αH(1,j)
)

over ~MH,{0,1}× J (see [52, IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop. 3.3.1.5]).

(So far we have not used the assumption on g. In this generality, ~MH,J carries the

degenerating family ( ~Aj, ~λj,~ij, ~αHj) of type MHj extending the tautological tuple
(Aj, λj, ij, αHj) over MH ∼= MHj , for each j ∈ J, but not necessarily any extension
of the Hecke twist (A′j, λ

′
j, i
′
j, α
′
g−1Hjg

).)

For each j ∈ J, under the assumption that g ∈ G(A∞,p)×Gj(Zp), the Q×-isogeny
fj is in fact a Z×(p)-isogeny. Hence, there exists an integer Nj prime to p such that

Njfj is an isogeny prime to p. Let us fix the choice of such an Nj, and consider
Kj := ker(Njfj), which is contained in Aj[N

′
j ] for some integer N ′j prime to p. Since

~MH,J is noetherian normal, the schematic closure ~Kj of Kj in the finite étale group

scheme ~Aj[N
′
j ] is also finite étale, and so the isogeny Njfj : Aj → A′j extends to

an isogeny ~Aj → ~A′j := ~Aj/ ~Kj, whose multiplication by N−1
j defines a Z×(p)-isogeny

~fj : ~Aj → ~A′j extending fj. Moreover, ~A′j is equipped with the additional structures
~λ′j, ~i

′
j, and ~α′g−1Hjg

over ~MH,J (see [52, IX, 1.4], [10, Ch. I, Prop. 2.7], or [30, Prop.

3.3.1.5]), where the level structure ~αg−1Hjg is only required to be defined over the

characteristic zero fiber. By the construction of ~MH,{1}× J, there is a canonical
morphism

s : ~MH,J = ~MH,{0}× J → ~MH,{1}× J

such that the tuple ( ~A′j,
~λ′j,~i

′
j, ~α
′
g−1Hjg

) over ~MH,J is canonically isomorphic to the

pullback of ( ~A(1,j), ~λ(1,j),~i(1,j), ~αH(1,j)
) over ~MH,{1}× J. Since the induced mor-

phism (Id, s) : ~MH,J = ~MH,{0}× J → ~MH,{0}× J× ~MH,{1}× J is trivially finite,
~MH,J is canonically isomorphic to the normalization of ~MH,{0}× J× ~MH,{1}× J un-

der the canonical morphism MH → ~MH,{0}× J× ~MH,{1}× J, and hence the canon-

ical morphism ~MH,{0,1}× J → ~MH,J is an isomorphism. Therefore, the morphism
~[1] : ~MH,{0,1}× J → ~MH′,J in (13.16) is finite, because it is the composition of

the canonical isomorphism ~MH,{0,1}× J → ~MH,J with the canonical finite mor-

phism ~MH,J → ~MH′,J. A similar argument also shows that the morphism ~[g] :
~MH,{0,1}× J → ~MH′,J in (13.16) is finite.

For each j ∈ J, consider the degenerating family (~Gj, ~λj,~ij, ~αHj) over ~Mtor
H,Σ,J (see

Theorem 11.2), which extends the tautological tuple ( ~Aj, ~λj,~ij, ~αHj
) over ~MH,J,

where Σ denotes (temporarily) any compatible collection of cone decompositions
that is a 1-refinement of Σ′. Since g ∈ G(A∞,p)×Gj(Zp), by essentially the same
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argument as above, the Z×(p)-isogeny

~fj : ( ~Aj, ~λj,~ij, ~αj)→ ( ~A′j,
~λ′j,~i

′
j, ~αg−1Hjg)

over ~MH,J extends to a Z×(p)-isogeny

~f tor
j : (~Gj, ~λj,~ij, ~αj)→ (~G′j,

~λ′j,~i
′
j, ~αg−1Hjg)

over ~Mtor
H,Σ,J. By Theorem 11.4, up to replacing Σ with a further refinement, there

exists a canonical morphism

stor : ~Mtor
H,Σ,J = ~Mtor

H,Σ,{0}× J → ~Mtor
H,Σ,{1}× J

(extending the morphism s above) such that the tuple (~G′j,
~λ′j,~i

′
j, ~α
′
g−1Hjg

) over

~Mtor
H,Σ,J is canonically isomorphic to the pullback of the tautological degenerating

family (~G(1,j), ~λ(1,j),~i(1,j), ~αH(1,j)
) over ~Mtor

H,{1}× J. This morphism stor then induces

a canonical morphism

smin : ~Mmin
H,J = ~Mmin

H,{0}× J → ~Mmin
H,{1}× J

(also extending the morphism s above). Hence, by essentially the same normal-

ization argument as before, the canonical morphism ~Mmin
H,{0,1}× J → ~Mmin

H,J is an

isomorphism, and the morphism ~[1]
min

in (13.17) is finite. A similar argument also

shows that the morphism ~[g]
min

: ~Mmin
H,{0,1}× J → ~Mmin

H′,J in (13.17) is finite. �

14. Local properties

Proposition 14.1. Suppose Σ is smooth as in [30, Def. 6.3.3.4]. Then ~MH is

regular if and only if ~Mtor
H,Σ is.

Proof. Suppose σ ∈ ΣΦH and σ ⊂ P+
ΦH

for some representative (ZH,ΦH, δH) of

cusp label. Since ~Mtor
H,Σ and ~ΞΦH,δH(σ) are excellent, by Theorems 9.13 and 10.13,

by Corollary 10.16, and by [14, IV-2, 7.8.3.1], it suffices to show that, if σ is smooth,

then ~ΞΦH,δH(σ) is regular if and only if ~ΞΦH,δH is. By Proposition 8.14, under the

assumption that σ is smooth, ~ΞΦH,δH(σ)→ ~CΦH,δH is smooth and surjective, which
is faithfully flat and has geometrically regular fibers by definition. In this case, by

[35, 21.D], the open subscheme ~ΞΦH,δH of ~ΞΦH,δH(σ) is regular if and only if the

base scheme ~CΦH,δH is, and if and only if the whole scheme ~ΞΦH,δH(σ) is. �

The argument above can be slightly improved and show much more:

Proposition 14.2. Let P be the property of being one of the following: reduced,
geometrically reduced, normal, geometrically normal, Cohen–Macaulay, (R0), geo-
metric (R0), (R1), geometric (R1), and (Si), one property for each i ≥ 0 (see [14,

IV-2, 5.7.2 and 5.8.2]). Then the fiber of ~Mtor
H,Σ → ~S0 = Spec(OF0,(p)) over some

point s of ~S0 satisfies property P if and only if the corresponding fiber of the open

subscheme ~MH → ~S0 over s does. If Σ is smooth as in [30, Def. 6.3.3.4], then P can
also be the property of being one of the following: regular, geometrically regular,
(Ri), and geometrically (Ri), one property for each i ≥ 0.
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Proof. Suppose σ ∈ ΣΦH and σ ⊂ P+
ΦH

for some representative (ZH,ΦH, δH) of

cusp label. Since ~Mtor
H,Σ and ~ΞΦH,δH(σ) are excellent, by Theorems 9.13 and 10.13,

by Corollary 10.16, and by [14, IV-2, 7.8.3.1], it suffices to show that the fiber of
~ΞΦH,δH → ~S0 above s satisfies property P if and only if the corresponding fiber of
~ΞΦH,δH(σ)→ ~S0 above s does. By [35, 21.C, 21.D, and 21.E], since the torus torsor
~ΞΦH,δH → ~CΦH,δH is smooth and surjective, and since ~ΞΦH,δH(σ) → ~CΦH,δH is
flat and has geometrically normal and Cohen–Macaulay fibers by Proposition 8.14,

which is smooth when Σ (or rather σ) is smooth, the fiber of ~ΞΦH,δH → ~S0 above

s satisfies property P if and only if the fiber of ~CΦH,δH → ~S0 above s does, and so

if and only if the fiber of ~ΞΦH,δH(σ)→ ~S0 over s also does, as desired. �

Remark 14.3. By [35, 21.C], since ~MH is noetherian and since ~S0 = Spec(OF0,(p))

is Cohen–Macaulay, the flat morphism ~MH → ~S0 has Cohen–Macaulay fibers if and

only if the scheme ~MH is Cohen–Macaulay.

Corollary 14.4. Suppose that ~MH → ~S0 has geometrically normal fibers. Then

all geometric fibers of ~Mtor
H,Σ → ~S0 have the same number of connected components,

and the same is true for ~MH → ~S0 and ~Mmin
H → ~S0. (The analogous statements are

true if we consider irreducible components instead of connected components.)

Proof. By the analogue of Zariski’s connectedness theorem in [8, Thm. 4.17], the

assertions for ~Mtor
H,Σ follow from Lemma 7.9 and Proposition 14.2. Then the asser-

tions for ~MH follow by Corollary 10.18. The assertions for ~Mmin
H follow from those

for ~Mtor
H,Σ and ~MH, and from Lemma 12.9, and Corollaries 10.18 and 12.5. �

Let us record some examples where ~MH → ~S0 has geometrically normal
and Cohen–Macaulay fibers. For these examples, we shall take J = {j0} and
(gj0 , Lj0 , 〈 · , · 〉j0) = (1, L, 〈 · , · 〉) as in Example 2.3. As a sanity check, let us begin
with the following:

Remark 14.5. Suppose p is a good prime for (O, ?, L, 〈 · , · 〉, h0) as in [30, Def.
1.4.1.1]. Then Zarhin’s trick is not needed because p - [L# : L]. SupposeH = HpHp
with Hp ⊂ G(Ẑp) and Hp = G(Zp). Then the moduli problem

...
MHp in Example

13.11 is no longer naive, and gives the same MHp as in [30, Def. 1.4.1.4]. By [30,

Lem. 1.4.4.2], we have an open and closed immersion ~MH → MHp , and it follows

from the smoothness of MHp → ~S0 that ~MH → ~S0 is also smooth, and hence satisfies
all the properties in Proposition 14.2.

We will need some deep inputs from the theory of local models in the following
nontrivial examples. The following is an important special case considered in, for
example, [19] (the actual assumptions there are more restrictive):

Lemma 14.6. Suppose H = HpHp with Hp ⊂ G(Ẑp) and Hp = G(Zp). Then
~MH → ~S0 has geometrically normal and Cohen–Macaulay fibers if the integral
PEL datum (O, ?, L, 〈 · , · 〉, h0) is defined as follows, and if J = {j0} and
(gj0 , Lj0 , 〈 · , · 〉j0) = (1, L, 〈 · , · 〉) are as in Example 2.3:

(1) O = OF is the maximal order given by the ring of integers in a CM number
field F , with totally real subfield F+ and with the nontrivial involution ?

induced by the complex conjugation, such that every prime of F+ above p
is unramified in F . (But p may still be arbitrarily ramified in F+.)
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(2) L = (Diff−1
O/Z(1))⊕n⊕O⊕n for some integer n ≥ 0.

(3) 〈 · , · 〉 : L×L→ Z(1) is the self-dual pairing defined by the composition of
the trace map TrO/Z : Diff−1

O/Z(1) → Z(1) with the skew-Hermitian pairing

L×L→ Diff−1
O/Z(1) defined by the matrix

(
0 Idn
− Idn 0

)
.

(4) h0 : C→ EndO⊗
Z
R(L⊗

Z
R) is defined by

z = z1 +
√
−1 z2 7→ h0(z) :=

(
z1 Idn −z2((2π

√
−1) ◦ Idn)

z2(Idn ◦(2π
√
−1)−1) z1 Idn

)
,

where 2π
√
−1 : Z ∼→ Z(1) and (2π

√
−1)−1 : Z(1)

∼→ Z stand for the iso-
morphisms defined by the choice of

√
−1 in C, and where the matrix acts

(symbolically) on elements

(
x
y

)
of L⊗

Z
R by left multiplication.

Proof. As explained in Example 13.11, by the construction of ~MH, it admits an
open and closed immersion to the (schematic) closure of the characteristic zero
fiber in a naive moduli problem, as soon as this closure is known to be normal.
Since the base changes of G and (ResOF+/Z GL2n)×Gm from Z to the ring W (F̄p)
of Witt vectors are isomorphic to each other, by the theory of local models (see [51,

pp. 88–95]), it follows from [45, Thm. B] that ~MH is normal and that the fibers of
~MH → ~S0 are geometrically normal and Cohen–Macaulay, as desired. �

Lemma 14.7. Suppose H = HpHp with Hp ⊂ G(Ẑp) and Hp = G(Zp). Then
~MH → ~S0 has geometrically normal and Cohen–Macaulay fibers if the integral
PEL datum (O, ?, L, 〈 · , · 〉, h0) is defined as follows, and if J = {j0} and
(gj0 , Lj0 , 〈 · , · 〉j0) = (1, L, 〈 · , · 〉) are as in Example 2.3:

(1) O = OF is the maximal order given by the ring of integers in a totally real
number field F , with the trivial involution ?.

(2) L, 〈 · , · 〉, and h0 are defined as in Lemma 14.6.

Proof. Since base changes of G and ResOF /Z GSp2n from Z to the ring W (F̄p) of
Witt vectors are isomorphic to each other up to center, by the same argument as
in the proof of Lemma 14.6, and by the theory of local models (see [51, pp. 88–95]),

it follows from [46, Thm. 12.2] that ~MH is normal and that the fibers of ~MH → ~S0

are geometrically normal and Cohen–Macaulay, as desired. �

15. Density of ordinary loci

In this section, we will need some input from [31]. (We will freely cite definitions
and basic results in [31] without repeating them in detail.) We shall assume that
J = {j0} and (gj0 , Lj0 , 〈 · , · 〉j0) = (1, L, 〈 · , · 〉) as in Example 2.3. In this case, the

definitions of ~MH, ~Mmin
H , etc in this article agree with those in [31, in particular

Sec. 2.2.1]. Let (~Mmin
H ⊗

Z
Fp)full-ord and (~MH⊗

Z
Fp)full-ord be defined as in [31, Sec.

6.3.2].

Proposition 15.1. Suppose that there exists a fully symplectic admissible filtra-
tion Z on L⊗

Z
Ẑ with respect to (L, 〈 · , · 〉) such that GrZ−1 = Z−1/Z−2 = {0}; that
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the morphism ~MHpG(Zp) → ~S0 has geometrically normal fibers; and that the al-
gebra O⊗

Z
Q involves no simple factor of type D as in [30, Def. 1.2.1.15]. Then

(~Mmin
H ⊗

Z
Fp)full-ord and (~MH⊗

Z
Fp)full-ord are nonempty and dense in ~Mmin

H ⊗
Z
Fp and

~MH⊗
Z
Fp, respectively.

Proof. Without loss of generality, we may replaceH withHpG(Zp) and assume that
~MH → ~S0 has geometrically normal fibers, because the nonemptiness and density

assertions are preserved under the finite morphism ~MH → ~MHpG(Zp) in this case.
(For the density assertion, see, for example, [35, 5.E, Thm. 5 v)].) Moreover, by

Corollary 12.5, the assertion for (~MH⊗
Z
Fp)full-ord and ~MH⊗

Z
Fp follows form the one

for (~Mmin
H ⊗

Z
Fp)full-ord and ~Mmin

H ⊗
Z
Fp, and so it suffices to prove the latter.

Consider any ~Mtor
H,Σ as in Section 7, and let (~Mtor

H,Σ)full-ord denote the preimage

of (~Mmin
H ⊗

Z
Fp)full-ord under (7.12). By the argument of [31, Sec. 6.3.1 and 6.3.2],

(~Mtor
H,Σ)full-ord is also the locus where the pullback ~Gj0,aux of the tautological semi-

abelian scheme Gj0,aux over Mtor
Hj0,aux,Σj0,aux

is ordinary (see [31, Def. 3.1.1.2]).

Let (ZH,ΦH, δH) be a representative of cusp label such that ZH is the H-orbit
of some Z such that GrZ−1 = {0} as in the statement of the proposition. By The-

orem 10.13, for any σ ∈ ΣΦH such that σ ⊂ P+
ΦH

, since (10.3) is induced by

(8.33) (whose composition with (7.8) is (8.32)), the pullback of ~Gj0,aux to the

[(ΦH, δH, σ)]-stratum ~Z[(ΦH,δH,σ)] of ~Mtor
H,Σ is a split torus with character group

Xj0,aux, which is ordinary by definition. So ~Z[(ΦH,δH,σ)]⊗
Z
Fp ⊂ (~Mtor

H,Σ⊗Z
Fp)full-ord,

and therefore ~Z[(ΦH,δH)]⊗
Z
Fp ⊂ (~Mmin

H ⊗
Z
Fp)full-ord (by Theorem 12.1). (This is

essentially the same argument as in the proof of [31, Cor. 6.3.3.2].) Thus, in

order to show that (~Mmin
H ⊗

Z
Fp)full-ord is dense in ~Mmin

H ⊗
Z
Fp, it suffices to show

that every irreducible component of ~Mmin
H ⊗

Z
F̄p has a nonempty intersection with

~Z[(ΦH,δH)]⊗
Z
F̄p for some (ZH,ΦH, δH) as above. Since ~Z[(ΦH,δH)] is closed in ~Mmin

H

because GrZ−1 = {0} (see Theorem 12.1), by Corollary 14.4, it suffices to show that

each irreducible component of Mmin
H ⊗

Z
C ∼= ~Mmin

H ⊗
Z
C has a nonempty intersection

with Z[(ΦH,δH)]⊗
Z
C ∼= ~Z[(ΦH,δH)]⊗

Z
C for some (ZH,ΦH, δH) as above.

Since O⊗
Z
Q involves no simple factor of type D, and since the condition GrZ−1 =

{0} forces the rank of each Q-simple factor of L to be even, it follows from the
calculation in [26, Sec. 8, p. 400] that the so-called failure of Hasse’s principle does
not occur for MH. Hence every Z such that GrZ−1 = {0} must come from some

filtration V of L⊗
Z
Q as in [31, Lem. 1.2.3.1 and (1.2.3.2)] such that GrV−1 = {0}.

This implies the desired assertion in the previous paragraph by comparison with
the complex analytic construction in [3, Thm. 10.11] and [49, Sec. 6.2], as in [28,
Thm. 5.1.1]. �

Corollary 15.2. Suppose we are in the setting of either of Remark 14.5,
Lemma 14.6, or Lemma 14.7. In the setting of Remark 14.5, we assume
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moreover that p splits completely in the reflex field F0 defined by the integral PEL

datum (O, ?, L, 〈 · , · 〉, h0) as in [30, Def. 1.2.5.4]. Then (~Mmin
H ⊗

Z
Fp)full-ord and

(~MH⊗
Z
Fp)full-ord are nonempty and dense in ~Mmin

H ⊗
Z
Fp and ~MH⊗

Z
Fp, respectively.

Proof. In the setting of either of Remark 14.5, Lemma 14.6, or Lemma 14.7, we have
H = HpG(Zp) for some neat open compact subgroup Hp of G(Ẑp). (Nevertheless,
as explained in the proof of Proposition 15.1, the cases of other levels can be reduced
to this case.) If p is a good prime as in Remark 14.5, then it follows from [60] (as

explained in the beginning of [31, Sec. 6.3.3]) that (~MH⊗
Z
Fp)full-ord is nonempty and

dense in ~MH⊗
Z
Fp, and that (~Mmin

H ⊗
Z
Fp)full-ord is also dense in ~Mmin

H ⊗
Z
Fp, because

~MH⊗
Z
Fp is dense in ~Mmin

H ⊗
Z
Fp by Corollary 12.5. In the setting of either of Lemma

14.6 or Lemma 14.7, the desired assertions follow from Proposition 15.1. �

Remark 15.3. When #J > 1, we do not expect (~MH⊗
Z
Fp)full-ord to be dense in

~MH⊗
Z
Fp in general. See [54] and [20, Cor. 3.11.3 and Sec. 3.12] for examples where

the ordinary loci are nonempty but not dense.

16. Concluding remarks

Let us compare the results obtained in this article with the main results in [30] in
the good reduction case. (We shall not compare our results in this article with those
in works earlier than [30]. See the introduction of [30] for an indirect comparison.)

Remark 16.1. Compared with [30, Thm. 6.4.1.1], which is the main result on in-
tegral models of toroidal compactifications in the good reduction case, the results
obtained in this article achieved the following:

(1) For sufficiently many compatible choices Σ of admissible (possibly non-
smooth) rational polyhedral cone decompositions allowing the consideration
of Hecke actions (in a somewhat subtle sense; see Examples 2.5 and 13.14,

and Proposition 13.15), we can define the toroidal compactifications ~Mtor
H,Σ

of ~MH, which carry a collection of degeneration families ( ~Gj, ~λj,~ij, ~αHj) of
types MHj

, for all j ∈ J, extending the tautological tuples over MHj
∼= MH,

by Theorem 11.2. This generalizes [30, Thm. 6.4.1.1(1)].

(2) The scheme ~Mtor
H,Σ is proper but certainly not smooth in general. By Propo-

sition 14.2, the local property of ~Mtor
H,Σ is as nice as the one of ~MH, in terms

of normality (by construction), geometric normality of fibers, and Cohen–
Macaulayness (or more generally the properties of fibers considered there).

(3) The stratification we obtained in Theorem 9.13 generalizes [30, Thm.

6.4.1.1(2)]. Since the strata are generally not smooth over ~S0, there are
some subtleties that needs to be—and can be—addressed. For example,

by Corollary 10.15, each stratum is flat over ~S0 and normal; by Corollary

10.18, ~MH⊗
Z
Fp is open and dense in ~Mtor

H,Σ⊗Z
Fp.

(4) While we cannot assert that the boundary ~Mtor
H,Σ − ~MH (with its reduced

structure) is a normal crossings divisor as in [30, Thm. 6.4.1.1(3)], the
formal local description along the boundary strata will still be given by



74 KAI-WEN LAN

the analogue of [30, Thm. 6.4.1.1(5)] below. (One can also introduce the
language of log structures, but we have not spelled that out.)

(5) We do not have an analogue of [30, Thm. 6.4.1.1(4)] because the extended
Kodaira–Spencer morphism is generally undefined in our context.

(6) The comparison of formal completions we obtained in Theorem 10.13 gen-
eralizes [30, Thm. 6.4.1.1(5)].

(7) The universal property of ~Mtor
H,Σ we obtained in Theorems 7.14 and 11.4

generalizes [30, Thm. 6.4.1.1(6)].

(8) While the very construction of ~Mtor
H,Σ in Section 7 depends on the auxiliary

choices in Sections 4 and 5, by Corollary 11.7, up to canonical isomorphism,

the resulted ~Mtor
H,Σ is in fact independent of the auxiliary choices.

Remark 16.2. Compared with [30, Thm. 7.2.4.1], which is the main result on in-
tegral models of minimal compactifications in the good reduction case, the results
obtained in this article achieved the following:

(1) Essentially by construction, the scheme ~Mmin
H is projective and flat over

~S0 := Spec(OF0,(p)), and ~Mmin
H contains ~MH as an open dense subscheme.

This generalizes [30, Thm. 7.2.4.1(1)].
(2) Also essentially by construction, some power of the Hodge invertible sheaf

ωMH over MH extends to an ample invertible sheaf ω~Mmin
H ,J over ~Mmin

H . This

generalizes [30, Thm. 7.2.4.1(2)].

(3) The assertion in Proposition 7.11 that ~Mmin
H
∼= Proj

(
⊕
k≥0

Γ(~Mtor
H,Σ, ω

⊗ k
~Mtor
H,Σ,J

)
)

generalizes part of [30, Thm. 7.2.4.1(3)].
(4) The stratification we obtained in Theorems 12.1 and 12.16 generalizes [30,

Thm. 7.2.4.1 (4) and (5)]. By Corollary 12.5 (see also Remark 12.6),
~MH⊗

Z
Fp is open and dense in ~Mmin

H ⊗
Z
Fp.

(5) While the very construction of ~Mmin
H in Proposition 7.11 depends on the

auxiliary choices in Sections 4 and 5, by Corollary 12.7, up to canoni-

cal isomorphism, the resulted ~Mmin
H is in fact independent of the auxiliary

choices.

Thus, perhaps surprisingly, many features of the “good reduction” theory in [30]
extend to the “bad reduction” theory for constructions by normalization, regardless
of the ramification, levels, and polarization degrees involved. (Nevertheless, for this
to be useful, the input from the theory of local models is often crucial, as we have
seen in the examples in Sections 14 and 15. See Remarks 16.4 and 16.5 below.)

Remark 16.3. (This remark was updated after we received the latest revision of
[34] on February 25, 2015.) The same constructions by taking normalizations of
good reduction auxiliary models have been considered in [34] for general Hodge-
type Shimura varieties, and results similar to ours have been obtained under the
additional assumption that the level H is exactly the preimage of

∏
j∈J

Hj,aux under

the homomorphism G(A∞) →
∏
j∈J

Gj,aux(A∞) induced by (4.10), using a rather

different method based on rationality properties of Hodge tensors. Nevertheless,
our methods are closer to those in [10] and [30], and hence are logically simpler
(because the Hodge-type methods in [34] also depend on [10] and [30]). Moreover,
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we allow the level H to be arbitrarily high at p, and we have shown that all the
geometric objects constructed by normalization are independent of the auxiliary
choices. (Such independence seems rather subtle—and perhaps not meaningful—in
general Hodge-type cases.) In these regards, our results are not yet subsumed by
the latest version of [34], and the semi-abelian degenerations parameterized by our
integral models of toroidal compactifications might be useful in certain applications.

Remark 16.4. The toroidal and minimal compactifications constructed in [55] and
[56] are for the Siegel moduli with parahoric levels at p defined by linear algebraic
data that are otherwise split, in which case the naive moduli problems as in Ex-
ample 13.12 are not naive and define good integral models. The constructions rely
crucially on the assertion that the integral models (before compactification) are
normal, which is shown there using results of [44] and [12]. The Siegel moduli with
pro-p-Iwahoric levels at p have also been considered in [57]. Again, the construc-
tions crucially rely on the assertion that the integral models before compactification
are normal, which is shown there using results of [44], [12], and [21]. In fact, these
integral models with Iwahoric and pro-p-Iwahoric levels at p have been shown to
be normal and Cohen–Macaulay. If we use the constructions in this article instead,
then we obtain the same (projective normal) minimal compactifications as in [56]
and [57], and sufficiently many (but not all) normal and Cohen–Macaulay toroidal
compactifications as in [55] and [57], which admit stratifications and formal local
descriptions compatible with those in [10] and [30] in characteristic zero.

Remark 16.5. Local models for moduli problems of abelian schemes with PEL struc-
tures at parahoric levels at p (as in Examples 2.4 and 13.12) have been extensively
studied in the last two decades. (See the survey articles [50], [16], and [47], and
see [62] and [48] for some important recent developments.) In all cases where the
local models are known to be flat and normal, our constructions give toroidal and
minimal compactifications for them, with local properties of the toroidal compact-
ifications such as the normality of geometric fibers and Cohen–Macaulayness (or
more generally the properties of fibers considered in Proposition 14.2) as nice as the
integral models before compactification, and with stratifications and formal local
descriptions compatible with those in [10] and [30] in characteristic zero.

Remark 16.6. It remains unclear what one can really say about substantially higher
levels. The simple-minded but indirect constructions by normalization do produce
reasonably good models for arbitrary levels, as we have shown in this article. But
for many applications one will still need to relate them to some more meaningful
or direct constructions. We do not have a good strategy at this moment.
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