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Abstract

In this thesis, we constructed minimal (Satake-Baily-Borel) compactifi-
cations and smooth toroidal compactifications of integral models of general
PEL-type Shimura varieties (defined as in Kottwitz [76]), with descriptions
of stratifications and local structures on them extending the well-known ones
in the complex analytic theory. This carries out a program initiated by Chai,
Faltings, and some other people more than twenty years ago. The approach
we have taken is to redo the Faltings-Chai theory [42] in full generality, with
as many details as possible, but without any substantial case-by-case study.
The essential new ingredient in our approach is the emphasis on level struc-
tures, leading to a crucial Weil pairing calculation that enables us to avoid
unwanted boundary components in naive constructions.
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Introduction

Here we give a soft introduction to the background and the status of this
work. This is not a summary of the results. To avoid introducing a heavy
load of notations and concepts, we shall not attempt to give any precise
mathematical statement. Please refer to the main body of the work for more
precise information.

Complex Theory

It is classically known, especially since the work of Shimura, that com-
plex abelian varieties with so-called PEL structures (polarizations, endomor-
phisms, and level structures) can be parameterized by unions of arithmetic
quotients of (connected) Hermitian symmetric spaces. Simple examples in-
clude modular curves as quotients of the Poincaré upper-half plane, Hilbert
modular spaces as quotients of products of the Poincaré upper-half plane,
and the Siegel moduli spaces as quotients of Siegel upper-half spaces. (In
this introduction, we shall not try to include the historical details of the
modular or Hilbert modular cases related to only GL2.)

Thanks to Baily and Borel [17], each such arithmetic quotient can be
given an algebro-geometric structure because it can be embedded as a Zariski
open subvariety of a canonically associated complex normal projective va-
riety called the Satake–Baily–Borel or minimal compactification. Thus the
above-mentioned parameter spaces can be viewed as unions of complex quasi-
projective varieties. These parameter spaces are called PEL-type Shimura
varieties. They admit canonical models over number fields, as investigated
by Shimura and many others (see, in particular, [33] and [34]). Since abelian
varieties (with additional structures) make sense over rings of algebraic inte-
gers localized at some precise sets of good primes, we obtain integral models
of these PEL-type Shimura varieties by defining suitable moduli problems

xv



of abelian varieties. Moreover, the precise sets of good primes can be cho-
sen so that the moduli problems are representable by smooth schemes with
nonempty fibers. (See, for example, [80], [117], and [76].)

Although the minimal compactifications mentioned above are normal and
canonical, Igusa [64] and others have discovered that minimal compactifica-
tions are in general highly singular. In [16], Mumford and his coworkers
constructed a large class of (noncanonical) compactifications in the category
of complex algebraic spaces, called toroidal compactifications. Within this
class, there are plenty of nonsingular compactifications, many among them
are projective, hence providing a theory of smooth compactifications for the
PEL-type Shimura varieties over the complex numbers. Based on the work
of many people since Shimura, it is known that both minimal compactifica-
tions and toroidal compactifications admit canonical models over the same
number fields over which the Shimura varieties are defined (see Pink’s thesis
[102], and also [62]).

Integral Theory

In [42], Faltings and Chai studied the theory of degeneration for polarized
abelian varieties over complete adic rings satisfying certain reasonable nor-
mality conditions, and constructed smooth toroidal compactifications of the
integral models of Siegel modular varieties (parameterizing principally po-
larized abelian schemes over base schemes over which the primes dividing
the level are invertible). The key point in their construction is the gluing
process in the étale topology. Such a process is feasible because there exist
local charts over which the sheaves of differentials can be explicitly calcu-
lated and compared. The above-mentioned theory of degeneration and the
theory of toroidal embeddings over arbitrary bases play a major role in the
construction of these local charts.

As a by-product, they obtained the minimal compactifications of the in-
tegral models of Siegel modular varieties using the graded algebra generated
by automorphic forms of various (parallel) weights, extending the ones over
the complex numbers. We would like to remark that, although the local
charts for the minimal compactifications can also be written down explicitly,
the fact that we do not have a good way to compare the local structures
between different local charts makes the gluing process very difficult in prac-
tice. This explains the main difference between the complex analytic and the
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arithmetic geometric stories, and explains why the toroidal compactifications
were constructed before the minimal compactifications in the latter case.

These toroidal and minimal compactifications of the integral models of
the Siegel modular varieties are the prototypes of our arithmetic compactifi-
cations of PEL-type Shimura varieties. It is not surprising that the existence
of such integral models are important for arithmetic applications of Shimura
varieties.

In Larsen’s thesis [81] (see also [82]), he applied the techniques of Faltings
and Chai and constructed arithmetic compactifications of integral models of
Picard modular varieties, namely, Shimura varieties associated to unitary
groups defined by Hermitian pairings of real signature (2, 1) over imaginary
quadratic fields. This is the so-called GU(2, 1)-case. In this case, there is
a unique toroidal compactification for each Shimura variety one considers.
(The same phenomenon occurs whenever each of the Q-simple factors of the
adjoint quotient of the corresponding algebraic group has R-rank no greater
than one.) His compactification theory has been used in the main results of
the Montréal volume [79].

Before moving on, let us mention that there is also the unpublished re-
vision of Fujiwara’s master’s thesis [46] on the arithmetic compactifications
of PEL-type Shimura varieties involving simple components of only types
A and C. The main difference between his work and Faltings–Chai’s is his
ingenious use of rigid-analytic methods in the gluing process. The point is
that his gluing method has the potential to be generalized for nonsmooth
moduli problems. However, as far as we can understand, there are important
steps in his boundary construction (before the gluing step) that are not fully
justified.

What Is New?

In this work, our goal is to carry out the theory of arithmetic compactifica-
tions for smooth integral models of PEL-type Shimura varieties, as defined
in Kottwitz’s paper [76], with no other special restriction on the Hermitian
pairings or the groups involved. Our construction is based on a general-
ization of Faltings and Chai’s in [42]. It is a very close imitation from the
perspective of algebraic geometry. Thus our work can be viewed as a long
student exercise justifying the claims in [42, pp. 95–96 and 137] that their
method works for general PEL-type Shimura varieties.
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However, there do exist some differences coming from linear algebra and
related issues, as long as the readers believe that the theory of modules and
pairings over Z is simpler than the analogous theory over orders in some (not
necessarily commutative) semisimple algebras, and that solving equations
like 0 = 0 is easier than solving any other linear equations (which might not
have solutions) in a (not necessarily torsion-free) noncommutative algebra.
Let us make this more precise.

The main issue is about the level structures. In the work of Faltings and
Chai, the moduli problem for Siegel modular varieties is defined for abelian
schemes with principal polarizations. In particular, they only have to work
with self-dual lattices. Moreover, the additional fact that Q does not have
a nontrivial involution makes the isotropic submodules of the lattice modulo
n always liftable to characteristic zero. With some care, the first assump-
tion alone can be harmless, as in the earlier work of Rapoport [103], and
the second assumption can continue to be assumed in the Hilbert modular
cases. But these convenient assumptions simply do not hold in general. A
symplectic isomorphism between modules modulo n may not lift to a sym-
plectic isomorphism between the original modules. We need the notion of
symplectic-liftability to translate the adelic definition of level structures cor-
rectly into the language of finite étale group schemes. Accordingly, we need
to find the right way to assign degeneration data to level structures, namely
symplectic-liftable isomorphisms between finite étale group schemes.

Thus, the main objective of our approach is to formulate certain liftabil-
ity and pairing conditions on the degeneration data, so that the combination
of these two conditions can predict the existence of level structures of a pre-
scribed type on the generic fiber of the corresponding degenerating families.
This involves a Weil-pairing calculation that we believe has never been men-
tioned in the past literature. After this important step, we have to construct
boundary charts parameterizing the degeneration data we need. We have to
incorporate the additional liftability and pairing conditions that are absent
in the work of Faltings and Chai. We would like to point out that naive
generalizations of their construction, essentially the only one available in the
past literature, lead to unwanted additional components along the boundary.
We can think of these additional components as belonging to some differ-
ent Shimura varieties. The question of avoiding these unwanted components
is certainly another complication. Fortunately, our calculation mentioned
above suggests that there is a rather elementary and algebro-geometric way
to identify and to give meanings to the correct components. Finally, with

xviii



the correct components, the approximating and gluing steps are exactly the
same as in the original work of Faltings and Chai. We shall not pretend that
we have any invention in this respect.

We would like to mention that our own approach (with emphasis on
conditions on the level structures) emerged from our initial attempts on the
case of unitary groups of ranks higher than GU(2, 1). At that time our
more naive and rather ad hoc generalization of the method of Faltings and
Chai could only handle the cases of unitary groups defined over an imaginary
quadratic field of odd discriminant. The cases of even discriminants remained
problematic for a long while. After some trials in vain, we realized that the
essential difficulty is not special for these particular unitary cases. As soon
as we have obtained the right approach for the even discriminant cases, it
seemed clear to us that it could also work for all other PEL-type cases,
without avoiding any particular one. After all, it is important that the
strategy we have thus obtained does not require any previous studies on
special cases.

Note that there are inevitably some inaccuracies in the main results of
[42, Ch. II and III]. As far as we can understand, most of the existing theories
of arithmetic compactifications over an integral base scheme depend logically
on the theory of degeneration for abelian varieties and on Mumford’s con-
struction, both of which have only been sufficiently explained in their full
generality in [42, Ch. II and III]. Hence it seems desirable for us to rework
through these most fundamental machineries, even if such an effort does not
involve any novelty in mathematical ideas. We do not believe that our work
can replace or even become partially comparable with the monumental con-
tributions of Mumford, Faltings, and Chai. We do not think there should
be any reason to cast any doubt on the importance of their works. But at
least we would like to try to make their brilliant ideas more consolidated
after they have appeared for so many years. Alongside with other small
corrections, modifications, or justifications that we have attempted to offer,
we hope that our unoriginal, nonconstructive, and uninspiring effort is not
totally redundant even for cases which might be considered well known. (We
believe it is sensible to justify the existing works before proceeding to more
general cases, anyway.)

At this moment, there are people who are working on also cases of non-
smooth integral models of Shimura varieties. Let us explain why we do not
consider this further generality in our work. The main reason is not about the
theory of degeneration data or the techniques of constructing local boundary
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charts. It is rather about the definition of the Shimura varieties themselves,
and the expectation of the results to have. In some cases, there seem to be
more than one reasonable way of stating them. This certainly does not mean
that it is impossible to compactify a particular nonsmooth integral model.
However, it would probably be more sensible if we know why we compactify
it, and if we know why it should be compactified in a particular way. It is not
easy to provide systematic answers to these questions when the objects we
consider are not smooth. (The best we can hope is probably to answer these
questions for integral models of Shimura varieties that are flat and regular,
as aimed in [104], [100], [101], and sequels to them.) Since we have a much
better understanding of the general smooth cases, we shall be content with
treating only them in this work.

Finally, we would like to mention that we are not working along the lines
of the canonical compactifications constructed by Alexeev and Nakamura [1],
or by Olsson [98], because it is not plausible that one could define general
Hecke actions on their canonical compactifications. Let us explain the reason
as follows. The main component in their compactifications can be related to
the toroidal compactifications constructed using some particular choices of
cone decompositions. However, the collection of such cone decompositions is
not invariant under conjugation by rational elements in the group naturally
arising from the Hecke actions. It is possible that their definition could be
useful for the construction of minimal compactifications (with Hecke actions),
but we believe that the argument will be forced to be indirect. Neverthe-
less, we would like to emphasize that their compactifications are described
by moduli problems allowing deformation-theoretic considerations along the
boundary. Hence their compactifications might be more useful for applica-
tions to algebraic geometry.

Structure of The Exposition

In Chapter 1, we lay down the foundations and give the definition of the
moduli problems we consider. The moduli problems we define parameterize
isomorphism classes of abelian schemes over integral bases with additional
structures of the above-mentioned types, which are equivalent to the mod-
uli problems defining integral models of PEL-type Shimura varieties using
isogeny classes as in [76]. Therefore, as already explained in [76], the com-
plex fibers of these moduli problems contain the (complex) Shimura varieties
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associated to the reductive groups mentioned above.
In Chapter 2, we elaborate on the representability of the moduli problems

defined in Chapter 1. Our treatment is biased towards the prorepresentabil-
ity of local moduli and Artin’s criterion of algebraic stacks. We do not need
geometric invariant theory or the theory of Barsotti–Tate groups. The argu-
ment is very elementary and might be considered outdated by the experts in
this area. (Indeed, it may not be enough for the study of bad reductions.)
Although readers might want to skip this chapter as they might be willing
to believe the representability of moduli problems, there are still some rea-
sons to include this chapter. For example, the Kodaira–Spencer morphisms
of abelian schemes with PEL structures are of fundamental importance in
our argument for the gluing of boundary charts (in Chapter 6), and they are
best understood via the study of deformation theory. Furthermore, the proof
of the formal smoothness of local moduli functors illustrates how the linear
algebraic assumptions are used. Some of the linear algebraic facts are used
again in the construction of boundary components, and it is an interesting
question whether one can propose a satisfactory intuitive explanation of this
coincidence.

In Chapter 3, we explain well-known notions important for the study
of semi-abelian schemes, such as groups of multiplicative type and torsors
under them, biextensions, cubical structures, semi-abelian schemes, Raynaud
extensions, and certain dual objects for the last two notions extending the
notion of dual abelian varieties. Our main references for these are [40], [57],
and in particular [93].

In Chapter 4, we reproduce the theory of degeneration data for polar-
ized abelian varieties, as elaborated in the first three chapters of [42]. In
the main theorems (of Faltings and Chai) that we present, we have made
some modifications to the statements according to our own understanding
of the proofs. Notably, we have provided weakened statements in the main
definitions and theorems, because we do not need their original stronger ver-
sions in [42] for our main result. Examples of this sort include, in particular,
Definitions 4.2.1.1 and 4.5.1.2, Theorems 4.2.1.14 and 4.4.16, and Remarks
4.2.1.2, 4.2.1.16, and 4.5.1.4.

In Chapter 5, we supply a theory of degeneration data for endomorphism
structures, Lie algebra conditions, and level structures, based on the the-
ory of degeneration in Chapter 4. People often claim that the degeneration
theory for general PEL-type structures is just a straightforward consequence
of the functoriality of the merely polarized case. However, the Weil-pairing
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calculation carried out in this chapter may suggest that it is not necessarily
the case. As far as we can see, functoriality does not seem to imply prop-
erties about pairings in an explicit way. There are conceptual details to be
understood beyond simple implications of functoriality. However, we are able
to present in this chapter a theory of degeneration data for abelian varieties
with PEL structures, together with the notion of cusp labels.

In Chapter 6, we explain the algebraic construction of toroidal compacti-
fications. For this purpose we need one more basic tool, namely, the theory of
toroidal embeddings for torsors under groups of multiplicative type. Based
on this theory, we begin the general construction of local charts on which
degeneration data for PEL structures are tautologically associated. The key
ingredient in these constructions is the construction of the tautological PEL
structures, including particularly the level structures. The construction de-
pends heavily on the way we classify the degeneration data and cusp labels
developed in Chapter 5. As explained above, there are complications that
are not seen in special cases such as Faltings and Chai’s work. The next
important step is the description of good formal models, and good algebraic
models approximating them. The correct formulation of necessary properties
and the actual construction of these good algebraic models are the key to
the gluing process in the étale topology. In particular, this includes the com-
parison of local structures using the Kodaira–Spencer morphisms mentioned
above. As a result of gluing, we obtain the arithmetic toroidal compactifi-
cations in the category of algebraic stacks. The chapter is concluded by a
study of Hecke actions on towers of arithmetic toroidal compactifications.

In Chapter 7, we first study the automorphic forms that are defined as
global sections of certain invertible sheaves on the toroidal compactifications.
The local structures of toroidal compactifications lead naturally to the the-
ory of Fourier–Jacobi expansions and the Fourier–Jacobi expansion principle.
As in the case of Siegel modular schemes, we obtain also the algebraic con-
struction of arithmetic minimal compactifications, which are normal schemes
defined over the same integral bases as the moduli problems are. As a by-
product of codimension counting, we obtain Koecher’s principle for arith-
metic automorphic forms (of naive parallel weights). Furthermore, following
the generalization in [25, Ch. IV] and [42, Ch. V, §5] of Tai’s result in [16,
Ch. IV, §2] to Siegel moduli schemes in mixed characteristics, we can show
the projectivity of a large class of arithmetic toroidal compactifications by
realizing them as normalizations of blowups of the corresponding minimal
compactifications. The results in this chapter parallel part of those in [42,
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Ch. V].
For the convenience of the readers, we have included two appendices

containing basic information about algebraic stacks and Artin’s criterion for
them. There is also an index of notations and terminologies at the end of
the document. We hope they will be useful for the readers.

Our overall treatment might seem unreasonably lengthy, and some of
the details might have made the arguments more clumsy than they should
be. Even so, we have tried to provide sufficient information, so that readers
should have no trouble correcting any of the foolish mistakes, or improving
any of the unnecessarily inefficient arguments. It is our belief that it is the
right of the reader, but not the author, to skip details. At least, we hope
that readers will not have to repeat some of the elementary but tedious tasks
we have gone through.

Apology

Due to limitation of time and energy, the proofreading process might not
have achieved a satisfactory status at the time that this work is sent to print,
and there might be non-mathematical or mathematical typos that are very
difficult to correct from the readers’ side. We apologize for this inconvenience
due to our incompetence. Please contact the author whenever there are
unclear or incorrect statements that require justifications or modifications.

Comparison With Submitted Version

The content in this volume is very close to the version submitted to Harvard
University. However, single-siding and double-spacing are not enforced here,
and some changes or corrections made after the submission have been incor-
porated. It is important to keep in mind that numbering of results in this
document may differ from the official submitted version.
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Notation and Conventions

All rings, commutative or not, will have an identity element. All left or right
module structures, or algebra structures, will preserve the identity elements.
Unless the violation is clear from the context, or unless otherwise specified,
every ring homomorphism will send the identity to the identity element.
Unless otherwise specified, all modules will be assumed to be left modules
by default. An exception is ideals in noncommutative rings, in which case
we shall always describe precisely whether it is a left ideal, a right ideal,
or a two-sided ideal. All involutions in this work are anti-automorphisms
of order two. The dual of a left module is naturally equipped with a left
module structure over the opposite ring, and hence over the same ring if the
ring admits an involution (which is an anti-isomorphism from the ring to its
opposite ring).

We shall use the notation Z, Q, R, C, A, A∞, and Ẑ to denote respec-
tively the ring of rational integers, rational numbers, real numbers, complex
numbers, adeles, finite adeles, and integral adeles, without any further ex-
planation.

More generally, for each set 2 of rational primes, which can be either
finite or infinite in cardinality, or even empty, we denote by Z(2) the unique
localization of Z (at the multiplicative subset of Z generated by nonzero
integers prime-to-2) having 2 as its set of nonzero height-one primes, and
denote by Ẑ2 (resp. A∞,2, resp. A2) the integral adeles (resp. finite adeles,
resp. adeles) away from 2. (When 2 is empty, we have Z(2) = Q, A∞,2 =
A∞, and A2 = A.)

We say that an integer m is prime-to-2 if m is not divisible by any prime
number in 2. In this case, we write 2 - m.

These conventions and notation are designed so that results would be
compatible if 2 were literally just a prime number.

The notation [A : B] will mean either the index of B in A as a subgroup

xxv



when we work in the category of lattices, or the degree of A over B when
we work in the category of finite-dimensional algebras over a field. We allow
this ambiguity because there is no interesting overlap of these two usages.

The notation δij, when i and j are indices, means the Kronecker delta,
which is 1 when i = j and 0 when i 6= j, as usual.

In our exposition, schemes will almost always mean quasi-separated
preschemes , unless otherwise specified (see Remark A.2.5 and Lemma
A.2.6). All algebraic stacks that we will encounter are Deligne–Mumford
stacks (cf. [36], [42, Ch. I, §4], [83], and Appendix A).

The notion of relative schemes over a ringed topos can be found in [61],
which, in particular, is necessary when we talk about relative schemes over
formal schemes. We shall generalize this notion tacitly to relative schemes
over formal algebraic stacks.

By a normal scheme we mean a scheme whose local rings are all integral
and integrally closed in its fraction field. A ring R is normal if Spec(R)
is normal. We do not need R to be integral and/or noetherian in such a
statement.

We shall almost always interpret points as functorial points , and hence
fibers as fibers over functorial points. By a geometric point of a point we mean
a morphism from an algebraically closed field to the scheme we consider. We
will often use the relative notion of various scheme-theoretic concepts without
explicitly stating the convention.

We will use the notation Gm, Ga, and µn to denote, respectively, the
multiplicative group, the additive group, and the group scheme kernel of [n] :
Gm → Gm over Spec(Z). Their base change to other base schemes S will
often be denoted by Gm,S, Ga,S, and µn,S, respectively.

For each scheme S and each set X, we denote by XS the sheaf of locally
constant functions over S valued in X. When X carries additional structures
such as being an algebra or a module over some ring, then XS is a sheaf also
carrying such additional structures. (We can also interpret XS as a scheme
over S defined by the disjoint union of copies of S indexed by elements in
X.)

For each scheme S and each OS-algebra (resp. graded OS-algebra) A, we
denote by Spec

OS
(A) (resp. Proj

OS
(A)) the spectrum (resp. homogeneous

spectrum) of A over S. This is often denoted by Spec(A) (resp. Proj(A)),
or by Spec(A) (resp. Proj(A)) as in [59, II, 1.3.1, resp. 3.1.3]. Our underlined
notation is compatible with our other notation Hom, Isom, Pic, etc. for
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sheafified objects.
Throughout the text, there will be relative objects such as sheaves, group

schemes, torsors, extensions, biextensions, cubical structures, etc. These ob-
jects are equipped with their base schemes or algebraic stacks (or their formal
analogues) by definition. Unless otherwise specified, morphisms between ob-
jects with these structures will be given by morphisms respecting the bases,
unless otherwise specified. (We will make this clear when there is room for
ambiguity.) We will be more explicit when the structures are defined or
studied, but will tacitly maintain this convention afterwards.

The typesetting of this work will be sensitive to small differences in nota-
tion. Although no difficult simultaneous comparison between similar symbols
will be required, the differences should not be overlooked when looking for
references. More concretely, we have used all the following fonts: A (normal),
A (Roman), A (boldface), A (blackboard boldface), A (sans serif), A (type-
writer), A (calligraphic), A (Fraktur), and A (Ralph Smith’s formal script).
The tiny difference between A (normal) and A (italic) in width, which does
exist, seems to be extremely difficult to see. So we shall never use both
of them. We distinguish between A and A, where the latter almost always
means the relative version of A (as a sheaf or functor, etc.). We distinguish
between Greek letters in each of the pairs ε and ε, ρ and %, σ and ς, φ and
ϕ, and π and $. The musical symbols [ (flat), \ (natural), and ] (sharp) will
be used following Grothendieck (cf., for example, [57, IX]) and some other
authors. The difference in each of the pairs [ and b, and ] and #, should not
lead to any confusion. The notation ♥ and ♦ are used, respectively, for Mum-
ford families and good formal models, where the convention for the former
follows from [42]. We distinguish between the two star signs ∗ and ?. The two
dagger forms † and ‡ are used as superscripts. The differences between v, ν,
υ, and the dual sign ∨ should not be confusing because they are never used
for similar purposes. The same is true for i, ι, ı, and . Since we will never
need calculus in this work, the symbols ∂,

∫
, and

∮
are used as variants of d

or S.
Finally, unless it comes with “resp.”, the content of each set of parentheses

in text descriptions is not an option, but rather a reminder, a remark, or a
supplement of information.
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Chapter 1

Definition of Moduli Problems

In this chapter, we give the definition of the moduli problems providing
integral models of PEL-type Shimura varieties that we will compactify.

Just to make sure that potential logical problems do not arise in our use
of categories, we assume that a pertinent choice of a universe has been made
(see Section A.1.1 for more details). This is harmless for our study, and we
shall not mention it again in our work.

The main objective in this chapter is to state Definition 1.4.1.4 with
justifications. In order to explain the relation between our definition and
those in the literature, we include also Definition 1.4.2.1 (which, in particular,
agrees with the definition in [76, §5] when specialized to the same bases), and
compare our two definitions. All sections preceding them are preparatory in
nature. Technical results worth noting are Propositions 1.1.2.20, 1.1.5.17,
1.2.2.3, 1.2.3.7, 1.2.3.11, 1.2.5.15, 1.2.5.16, and 1.4.3.4. Theorem 1.4.1.11
(on the representability of our moduli problems in the category of algebraic
stacks) is stated in Section 1.4, but its proof will be carried out in Chapter
2. The representability of our moduli problem as schemes (when the level
is neat) will be deferred until Corollary 7.2.3.10, after we have accomplished
the construction of the minimal compactifications.
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1.1 Preliminaries in Algebra

1.1.1 Lattices and Orders

For the convenience of readers, we shall summarize certain basic definitions
and important properties of lattices over an order in a (possibly noncom-
mutative) finite-dimensional algebra over a Dedekind domain. Our main
reference for this purpose will be [107].

Let us begin with the most general setting. Let R be a (commutative)
noetherian integral domain with fractional field Frac(R).

Definition 1.1.1.1. An R-lattice M is a finitely generated R-module M
with no nonzero R-torsion. Namely, for every nonzero m ∈ M , there is no
nonzero element r ∈ R such that rm = 0.

Note that in this case we have an embedding from M to M ⊗
R

Frac(R).

Definition 1.1.1.2. Let V be any finite-dimensional Frac(R)-vector space.
A full R-lattice M in V is a finitely generated submodule M of V such that
Frac(R) ·M = V . In other words, M contains a Frac(R)-basis of V .

Let A be a (possibly noncommutative) finite-dimensional algebra over
Frac(R).

Definition 1.1.1.3. An R-order O in the Frac(R)-algebra A is a subring of
A having the same identity element as A, such that O is also a full R-lattice
in A.

Here are two familiar examples of orders:

1. If R is a Dedekind domain, and if A = L is a finite separable field
extension of Frac(R), then the integral closureO of R in L is an R-order
in A. In particular, if R = Z, then the rings of algebraic integers
O = OL in L is a Z-order in L.

2. If A = Mn(Frac(R)), then O = Mn(R) is an R-order in A.

Definition 1.1.1.4. A maximal R-order in A is an R-order not properly
contained in another R-order in A.

Proposition 1.1.1.5 ([107, Thm. 8.7]). 1. If the integral closure of R in
A is an R-order, then it is automatically maximal.

2



2. If O is a maximal R-order in A, then Mn(O) is a maximal R-order in
Mn(A) for each integer n ≥ 1. In particular, if R is normal (namely,
integrally closed in Frac(R)), then Mn(R) is a maximal R-order in
Mn(Frac(R)).

Suppose moreover that A is a separable Frac(R)-algebra. By definition,
A is Artinian and semisimple. For simplicity, we shall suppress the modi-
fier reduced from traces and norms when talking about such algebras. By
[107, Thm. 9.26], the assumption that A is a (finite-dimensional) separa-
ble Frac(R)-algebra implies that the (reduced) trace pairing TrA/Frac(R) :
A×A→ Frac(R) is nondegenerate (as pairings on Frac(R)-vector spaces).

An important invariant of an order defined by the trace pairing is the
discriminant.

Definition 1.1.1.6. Let t = [A : Frac(R)]. The discriminant

Disc = DiscO/R

is the ideal of R generated by the set of elements

{DetFrac(R)(TrA/Frac(R)(xixj))1≤i≤t,1≤j≤t : x1, . . . , xt ∈ O}.

Remark 1.1.1.7. If O has a free R-basis e1, . . . , et, then each of the t elements
x1, . . . , xt can be expressed as an R-linear combination of e1, . . . , et. Hence
in this case Disc is generated by a single element

DetFrac(R)(TrA/Frac(R)(eiej))1≤i≤t,1≤j≤t.

Another important invariant is the following definition:

Definition 1.1.1.8. The inverse different

Diff−1 = Diff−1
O/R

of O over R is defined by

Diff−1
O/R := {x ∈ A : TrA/Frac(R)(xy) ⊂ R ∀y ∈ O}.

It is clear from the definition that Diff−1
O/R is a two-sided ideal in A, and

that the formation of inverse differents is compatible with localizations.
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Lemma 1.1.1.9. Suppose O is locally free as an R-module. Then Diff−1 is
locally free as an R-module, and TrA/Frac(R) induces a perfect pairing

TrA/Frac(R) : O×Diff−1 → R.

Moreover, if {ei}1≤i≤t is any R1-basis of O⊗
R
R1 for some localization R1 of

R, then there exists a unique dual R1-basis {fi}1≤i≤t of Diff−1⊗
R
R1 such that

TrA/Frac(R)(eifj) = δij for all 1 ≤ i ≤ t and 1 ≤ j ≤ t.

Proof. We may localize R and assume that O is free over R. Let {ei}1≤i≤t
be any basis of O over R. Then {ei}1≤i≤t is also a basis of A over Frac(R).
By nondegeneracy of the trace pairing TrA/Frac(R) : A×A → Frac(R), there
exists a unique basis {fi}1≤i≤t of A over Frac(R), which is dual to {ei}1≤i≤t
in the sense that TrA/FracR(eifj) = δij for all 1 ≤ i ≤ t and 1 ≤ j ≤ t.
If y =

∑
1≤j≤t

cjfj ∈ A satisfies TrA/Frac(R)(xy) ∈ R for all x ∈ O, then in

particular, cj = TrA/Frac(R)(ejy) ∈ R for all 1 ≤ j ≤ t. Thus {fj}1≤j≤t is
also a basis of Diff−1. This shows the perfectness of the pairing TrA/Frac(R) :
O×Diff−1 → R and the existence of the dual bases, as desired.

Suppose R is a noetherian normal domain, and A is a finite-dimensional
separable Frac(R)-algebra.

Proposition 1.1.1.10 ([107, Cor. 10.4]). Let R be a noetherian normal do-
main, and let A be a finite-dimensional separable Frac(R)-algebra. Then
every R-order in A is contained in a maximal R-order in A. There exists at
least one maximal R-order in A.

For each ideal p of R, we denote by Rp the localization of R at p, and by

R̂p the completion of Rp with respect to its maximal ideal pRp. (The slight
deviation of this convention is that we shall denote by Z(p) the localization
of Z at (p), and by Zp the completion of Z(p).) If R is local, then we denote

simply by R̂ its completion at its maximal ideal.

Definition 1.1.1.11. Let R be a noetherian normal domain, and let p be
a prime ideal of R. We say that an R-order O in A is maximal at p if
O⊗

R
Rp is maximal in A.

Proposition 1.1.1.12 ([107, Thm. 11.1, Cor. 11.2]). Let R be a noetherian
normal domain. An R-order O in A is maximal if and only if O is maximal
at every prime ideal of R, or equivalently at every maximal ideal of R.
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Proposition 1.1.1.13 ([107, Thm. 11.5]). Let R be a local noetherian nor-
mal domain. Suppose R̂ is a noetherian domain. Then an R-order O in A
is maximal if and only if O⊗

R
R̂ is an R̂-maximal order in A ⊗

Frac(R)
Frac(R̂).

Remark 1.1.1.14. The statement and proof of [107, Thm. 11.5] make sense
only when R̂ is a noetherian integral domain.

Corollary 1.1.1.15. Let R be a noetherian normal domain, and let p be a
prime ideal of R. Suppose R̂p is a noetherian domain. Then an R-order O
is maximal at p if and only if O⊗

R
R̂p is maximal in A ⊗

Frac(R)
Frac(R̂p).

Now suppose R is a Dedekind domain. In particular, R is noetherian
and normal, and the completions of R at localizations of its prime ideals are
noetherian domains.

Proposition 1.1.1.16. Let

Diff = DiffO/R := {z ∈ A : zDiff−1
O/R ⊂ O}

be the inverse ideal of Diff−1
O/R. Then this is a two-sided ideal of O, and the

discriminant DiscO/R is related to Diff−1
O/R by

DiscO/R = NormA/Frac(R)(DiffO/R) = [Diff−1
O/R : O]R. (1.1.1.17)

If O is a maximal order, then this is just [107, Thm. 25.2]. The same
proof via localizations works in the case where O is not maximal as well:

Proof of Proposition 1.1.1.16. By replacing R with its localizations, we may
assume that every R-lattice is free over R. Let t = [A : Frac(R)]. Let
{ei}1≤i≤t be any R-basis of O, and let {fi}1≤i≤t be the dual R-basis of Diff−1

given by Lemma 1.1.1.9. Since O ⊂ Diff−1, we may express each ei as
ei =

∑
1≤j≤t

aijfj for some aij ∈ R. By definition,

NormA/Frac(R)(Diff) = [Diff−1 : O]R = (DetFrac(R)(aij)).

On the other hand,

TrA/Frac(R)(eiej) =
∑

1≤k≤t

aik TrA/Frac(R)(fkej) = aij.

Hence Disc = (DetFrac(R)(TrA/Frac(R)(eixj))) = (DetFrac(R)(aij)), verifying
equation (1.1.1.17) as desired.
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Definition 1.1.1.18. We say that the prime ideal p of R is unramified in
O if p - DiscO/R.

Proposition 1.1.1.19 ([107, Thm. 25.3]). Every two maximal R-orders O1

and O2 in A have the same discriminant over R.

Therefore it makes sense to say,

Definition 1.1.1.20. An ideal p of R is unramified in A if it is unramified
in one (and hence every) maximal R-order of A.

For each global field K, we shall denote the rings of integers in K by OK .
This is in conflict with the notation O with no subscripts, but the correct
interpretation should be clear from the context.

Proposition 1.1.1.21. Let R be a Dedekind domain such that Frac(R) is
a global field, let A be a finite-dimensional Frac(R)-algebra with center E,
and let O be an R-order in A. Suppose p is a nonzero prime ideal of R
such that p - DiscO/R. Then,

1. O is maximal at p;

2. O⊗
R
R̂p is isomorphic to a product of matrix algebras containing

OE ⊗
R
R̂p as its center;

3. p is unramified in A and in E.

Proof. If O ⊂ O′ are two orders, then necessarily

O ⊂ O′ ⊂ Diff−1
O′/R ⊂ Diff−1

O/R .

In particular, if p is a prime ideal of R such that p - DiscO/R, then the relation
O⊗

R
Rp = Diff−1

O/R⊗
R
Rp forces O⊗

R
Rp to be maximal. This proves the first

statement.
According to [107, Thm. 10.5], O⊗

R
Rp is a maximal Rp-order if and only

if it is a maximal OE ⊗
R
Rp-order. Then [107, Thm. 25.7] implies that O⊗

R
R̂p

is a product of matrix algebras containing OE ⊗
R
R̂p as its center. This is the

second statement.
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Finally, by taking the matrix with only one element on the diagonal,
we see that O⊗

R
Rp = Diff−1

O/R⊗
R
Rp forces OE ⊗

R
Rp = Diff−1

OE/R⊗R
Rp. That

is, p - DiscO/R forces p - DiscOE/R. Then the third statement follows from
Proposition 1.1.1.19 and Definition 1.1.1.20.

Definition 1.1.1.22. A (left) O-module M is called an O-lattice if it is an
R-lattice. Namely, it is finitely generated and torsion-free as an R-module.

Proposition 1.1.1.23 (see [107, Thm. 21.4 and Cor. 21.5]). Every maxi-
mal order O over a Dedekind domain is hereditary in the sense that all
O-lattices are projective O-modules.

Proposition 1.1.1.24 (see [107, Cor. 21.5 and Thm. 2.44]). Every projective
module over a maximal order is a direct sum of left ideals.

Remark 1.1.1.25. Propositions 1.1.1.23 and 1.1.1.24 imply that, although
O-lattices might not be projective, their localizations or completions become
projective as soon as O itself becomes maximal after localization or comple-
tion.

1.1.2 Determinantal Conditions

Let C be a finite-dimensional separable algebra over a field k. By definition
(such as [107, p. 99]), the center E of C is a commutative finite-dimensional
separable algebra over k. Let K be a (possibly infinite) field extension of k.
Unless otherwise specified, all the homomorphisms below will be k-linear.

Fix a separable closure Ksep of K, and consider the possible k-algebra
homomorphisms τ from E to Ksep. Note that Homk(E,K

sep) has cardinal-
ity [E : k], because E is separable over k. The Gal(Ksep/K)-orbits [τ ] of
such homomorphisms τ : E → Ksep can be classified in the following way:
Consider the equivalence classes of pairs of the form (Kτ , τ), where Kτ is
isomorphic over K to the composite of K and the image of τ in Ksep, and
where τ is the induced homomorphism from E to Kτ . Here Kτ is necessarily
separable over K with degree at most [E : k]. Two such pairs (Kτ1 , τ1) and
(Kτ2 , τ2) are considered equivalent if there is an isomorphism σ : Kτ1

∼→ Kτ2

over K such that τ2 = σ ◦ τ1. We shall denote such an equivalence class
by [τ ] : E → K[τ ]. By abuse of notation, this will also mean an actual
representative τ : E → Kτ , which can be considered as a homomorphism
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τ : E → Ksep as well. Note that

K[τ ]⊗
K
Ksep ∼=

∏
τ ′∈[τ ]

Ksep
τ ′ ,

where each Ksep
τ ′ means a copy of Ksep with τ ′ : E → Ksep in the equivalence

class [τ ].

Lemma 1.1.2.1. We have a decomposition

E⊗
k
K ∼=

∏
[τ ]:E→K[τ ]

E ⊗
E,[τ ]

K[τ ]
∼=

∏
[τ ]:E→K[τ ]

K[τ ]

into a product of separable extensions E[τ ] of K.

Corollary 1.1.2.2. We have a decomposition

C ⊗
k
K ∼= C ⊗

E
(E⊗

k
K) ∼=

∏
[τ ]:E→K

C ⊗
E,[τ ]

K[τ ] (1.1.2.3)

into simple K-algebras.

Let us quote the following weaker form of the Noether–Skolem theorem:

Lemma 1.1.2.4 (see, for example, [63, Lem. 4.3.2]). Let C ′ be a simple
Artinian algebra. Then all simple C ′-modules are isomorphic to each other.

A useful reformulation of Lemma 1.1.2.4 is as follows:

Corollary 1.1.2.5. Let C ′ be a simple Artinian algebra with center E ′. Then
an irreducible representation of C ′ with coefficients in some field K ′ is deter-
mined up to isomorphism by its restriction to E ′.

Applying Corollary 1.1.2.5 to the simple factors of C ⊗
k
K as in Corollary

1.1.2.2, we obtain:

Corollary 1.1.2.6. 1. There is a unique simple C ⊗
k
K-module W[τ ] on

which E acts via the homomorphism [τ ] : E → K[τ ]. The semisimple
algebra C ⊗

k
K acts K-linearly on W[τ ] via its projection to the simple

subalgebra C ⊗
E,[τ ]

K[τ ] given by Corollary 1.1.2.2.
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2. Each finitely generated C ⊗
k
K-module is of the form

M ∼= ⊕
[τ ]:E→K[τ ]

W
⊕m[τ ]

[τ ]

for some integers m[τ ]. When applied to the case M = C ⊗
k
K, this

decomposition agrees with the one given in Corollary 1.1.2.2.

3. The isomorphism class of the C ⊗
k
K-module M is determined by the

set of integers {m[τ ]}[τ ]:E→K[τ ]
.

Definition 1.1.2.7. Let M0 be any finitely generated C ⊗
k
K-module.

The field of definition K0 of M0 is the subfield of Ksep con-
sisting of elements fixed by every σ in Aut(Ksep/k) such that
M0⊗

K
Ksep ∼= (M0⊗

K
Ksep) ⊗

Ksep,σ
Ksep as C ⊗

k
Ksep-modules.

Remark 1.1.2.8. Since M0 is an object defined over K, this K0 must be
contained in K and independent of the choice of Ksep.

Remark 1.1.2.9. Even if we say that the field of definition of a finitely
generated C ⊗

k
K-module M0 is K0, it is not necessarily true that

there exists a C ⊗
k
K0-module M00 such that M00 ⊗

K0

Ksep ∼= M0⊗
K
Ksep

as C ⊗
k
Ksep-modules. This is incompatible with some conventions in

representation theory, and we must point this out for the sake of clarity.

By replacing K with Ksep in Corollary 1.1.2.6, we see that there is a
unique simple C ⊗

k
Ksep-module Wτ for each τ : E → Ksep. Each σ ∈

Aut(Ksep/k) modifies the E-action on Wτ by composition with σ, and hence
we have a canonical isomorphism

Wτ ⊗
Ksep,σ

Ksep ∼= Wσ◦τ

for each τ : E → Ksep. By checking the E-action, we see that there is a
decomposition

W[τ ]⊗
K
Ksep ∼= ⊕

τ ′∈[τ ]
W
⊕ s[τ ]

τ ′ (1.1.2.10)

for some integer s[τ ] ≥ 1. We have s[τ ] = 1 when C ⊗
k
K (or rather the

factor C ⊗
E,[τ ]

K[τ ] in (1.1.2.3)) is a product of matrix algebras. Moreover,
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W[τ ]⊗
K
Ksep ∼= W[σ◦τ ]⊗

K
Ksep as a C ⊗

k
Ksep-module only when [τ ] = [σ ◦ τ ].

As a result, if M is any finitely generated C ⊗
k
K-module with decomposition

M ∼= ⊕
[τ ]:E→K[τ ]

W
⊕m[τ ]

[τ ] as in Corollary 1.1.2.6, then

(M ⊗
K
Ksep) ⊗

Ksep,σ
Ksep ∼= M ⊗

K
Ksep

if and only if
s[τ ]m[τ ] = s[σ◦τ ]m[σ◦τ ]

for all τ . The following corollary is a useful observation:

Corollary 1.1.2.11. The field of definition for Wτ (as a C ⊗
k
Ksep-module)

is contained in τ(E) ⊂ Ksep.

Therefore,

Corollary 1.1.2.12. Let EGal denote the Galois closure EGal of E in
Ksep, namely, the composite field of τ(E) for all possible τ : E → Ksep.
Then the field of definition K0 for each finitely generated C ⊗

k
K-module M0

is contained in the intersection EGal ∩K.

Proof. Homomorphisms E → Ksep are unchanged under the action of
Aut(Ksep/EGal).

It is desirable to have a way to detect whether two C ⊗
k
K-modules are

isomorphic, without having to go through the comparison of the m[τ ]’s. In
characteristic zero, it is classical to use the trace to classify representations:

Lemma 1.1.2.13. Suppose char(k) = 0. Then the maps C → K : x 7→
TrK(x|W[τ ]), for all [τ ] as above, are linearly independent over K.

Proof. It suffices to show this by restricting the maps to E. Then, for all
e ∈ E, we have

TrK(e|W[τ ]) = TrKsep(e|W[τ ]⊗
K
Ksep)

= s[τ ]

∑
τ ′∈[τ ]

TrKsep(e|Wτ ′) = s[τ ]d[τ ]

∑
τ ′∈[τ ]

τ ′(e)
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by (1.1.2.10), where d2
[τ ] is the degree of C ⊗

E,[τ ]
K[τ ] over its center K[τ ]. This

is s[τ ]d[τ ] times a sum of homomorphisms from E to Ksep, which all factor
through a single subfield of E as they are all in the same Gal(Ksep/K)-orbit
of a single homomorphism from E to Ksep. Now, it is a classical lemma of
Dedekind’s that distinct homomorphisms from a first field to a second field
are linearly independent over the second field.

Corollary 1.1.2.14. Suppose char(k) = 0. Then two finitely generated
C ⊗

k
K-modules M1 and M2 are isomorphic if and only if TrK(x|M1) =

TrK(x|M2) for all x ∈ C.

Proof. If M1
∼= M2 as C ⊗

k
K-modules, then clearly the traces are the same.

Conversely, suppose that TrK(x|M1) = TrK(x|M2) for all x ∈ C. In partic-
ular, TrK(e|M1) = TrK(e|M2) for all e ∈ E. For i = 1, 2, let us decompose

Mi
∼= ⊕

[τ ]:E→K[τ ]

W
⊕m[τ ],i

[τ ] as in Corollary 1.1.2.6. By Lemma 1.1.2.13,

TrK(e|M1) =
∑

[τ ]:E→K[τ ]

m[τ ],1 TrK(e|W[τ ])

=
∑

[τ ]:E→K[τ ]

m[τ ],2 TrK(e|W[τ ]) = TrK(e|M2)

for all e ∈ E if and only if m[τ ],1 = m[τ ],2 for all [τ ], or equivalently M1
∼= M2

as C ⊗
k
K-modules.

Remark 1.1.2.15. Note that char(k) = 0 is used in an essential way. In
positive characteristics, we cannot expect the trace comparison to work in
general.

Corollary 1.1.2.16. Suppose char(k) = 0. Then the field of definition K0

of a finitely generated C ⊗
k
K-module M0 is

K0 = k(TrK(x|M0) : x ∈ C) = k(TrK(x|M0) : x ∈ C).

Proof. Let σ be any element in Gal(Ksep/k). We would like to show that
(M0⊗

K
Ksep) ⊗

Ksep,σ
Ksep ⊗

E,[τ ]
K[τ ]
∼= M0⊗

K
Ksep as C ⊗

k
Ksep-modules if and only
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if σ leaves Tr(x|M0) invariant for all x ∈ C. But this follows from Corollary
1.1.2.14 as soon as we observe that

σTrK(x|M0) = σTrKsep(x|M0⊗
K
Ksep)

= TrKsep(x|(M0⊗
K
Ksep) ⊗

Ksep,σ
Ksep)

for all x ∈ C.

To classify finitely generated C ⊗
k
K-modules without the assumption that

char(k) = 0, let us introduce the determinantal conditions used by Kottwitz
in the fundamental paper [76]. To avoid dependence on the choice of basis
elements, we shall give a definition similar to the one in [104, 3.23(a)].

Definition 1.1.2.17. Let L0 be any finitely generated locally free module over
a commutative ring R0, and let L∨0 := HomR0(L0, R0) be the dual module of
L0 over R0. Define

R0[L∨0 ] := ⊕
k≥0

Symk
R0

(L∨0 ),

and consider the associated vector bundle

VL0 := Spec(R0[L∨0 ])

over Spec(R). Then, for every R0-algebra R, we have canonical isomor-
phisms

VL0(R) ∼= HomSpec(R0)(Spec(R),VL0) ∼= HomR0-alg.(R0[L∨0 ], R)

= HomR0-alg.( ⊕
k≥0

Symk
R0

(L∨0 ), R) ∼= HomR0-mod.(L
∨
0 , R) ∼= L0 ⊗

R0

R.

In other words, VL0 represents the functor that assigns to each R0-algebra R
the locally free R-module L0 ⊗

R0

R.

This construction sheafifies and associates with each coherent locally free
sheaf L over a scheme S the dual sheaf L ∨ := HomOS

(L ,OS), the graded
OS-algebra

OS[L ∨] := ⊕
k≥0

Symk
OS

(L ∨),

and the vector bundle

VL := Spec
OS

(OS[L ∨])

over S.
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Definition 1.1.2.18. Let {α1, . . . , αt} be any k-basis of C. Let {α∨1 , . . . , α∨t }
be the k-basis of C∨ := Homk(C, k) dual to {α1, . . . , αt} in the sense that
α∨i (αj) = δij for all 1 ≤ i ≤ t and 1 ≤ j ≤ t. Let {X1, . . . , Xt} be a set
of free variables over k. Then we have a canonical k-isomorphism k[C∨] ∼=
k[X1, . . . , Xt] defined by sending α∨i to Xi for each 1 ≤ i ≤ t. For each
finitely generated C ⊗

k
K-module M , we define a homogeneous polynomial

Detα1,...,αt
C|M ∈ K[X1, . . . , Xt]

by
Detα1,...,αt

C|M (X1, . . . , Xt) := DetK(X1α1 + · · ·+Xtαt|M),

which corresponds to an element

DetC|M ∈ K[C∨] := k[C∨]⊗
k
K

under the canonical isomorphism K[C∨] ∼= K[X1, . . . , Xt]. This element
DetC|M is independent of the choice of the k-basis {α1, . . . , αt}.

Lemma 1.1.2.19. If [τ1] 6= [τ2], then DetC|W[τ1]
6= DetC|W[τ2]

as elements in
K[C∨]. Furthermore, they have no common irreducible factors in the unique
factorization domain Ksep[C∨]. (Here Ksep[C∨] is a unique factorization do-
main because it is isomorphic to a polynomial algebra over Ksep.)

Proof. Let t := [C : k], let t0 := [E : k], and let us take any k-basis
{α1, . . . , αt} of C such that {α1, . . . , αt0} is a k-basis of E. (This is always
possible up to a k-linear change of coordinates, which does not affect the
statement.) Under the canonical isomorphisms K[C∨] ∼= K[X1, . . . , Xt]
and K[E∨] ∼= K[X1, . . . , Xt0 ], the canonical surjection of K-algebras
K[C∨]� K[E∨] (defined by the canonical embedding E ↪→ C of the center
E in C) is identified with the canonical surjection of polynomial algebras
K[X1, . . . , Xt] � K[X1, . . . , Xt0 ] defined by setting Xs = 0 for s > t0. By
definition, for i = 1, 2, this surjection sends the homogeneous polynomial
Detα1,...,αt

C|W[τi]
to the homogeneous polynomial Det

α1,...,αt0
E|W[τi]

.

If a nonunit (i.e., nonconstant) element in the polynomial algebra
Ksep[X1, . . . , Xt] divides both Detα1,...,αt

C|W[τ1]
and Detα1,...,αt

C|W[τ2]
, then this el-

ement is homogeneous, and its image under the canonical surjection
K[X1, . . . , Xt] � K[X1, . . . , Xt0 ] is again nonunit and divides both
Detα1,...,αt

C|W[τ1]
(X1, . . . , Xt0) and Detα1,...,αt

C|W[τ2]
(X1, . . . , Xt0). Therefore, to verify the
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lemma, it suffices to show that the polynomials Det
α1,...,αt0
E|W[τ1]

(X1, . . . , Xt0) and

Det
α1,...,αt0
E|W[τ2]

(X1, . . . , Xt0) have no common irreducible factors in the unique

factorization domain Ksep[X1, . . . , Xt0 ].
Let d[τi] be the degree of C ⊗

E,[τi]
K[τi] over its center K[τi]. By (1.1.2.10),

we have

Detα1,...,αt
C|W[τi]

(X1, . . . , Xt0) = Detα1,...,αt
C|W[τi]

⊗
K
Ksep(X1, . . . , Xt0)

=
∏
τ ′i∈[τi]

Detα1,...,αt
C|Wτ ′

i

(X1, . . . , Xt0)s[τi]

=
∏
τ ′i∈[τi]

(X1τ
′
i(α1) + · · ·+Xt0τ

′
i(αt0))s[τi]d[τi]

in Ksep[X1, . . . , Xt0 ], for i = 1, 2. By reason of degree, each homogeneous
linear factor

X1τ
′
i(α1) + · · ·+Xt0τ

′
i(αt0)

is irreducible. Suppose we have τ ′1 ∈ [τ1] and τ ′2 ∈ [τ2] such that

X1τ
′
1(α1) + · · ·+Xt0τ

′
1(αt0) = X1τ

′
2(α1) + · · ·+Xt0τ

′
2(αt0).

Then in particular, τ ′1 = τ ′2 because

c1τ
′
1(α1) + · · ·+ ct0τ

′
1(αt0) = c1τ

′
2(α1) + · · ·+ ct0τ

′
2(αt0)

for all c1, . . . , ct0 ∈ k. Since [τ1] 6= [τ2] are disjoint orbits, this is a contra-
diction. As a result, Detα1,...,αt

C|Wτ1
and Detα1,...,αt

C|Wτ2
have no common irreducible

factors in the unique factorization domain Ksep[X1, . . . , Xt0 ], as desired.

Proposition 1.1.2.20. Two finitely generated C ⊗
k
K-modules M1 and M2

are isomorphic if and only if DetC|M1 = DetC|M2.

Proof. Let us decompose Mi = ⊕
[τ ]:E→K[τ ]

W
⊕m[τ ],i

[τ ] for i = 1, 2, as in Corollary

1.1.2.6. Then we have

DetC|Mi
=

∏
[τ ]:E→K[τ ]

Det
m[τ ],i

C|W[τ ]

for i = 1, 2. By Lemma 1.1.2.19, different factors DetC|W[τ1]
and DetC|W[τ2]

have no common irreducible factors in the unique factorization domain
Ksep[C∨]. Therefore, DetC|M1 = DetC|M2 if and only if m[τ ],1 = m[τ ],2 for all
[τ ], or equivalently if M1

∼= M2 as C ⊗
k
K-modules.
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Now suppose R0 is a commutative noetherian integral domain with
fraction field Frac(R0). Let O be an R0-order in some finite-dimensional
Frac(R0)-algebra A with center F . Suppose the underlying R0-module O is
free.

Definition 1.1.2.21. Let S be a scheme over Spec(R0), and let M be
any locally free OS-module of finite rank on which O acts by morphisms
of OS-modules. Let {α1, . . . , αt} be any free R0-basis of O. Let {α∨1 , . . . , α∨t }
be the free R0-basis of O∨ = HomR0(O, R0) dual to {α1, . . . , αt} in the sense
that α∨i (αj) = δij for all 1 ≤ i ≤ t and 1 ≤ j ≤ t. Let {X1, . . . , Xt} be
a set of free variables over k. Then we have a canonical R0-isomorphism
R0[O∨] ∼= R0[X1, . . . , Xt] defined by sending α∨i to Xi for 1 ≤ i ≤ t. Define
a homogeneous polynomial function

Detα1,...,αt
O|M ∈ OS[X1, . . . , Xt]

by
Detα1,...,αt

O|M (X1, . . . , Xt) := DetOS(X1α1 + · · ·+Xtαt|M ),

which corresponds to an element

DetO|M ∈ OS[O∨] := R0[O∨]⊗
R0

OS

under the canonical isomorphism OS[O∨] ∼= OS[X1, . . . , Xt]. This element
DetO|M is independent of the choice of the free R0-basis {α1, . . . , αt}.

Remark 1.1.2.22. Definition 1.1.2.21 works in particular when S = Spec(R)
and R is a commutative algebra over R0. In this case we may consider the
same definition for a locally free module M over R, and write DetO|M ∈
R[O∨] := R0[O∨]⊗

R0

R instead of DetO|M ∈ OS[O∨]. If S = Spec(k), where k

is a field, where C := O ⊗
R0

k is semisimple over k, and where E := F ⊗
R0

k is a

separable k-algebra, then Definition 1.1.2.21 agrees with Definition 1.1.2.18
if we consider C, E, and k as before with K = k.

1.1.3 Projective Modules

Lemma 1.1.3.1. Let R0 be a commutative noetherian integral domain with
fraction field Frac(R0), and let O be an R0-order in some finite-dimensional
Frac(R0)-algebra A with center F , such that the underlying R0-module O is
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projective. Let R be a noetherian local R0-algebra with residue field k. Let M1

and M2 be two finitely generated O ⊗
R0

R-modules such that M1 is projective

as an O ⊗
R0

R-module and M2 is projective as an R-module. Then M1
∼= M2

as O ⊗
R0

R-modules if and only if M1⊗
R
k ∼= M2⊗

R
k as O ⊗

R0

k-modules.

Proof. The direction from R to k is obvious. Conversely, suppose there
is an isomorphism f̄ : M1⊗

R
k ∼= M2⊗

R
k of O ⊗

R0

k-modules. Since M1 is

projective as an O ⊗
R0

R-module, we have a morphism f : M1 → M2 of

O ⊗
R0

R-modules such that f ⊗
R
k = f̄ . Note that this is, in particular, a

morphism of R-modules. Since the underlying R0-module O is projective
over R0, it is a direct summand of a free R0-module. Therefore, being pro-
jective as an O ⊗

R0

R-module, or equivalently, being a direct summand of a

free O ⊗
R0

R-module, implies being a direct summand of a free R-module, or

equivalently, being projective as a R-module. Now, the projectivity of the
two R-modules implies that f is an isomorphism by the usual Nakayama’s
lemma for R-modules. (There is, nevertheless, a noncommutative version of
Nakayama’s lemma. See [107, Thm. 6.11]. The proof is the same well-known
one.)

Remark 1.1.3.2. For O ⊗
R0

R-modules, being projective, namely, being a direct

summand of a free module, is not equivalent to being locally free.

Suppose R0 is the ring of integers in a number field. In particular, R0 is
an excellent Dedekind domain, and the underlying R0-module O is projective
over R0. Let Disc = DiscO/R0 be the discriminant ofO over R0 (see Definition
1.1.1.6). Let k be either a field of characteristic p = 0 or a finite field
of characteristic p > 0, together with a fixed nonzero ring homomorphism
R0 → k of kernel a prime ideal p of R0. Let Λ be the noetherian complete
local R0-algebra with residue field k, such that a noetherian complete local
algebra with residue field k is a local R0-algebra if and only if it is a local
Λ-algebra (with compatible structural morphisms to k) (see, for example,
Lemma B.1.1.11). Concretely, Λ = k if p = 0, and Λ is the unique unramified
extension with residue field k of the completion of the localization of R0 at
p, if p > 0. (In particular, Λ = W (k) if R0 = Z and p > 0.)

Suppose p is unramified in O. By Proposition 1.1.1.21, we know that
O ⊗

R0

k is a separable algebra over k, and OΛ is a maximal order over Λ. By
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[107, Thm. 10.5] (see also Section 1.1.2), we have decompositions

OF ⊗
R0

Λ ∼=
∏
τ

OFτ

and
O ⊗

R0

Λ ∼=
∏
τ

Oτ

into simple factors, where τ is parameterized by orbits of embeddings of F
into a separable closure of Frac(Λ). In the first decomposition, each simple
factor OFτ is the maximal Λ-order in some separable field extension Fτ of
Frac(Λ).

If p > 0, then by Proposition 1.1.1.21 again, we know that each Oτ is
isomorphic to Mdτ (OFτ ) for some integer dτ ≥ 1. We may identify Oτ with
EndOF,τ (Mτ ), where Mτ := O⊕ dτFτ

can be considered as an OΛ-module via
the projection from OΛ to Oτ . If p = 0, we take Mτ to be the unique simple
module of Oτ given by Corollary 1.1.2.6, although we can no longer assume
that Oτ is a matrix algebra.

Let R be any noetherian local Λ-algebra with residue field k. We shall
allow two different interpretations of subscripts R:

Convention 1.1.3.3. 1. For objects such as O, OF , Diff−1, etc. that are
defined over R0, subscripts such as OR, OF,R, (Diff−1)R, etc. will stand
for base changes from R0 to R.

2. For objects such as Oτ , OFτ , Mτ , etc. that are defined over Λ, subscripts
such as Oτ,R, OFτ ,R, Mτ,R, etc. will stand for base changes from Λ to
R.

Lemma 1.1.3.4. With assumptions as above, every finitely generated projec-
tive OR-module M is isomorphic to ⊕

τ
M⊕mτ

τ,R for some uniquely determined

integers mτ ≥ 0.

Proof. By Lemma 1.1.3.1, we may replace M with M ⊗
R
k and reduce the

problem to the classification of finite-dimensional modules over a finite-
dimensional semisimple algebra with separable center over a field. This
is already addressed in Corollary 1.1.2.6, with the Wτ there replaced with
Mτ,R⊗

R
k.

Motivated by Lemma 1.1.3.4,

17



Definition 1.1.3.5. With assumptions as above, the OR-multirank of a
finitely generated projective OR-module M is defined to be the tuple (mτ )τ of
integers appearing in the decomposition M ∼= ⊕

τ
M⊕mτ

τ,R in Lemma 1.1.3.4.

It is useful to have the following generalized form of the Noether–Skolem
theorem in our context:

Lemma 1.1.3.6. With the setting as above, suppose M is any finitely gen-
erated projective OR-module. Let C be any OF,R-subalgebra of EndOF,R(M)
containing the image of OF,R. Then each C-automorphism of EndOF,R(M)
(namely, an automorphism inducing the identity on C) is an inner automor-
phism Int(a) for some invertible element a in EndC(M).

The proof we give here is an imitation of the proof in [107, Thm. 7.21].

Proof of Lemma 1.1.3.6. For simplicity, let us denote EndOF,R(M) by E, and

denote the image of OF,R in E by Z. Let ϕ : E
∼→ E be any C-automorphism

of E.
By definition, M is an E-module. Let M ′ be the E-module with the

same elements as M , but with the E-action twisted by ϕ. Namely, for b ∈ E
and m ∈ M , we replace the action m 7→ bm with m 7→ ϕ(b)m. Since ϕ is
C-linear, M and M ′ are isomorphic as C-modules. By assumption, and by
Lemma 1.1.3.4, E is the base change ÕR of a product Õ of matrix algebras
over OF,Λ. By Proposition 1.1.1.5, Õ is a maximal order over Λ. By Lemma
1.1.3.1, M and M ′ are isomorphic as E-modules if M ⊗

R
k and M ′⊗

R
k are

isomorphic as E⊗
R
k-modules. Since the prime ideal p = ker(R0 → k) of R0

is unramified in O, which in particular implies that p is unramified in OF ,
we know that the center Z ⊗

R
k of the matrix algebra E⊗

R
k is separable over

k. In particular, the classification in Section 1.1.2 (based on Lemma 1.1.2.4)
shows that M ⊗

R
k and M ′⊗

R
k are isomorphic as E⊗

R
k-modules if they are

isomorphic as Z ⊗
R
k-modules. This is true simply because M and M ′ are

isomorphic as C-modules, and because C contains Z. As a result, we see
that there is an isomorphism θ : M

∼→M ′ of E-modules, which by definition
satisfies θ(bm) = ϕ(b)θ(m) for all b ∈ E and m ∈ M . Since M and M ′ are
identical asOF,R-modules, we may interpret θ as an element a in EndOF,R(M).
Since ϕ(b) = b for all b ∈ C, we see that a lies in EndC(M). Since θ is an
isomorphism, we see that a is invertible. Finally, θ(bm) = ϕ(b)θ(m) for all
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m ∈ M means ab = ϕ(b)a, or ϕ(b) = aba−1 = Int(a)(b), for all b ∈ E. This
shows that ϕ = Int(a), as desired.

1.1.4 Generalities on Pairings

In this section, let R0 be a commutative noetherian integral domain with
fraction field Frac(R0), and let O be an R0-order in some finite-dimensional
Frac(R0)-algebra A with center F . Suppose moreover that A is equipped
with an involution ? sending O to itself. Then it is automatic that ? sends
the center F of A to itself. The elements in F fixed by ? form a subalgebra,
which we shall denote by F+.

Let R be any commutative R0-algebra, and let M be any R-module. We
shall adopt Convention 1.1.3.3 in this section, so that for example, OR stands
for O ⊗

R0

R.

Let Diff−1 = Diff−1
O/R0

(see Definition 1.1.1.8). By definition, the restric-

tion of TrA/Frac(R0) : A→ Frac(R0) to Diff−1 defines a morphism

TrO/R0 : Diff−1 → R0

of R0-modules. We shall denote by the same notation,

TrO/R0 : M0 ⊗
R0

Diff−1 →M0,

its natural base change to each R0-module M0.

Lemma 1.1.4.1. Suppose O is locally free as an R0-module. Let M0 be any
R0-module, and let z be any element of M0 ⊗

R0

Diff−1. If TrO/R0(bz) = 0 for

all b ∈ O, then z = 0.

Proof. By Lemma 1.1.1.9, we may localize and assume that both O and
Diff−1 are free as R0-modules. Let {ei}1≤i≤t be any R0-basis of O, and
let {fi}1≤i≤t be the dual R0-basis of Diff−1. The element z in M0 ⊗

R0

Diff−1

can be written uniquely in the form z =
∑

1≤j≤t
zj ⊗ fj, where xj ∈ M0. By

assumption, zi = TrO/R0(eiz) = 0 for all 1 ≤ i ≤ t. This shows that z is zero,
as desired.

Definition 1.1.4.2. Let R be a commutative R0-algebra, and let M and N
be two R-modules.
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1. An R-bilinear pairing 〈 · , · 〉 : M ×M → N is called symmetric if
〈x, y〉 = 〈y, x〉 for all x, y ∈M .

2. An R-bilinear pairing 〈 · , · 〉 : M ×M → N is called skew-symmetric
if 〈x, y〉 = −〈y, x〉 for all x, y ∈M .

3. An R-bilinear pairing 〈 · , · 〉 : M ×M → N is called alternating if
〈x, x〉 = 0 for all x ∈M .

4. An R-bilinear pairing (| · , · |) : M ×M → N ⊗
R0

Diff−1 is called Her-

mitian if (|x, y|) = (|y, x|)? and (|x, by|) = b(|x, y|) for all x, y ∈ M and
b ∈ O. Here ? and O act only on the second factor Diff−1 of N ⊗

R0

Diff−1.

5. An R-bilinear pairing (| · , · |) : M ×M → N ⊗
R0

Diff−1 is called skew-

Hermitian if (|x, y|) = −(|y, x|)? and (|x, by|) = b(|x, y|) for all x, y ∈M
and b ∈ O. Here ? and O act only on the second factor Diff−1 of
N ⊗

R0

Diff−1.

Remark 1.1.4.3. An alternating form is always skew-symmetric, but the con-
verse might not be true when 2 is a zero-divisor.

Definition 1.1.4.4. Let ε be either +1 or −1. An R-bilinear pairing 〈 · , · 〉 :
M ×M → N is called ε-symmetric if 〈x, y〉 = ε〈y, x〉 for all x, y ∈M . An
R-bilinear pairing (| · , · |) : M ×M → N ⊗

R0

Diff−1 is called ε-Hermitian if

(|x, y|) = ε(|y, x|)? and (|x, by|) = b(|x, y|) for all x, y ∈M and b ∈ O.

Lemma 1.1.4.5. Let ε be either +1 or −1, let M be a finitely generated
OR-module, and let N be a finitely generated R-module. Suppose O is locally
free over R0. Then there is a one–one correspondence between the set of
ε-Hermitian pairings

(| · , · |) : M ×M → N ⊗
R0

Diff−1

(which is OR-linear in the second variable according to our definition) and
the set of ε-symmetric pairings

〈 · , · 〉 : M ×M → N,
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such that 〈bx, y〉 = 〈x, b?y〉 for all x, y ∈ M and b ∈ OR. The assignment
in one direction can be given explicitly as follows: We associate with each
ε-Hermitian pairing (| · , · |) : M ×M → N ⊗

R0

Diff−1 the ε-symmetric pairings

〈 · , · 〉 : M ×M → N defined by

〈 · , · 〉 := TrO/R0(| · , · |),

where TrO/R0 here means TrO/R0 : N ⊗
R0

Diff−1 → N (by abuse of notation),

the natural base change of TrO/R0 : Diff−1 → R0.

Proof. It is obvious that if (| · , · |) is ε-Hermitian, then the associated 〈 · , · 〉 :=
TrO/R0(| · , · |) is ε-symmetric and satisfies 〈bx, y〉 = 〈x, b?y〉 = ε〈b?y, x〉 for all
x, y ∈ L and b ∈ O.

If (| · , · |)′ : M×M → N ⊗
R0

Diff−1 is another ε-Hermitian pairing such that

TrO/R0(|x, y|) = TrO/R0(|x, y|)′ for all x, y ∈M , then we have TrO/R0 [b(|x, y|)] =
TrO/R0(|x, by|) = TrO/R0(|x, by|)′ = TrO/R0 [b(|x, y|)′] for all x, y ∈M and b ∈ O.
By Lemma 1.1.4.1, this implies that (|x, y|) = (|x, y|)′ for all x, y ∈ L. This
shows the injectivity of the association using only OR-linearity in the second
variable.

In the remaining proof, let us assume that OR is free over R by localiza-
tion. If the result is true after all localizations, then it is also true before
localization, because the modules M and N we consider are finitely generated
over R.

Let {ei}1≤i≤t be any R0-basis of O, and let {fi}1≤i≤t be the dual R0-basis
of Diff−1 given by Lemma 1.1.1.9. Then we can write each (| · , · |) : M ×
M → N ⊗

R0

Diff−1 as a sum (| · , · |) =
∑

1≤i≤t
[〈 · , · 〉i fi], where 〈 · , · 〉i : M ×

M → N is determined by taking 〈x, y〉i = TrO/R0 [ei(|x, y|)] for all x, y ∈
M . By OR-linearity of (| · , · |) in the second variable, this means 〈x, y〉i =
TrO/R0(|x, eiy|) = 〈x, eiy〉, and so (|x, y|) =

∑
1≤i≤t

[〈x, eiy〉 fi] for all x, y ∈M .

Now we are ready to show the surjectivity: If 〈 · , · 〉 := TrO/R0(| · , · |) is
any ε-symmetric pairing such that 〈bx, y〉 = 〈x, b?y〉 for all x, y ∈ M and
b ∈ OR. Consider (| · , · |) : M ×M → N ⊗

R
(Diff−1)R defined by (|x, y|) =∑

1≤i≤t
[〈x, eiy〉 fi] for all x, y ∈ M . Suppose 1 =

∑
1≤k≤t

ukek, where uk ∈ R.

Then TrO/R0 fi = TrO/R0(
∑

1≤k≤t
ukekfi) = ui, and we have TrO/R0(|x, y|) =∑

1≤i≤t
[〈x, eiy〉TrO/R0 fi] = 〈x, [

∑
1≤i≤t

uiei]y〉 = 〈x, y〉.
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Moreover, (| · , · |) is OR-linear in the second variable: Given any
b ∈ OR, set aij := TrO/R0(eibfj) for each 1 ≤ i ≤ t and 1 ≤ j ≤ t. Then
eib =

∑
1≤j≤t

aijej for all 1 ≤ i ≤ t, and bfj =
∑

1≤i≤t
aijfi for all 1 ≤ j ≤ t.

Consequently, (|x, by|) =
∑

1≤i≤t
〈x, eiby〉fi =

∑
1≤i≤t,1≤j≤t

〈x, ejy〉aijfi =∑
1≤j≤t

〈x, yej〉bfj = b(|x, y|).

Finally, since {e?i }1≤i≤t is also a basis forOR over R with {f ?i }1≤i≤t its dual
basis for (Diff−1)R over R respect to TrO/R0 , we can also consider (| · , · |)′ :
M ×M → N ⊗

R
(Diff−1)R defined by (|x, y|)′ =

∑
1≤i≤t

[〈x, e?i y〉 f ?i ] for all x, y ∈

M , which then also satisfies TrO/R0(| · , · |)′ = 〈 · , · 〉 and OR-linearity in the
second variable. By the injectivity above (using only OR-linearity in the
second variable), we have (| · , · |) = (| · , · |)′. As a result, we have (|y, x|) =
(|y, x|)′ =

∑
1≤i≤t

[〈y, e?ix〉f ?i ] =
∑

1≤i≤t
[〈eiy, x〉f ?i ] = ε

∑
1≤i≤t
〈x, eiy〉f ?i = ε(|x, y|)?.

Definition 1.1.4.6. Suppose O is locally free over R0. Let R be a commu-
tative R0-algebra, let M be a finitely generated OR-module, and let N be a
finitely generated R-module. An R-bilinear pairing 〈 · , · 〉 : M ×M → N is
called an (OR, ?)-pairing, or simply an OR-pairing, if it satisfies 〈bx, y〉 =
〈x, b?y〉 for all x, y ∈M and b ∈ OR.

Definition 1.1.4.7. Suppose O is locally free over R0. Let R be a commuta-
tive R0-algebra. A symplectic OR-module (M, 〈 · , · 〉, N) is a OR-module
M together with an alternating OR-pairing

〈 · , · 〉 : M ×M → N

(see Definitions 1.1.4.2 and 1.1.4.6), where M and N are both finitely gen-
erated R-modules.

Suppose N is locally free of rank one over R. We say (M, 〈 · , · 〉, N) is
nondegenerate (resp. self-dual) if the pairing 〈 · , · 〉 is nondegenerate
(resp. perfect), in the sense that the R-module morphism

M → HomR(M,N) : x 7→ (y 7→ 〈x, y〉)

induced by the pairing is an injection (resp. an isomorphism).
If N = R, or if it is clear from the context, then we often omit N from

the notation, and simply write (M, 〈 · , · 〉).

22



Definition 1.1.4.8. A symplectic morphism

f : (M1, 〈 · , · 〉1, N1)→ (M2, 〈 · , · 〉2, N2)

is a pair of morphisms

(f : M1 →M2, ν(f) : N1 → N2)

such that 〈f(x), f(y)〉2 = ν(f)〈x, y〉1 for all x, y ∈ M1. A symplectic mor-
phism (f, ν(f)) is a symplectic isomorphism if both f and ν(f) are iso-
morphisms.

Remark 1.1.4.9. The datum of a symplectic isomorphism consists of not only
the morphism f between the underlying modules, but also the morphism ν(f)
between the values (which is not always determined by f). We are enforcing
an abuse of notation here.

Definition 1.1.4.10. Conventions as above, assume moreover that R is a
noetherian integral domain. A symplectic OR-lattice (M, 〈 · , · 〉, N) is a
symplectic OR-module whose underlying OR-module M is an R-lattice.

Definition 1.1.4.11. Let (M, 〈 · , · 〉, N) be a nondegenerate symplectic
OR-lattice with values in a locally free sheaf N of rank one over a noetherian
integral domain R. The dual lattice M# (with respect to 〈 · , · 〉 and N) is
defined by

M# := {x ∈M ⊗
R

Frac(R) : 〈x, y〉 ∈ N ∀y ∈M}.

By definition, the dual lattice contains M as a sublattice.

Definition 1.1.4.12. Let M1 and M2 be two finitely generated OR-modules
with two respective OR-pairings 〈 · , · 〉i : Mi×Mi → N , where i = 1, 2, with
images in the same finitely generated R-module N . For simplicity, let us use
the same notation (Mi, 〈 · , · 〉i, N) as in the case of symplectic OR-modules.
The orthogonal direct sum of (Mi, 〈 · , · 〉i, N), for i = 1, 2, denoted by

(M1, 〈 · , · 〉1, N)
⊥
⊕(M2, 〈 · , · 〉2, N),

is a triple (M, 〈 · , · 〉, N) whose underlying OR-module M is M1⊕M2 and
whose pairing

〈 · , · 〉 = 〈 · , · 〉1
⊥
⊕〈 · , · 〉2
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is defined such that

〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉1 + 〈x2, y2〉2

for all (x1, x2), (y1, y2) ∈M1

⊥
⊕M2.

If N = R, or if it is clear from the context, then we often omit N from
the notation.

Lemma 1.1.4.13. Let M be any OR-module. Let M∨ := HomR(M,R)
denote the dual module of M with an OR-action given by (bf)(y) = f(b?y)
for all b ∈ OR and f ∈ HomR(M,R). Then the canonical pairing

M ×M∨ → R : (x, f) 7→ f(x)

defines a canonical pairing

〈 · , · 〉can. : (M ⊕M∨)×(M ⊕M∨)→ R :

((x1, f1), (x2, f2)) 7→ (f2(x1)− f1(x2))

which gives M ⊕M∨ the canonical structure of a symplectic OR-module.
If the canonical morphism M → (M∨)∨ is an isomorphism, then
(M ⊕M∨, 〈 · , · 〉can.) is self-dual.

It is useful to have an interpretation of the pairings we shall consider in
terms of anti-automorphisms of the endomorphism algebra of OR-modules.
Let M be a finitely generated OR-module, and let N be locally free of rank
one over R. Having an R-bilinear pairing

〈 · , · 〉 : M ×M → N

(which for the moment we allow to be symmetric, skew-symmetric, or neither)
is equivalent to having an R-linear morphism

〈 · , · 〉∗ : M → HomR(M,N) : x 7→ (y 7→ 〈x, y〉).

To say that we have a perfect pairing 〈 · , · 〉 is equivalent to requiring that
〈 · , · 〉∗ is an isomorphism. Once we know that 〈 · , · 〉∗ is an isomorphism, we
can define an anti-automorphism z of EndR(M) by sending an endomorphism
b : M →M to bz defined by the composition

bz := (〈 · , · 〉∗)−1 ◦ b∨ ◦ 〈 · , · 〉∗.
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In other words, we have 〈x, by〉 = 〈bzx, y〉 for all x, y ∈M and b ∈ EndR(M).
If we equip HomR(M,N) with an action of OR given by (bf)(y) = f(b?y)

for all b ∈ OR and f ∈ HomR(M,N), then the condition that 〈bx, y〉 =
〈x, b?y〉 means exactly that 〈 · , · 〉∗ is OR-linear. In this case, we have b ∈ OR
and bz = b? ∈ OR. Hence z maps the image of OR in EndR(M) to itself and
induces the same involution as that induced by ?. Since OF,R is the center of
OR, and since EndOR(M) and EndOF,R(M) are the respective centralizers of
the images ofOR andOF,R, we see that each of them is mapped to itself under
z. For simplicity, we shall denote the restrictions of the anti-automorphism
z to EndOR(M) and EndOF,R(M) by the same notation.

The general structure of EndOR(M) and EndOF,R(M) for arbitrary
OR-modules can be rather complicated. However, when M is finitely
generated and projective, and when OR satisfies certain reasonably strong
conditions, there is a nice classification of pairings (with values in R) in
terms of involutions on EndOF,R(M). We shall explore this classification in
the next section.

1.1.5 Classification of Pairings by Involutions

With the setting as in Section 1.1.4, suppose moreover that R0 is the ring
of integers in a number field. Let k be either a field of characteristic p =
0 or a finite field of characteristic p > 0, together with a fixed nonzero
ring homomorphism R0 → k with kernel a prime ideal p of R0. Let Λ be
the noetherian complete local R0-algebra with residue field k, such that a
noetherian complete local algebra with residue field k is a local R0-algebra if
and only if it is a local Λ-algebra, as in Section 1.1.3. Suppose p is unramified
in O.

Let R be any noetherian local Λ-algebra with residue field k, with Con-
vention 1.1.3.3 as in Sections 1.1.3 and 1.1.4. Let M be a finitely generated
projective OR-module. For convenience, we shall denote by OR (resp. OF,R)
the image of OR (resp. OF,R) in EndR(M). Then OR (resp. OF,R) is the
product of those Oτ,R (resp. OFτ ,R) acting faithfully on M .

Since R is local, every locally free module N of rank one over R is iso-
morphic to R. Therefore, for the purpose of classifying perfect pairings
〈 · , · 〉 : M ×M → N up to isomorphism, it suffices to assume that N = R.

Definition 1.1.5.1. With assumptions as above, we say that two perfect
OR-pairings 〈 · , · 〉i : M ×M → R, where i = 1, 2, are weakly isomor-
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phic if 〈 · , · 〉∗1 and 〈 · , · 〉∗2 differ only up to multiplication by an element in

O×F,R. We say they are weakly symplectic isomorphic if the pairings are
alternating pairings.

Lemma 1.1.5.2. With assumptions as above, two perfect OR-pairings
〈 · , · 〉i : M ×M → R, where i = 1, 2, are weakly isomorphic if and only if
the anti-automorphisms zi of EndOF,R(M) determined by the pairings are
identical: z1 = z2.

Proof. Consider a := (〈 · , · 〉∗1)−1 ◦ 〈 · , · 〉∗2 as an element in EndOF,R(M). The
inner automorphism Int(a) of EndOF,R(M) defined by b 7→ a◦ b◦a−1 satisfies
Int(a) = z1 ◦ (z2)−1. Thus, z1 = z2 if and only if Int(a) = IdEndOF,R (M),

which is the case exactly when a is (an invertible element) in the center OF,R
of EndOF,R(M).

Note that we have made a choice of the two variables when defining
〈 · , · 〉∗: Alternatively, if we take x 7→ (y 7→ 〈y, x〉), then we obtain an
anti-automorphism z′ such that 〈b(y), x〉 = 〈y, bz′(x)〉 for all x, y ∈ M and
b ∈ EndR(M). Then we have 〈x, b(y)〉 = 〈bz(x), y〉 = 〈x, (bz)z

′
(y)〉 for all

x, y ∈M and b ∈ EndR(M). In other words, we have z
′ ◦ z = IdEndR(M).

If (z)2 = IdEndR(M), namely, if z is an involution of EndR(M), then z
′
= z,

and hence, if we repeat the proof of Lemma 1.1.5.2 with OR replaced with
R, there is some γ ∈ R× such that 〈x, y〉 = 〈y, γx〉 for all x, y ∈ M . Then
〈x, y〉 = 〈y, γx〉 = 〈γx, γy〉 = 〈x, γ2y〉 for all x, y ∈ M implies γ2 = 1. As
a result, we see that the anti-automorphism z it induces on EndR(M) is an
involution if and only if there is an element γ ∈ R× such that γ2 = 1 and
〈x, y〉 = 〈y, γx〉 for all x, y ∈M . (The converse is clear.)

If we only consider the restriction of the anti-automorphism z to
EndOF,R(M), then we may only conclude in the argument above that z is
an involution if and only if there is some γ ∈ O×F,R such that γ?γ = 1 and
〈x, y〉 = 〈y, γx〉 for all x, y ∈M .

If F = F+, in which case ? acts trivially on F , this implies as above that

〈x, y〉 = 〈y, γx〉 for some γ ∈ O×F,R with γ2 = 1. If we write OF,R =
∏
τ

OFτ
and write γ accordingly as γ = (γτ ), then we see that γ2

τ = 1 for all τ . The
case where γτ = 1 (resp. γτ = −1) for all τ implies, in particular, that 〈 · , · 〉
is symmetric (resp. alternating). More generally,
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Definition 1.1.5.3. Let ε ∈ O×F,R be an element such that ε2 = 1. Then
we say that an OR-pairing 〈 · , · 〉 : M ×M → R is ε-symmetric if it satisfies
〈x, y〉 = 〈y, εx〉 for all x, y ∈M .

Then we see that a perfect OR-pairing 〈 · , · 〉 induces an involution of

EndOF,R(M) if and only if 〈 · , · 〉 is ε-symmetric for some ε ∈ O×F,R such
that ε2 = 1. Moreover, if 〈 · , · 〉 is ε-symmetric, then 〈x, ry〉 = 〈ry, εx〉 =
〈y, rεx〉 = 〈y, εrx〉 shows that every perfect pairing that is weakly isomor-
phic to 〈 · , · 〉 is also ε-symmetric. Therefore it makes sense to consider the
following:

Definition 1.1.5.4 (cf. the classification in [72] in the case of algebras). With
assumptions as above, suppose moreover that F = F+. Then we say that an
involution z of EndOF,R(M) is of ε-symmetric type (resp. of symplectic
type, resp. of orthogonal type) if there exists a perfect ε-symmetric (resp.
alternating, resp. symmetric) OR-pairing 〈 · , · 〉 : M ×M → R inducing z.

Lemma 1.1.5.5. Suppose F = F+. Then an alternating OR-pairing 〈 · , · 〉 :
M ×M → R satisfies 〈x, rx〉 = 0 for all x ∈M and r ∈ OF,R.

Proof. By replacing k with a sufficiently large finite separable field extension,
and by replacing Λ accordingly, we may assume that in the product OF,Λ ∼=∏
τ

OFτ we have OFτ = Λ for all τ . Then OF,R ∼=
∏
τ

OFτ ,R is a product of

copies of R, and the lemma is obvious.

Remark 1.1.5.6. By Lemmas 1.1.5.2 and 1.1.5.5, the definitions of being of
ε-symmetric, symplectic, and orthogonal types do not depend on the partic-
ular perfect pairing we choose that induces the involution.

If ? is nontrivial on OF , we need a different approach. For simplicity, let
us assume that F+ is simple in this case, so that [F : F+] = 2.

Lemma 1.1.5.7. With assumptions as above, there is an element e ∈ OF,R
such that e+ e? = 1.

Proof. By Proposition 1.1.1.21, the assumption that p = ker(R0 → k) is
unramified in O implies that Diff−1

OF,Λ/OF+,Λ
= OF,Λ. In particular, there

exists some e ∈ OF,Λ such that TrOF,Λ/OF+,Λ
(e) = e+ e? = 1.

Corollary 1.1.5.8. With assumptions as in Lemma 1.1.5.7, if γ ∈ OF,R
satisfies γ? + γ = 0, then there is an element δ ∈ OF,R such that γ = δ − δ?.
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Proof. If we take e as in Lemma 1.1.5.7 and take δ = eγ, then δ − δ? =
eγ − e?γ? = (e+ e?)γ = γ, as desired.

Lemma 1.1.5.9. With assumptions as in Lemma 1.1.5.7, suppose moreover
that R is a complete noetherian local R0-algebra, and that the extension
F/F+ is split over k when char(k) = p = 0. Let ε = ±1, so that xε = x or
x−1 depending on whether ε = 1 or −1. If γ ∈ O×F,R is an element such that

γ? = γε, then γ = δ(δ?)ε for some δ ∈ O×F,R.

The proof we give here is essentially the same as the one for R = Λ.

Proof. Let us investigate this situation for each τ in the decomposition
OF,R ∼=

∏
τ

OFτ .

If the involution interchanges OFτ and OFτ ′ , and the two factors of γ ∈
O×F,R are of the form (γτ , γτ ′) ∈ OFτ ,R×OFτ ′ ,R, then the condition that γ? =

γε shows that γτ ′ = γετ , and hence we may take δ ∈ O×F,R with the two factors
(γτ , 1).

If the involution is nontrivial on Fτ , then it is a nontrivial degree-two
unramified extension of some local field F+

τ . By our assumption that the
extension F/F+ is split over Λ = k when p = 0, this can happen only
when p > 0, in which case k is a finite field by assumption. Let N :=
NormOFτ ,R/OF+

τ ,R
: O×Fτ ,R → O

×
F+
τ ,R

: x 7→ xx? be the norm map, and let D :

O×Fτ ,R → O
×
Fτ ,R

: x 7→ x(x?)−1. Hence our goal is to show that image(N) =
ker(D) and image(D) = ker(N).

Let m be the maximal ideal of R. Since Fτ is unramified over Λ, we see
that m generates the maximal ideals in OFτ ,R and OF+

τ ,R
. Let kτ and k+

τ

be the respective residue fields of OFτ ,R and OF+
τ ,R

. Let U i := O×Fτ ,R ∩ [1 +

(m · OFτ ,R)i], U i
D := ker(D) ∩ U i = O×

F+
τ ,R
∩ [1 + (m · OF+

τ ,R
)i], and U i

N :=

ker(N)∩U i. Let GriU := Ui/Ui+1, GriUD := U i
D/U

i+1
D , and GriUN := U i

N/U
i+1
N .

Then Gr0
U
∼= k×τ and Gr0

UD
∼= (k+

τ )
×

. If we identify the multiplication (1 +

x)(1 + y) ≡ 1 + x+ y (mod mi+1) with the addition x+ y, then GriU , GriUD ,

and GriUN are all vector spaces over k. The map N (resp. D) sends U i to U i
D

(resp. to U i
N) and induces a map Ni : GriU → GriUD (resp. Di : GriU → GriUN )

for all i ≥ 0.
Let us claim that Ni : GriU → GriUD and Di : GriU → GriUN are surjective

for all i ≥ 0. Suppose q is the cardinality of k+
τ . Then Gr0

U
∼= k×τ can be

identified with the cyclic group of solutions to xq
2−1 = 1, and the involution

28



x 7→ x? can be identified with x 7→ xq. From these we see that N0(x) = x1+q

and D0(x) = x1−q, and the assertion follows simply by counting: (1 + q)(1−
q) = 1 − q2. Now suppose i ≥ 1. Let us first treat the case of Ni. By
flatness of OFτ and OF+

τ
over Λ, we have GriU

∼= (OFτ ⊗
Λ
mi)/(OFτ ⊗

Λ
mi+1) ∼=

OFτ ⊗
Λ

(mi/mi+1), and similarly GriUD
∼= OF+

τ
⊗
Λ

(mi/mi+1). Hence we may

reinterpret Ni = TrOFτ /OF+
τ

⊗
Λ

(mi/mi+1) = Trkτ/k+
τ
⊗
k

(mi/mi+1) as the base

change of TrOFτ /OF+
τ

from Λ to k to mi/mi+1. Then the surjectivity of Ni

onto GriUD follows from the surjectivity of TrOFτ /OF+
τ

(by assumption that

p = ker(R0 → k) is unramified in O). On the other hand, consider any
element e ∈ OF,R given by Lemma 1.1.5.7 such that e + e? = 1. Let x be
any element in GriUN , which by definition is an element in GriU such that
Ni(x) = x+ x? = 0. Then Di(ex) = ex− (ex)? = (e+ e?)x = x. This shows
Di is surjective onto GriUN . Hence the claim follows.

Since R is complete, U0 = OFτ ,R, U0
D = OF+

τ ,R
, and U0

N are all complete
with respect to their topologies defined by m. By successive approximation
(as in, for example, [110, Ch. V, Lem. 2]), the surjectivity of N (resp. D)
follows from the surjectivity of Ni (resp. Di) for all i ≥ 0, as desired.

Corollary 1.1.5.10. With assumptions as in Lemma 1.1.5.9, the anti-
automorphism z of EndOF,R(M) induced by 〈 · , · 〉 is an involution if and
only if there is an element δ ∈ O×F,R (resp. δ′ ∈ O×F,R) such that the pairing
〈 · , · 〉′ defined by 〈x, y〉′ := 〈x, δy〉 (resp. by 〈x, y〉′ := 〈x, δ′y〉) is symmetric
(resp. skew-symmetric).

Proof. If we take δ as in Lemma 1.1.5.9 (with ε = −1) such that δ(δ?)−1 = γ,
then 〈x, δy〉 = 〈δy, γx〉 = 〈y, δ?γx〉 = 〈y, δx〉 for all x, y ∈ M . If we take
δ′ such that δ′((δ′)?)−1 = −γ, then 〈x, δ′y〉 = 〈δ′y, γx〉 = 〈y, (δ′)?γx〉 =
−〈y, δ′x〉 for all x, y ∈M .

Definition 1.1.5.11. With assumptions as in Lemma 1.1.5.9, we say that
an involution z of EndOF,R(M) is of unitary type if there exists a perfect
symmetric OR-pairing 〈 · , · 〉 : M ×M → R inducing z.

Remark 1.1.5.12. By Corollary 1.1.5.10, we may replace symmetric pairings
with skew-symmetric ones in Definition 1.1.5.11 without changing the class
of involutions we consider.

To proceed further, let us record a consequence of Lemma 1.1.3.6:
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Corollary 1.1.5.13. Suppose O is maximal at p = ker(R0 → k), and sup-
pose M is any finitely generated projective OR-module. Then each two invo-
lutions of EndOF,R(M) inducing the same involution ? on OR are conjugate
to each other by an element a ∈ EndOR(M).

Proof. Let z1 and z2 be two such involutions. Then z2 ◦ (z1)−1 is an
OR-automorphism of EndOF,R(M). By Lemma 1.1.3.6, with C = OR, there
is an invertible element a ∈ EndOR(M) such that Int(a) = z2 ◦ (z1)−1, which
means Int(a) ◦ (z1) = z2 , as desired.

Corollary 1.1.5.14. With assumptions on R as at the beginning of Sec-
tion 1.1.5, suppose M is any finitely generated projective OR-module. Let
zi, where i = 1, 2, be two involutions of EndOF,R(M) inducing the same

involution ? on OR. Suppose z1 is induced by some perfect OR-pairing
〈 · , · 〉1 : M ×M → R. Then there is an invertible element a ∈ EndOR(M)
such that z2 is induced by the perfect OR-pairing 〈 · , · 〉2 := 〈 · , · 〉1 ◦ (a× Id).

Proof. By Corollary 1.1.5.13, there is an invertible a ∈ EndOR(M) such that
z1 = Int(a) ◦ (z2). In this case, the pairing 〈 · , · 〉3 defined by 〈x, y〉3 :=
〈a(x), y〉1 satisfies 〈 · , · 〉∗3 = 〈 · , · 〉∗1◦a, and hence the involution z3 it induces
on EndOF,R(M) satisfies z1 = Int(a) ◦ (z3). That is, z2 = z3 . Then z2 is
induced by 〈 · , · 〉3, as desired.

Remark 1.1.5.15. With assumptions on R as at the beginning of Section 1.1.5,
let Mτ,R be as in Lemma 1.1.3.4. If we denote the restriction of ? to OF by c,
then HomR(Mτ,R, R) ∼= Mτ◦c,R, because its OF,R-action is twisted by ?. This
shows that for our purpose of studying pairings we need to consider τ and τ ′

at the same time only when τ ′ = τ ◦ c.

Lemma 1.1.5.16. With assumptions on R as at the beginning of Section
1.1.5, suppose M is any finitely generated projective OR-module that decom-
poses as M ∼= ⊕

τ
M⊕mτ

τ,R as in Lemma 1.1.3.4. Suppose mτ = mτ◦c for all

τ . Then there exists a perfect OR-pairing 〈 · , · 〉 : M ×M → R that in-
duces an involution on EndOF,R(M). (Conversely, the condition mτ = mτ◦c
is automatic if there exists any perfect bilinear OR-pairing on M .)

Proof. By forming orthogonal direct sums as in Definition 1.1.4.12, it suffices
to construct an OR-module isomorphism Mτ,R →M∨

τ◦c,R for each τ , which is
possible by Remark 1.1.5.15.
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Combining Lemma 1.1.5.2, Corollary 1.1.5.14, and Lemma 1.1.5.16 (with
justifications above for Definitions 1.1.5.4 and 1.1.5.11), we obtain the fol-
lowing proposition:

Proposition 1.1.5.17. With assumptions on R as at the beginning of Sec-
tion 1.1.5, suppose moreover that R is a noetherian complete R0-algebra.
Suppose M is any finitely generated projective OR-module. Consider the as-
sociation of anti-automorphisms z of EndOF,R(M) with weak isomorphism
classes of perfect OR-pairings 〈 · , · 〉 : M ×M → R on M .

1. Suppose that F = F+. Then, for each ε ∈ O×F,R such that ε2 = 1, there
is a well-defined bijection from weak equivalence classes containing at
least one ε-symmetric (resp. alternating, resp. symmetric) OR-pairing
to involutions of ε-symmetric type (resp. of symplectic type, resp. of
orthogonal type).

2. Suppose that F+ is simple, that [F : F+] = 2, and that the exten-
sion F/F+ is split over k when char(k) = p = 0. Then there is a
well-defined bijection from weak equivalence classes containing at least
one symmetric OR-pairing to involutions of unitary type. The same
statement is true if we consider instead classes containing at least one
skew-symmetric pairing, or classes containing at least one alternating
pairing.

In both cases, the images of the bijections exhaust all possible involutions
of EndOF,R(M) that induce ? on OR. By decomposing F+ as a product of
simple factors, the general cases also decompose as products of corresponding
factors, each of which belongs to one of these two cases (cf. Remark 1.1.5.15).

1.2 Linear Algebraic Data

1.2.1 PEL-Type O-Lattices

Let B be a finite-dimensional semisimple algebra over Q with positive in-
volution ? and center F . Here positivity of ? means TrB/Q(xx?) > 0 for all
x 6= 0 in B.

LetO be an order inB mapped to itself under ?. ThenO has an involution
given by the restriction of ?. Let Disc = DiscO/Z be the discriminant of O
over Z (see Definition 1.1.1.6).

31



Let
Z(1) := ker(exp : C→ C×),

which is a free Z-module of rank one. Each choice
√
−1 of a square root of

−1 in C determines an isomorphism

1

2π
√
−1

: Z(1)
∼→ Z, (1.2.1.1)

but there is no canonical isomorphism between Z(1) and Z. For each com-
mutative Z-algebra R, we denote by R(1) the module R⊗

Z
Z(1).

For reasons that will become clear in Section 1.3.4, let us introduce the
following structure on symplectic O⊗

Z
R-lattices:

Definition 1.2.1.2. Let R be a noetherian subring of R and let
(M, 〈 · , · 〉M , R(1)) be a symplectic O⊗

Z
R-lattice (see Definition 1.1.4.7). A

polarization of (M, 〈 · , · 〉M , R(1)) is an R-algebra homomorphism

h : C→ EndO⊗
Z
R(M ⊗

R
R)

such that the following two conditions are satisfied:

1. For all z ∈ C and x, y ∈M ⊗
R
R, we have

〈h(z)x, y〉M = 〈x, h(zc)y〉M ,

where C→ C : z 7→ zc is the complex conjugation.

2. For each choice of
√
−1 in C defining an isomorphism Z(1)

∼→ Z as in
(1.2.1.1), the R-bilinear pairing

1

2π
√
−1
◦ 〈 · , h(

√
−1) · 〉M : (M ⊗

R
R)×(M ⊗

R
R)→ R

is symmetric and positive definite. (This last condition forces 〈 · , · 〉M
to be nondegenerate.)

We say in this case that (M, 〈 · , · 〉M , h) is a polarized symplectic
O⊗
Z
R-lattice, suppressing R(1) from the notation.
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Two polarized symplectic O⊗
Z
R-lattices (M1, 〈 · , · 〉M1 , h1) and

(M2, 〈 · , · 〉M2 , h2) are isomorphic if the underlying symplectic
O⊗
Z
R-lattices (M1, 〈 · , · 〉M1) and (M2, 〈 · , · 〉M2) are isomorphic, and if there

exists a symplectic isomorphism (M1⊗
R
R, 〈 · , · 〉M1)

∼→ (M2⊗
R
R, 〈 · , · 〉M2)

(over R) matching h1 with h2.

Definition 1.2.1.3. A PEL-type O-lattice (L, 〈 · , · 〉, h) is a polarized
symplectic O-lattice (L, 〈 · , · 〉, h) in Definition 1.2.1.2 (with R = Z).

Remark 1.2.1.4. The datum (O, ?, L, 〈 · , · 〉, h) is an integral version of the
datum (B, ?, V, 〈 · , · 〉, h) in [76] and related works.

Remark 1.2.1.5. We shall suppress h from the notation when the polariza-
tion is not needed. In this case, we shall denote the underlying symplectic
O-lattice by (L, 〈 · , · 〉), suppressing the target Z(1) of the pairing from the
notation. Similarly, for each (commutative) Z-algebra R, we shall denote the
base change of (L, 〈 · , · 〉) to R as (L⊗

Z
R, 〈 · , · 〉), suppressing R(1) from the

notation.

Definition 1.2.1.6. Let (L, 〈 · , · 〉, h) be a PEL-type O-lattice as in Defini-
tion 1.2.1.3. For each Z-algebra R, set

G(R) :=

{
(g, r) ∈ GLO⊗

Z
R(L⊗

Z
R)×Gm(R) :

〈gx, gy〉 = r〈x, y〉 ∀x, y ∈ L⊗
Z
R

}
.

In other words, G(R) is the group of symplectic automorphisms of L⊗
Z
R over

R (see Definition 1.1.4.8). For each Z-algebra homomorphism R → R′, we
have by definition a natural homomorphism G(R) → G(R′), making G a
group functor (or, in fact, an affine group scheme) over Z.

The projection to the second factor (g, r) 7→ r defines a homomorphism
ν : G → Gm, which we call the similitude character. For simplicity,
we shall often denote elements (g, r) in G simply by g, and denote by ν(g)
the value of r when we need it. (If L 6= {0} and R is flat over Z, then
the value of r is uniquely determined by g. Hence there is little that we lose
when suppressing r from the notation. However, this suppression is indeed an
abuse of notation in general. For example, when L = {0}, we have G = Gm.)

Remark 1.2.1.7. The polarization h is not needed in Definition 1.2.1.6.
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Remark 1.2.1.8. For a general nonflat Z-algebra R, the pairing induced by
〈 · , · 〉 on L⊗

Z
R is not necessarily nondegenerate (see Definition 1.1.4.7). This

suggests that G is not necessarily a smooth functor over the whole base Z.

Remark 1.2.1.9. This gives the definitions for G(Q), G(A∞,2), G(A∞), G(R),
G(A2), G(A), G(Z), G(Z/nZ), G(Ẑ2), G(Ẑ),

Γ(n) := ker(G(Z)→ G(Z/nZ)),

U2(n) := ker(G(Ẑ2)→ G(Ẑ2/nẐ2) = G(Z/nZ))

for each integer n ≥ 1 prime-to-2, and

U(n) := ker(G(Ẑ)→ G(Ẑ/nẐ) = G(Z/nZ)).

Now let us take a closer look at the pairs (B, ?) that we are considering.
As in Section 1.1.2, the Q-algebra F decomposes into a product

F ∼=
∏

[τ ]:F→Q[τ ]

F[τ ]

of fields, finite-dimensional over Q, giving the Galois orbits of homomor-
phisms F → Qsep, and we obtain accordingly a decomposition

B ∼=
∏

[τ ]:F→Q[τ ]

B[τ ], (1.2.1.10)

where Bτ is the simple factor of B containing Fτ as its center.

Lemma 1.2.1.11. Every simple factor of B is mapped by ? to itself.

Proof. If any of the simple factors of B is mapped to a different simple factor,
then every nonzero element x in the former simple factor satisfies xx? = 0,
which contradicts the positivity condition that TrB/Q(xx?) > 0.

Remark 1.2.1.12. It is clear that modules over semisimple algebras can be
decomposed as a direct sum of modules over its simple factors. By Lemma
1.2.1.11, we see that we can decompose positive involutions, and hence sym-
plectic modules (in a way compatible with the involutions), into products
over simple factors. Note however that the group of similitudes defined by a
general semisimple datum (as in Definition 1.2.1.6) is only a subgroup of a
product of groups of similitudes defined by simple data, because the simili-
tude factors have to be identical in all factors.
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By Wedderburn’s structure theorem (see, for example, [107, Thm. 7.4]),
each finite-dimensional simple algebraB overQ is of the form Mk(D) for some
integer k and some division algebra D over Q. Let us record the fundamental
classification of division algebras with positive involutions exhibited in [94,
§21], originally due to Albert:

Proposition 1.2.1.13 (Albert). Suppose D is a finite-dimensional division
algebra over Q with a positive involution �. Then the elements in the center
F invariant under � form a totally real extension F+ of Q, and there are
only four possibilities:

1. D = F = F+ is totally real.

2. F = F+ is totally real, and D ⊗
F,τ
R is isomorphic to M2(R) for every

embedding τ : F ↪→ R, with the involution � given by conjugating the
natural involution x 7→ x′ := TrD/F (x)−x by some element a ∈ D such
that a� = −a. In this case, a2 = −aa� is totally negative in F .

3. F = F+ is totally real, and D ⊗
F,τ
R is isomorphic to the real Hamilton

quaternion algebra H for every embedding τ : F ↪→ R, with the natural
involution � given by x 7→ x� := TrD/F (x)− x.

4. F is totally imaginary over the totally real F+, with complex conjuga-
tion c, and D satisfies the condition that if υ = υ ◦ c then invυ(D) = 0,
and if υ 6= υ ◦ c then invυ(D) + invυ◦c(D) = 0.

A rough analogue of Proposition 1.2.1.13 for simple algebras (which nev-
ertheless suffices for our purpose) can be given as follows:

Proposition 1.2.1.14. Suppose B is a finite-dimensional simple algebra
over Q with a positive involution ?. Then the elements in F invariant under
? form a totally real extension F+ of Q, and there are only four possibilities:

1. F = F+ is totally real, and B ∼= Mk(F ) for some integer k, with the
involution ? given by conjugating the natural involution x 7→ tx by some
element a ∈ B such that ta = a and such that a is totally positive in
the sense that a = tbb for some element b ∈ B⊗

Q
R.

2. F = F+ is totally real, and B ∼= Mk(D) for some integer k and
some quaternion division algebra D over Q, with D ⊗

F,τ
R isomorphic
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to M2(R) for every embedding τ : F ↪→ R. In this case, B⊗
Q
R is

a product of copies of M2k(R) indexed by embeddings τ : F ↪→ R,
and the involution ? is given by conjugating x 7→ tx by some element
a ∈ B⊗

Q
R that is totally positive in the sense that a = tbb for some

element b ∈ B⊗
Q
R.

3. F = F+ is totally real, and B ∼= Mk(D) for some integer k and some
quaternion division algebra D over Q, with D ⊗

F,τ
R isomorphic to the

real Hamilton quaternion algebra H for every embedding τ : F ↪→ R.
Let us denote by � the standard involution x 7→ TrD/F x − x on D.
Then B⊗

Q
R is a product of copies of Mk(H) indexed by embeddings

τ : F ↪→ R, and the involution ? is given by conjugating x 7→ tx� by
some element a ∈ B such that ta� = a and such that a is totally positive
in the sense that a = tb�b for some element b ∈ B⊗

Q
R ∼= Mk(H).

4. F is totally imaginary over the totally real F+.

Note that Proposition 1.2.1.14 is not as comprehensive as Proposition
1.2.1.13 when we specialize to the case that B is a division algebra.

Proof of Proposition 1.2.1.14. Following the classification for division alge-
bras with positive involutions in [94, §21], the case F = F+ implies (for a
general simple algebra) that B is isomorphic to its opposite algebra in the
Brauer group over F . This shows that B = Mk(D) for some division algebra
over F that is either F or quaternion over F . For the statements about invo-
lutions over R, combine Lemma 1.1.3.6 with the classification of real positive
involutions in [76, §2, especially Lem. 2.11].

Combining Proposition 1.2.1.14 with Lemma 1.2.1.11, we obtain all finite-
dimensional semisimple algebras over Q with positive involutions.

Definition 1.2.1.15. Let B be a finite-dimensional semisimple over Q with a
positive involution ?. Let B ∼=

∏
[τ ]:F→Q[τ ]

B[τ ] be the decomposition into simple

factors as in (1.2.1.10). We say that B involves a simple factor of type C
(resp. type D, resp. type A) if, for some homomorphism τ : F → R (resp.
τ : F → R, resp. τ : F → C such that τ(F ) 6⊂ R), we have an isomorphism
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B ⊗
F,τ
R ∼= Mk(R) (resp. B ⊗

F,τ
R ∼= Mk(H), resp. B ⊗

F,τ
C ∼= Mk(C)), for some

integer k ≥ 1, respecting the positive involutions. In this case, we say that the
factor B[τ ] with [τ ] : F → Q[τ ] determined by τ : F → R (resp. τ : F → R,
resp. τ : F → C) is of type C (resp. type D, resp. type A).

Remark 1.2.1.16. Definition 1.2.1.15 will be justified in Proposition 1.2.3.11
below, which implies that, for G defined by (L, 〈 · , · 〉, h) as in Definition
1.2.1.6, Gad(C) has a simple factor of type C (resp. type D, resp. type A)
if B involves a simple factor of type C (resp. type D, resp. type A) acting
nontrivially on L. (An explanation using only algebras over R can be found
in [76, §5].)

Remark 1.2.1.17. Though providing convenient terminologies for the classi-
fication of (B, ?), knowledge of smooth geometric fibers of G (such as classi-
fication of Gad(C)) will never be needed (and in fact has good reason not to
be helpful) in any of our main theorems.

Definition 1.2.1.18. If B involves any simple factor of type D (see Defini-
tion 1.2.1.15), then we set Ibad := 2. Otherwise we set Ibad := 1.

Remark 1.2.1.19. The invariant Ibad will be used (in Definition 1.4.1.1) to
describe the set of bad primes for our moduli problems. Its (ad hoc) definition
will be justified by the calculations in Sections 1.2.2, 1.2.3, and 1.2.5, which
are basic to the proofs of Theorem 1.4.1.11 and Theorem 6.4.1.1.

By Lemma 1.1.2.4, each simple factor B[τ ] of B in (1.2.1.10) has only one
unique simple module W[τ ]. As a result, it makes sense to classify finite-
dimensional B-modules W over Q by its B-multirank, namely, the integers
(m[τ ])[τ ] such that

W ∼= ⊕
[τ ]:F→Q[τ ]

W
⊕m[τ ]

[τ ] . (1.2.1.20)

(This is consistent with Definition 1.1.3.5, with R = k = Q there.) We would
like to introduce the notion of O-multirank for O-lattices, even if O-lattices
are not necessarily projective.

Definition 1.2.1.21. The O-multirank (m[τ ])[τ ] of an O-lattice M is the
B-multirank of its induced B-module W := M⊗

Z
Q (as explained above). If B

is simple, then the multirank of an O-lattice M is given by a single integer.
We call this single integer the O-rank of M .
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Remark 1.2.1.22. Even if B is simple, O is not necessarily of O-rank one.

Definition 1.2.1.23. Let R be a commutative ring. An O⊗
Z
R-module is

called integrable if it is isomorphic to M⊗
Z
R for some O-lattice M .

Note that an integrable O⊗
Z
R-module is finitely presented over O⊗

Z
R.

Lemma 1.2.1.24. If R is a noetherian (commutative) ring flat over Z, and
if M is an integrable O⊗

Z
R-module such that M ∼= M[Z]⊗

Z
R, then M[Q] :=

M[Z]⊗
Z
Q is uniquely determined by M and independent of the choice of MZ.

Proof. Since M⊗
Z
Q ∼= M[Q]⊗

Z
R, it suffices to show that if M[Q] and M ′

[Q] are

two finite-dimensional B-modules of different B-multirank, then M[Q]⊗
Z
R �

M ′
[Q]⊗Z

R as B⊗
Z
R-modules. By decomposing M[Q] and M[Q] as in (1.2.1.20),

we may assume that B is simple. Then it suffices to treat the case that
M ′

[Q] (M[Q], which follows from the assumption that R is flat over Z.

Definition 1.2.1.25. If R is a noetherian (commutative) ring flat over
Z, then the O-multirank of an integrable O⊗

Z
R-module M , which is by def-

inition isomorphic to M[Z]⊗
Z
R for some O-lattice M[Z], is defined to be the

O-multirank of M[Z]. (This is justified by Lemma 1.2.1.24.)

Suppose now that R is a noetherian complete local ring with residue field
k, and let p := char(k). Let us adopt Convention 1.1.3.3 with R0 = Z.

Suppose p - Disc. We set Λ := k if p = 0, and set Λ := W (k) if p > 0.
This is consistent with the setting in Section 1.1.3, where we have introduced
the notion ofOR-multiranks for finitely generated projectiveOR-modules. As
a special case of Lemma 1.1.3.4, we have the following lemma:

Lemma 1.2.1.26. With assumptions as above, given any finitely generated
projective OR-module M , if Mτ is defined as in Lemma 1.1.3.4, and if M
has OR-multirank (mτ )τ as a projective OR-module (see Definition 1.1.3.5),
then we have a decomposition

M ∼= ⊕
τ
M⊕mτ

τ,R . (1.2.1.27)

In particular, there exists a unique OΛ-lattice M[Λ] (of OΛ-rank (mτ )τ ) such
that M ∼= M[Λ]⊗

Λ
R.
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The decomposition (1.2.1.20) (resp.(1.2.1.27)) is indexed by homomor-
phisms [τ ] : F → Q[τ ] (resp. τ : F → Frac(Λ)τ ), which should be interpreted
as a Galois orbit of homomorphisms F → Qsep (resp. F → Frac(Λ)sep). Each
orbit τ : F → Frac(Λ)τ determines a unique orbit [τ ] : F → Q[τ ]. Let us
write this symbolically as τ ∈ [τ ].

Definition 1.2.1.28. For each [τ ], let s[τ ] ≥ 1 be the integer such that

W[τ ]⊗
Q
k ∼= ⊕

τ∈[τ ]
M
⊕ s[τ ]

τ,k when p = char(k) = 0, and let s[τ ] = 1 when p > 0.

Our definition for the case p > 0 makes sense because OΛ is a product of
matrix algebras, so that no higher multiplicities as in (1.1.2.10) appear after
a base change.

Lemma 1.2.1.29. With assumptions as above, if an OR-module M is inte-
grable, namely, if M ∼= M[Z]⊗

Z
R for some O-lattice M[Z], then it is finitely

generated and projective as an OR-module, and the O-multirank of M[Z] de-
pends only on M (but not on the choice of M[Z]). If M has OR-multirank
(mτ )τ , then M[Z] has O-multirank (m[τ ])[τ ] with mτ = s[τ ]m[τ ] for τ ∈ [τ ].

Proof. If M ∼= M[Z]⊗
Z
R, then M ∼= (M[Z]⊗

Z
Λ)⊗

Λ
R. Since M[Z]⊗

Z
Λ is an

OΛ-lattice, it is finitely generated and projective as an OΛ-module (by Propo-
sitions 1.1.1.21 and 1.1.1.23). Hence M is finitely generated and projective
as an OR-module. By Lemma 1.2.1.24 and by the flatness of Λ over Z, the
O-multirank of M[Z] depends only on M[Z]⊗

Z
Λ. Now we can conclude the

proof by applying Lemma 1.2.1.26.

Definition 1.2.1.30. With assumptions as above, the O-multirank of an
integral OR-module M is defined to be the O-multirank of any O-lattice M[Z]

such that M ∼= M[Z]⊗
Z
R. (This is compatible with Definition 1.2.1.25 when

R is flat over Z.)

Lemma 1.2.1.31. With assumptions as above, let Mτ be defined as in
Lemma 1.1.3.4, let

M[τ ],R := ⊕
τ∈[τ ]

Mτ,R,

and let O[τ ],R be the image of OR in EndOF,R(M[τ ],R). Then

OR ∼=
∏
[τ ]

O[τ ],R, (1.2.1.32)

and there exists an element x[τ ] in M[τ ],R such that M[τ ],R = (O[τ ],R)x[τ ].

39



Proof. It suffices to treat the universal case R = Λ. Then the lemma is clear
from the decomposition OF,Λ ∼=

∏
[τ ]

OFτ inducing all other decompositions

accordingly. For each fixed [τ ], we may take an explicit choice of x[τ ] =
(xτ )τ∈[τ ] with xτ ∈Mτ satisfying Mτ = Oτxτ , as follows: If p > 0, then Oτ is
a matrix algebra, and we can take xτ to the vector (1, 0, 0, . . . , 0). If p = 0,
then any nonzero element xτ in Mτ would suffice.

Lemma 1.2.1.33. With assumptions as above, let M be any finitely gener-
ated OR-module. Then the following statements are equivalent:

1. The OR-module M is integrable of O-multirank (m[τ ])[τ ].

2. The OR-module M is finitely generated and projective of OR-multirank
(mτ )τ , where mτ/s[τ ] = mτ ′/s[τ ′] is the same integer for every τ and τ ′

that determine the same orbit [τ ] = [τ ′].

3. The OR-module M is the direct sum of copies of modules of the form

of M
⊕ s[τ ]

[τ ],R .

Moreover, the implications can be checked modulo the maximal ideal of R.

Proof. The equivalences among the statements follow from Lemma 1.2.1.29.
Since R is noetherian local, and since M is finitely generated, the statement
that the equivalences can be checked modulo the maximal ideal of R follows
from Lemma 1.1.3.1.

1.2.2 Torsion of Universal Domains

Let us continue with the setting in Section 1.2.1.

Proposition 1.2.2.1. Let k be either a field of characteristic p = 0 or a
finite field of characteristic p > 0, such that p - GCD(2, Ibad Disc). Let Λ = k
when p = 0, and let Λ = W (k) when p > 0. Let R be a noetherian local
Λ-algebra with residue field k. Let x ∈ OR := O⊗

Z
R be any element such

that x = −x?. When B involves any simple factor of type C (see Definition
1.2.1.15), we assume moreover that 2 is not a zero-divisor in R. Then x is
equal to z − z? for some z ∈ OR.
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Proof. Throughout the proof, the subscript Λ will mean tensor product with
Λ, and the subscript R will mean tensor product with R.

If p 6= 2, then there is an element e in Λ such that 2e = 1. Then by taking
z = ex, we have x = 2z and z = −z?, and hence x = 2z = z− z?, as desired.

If p = 2, then the assumption is that p - Ibad Disc. By Lemmas 1.2.1.11
and 1.2.1.31, we have a decomposition

OΛ
∼=
∏
[τ ]

O[τ ],Λ, (1.2.2.2)

and the involution ? maps each factor O[τ ],Λ in (1.2.2.2) into itself. The
corresponding facts over R (as in (1.2.1.32)) are induced by base change.
Therefore it suffices to prove the proposition for each factor O[τ ],Λ. For sim-
plicity of notation, let us assume that B is simple. According to Proposition
1.2.1.14, we have four cases of simple B with its positive involution.

Suppose F = F+ is a totally real field over Q. Then B is either of type
C or of type D (see Definition 1.2.1.15). Since p = 2 - Ibad, we see that B is
of type C, which implies that 2 is not a zero divisor in R by assumption.

Since p - Disc, we may assume that OΛ
∼= Mk(OF,Λ) for some integer k.

There is another involution of OΛ given by x 7→ tx. By Lemma 1.1.3.6, there
exists an invertible element c ∈ OΛ such that x? = c txc−1 for all x ∈ OΛ.
Then, as in [94, §21, p. 195], since x = (x?)? = c t(c txc−1)c−1 = c tc−1x tcc−1

for all x ∈ OΛ, we must have c tc−1 = e ∈ OF,Λ for some e. Then c = e tc = e2c
implies e = ±1. Note that the value of e is independent of the choice of c and
the isomorphisms involved. More importantly, it is unchanged if we replace
Λ with a larger ring.

If we are in the case that B ∼= Mk(F ) for some integer k, with involution
given by x? = a txa−1 for some a ∈ B such that ta = a. Comparing with x? =
c txc−1 in B⊗

Q
Λ = OΛ⊗

Λ
Frac(Λ), we obtain ac−1 ∈ F ⊗

Q
Λ = OF,Λ⊗

Λ
Frac(Λ),

and hence ta = a implies tc = c.
If we are in the case that B ∼= Mk(D) for some integer k and some quater-

nion division algebra D over F , then D ⊗
F,τ
R ∼= M2(R) for every embedding

τ : F ↪→ R, because B is of type C. Over B ⊗
F,τ
R ∼= M2k(R), the involution

? is given by conjugating x 7→ tx by some element b ∈ B ⊗
F,τ
R such that

tb = b. Note that this b is defined in the same way as c with R in place of Λ.
Using the fact that the e defined above is unchanged if we replace Λ with a
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larger ring, and that it is independent of the choices involved, if we work in
a field containing both R and Λ, then the comparison between the relations
x? = b txb−1 and x? = c txc−1 shows that tc = c.

Now that we know x? = c txc−1 for some c = tc, the relation x = −x? =
−c txc−1 implies that xc = −c tx = − tc tx = − t(xc). In this case, all
diagonal entries of xc are zero, because we assume that 2 is not a zero divisor
in R. Set y to be the element in OR with only the upper-triangle entries
of xc, so that xc = y − ty. Then x = (y − ty)c−1 = yc−1 − c(c−1 ty)c−1 =
yc−1 − c t(yc−1)c−1 = yc−1 − (yc−1)

?
= z − z? for z = yc−1, as desired.

Finally, suppose [F : F+] = 2. By Lemma 1.1.5.7, there exists some
element e ∈ OF,Λ such that TrFΛ/F

+
Λ

(e) = e + e? = 1. Since p - Disc, OΛ

contains OF,Λ in its center. Therefore OΛ contains e. Then x = −x? implies
that x = (e+ e?)x = ex− x?e? = ex− (ex)? = z − z? for z = ex.

Now suppose that Λ is either Z, or a field of characteristic zero, or
W (k) for some finite field k of characteristic p > 0. Suppose we have two
O⊗

Z
Λ-lattices L1 and L2 and an embedding % : L1 ↪→ L2 with a cokernel of

finite cardinality. Let us denote by [L2 : %(L1)] the cardinality of this coker-
nel. Let ε = 1 or 0. Let us define a finitely generated Λ-module Symε

%(L1, L2)
by

Symε
%(L1, L2) := (L1⊗

Λ
L2)/

(
x⊗ %(y)− y ⊗ %(x)
(bx)⊗ z − x⊗ (b?z)

)
x,y∈L1,
z∈L2,b∈O

when ε = 1 and by

Symε
%(L1, L2) := (L1⊗

Λ
L2)/

(
x⊗ %(x)

(bx)⊗ z − x⊗ (b?z)

)
x,y∈L1,
z∈L2,b∈O

when ε = 0.

Proposition 1.2.2.3. Let the assumptions on Λ be as above. Let L3 be any
Λ-module. When ε = 1 (resp. ε = 0), the Λ-module HomΛ(Symε

%(L1, L2), L3)
is isomorphic to the Λ-module of symmetric (resp. alternating) Λ-bilinear
pairings

〈 · , · 〉 : L1×L2 → L3

such that
〈bx, y〉 = 〈x, b?y〉
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for all x ∈ L1, y ∈ L2, and b ∈ O. This Symε
%(L1, L2) is the so-called

universal domain of such pairings. Then the Λ-module Symε
%(L1, L2) can

have nonzero p-torsion only when Λ is not a field, and when p| Iεbad Disc[L2 :
%(L1)].

Here Iεbad is given its literal meaning: Iεbad = Ibad when ε = 1 and Iεbad = 1
when ε = 0.

Proof. The universality of Symε
%(L1, L2) is clear from its definition. The

statement is also clear if Λ is a field. If Λ = Z, then it suffices to check that
if p - Iεbad Disc[L2 : %(L1)], then Symε

%(L1, L2)⊗
Z
Zp is p-torsion-free. Thus

it suffices to treat the remaining case that Λ = W (k) for some finite field
k of characteristic p > 0 such that p - Iεbad Disc[L2 : %(L1)]. We shall use a
subscript Λ to denote whenever we form a tensor product with Λ.

Since p - [L2 : %(L1)], we have an isomorphism %Λ : L1,Λ
∼→ L2,Λ. There-

fore we may set LΛ := L1,Λ

%Λ
∼→ L2,Λ and consider the Λ-module Symε(LΛ)

defined by

Symε(LΛ) := (LΛ⊗
Λ
LΛ)/

(
x⊗ y − y ⊗ x

(bx)⊗ z − x⊗ (b?z)

)
x,y,z∈LΛ,b∈OΛ

when ε = 1, and

Symε(LΛ) := (LΛ⊗
Λ
LΛ)/

(
x⊗ x

(bx)⊗ z − x⊗ (b?z)

)
x,y,z∈LΛ,b∈OΛ

when ε = 0.
The OΛ-lattice LΛ, being projective by Proposition 1.1.1.23, factors by

Lemma 1.1.3.4 as a finite sum LΛ = ⊕
1≤i≤t

Mi, where for each 1 ≤ i ≤ t,

Mi is isomorphic to some Mτ . Then we see that the Λ-span of the images of
(b1xi)⊗(b2xj), for all 1 ≤ i ≤ t, 1 ≤ j ≤ t, xi ∈Mi, xj ∈Mj, and b1, b2 ∈ OΛ,
is the whole module Symε(LΛ). In the definition of Symε(LΛ), the first
relation shows that we only need those 1 ≤ i ≤ j ≤ t, and the second relation
shows that we can replace each (b1xi)⊗(b2xj) with (b?2b1xi)⊗xj. Hence we
only need the Λ-span of elements of the form (bxi)⊗xj, for 1 ≤ i ≤ j ≤ t
and b ∈ Op. Let us denote by c the restriction of ? to OF,Λ. If Mi

∼= Mτ and
Mj
∼= Mτ ′ but τ ′ 6= τ ◦ c, then (b1xi)⊗(b2xj) = (b?2b1xi)⊗xj = 0 for b1 ∈ Oτ

and b2 ∈ Oτ ′ shows that Mi⊗Mj = 0. On the other hand, if τ ′ = τ ◦ c, then
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Mi⊗Mj can be identified with the Λ-span of (b1xi)⊗(b2xj) for b1, b2 ∈ Oτ .
Writing respectively Oij = 0 or Oij := Oτ in these two cases, we have arrived
at a finite sum of Λ-modules

Symε(LΛ) ∼=
[
⊕

1≤i<j≤t
Oij
]
⊕
[
⊕

1≤i≤t
Symε(Oii)

]
,

in which Symε(Oii) := Oii/(b − b?)b∈Oii when ε = 1, and Symε(Oii) :=
Oii/(b)b∈Oii = 0 when ε = 0. These Symε(Oii), for 1 ≤ i ≤ t, are the only
possible sources of nonzero torsion of Symε(LΛ). This completes the proof
when ε = 0.

It remains to consider the case that ε = 1. Since each Symε(Oij) is
either 0 or a direct factor of Symε(OΛ) := OΛ/(b − b?)b∈OΛ

, it suffices to
show that Symε(OΛ) is torsion-free. If x ∈ OΛ is mapped to any nonzero
torsion element in Symε(OΛ), then rx = y − y? for some y ∈ OΛ and some
nonzero r in Λ. This implies rx = −rx?, and hence x = −x? in OΛ. By
Proposition 1.2.2.1, there is some element z in OΛ such that x = z−z?. This
means x is also mapped to 0 in Symε(OΛ). This shows that Symε(OΛ) is
torsion-free and completes the proof.

1.2.3 Self-Dual Symplectic Modules

Let us continue with the setting in Section 1.2.2. Let k and Λ be either of
the following two types:

1. k is a field of characteristic p = 0, and Λ = k. In this case we assume
moreover that O⊗

Z
k is a product of matrix algebras.

2. k is a finite field of characteristic p > 0, and Λ = W (k).

Suppose p - Disc. Let R be a noetherian complete local Λ-algebra. Through-
out this section, the subscript Λ will mean tensor product with Λ, and the
subscripts of R will have the two possible meanings as in Convention 1.1.3.3.

Let M be a projective OR-module of OR-multirank (mτ )τ (see Definition
1.1.3.5), and let M0 be the projective OR-module with OR-multirank (1)τ .
Namely, M ∼= ⊕

τ
M⊕mτ

τ,R and M0
∼= ⊕

τ
Mτ,R as in Lemma 1.1.3.4. If we

replace OR with OF,R in Lemma 1.1.3.4, then projective OF,R-modules N
also admit decompositions as N ∼= ⊕

τ
O⊕nτFτ ,R

, and it is straightforward that

M0 ⊗
OF,R

N ∼= ⊕
τ
M⊕nτ

τ,R in this case. Conversely, it is straightforward to have

the following:
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Lemma 1.2.3.1. With assumptions on R, M , M0 as above, there is a unique
projective OF,R-module N such that M ∼= M0 ⊗

OF,R
N , with its OF,R-action

given by the first tensor factor alone. Explicitly, N ∼= ⊕
τ
O⊕mτFτ ,R

if (mτ )τ is the

OR-multirank of M . Using the definition of M0 and the explicit description
of N , we have the following canonical isomorphisms:

EndOF,R(M) ∼= EndOF,R(M0) ⊗
OF,R

EndOF,R(N) ∼= OR ⊗
OF,R

EndOF,R(N).

(Here, for the isomorphism EndOF,R(M0) ∼= OR, we used the fact that OR
is a product of matrix algebras under our assumption.)

Suppose 〈 · , · 〉 : M ×M → R is any perfect OR-pairing that induces an
involution z of EndOF,R(M), such that the involution z sends OR to itself and
induces ? on OR. (For our purpose it suffices to consider perfect pairings with
values in R because locally free rank-one modules over R are automatically
free.) Then the composition

(z) ◦ [(?)⊗(IdEndOF,R (N))]

is an involution of EndOF,R(M) that restricts to the identity on OR. Hence,
by Lemma 1.2.3.1, it defines an involution zN of EndOF,R(N) from which we
obtain the decomposition

z = (?)⊗(zN ).

As a result, by Lemma 1.2.1.11, Remark 1.2.1.12, and Proposition 1.1.5.17,
the classification of those perfect OR-pairings 〈 · , · 〉 on M that do induce
involutions on EndOF,R(M) can be reduced to the analogous problem of
OF,R-pairings 〈 · , · 〉N on N .

Lemma 1.2.3.2. With the setting of M and N as above, assume that p -
Ibad Disc. Suppose that z is induced by some alternating OR-pairing 〈 · , · 〉 :
M ×M → R (cf. Proposition 1.1.5.17), which decomposes as z = (?)⊗(zN )
as above. Suppose that B is simple. Then we have the following cases corre-
sponding to the classification in Proposition 1.2.1.14 and Definition 1.2.1.15:

1. Suppose B is of type C. Then the classification of involutions z of
symplectic type is the same as the classification of involutions zN of
symplectic type.
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2. Suppose B is of type D. Then the classification of involutions z of
symplectic type is the same as the classification of involutions zN of
orthogonal type.

3. Suppose B is of type A, in which case F and F+ are simple and [F :
F+] = 2. Then the classification of involutions z of unitary type is the
same as the classification of involutions zN of unitary type.

Proof. Suppose B is of type C. Then we saw in the proof of Proposition
1.2.2.1 that we may assume that OR = Mk(OF,R) for some integer k, and
that the involution ? is given by x 7→ x? = c txc−1 for some c ∈ Mk(OF,R) such
that tc = c. Since t(bx)c−1y = tx tbc−1y = txc−1(c tbc−1)y = txc−1(b?y) for
all x, y, b ∈ OR, this involution ? is induced by the perfect symmetric bilinear
pairing on the column vectors O⊕ kF,R given by (x, y) 7→ TrOF,R/R( txc−1y) for

x, y ∈ O⊕ kF,R. Hence we see that zN has to be induced by an alternating
pairing in this case, which by definition is of symplectic type.

Suppose B is of type D. Since we assume that p - Ibad Disc, and Ibad = 2
exactly in this case, we see that p 6= 2 and hence 2 is not a zero divisor. In this
case, a skew-symmetric pairing is always alternating and never symmetric.
Since p - Disc, we may assume that OR = M2k(OF,R) ∼= Mk(M2(OF,R)) for
some integer k, that the involution � of M2(OF,R) can be described explicitly
as
(
α β
γ δ

)
7→
(
δ −β
γ α

)
= ( 0 1

−1 0 ) t
(
α β
γ δ

)
( 0 −1

1 0 ), and that the involution ? is given
explicitly by conjugating x 7→ tx� by an element c ∈ M2k(OF,R) such that
tc� = c. By conjugating M2(OF,R)-entries by ( 0 1

−1 0 ) in c, we may assume that
the involution ? is the conjugate of x 7→ tx by an element d ∈ M2k(OF,R)
such that td = −d. Therefore, the involution ? can be induced by the
perfect alternating pairing on O⊕ 2k

F,R given by (x, y) 7→ TrOF,R/R( txd−1y) for

x, y ∈ O⊕ 2k
F,R , and we see that zN has to be induced by a symmetric pairing

in this case, which by definition is of orthogonal type.
There is nothing to prove in the case that B is of type A.

Let us introduce some special forms of self-dual projective OR-modules.
By Lemma 1.2.1.31, there exists an element x0 = (x[τ ])[τ ] ∈ OR such that
ORx0 is isomorphic to an integrable OR-module of O-multirank (1)[τ ]. Let
us fix a choice of such a generator x0. (The actual choice is immaterial.)

Definition 1.2.3.3. Let α be any element in OR such that α = ±α?. The
pair (Aα, 〈 · , · 〉α) is defined by the integrable OR-module

Aα := (ORx0)
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of O-multirank (1)[τ ] spanned by some element x0, together with the pairing
〈 · , · 〉α associated (by Lemma 1.1.4.5) with the skew-Hermitian or Hermitian
pairing (| · , · |)α given by the relation (|x0, x0|) = α. If p - Disc, in which case
(Diff−1)R = OR, this is a perfect pairing if and only if α is a unit in OR.

Definition 1.2.3.4. The integrable symplectic OR-module (H, 〈 · , · 〉std) is
defined by the OR-module

H := (ORx0)⊕(ORx0)

of O-multirank (2)[τ ] spanned by x1 := (x0, 0) and x2 := (0, x0), together with
the pairing 〈 · , · 〉std associated (by Lemma 1.1.4.5) with the skew-Hermitian
pairing (| · , · |)std given by the relations (|x1, x1|) = (|x2, x2|) = 0 and (|x1, x2|) =
1. This is always a perfect pairing when p - Disc.

For each integer n ≥ 0, we define the integrable symplectic OR-module
(Hn, 〈 · , · 〉std,n) to be the orthogonal direct sum (see Definition 1.1.4.12) of n
copies of (H, 〈 · , · 〉std).

Suppose that we are given a finitely generated self-dual projective
OR-module (M, 〈 · , · 〉). Let us decompose M as M ∼= ⊕

τ
M⊕mτ

τ,R as in

(1.2.1.27). The OR-pairing 〈 · , · 〉 : M ×M → R is uniquely determined by
an isomorphism 〈 · , · 〉∗ : M →M∨ of OR-modules. By Remark 1.1.5.15 and
Lemma 1.1.5.16, there exists an isomorphism M∨

τ,R
∼= Mτ◦c,R of OR-modules,

and the existence of an isomorphism 〈 · , · 〉∗ : M
∼→ M forces mτ = mτ◦c in

the decomposition M ∼= ⊕
τ
M⊕mτ

τ,R . Let us define [τ ]c to be the equivalence

class of τ under the action of c, and set M[τ ]c,R = ⊕
τ∈[τ ]c

Mτ,R, which is Mτ,R

when τ = τ ◦ c and Mτ,R⊕Mτ◦c,R when τ 6= τ ◦ c. Accordingly, the action
of O (resp. OF ) on M[τ ]c,R factors through O[τ ]c,R (resp. OF[τ ]c ,R

), which is
Oτ,R (resp. OFτ ,R) when τ = τ ◦ c and Oτ,R×Oτ◦c,R (resp. OFτ ,R×OFτ◦c,R)
when τ 6= τ ◦ c. Let m[τ ]c := mτ for each τ ∈ [τ ]c. As pointed out in Remark
1.1.5.15, for the purpose of studying pairings we may decompose (M, 〈 · , · 〉)
as an orthogonal direct sum

(M, 〈 · , · 〉) ∼=
⊥
⊕
[τ ]c

(M
⊕m[τ ]c

[τ ]c,R
, 〈 · , · 〉[τ ]c). (1.2.3.5)

Each [τ ]c determines a unique [τ ] : F → Q[τ ], which corresponds to a unique
simple factor B[τ ] of B as in (1.2.1.10).

Now let us focus on alternating pairings:
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Definition 1.2.3.6. A symplectic OR-module (M, 〈 · , · 〉) is said to be of
standard type if every component (M⊕mτ

[τ ]c,R
, 〈 · , · 〉[τ ]c) in the decomposition

(1.2.3.5) can be described as follows (cf. Definition 1.2.1.15):

1. If B[τ ] is of type C, then (M
⊕m[τ ]c

[τ ]c,R
, 〈 · , · 〉[τ ]c) is isomorphic to

(Hn, 〈 · , · 〉std,n) ⊗
OR
O[τ ]c,R for some integer n ≥ 0.

2. If B[τ ] is of type D, then (M
⊕m[τ ]c

[τ ]c,R
, 〈 · , · 〉[τ ]c) is isomorphic to the or-

thogonal direct sum of modules of the form (Aα, 〈 · , · 〉α), where α is a
unit in OF[τ ]c ,R

satisfying α = −α?.

3. If B[τ ] is of type A, then (M
⊕m[τ ]c

[τ ]c,R
, 〈 · , · 〉) is isomorphic to the orthog-

onal direct sum of modules of the form (Aα, 〈 · , · 〉α), where α is a unit
in OF[τ ]c ,R

satisfying α = −α?.

Proposition 1.2.3.7. Suppose p - Ibad Disc (and suppose O⊗
Z
k is a product

of matrix algebras when p = 0). Then every finitely generated self-dual pro-
jective symplectic OR-module (M, 〈 · , · 〉) is symplectic isomorphic to some
symplectic OR-module of standard type.

This is a generalization of [118, Lem. 3.4]; [76, Lem. 7.2] is a similar
result. The proof we give here follows more closely the one in [118, Lem.
3.4]. We shall proceed by induction on the OR-multiranks, based on the
following basic lemmas:

Lemma 1.2.3.8. Suppose p - Disc. Let 〈 · , · 〉 be a symmetric or skew-
symmetric OR-pairing on M , and let (| · , · |) be the associated Hermitian
or skew-Hermitian pairing (with values in (Diff−1)R = OR) as in Lemma
1.1.4.5. Suppose x is an element in M such that the projection (|x, x|)τ of
(|x, x|) ∈ OR to Oτ,R is a unit in Oτ,R for some τ . Let M1 be the Oτ,R-span
of x in M . Then the OR-module morphism

φ : M →M1 : z 7→ (|x, z|)(|x, x|)−1
τ x

is surjective with kernel M⊥
1 . Hence, the OR-module isomorphism

M
∼→M1⊕M⊥

1 : z 7→ (φ(z), z − φ(z))

identifies M as the orthogonal direct sum of M1 and M⊥
1 (with the pairings

given by the restrictions of 〈 · , · 〉). In particular, M1 and M⊥
1
∼= M/M1 are

projective OR-submodules of M .
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Proof. The morphism φ is surjective because φ(rx) = rx for all r ∈ Oτ,R.
If rx = 0 for some r ∈ Oτ,R, then r(|x, x|) = (|x, rx|) = 0, which shows
that r = 0. Therefore, an element z ∈ M satisfies φ(z) = 0 if and only if
(|x, z|) = 0, which shows that ker(φ) = M⊥

1 .

Lemma 1.2.3.9. Suppose p - Disc. (Here we do not need the assumption
that O⊗

Z
k is a product of matrix algebras when p = 0.) Let 〈 · , · 〉 be a

skew-symmetric OR-pairing on M , and let (| · , · |) be the associated skew-
Hermitian pairing (with values in (Diff−1)R = OR) as in Lemma 1.1.4.5.
Suppose x and y are elements in M such that (|x, x|) = (|y, y|) = 0, and such
that the projection (|x, y|)τ of (|x, y|) ∈ OR to Oτ,R is a unit in Oτ,R for some
τ . Let M1 be the Oτ◦c,R-span of x in M , let M2 be the Oτ,R-span of y in M .
Then M1 ∩M2 = 0 (and so the sum M1 +M2 is direct), and the OR-module
morphism

φ : M →M1⊕M2 : z 7→ −(|y, z|)(|x, y|)−1
τ x+ (|x, z|)(|x, y|)−1

τ y

is surjective with kernel (M1⊕M2)⊥. Hence, the OR-module isomorphism

M
∼→ (M1⊕M2)⊕(M1⊕M2)⊥ : z 7→ (φ(z), z − φ(z))

identifies M as the orthogonal direct sum of (M1⊕M2) and (M1⊕M2)⊥

(with the pairings given by the restrictions of 〈 · , · 〉). In particular, M1, M2,
and (M1⊕M2)⊥ ∼= M/(M1⊕M2) are projective OR-submodules of M .

Proof. If there exist a ∈ Oτ◦c,R and b ∈ Oτ,R such that ax = by ∈ M1 ∩M2,
then a?(|x, y|) = (|ax, y|) = (|by, y|) = 0 and b(|x, y|) = (|x, by|) = (|x, ax|) = 0
force both a = 0 and b = 0. Hence M1 ∩M2 = 0. Moreover, the argument
shows that ax = by = 0 is possible only when a = 0 and b = 0. Therefore,
an element z ∈M satisfies φ(z) = 0 if and only if (|x, z|) = 0 and (|y, z|) = 0,
which shows that ker(φ) = (M1⊕M2)⊥. Finally, the morphism φ is surjective
because φ(ax) = ax and φ(by) = by for all a ∈ Oτ◦c,R and b ∈ Oτ,R.

Proof of Proposition 1.2.3.7. By Lemmas 1.2.1.11 and 1.2.1.31, and the same
argument as in the proof of Proposition 1.2.2.1 based on the decomposition
(1.2.2.2), we may assume that B is simple.

Let us first classify the pairings up to weak symplectic isomorphism (see
Definition 1.1.5.1).

By Lemma 1.2.3.2, we may replace OR with OF,R, and replace (M, 〈 · , · 〉)
with (N, 〈 · , · 〉N), where 〈 · , · 〉N is an alternating OF,R-pairing on N except
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when B is of type D, in which case we consider symmetric OF,R-pairings
instead. For simplicity, let us retain the notation OR, M , and 〈 · , · 〉 for
the various objects. Moreover, we shall use (| · , · |) to denote the Hermitian
or skew-Hermitian pairing associated with 〈 · , · 〉 by Lemma 1.1.4.5. Since
p - Disc, we have (Diff−1)R = OR by definition. Therefore the target of the
pairing (| · , · |) is given by OR = OF,R. Although not logically necessary, it is
often more convenient to do calculations with (| · , · |).

By replacing (M, 〈 · , · 〉) with a factor (M⊕mτ
[τ ],R , 〈 · , · 〉[τ ]) in (1.2.3.5) (which

works for both alternating and symmetric pairings), we may assume from now
on that the OR-multirank (mτ )τ of M has either only one nonzero entry mτ

with τ = τ ◦ c, or only two nonzero entries mτ and mτ◦c with τ 6= τ ◦ c.
In the case τ 6= τ ◦ c, there exist invertible elements f1 ∈ EndOR(M⊕mτ

τ,R )

and f2 ∈ EndOR(M⊕mτ
τ◦c,R) such that 〈(x1, x2), (y1, y2)〉 = f1(x1)(y2)+f2(x2)(y1)

for all x1, y1 ∈ M⊕mτ
τ,R and x2, y2 ∈ M⊕mτ

τ◦c,R. The condition that 〈 · , · 〉 is
alternating shows that f1(x1)(x2) + f2(x2)(x1) = 0 for all (x1, x2) ∈ M . In
other words, f2 = −f∨1 is uniquely determined by f1. If we conjugate the
pairing 〈 · , · 〉 by the automorphism f1× Id of M , then

〈(f−1
1 (x1), x2), (f−1

1 (y1), y2)〉 = x1(y2)− f∨1 (x2)(f−1
1 (y1))

= x1(y2)− x2((f1 ◦ f−1
1 )(y1)) = x1(y2)− x2(y1).

This argument shows that every two self-dual alternating OR-pairings on
M are isomorphic to each other. Explicitly, the pairing is isomorphic to

(Aα, 〈 · , · 〉α)
⊥
⊕mτ with α = (1,−1) ∈ O×Fτ ,R×O

×
Fτ◦c,R

.
In the remainder of the proof, let us assume that τ = τ◦c. Then the action

of OR = OF,R on M factors through OR = OFτ ,R. In this case, it makes sense
to speak of OR-ranks (rather than OR-multiranks) of M and its nontrivial
submodules, because there is a unique nonzero number in eachOR-multirank.
For simplicity, let us replace (H, 〈 · , · 〉std) and (Aα, 〈 · , · 〉α) (see Definitions
1.2.3.4 and 1.2.3.3) with (H, 〈 · , · 〉std) ⊗

OR
OR and (Aα, 〈 · , · 〉α) ⊗

OR
OR, respec-

tively, and replace OR with OR.
We claim that (M, 〈 · , · 〉) is an orthogonal direct sum of submodules of

the form (H, 〈 · , · 〉std) or (Aα, 〈 · , · 〉α), depending on the type of B. We shall
proceed by induction on the OR-rank of M . If the OR-rank of M is zero,
then the claim is automatic.

Suppose there exists x ∈ M such that α := (|x, x|) is a unit. (This does
not happen when B is of type C.) Let M1 be the OR-span of x in M .
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By Lemma 1.2.3.8, M is the orthogonal direct sum of M1 and M⊥
1 , with the

pairings being the restrictions of 〈 · , · 〉. Hence the claim follows by induction
because (M1, 〈 · , · 〉|M1) ∼= (Aα, 〈 · , · 〉α).

Otherwise, assume that there does not exist z ∈ M such that (|z, z|) is a
unit. By perfectness of the pairing, there exist x, y ∈M such that (|x, y|) = 1,
and such that neither (|x, x|) nor (|y, y|) is a unit in OR = OFτ ,R.

Suppose B is of type D, in which case 〈 · , · 〉 is symmetric. Since p -
Ibad Disc, there exists β ∈ Λ such that 2β = 1. Set z = x + βy. Then
(|z, z|) = 1 + (nonunit) is a unit. This is a contradiction.

Suppose B is of type A, in which case [F : F+] = 2. Let β be any element
in OF such that OF,Λ = OF+,Λ +OF+,Λβ. Since TrF/F+((β − β?)−1) = 0 and
TrF/F+((β − β?)−1β) = 1, we see that (β − β?)−1 ∈ (Diff−1

OF /OF+
)Λ = OF,Λ

(because p - Disc). Hence α := β − β? is a unit in OF,Λ. Set z = −βx + y.
Then (|z, z|) = β?β(|x, x|)−β?(|x, y|)−β(|y, x|)+(|y, y|) = α+(nonunit), which
is a unit. This is a contradiction too.

Hence we may assume that B is of type C in the remainder of the proof of
the claim, in which case 〈 · , · 〉 is alternating. By Lemmas 1.1.4.5 and 1.1.5.5,
this implies (|x, x|) = (|y, y|) = 0 (under the simplified assumption that OR =
OF,R). Let M1 (resp. M2) be the OR-spans of x (resp. y). By Lemma 1.2.3.9,
the sum M1 +M2 is direct, and M is the orthogonal direct sum of (M1⊕M2)
and (M1⊕M2)⊥, with the pairings being the restrictions of 〈 · , · 〉. Hence the
claim follows by induction because (M1⊕M2, 〈 · , · 〉|M1⊕M2) ∼= (H, 〈 · , · 〉std).

Summarizing what we have obtained (under the simplified assumption),

1. If B is of type C, then (M, 〈 · , · 〉) is isomorphic to (Hmτ
2
, 〈 · , · 〉std,mτ

2
).

2. IfB is of type D, then (M, 〈 · , · 〉) (as a symmetric pairing) is isomorphic
to the orthogonal direct sum of modules of the form (Aα, 〈 · , · 〉α), each
α being a unit in OF,R.

3. If B is of type A, then (M, 〈 · , · 〉) (as an alternating pairing) is isomor-
phic to the orthogonal direct sum of modules of the form (Aα, 〈 · , · 〉α),
each α being a unit in OF,R satisfying α = −α?.

Then we can conclude the proof by tensoring the pairing (M, 〈 · , · 〉) overOF,R
with any self-dual pairing on O inducing the involution ? as in the proof of
Lemma 1.2.3.2. The difference between weak symplectic isomorphisms and
symplectic isomorphisms is immaterial, because multiplying by an element in
O×F,R in the second factor of the pairing does not affect the classification.
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Corollary 1.2.3.10. Suppose p - Ibad Disc. Then every two finitely generated
self-dual projective symplectic OR-modules (M1, 〈 · , · 〉1) and (M2, 〈 · , · 〉2)
such that M1 and M2 have the same OR-multirank are isomorphic after some
finite étale extension R → R′. If p > 0 and B does not involve any simple
factor of type D, then we may take R′ = R.

Proof. It suffices to show that, in the latter two cases in the summary at
the end of the proof of Proposition 1.2.3.7, the submodules (Aα, 〈 · , · 〉α)
appearing in the orthogonal direct sum are all isomorphic to each other over
some R→ R′.

Suppose B is of type D, in which case F = F+. It suffices to show that, for
each τ , each unit α in the complete local ring OFτ ,R (with residue field k) is
the square of some unit α′ in OFτ ,R′ over some finite étale extension R→ R′.
Consider f(X) := X2 − α. Since p 6= 2, the reduction of f ′(X) = 2X in k
has nonzero values for nonzero inputs of X. Let k′ be the finite separable
extension of k over which f(X) has a (necessarily nonzero) solution, and let
R′ be the unique finite étale extension of R such that R′⊗

R
k ∼= k′. Then it

follows from Hensel’s lemma (see, for example, [41, Thm. 7.3]) that f(X) has
a solution α′ in OF,R′ , as desired.

Suppose B is of type A, in which case [F : F+] = 2. When char(k) = 0,
we replace R with a finite étale extension over which F/F+ is split. Then the
claim is true because, by Lemma 1.1.5.9 (with ε = 1), if γ := α(α′)−1 ∈ O×F,R
satisfies γ = γ?, then γ = δδ? for some unit δ ∈ OF,R.

Proposition 1.2.3.11. Suppose p - Ibad Disc. Let B ∼=
∏
[τ ]

B[τ ] be the de-

composition of B into its simple factors as in (1.2.1.10). Let (M, 〈 · , · 〉) be
any self-dual integrable symplectic OR-module. Then (M, 〈 · , · 〉) decomposes
accordingly as

(M, 〈 · , · 〉) ∼= ⊕
[τ ]

(M
⊕m[τ ]

[τ ],R , 〈 · , · 〉[τ ]),

where M[τ ],R is defined as in Lemma 1.2.1.31, and where (m[τ ])[τ ] is the
O-multirank of M as in Definition 1.2.1.25. Define a group functor H over
R by setting

H(R′) :=

{
(g, r) ∈ GLOR′ (MR′)×Gm(R′) :
〈gx, gy〉 = r〈x, y〉 ∀x, y ∈MR′

}
,

or, when M 6= 0, by setting equivalently

H(R′) := {g ∈ EndOR′ (MR′) : ν(g) := gzg ∈ (R′)
×}.
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Let ksep be a separable closure of k, and let R̃ be the strict Henselization of
R� k → ksep. Then the group H⊗

R
R̃ depends (up to isomorphism) only on

the O-multirank (m[τ ])[τ ] of the underlying integrable OR-module M , and is
independent of the perfect alternating OR-pairing 〈 · , · 〉 on M that we use.
Moreover, based on the classification of the simple factors B[τ ] as in Propo-
sition 1.2.1.14 and Definition 1.2.1.15, we have the following descriptions of
simple factors of Had(ksep):

1. If B[τ ] is of type C, then the existence of 〈 · , · 〉 forces m[τ ] to be even,

and (M
⊕m[τ ]

[τ ],R , 〈 · , · 〉[τ ]) defines simple factors of Had(ksep) that are of

type C and rank
m[τ ]

2
.

2. If B[τ ] is of type D, then (M
⊕m[τ ]

[τ ],R , 〈 · , · 〉[τ ]) defines simple factors of

Had(ksep) that are either of type B and rank
m[τ ]−1

2
when m[τ ] is odd, or

of type D and rank
m[τ ]

2
when m[τ ] is even.

3. If B[τ ] is of type A, then (M
⊕m[τ ]

[τ ],R , 〈 · , · 〉[τ ]) defines simple factors of

Had(ksep) that are type A of rank m[τ ] − 1.

Every simple factor of Had(ksep) is contributed by some simple factor B[τ ] as
described above.

In particular, this applies to the group functor G⊗
Z
R (cf. Definition

1.2.1.6).

Proof of Proposition 1.2.3.11. We may assume that M 6= 0. Since this is
a question about simple factors of Had(ksep), we can ignore the similitude
factors (cf. Remark 1.2.1.12) and assume as in the proof of Proposition 1.2.3.7
that B is simple. (When p = 0, the assumption that O⊗

Z
k is a product of

matrix algebras is automatic if we replace k with ksep.)
By Lemma 1.2.3.1, there is an OF -rank-m integrable OF,R-lattice N

such that M ∼= M0 ⊗
OF,R

N , where M0 is the unique O-rank-one integrable

OR-lattice (see Definition 1.2.1.30 and Lemma 1.2.1.31). As we saw in
Lemma 1.2.3.2, z decomposes as z = (?)⊗(zN ) for some involution zN of
EndOF,R(N) induced by some perfect pairing 〈 · , · 〉N on N . Since the iso-
morphism EndOR(M) ∼= EndOF,R(N) carries the restriction of the involution
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z of EndOF,R(M) to the involution zN of EndOF,R(N), we obtain

H(R′) ∼=
{
g ∈ EndOF,R′ (NR′) : ν(g) := gzNg ∈ (R′)

×
}

for every R-algebra R′. For simplicity, let us assume that OR = OF,R and
(M, 〈 · , · 〉) = (N, 〈 · , · 〉N) in the remainder of the proof.

For our purpose, we may replace k with any sufficiently large separable
extension such that Frac(Λ) contains all the images of τ : F ↪→ Frac(Λ)sep

(for any choice of separable closure Frac(Λ)sep of Frac(Λ)). Then we may
assume that the structural homomorphism Λ→ OFτ ,Λ is an isomorphism for
all τ . As in (1.2.3.5) and in the proof of Proposition 1.2.3.7, we have an
orthogonal direct sum

(M, 〈 · , · 〉) ∼=
⊥
⊕
[τ ]c

(M
⊕m[τ ]c

[τ ]c,R
, 〈 · , · 〉[τ ]c)

of finitely generated projective modules, with all the m[τ ]c given by the same
integer m, the O-rank of the integrable OR-module M . Let H[τ ]c be the alge-

braic group defined by (M
⊕m[τ ]c

[τ ]c,R
, 〈 · , · 〉[τ ]c) as above. Then H is isomorphic

to the subgroup of
∏
[τ ]c

H[τ ]c consisting of elements having the same simili-

tude factors in all H[τ ]c . Hence it suffices to classify each of the symplectic

OR-modules (M
⊕m[τ ]c

[τ ]c,R
, 〈 · , · 〉[τ ]c).

Now let us replace everything with its base change from R to R̃, the strict
Henselization of R → k → ksep. (Certainly, it is enough to work over some
finite étale extension R′ of R that splits everything.) By Proposition 1.2.3.7

and Corollary 1.2.3.10, the classification of (M
⊕m[τ ]c

[τ ]c,R̃
, 〈 · , · 〉[τ ]c) is completely

known:

• If B is of type C, then we may identify M[τ ]c,R̃
with OFτ ,R̃ ∼= R̃, and

identify the pairing 〈 · , · 〉[τ ]c explicitly with

R̃⊕m⊕ R̃⊕m → R̃ : (x, y) 7→ tx

(
1m

2

−1m
2

)
y.

This alternating pairing defines GSpm over R̃.

• If B is of type D, then we may identify M[τ ]c,R̃
with OFτ ,R̃ ∼= R̃, and

identify the pairing 〈 · , · 〉[τ ]c explicitly with

R̃⊕m⊕ R̃⊕m → R̃ : (x, y) 7→ txy.
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This symmetric pairing defines the orthogonal group GOm over R̃.

• If B is of type A, then we may identify M[τ ]c,R̃
= Mτ,R̃×Mτ◦c,R̃ with

OFτ,R̃ ×OFτ◦c,R̃ ∼= R̃× R̃, and identify the pairing 〈 · , · 〉[τ ]c explicitly
with

(R̃⊕m× R̃⊕m)⊕(R̃⊕m× R̃⊕m)→ R̃ :

((x1, x2), (y1, y2)) 7→ tx1y2 − tx2y1.

Let g = (g1, g2) ∈ EndOR̃(M[τ ]c,R̃
) ∼= Mm(R̃)×Mm(R̃). Then

〈(x1, x2), g(y1, y2)〉
= 〈(x1, x2), (g1(y1), g2(y2))〉 = tx1g2(y2)− tx2g1(y1)

= t( tg2x1)y2 − t( tg1x2)y1 = 〈( tg2x1,
tg1x2), (y1, y2)〉

for all (x1, x2), (y1, y2) ∈ R̃⊕m× R̃⊕m, and hence gz = ( tg2,
tg1).

Therefore the condition that ν(g) := gzg ∈ R̃× implies that g1 ∈
GLm(R̃) and g2 = ν(g)−1 tg−1

1 , and we have an isomorphism H[τ ](R̃)
∼→

GLm(R̃)×Gm(R̃) : g = (g1, g2) 7→ (g1, ν(g)).

All the above identifications remain valid if we replace R̃ with an
R̃-algebra, and they are compatible in a functorial way. In each of the three
cases, if we form the quotient of H by its center, then we obtain the product
of the quotients of H[τ ]c by their centers, as desired.

As a by-product of these explicit identifications,

Corollary 1.2.3.12. With assumptions on k, Λ, and R as above, the group
H defined in Proposition 1.2.3.11 is smooth over R.

In particular, the group functor G⊗
Z

Λ (see Definition 1.2.1.6) is smooth

over Λ.

1.2.4 Gram–Schmidt Process

Let us retain the assumptions and notation of Section 1.2.3 in this section,
except that we no longer need the assumption that O⊗

Z
k is a product of

matrix algebras when p = 0.
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Definition 1.2.4.1. An alternating OR-pairing 〈 · , · 〉 : M ×M → R is
called sufficiently alternating if it satisfies 〈x, rx〉 = 0 for all x ∈ M
and all r ∈ OΛ such that r = r?. Accordingly, a symplectic OR-module
(M, 〈 · , · 〉) is called sufficiently symplectic if the alternating pairing 〈 · , · 〉
is sufficiently alternating.

Lemma 1.2.4.2. If there exists a noetherian complete local Λ-algebra R′ in
which 2 is not a zero divisor, and a symplectic OR′ module (M ′, 〈 · , · 〉′) such
that (M, 〈 · , · 〉) is the pullback of (M ′, 〈 · , · 〉′) under some homomorphism
R′ → R, then (M, 〈 · , · 〉) is automatically sufficiently symplectic.

Proof. If suffices to show that (M ′, 〈 · , · 〉′) is sufficiently symplectic. Over
R′, we have 〈x, rx〉′ = 〈r?x, x〉′ = 〈rx, x〉′ = −〈x, rx〉′ for all x ∈ M ′ and all
r ∈ OΛ such that r = r?, which forces 〈x, rx〉′ = 0, as desired.

Lemma 1.2.4.3. Suppose p - Ibad Disc. Let 〈 · , · 〉 : M ×M → R be an
alternating OR-pairing, and let (| · , · |) : M ×M → OR be the associated
skew-Hermitian pairing as in Lemma 1.1.4.5. In the case that p = 2 and B
involves any simple factor of type C, we assume moreover that the alternating
pairing 〈 · , · 〉 is sufficiently alternating. Then, for every x ∈M , there exists
some element b ∈ OR such that (|x, x|) = b− b?.

Proof. Since (| · , · |) is skew-Hermitian, we know that a := (|x, x|) satisfies
a = −a?. Then Proposition 1.2.2.1 implies that there exists an element β
such that a = b − b?, unless we are in the case that B involves some simple
factor of type C, that p = 2, and that 2 is a zero divisor in R.

As in the proof of Proposition 1.2.2.1, we may assume that B is simple.
(The assumption now is that B is simple of type C, that p = 2, and that 2
is a zero divisor in R.) Moreover, we may assume that OΛ

∼= Mk(OF,Λ) for
some integer k, and that the involution ? is given by x 7→ c txc−1 for some
c ∈ Mk(OF,Λ) such that tc = c. Then a = −a? = c tac−1 implies ac = − t(ac),
and we may represent ac as an element (aij) in Mk(OF,R) such that aij = −aji
for all 1 ≤ i ≤ k and 1 ≤ j ≤ k. For every d ∈ Mk(OF,Λ) such that td = d,
we have (cd)? = d?c? = c tdc−1c tcc−1 = cd. Let us consider the special case
that d = diag(di) is a diagonal matrix. Since 〈 · , · 〉 is sufficiently alternating,
we have 〈x, cdx〉 = TrO/Z((cd)a) = TrO/Z(d(ac)) = TrOF /Z(

∑
1≤i≤k

diaii) = 0

for all choices of di ∈ OF,Λ. This forces aii = 0 for all i, and hence ac = e− te
with e = (eij) given by eij = aij if i < j and eij = 0 if i ≥ j. Set b := ec−1.
Then a = (ac)c−1 = (e− te)c−1 = ec−1−c t(ec−1)c−1 = b−b?, as desired.
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Lemma 1.2.4.4. Suppose p - Ibad Disc. Let 〈 · , · 〉 be a sufficiently alternating
OR-pairing on M (see Definition 1.2.4.1). Let M1 be a totally isotropic
projective submodule of M such that M/M1 is projective, and such that the
restriction of 〈 · , · 〉∗ : M →M∨ to M1 is an injection. Then M∨

1 is embedded
as a totally isotropic projective submodule of M , and there is a symplectic
isomorphism

(M, 〈 · , · 〉)→ (M1⊕M∨
1 , 〈 · , · 〉can.)⊕((M1⊕M∨

1 )⊥, 〈 · , · 〉|(M1⊕M∨1 )⊥).

Proof. Since M1 is finitely generated and projective, it decomposes as M ∼=
M⊕mτ

τ,R for some OR-multirank m = (mτ )τ . Let us proceed by induction on
|m| :=

∑
τ

mτ . There is nothing to prove when |m| = 0.

When |m| ≥ 1, we may decompose M1
∼= M1,0⊕M ′

1, where M1,0 and M ′
1

are finitely generated projective OR-modules such that M1,0
∼= Mτ,R for some

τ with mτ ≥ 1. By assumption, M1 is totally isotropic, and hence M1,0 and
M ′

1 are totally isotropic as well. By assumption that restriction of 〈 · , · 〉∗
to M1 is an injection, the morphism M/M⊥

1,0 →M∨
1,0 induced by 〈 · , · 〉∗ is a

surjection. Since M1,0
∼= Mτ,R, its dual M∨

1,0
∼= Mτ◦c,R is projective as well.

Hence the surjection M/M⊥
1,0 �M∨

1,0 splits.
Let x be any element spanning M1,0 in the sense that M1,0 = (Oτ,R)x.

The statement above that the surjection M/M⊥
1,0 � M∨

1,0 splits implies that
there exists an element y in M such that 〈x, y〉 = 1τ◦c, the identity ele-
ment in Oτ◦c,R. By Lemma 1.2.4.3 and the assumption that 〈 · , · 〉 is suffi-
ciently alternating, there is an element b ∈ OR such that b − b? = (|y, y|).
Then (|bx+ y, bx+ y|) = 0 − b + b? + (|y, y|) = 0. Replacing y by bx + y,
we may assume that (|y, y|) = 0. Then Lemma 1.2.3.9 implies that M is
the orthogonal direct sum of M1,0⊕M∨

1,0 and its orthogonal complement
(M1,0⊕M∨

1,0)⊥ ∼= M⊥
1,0/M1,0.

Note that M ′
1 is a totally isotropic projective OR-submodule of M⊥

1,0/M1,0

such that (M⊥
1,0/M1,0)/M ′

1
∼= M⊥

1,0/M1, which is projective because
M∨

1,0⊕M⊥
1,0/M1

∼= M/M1 is projective by assumption. By induction, we

may write M⊥
1,0/M1,0 as the orthogonal direct sum of M ′

1⊕ (M ′
1)∨ and the

orthogonal complement of M ′
1⊕ (M ′

1)∨ in M⊥
1,0/M1,0. Then we can conclude

the proof by putting the two orthogonal direct sums together.

Proposition 1.2.4.5. With assumptions on k and Λ as above, let (M, 〈 · , · 〉)
be a finitely generated self-dual sufficiently symplectic projective OR-module,
and let M1 and M2 be two totally isotropic projective OR-submodules of

57



M , such that M1
∼= M2 and such that M/M1 and M/M2 are both projective.

If M1⊕M∨
1 has the same OR-multirank as M , then there is a symplectic

automorphism of (M, 〈 · , · 〉) that sends M1 to M2.

Proof. By Lemma 1.2.4.4, there exist symplectic isomorphisms

(M, 〈 · , · 〉) ∼→ (Mi⊕M∨
i , 〈 · , · 〉can.)

⊥
⊕((Mi⊕M∨

i )⊥, 〈 · , · 〉|(Mi⊕M∨i )⊥)

for i = 1, 2. By comparison of OR-multiranks, we have (Mi⊕M∨
i )⊥ = 0

for i = 1, 2. Thus any f0 : M1
∼→ M2 induces a symplectic isomorphism

(f0⊕(f∨0 )−1) : (M1⊕M∨
1 )

∼→ (M2⊕M∨
2 ), and the proposition follows.

Proposition 1.2.4.6. With assumptions on k and Λ as above, let R̃ � R
be a surjection of Artinian local Λ-algebras, with kernel I satisfying I2 = 0.
Let (M̃, 〈 · , · 〉) be a finitely generated self-dual sufficiently symplectic pro-
jective OR̃-module, and let (M, 〈 · , · 〉) := (M̃, 〈 · , · 〉)⊗

R̃

R. Suppose M1 is a

totally isotropic projective OR-submodule of M , such that M/M1 is pro-
jective. Then there is a totally isotropic projective OR̃-submodule M̃1 of M̃
such that M̃ ⊗

R̃

R = M and such that M̃/M̃1 is projective.

Proof. Since M1 is finitely generated and projective, it decomposes as M ∼=
M⊕mτ

τ,R for some OR-multirank m = (mτ )τ . Let us proceed by induction on
|m| :=

∑
τ

mτ . There is nothing to prove when |m| = 0.

When |m| ≥ 1, we may decompose M1
∼= M1,0⊕M ′

1, where M1,0 and
M ′

1 are finitely generated projective OR-modules such that M1,0
∼= Mτ,R

for some τ with mτ ≥ 1. By Lemma 1.2.4.4, there is an isomorphism

M
∼→ (M1,0⊕M∨

1,0)
⊥
⊕(M1,0⊕M∨

1,0)⊥, so that M ′
1 is embedded as a projective

OR-submodule of (M1,0⊕M∨
1,0)⊥ ∼= M⊥

1,0/M1,0.
Let (| · , · |) be the skew-Hermitian pairing associated with 〈 · , · 〉 by

Lemma 1.1.4.5. Let x be any element spanning M1,0, and let y be some
element spanning M∨

1,0 such that (|x, y|) = 1τ◦c, the identity element of

Oτ◦c,R. Let x̃ (resp. ỹ) be any element in M̃ lifting x (resp. y). Then
(|x̃, ỹ|) =: r is an element in Oτ◦c,R̃ lifting (|x, y|) = 1τ◦c ∈ Oτ◦c,R. In
particular, r is a unit in Oτ◦c,R̃. Replacing ỹ by r−1ỹ, we may assume
that (|x̃, ỹ|) = 1τ◦c ∈ Oτ◦c,R̃. Let ξ := (|x̃, x̃|) ∈ OR̃. Since (|x, x|) = 0
by the assumption that M1,0 is totally isotropic, we see that ξ ∈ I · OR̃.
By Lemma 1.2.4.3 and its proof, and by the assumption that 〈 · , · 〉 is
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sufficiently alternating, we see that ξ = η−η? for some η ∈ I ·OR̃. Note that
η? ∈ I · OR̃ implies ηη? = 0. Then x̃′ := x̃ − ηỹ is another lifting of x, such
that (|x̃′, x̃′|) = (|x̃, x̃|)− η?(|ỹ, x̃|)− η(|x̃, ỹ|) + η?η(|ỹ, ỹ|) = ξ + η? − η + 0 = 0.
Similarly, we may find another lifting ỹ′ := ỹ − ζx̃ for some ζ ∈ I · OR̃
such that (|ỹ′, ỹ′|) = 0. For each of these choices of η and ζ, we have
(|x̃′, ỹ′|) = (|x̃, ỹ|) − η(|ỹ, ỹ|) − ζ(|x̃, x̃|) + ηζ = 1 because all terms but (|x̃, ỹ|)
on the right-hand side lie in I2 · OR̃ = 0. Let M̃1,0 be the Oτ,R̃-span of

x̃′, and let M̃∨
1,0 be the Oτ◦c,R̃-span of ỹ′. Then Lemma 1.2.3.9 shows that

there is a symplectic isomorphism M̃
∼→ (M̃1,0⊕ M̃∨

1,0)
⊥
⊕(M̃1,0⊕ M̃∨

1,0)⊥.

In particular, M̃1,0 is a totally isotropic projective OR̃-submodule lifting
M1,0, and (M̃1,0⊕ M̃∨

1,0)⊥ ∼= M̃⊥
1,0/M̃1,0 is a projective self-dual symplectic

OR̃-module lifting (M1,0⊕M∨
1,0)⊥.

Note that M ′
1 is a totally isotropic projective OR-submodule of M⊥

1,0/M1,0

such that (M⊥
1,0/M1,0)/M ′

1
∼= M⊥

1,0/M1 is projective. By induction, it

can be lifted to a projective OR̃-submodule M̃ ′
1 of M̃⊥

1,0/M̃1,0 such that

(M̃⊥
1,0/M̃1,0)/M̃ ′

1
∼= M̃⊥

1,0/M̃1 is projective. Let M̃1 be the preimage of M̃ ′
1

in M̃⊥
1,0, which is a totally isotropic OR̃-submodule of M̃ . It is projective

because it is isomorphic to M̃1,0⊕ M̃ ′
1, and M̃/M̃1 is OR̃-projective

because it is isomorphic to M̃∨
1,0⊕(M̃⊥

1,0/M̃1). Hence it satisfies all our
requirements.

1.2.5 Reflex Fields

Let (L, 〈 · , · 〉, h) be a PEL-type O-lattice as in Definition 1.2.1.3. The nat-
ural ⊗

Z
C-action on L⊗

Z
C may differ from the C-action given by the polar-

ization h : C→ EndO⊗
Z
R(L⊗

Z
R) by the complex conjugation 1⊗ c. Then we

can decompose
L⊗
Z
C = V0⊕V c

0 (1.2.5.1)

(as a direct sum of O⊗
Z
C-modules), where h(z) acts by 1⊗ z on V0, and by

1⊗ zc on V c
0 .

Both V0 and V c
0 are totally isotropic submodules of L⊗

Z
C, because

√
−1〈x, y〉 = 〈(1⊗

√
−1)x, y〉 = 〈h(

√
−1)x, y〉

= 〈x, h(−
√
−1)y〉 = 〈x, (1⊗(−

√
−1))y〉 = −

√
−1〈x, y〉
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for all x, y ∈ V0. (The case for V c
0 is similar.) Since 〈 · , · 〉 is nondegenerate, it

induces a perfect pairing between V0 and V c
0 , or equivalently, an isomorphism

V c
0
∼→ HomC(V0,C(1)) of O⊗

Z
C-modules. This determines an isomorphism

V c
0
∼→ V ∨0 := HomC(V0,C) for each choice of

√
−1.

Let us denote the unique simple module of B ⊗
F,τ
C by Wτ . Applying

Corollary 1.1.2.6 to the B⊗
Q
C-modules V0 and V c

0 , we obtain decompositions

V0
∼= ⊕

τ :F→C
W⊕ pτ
τ

and
V c

0
∼= ⊕

τ :F→C
W⊕ qτ
τ

for some (tuples of) integers (pτ )τ and (qτ )τ .

Definition 1.2.5.2. The integers (pτ )τ and (qτ )τ are called the signatures
of V0 and V c

0 , respectively, and the pairs of integers (pτ , qτ )τ are called the
signatures of (L⊗

Z
R, 〈 · , · 〉, h).

Remark 1.2.5.3. The signatures of V0 (resp. V c
0 ) form simply the

O⊗
Z
C-multirank of V0 (resp. V c

0 ) when Λ = k = C in Definition 1.1.3.5.

Since the decompositions above are determined by the action of the center
F and its homomorphisms into C (see Corollary 1.1.2.6), we have pτ = qτ◦c
for all τ . Suppose that (m[τ ])[τ ] is the O-multirank of L as in Definition
1.2.1.21, then the O⊗

Z
C-multirank (mτ )τ of L⊗

Z
C is given by mτ = s[τ ]m[τ ]

as in Lemma 1.2.1.33, and we have

L⊗
Z
C ∼= ⊕

τ :F→C
W⊕mτ
τ

with mτ = pτ + qτ = pτ + pτ◦c for all τ by (1.2.5.1).

Definition 1.2.5.4. The reflex field F0 of (L⊗
Z
R, 〈 · , · 〉, h) is the field of

definition of V0 as an O⊗
Z
C-module. More precisely, F0 is the fixed field of

C by the elements σ in Aut(C/Q) such that V0 and V0 ⊗
C,σ
C are isomorphic

as B⊗
Q
C-modules (see Definition 1.1.2.7 and Remark 1.1.2.9).

Remark 1.2.5.5. The reflex field is by definition a subfield of C.
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Let us state the following special cases of the results in Section 1.1.2,
applied with C = B, E = F , k = Q, and K = Ksep = C there.

Corollary 1.2.5.6. F0 = Q(TrC(b|V0) : b ∈ B) = Q(TrC(b|V0) : b ∈ O).

Proof. This is a special case of Corollary 1.1.2.16, which is applicable because
char(Q) = 0.

Corollary 1.2.5.7. If a rational prime number p is unramified in F , then it
is unramified in F0.

Proof. The discriminant of F over Q is the same as that of every Galois
conjugate of F over Q. Therefore, if p does not divide the discriminant of
F over Q, then it does not divide the discriminant of FGal over Q either.
By Corollary 1.1.2.12, F0 is contained in FGal. Hence p does not divide the
discriminant of F0 over Q, as desired.

Each choice of
√
−1 induces compatible isomorphisms C(1)

∼→ C and
V c

0
∼→ V ∨0 , allowing us to rewrite (1.2.5.1) as a symplectic isomorphism

(L⊗
Z
C, 〈 · , · 〉) ∼→ (V0⊕V ∨0 , 〈 · , · 〉can.) (1.2.5.8)

(see Definition 1.1.4.8 and Lemma 1.1.4.13). (The actual choice of
√
−1 is

immaterial for our purpose.)

Lemma 1.2.5.9. Suppose F ′0 is any finite extension of F0 in C such
that O⊗

Z
F ′0 is a product of matrix algebras over fields. Then there

exists an OF ′0-torsion-free O⊗
Z
O′F0

-module L0 such that L0 ⊗
O′F0

C ∼= V0 as

O⊗
Z
C-modules. We can take F ′0 to be unramified at any prescribed finite set

of rational primes unramified in B ∼= O⊗
Z
Q.

Proof. By Corollary 1.1.2.14, pτ = pτ ′ for every τ, τ ′ : F → C in the same
Aut(C/F ′0)-orbit. Since O⊗

Z
F ′0-modules are parameterized by multiranks

labeled by Gal(F sep
0 /F ′0)-orbits of homomorphisms F → F sep

0 , and since they
decompose over F sep

0 (and accordingly over C) as in (1.1.2.10) (with s[τ ] = 1
there when O⊗

Z
F ′0 is a product of matrix algebras over fields), it follows that

there exists an O⊗
Z
F ′0-module V00 such that V00⊗

F ′0

C has multirank (pτ )τ .

Then we take L0 to be theO-span of any fullO′F0
-lattice in V00. The existence

of F ′0 unramified at any prescribed finite subset of 2 follows from [107, Thm.
32.15 and 32.18] (using the Grunwald–Wang theorem).
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Lemma 1.2.5.10. Every L0 in Lemma 1.2.5.9 satisfies DetO|L0 = DetO|V0

as elements in C[O∨] ∼= Z[O∨]⊗
Z
C. Moreover, we can view DetO|V0 as an

element in OF0 [O∨] ∼= Z[O∨]⊗
Z
OF0.

Proof. For every σ ∈ Aut(C/F0), we have DetO|V0 = σ(DetO|V0) because
V0
∼= V0 ⊗

C,σ
C as B⊗

Q
C-modules. Hence DetO|V0 ∈ F0[O∨]. Then we have

DetO|V0 ∈ OF0 [O∨] = F0[O∨]∩OF ′0 [O∨] by Lemma 1.2.5.9.

Suppose we have a homomorphism OF0 → k, and suppose k is either
characteristic zero or a finite field. Suppose p = char(k) satisfies p - Disc.
Let Λ = k when p = 0, and let Λ = W (k) when p > 0.

Lemma 1.2.5.11. With assumptions as above, let R be a noetherian local
Λ-algebra with residue field k. Let M and M ′ be two O⊗

Z
R-modules that

are finitely generated and projective as an R-module. Then the following are
equivalent:

1. M ∼= M ′ as O⊗
Z
R-modules.

2. DetO|M = DetO|M ′ in R[O∨] ∼= Z[O∨]⊗
Z
R.

3. M0 := M ⊗
R
k and M ′

0 := M ′⊗
R
k satisfy DetO|M0 = DetO|M ′0 in k[O∨] ∼=

Z[O∨]⊗
Z
k.

In particular, if DetO|M0 = DetO|V0 = DetO|M ′0 in k[O∨], then we have M ∼=
M ′ as O⊗

Z
R-modules. (Here we interpret DetO|V0 as the push-forward of an

element in OF0 [O∨] by Lemma 1.2.5.10.)

Proof. The implications from 1 to 2 and from 2 to 3 are clear. It remains
to justify the implication from 3 to 1. If DetO|M0 = DetO|M ′0 in k[O∨] ∼=
Z[O∨]⊗

Z
k, then M0

∼= M ′
0 as O⊗

Z
k-modules by Proposition 1.1.2.20 (and by

separability of OF ⊗
Z
k over k). Hence M ∼= M ′ as O⊗

Z
R-modules by Lemma

1.1.3.1.

Let k and Λ be as above, with p = char(k) such that p - Ibad Disc[L# : L].
Let F ′0 and L0 be chosen as in Lemma 1.2.5.9, such that F ′0 is unramified at
p when p > 0. By Corollary 1.2.3.10, and by comparing multiranks using
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(1.2.5.8), there exists a finite étale ring extension Λ ↪→ Λ′, together with a
homomorphism OF ′0,(p) → Λ′ extending OF0,(2) → Λ, such that we have a
symplectic isomorphism

(L⊗
Z

Λ′, 〈 · , · 〉) ∼= ((L0 ⊗
OF ′0

Λ′)⊕ (L0 ⊗
OF ′0

Λ′)
∨
, 〈 · , · 〉can.), (1.2.5.12)

an O⊗
Z

Λ′-module analogue of (1.2.5.8). Let us fix the choice of such a Λ′.

Definition 1.2.5.13. The subgroup functor P0,Λ′ of GΛ′ := G⊗
Z

Λ′ is defined

by setting, for each Λ′-algebra R,

P0,Λ′(R) := {g ∈ GΛ′(R) : g((L0 ⊗
OF ′0

R)∨) = (L0 ⊗
OF ′0

R)∨}.

Lemma 1.2.5.14. For every noetherian complete local Λ′-algebra R, the
association g 7→ g((L0 ⊗

OF ′0

R)∨) for g ∈ GΛ′(R) induces a bijection from

the set (GΛ′/P0,Λ′)(R) of R-valued points of the quotient functor GΛ′/P0,Λ′ to
the set of totally isotropic O⊗

Z
R-submodules M of (L⊗

Z
R, 〈 · , · 〉) such that

M ∼= (L0 ⊗
OF ′0

R)∨ and such that (L⊗
Z
R)/M is projective as an O⊗

Z
R-module.

Proof. By Lemma 1.2.4.2, (L⊗
Z
R, 〈 · , · 〉) is sufficiently symplectic (see Defi-

nition 1.2.4.1) because it is the pullback of a symplectic module defined over
Z. Then we can conclude by applying Proposition 1.2.4.5.

Proposition 1.2.5.15. The functor GΛ′/P0,Λ′ is formally smooth over Λ′.

Proof. Let R̃ � R be a surjection of Artinian local Λ′-algebras, with ker-
nel I satisfying I2 = 0. Suppose we have a translation g((L0 ⊗

OF ′0

R)∨)

of L⊗
Z
R by some element g ∈ GΛ′(R). Proposition 1.2.4.6 applies be-

cause (L⊗
Z
R̃, 〈 · , · 〉) is sufficiently symplectic (as explained in the proof of

Lemma 1.2.5.14 above). Hence there is a totally isotropic O⊗
Z
R̃-submodule

M of L⊗
Z
R̃ lifting g((L0 ⊗

OF ′0

R)∨) such that (L⊗
Z
R̃)/M is projective as an

O⊗
Z
R-module. Now we can conclude the proof by applying Lemma 1.2.5.14.
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Proposition 1.2.5.16. With assumptions on k and Λ′ as above, the group
P0,Λ′ is smooth.

Proof. If L = 0, then P0,Λ′ = GΛ′ = Gm,Λ′ and the proposition is clear.
Hence we may assume that L 6= 0.

Let R̃ � R be a surjection of Artinian local Λ′-algebras, with ker-
nel I satisfying I2 = 0. Let us denote by M̃ := L0 ⊗

OF ′0

R̃, and M :=

M̃ ⊗
R̃

R. Then theO⊗
R̃

R-module M̃∨ (resp. M∨) embeds as a totally isotropic

submodule of L⊗
Z
R̃ (resp. L⊗

Z
R), and we have a canonical isomorphism

(L⊗
Z
R̃)/M̃∨ ∼= M̃ (resp. (L⊗

Z
R)/M∨ ∼= M). Let us take any isomorphism

ψ̃ : (M̃ ⊕ M̃∨, 〈 · , · 〉can.)
∼→ (L⊗

Z
R̃, 〈 · , · 〉), and let ψ := ψ̃⊗

R̃

R.

Let g ∈ P0,Λ′(R). Using ψ, we obtain three morphisms α ∈ EndO⊗
Z
R(M),

β ∈ HomO⊗
Z
R(M∨,M), and γ ∈ EndO⊗

Z
R(M∨) such that

ψ(g(ψ−1(x, f))) = (α(x) + β(f), γ(f))

for all x ∈M and f ∈M∨. For simplicity, let us suppress ψ in the following
notation. Then it is convenient to express the above relation in matrix form
as g =

(
α β
γ

)
. In this case, the relation (viewing vectors as column vectors)

〈(x1, f1), g(x2, f2)〉 = 〈(x1, f1), (αx2 + βf2, γf2)〉
= (γf2)(x1)− f1(αx2 + βf2) = f2(γ∨x1)− (α∨f1)(x2)− (β∨f1)(f2)

= 〈(γ∨x1 − β∨f1, α
∨f1), (x2, f2)〉 = 〈gz(x1, f1), (x2, f2)〉

shows that we have gz =
(
γ∨ −β∨

α∨

)
, and the relation gzg = r ∈ R× becomes(

α β
γ

)(
γ∨ −β∨

α∨

)
=

(
αγ∨ −αβ∨ + βα∨

γα∨

)
=

(
r

r

)
.

Each such g can be decomposed as(
α β

γ

)
=

(
1 0
0 r

)(
α 0

(α∨)−1

)(
1 α−1β

1

)
,

where α−1β is symmetric in the sense that (α−1β)
∨

= α−1β. Then each of
the three terms in the product is also an element of P0,Λ′(R). Therefore it
suffices to show that we can lift each of the three kinds of elements.
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If g = ( 1 0
r ) for some r ∈ R×, then each lifting r̃ ∈ R̃ of r is a unit, and

hence defines a lifting g̃ := ( 1 0
r̃ ) of g.

If g =
(
α 0

(α∨)−1

)
for some invertible α ∈ EndOR(M), which is a product

of matrix algebras over OF ⊗
Z
R, then each lifting α̃ of α in EndO⊗

Z
R̃(M̃) is

invertible by Nakayama’s lemma. Hence g̃ :=
(
α̃ 0

(α̃∨)−1

)
defines a lifting of

g.
Suppose that g =

(
1 β

1

)
, where β∨ = β ∈ HomOR(M∨,M). By

Lemma 1.2.3.1, we may replace M̃ with some finitely generated projective
OF ⊗

Z
R̃-module Ñ , and assume that O⊗

Z
R̃ = OF ⊗

Z
R̃. Then elements in

HomOR̃(M̃∨, M̃) can be represented in block matrix form with entries in

OF ⊗
Z
R̃, so that the formation of the dual is simply X 7→ tXc. (Here c is the

restriction of ? to OF .) Hence the question of lifting β is a question of lifting
a matrix with the condition tXc = X. For an entry of the matrix above the
diagonal, any lifting will do. Then they determine the liftings of the entries
below the diagonal. For an entry along the diagonal, being invariant implies
that they lie in OF+ ⊗

Z
R, which can also be lifted to OF+ ⊗

Z
R̃. Hence there

is an element β̃ in HomOR̃(M̃∨, M̃) such that β̃∨ = β̃, and g̃ :=
(

1 β̃
1

)
defines

a lifting of g, as desired.

Corollary 1.2.5.17. With assumptions on k and Λ as above, the group
G⊗

Z
Λ is smooth over Λ.

Proof. It suffices to show that G⊗
Z

Λ′ is smooth over Λ′, which follows from

Propositions 1.2.5.15 and 1.2.5.16.

Remark 1.2.5.18. This is a special case of Corollary 1.2.3.12, with an alter-
native reasoning.

1.2.6 Filtrations

This section will not be needed until Section 5.2.2.
Let R be a (commutative) ring. Let M be an integrable O⊗

Z
R-module.

Suppose we are given an increasing filtration F = {F−i}i on M indexed by
nonpositive integers −i consisting of O⊗

Z
R-submodules F−i.
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Convention 1.2.6.1. All filtrations F = {F−i}i on M we shall consider will
satisfy F0 = M and F−i = 0 for sufficiently large i.

Definition 1.2.6.2. We say that a filtration F = {F−i}i on M is integrable
(resp. projective) if GrF−i is integrable (see Definition 1.2.1.23) (resp. pro-
jective) as an O⊗

Z
R-module for every i.

Definition 1.2.6.3. We say that a filtration F on M is split if there
exists (noncanonically) some isomorphism GrF := ⊕

i
GrF−i

∼→ F0 (of

O⊗
Z
R-modules).

Lemma 1.2.6.4. Every projective filtration is split.

Proof. Simply split the exact sequences 0 → F−i−1 → F−i → GrF−i → 0 one
by one in increasing order of i.

Corollary 1.2.6.5. If O is hereditary, (which is the case when O is maximal,
by Proposition 1.1.1.23), then every integrable filtration F on an integrable
O⊗
Z
R-module M is split.

Proof. If O is hereditary, which means that every O-lattice is projective,
then every integrable filtration F is projective.

Definition 1.2.6.6. A filtration F on an integrable O⊗
Z
R-module M is called

admissible if it is integrable and split (see Definitions 1.2.6.2 and 1.2.6.3).

When O is maximal, this just means that the filtration is integrable.

Definition 1.2.6.7. A surjection F � F′ (resp. a submodule F′′ of F, resp.
an embedding F′′ ↪→ F) of integrable O⊗

Z
R-modules is called admissible if

0 ⊂ ker(F� F′) ⊂ F (resp. 0 ⊂ F′′ ⊂ F, resp. 0 ⊂ image(F′′ ↪→ F) ⊂ F) is an
admissible filtration on F.

When M is equipped with a pairing 〈 · , · 〉M such that (M, 〈 · , · 〉M) de-
fines a symplectic O⊗

Z
R-module in the sense of Definition 1.1.4.7, we would

also like to consider those filtrations that respect this pairing.

Definition 1.2.6.8. Given a symplectic O⊗
Z
R-module (M, 〈 · , · 〉M) and an

integer m ≥ 1, a filtration F = {F−i}i on F0 = M is called m-symplectic
if F−m+i and F−i are annihilators of each other under the pairing 〈 · , · 〉M on
M . If the integer m is clear from the context, we shall suppress it from the
notation and simply say that the filtrations are symplectic.
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Remark 1.2.6.9. Later (in Chapter 5 and onwards) m will always be 3. The
symplectic filtrations we consider will be of the form 0 = F−3 ⊂ F−2 ⊂ F−1 ⊂
F0 = M , such that F−2 and F−1 are the annihilators of each other under
〈 · , · 〉M .

1.3 Geometric Structures

1.3.1 Abelian Schemes and Quasi-Isogenies

Definition 1.3.1.1. An abelian scheme is a group scheme A→ S that is
proper, smooth, and with geometrically connected fibers.

Remark 1.3.1.2. 1. Since properness implies quasi-compactness (see [59,
II, 5.4.1 and I, 6.6.3]), and since smoothness implies being locally of
finite presentation (see [59, IV-2, 6.8.1]), an abelian scheme is automat-
ically of finite presentation over its base scheme. Hence the technique
of reduction to the noetherian case in [59, IV-3, §8] can be applied.

2. By [59, IV-2, 4.5.13], a fiber of a morphism X → S of schemes with a
section S → X is geometrically connected as soon as it is connected.
Hence, in Definition 1.3.1.1 (and similar contexts), it suffices to assume
that the fibers are connected. Nevertheless, for the sake of clarity, we
will often explicitly mention the geometric connectedness of fibers in
our exposition.

For convenience, let us include the following important theorem:

Theorem 1.3.1.3 (see [59, IV-3, 8.2.2, 8.9.1, 8.9.5, 8.10.5, and 17.7.8]).
Suppose S0 is a quasi-compact scheme, and S = lim←−

i∈I
Si is a projective limit

of schemes Si affine over S0, indexed by some directed partially ordered set
I.

1. Suppose X is a scheme of finite presentation over S. Then there exists
an index i ∈ I and a scheme Xi of finite presentation over Si such that
X ∼= Xi×

Si
S over S. In this case, we can define for each j ≥ i in I a

scheme Xj := Xi×
Si
Sj.

2. Suppose X, i, and Xi are as above and M is a quasi-coherent sheaf
of modules of finite presentation over OX . Then there exists an index
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j ≥ i in I and a quasi-coherent sheaf Mj of modules of finite presen-
tation over OXj such that M ∼= Mj ⊗

OXj

OX over OX .

3. Suppose Y is another scheme of finite presentation over S, with some
index i ∈ I and schemes Xi and Yi of finite presentation such that
X ∼= Xi×

Si
S and Y ∼= Yi×

Si
S over S. Define for each j ≥ i in I

schemes Xj := Xi×
Si
Sj and Yj := Yi×

Si
Sj. Then the canonical map

lim−→
j∈I,j≥i

HomSj(Xj, Yj)→ HomS(X, Y )

is a bijection.

4. In the context above, suppose f : X → Y is a morphism satisfying
any of the following properties:

(a) an isomorphism, a monomorphism, an immersion, an open im-
mersion, a closed immersion, or surjective;

(b) finite, quasi-finite, or proper;

(c) projective or quasi-projective;

(d) flat (for some quasi-coherent sheaf of finite presentation); or

(e) unramified, étale, or smooth.

Then there exist some j ≥ i and some morphism fj := Xj → Yj over Sj
with the same property such that f = fj ×

Sj
S. (In 4d, the quasi-coherent

sheaf is the pullback of a quasi-coherent sheaf over Xj for which fj is
flat.) We say for simplicity that the properties above are of finite
presentation.

As a result, we may reduce problems concerning schemes, modules, and
morphisms of finite presentation to the case where the base scheme is locally
noetherian.

The underlying schemes of abelian schemes enjoy a rather strong rigidity
property, which can be described by a special case of the following:
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Proposition 1.3.1.4 (rigidity lemma; cf. [96, Prop. 6.1]). Suppose we are
given a commutative diagram

X
f //

p

��

Y

q
��

S
e

SS

of locally noetherian schemes such that the base scheme S is connected, such
that p : X → S is open and closed, with a section e, such that q : Y → S
is separated, and such that the canonical morphism OS → p∗OX induced by
p is an isomorphism. Suppose there exists a point s ∈ S such that f(Xs) is
set-theoretically a single point. Then f = η◦p holds for the section η : S → Y
of q defined by η = f ◦ e.

Let us include a proof for the convenience of readers. The proofs we shall
present for Proposition 1.3.1.4 and for the following corollaries are originally
due to Mumford in [96], with a slight rewording by us.

Proof of Proposition 1.3.1.4. First suppose that S has only one point s.
Then f = η ◦ p = f ◦ e ◦ p hold as topological maps by the assumption
that f(Xs) is set-theoretically just one point, and we have identifications
f∗OX = f∗e∗OS and f∗OX = f∗e∗p∗OX as the push-forwards are defined by
topological morphisms. To show f = f ◦ e ◦ p as morphisms of schemes,
we need to show that f# : OY → f∗OX and (f ◦ e ◦ p)# : OY → f∗e∗p∗OX

agree as morphisms of sheaves under the identification f∗OX = f∗e∗p∗OX .
By assumption, p# : OS → p∗OX is an isomorphism; therefore we only need
to show that f# : OY → f∗OX and (f ◦ e)# : OY → f∗e∗OS agree under the
identification f∗OX = f∗e∗OS. This is true by assumption, as we only need
to compare the stalks at the image of e under f . Hence the proposition
holds when s has only one point.

In general, let Z be the largest closed subscheme of X over which f = η◦p.
Since q : Y → S is separated, Z is the pullback of the closed diagonal of
Y ×

S
Y via (f, η ◦ p) : X → Y ×

S
Y . By assumption it contains the fiber

p−1(s). We claim that Z = X. By the first part of the proof, we know that,
for every Artinian local subscheme T ⊂ S containing s, the preimage p−1(T )
is a subscheme of Z. For every point u in p−1(s) and every Artinian local
subscheme W ⊂ X containing u, we have W ⊂ p−1(T ) for some Artinian
local subscheme T and hence W ⊂ Z. This implies that Z contains an open
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neighborhood of p−1(s) in X. Let C be the closed subset of X complementing
any such open subset. Since p is a closed morphism, p(C) is closed in S.
By taking the complement of p(C) in S, we see that there exists an open
neighborhood U0 of s such that Z contains p−1(U0). Let U1 be the maximal
subscheme of S such that p−1(U1) is a subscheme of Z. Then the above
argument applied to an arbitrary point t of U1 shows that U1 is open. On
the other hand, since Z is closed, and since p is open by assumption (or by
its flatness when p is locally of finite presentation), we see that p(X − Z) is
also open. Now p(X − Z) and U1 cover the underlying topological space of
S, and U1 is nonempty. Hence by connectedness of S we know that p(X−Z)
is empty, and the proposition follows.

Note that we do not need the group structure of X in this proposition.

Corollary 1.3.1.5 ([96, Cor. 6.2]). Let A be an abelian scheme, and let G
be a separated group scheme of finite presentation over a connected scheme
S. Let f and g be two morphisms of schemes making the diagram

A
f //
g

//

p
��

G

q
��

S

commutative. Let mG : G×
S
G→ G denote the multiplication morphism of G.

Suppose that, for some point s ∈ S, the morphisms fs and gs from As to Gs

are equal. Then there is a section η : S → G such that f = mG ◦ ((η ◦p)× g).

Proof. By Theorem 1.3.1.3, we may assume that all A, G, and S are locally
noetherian, and apply Proposition 1.3.1.4 to mG ◦ (f ×([−1]G ◦ g)), where
[−1]G : G→ G is the inverse morphism of the group scheme G.

Corollary 1.3.1.6 ([96, Cor. 6.4]). Let A be an abelian scheme, and let G
be a separated group scheme of finite presentation over a base scheme S. If
h : A → G is a morphism over S taking the identity eA of A to the identity
eG of G, then h is a homomorphism.

Proof. Let us denote the multiplication morphism of A by mA, and let
us define two morphisms f, g : A×

S
A → A×

S
G by setting f(x1, x2) =

(x1, h(mA(x1, x2))) and g(x1, x2) = (x1, h(x2)) for all functorial points x1
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and x2 of A. Let p : A×
S
A→ A and q : A×

S
G→ A be the first projections.

By Corollary 1.3.1.5, with f , g, p, and q as above, there exists some mor-
phism η : A → G such that h(mA(x1, x2)) = mG(η(x1), h(x2)). By putting
x2 = eA, we get h(x1) = η(x1), and hence h(mA(x1, x2)) = mG(h(x1), h(x2)).
This shows h is a group homomorphism.

Corollary 1.3.1.7 ([96, Cor. 6.5]). If A is an abelian scheme over a scheme
S, then A is a commutative group scheme.

Proof. Apply Corollary 1.3.1.6 to the inverse morphism [−1]A : A→ A.

Corollary 1.3.1.8 ([96, Cor. 6.6]). If A is an abelian scheme over S, then
there is only one structure of group scheme on A over S with the given
identity eA : S → A.

Proof. Applying Corollary 1.3.1.6 to the identity isomorphism IdA : A
∼→ A,

we see that every two group structures on A are identical to each other.

Definition 1.3.1.9. An isogeny f : G→ G′ of smooth group schemes over
S is a group scheme homomorphism over S that is surjective and with
quasi-finite kernel.

Definition 1.3.1.10. An isogeny f : A→ A′ of abelian schemes over S is
an isogeny of smooth group schemes from A to A′.

Lemma 1.3.1.11. An isogeny of smooth group schemes is flat. Conse-
quently, an isogeny of proper smooth group schemes (such as abelian schemes)
is finite flat and of finite presentation.

Proof. It suffices to show that an isogeny of smooth group schemes is flat.
By Theorem 1.3.1.3, we may assume that S is noetherian. Then the lemma
follows from [59, IV-3, 11.3.10 a)⇒b) and 15.4.2 e′)⇒b)].

Corollary 1.3.1.12. In Definition 1.3.1.10, the kernel ker(f) is finite flat
and of finite presentation. Hence, the rank of ker(f) is locally constant as a
function on S. (In particular, it is a constant on each connected subscheme
of S.)

Definition 1.3.1.13. Two abelian schemes A and A′ are isogenous if there
exists an isogeny from A to A′.
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In what follows, unless otherwise specified (or clear from the context), we
shall consider only isogenies between abelian schemes.

Now let 2 be an arbitrary set of finite rational primes.

Convention 1.3.1.14. An integral-valued function (such as the rank of a
finite flat groups scheme of finite presentation) is prime-to-2 if its values
are prime-to-2.

Definition 1.3.1.15. An isogeny f : A → A′ over S is prime-to-2 if
the rank of ker(f) (as a finite flat group scheme of finite presentation) is
prime-to-2.

Definition 1.3.1.16. A quasi-isogeny f : A→ A′ of abelian schemes over
S is an equivalence class of triples (B, g, h), where g : B → A and h : B →
A′ are isogenies over S, and where two triples (B, g, h) and (B′, g′, h′) are
considered equivalent if there exist isogenies i : C → B and j : C → B′ such
that g ◦ i = g′ ◦ j and h ◦ i = h′ ◦ j.

Definition 1.3.1.17. A quasi-isogeny f : A→ A′ of abelian schemes over S
is prime-to-2 if it can be represented by a triple (B, g, h) as in Definition
1.3.1.16 such that g and h are both prime-to-2 isogenies. We shall often
call a prime-to-2 quasi-isogeny a Z×(2)-isogeny. (And hence, we shall call a

quasi-isogeny a Q×-isogeny.)

Lemma 1.3.1.18. The natural functor from the category of isogenies (resp.
prime-to-2 isogenies) to the category of quasi-isogenies (resp. prime-to-2
quasi-isogenies), defined by sending an isogeny f : A → A′ to the class
containing the triple (A, IdA, f), is fully faithful.

Definition 1.3.1.19. The composition of two Z×(2)-isogenies f : A → A′

and f ′ : A′ → A′′ represented by (B, g, h) and (B′, g′, h′), respectively, is
represented by (B ×

h,A′,g′
B′, g ◦ pr1, h

′ ◦ pr2), where pr1 : B ×
h,A′,g′

B′ → B and

pr2 : B ×
h,A′,g′

B′ → B′ are the two projections.

Remark 1.3.1.20. Every Z×(2)-isogeny is invertible: The inverse of the equiv-

alence class of (B, g, h) is simply the equivalence class of (B, h, g).

Remark 1.3.1.21. Suppose, in Definition 1.3.1.17, that S has finitely many
connected components. Then we may assume that g = [N ], the multipli-
cation by N , for some integer N prime-to-2. Equivalently, this means that
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f ◦ [N ] = [N ] ◦ f is a prime-to-2 isogeny h for some integer N prime-to-2.
We shall write f = N−1h in this case. This makes sense because [N ] is in-
vertible in the category of Z×(2)-isogenies. More generally we can define [N ]

for each section N of (Z×(2))S, so that we do not need to require that S has
only finitely many connected components.

1.3.2 Polarizations

Definition 1.3.2.1. 1. Let X be a scheme of finite presentation over a
base scheme S. The relative Picard functor is defined by

Pic(X/S) : T/S 7→
{invertible sheaves L over X ×

S
T}{

invertible sheaves of the form pr∗2(M)
for some M over T

} .
2. Let A be an abelian scheme over S with identity section e : S → A.

(a) For each invertible sheaf L over A, a rigidification of L is an
isomorphism ξ : OS

∼→ e∗L. (For the convenience of language,
we shall also call the inverse isomorphism ξ−1 : e∗L ∼→ OS a
rigidification.)

(b) The (open) subfunctor Pic0(A/S) of Pic(A/S) is defined by

Pic0(A/S) : T/S 7→


invertible sheaves L over AT := A×

S
T

s.t. for all t ∈ T , the fiber Lt is
algebraically equivalent to zero over At

{
invertible sheaves as above

of the form pr∗2(M) for some M over T

} .
Lemma 1.3.2.2 (cf. [96, Ch. 0, §5, d)]). Let A be an abelian scheme over S
with identity section e : S → A.

1. The functor Pic(A/S) is canonically isomorphic to

Pice(A/S) : T/S 7→

{
invertible sheaves L over AT equipped with

rigidifications along eT := e×
S
T

}
/ ∼= .
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2. The subfunctor Pic0(A/S) of Pic(A/S) is canonically isomorphic to the
(open) subfunctor

Pic0
e(A/S) : T/S 7→


invertible sheaves L over AT equipped with

rigidifications along eT , s.t. for all t ∈ T ,
Lt is algebraically equivalent to zero over At

 / ∼=

of Pice(A/S).

Theorem 1.3.2.3. For every abelian scheme A → S, the relative Picard
functors Pice(A/S) and Pic0

e(A/S) are representable over S. Moreover,
Pic0

e(A/S) is representable by an abelian scheme over S, which we call the
dual abelian scheme of A. We shall denote the dual abelian scheme of
A by A∨. (By definition, the identity section eA∨ of A∨ corresponds to the
trivial invertible sheaf over A.)

For more details, see [42, Ch. I, §1], in which they mention the results of
Artin, Raynaud, and Deligne, and explain the proof.

Remark 1.3.2.4. By reduction to the locally noetherian case by Theorem
1.3.1.3, and by the result of Hilbert schemes as in [96, Ch. 0, §5, d) and
p. 117], the functors Pice(A/S) and Pic0

e(A/S) are representable when A is
locally projective over S. On the other hand, we will only consider polarized
abelian schemes when we define our moduli problems later, and we know of
no formulation of a polarization of an abelian scheme A → S that does not
force the local projectivity of A over S (cf. Proposition 1.3.2.15 and Definition
1.3.2.16 below). If readers are unwilling to make use of a stronger result such
as Theorem 1.3.2.3, they may safely add the assumption of local projectivity
to all abelian schemes in what follows.

Definition 1.3.2.5. The tautological (i.e., universal) rigidified invertible
sheaf PA over A×

S
A∨ is called the Poincaré invertible sheaf of A.

Remark 1.3.2.6. The invertible sheaf PA is rigidified along (eA, IdA∨) : A∨ →
A×

S
A∨ because it is the tautological object, and hence in particular, an

object of Pic0
e(A/S)(A∨). On the other hand, it is rigidified along (IdA, eA∨) :

A→ A×
S
A∨ by the definition of eA∨ and the universal property of A∨. That

is, the pullback by eA∨ corresponds to giving the parameter of the trivial
invertible sheaf. The rigidification along (eA, IdA∨) is uniquely determined by
the rigidification along (eA, IdA∨) by the condition that the two rigidifications
agree along (eA, eA∨) : S → A×

S
A∨.
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Construction 1.3.2.7. Let m, pr1, pr2 : A×
S
A→ A denote the multiplication

morphism and the two projections, respectively. For each rigidified invertible
sheaf L over A→ S, define

D2(L) := m∗L ⊗ pr∗1 L⊗−1 ⊗ pr∗2 L⊗−1.

Then D2(L) is an invertible sheaf over A×
S
A→ A, which is rigidified along

the identity section (eA, IdA) : A → A×
S
A if we view A×

S
A as an abelian

scheme over the second factor A. By the universal property of A∨ (repre-
senting Pic0

e(A/S)), we obtain a unique morphism

λL : A→ A∨

of schemes over S, sending eA to eA∨ . This is automatically a group scheme
homomorphism by Corollary 1.3.1.6.

Lemma 1.3.2.8. There is a canonical isomorphism A
∼→ (A∨)∨ over S.

Proof. By the universal property of (A∨)∨ applied to the Poincaré invertible
sheaf PA over A×

S
A∨, we obtain a canonical morphism A → (A∨)∨ over S,

which is an isomorphism because it is so over every geometric point of S, by
the usual theory of abelian varieties over algebraically closed fields (see, for
example, [94, §13]).

Definition 1.3.2.9. For each homomorphism f : A → A′ between abelian
schemes over S, the pullback

f ∗ : Pic0
e(A

′/S)→ Pic0
e(A/S)

induces a group scheme homomorphism

(A′)
∨ → A∨

over S, which we denote by f∨. This is called the dual isogeny of f when
f is an isogeny.

Lemma 1.3.2.10. For each homomorphism f : A → A′ between abelian
schemes over S, we have a canonical isomorphism

(IdA×f∨)∗PA ∼= (f × Id(A′)∨)∗PA′

over A×
S

(A′)∨ by the universal properties of PA and PA′.
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Lemma 1.3.2.11. If f is an isogeny between abelian schemes over S, then
the rank of f is the same as the rank of f∨. Hence it makes sense to say that
the dual of a prime-to-2 isogeny is again a prime-to-2 isogeny.

Proof. It suffices to verify this statement over fibers over geometric points of
S. This then is well known in the theory of abelian varieties (see [94, §15,
Thm. 1]). (In Section 5.2.4 below, we will generalize the argument of the
proof of [94, §15, Thm. 1] to abelian schemes.)

Definition 1.3.2.12. For each group scheme homomorphism λ : A → A∨,

consider the composition A
∼→ (A∨)∨

λ∨→ A∨, where the isomorphism is the
canonical one given by Lemma 1.3.2.8. By abuse of notation, we also denote
this composition by λ∨. We say λ is symmetric if λ = λ∨.

Lemma 1.3.2.13. For every invertible sheaf L, the homomorphism λL con-
structed in Construction 1.3.2.7 is symmetric.

Proof. By Lemma 1.3.2.10, we have (IdA×λ∨L)∗PA ∼= (λL×Id(A∨)∨)∗PA∨ over

A×
S

(A∨)∨. By pulling back under (IdA×can.), we obtain (IdA×λ∨L)∗PA ∼=
(λL × can.)∗PA∨ over A×

S
A. On the other hand, by the construction of

the canonical A
∼→ (A∨)∨, we have (IdA∨ ×can.)∗PA∨ ∼= s∗PA, where s :

A∨×
S
A → A×

S
A∨ is the isomorphism switching the two factors. Therefore,

using the fact that D2(L) is isomorphic to its pullback under the automor-
phism switching the two factors of A×

S
A, we have (λL × can.)∗PA∨ ∼= (λL ×

IdA)∗s∗PA ∼= D2(L) ∼= (IdA×λL)∗PA. As a result, we have (IdA×λ∨L)∗PA ∼=
(IdA×λL)∗PA, and hence λ∨L = λL by the universal property of PA.

Following [37, 1.2, 1.3, 1.4], we have the following converse:

Proposition 1.3.2.14. Locally for the étale topology over S, every symmet-
ric homomorphism from A to A∨ is of the form λL for some invertible sheaf
L.

Proof. By Theorem 1.3.1.3, we may assume that S is locally noetherian. If
we set M := (IdA, λ)∗PA, then λM = λ + λ∨ = 2λ. (This follows from the
universal property of PA and its symmetric bilinear properties; that is, from
the theorem of the cube.) Therefore the question is whether we can find
some L such that L⊗2 ∼=M.
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Since Homsym(A,A∨) is an algebraic space (by [6, Cor. 6.2] and the theory
of Hilbert schemes), and since it is unramified over S by rigidity (given by
Corollary 1.3.1.5), it is a scheme (by [73, II, 6.16]).

By the arguments in [92, Thm. 2.3(ii)], every group extension of a com-
mutative finite flat group scheme by Gm splits fppf locally. Using the rep-
resentation theory of theta group schemes, the argument in the proof of [94,
§23, Thm. 3] generalizes and shows that, if A[m] ⊂ ker(λL) (as a closed
subgroup scheme) for some integer m, then fppf locally M∼= L⊗m for some
L. In particular, this is true for m = 2. This shows that the morphism
Pice(A/S) → Homsym(A,A∨) : L 7→ λL (with kernel Pic0

e(A/S) ∼= A∨) over
S is surjective and smooth, as we have verified these properties fppf locally.
Since smooth morphisms have sections étale locally (by [22, §2.2, Prop. 14]),
λ is étale locally of the form λL, as desired.

Proposition 1.3.2.15. Let λ be a symmetric homomorphism from A to A∨

over S. The following conditions are equivalent:

1. Over each geometric point s̄ of S, λs̄ is of the form λL for some ample
invertible sheaf L over As̄.

2. Locally for the étale topology, λ is of the form λL for some invertible
sheaf L over A relatively ample over S.

3. The invertible sheaf (IdA, λ)∗PA over A is relatively ample over S.

Proof. By Theorem 1.3.1.3, we may assume that S is locally noetherian.
Then relative ampleness is a fiberwise condition by [59, III-1, 4.7.1].

Definition 1.3.2.16. A polarization λ of A is a symmetric homomor-
phism from A to A∨ satisfying any of the conditions in Proposition 1.3.2.15.
A principal polarization (resp. prime-to-2 polarization) is a polar-
ization that is an isomorphism (resp. a prime-to-2 isogeny).

Remark 1.3.2.17. A polarization is necessarily an isogeny, because λL is quasi-
finite by the usual theory of abelian varieties over algebraically closed fields
(see, for example, [94]).

Corollary 1.3.2.18. An isogeny λ : A→ A∨ is a polarization if and only if
[N ] ◦ λ is a polarization for some positive integer N (or more generally for
any section N of (Z>0)S).
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Motivated by this, we can extend the notion of polarizations to
Z×(2)-isogenies as well:

Definition 1.3.2.19. A Z×(2)-polarization of A is a Z×(2)-isogeny λ : A→
A∨ such that [N ] ◦ λ is a positive isogeny for some section N of (Z>0)S.

Note that we do not have to assume that N is prime-to-2 (i.e., valued in
integers prime-to-2).

Definition 1.3.2.20. The dual Z×(2)-isogeny f∨ : (A′)∨ → A∨ of

a Z×(2)-isogeny f : A → A′ represented by some triple (B, g, h) is the

Z×(2)-isogeny represented by ((A′)∨ ×
h∨,B∨,g∨

A∨, pr1, pr2).

This definition makes sense because of Lemma 1.3.2.11.

Corollary 1.3.2.21. If λ : A → A∨ is a Z×(2)-polarization, then f∨ ◦ λ ◦
f : A′ → (A′)∨ is a Z×(2)-polarization for each Z×(2)-isogeny f : A′ → A.

Moreover, λ−1 : A∨ → A is also a Z×(2)-polarization.

Proof. To show this, we use 3 of Proposition 1.3.2.15, Lemma 1.3.2.10, and
the fact that the pullback of an invertible sheaf under an isogeny is relatively
ample if and only if the original invertible sheaf is relatively ample.

Definition 1.3.2.22. A Z×(2)-isogeny f : (A, λ)→ (A′, λ′) is a Z×(2)-isogeny

f : A→ A′ such that λ = f∨ ◦ λ′ ◦ f .

1.3.3 Endomorphism Structures

Assume as in Section 1.2.1 that O is an order in a finite-dimensional semisim-
ple algebra B over Q with a positive involution ?.

Definition 1.3.3.1. Let A be an abelian scheme with a Z×(2)-polarization λ

over S. Recall that the λ-Rosati involution of EndS(A)⊗
Z
QS is defined by

sending each Q×-isogeny f : A→ A to the composition A
λ→ A∨

f∨→ A∨
λ−1

→ A
of Q×-isogenies (cf. [94, p. 189]).

Let R be any Z-subalgebra of Q. An O⊗
Z
R-endomorphism structure

(or simply an O⊗
Z
R-structure) of (A, λ) is a ring homomorphism

i : O⊗
Z
R→ EndS(A)⊗

Z
RS (1.3.3.2)

satisfying the following conditions:
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1. The image of the composition of (1.3.3.2) with the canonical morphism
EndS(A)⊗

Z
RS → EndS(A)⊗

Z
QS is preserved by the λ-Rosati involution

of EndS(A)⊗
Z
QS.

2. The restriction of the λ-Rosati involution to this image of O⊗
Z
R agrees

with the one induced by the involution ? of O.

We say that i satisfies the Rosati condition if it satisfies the above two
conditions. Concretely, this means the equality i(b)∨ ◦ λ = λ ◦ i(b?) holds for
every b ∈ O⊗

Z
R.

Remark 1.3.3.3. If R = Z, then we are given a ring homomorphism i : O →
EndS(A) called an O-structure by definition. In this case, we shall think of
A as a left O-module via i.

Remark 1.3.3.4. Let R be any Z-subalgebra of Q. If i is an O⊗
Z
R-structure

of (A, λ), then i is an O⊗
Z
R-structure of (A, rλ) for all r ∈ Z×(2),>0.

Definition 1.3.3.5. Let i (resp. i′) be an O⊗
Z
Z(2)-structure of (A, λ) (resp.

(A′, λ′)). A Z×(2)-isogeny f : (A, λ)→ (A′, λ′) is O-equivariant if f ◦ i(b) =

i′(b) ◦ f for all b ∈ O⊗
Z
Z(2). We say in this case that we have a Z×(2)-isogeny

f : (A, λ, i)→ (A′, λ′, i′).

Remark 1.3.3.6. If f and (A, λ, i) are prescribed in a Z×(2)-isogeny

f : (A, λ, i)→ (A′, λ′, i′), then λ′ and i′ are determined by λ′ = (f∨)−1◦λ◦f−1

and i′(b) = f ◦ i(b) ◦ f−1 for all b ∈ O⊗
Z
Z(2).

Proposition 1.3.3.7. Let A be an abelian scheme over S, and let λ : A →
A∨ be a polarization of A. Then the functor that assigns to each scheme
T over S the set of O-endomorphism structures i : O → EndT (A×

S
T ) of

(A×
S
T, λ×

S
T ) (as in Definition 1.3.3.1) is representable by a scheme finite

over S.

Proof. Since A is polarized (see Proposition 1.3.2.15 and Definition 1.3.2.16),
and since O is finitely generated over Z, by reduction to the locally noethe-
rian case by Theorem 1.3.1.3, and by replacing S with its noetherian open
subschemes, we may assume that A is projective over S. By the result of
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Hilbert schemes as in [96, Ch. 0, §5, d) and p. 117], we know that this functor
is representable by a disjoint union S ′ of schemes that are projective over S.

It remains to show that S ′ is quasi-finite (and hence finite) over S. For
this purpose, we may replace S with its geometric points and assume that
S = Spec(k) for some algebraically closed field k. Let O′ = EndS(A) and
let ?′ be the λ-Rosati involution (see Definition 1.3.3.1) of O′⊗

Z
Q. Let O′l

(resp. O′r) be the order in O′⊗
Z
Q (containing O′ and) consisting of elements

of O′⊗
Z
Q whose left (resp. right) action on O′⊗

Z
Q stabilizes O′. Let I be

the set of ring homomorphisms i : O → O′l such that i(b?) = (i(b))?
′

for all
b ∈ O. It suffices to show that I is a finite set, because S ′(Spec(k)) can be
identified with a subset of I.

First we claim that there are only finitely many ring homomorphisms
i : O → O′l (not necessarily in I) up to conjugation by elements in (O′l)

×.
(This is an analogue of the Noether–Skolem theorem; see, for example, [63,
Thm. 4.3.1].) Let (O′r)op denote the opposite ring of O′r, which has a canon-
ical left action on O′ (induced by the canonical right action of O′r) com-
muting with that of O′l. Hence there is a canonical (left) O′l⊗

Z
(O′r)op-lattice

structure on O′. By composition with the canonical action of O′l on O′,
each ring homomorphism i : O → O′l defines an O⊗

Z
(O′r)op-lattice struc-

ture on O′. If two ring homomorphisms i1, i2 : O → O′l define isomorphic
O⊗

Z
(O′r)op-lattice structures on O′, then there exists some f ∈ (EndZ(O′))×

such that (i2(b)⊗ b′) = f ◦ (i1(b)⊗ b′) ◦ f−1 (as elements of EndZ(O′)) for all
b ∈ O and b′ ∈ (O′r)op. By taking b = 1, we have (1⊗ b′) = f ◦ (1⊗ b′) ◦ f−1

for all b′ ∈ (O′r)op. This shows that the image of f under the canonical
embedding EndZ(O′) ↪→ EndQ(O′⊗

Z
Q) commutes with the right action of

O′⊗
Z
Q on O′⊗

Z
Q; therefore f can be identified with an element of (O′l)

×.

By taking b′ = 1, we have i2(b) = f ◦ i1(b)◦f−1 in O′l for all b ∈ O; that is, i1
and i2 are the same up to conjugation by f ∈ (O′l)

×. Thus the claim follows
from the Jordan–Zassenhaus theorem (which asserts, in the special case here,
that there are only finitely many isomorphism classes of O⊗

Z
(O′r)op-lattices;

see, for example, [107, Thm. 26.4]).
Let i0 be an element of I and let C be the centralizer of i0(O) in O′l. Let

F := {f ∈ (O′l)
× : ∃ if ∈ I such that if (b) = f ◦ i0(b) ◦ f−1 for all b ∈ O}.

We would like to show that F := F/C× is a finite set. Since i0 is arbitrary,
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the finiteness of I (and the proposition) will follow, because (by the previous
paragraph) I can be (noncanonically) identified with a finite disjoint union
of sets like F .

Suppose f ∈ F , and suppose if ∈ I is as in the above definition of
F . Then if (b

?) = (if (b))
?′ and i0(b?) = (i0(b))?

′
= f ?

′ ◦ if (b?) ◦ (f−1)?
′

=
(f ?

′
f) ◦ if (b) ◦ (f ?

′
f)−1 for all b ∈ O; hence f ?

′
f ∈ C×. By the positivity of

the λ-Rosati involution ?′ and by the classification of real positive involutions
(see [94, §21] and [76, §2]), K := {g ∈ O′⊗

Z
R : g?

′
g = IdO′⊗

Z
R} is a compact

subset of (O′⊗
Z
R)× (with the standard topology induced by that of R), and

there exists c ∈ (C ⊗
Z
R)× such that f ?

′
f = c?

′
c. This shows that F ⊂ K ·

(C ⊗
Z
R)× in (O′⊗

Z
R)×. Since the image of the composition of canonical maps

(O′l)
× ↪→ (O′⊗

Z
R)× � (O′⊗

Z
R)×/(C ⊗

Z
R)× is a discrete subset (because

Homring(O,O′l) is a discrete subset of Homring(O,O′⊗
Z
R)), the image F of

the composition of canonical maps F ↪→ K · (C ⊗
Z
R)× � K/(K∩ (C ⊗

Z
R)×)

is also a discrete subset. Since K/(K∩ (C ⊗
Z
R)×) is compact (because K is),

we see that F is finite, as desired.

1.3.4 Conditions on Lie Algebras

We will use the polarized symplectic vector space (L⊗
Z
R, 〈 · , · 〉, h) to define

a condition for the Lie algebras of the abelian schemes we consider.
Recall that (in Sections 1.2.1 and 1.2.5) we have a decomposition L⊗

Z
C =

V0⊕V c
0 , where h(z) acts by 1⊗ z on V0, and by 1⊗ zc on V c

0 . Moreover, both
V0 and V c

0 are totally isotropic under the pairing 〈 · , · 〉.
The reason to consider V0 is that, according to the Hodge decomposition

for abelian varieties over C, it is natural to compare V0 with the Lie algebra
of an abelian variety.

By Definition 1.1.2.18, the O⊗
Z
C-module V0 defines an element DetO|V0

in C[O∨], which lies in OF0 [O∨] by Lemma 1.2.5.10.
On the other hand, suppose A → S is an abelian scheme over OF0,(2),

together with a Z×(2)-polarization λ and an O⊗
Z
Z(2)-endomorphism structure

i : O⊗
Z
Z(2) → EndS(A)⊗

Z
(Z(2))S giving an O⊗

Z
Z(2)-action on LieA/S. Since
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the Lie algebra LieA/S is a locally free OS-module with O-action, it defines
an element DetO|LieA/S

in OS[O∨] (see Definition 1.1.2.21).

Definition 1.3.4.1. The (Kottwitz) determinantal condition defined
by (L⊗

Z
R, 〈 · , · 〉, h) on LieA/S is that DetO|LieA/S

agrees with the image of

DetO|V0 under the structural homomorphism from OF0,(2) to OS. The Lie
algebra condition defined by (L⊗

Z
R, 〈 · , · 〉, h) on (A, λ, i) is this determi-

nantal condition defined by (L⊗
Z
R, 〈 · , · 〉, h) on LieA/S.

Remark 1.3.4.2. Suppose two polarizations h and h′ of (L⊗
Z
R, 〈 · , · 〉) differ

by conjugation by an element in G(R) (or rather G+(R), the subgroup of
elements in G(R) with positive similitudes). Then we have an isomorphism
(L⊗

Z
R, 〈 · , · 〉, h)

∼→ (L⊗
Z
R, 〈 · , · 〉, h′) of polarized symplectic O⊗

Z
R-lattices

(see Definition 1.2.1.2), and therefore these two triples define the same con-
ditions in Definition 1.2.5.4 and 1.3.4.1.

Although we can define this condition for all OF0,(2)-schemes, the module
V0 is defined by objects over C. Therefore one may certainly doubt whether
this condition is also good for fields or complete local rings over OF0,(2) when
the residue characteristic is positive. We shall see in the proof of Proposition
2.2.2.9 that this is indeed the case if we assume that 2 - Disc.

1.3.5 Tate Modules

Definition 1.3.5.1. Let G be a commutative group. Let ∆ be a semisubgroup
of Z>0, the multiplicative semigroup of positive integers. Suppose that G is
∆-divisible in the sense that the multiplication by N in G is surjective for
every N ∈ ∆.

1. We define V∆(G) to be the group of sequences (αi)i∈∆ such that

(a) NαNi = αi for all i, N ∈ ∆;

(b) for each i ∈ ∆, there exists N ∈ ∆ such that Nαi = 0.

If 1 ∈ ∆, T∆(G) is defined to be the subgroup of V∆(G) with α1 = 0.

2. We define V(G) to be VZ>0(G), and T(G) to be TZ>0(G).
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3. For each prime number l > 0, we set ∆l := lZ≥0 and define Vl(G) (resp.
Tl(G)) to be V∆l

(G) (resp. T∆l
(G)).

4. For each set of prime numbers 2, we set ∆2 := Z×(2) ∩ Z>0 and define

V2(G) (resp. T2(G)) to be V∆2(G) (resp. T∆2(G)).

Let us denote by Gtors the torsion subgroup of G, and denote by G2
tors the

prime-to-2 part of the torsion subgroup of Gtors. Then we have the canonical
exact sequences 0 → T(G) → V(G) → Gtors → 0 and 0 → T2(G) →
V2(G) → G2

tors → 0. Note that the surjectivity of V(G) → Gtors (resp.
V2(G) → G2

tors) requires the assumption that multiplication by N in G is
surjective for every N ∈ Z>0 (resp. every N ∈ Z×(2) ∩ Z>0).

Let A be any abelian variety over an algebraic closed field k. Consider
G := A(k), the k-points of A. We shall denote V(G), Vl(G), V2(G), T(G),
Tl(G), and T2(G) by VA, VlA, V2A, TA, TlA, and T2A, respectively.

Let p := char(k). Assume that 2 contains p = char(k) if p > 0. Let A2
tors

denote the subgroup of all prime-to-2 torsion points of A. Then we have the
exact sequence 0→ T2A→ V2A→ A2

tors → 0.
Each group scheme homomorphism f : A→ A′ sends Ators to A′tors and in-

duces a homomorphism V2(f) : V2A→ V2A′. The homomorphism V2(f)
is an isomorphism when f is an isogeny, and we can extend the definition of
V2(f) to the case that f is a Z×(2)-isogeny by setting V2(f) = V2(g)−1◦V2(h)

if f is represented by some triple (B, g, h) as in Definition 1.3.1.17. In par-
ticular, for each Z×(2)-isogeny of the form N−1f where N is an integer prime-

to-2 and f is an isogeny from A to A′, we can define V2(N−1f) by setting
V2(N−1f)((αi)) = (f(αNi)) for each α = (αi) ∈ V2A.

Lemma 1.3.5.2. Fix a triple (A, λ, i), where A is an abelian variety over an
algebraically closed field k, where λ is a Z×(2)-polarization of A, and where i

is an O⊗
Z
Z(2)-structure of (A, λ). Then there is a one–one correspondence

{
equivalence classes of Z×(2)-isogenies

f : (A, λ, i)→ (A′, λ′, i′)

}
←→

{
open compact

subgroups of V2A

}
given by sending a Z×(2)-isogeny f : (A, λ, i) → (A′, λ′, i′) to V(f)−1(T2A′).
The O-invariant open compact subgroups of V2A correspond to
Z×(2)-isogenies f : (A, λ, i) → (A′, λ′, i′) such that i′ has its image in

EndS(A′).
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Here two Z×(2)-isogenies f1 : (A, λ, i) → (A1, λ1, i1) and f2 : (A, λ, i) →
(A2, λ2, i2) are equivalent if there exists an isomorphism h : A1

∼→ A2 (of
abelian varieties over k) such that h ◦ f1 = f2.

Since prime-to-2 isogenies are characterized by their kernels, which are
commutative group schemes finite étale over the base field, it is useful to
have the following:

Proposition 1.3.5.3 (cf. [56, V, §7] or [44, A I.7]). Let S be a connected
locally noetherian scheme, and s̄ any fixed geometric point on S. Then there
is an equivalence of categories between{

commutative group schemes
finite étale over S

}
←→

{
finite continuous
π1(S, s̄)-modules

}
given by sending a group scheme H over S to its geometric fiber Hs̄ over s̄.

Combining the above two propositions, we have the following corollary:

Corollary 1.3.5.4. Let S be a connected locally noetherian scheme, with
residual characteristics either 0 or a prime number in 2. Let s̄ be any fixed
geometric point of S.

Fix a triple (A, λ, i), where A is an abelian scheme over S, where λ is a
Z×(2)-polarization of A, and where i is an O⊗

Z
Z(2)-structure of (A, λ). Then

there is a one–one correspondence
equivalence classes of

Z×(2)-isogenies

f : (A, λ, i)→ (A′, λ′, i′)

←→


π1(S, s̄)-invariant
open compact

subgroups of V2As̄


given by sending a Z×(2)-isogeny f : (A, λ, i)→ (A′, λ′, i′) to V(fs̄)

−1(T2A′s̄).

Here two Z×(2)-isogenies f1 : (A, λ, i) → (A1, λ1, i1) and f2 : (A, λ, i) →
(A2, λ2, i2) are equivalent if there exists an isomorphism h : A1

∼→ A2 (of
group schemes over S) such that h ◦ f1 = f2.

The π1(S, s̄)-invariant O-invariant open compact subgroups of V2As̄ cor-
respond to Z×(2)-isogenies f : (A, λ, i) → (A′, λ′, i′) such that i′ defines an

O-structure (see Definition 1.3.3.1).

Remark 1.3.5.5. In Corollary 1.3.5.4, if (A, λ, i) is a triple such that λ is
not prime-to-2, then there is no triple (A′, λ′, i′) in the equivalence class of
(A, λ, i) such that λ′ is a prime-to-2 polarization.
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1.3.6 Principal Level Structures

Let (L, 〈 · , · 〉, h) be a PEL-type O-lattice as in Definition 1.2.1.3. Let 2 be
a set of rational prime numbers, and let n ≥ 1 be an integer prime-to-2.

Let us begin with a naive candidate for a level structure on (A, λ, i):

Definition 1.3.6.1. Let (A, λ, i) be a triple such that

1. A is an abelian scheme over a scheme S over Spec(Z(2));

2. λ : A→ A∨ is a prime-to-2 polarization of A;

3. i : O → EndS(A) defines an O-structure of (A, λ).

An O-equivariant symplectic isomorphism from (L/nL)S to A[n] (cf.
Definition 1.1.4.8) consists of the following data:

1. An O-equivariant isomorphism αn : (L/nL)S
∼→ A[n] of group schemes

over S.

2. An isomorphism νn : ((Z/nZ)(1))S
∼→ µn,S of group schemes over S

making the diagram

(L/nL)S ×
S

(L/nL)S
〈 · , · 〉 //

αn×αn o
��

((Z/nZ)(1))S

o νn

��
A[n]×

S
A[n]

eλ
// µn,S

commutative, where eλ is the λ-Weil pairing.

By abuse of notation, we often denote such a symplectic isomorphism by

(αn, νn) : (L/nL)S
∼→ A[n],

or simply by
αn : (L/nL)S

∼→ A[n].

This candidate works perfectly well for the moduli of principally polarized
abelian schemes as in [42].

However, since the lattice L is not necessarily self-dual, the pairing
on L/nL induced by 〈 · , · 〉 may be degenerate, or even trivial. Moreover,
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the O-equivariance might not be detectable modulo n. Therefore,
for an arbitrary geometric point s̄ of S, the symplectic isomorphism
(αn, νn) : (L/nL)S

∼→ A[n] may not be liftable to an O⊗
Z
Ẑ2-equivariant

symplectic isomorphism (α̂, ν̂) : L⊗
Z
Ẑ2 ∼→ T2As̄ (in the obvious sense),

making the definition of Hecke actions of G(A∞,2) an unreasonable task.
Thus, for the pair (αn, νn) to qualify as a level structure, we need to take
the issue of liftability into account.

Definition 1.3.6.2. Let (A, λ, i) be a triple over S as in Definition
1.3.6.1. An (integral) principal level-n structure of (A, λ, i) of type
(L⊗

Z
Ẑ2, 〈 · , · 〉) is an O-equivariant symplectic isomorphism

(αn, νn) : (L/nL)S
∼→ A[n]

that is a symplectic-liftable isomorphism in the following sense:
There exists (noncanonically) a tower (Sm � S)n|m,2-m of finite étale

coverings such that

1. Sn = S;

2. for each l such that n|l and l|m, there is a finite étale covering Sm � Sl
whose composition with Sl → S is the finite étale covering Sm → S;

3. over each Sm, there is an O-equivariant symplectic isomorphism

(αm,Sm , νm,Sm) : (L/mL)Sm
∼→ A[m]Sm ;

4. for each l such that n|l and l|m, the pullback of (αl,Sl , νl,Sl) to Sm is the
reduction modulo l of (αm,Sm , νm,Sm).

If L 6= 0, then νn is uniquely determined by αn. If L = 0, then νn
is the essential nontrivial information. By abuse of notation, we shall often
suppress the datum νn and denote it by ν(αn) (as if νn were always determined
by αn), and denote level structures simply by αn : (L/nL)S

∼→ A[n]. (We shall
adopt similar conventions for other symplectic isomorphisms.)

Remark 1.3.6.3. The symplectic-liftability condition is nontrivial even when
n = 1. Moreover, it forces the kernel of the prime-to-2 polarization λ to be
isomorphic to ((L#⊗

Z
Ẑ2)/(L⊗

Z
Ẑ2))S.
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Remark 1.3.6.4. For simplicity, when the context is clear, we shall speak of
a level structure without the term integral and other modifiers.

Lemma 1.3.6.5. Let (A, λ, i) be a triple over S as in Definition 1.3.6.1. Let
s̄ be any geometric point of S. Recall that an O⊗

Z
Ẑ2-equivariant symplectic

isomorphism
(α̂, ν̂) : L⊗

Z
Ẑ2 ∼→ T2As̄

(see Definition 1.1.4.8) is an isomorphism

α̂ : L⊗
Z
Ẑ2 ∼→ T2As̄

of the underlying O⊗
Z
Ẑ2-modules, together with an isomorphism

ν̂ : Ẑ2(1)
∼→ T2 Gm,s̄

(of Ẑ2-modules) making the diagram

(L⊗
Z
Ẑ2)×(L⊗

Z
Ẑ2)

〈 · , · 〉 //

α̂×α̂ o
��

Ẑ2(1)

α̂o
��

T2As̄ × T2As̄
eλ

// T2 Gm,s̄

commutative. Let (αn, νn) : (L/nL)S
∼→ A[n] be an (integral) principal

level-n structure of (A, λ, i) of type (L⊗
Z
Ẑ2, 〈 · , · 〉). Then (αn, νn) is

symplectic-liftable at s̄ in the sense that there exists (noncanonically) an
O⊗
Z
Ẑ2-equivariant symplectic isomorphism (α̂, ν̂) : L⊗

Z
Ẑ2 ∼→ T2As̄ lifting

(αn,s̄, νn,s̄) : L/nL
∼→ A[n]s̄ as a reduction modulo n of (α̂, ν̂).

Proof. The pullback of the compatible tower (αm,Sm)n|m,2-m defined over
(Sm → S)n|m,2-m to the geometric point s̄ of S (with a compatible choice of
liftings to each Sm → S) allows us to choose a compatible tower ((αm,s̄, νm,s̄) :
L/mL

∼→ As̄[m])n|m,2-m of O-equivariant symplectic isomorphisms, which is

equivalent to the desired O⊗
Z
Ẑ2-equivariant symplectic isomorphism (α̂, ν̂) :

L⊗
Z
Ẑ2 ∼→ T2As̄.
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By abuse of notation, we shall often suppress the datum ν̂ and denote it by
ν(α̂) (as if ν(α̂) were always determined by α̂), and denoteO⊗

Z
Ẑ2-equivariant

symplectic isomorphisms simply by α̂ : L⊗
Z
Ẑ2 ∼→ T2As̄.

Lemma 1.3.6.6. Let (A, λ, i) be a triple over S as in Definition 1.3.6.1.
Suppose moreover that S is locally noetherian. Then an O-equivariant
symplectic isomorphism αn : (L/nL)S

∼→ A[n] is symplectic-liftable (in the
sense of Definition 1.3.6.2) if and only if it is symplectic-liftable at every
geometric point s̄ of S (in the sense of Lemma 1.3.6.5).

Proof. If αn is symplectic-liftable, then the existence of α̂s̄ is given by Lemma
1.3.6.5 without the locally noetherian hypothesis.

Conversely, since S is locally noetherian, it is the disjoint union of its
connected components; therefore, to show that αn is symplectic-liftable in
the sense of Definition 1.3.6.2, we may replace S with each of its connected
components and assume that S is connected. Let s̄ be any geometry point of
S, and let α̂ : L⊗

Z
Ẑ2 ∼→ T2As̄ be any O⊗

Z
Ẑ2-equivariant symplectic isomor-

phism α̂ : L⊗
Z
Ẑ2 ∼→ T2As̄ whose reduction modulo n is αn,s̄ : L/nL

∼→ A[n]s̄.

Note that the U2(n)-orbit of this lifting is unique, and (by Proposition
1.3.5.3) this orbit is invariant under the action of π1(S, s̄) because A[n]
and µn,S are locally constant étale sheaves over S. The π1(S, s̄)-invariance
of the U2(n)-orbit [α̂]n of α̂ expresses the fact that we have a continuous
homomorphism π1(S, s̄) → U2(n). By taking the preimage of U2(m) un-
der this homomorphism, we obtain an open compact subgroup π1(Sm, s̄) of
π1(S, s̄) corresponding to some finite étale covering Sm → S and some lift-
ing s̄ → Sm of s̄ → S. The U2(m)-orbit of α̂ is therefore invariant under
π1(Sm, s̄) when we pass to the finite étale covering Sm → S, and we ob-
tain a π1(Sm, s̄)-equivariant symplectic isomorphism L/mL

∼→ A[m]s̄. By
Proposition 1.3.5.3, this is equivalent to an O-equivariant symplectic iso-
morphism αm,Sm : (L/mL)Sm

∼→ A[m]Sm . The compatibility between differ-
ent m and l follows from the natural containment relation between differ-
ent U2(m) ⊂ U2(n) and U2(l) ⊂ U2(n). Thus we obtain the symplectic-
liftability of αn as in Definition 1.3.6.2.

Corollary 1.3.6.7 (of the proof of Lemma 1.3.6.6). Let (A, λ, i) be a triple
over S as in Definition 1.3.6.1. Suppose moreover that S is locally noethe-
rian. Then an O-equivariant symplectic isomorphism αn : (L/nL)S

∼→ A[n]
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is symplectic-liftable at a geometric point s̄ of S if and only if it is symplectic-
liftable at every geometric point s̄′ on the same connected component of S.

1.3.7 General Level Structures

Let us continue with the setting in Section 1.3.6 and introduce level structures
other than principal level structures.

Definition 1.3.7.1. For each Ẑ2-algebra R, set Gess(R) := image(G(Ẑ2)→
G(R)).

Lemma 1.3.7.2. Let n ≥ 1 be an integer such that 2 - n. With the setting in
Definition 1.3.6.2, assume moreover that the base S is connected. Then each
two level-n structures αn, α

′
n : (L/nL)S

∼→ A[n] (see Definition 1.3.6.2) are
related by (α′n, ν(α′n)) = (αn◦gn, ν(αn)◦ν(gn)) for a unique gn ∈ Gess(Z/nZ).

In what follows, we shall often suppress the expression ν(α′n) = ν(αn) ◦
ν(gn) from the context, although it is an essential ingredient when we use
the expression α′n = αn ◦ gn to mean we are relating two level structures.

Definition 1.3.7.3. Let n ≥ 1 be an integer such that 2 - n. Let (A, λ, i)
and S be as in Definition 1.3.6.2. Let Hn be a subgroup of Gess(Z/nZ).
By an Hn-orbit of étale-locally-defined level-n structures, we mean a
subscheme αHn of

IsomS((L/nL)S, A[n])×
S

IsomS(((Z/nZ)(1))S,µn,S)

over S that becomes the disjoint union of all elements in some Hn-orbit of
level-n structures after a finite étale surjective base change in S. (We need
to include the second factor IsomS(((Z/nZ)(1))S,µn,S) because we do not
exclude the possibility that L = 0.) In this case, we denote by ν(αHn) the
projection of αHn to IsomS(((Z/nZ)(1))S,µn,S), which is a ν(Hn)-orbit of
étale-locally-defined isomorphisms with its natural interpretation.

Remark 1.3.7.4. In Definition 1.3.7.3, if S is locally noetherian, then (by
Lemma 1.3.6.6) the finite étale surjective base change (in S) can be replaced
with an étale surjective base change (without finiteness).

Lemma 1.3.7.5. Let (A, λ, i) and S be as in Definition 1.3.6.2. Let H be
any open compact subgroup of G(Ẑ2). For each integer n ≥ 1 such that
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2 - n and U2(n) ⊂ H ⊂ G(Ẑ2), set Hn := H/U2(n), the image of H under
G(Ẑ2)� Gess(Z/nZ) = G(Ẑ2)/U2(n) (see Remark 1.2.1.9 for the definition
of U2(n)). Then there is a canonical bijection from the set of Hm-orbits of
étale-locally-defined level-m structures for (A, λ, i) to the set of Hn-orbits of
étale-locally-defined level-n structures for (A, λ, i), induced (étale locally over
S) by taking the reduction modulo n of an level-m structure.

Proof. Taking reduction modulo n induces a surjection because of the
symplectic-liftability condition in Definition 1.3.6.2. It induces an injection
because the canonical isomorphism (G(Ẑ2)/U2(m))/(U2(n)/U2(m)) ∼=
G(Ẑ2)/U2(n) identifies Hm/(U2(n)/U2(m)) with Hn.

Definition 1.3.7.6. Let (A, λ, i) and S be as in Definition 1.3.6.2. Let H
be any open compact subgroup of G(Ẑ2). For each integer n ≥ 1 such that
2 - n and U2(n) ⊂ H, set Hn := H/U2(n) as in Lemma 1.3.7.5. Then
an (integral) level-H structure of (A, λ, i) of type (L⊗

Z
Ẑ2, 〈 · , · 〉) is

a collection αH = {αHn}n labeled by integers n ≥ 1 such that 2 - n and
U2(n) ⊂ H, with elements αHn described as follows:

1. For each index n, the element αHn is an Hn-orbit of étale-locally-defined
level-n structures as in Definition 1.3.7.3.

2. For all indices n and m such that n|m, the Hm-orbit αHm corresponds
to the Hn-orbit αHn under Lemma 1.3.7.5.

Remark 1.3.7.7. According to Lemma 1.3.7.5, the collection αH = {αHn}n is
determined by any element αHn in it.

1.3.8 Rational Level Structures

Definition 1.3.8.1. Let S be a locally noetherian scheme over Spec(Z(2)),
and let s̄ be a geometric point of S. Let (A, λ, i) be a triple such that

1. A is an abelian scheme over S;

2. λ : A→ A∨ is a Z×(2)-polarization of A;

3. i : O⊗
Z
Z(2) → EndS(A)⊗

Z
(Z(2))S defines an O⊗

Z
Z(2)-structure of

(A, λ).
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An O⊗
Z
A∞,2-equivariant symplectic isomorphism

α̂ : L⊗
Z
A∞,2 ∼→ V2As̄

is an isomorphism of the underlying O⊗
Z
A∞,2-modules together with an iso-

morphism
ν(α̂) : A∞,2(1)

∼→ V2 Gm,s̄

(of A∞,2-modules) making the diagram

(L⊗
Z
A∞,2)×(L⊗

Z
A∞,2)

〈 · , · 〉 //

α̂×α̂ o
��

A∞,2(1)

ν(α̂)o
��

V2As̄ × V2As̄
eλ

// V2 Gm,s̄

commutative. The group G(A∞,2) has a natural right action on the set of
such symplectic isomorphisms, defined by the composition (α̂, ν(α̂)) 7→ (α̂ ◦
g, ν(α̂) ◦ ν(g)) for each g ∈ G(A∞,2).

For Z×(2)-isogeny classes of similar triples over locally noetherian bases, a
better notion of level structures is given as follows:

Definition 1.3.8.2. Let H be an open compact subgroup of G(A∞,2).
Let (A, λ, i), S, and s̄ be as in Definition 1.3.8.1. A rational lev-
el-H structure of (A, λ, i) of type (L⊗

Z
A∞,2, 〈 · , · 〉) based at s̄

is a π1(S, s̄)-invariant H-orbit [α̂]H of O⊗
Z
A∞,2-equivariant symplectic

isomorphisms α̂ : L⊗
Z
A∞,2 ∼→ V2As̄ (as in Definition 1.3.8.1).

Remark 1.3.8.3. When the context is clear, we shall abbreviate a rational
principal level-H structure of (A, λ, i) of type (L⊗

Z
A∞,2, 〈 · , · 〉) based at s̄ as

a rational level-H structure based at s̄.

Construction 1.3.8.4. With the same setting as in Definition 1.3.7.6, assume
moreover that S is locally noetherian. Let αH = {αHn}n be any level-H
structure of (A, λ, i) of type (L⊗

Z
Ẑ2, 〈 · , · 〉). Let s̄ → S be any geometric

point of S. Let us choose an integer n ≥ 1 such that 2 - n and U2(n) ⊂ H.
Let S̃ � S be a finite étale covering such that the pullback of αHn to S̃ is
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the disjoint union of all elements in some Hn-orbit of some level-n structure
αn : (L/nL)S̃

∼→ A[n]S̃ over S̃. Let us lift s̄→ S to some s̄→ S̃ and view s̄ as
a geometric point of S̃ by this particular lifting. Then we obtain by Lemma
1.3.6.5 some O⊗

Z
Ẑ2-equivariant symplectic isomorphism α̂ : L⊗

Z
Ẑ2 ∼→ T2As̄

lifting αn. The H-orbit [α̂]H of α̂ is independent of the choice of n, S̃, and
αn, because it is the Hn-orbit of the U2(n)-orbit of α̂. Moreover, [α̂]H is
invariant under π1(S̃, s̄) for every choice of liftings s̄→ S̃, which means that
it is invariant under π1(S, s̄). As a result, we obtain a well-defined rational
level-H structure [α̂]H of (A, λ, i) of type (L⊗

Z
A∞,2, 〈 · , · 〉) such that every

α̂ in [α̂]H sends L⊗
Z
Ẑ2 to T2As̄.

Lemma 1.3.8.5. With the same setting as in Definition 1.3.7.6, assume
moreover that S is locally noetherian and connected. Let s̄ be a geometric
point of S. Let H be any open compact subgroup of G(Ẑ2). Then a rational
level-H structure [α̂]H of (A, λ, i) based at s̄ comes from a (necessarily unique)
integral level-H structure αH as in Construction 1.3.8.4 if and only if the fol-
lowing condition is satisfied: Each isomorphism α̂ : L⊗

Z
A∞,2 ∼→ V2As̄ in the

π1(S, s̄)-invariant U2(n)-orbit [α̂]H induces an O⊗
Z
Ẑ2-equivariant symplectic

isomorphism L⊗
Z
Ẑ2 ∼→ T2As̄ (such that ν(α̂) : A∞,2(1)

∼→ V2 Gm,s̄ induces

an isomorphism Ẑ2(1)
∼→ T2 Gm,s̄).

Proof. Let us take any integer n ≥ 1 such that 2 - n and U2(n) ⊂ H.
Under the assumption, we recover a π1(S, s̄)-equivariant Hn-orbit of some
O-invariant isomorphisms αn,s̄ : L/nL

∼→ A[n]s̄. Let S̃ � S be the fi-
nite étale covering corresponding to the open compact subgroup of π1(S, s̄)
that leaves αn,s̄ invariant. By Proposition 1.3.5.3, αn,s̄ is the specializa-
tion of an O-equivariant isomorphism αn : (L/nL)S̃

∼→ A[n]S̃ of group
schemes over S̃. Moreover, by Lemma 1.3.6.6 and its proof (cf. Corol-
lary 1.3.6.7), the symplectic-liftability of αn at a single point s̄ (in the
sense of Lemma 1.3.6.5) implies that αn is a level-n structure over S̃. The
π1(S, s̄)-invariance of the Hn-orbit of αn,s̄ implies that the disjoint union of
the elements in the Hn-orbit of αn is the pullback of a subscheme αHn of
IsomS((L/nL)S, A[n])× IsomS(((Z/nZ)(1))S,µn,S) over S. As a result, αHn
is an Hn-orbit of étale-locally-defined (integral) level-n structures (see Defini-
tion 1.3.7.3), which defines an integral level-H structure αH as in Definition
1.3.7.6, as desired.
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Now we are ready to show that the choice of the base point s̄ is immaterial
in practice, because we have the following:

Lemma 1.3.8.6. Let S be a locally noetherian scheme over Spec(Z(2)), and
let s̄ and s̄′ be two geometric points of S lying on the same connected com-
ponent. Let (A, λ, i) be a triple as in Definition 1.3.8.1. Let H be any open
compact subgroup of G(Ẑ2). Then the rational level-H structures of (A, λ, i)
of type (L⊗

Z
A∞,2, 〈 · , · 〉) based at s̄ are canonically in bijection with the ra-

tional level-H structures based at s̄′. Under this bijection, those rational lev-
el-H structures [α̂]H based at s̄ that are represented by O⊗

Z
A∞,2-equivariant

symplectic isomorphisms α̂ : L⊗
Z
A∞,2 ∼→ V2As̄ sending L⊗

Z
Ẑ2 to T2As̄

correspond to rational level-H structures [α̂′]H based at s̄ that are represented
by O⊗

Z
A∞,2-equivariant symplectic isomorphisms α̂′ : L⊗

Z
A∞,2 ∼→ V2As̄′

sending L⊗
Z
Ẑ2 to T2As̄′.

Proof. Let us first describe how the bijection is constructed. Start with a
rational level-H structure [α̂]H based at s̄, and let α̂ : L⊗

Z
A∞,2 ∼→ V2As̄

be a representative of [α̂]H. By Corollary 1.3.5.4, there is a Z×(2)-isogeny

f : (A, λ, i) → (A1, λ1, i1) such that the composition α̂1 := V2(f) ◦ α̂ sends
L⊗
Z
Ẑ2 to T2A1,s̄. Then theH-orbit of α̂1 gives a well-defined rational level-H

structure [α̂1]H of (A1, λ1, i1) based at s̄. By Lemma 1.3.8.5, [α̂1]H comes
from a (necessarily unique) integral level-H structure αH of (A1, λ1, i1) under
Construction 1.3.8.4. Applying Construction 1.3.8.4 to αH with a different
base point s̄′, we obtain a rational level-H structure [α̂′1]H of (A1, λ1, i1) based
at s̄′. Let α̂′1 : L⊗

Z
A∞,2 ∼→ V2A1,s̄′ be any representative of [α̂′1]H. Then

the H-orbit of α̂′ := V2(f)−1 ◦ α̂′1 : L⊗
Z
A∞,2 ∼→ V2As̄′ gives a well-defined

rational level-H structure [α̂′]H of (A, λ, i) based at s̄′. This procedure gives a
bijection because it is reversible (by switching the roles of s̄ and s̄′). It is clear
from the construction that it satisfies the remaining properties described in
the lemma.

Definition 1.3.8.7. Let H, (A, λ, i), and S be as in Definition 1.3.8.1. A
rational level-H structure of (A, λ, i) of type (L⊗

Z
A∞,2, 〈 · , · 〉) is an

assignment to each geometric s̄ on S a rational level-H structure of (A, λ, i) of
type (L⊗

Z
A∞,2, 〈 · , · 〉) based at s̄, such that the assignments to two geometric
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points of S lying on the same connected component correspond to each other
under the canonical bijection in Lemma 1.3.8.6.

Convention 1.3.8.8. By abuse of notation, we shall still denote the rational
level-H structures of (A, λ, i) of type (L⊗

Z
A∞,2, 〈 · , · 〉) by the same notation

[α̂]H that we use for the structures based at a particular geometric point s̄
of S. This is reasonable because we have to take a particular choice of a
geometric point s̄ of S only when we take a representative α̂ of [α̂]H.

Remark 1.3.8.9. By Lemma 1.3.8.6, Construction 1.3.8.4 determines a well-
defined rational level-H structure [α̂]H whose choice is independent of the
geometric point s̄ at which it is based.

1.4 Definitions of Moduli Problems

Assume as in Section 1.2.1 that B is a finite-dimensional semisimple algebra
over Q with a positive involution ?, and O is a Z-order invariant under ?.
Let Disc be the discriminant of O over Z (see Definition 1.1.1.6; see also
Proposition 1.1.1.16). Closely related to Disc is the invariant Ibad for O
defined in Definition 1.2.1.18, which is either 1 or 2.

1.4.1 Definition by Isomorphism Classes

Let us fix a choice of a PEL-type O-lattice (L, 〈 · , · 〉, h) (see Definition
1.2.1.3) and an integer n ≥ 1. Let L# be the dual lattice of L with respect
to 〈 · , · 〉 (see Definition 1.1.4.11).

Definition 1.4.1.1. We say that a prime number p is bad if
p|n Ibad Disc[L# : L]. We say a prime number p is good if it is not
bad. We say that 2 is a set of good primes if it does not contain any bad
primes.

Let us fix the choice of a set 2 of good primes. Let S0 := Spec(OF0,(2)) and
let (Sch /S0) be the category of schemes over S0. We shall define our moduli
problem in the language of categories fibered in groupoids (see Appendix A).

Definition 1.4.1.2. The moduli problem Mn is defined as the category fibered
in groupoids over (Sch /S0) whose fiber over each scheme S is the groupoid
Mn(S) described as follows: The objects of Mn(S) are tuples (A, λ, i, αn),
where
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1. A is an abelian scheme over S;

2. λ : A→ A∨ is a prime-to-2 polarization of A;

3. i : O → EndS(A) defines an O-structure of (A, λ);

4. LieA/S with its O⊗
Z
Z(2)-module structure given naturally by i

satisfies the determinantal condition in Definition 1.3.4.1 given by
(L⊗

Z
R, 〈 · , · 〉, h);

5. αn : (L/nL)S
∼→ A[n] is an (integral) principal level-n structure of

(A, λ, i) of type (L⊗
Z
Ẑ2, 〈 · , · 〉) as in Definition 1.3.6.2.

The isomorphisms

(A, λ, i, αn) ∼isom. (A′, λ′, i′, α′n)

of Mn(S) are given by isomorphisms f : A
∼→ A′ (of abelian schemes over S)

such that

1. λ = f∨ ◦ λ′ ◦ f ;

2. f ◦ i(b) = i′(b) ◦ f for all b ∈ O;

3. f |A[n] : A[n]
∼→ A′[n] satisfies α′n = (f |A[n]) ◦ αn.

Definition 1.4.1.3. If we have two tuples (A, λ, i, αn) ∼isom. (A′, λ′, i′, α′n)
as in Definition 1.4.1.2 under an isomorphism f : A

∼→ A′, then we say in
this case that we have an isomorphism f : (A, λ, i, αn)

∼→ (A′, λ′, i′, α′n).

The definition for general level structures is as follows:

Definition 1.4.1.4. Let H be an open compact subgroup of G(Ẑ2). The mod-
uli problem MH is defined as the category fibered in groupoids over (Sch /S0)
whose fiber over each scheme S is the groupoid MH(S) described as follows:
The objects of MH(S) are tuples (A, λ, i, αH), where

1. A is an abelian scheme over S;

2. λ : A→ A∨ is a prime-to-2 polarization of A;

3. i : O → EndS(A) defines an O-structure of (A, λ);
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4. LieA/S with its O⊗
Z
Z(2)-module structure given naturally by i

satisfies the determinantal condition in Definition 1.3.4.1 given by
(L⊗

Z
R, 〈 · , · 〉, h);

5. αH is an (integral) level-H structure of (A, λ, i) of type (L⊗
Z
Ẑ2, 〈 · , · 〉)

as in Definition 1.3.7.6.

The isomorphisms

(A, λ, i, αH) ∼isom. (A′, λ′, i′, α′H)

of MH(S) are given by isomorphisms f : A
∼→ A′ (of abelian schemes over

S) such that

1. λ = f∨ ◦ λ′ ◦ f ;

2. f ◦ i(b) = i′(b) ◦ f for all b ∈ O;

3. we have the symbolical relation f ◦ αH = α′H defined in the following
sense: For each integer n ≥ 1 such that 2 - n and U2(n) ⊂ H, let

αHn ⊂ HomS((L/nL)S, A[n])×
S

HomS(((Z/nZ)(1))S,µn,S)

and

α′Hn ⊂ HomS((L/nL)S, A
′[n])×

S
HomS(((Z/nZ)(1))S,µn,S)

be the subschemes defining αH and α′H, respectively, as in Definition
1.3.7.6. Then αHn is the pullback of α′Hn under the morphism
f |A[n]× Id. (It suffices to verify this condition for one n.)

Definition 1.4.1.5. If we have two tuples (A, λ, i, αH) ∼isom. (A′, λ′, i′, α′H)
as in Definition 1.4.1.4 under an isomorphism f : A

∼→ A′, then we say in
this case that we have an isomorphism f : (A, λ, i, αH)

∼→ (A′, λ′, i′, α′H).

Remark 1.4.1.6. We have a canonical identification Mn
∼= MU2(n) because

(integral) level-H structures are just (integral) principal level-n structures
when H = U2(n). When U2(n) ⊂ H, the Hn = H/U2(n)-orbit αHn of αn
defines a canonical finite étale morphism Mn → MH, making MH a quotient
of Mn by Hn.
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Remark 1.4.1.7. Over C, each abelian variety has an associated lattice
that determines itself up to homothety. However, we cannot talk about
lattices over arbitrary bases. The close approximations we have are
the (co)homologies such as the de Rham and `-adic homologies, with
rigidifications given by the Lie algebra conditions and level structures.
Therefore, we should view both of them as “level structures”, although the
terminology has been reserved for the `-adic versions only. Practically, we
often discuss the Lie algebra conditions when we discuss the endomorphism
structures. But one should keep in mind that this is because of its
formulation, not because of its meaning.

Following Pink [102, 0.6], we define the neatness of open compact
subgroups H of G(Ẑ2) as follows: Let us view G(Ẑ2) as a subgroup of
GLO⊗

Z
Ẑ2(L⊗

Z
Ẑ2)×Gm(Ẑ2) (as in Definition 1.2.1.6). (Or we may use any

faithful linear algebraic representation of G.) Then, for each rational prime
p > 0 not in 2, it makes sense to talk about eigenvalues of elements gp in

G(Zp), which are elements in Q̄×p . Let g = (gp) ∈ G(Ẑ2), with p running
through rational primes such that 2 - p. For each such p, let Γgp be the
subgroup of Q̄×p generated by eigenvalues of gp. For any embedding Q̄ ↪→ Q̄p,
consider the subgroup (Q̄× ∩ Γgp)tors of torsion elements of Q̄× ∩ Γgp , which
is independent of the choice of the embedding Q̄ ↪→ Q̄p.

Definition 1.4.1.8. We say that g = (gp) is neat if ∩
p 6∈2

(Q̄×∩Γgp)tors = {1}.

We say that an open compact subgroup H of G(Ẑ2) is neat if all its elements
are neat.

Remark 1.4.1.9. The usual version of Serre’s lemma, which asserts that no
nontrivial root of unity can be congruent to 1 modulo n if n ≥ 3, shows that
H is neat if H ⊂ U2(n) for some n ≥ 3 such that 2 - n.

Lemma 1.4.1.10. The moduli problem MH is locally of finite presentation
as a category fibered in groupoids (see Definition A.5.9).

Proof. This is because objects of MH are defined by schemes and morphisms
of finite presentation (see Remark 1.3.1.2 and Theorem 1.3.1.3).

Theorem 1.4.1.11. Let H be an open compact subgroup of G(Ẑ2). The
moduli problem MH is an algebraic stack separated, smooth, and of finite type
over S0. It is representable by an algebraic space if the objects it parameterizes

97



have no nontrivial automorphism, which is in particular, the case when H is
neat (see Definition 1.4.1.8).

As a special case,

Corollary 1.4.1.12. The moduli problem Mn is an algebraic stack separated,
smooth, and of finite type over S0. It is representable by an algebraic space
if n ≥ 3 (see Remark 1.4.1.9).

The proof of Theorem 1.4.1.11 will be carried out in Chapter 2. We shall
denote the algebraic stack or algebraic space representing MH (resp. Mn) by
the same notation, MH (resp. Mn).

Remark 1.4.1.13. We shall see in Corollary 7.2.3.10, which is a by-product
of an intermediate construction in the proof of Theorem 7.2.4.1, that MH
is quasi-projective over S0 when H is neat. Therefore it is not necessary to
argue that it is a scheme at this moment.

1.4.2 Definition by Z×(2)-Isogeny Classes

Let V := L⊗
Z
Q. Then we may write (V ⊗

Q
R, 〈 · , · 〉, h) (resp.

(V ⊗
Q
A∞,2, 〈 · , · 〉)) in place of (L⊗

Z
R, 〈 · , · 〉, h) (resp. (L⊗

Z
A∞,2, 〈 · , · 〉)).

Let (LNSch/S0) be the full subcategory of (Sch /S0) whose objects are
locally noetherian schemes over S0.

Definition 1.4.2.1. Let H be an open compact subgroup of G(A∞,2).
The moduli problem Mrat

H is defined as the category fibered in groupoids
over (LNSch/S0) whose fiber over each scheme S is the groupoid Mrat

H (S)
described as follows: The objects of Mrat

H (S) are tuples (A, λ, i, [α̂]H), where

1. A is an abelian scheme over S;

2. λ : A→ A∨ is a Z×(2)-polarization of A;

3. i : O⊗
Z
Z(2) → EndS(A)⊗

Z
(Z(2))S defines an O⊗

Z
Z(2)-structure of

(A, λ);

4. LieA/S with its O⊗
Z
Z(2)-module structure given by i satisfies the deter-

minantal condition as in Definition 1.3.4.1 given by (V ⊗
Q
R, 〈 · , · 〉, h);
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5. [α̂]H is a rational principal level-H structure of (A, λ, i) of type
(V ⊗

Q
A∞,2, 〈 · , · 〉) as in Definition 1.3.8.7.

The isomorphisms

(A, λ, i, [α̂]H) ∼Z×
(2)

-isog. (A′, λ′, i′, [α̂′]H)

of Mrat
H (S) are given by Z×(2)-isogenies f : A→ A′ such that

1. over each connected component S, we have λ = rf∨ ◦ λ′ ◦ f for some
r ∈ Z×(2),>0;

2. f ◦ i(b) = i′(b) ◦ f for all b ∈ O⊗
Z
Z(2);

3. for each geometric point s̄ of S, the morphism V2(f) : V2As̄
∼→ V2A′s̄

induced by f satisfies the condition that, for all representatives α̂ and α̂′

representing [α̂]H and [α̂′]H at s̄, respectively (see Convention 1.3.8.8),
(α̂′)−1 ◦ V2(f) ◦ α̂ lies in the H-orbit of the identity on V ⊗

Q
A∞,2,

and ν(α̂′)−1 ◦ ν(α̂) lies in the ν(H)-orbit of the r ∈ Z×(2),>0 such that

λ = rf∨ ◦ λ′ ◦ f at s̄.

Definition 1.4.2.2. If we have two tuples (A, λ, i, [α̂]H) ∼Z×
(2)

-isog.

(A′, λ′, i′, [α̂′]H) as in Definition 1.4.2.1 under a Z×(2)-isogeny

f : A
∼→ A′, then we say in this case that we have a Z×(2)-isogeny

f : (A, λ, i, [α̂]H)
∼→ (A′, λ′, i′, [α̂′]H).

Remark 1.4.2.3. Suppose L 6= 0. Let s̄ be any geometric point of S. Then
the r ∈ Z×(2),>0 above (in the definition of a Z×(2)-isogeny f : (A, λ, i, [α̂]H)

∼→
(A′, λ′, i′, [α̂′]H)) such that λ = rf∨ ◦ λ′ ◦ f at s̄ implies that

eλ
′
(V2(f)(x),V2(f)(y)) = eλ(x, r−1y)

for all x, y ∈ V2As̄. In this case, we may interpret r−1 as some similitude
factor for V2(f). Then the condition that (α̂′)−1 ◦ V2(f) ◦ α̂ lies in the
H-orbit of the identity on V ⊗

Q
A∞,2 forces ν(α̂′)−1 ◦ r−1 ◦ ν(α̂) to lie in the

ν(H)-orbit of the identity on A∞,2, and hence the equivalent condition that
ν(α̂′)−1 ◦ ν(α̂) lies in the ν(H)-orbit of the r ∈ Z×(2),>0.
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Remark 1.4.2.4. Definition 1.4.2.1 uses only the existence of some Z-order
O in B (with positive involution) and some O-lattice (L, 〈 · , · 〉) inside
(V ⊗

Q
R, 〈 · , · 〉) (with some polarization h) and (V ⊗

Q
A∞,2, 〈 · , · 〉), or rather

(V ⊗
Q
A2, 〈 · , · 〉), such that O⊗

Z
Z(2) is maximal as a Z(2)-order, and such

that (L⊗
Z
Z(2), 〈 · , · 〉) is self-dual. We could have started (as in [76]) with a

polarized symplectic vector space (V, 〈 · , · 〉, h) (over B ∼= O⊗
Z
Q), together

with the existence of a maximal Z(2)-order and the existence of some
self-dual Z(2)-lattice over this order. (The definitions of the subgroups

G(Ẑ2) and U2(n) depend nevertheless on the choice of L⊗
Z
Ẑ2.)

1.4.3 Comparison between Two Definitions

Let H be a fixed choice of an open compact subgroup of G(Ẑ2). Let us
denote by MLN

H the pullback of the category MH fibered in groupoids over
(Sch /S0) to (LNSch/S0) (see Definition A.5.5). A consequence of Theorem
1.4.1.11 is:

Corollary 1.4.3.1. Suppose S ∈ Ob(Sch /S0) and S ∼= lim←−
i∈I

Si, where Si ∈

Ob(LNSch/S0) are affine schemes for all i ∈ I. Then

MH(S) ∼= lim−→
i∈I

MH(Si).

In particular, MH is uniquely determined by MLN
H .

Proof. First note that MH is uniquely determined (up to isomorphism) by its
fibers over affine schemes. Since algebraic stacks of finite type over S0 are, in
particular, locally of finite presentation, their fibers over affine schemes are
uniquely determined (up to isomorphism) by their pullbacks to (LNSch/S0),
by the explicit formula in the statement of the corollary.

Construction 1.4.3.2. We can define a canonical morphism

MLN
H → Mrat

H (1.4.3.3)

(over (LNSch/S0)) as follows: Over each scheme S in (LNSch/S0), we
associate with each object (A, λ, i, αn) in MLN

H (S) ∼= MH(S) the object
(A, λ, i, [α̂]H) in Mrat

H (S), where [α̂]H is associated with αH as in Construction
1.3.8.4 and Remark 1.3.8.9.
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Proposition 1.4.3.4. The morphism (1.4.3.3) is an isomorphism (i.e.,
equivalence of categories).

Remark 1.4.3.5. This is in the sense of 1-isomorphisms between 2-categories.
In particular, this only requires the morphism (1.4.3.3) to induce equivalences
of categories MLN

H (S) ∼= MH(S)→ Mrat
H (S) for each locally noetherian scheme

S (see Remark A.1.2.7 and Definition A.5.3).

Proof of Proposition 1.4.3.4. Without loss of generality, we may assume that
S is locally noetherian and connected, and fix a particular choice s̄ of a
geometric point on S. All rational level-H structures we consider will be
based at s̄, without further explanation (see Remark 1.3.8.9).

Suppose (A, λ, i, [α̂]H) (resp. (A′, λ′, i′, [α̂′]H)) is associated with
(A, λ, i, αH) (resp. (A′, λ′, i′, α′H)) as in Construction 1.4.3.2. Let us take any
choice of α̂ (resp. α̂′) that represents [α̂]H (resp. [α̂′]H).

Suppose (A, λ, i, [α̂]H) ∼Z×
(2)

-isog. (A′, λ′, i′, [α̂′]H). By definition, this

means there is a Z×(2)-isogeny f : (A, λ, i)→ (A′, rλ′, i′) for some r ∈ Z×(2),>0,

such that (α̂′)−1 ◦ V2(f) ◦ α̂ lies in the H-orbit of the identity on L⊗
Z
A∞,2,

and such that ν(α̂′)−1 ◦ ν(α̂) lies in the ν(H)-orbit of r.
By Construction 1.4.3.2, we have T2As̄ = α̂(L⊗

Z
Ẑ2), and T2A′s̄ =

α̂′(L⊗
Z
Ẑ2). Therefore we have V2(f)(T2As̄) = T2A′s̄, which by Corollary

1.3.5.4 implies that f : A→ A′ is an isomorphism of abelian schemes. Since
T2 Gm,s̄ = ν(α̂)(Ẑ2(1)) = ν(α̂′)(Ẑ2(1)) by construction, ν(α̂′)−1◦ν(α̂) lies in

Ẑ2,×, which by assumption has to contain the ν(H)-orbit of r. Since ν(H) ⊂
Ẑ2,× (because H ⊂ G(Ẑ2)), the approximation A∞,2,× = Z×(2),>0 · Ẑ2,× forces

r = 1. Furthermore, it is clear that we have f ◦ αH = α′H in the sense of
Definition 1.4.1.4. Therefore (A, λ, i, αH) ∼isom. (A′, λ′, i′, α′H), and we can
conclude the injectivity of (1.4.3.3).

On the other hand, suppose (A, λ, i, [α̂]H) is any object in Mrat
H (S). We

must show that there exists an object (A′, λ′, i′, [α̂′]H) in Mrat
H (S), satisfying

(A, λ, i, [α̂]H) ∼Z×
(2)

-isog. (A′, λ′, i′, [α̂′]H), such that (A′, λ′, i′, [α̂′]H) comes from

an object in MH(S), or equivalently has the following properties:

1. λ′ is a polarization (instead of merely a Z×(2)-polarization).

2. i′ defines an O-structure (mapping O to EndS(A′) rather than
EndS(A′)⊗

Z
Z(2)).
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3. Let α̂′ be any representative of [α̂′]H. Then α̂′ induces (by
Lemma 1.3.8.5) an O⊗

Z
Ẑ2-equivariant symplectic isomorphism

L⊗
Z
Ẑ2 ∼→ T2A′s̄, and ν(α̂′) induces an isomorphism Ẑ2(1)

∼→ T2 Gm,s̄

(of Ẑ2-modules) making the diagram

(L⊗
Z
Ẑ2)×(L⊗

Z
Ẑ2)

〈 · , · 〉 //

α̂′×α̂′ o
��

Ẑ2(1)

ν(α̂′)o
��

T2A′s̄ × T2A′s̄
eλ
′

// T2 Gm,s̄

(1.4.3.6)

commutative. (This is also a condition for λ′: If we replace λ′ with a
positive multiple different from itself, then this will not hold.)

Let α̂ be a representative of [α̂]H. By Corollary 1.3.5.4, the O-invariant
open compact subgroup α̂(L⊗

Z
Ẑ2) of V2As̄ corresponds to a Z×(2)-isogeny

f : (A, λ, i) → (A′, λ′′, i′) such that V2(f)−1(T2A′s̄) = α̂(L⊗
Z
Ẑ2), such that

i′ has its image in EndS(A′), and such that the diagram

(L⊗
Z
A∞,2)×(L⊗

Z
A∞,2)

〈 · , · 〉 //

α̂′×α̂′
��

A∞,2(1)

o rν(α̂)

��
V2A′s̄ × V2A′s̄

erλ
′′

// V2 Gm,s̄

is commutative for every r ∈ Z×(2),>0.

By the approximation A∞,2,× = Z×(2),>0 · Ẑ2,×, there exists a unique

r ∈ Z×(2),>0 such that (rν(α̂))(Ẑ2(1)) = T2 Gm,s̄. Let λ′ := rλ′′, let

α̂′ := V2(f) ◦ α̂, let ν(α̂′) := rν(α̂), and let [α̂′]H be the H-orbit
of α̂′. Then α̂′(L⊗

Z
Ẑ2) = V2(f)(α̂(L⊗

Z
Ẑ2)) = T2A′s̄, and we have

(A, λ, i, [α̂]H) ∼Z×
(2)

-isog. (A′, λ′, i′, [α̂′]H).

Moreover, since α̂′(Ẑ2(1)) = T2 Gm,s̄, the inclusion L⊗
Z
Ẑ2 ⊂ L#⊗

Z
Ẑ2

corresponds under α̂′ to the inclusion V2(λ′)(T2A′s̄) ⊂ T2((A′s̄)
∨) in V2A′s̄,

showing that λ′ is a polarization (instead of merely a Z×(2)-polarization). This

concludes the proof of the surjectivity of (1.4.3.3).
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As a trivial consequence,

Corollary 1.4.3.7 (of Proposition 1.4.3.4 and Theorem 1.4.1.11). The mod-
uli problem Mrat

H is an algebraic stack separated, smooth, and of finite type
over S0 in the sense that Mrat

H is isomorphic to the pullback (as a category
fibered in groupoids over (Sch /S0)) to (LNSch/S0) of an algebraic stack sep-
arated, smooth, and of finite type over S0. It is representable by an algebraic
space (in a similar sense) if the objects it parameterizes have no nontrivial
automorphism, which is in particular, the case when H is neat (see Definition
1.4.1.8).

Moreover, we obtain the following exotic isomorphism between moduli
problems defined by reasonably different choices of PEL-type O-lattices:

Corollary 1.4.3.8. Let O (resp. O′) be a Z-order invariant under
the involution ? of B, and let (L, 〈 · , · 〉, h) (resp. (L′, 〈 · , · 〉′, h′))
be a PEL-type O-lattice (resp. a PEL-type O′-lattice). Suppose
O⊗
Z
Z(2) = O′⊗

Z
Z(2) (both canonically embedded as subalgebras of B), and

(L⊗
Z
Z(2), 〈 · , · 〉, h) ∼= (L′⊗

Z
Z(2), 〈 · , · 〉′, h′) (as polarized symplectic modules

over O⊗
Z
Z(2) = O′⊗

Z
Z(2)), such that 2 is a set of good primes for both of

them. Then the two moduli problems MH and M′H over S0 = Spec(OF0,(2))
defined respectively by them are isomorphic to each other (over S0).

Proof. This follows from Corollary 1.4.3.1, Proposition 1.4.3.4, and Remark
1.4.2.4.

Remark 1.4.3.9. Let O′ be any maximal order in B ∼= O⊗
Z
Q containing O.

(We do not assume that O′ is invariant under the involution ? of B.) Let L′

denote the O′-span of L in V = L⊗
Z
Q. Then L′ is an O-lattice because it is

still Z-torsion-free and finitely generated over O. By Proposition 1.1.1.21, we
have O′⊗

Z
Z(2) = O⊗

Z
Z(2) (as orders in B), and hence (L′)⊗

Z
Z(2) = L⊗

Z
Z(2)

(as lattices in V ) remains self-dual. Therefore, by Corollary 1.4.3.8, the
isomorphism class of the moduli problem MH remains unchanged if we retain
O but replace L with L′. (Certainly, the meaning of U2(n) for n ≥ 1 has
to be modified accordingly, because we have modified L⊗

Z
Ẑ2. This is one

reason that it is more natural to work with general level structures.)
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Condition 1.4.3.10. The PEL-type O-lattice (L, 〈 · , · 〉, h) is chosen such
that the action of O on L extends to an action of some maximal order O′ in
B containing O.

As explained in Remark 1.4.3.9, this is harmless for our purpose of com-
pactifications. We will need this technical condition only when we study the
degeneration of objects in Mn (see Lemma 5.2.2.4 below).

Remark 1.4.3.11. If we form the tower M2 := lim←−
H,H⊂G(Ẑ2)

Mrat
H , then the objects

of this tower can be represented by tuples of the form (A, λ, i, [α̂]) in the
obvious sense, and there is a natural right action of elements g ∈ G(A∞,2)
on M2 defined by sending a representative (A, λ, i, α̂) to (A, λ, i, α̂ ◦ g). At
finite levels, the action can be defined more precisely by sending (A, λ, i, [α̂]H′)
at level H′ to (A, λ, i, [α̂ ◦ g]H) at level H, if H′ ⊂ H ∩ (gHg−1). (We use
H∩ (gHg−1) rather than H∩ (g−1Hg), because we are using a right action.)
We will elaborate more on this idea in Sections 5.4.3 and 6.4.3.

Remark 1.4.3.12. The characteristic zero fiber of MH might contain unnec-
essary components other than the canonical model of the Shimura variety
we want: By first identifying MLN

H with Mrat
H by Proposition 1.4.3.4, we see

from Definition 1.4.2.1 that the definition involves only (L⊗
Z
A2, 〈 · , · 〉, h),

but not (L, 〈 · , · 〉, h). Therefore, two nonisomorphic PEL-type O-lattices
(L1, 〈 · , · 〉1, h1) and (L2, 〈 · , · 〉2, h2) define the same moduli problem MH if
they become isomorphic after tensoring with A2. This is the issue of the
so-called failure of Hasse’s principle. When B is a simple algebra, and when
2 has only one element, the characteristic zero fiber of Mrat

H can be identified
with the one defined by Kottwitz in [76, §5]. Moreover, when B is not of type
D, it is explained in [76, §8] that the canonical models of Shimura varieties
appearing in the characteristic zero fiber of Mrat

H are all isomorphic to each
other (even as canonical models). Therefore, the failure of Hasse’s principle
in the definition of our moduli problems is harmless in such cases.

Remark 1.4.3.13. Even if the failure of Hasse’s principle does not occur,
the algebraic stack (or algebraic space) MH (or Mrat

H ) is not geometrically
connected in general.

Remark 1.4.3.14. Although Definition 1.4.2.1 uses only (L⊗
Z
A2, 〈 · , · 〉, h) but

not (L, 〈 · , · 〉, h), the existence of the lattice (L, 〈 · , · 〉, h) is indispensable.
Suppose we have defined the moduli problem Mrat

H using only some adelic
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object (MA2 , 〈 · , · 〉, h) (without assuring that the pairings come from some
particular integral object (L, 〈 · , · 〉, h), or some rational analogue). Then, by
redefining everything over the categories (Sch /S0) or (LNSch/S0), the proofs
of Theorem 1.4.1.11 and Proposition 1.4.3.4 still work, and they show that
Mrat
H is smooth over S0. However, it is not clear that it is nonempty! In fact,

the existence of any geometric point will force the existence of some com-
plex point by smoothness, and the H1 (with pairing) of the corresponding
polarized complex abelian variety will force the existence of some PEL-type
O-lattice (L, 〈 · , · 〉, h) inducing (MA2 , 〈 · , · 〉, h). Conversely, if we have some
PEL-type O-lattice (L, 〈 · , · 〉, h), then we can define a complex abelian va-
riety (with additional PEL structures) by taking the real torus (L⊗

Z
R)/L

with complex structure given by h : C → EndO⊗
Z
R(L⊗

Z
R). In particular,

the moduli problem defined by (L, 〈 · , · 〉, h) is nonempty. This justifies our
use of PEL-type O-lattices (integral or rational versions, rather than adelic
versions) in the definition of moduli problems.

1.4.4 Definition by Different Sets of Primes

Let 2 and 2′ be any two sets of good primes (see Definition 1.4.1.1) such that
2 ⊂ 2′. Let U2′−2 :=

∏
p∈2′−2

G(Zp). Let H′ be an open compact subgroup of

G(Ẑ2′), and let H be the open compact subgroup H′×U2′−2 of G(Ẑ2). Let
MH and MH′ be defined over S0 := Spec(OF0,(2)) and S′0 := Spec(OF0,(2′)),
respectively, as in Definition 1.4.1.2. There is a canonical forgetful functor

MH → MH′ ×
S′0

S0 (1.4.4.1)

defined by viewing a level-H structure as a level-H′ structure. (This makes
sense because level-H′ structures require a weaker liftability condition than
level-H structures. See Definition 1.3.7.6.)

Lemma 1.4.4.2. The forgetful functor (1.4.4.1) is representable by an open
and closed immersion over S0.

Proof. By Lemma 1.4.1.10, it suffices to show that, for each morphism S ′ →
MH′ ×

S′0

S0 from a locally noetherian scheme S ′, the pullback S → S ′ of

(1.4.4.1) is representable by an open and closed immersion. The definitions
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of the two moduli problems MH and MH′ are the same except that the level
structures (see Definition 1.3.7.6) of objects of MH require the symplectic-
liftability conditions at those primes p in 2′ − 2. Since level structures are
defined by isomorphisms between finite étale group schemes, the pullback
S → S ′ of (1.4.4.1) is representable by a finite étale morphism. By [59, IV-4,
17.9.1 and IV-2, 6.15.3], to show that S → S ′ is an open and closed immer-
sion, it suffices to show that, for each geometric point s̄ of S ′, there is at
most one way to lift s̄ to a geometric point of S. Let (As̄, λs̄, is̄, αH′,s̄) be the
object of MH′(s̄) defined by composing s̄ → S ′ with S ′ → MH′ ×

S′0

S0. Since

the degree of λs̄ is prime-to-2′, at each p ∈ 2′−2, the λs̄-Weil pairing eλs̄ de-
fines a perfect alternating pairing on TpAs̄ valued in Tp Gm,s̄. If there exists
an O⊗

Z
Zp-equivariant symplectic isomorphism from (L⊗

Z
Zp, 〈 · , · 〉,Zp(1))

to (Tp Gm,s̄, e
λs̄ ,Tp Gm,s̄), then its G(Zp)-orbit is necessarily unique, because

G(Zp) is by definition the O⊗
Z
Zp-equivariant symplectic automorphism of

(L⊗
Z
Zp, 〈 · , · 〉,Zp(1)) (see Definition 1.2.1.6). Hence there is at most one

way to lift s̄ to a geometric point of S, as desired.

A more interesting question is to find sufficient conditions for (1.4.4.1) to
be an isomorphism.

Proposition 1.4.4.3. With assumptions as above, suppose there is a unique
isomorphism class of self-dual Zp(1)-valued integrable O⊗

Z
Zp-lattices of each

O-multirank for each p ∈ 2′ − 2. Then the forgetful functor (1.4.4.1) is an
isomorphism.

Proof. Let us continue with the setting in the proof of Lemma 1.4.4.2. It
suffices to show that the pullback S → S ′ of (1.4.4.1) is surjective. Since
p is different from the residue characteristic of s̄, there exists some (non-
canonical) isomorphism Zp(1)

∼→ Tp Gm,s̄ of Zp-modules which allows us to
consider (Tp Gm,s̄, e

λ,Tp Gm,s̄) as Zp(1)-valued. By assumption, there exists
anO⊗

Z
Zp-equivariant symplectic isomorphism from (L⊗

Z
Zp, 〈 · , · 〉,Zp(1)) to

(Tp Gm,s̄, e
λ,Tp Gm,s̄), because they have the same O-multirank. This shows

that S → S ′ is surjective, as desired.

Remark 1.4.4.4. According to [118, Lem. 3.4] and [76, Lem. 7.2], or according
to Proposition 1.2.3.7 and Corollary 1.2.3.10, the condition that there is
a unique symplectic isomorphism class of each O-multirank over the good
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primes holds except when the semisimple algebra B involves some simple
factor of type D (see Definition 1.2.1.15).

Remark 1.4.4.5. When the semisimple algebra B involves any simple factor
of type D, the question is delicate already in the case that B is simple, that
2 = ∅, and that 2′ = {p} for some good prime p > 0. See [76, §8].
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Chapter 2

Representability of Moduli
Problems

In this chapter, let us assume the same setting as in Section 1.4. Let us fix
a choice of an open compact subgroup H ⊂ G(Ẑ2).

Our main objective is to prove Theorem 1.4.1.11, with Proposition 2.3.5.2
as a by-product. Technical results worth noting are Proposition 2.1.6.8 and
Corollary 2.2.4.12. The proof of Theorem 1.4.1.11 is carried out by verifying
Artin’s criterion in Section 2.3.4 (see, in particular, Theorems B.3.7, B.3.9,
and B.3.11). For readers who might have wondered, let us make it clear that
we will not need Condition 1.4.3.10 in this chapter.

Let us outline the strategy of our proof before we begin. (Those readers
who are willing to believe the representability statement as explained in [76,
§5] should feel free to skip this chapter.)

There exist at least two different methods for showing that the moduli
problem MH defined in Definition 1.4.1.4 is an algebraic stack.

The first one is given in [96, Ch. 7] using geometric invariant theory. The
advantage of this method is that it is then clear that MH is a scheme when
the objects it parameterizes have no nontrivial automorphism (because it al-
ways works in the category of schemes). Indeed, there is always a morphism
from MH to the Siegel moduli (of some polarization degree possibly greater
than one), which is relatively representable by a scheme of finite type over its
image. The image is closed in the Siegel moduli schemes, as the existence of
additional structures is described by closed conditions. Therefore the general
result using geometric invariant theory in [96, Ch. 7] for the Siegel moduli
implies that MH is of finite type over Spec(OF0,(2)), and is actually a scheme
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when the objects it parameterizes have no nontrivial automorphism. How-
ever, this (sketchy) argument gives no information about the local moduli,
let alone the smoothness of MH over Spec(OF0,(2)).

The second method is Artin’s criterion (for algebraic spaces or algebraic
stacks), which has the advantage that it requires little more than showing
the prorepresentability of local moduli. Note that to prove the claim of
smoothness in Theorem 1.4.1.11 we have to understand the local moduli
anyway. Therefore it seems justified to us that our point of view should be
biased toward the second method: Following the well-explained arguments
in [109] and [99, §2] we will show that the local moduli is prorepresentable
and formally smooth at each point of finite type over Spec(OF0,(2)). The
endomorphism structure, the Lie algebra condition, and the level structures
require some explanation, but they do not incur any essential difficulty. Since
the moduli problem can be shown to be of finite type by the theory of Hilbert
schemes, we conclude from Artin’s criterion that MH is an algebraic stack
separated, smooth, and of finite type over the base scheme (see Appendices A
and B for more details). WhenH is neat, MH is representable by an algebraic
space, because the existence of a level-H structure forces all automorphisms
of objects of MH to be trivial.

As already mentioned in Remark 1.4.1.13, the fact that MH is actually a
scheme when H is neat will be a by-product of our later work, and therefore
can be suppressed at this moment.

We will not need the Serre–Tate theory of local moduli (as in [85] or
[65]), and hence will not need Barsotti–Tate groups nor any kind of Cartier–
Dieudonné theory. They would be important for the study of integral models
of Shimura varieties that are not smooth. However, as explained in the
introduction, we have decided not to discuss them in such generality.

2.1 Theory of Obstructions for Smooth

Schemes

Let us introduce some basic terminology for the deformation of smooth
schemes. Unless otherwise specified, all schemes in this section will be as-
sumed to be noetherian and separated. (Readers might want to take a look
at Section B.1 before reading this section.)

The idea of deforming smooth objects originated from the fundamental
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works of Kodaira and Spencer in [74] and [75], and the algebraic version
dates back to Grothendieck’s fundamental works in [50] and [56]. Some of
the formulations we adopt here follow closely the presentation of [99, §2].

Remark 2.1.1. When the structural morphisms are clear, we shall denote by
H0 and H i the push-forwards and higher direct images, respectively, which
are analogues of global sections and its derived functors in the relative setting.

Remark 2.1.2. For simplicity, the index sets of open coverings in this section
(and in subsequent sections based on arguments here) will be omitted.

2.1.1 Preliminaries

Lemma 2.1.1.1 (cf. [56, III, Lem. 4.2] or [99, Lem. 2.2.2]). Let S ↪→ S̃ be a
closed immersion defined by a sheaf of nilpotent ideals I , and let f̃ : X̃ → Ỹ
be a morphism of schemes over S̃ such that f := f̃ ×

S̃

S is an isomorphism.

Suppose X̃ is flat over S̃. Then f̃ is an isomorphism.

Proof. Since f̃ induces a homeomorphism on the underlying topological
spaces, it suffices to treat the following affine case: Let I := ker(R̃� R) be
a nilpotent ideal in R̃. Let u : N → M be a morphism of R̃-modules such
that M is flat over R̃, and such that u⊗

R̃

R : N/(I · N) → M/(I ·M) is an

isomorphism. Then u is an isomorphism.
To show this, let K := ker(u) and Q := M/u(N). By assumption, we

have Q/(I ·Q) = 0, and so Q = I ·Q = I2 ·Q = · · · = In ·Q = 0 for some n,
because I is nilpotent. Thus

0 = TorR̃1 (M, R̃/I)→ K/(I ·K)→ N/(I ·N)→M/(I ·M)→ 0,

because M is R̃-flat. Hence K/(I ·K) = 0, and K = 0 as before.

Lemma 2.1.1.2 (cf. [56, III, §5]). Let S ↪→ S̃ be a closed immersion defined
by a sheaf of ideals I such that I 2 = 0. Let X̃ → S̃ and Ỹ → S̃ be schemes
over S̃, X := X̃ ×

S̃

S, Y := Ỹ ×
S̃

S, and denote by DerY/S the sheaf of germs of

OS-derivations from OY into itself. Let f : X → Y be a morphism of schemes
over S. Let us denote by MorS̃(X̃, Ỹ , f) the set of morphisms f̃ : X̃ → Ỹ
over S̃ such that f̃ ×

S̃

S = f . Suppose moreover that X̃ is flat over S̃, and

that Ỹ is smooth over S̃. Then MorS̃(X̃, Ỹ , f) is either empty or a torsor
under H0(X, f ∗(DerY/S) ⊗

OS
I ).
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Proof. It suffices to treat the affine case because the morphism f̃ : X̃ → Ỹ
on the underlying topology spaces is already determined by f : X → Y . Let
us assume S̃ = Spec(R̃), S = Spec(R), with S ↪→ S̃ given by R̃ � R with
kernel I such that I2 = 0. Let X̃ = Spec(M̃), Ỹ = Spec(Ñ). Let us denote
M̃/(I · M̃) (resp. Ñ/(I · Ñ)) by M (resp. N), and let u : N →M denote the
morphism given by f : X → Y . Suppose we have a morphism ũ : Ñ → M̃
lifting u.

If ũ′ : Ñ → M̃ is any other lifting, then D := ũ′ − ũ maps Ñ to I · M̃ .
By [88, Thm. 7.7], the flatness of M̃ implies that the canonical morphism
M̃ ⊗

R̃

I → M̃ ⊗
R̃

R̃ ∼= M̃ is injective. Hence I · M̃ ∼= M̃ ⊗
R̃

I ∼= M ⊗
R
I because

I2 = 0. Moreover, the kernel of D contains I · Ñ . Therefore we may identify
D as an R-module morphism D : N →M ⊗

R
I.

Let n1 and n2 be elements in Ñ . Then the comparison between u′(n1n2)−
u(n1n2) = D(n1n2) and u′(n1)u′(n2)−u(n1)u(n2) = (u′(n1)−u(n1))u′(n2) +
(u′(n2) − u(n2))u′(n1) = D(n1)u(n2) + D(n2)u(n1) shows that u′(n1n2) =
u′(n1)u′(n2) if and only if D(n1n2) = D(n1)u(n2) +D(n2)u(n1). Combining
this with other more trivial relations, we see that u′ is an algebra homo-
morphism if and only if D is an R-derivative from N to M ⊗

R
I, where the

N -module structure of M is given by u : N → M . Note that we have
canonical isomorphisms

DerR(N,M ⊗
R
I) ∼= HomN(Ω1

N/R,M ⊗
R
I) ∼= HomM(Ω1

N/R ⊗
N,u

M,M ⊗
R
I).

Written globally, this is the group of global sections of

DerOS
(OY ,OX ⊗

OS
I ) ∼= HomOX

(f ∗Ω1
Y/S,OX ⊗

OS
I ),

which is isomorphic to the group H0(X, f ∗(DerY/S) ⊗
OS

I ) in the statement

of the lemma in this affine case.

Corollary 2.1.1.3 (cf. [99, Lem. 2.2.3]). Let S ↪→ S̃ be a closed immer-
sion defined by a sheaf of ideals I such that I 2 = 0. Let Z̃ → S̃ be a
smooth morphism, Z = Z̃ ×

S̃

S, and denote by DerZ/S the sheaf of germs of

OS-derivations from OZ into itself. Let us denote by AutS̃(Z̃, S) the set of
automorphisms of Z̃ over S̃ inducing the identity on Z. Then there is a
canonical isomorphism AutS̃(Z̃, S)

∼→ H0(Z,DerZ/S ⊗
OS

I ).
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Proof. Take X̃ = Ỹ = Z̃ in Lemma 2.1.1.2, and take f : Z → Z to be the
identity morphism. Since the identity isomorphism Z̃ → Z̃ lifts f , by Lemma
2.1.1.1 and the flatness of Z̃ over S̃, we obtain a composition of canonical
isomorphisms

AutS̃(Z̃, S) ∼= MorS̃(Z̃, Z̃, f)
∼→ H0(Z,DerZ/S ⊗

OS
I ),

as desired.

Corollary 2.1.1.4. With the setting as in Lemma 2.1.1.2, consider the nat-
ural homomorphisms

df : H0(X,DerX/S ⊗
OS

I )→ H0(X, f ∗(DerY/S) ⊗
OS

I )

and
f ∗ : H0(Y,DerY/S ⊗

OS
I )→ H0(X, f ∗(DerY/S) ⊗

OS
I ),

which define actions of the sources on the targets by addition. Then, by
Lemma 2.1.1.2 and Corollary 2.1.1.3, these actions are compatible with the
natural actions of AutS̃(X̃, S) and AutS̃(Ỹ , S) on MorS̃(X̃, Ỹ , f) given by
pre- and postcompositions.

Proof. Recall that the proof of Lemma 2.1.1.2 is achieved by identify-
ing AutS̃(X̃, Ỹ , f) in the affine case as a torsor under global sections
of DerOS

(OX ,OY ⊗
OS

I ) ∼= HomOX
(f ∗Ω1

Y/S,OX ⊗
OS

I ). The homo-

morphisms df and f ∗ we see in the statement of the corollary are
induced locally by df ∗ : HomOX

(Ω1
X/S,OX) → HomOX

(f ∗Ω1
Y/S,OX) and

f ∗ : f ∗HomOY
(Ω1

Y/S,OY )→ HomOX
(f ∗Ω1

Y/S,OX). Now it suffices to observe
that, following the proof of Lemma 2.1.1.2, the additions of the images
of these morphisms are compatible with pre- and postcompositions of
automorphisms.

Lemma 2.1.1.5 (cf. [59, IV-4, 17.11.4] or [22, §2.2, Prop. 11]). A morphism
Ỹ → S̃ is smooth at y ∈ Ỹ if and only if there exists an open neighborhood
Ũ ⊂ Ỹ of y, an integer r, and an étale morphism Ũ → Ar

S̃
over S̃, where Ar

S̃

is the affine r-space over S̃.

Lemma 2.1.1.6 ([59, IV-4, 18.1.2]). For every closed immersion S ↪→ S̃ de-
fined by a sheaf of ideals I such that I 2 = 0, as in the case of Lemma
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2.1.1.7, the functor Ỹ 7→ Ỹ ×
S̃

S is an equivalence of categories between

schemes étale over the respective bases S̃ and S.

Combining Lemmas 2.1.1.5 and 2.1.1.6, we obtain:

Lemma 2.1.1.7 ([56, III, Thm. 4.1] or [99, Lem. 2.2.4]). Let S ↪→ S̃ be a
closed immersion defined by a sheaf of ideals I such that I 2 = 0. Let
X → S be a smooth scheme. For every x ∈ X, there exists an affine
open neighborhood U ⊂ X of x, and a smooth morphism Ũ → S̃, such that
Ũ ×

S̃

S ∼= U over S. Moreover, suppose V is another such affine open neigh-

borhood, with Ṽ → S̃ smooth and Ṽ ×
S̃

S ∼= V over S. Then for every affine

neighborhood W of x in U ∩ V , there exists an isomorphism Ũ |W
∼→ Ṽ |W

over S̃ whose pullback to S is the identity isomorphism on W .

Remark 2.1.1.8. Here Ũ |W has a meaning because Ũ is a scheme defined over
the underlying topological space of U , and the underlying topological space
of W is an open subset.

2.1.2 Deformation of Smooth Schemes

Definition 2.1.2.1. Let S ↪→ S̃ be a closed immersion defined by a sheaf of
ideals I such that I 2 = 0. Let X be a scheme smooth over S. Then we
denote by Lift(X;S ↪→ S̃) the set of isomorphism classes of pairs (X̃, ϕ) such
that X̃ → S̃ is smooth and such that ϕ : X̃ ×

S̃

S → X is an isomorphism over

S.

Proposition 2.1.2.2 (cf. [50] or [56, III, Thm. 6.3, Prop. 5.1] or [99, Prop.
2.2.5]). Suppose we have the same setting as in Definition 2.1.2.1. Then the
following are true:

1. There exists a unique element

o(X;S ↪→ S̃) ∈ H2(X,DerX/S ⊗
OS

I ),

called the obstruction to Lift(X;S ↪→ S̃), such that

o(X;S ↪→ S̃) = 0

if and only if
Lift(X;S ↪→ S̃) 6= ∅.
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2. If o(X;S ↪→ S̃) = 0 then Lift(X;S ↪→ S̃) is a torsor under the group
H1(X,DerX/S ⊗

OS
I ).

3. Let f : X
∼→ Y be any isomorphism of schemes smooth over S. Then

the two natural isomorphisms

df : H2(X,DerX/S ⊗
OS

I )
∼→ H2(X, f ∗(DerY/S) ⊗

OS
I )

and
f ∗ : H2(Y,DerY/S ⊗

OS
I )

∼→ H2(X, f ∗(DerY/S) ⊗
OS

I )

induce the identification

df(o(X;S ↪→ S̃)) = f ∗(o(Y ;S ↪→ S̃)).

Proof. By Lemma 2.1.1.7, there is an affine open covering {Uα}α of X such
that each Uα can be lifted to an affine scheme Ũα smooth over S̃, with an
isomorphism ϕα : Ũα×

S̃

S
∼→ Uα over S. Let us write Uαβ = Uα ∩ Uβ, and

write similarly when there are more indices. Since X → S is separated, we
know that each Uαβ is affine, and hence there exists a morphism

ξαβ : Ũα|Uαβ → Ũβ|Uαβ

over S̃ inducing ϕ−1
β ◦ϕα over Uαβ. By Lemma 2.1.1.1, ξαβ is an isomorphism.

Let us denote the restrictions of ξαβ to Uαβγ by the same notation. For
these Ũα to glue together and form a scheme X̃ lifting X over S̃, these
morphisms ξαβ have to satisfy the so-called cocycle condition

ξαγ = ξβγ ◦ ξαβ (2.1.2.3)

over each Uαβγ. Let us measure the failure of this by defining

cαβγ := ξ−1
αγ ◦ ξβγ ◦ ξαβ ∈ AutS̃(Ũα|Uαβγ ).

(We do not need to know if ξ−1
αγ = ξγα.) Since cαβγ ×

S̃

S is the identity on

Uαβγ, by Corollary 2.1.1.3, the automorphism cαβγ defines an element of
H0(Uαβγ,DerX/S ⊗

OS
I ), which we also denote by cαβγ. By Corollary 2.1.1.3,

we obtain an isomorphism

AutS̃(Ũβ|Uαβ , S)
∼→ AutS̃(Ũα|Uαβ , S) (2.1.2.4)
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by sending a to ξ−1
αβ ◦ a ◦ ξαβ. Since the group AutS̃(Ũα, S) is commutative

for every Ũα (and their intersections), the isomorphism (2.1.2.4) does not
depend on the isomorphism ξαβ we choose.

We claim that c = {cαβγ}αβγ is a 2-cocycle with respect to the open
covering {Uα}α. By definition, its coboundary is given by

(∂c)αβγδ := cβγδ ◦ c−1
αγδ ◦ cαβδ ◦ c

−1
αβγ. (2.1.2.5)

We would like to represent all four elements on the right-hand side by el-
ements of AutS̃(Ũα|Uαβγδ , S), via (2.1.2.4) if necessary. Since this group is
commutative, we may switch the order of elements on the right-hand side of
(2.1.2.5), and therefore

(∂c)αβγδ = c−1
αγδ ◦ cαβδ ◦ cβγδ ◦ c

−1
αβγ = [ξ−1

αγ ◦ ξ−1
γδ ◦ ξαδ] ◦ [ξ−1

αδ ◦ ξβδ ◦ ξαβ]

◦ [ξ−1
αβ ◦ (ξ−1

βδ ◦ ξγδ ◦ ξβγ) ◦ ξαβ] ◦ [ξ−1
αβ ◦ ξ

−1
βγ ◦ ξαγ]

= ξ−1
αγ ◦ [ξ−1

γδ ◦ [ξαδ ◦ ξ−1
αδ ] ◦ [ξβδ ◦ [ξαβ ◦ ξ−1

αβ ] ◦ ξ−1
βδ ] ◦ ξγδ]

◦ [ξβγ ◦ [ξαβ ◦ ξ−1
αβ ] ◦ ξ−1

βγ ] ◦ ξαγ = IdŨα|Uαβγδ
.

Suppose we have chosen a collection {ξ′αβ : Ũα|Uαβ
∼→ Ũβ|Uαβ}αβ that differs

from {ξαβ}αβ by
ξ′αβ = ξαβ ◦ ηαβ

for some ηαβ ∈ AutS̃(Ũα|Uαβ , S). Then we may identify η = {ηαβ}αβ with a
1-cochain in C1({Uα}α,DerX/S ⊗

OS
I ). Its coboundary is given by

(∂η)αβγ := η−1
αγ ◦ (ξ−1

αβ ◦ ηβγ ◦ ξαβ) ◦ ηαβ

in AutS̃(Ũα|Uαβγ , S), where we have used (2.1.2.4) again. Then cαβγ becomes

c′αβγ := [η−1
αγ ◦ (ξαγ)

−1] ◦ [ξβγ ◦ ηβγ] ◦ [ξαβ ◦ ηαβ]

= [ξ−1
αγ ◦ ξβγ ◦ ξαβ] ◦ [η−1

αγ ◦ (ξ−1
αβ ◦ ηβγ ◦ ξαβ) ◦ ηαβ] = cαβγ ◦ (∂η)αβγ

over Uαβγ, where we can move η−1
αγ because AutS̃(Ũα|UαβS) is com-

mutative. Hence we obtain a class [c] in H2({Uα}α,DerX/S ⊗
OS

I ) ∼=

H2(X,DerX/S ⊗
OS

I ) that does not depend on the choices of ξαβ.

To show that this is independent of the choices of Ũα over Uα, note that
any different choice of Ũ ′α over a particular Uα is (noncanonically) isomor-
phic to Ũα by Lemma 2.1.1.7. Hence the class [c] does not depend on the
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choice of Ũα over each Uα. For the same reason, the class [c] defined in
H2(X,DerX/S ⊗

OS
I ) by a particular open covering {Uα}α remains unchanged

if we refine the open covering. Thus we have shown that the definition of [c]
is independent of all choices.

Now, if [c] is trivial, then it means there exist particular choices of
{(Uα, Ũα, ϕα)}α and {ξαβ}αβ such that, up to modification of {ξαβ}αβ by
some {ηαβ}αβ as above, the cocycle condition (2.1.2.3) can be satisfied. By
gluing the {Ũα}α together using the modified {ξαβ}αβ, we obtain a scheme
X̃ smooth over S̃, together with an isomorphism ϕ : X̃ ×

S̃

S
∼→ X over S,

as desired. Conversely, if any such smooth X̃ → S̃ exists, then there exists
an affine open covering {Uα}α such that each Ũα := X̃|Uα is smooth over S̃
and affine. Then [c] is necessarily trivial because we can compute it by this
choice of {Ũα}α, and the isomorphisms in {ξαβ : Ũα|Uαβ

∼→ Ũβ|Uαβ}αβ coming

from the identity morphisms of schemes in {X̃|Uαβ}αβ are certainly compat-
ible with each other. This proves the first statement of the proposition if we
set o(X;S ↪→ S̃) := [c].

For the second statement, suppose there exists an element (X̃, ϕ) in
Lift(X;S ↪→ S̃). Let {Uα}α be an affine open covering of X such that each
Ũα := X̃|Uα is affine.

Suppose we are given a 1-cocycle d = {dαβ}αβ in C1({Uα}α,DerX/S),

where dαβ ∈ H0(Uαβ,DerX/S ⊗
OS

I ) ∼= AutS̃(X̃|Uαβ , S). We can interpret

each dαβ as an isomorphism Ũα|Uαβ
∼→ Ũβ|Uαβ over S̃ as both the source

and target are canonically identified with X̃|Uαβ . Since d is a 1-cocycle,

these isomorphisms glue the affine schemes Ũα together and define an object
(X̃d, ϕd) in Lift(X;S ↪→ S̃). Suppose we take another 1-cocycle d′ that
differs from d by a 1-coboundary. This means there exists a 0-cochain e =
{eα}α with eα ∈ H0(Uα,DerX/S ⊗

OS
I ) ∼= AutS̃(Ũα, S). As in (2.1.2.4), its

coboundary is given by

(∂e)αβ = (d−1
αβ ◦ e

−1
β ◦ dαβ) ◦ eα

in AutS̃(Ũα|Uαβ , S), and therefore

d′αβ = dαβ ◦ (∂e)αβ = dαβ ◦ [(d−1
αβ ◦ e

−1
β ◦ dαβ) ◦ eα] = e−1

β ◦ dαβ ◦ eα
implies the relations dαβ = eβ ◦ d′αβ ◦ e−1

α that glue together the collection

{eα : Ũα
∼→ Ũα}α into an isomorphism X̃d′ ∼→ X̃d. Hence there is a well-
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defined map sending the [d] in H1(X,DerX/S ⊗
OS

I ) to the isomorphism class

of (X̃d, ϕd) in Lift(X;S ↪→ S̃). This map is injective because every isomor-
phism X̃d′ ∼→ X̃d defines by restriction a collection {eα : Ũα

∼→ Ũα}α that
necessarily defines a 1-coboundary giving the difference between d′ and d.

Let us show that it is also surjective. Suppose there is any other element
(X̃ ′, ϕ′) in Lift(X;S ↪→ S̃). By smoothness of X̃ ′ → S, for each α, the
morphism Uα → Ũ ′α := X̃ ′|Uα over S can be lifted to a morphism Ũα → Ũ ′α
over S̃, which is necessarily an isomorphism by Lemma 2.1.1.1. For each
α and β, the isomorphism ξ′αβ : Ũ ′α|Uαβ

∼→ Ũ ′β|Uαβ coming from the identity

morphism on X̃ ′|Uαβ pulls back to an isomorphism Ũα|Uαβ
∼→ Ũβ|Uαβ over S̃

that differs from ξαβ by an automorphism dαβ of Ũα|Uαβ , which we identify as
an element in H0(Uαβ,DerX/S ⊗

OS
I ). The cochain d = {dαβ}αβ necessarily

satisfies the cocycle condition, as both {ξαβ}αβ and {ξ′αβ}αβ do (in a slightly
different context). This gives a class [d] of d in H1(X,DerX/S ⊗

OS
I ) and

shows the surjectivity.
Finally, let us explain the third statement. By abuse of notation, for each

open subscheme U of Y , and for each smooth morphism Ũ → S̃ with an
isomorphism Ũ ×

S̃

S
∼→ U (inducing an isomorphism between the underlying

topological spaces of Ũ and U), let f̃−1(Ũ) := Ũ ×
U,f
f−1(U) be the pullback

of Ũ under f : X
∼→ Y , and let f̃ : f̃−1(Ũ)

∼→ Ũ denote the induced
isomorphism (between ringed spaces). By Corollary 2.1.1.4, the restriction
of the composition (df)−1 ◦ f ∗ to U is nothing but the isomorphism

H0(U,DerU/S ⊗
OS

I )
∼→ H0(f−1(U),Derf−1(U)/S ⊗

OS
I )

corresponding to

AutS̃(Ũ , S)
∼→ AutS̃(f̃−1(Ũ), S) : a 7→ f̃−1 ◦ a ◦ f̃

under Corollary 2.1.1.3. Suppose {Uα}α is an affine open covering of Y
that is lifted to some collection {Ũα}α of schemes smooth over S̃, defining
elements cαβγ ∈ AutS̃(Ũα|Uαβγ , S) ∼= H0(Uαβγ,DerY/S ⊗

OS
I ) representing the

class o(Y ;S ↪→ S̃) ∈ H2(Y,DerY/S ⊗
OS

I ). Then {f−1(Uα)}α is an affine open

covering of X that is lifted to the collection {f̃−1(Ũα)}α (defined as above),
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defining the elements ((df)−1 ◦ f ∗)(cαβγ) representing the class o(X;S ↪→
S̃) ∈ H2(X,DerX/S ⊗

OS
I ), as desired.

2.1.3 Deformation of Morphisms

Definition 2.1.3.1. Let S ↪→ S̃ be a closed immersion defined by a sheaf
of ideals I such that I 2 = 0. Let X be a smooth scheme over S. Suppose
f : X → Y is a morphism between smooth schemes over S such that X and
Y lift respectively to smooth schemes X̃ and Ỹ over S̃. Then we denote by
Lift(f ; X̃, Ỹ , S ↪→ S̃) the set of morphisms f̃ : X̃ → Ỹ such that f̃ ×

S̃

S = f .

Proposition 2.1.3.2. Suppose that we have the same setting as in Definition
2.1.3.1. Then the following are true:

1. There exists a unique element

o(f ; X̃, Ỹ , S ↪→ S̃) ∈ H1(X, f ∗(DerY/S) ⊗
OS

I ),

called the obstruction to Lift(f ; X̃, Ỹ , S ↪→ S̃), such that

o(f ; X̃, Ỹ , S ↪→ S̃) = 0

if and only if
Lift(f ; X̃, Ỹ , S ↪→ S̃) 6= ∅.

2. If o(f ; X̃, Ỹ , S ↪→ S̃) = 0 then Lift(f ; X̃, Ỹ , S ↪→ S̃) is a torsor under
the group H0(X, f ∗(DerY/S) ⊗

OS
I ).

3. By Proposition 2.1.2.2, the set Lift(X;S ↪→ S̃) (resp. Lift(Y ;S ↪→
S̃)) is a torsor under the group H1(X,DerX/S ⊗

OS
I ) (resp.

H1(Y,DerY/S ⊗
OS

I )). Hence it makes sense to write

X̃ ′ = mX̃ + X̃

and
Ỹ ′ = mỸ + Ỹ
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for elements mX̃ ∈ H1(X,DerX/S ⊗
OS

I ) and mỸ ∈ H1(Y,DerY/S ⊗
OS

I ).

Now consider the natural morphisms

df : H1(X,DerX/S ⊗
OS

I )→ H1(X, f ∗(DerY/S) ⊗
OS

I )

and
f ∗ : H1(Y,DerY/S ⊗

OS
I )→ H1(X, f ∗(DerY/S) ⊗

OS
I ).

Then we have the relation

o(f ;mX̃+X̃,mỸ +Ỹ , S ↪→ S̃) = o(f ; X̃, Ỹ , S ↪→ S̃)−df(mX̃)+f ∗(mỸ ).

Proof. Let {Uα}α and {Vα}α be affine open coverings of X and Y , respec-
tively, indexed by the same set, such that f(Uα) ⊂ Vα for each index α. Let
Ũα := X̃|Uα and Ṽα := Ỹ |Uα . Then {Ũα}α and {Ṽα}α are open coverings
of X̃ and Ỹ , respectively. By smoothness of Ỹ , for each α, the morphism
f |Uα : Uα → Vα over S can be lifted to a morphism f̃α : Ũα → Ṽα over
S̃. By Lemma 2.1.1.2, such liftings over each open subscheme U of Uα form
a torsor under the group H0(U, f ∗(DerY/S) ⊗

OS
I ). Let us write the group

action additively. Comparing the restrictions to Uαβ, there exist elements
cαβ ∈ H0(Uαβ, f

∗(DerY/S) ⊗
OS

I ) such that

f̃α|Uαβ = cαβ + f̃β|Uαβ . (2.1.3.3)

Comparing the relations over Uαβγ, we obtain the cocycle relation cαγ =
cβγ + cαβ. If we replace each choice of f̃α with f̃ ′α = f̃α + eα for some
eα ∈ H0(Ũα, f

∗(DerY/S) ⊗
OS

I ), then we obtain c′αβ = cαβ + (∂e)αβ, where

(∂e)αβ := −eβ + eα. Thus there is a well-defined class [c] for c = {cαβ}αβ in
H1({Uα}α, f ∗(DerY/S) ⊗

OS
I ) ∼= H1(X, f ∗(DerY/S) ⊗

OS
I ) that is independent

of the choice of {f̃α}α. The class [c] inH1(X, f ∗(DerY/S) ⊗
OS

I ) is independent

of the choices of {Uα}α and {Vα}α because we can always replace them with
refinements.

If [c] is trivial, then there exists e = {eα}α as above such that cαβ =
eβ − eα. Hence {eα + f̃α = eβ + f̃β}α defines a global morphism f̃ : X̃ →
Ỹ . Conversely, the existence of any global morphism forces [c] to be triv-
ial. Hence we can conclude the proof of the first statement by setting
o(f ; X̃, Ỹ , S ↪→ S̃) = [c].
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For the second statement, note that the existence of any global lifting f̃
gives a choice of the f̃α as above over each Uα, and hence any other global
choice f̃ ′ must differ by some {eα}α that patches together to some e describing
the difference between f̃ and f̃ ′.

For the third statement, note that in the proof of Proposition 2.1.2.2,
the group action of H1(X,DerX/S ⊗

OS
I ) (resp. H1(Y,DerY/S ⊗

OS
I )) is given

by modifying the gluing isomorphisms for {Ũα}α (resp. {Ṽα}α). Suppose
mX̃ (resp. mỸ ) is represented by some 1-cochain mX̃ = {mX̃,αβ}αβ (resp.
mỸ = {mỸ ,αβ}αβ), where mX̃,αβ ∈ H0(Uαβ,DerX/S ⊗

OS
I ) (resp. mỸ ,αβ ∈

H0(Vαβ,DerY/S ⊗
OS

I )). By Corollary 2.1.1.4, the relation (2.1.3.3) corre-

sponds to df(mX̃,αβ) + f̃α|Uαβ = c′αβ + f ∗(mỸ ,αβ) + f̃β|Uαβ , which implies that
c′αβ = cαβ + df(mX̃,αβ)− f ∗(mỸ ,αβ), as desired.

2.1.4 Base Change

The arguments used in the proofs in Sections 2.1.2 and 2.1.3 above have
functorial implications in the following situation: Let S ↪→ S̃ be a closed
immersion defined by a sheaf of ideals I such that I 2 = 0, and let T ↪→ T̃
be a closed immersion defined by a sheaf of ideals J such that J 2 = 0.
Suppose we are given a commutative diagram

S �
� //� _

��

S̃� _
ι

��

T �
� // T̃

of closed embeddings. (We do not assume that this is Cartesian.) The
commutativity shows that J is mapped to I by the pullback ι∗ : OT̃ → OS̃.
We shall denote the induced morphism simply by ι∗ : J → I .

If X is any scheme smooth over T , then X ×
T
S is a scheme smooth over

S. Therefore it makes sense to compare the two sets Lift(X;T ↪→ T̃ ) and
Lift(X ×

T
S;S ↪→ S̃). Moreover, suppose we have a morphism f : X → Y

between schemes smooth over T such that the source X and the target Y
are lifted respectively to schemes X̃ and Ỹ smooth over T̃ . Then f ×

T
S is a

morphism from X ×
T
S to Y ×

T
S over S, and it also makes sense to compare
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the two sets Lift(f ; X̃, Ỹ , T ↪→ T̃ ) and Lift(f ×
T
S; X̃ ×

T̃

S̃, Ỹ ×
T̃

S̃, S ↪→ S̃).

If Ũ is any scheme smooth over T̃ lifting an affine open subscheme U
of X, then Ũ ×

T̃

S̃ is a lifting of the affine open subscheme U ×
T
S of X ×

T
S

over S̃. Moreover, if Ṽ is any scheme smooth over T̃ lifting an affine open
subscheme V of Y such that f(U) ⊂ V , then Ṽ ×

T̃

S̃ is a lifting over S̃ of the

affine open subscheme V ×
T
S of Y ×

T
S such that (f ×

T
S)(U ×

T
S) ⊂ V ×

T
S.

Therefore, if f̃Ũ : Ũ → Ṽ is a morphism over T̃ lifting f |U : U → V , then
f̃U ×

T̃

S̃ : Ũ ×
T̃

S̃ → Ṽ ×
T̃

S̃ is a morphism over S̃ lifting (f ×
T
S)|U ×

T
S : U ×

T
S →

V ×
T
S.

Lemma 2.1.4.1. The diagram

MorT̃ (Ũ , Ṽ , f |U) can.
∼

//

×
T̃

S̃

��

H0(U, f ∗(DerY/T ) ⊗
OT

J )

ι∗

��
MorS̃(Ũ ×

T̃

S̃, Ṽ ×
T̃

S̃, f |U ×
T
S) can.

∼ // H0(U ×
T
S, (f ×

T
S)∗(DerY ×

T
S/S) ⊗

OS
I )

with horizontal isomorphisms given by Lemma 2.1.1.2 is commutative.

Proof. This follows if we note that the proof of Lemma 2.1.1.2 is compatible
with base change.

Corollary 2.1.4.2. The diagram

AutT̃ (Ũ , T ) can.
∼

//

×
T̃

S̃

��

H0(U,DerX/T ⊗
OT

J )

ι∗

��
AutS̃(Ũ ×

T̃

S̃, S) can.
∼ // H0(U ×

T
S,DerX ×

T
S/S ⊗

OS
I )

with horizontal isomorphisms given by Corollary 2.1.1.3 is commutative.

Corollary 2.1.4.3. 1. The two obstructions o(X;T ↪→ T̃ ) and
o(X ×

T
S;S ↪→ S̃) are related by

ι∗(o(X;T ↪→ T̃ )) = o(X ×
T
S;S ↪→ S̃)
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under the morphism

ι∗ : H2(X,DerX/T ⊗
OT

J )→ H2(X ×
T
S,DerX ×

T
S/S ⊗

OS
I ).

2. If o(X;T ↪→ T̃ ) = 0 and o(X ×
T
S;S ↪→ S̃) = 0, then the morphism

· ×
T̃

S̃ : Lift(X;T ↪→ T̃ )→ Lift(X ×
T
S;S ↪→ S̃)

of torsors is equivariant under the morphism

ι∗ : H1(X,DerX/T ⊗
OT

J )→ H1(X ×
T
S,DerX ×

T
S/S ⊗

OS
I ).

Proof. The statements follow from the proof of Proposition 2.1.2.2, as each
affine open covering {Uα}α of X that defines the obstructions and torsor
structures also defines the corresponding objects for X ×

T
S by the operation

· ×
T̃

S̃ corresponding to the tensor operation · ⊗
OT̃

OS̃ on sheaves.

Similarly, following the proof of Proposition 2.1.3.2, we obtain the follow-
ing corollary:

Corollary 2.1.4.4. The two obstructions o(f ; X̃, Ỹ , T ↪→ T̃ ) and
o(f ×

T
S; X̃ ×

T̃

S̃, Ỹ ×
T̃

S̃, S ↪→ S̃) are related by

ι∗(o(f ; X̃, Ỹ , T ↪→ T̃ )) = o(f ×
T
S; X̃ ×

T̃

S̃, Ỹ ×
T̃

S̃, S ↪→ S̃)

under the morphism

ι∗ : H1(X, f ∗DerX/T ⊗
OT

J )→ H1(X ×
T
S, (f ×

T
S)∗DerX ×

T
S/S ⊗

OS
I ).

2.1.5 Deformation of Invertible Sheaves

Let us review the definition of cup products (and, in particular, the sign
convention we use) before stating the results in this section. Suppose we
have a scheme Z over S, and two invertible sheaves F and G over Z. We
shall define a morphism

∪ : H i(Z,F )⊗Hj(Z,G )→ H i+j(Z,F ⊗
OZ

G ) (2.1.5.1)
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as follows. Suppose there is an affine open covering {Zα}α of Z, with the
convention that Zαβ = Zα ∩ Zβ etc. as before. Given an i-cochain a =
{aα0...αi}α0...αi ∈ Ci({Zα0...αi}α0...αi ,F ) and a j-cochain b = {bα0...αj}α0...αj ∈
Cj({Zα0...αj}α0...αj ,G ), we define an (i+ j)-cochain a ∪ b by setting

(a ∪ b)α0...αi+j := aα0...αibαi...αi+j ,

where the notation aα0...αibαi...αi+j means the image of aα0...αi ⊗ bαi...αi+j under
the canonical morphism

H0(Zα0...αi+j ,F ) ⊗
OS
H0(Zα0...αi+j ,G )

can.→ H0(Zα0...αi+j ,F ⊗
OZ

G ).

Since (∂a)α0...αi+1
:=

∑i+1
k=0(−1)kaα0...α̂k...αi+1

and (∂b)α0...αj+1
:=∑j+1

k=0(−1)kbα0...α̂k...αi+1
, one verifies easily that ∂(a ∪ b) = (∂a) ∪ b +

(−1)ia ∪ (∂b). This shows that the operation ([a], [b]) 7→ [a] ∪ [b] := [a ∪ b]
on Čech cohomology classes is well defined, inducing the desired morphism
(2.1.5.1) above.

Definition 2.1.5.2. Let S ↪→ S̃ be a closed immersion defined by a sheaf of
ideals I such that I 2 = 0. Let X be a scheme smooth over S that is lifted
to some scheme X̃ smooth over S̃. Suppose L is an invertible sheaf over X.
Then we denote by Lift(L; X̃, S ↪→ S̃) the set of isomorphism classes of pairs
(L̃, ψ) such that L̃ is an invertible sheaf over X̃ and such that ψ : L̃ ⊗

OS̃

OS →

L is an isomorphism over X.

Proposition 2.1.5.3. Suppose that we have the same setting as in Definition
2.1.5.2. Then the following are true:

1. There exists a unique element

o(L; X̃, S ↪→ S̃) ∈ H2(X,OX ⊗
OS

I ),

called the obstruction to Lift(L; X̃, S ↪→ S̃), such that

o(L; X̃, S ↪→ S̃) = 0

if and only if
Lift(L; X̃, S ↪→ S̃) 6= ∅.
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2. If o(L; X̃, S ↪→ S̃) = 0 and the canonical morphism

H0(X̃,O×
X̃

)→ H0(X,O×X) (2.1.5.4)

is surjective, then Lift(L; X̃, S ↪→ S̃) is a torsor under the group
H1(X,OX ⊗

OS
I ).

3. By Proposition 2.1.2.2, the set Lift(X;S ↪→ S̃) is a torsor under the
group H1(X,DerX/S ⊗

OS
I ). Hence it makes sense to write

X̃ ′ = mX̃ + X̃

for every element mX̃ ∈ H1(X,DerX/S ⊗
OS

I ). Let

d log : Pic(X) ∼= H1(X,O×X)→ H1(X,Ω1
X/S)

be the morphism induced by

d log : O×X → Ω1
X/S : a 7→ d log(a) := a−1da.

Then the cup product with d log(L) defines a natural morphism

dL : H i(X,DerX/S ⊗
OS

I )

→ H i+1(X,DerX/S ⊗
OX

Ω1
X/S ⊗

OS
I )

can.→ H i+1(X,OX ⊗
OS

I ),
(2.1.5.5)

which in the case i = 1 makes the following identity hold:

o(L;mX̃ + X̃, S ↪→ S) = o(L; X̃, S ↪→ S) + dL(mX̃).

Proof. First let us take any smooth affine open covering {Uα}α of X such
that L is given by a cohomology class [l] ∈ H1(X,O×X) represented by some
l = {lαβ ∈ O×Uαβ}αβ. Note that we have the cocycle condition

l−1
αγ · lβγ · lαβ = 1 (2.1.5.6)

over Uαβγ. Let l̃αβ be any element in O×
Ũα|Uαβ

lifting lαβ. Let ξαβ : Ũα|Uαβ
∼→

Ũβ|Uαβ denote the isomorphism giving the gluing of the lifting X̃ of X. If
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l̃ = {l̃αβ}αβ comes from some invertible sheaf L̃ over X lifting L, then we
have

l̃−1
αγ · [ξ∗αβ(l̃βγ)] · l̃αβ = 1. (2.1.5.7)

In general, let us measure the failure of liftability by

hαβγ := l̃−1
αγ · [ξ∗αβ(l̃βγ)] · l̃αβ − 1 ∈ OŨα|Uαβγ

.

By (2.1.5.6), hαβγ ∈ I ·OŨα|Uαβγ
∼= OUαβγ ⊗

OS
I . Moreover, h = {hαβγ}αβγ is a

2-cocycle because (1+hβγδ)(1−hαγδ)(1+hαβδ)(1−hαβγ) = 1+(∂h)αβγδ = 1. If
we replace l̃ with another lifting of l, then we arrive at a 2-cocycle that differs
from h by a coboundary. This shows that [h] defines a cohomology class in
H2(X,OX ⊗

OS
I ) independent of the choice of l̃. Moreover, [h] is trivial if and

only if we can find some choice l̃ such that the cocycle condition (2.1.5.7) is
satisfied by l̃. This shows that we can define o(L; X̃, S ↪→ S̃) to be [h]. Note
that this is simply the image of the class of L ∈ Pic(X) ∼= H1(X,O×X) under
the connecting morphism in the long exact sequence

H1(X,OX ⊗
OS

I )→ H1(X̃,O×
X̃

)→ H1(X,O×X)→ H2(X,OX ⊗
OS

I )→ · · ·

(2.1.5.8)
associated with 0 → OX ⊗

OS
I → O×

X̃
→ O×X → 0. This proves the first

statement of the proposition. The second statement then follows because
the first morphism in (2.1.5.8) is injective when (2.1.5.4) is surjective.

To prove the third statement, let us investigate what happens when we
replace the {ξαβ}αβ defining X̃ in Lift(X;S ↪→ S̃) with some different element
defining mX̃ + X̃ with mX̃ ∈ H1(X,DerX/S ⊗

OS
I ). By refining the open

covering {Uα}α if necessary, let us suppose mX̃ is defined by some {ηαβ}αβ
with ηαβ ∈ AutS̃(Ũα|Uαβ , S) ∼= H0(Uαβ,DerX/S ⊗

OS
I ). Then {ξ′αβ := ξαβ ◦

ηαβ}αβ defines X̃ ′ = mX̃ + X̃ which gives a possibly different lifting of X,
and we have to replace each hαβγ accordingly with h′αβγ := l̃−1

αγ · [(ξ′αβ)∗(l̃βγ)] ·
l̃αβ − 1 ∈ OŨα|Uαβγ

. Let us write η∗αβ : OŨα|Uαβ
→ OŨα|Uαβ

as

η∗αβ = Id +Tαβ ◦ d

for Tαβ ◦ d ∈ H0(Uαβ,DerX/S ⊗
OS

I ), as in Lemma 2.1.1.2 and Corollary

2.1.1.3. We use the notation Tαβ ◦ d to signify the fact that it is a
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composition of the universal differentiation d : OUαβ/S → Ω1
Uαβ/S

and

some morphism Tαβ ∈ HomOUαβ
(Ω1

Uαβ/S
,OUαβ ⊗

OS
I ). Note that {ηαβ}αβ

and {Tαβ}αβ are simply different ways of representing the same class
mX̃ . Both ξ∗αβ(l̃βγ) and (ξ′αβ)∗(l̃βγ) become the same lβγ modulo I .

Since η∗αβ = (ξ−1
αβ ◦ ξ′αβ)∗ = (ξ′αβ)∗ ◦ (ξ∗αβ)−1, we have (ξ′αβ)∗(l̃βγ) =

η∗αβξ
∗
αβ(l̃βγ) = (Id +Tαβ ◦ d)(ξ∗αβ(l̃βγ)) = ξ∗αβ(l̃βγ) + (Tαβ ◦ d)(lβγ) =

(ξ∗αβ(l̃βγ))(1 + (ξ∗αβ(l̃βγ))
−1Tαβ(dlβγ)) = (ξ∗αβ(l̃βγ))(1 + Tαβ(d log(lβγ))), where

we have used the usual convention of log differentiation. As a result, we
have h′αβγ − hαβγ = l̃−1

αγ [(ξ′αβ)∗(l̃βγ) − ξ∗αβ(l̃βγ)]l̃βγ = (l̃−1
αγ · [ξ∗αβ(l̃βγ)] · l̃βγ) ·

Tαβ(d log(lβγ)) = (1 + hαβγ) · Tαβ(d log(lβγ)) = Tαβ(d log(lβγ)). This is just
the cup product of the class mX̃ represented by T = {Tαβ}αβ and the class
d log(L) represented by {d log(lαβ)}αβ. This proves the third statement.

Corollary 2.1.5.9. Suppose X is a scheme smooth over S. Then we have
a canonical isomorphism

H1(X,OX) ∼= LiePic(X/S)/S. (2.1.5.10)

Proof. It suffices to verify H1(X,OX) ∼= LiePic(X/S)/S when S is affine. By
definition, LiePic(X/S)/S is the set of liftings of the trivial invertible sheaf OX

over X. Set S̃ := Spec
OS

(OS[ε]/(ε2)). By abuse of notation, OS̃ � OS has

kernel I := εOS satisfying I 2 = 0. As OS-modules, we have I ∼= OS

because it is generated by the single element ε. The surjection OS̃ � OS has
a canonical section given by a 7→ a ∈ OS[ε]/(ε2) for all a ∈ OS. Therefore
we may pullback X to a family X̃ over S̃, together with the trivial invertible
sheaf lifting the trivial invertible sheaf over X. This forces the obstruction to
vanish, and the second statement of Proposition 2.1.5.3 applies. The torsor
LiePic(X/S)/S under H1(X,OX) can be canonically trivialized by the section
of the surjection above.

Lemma 2.1.5.11. Suppose f : X → S is a smooth group scheme. Then
the canonical morphism DerX/S → f ∗LieX/S (induced by adjunction of the
evaluation along the identity section) is an isomorphism, and therefore there
is a canonical isomorphism

H0(X,DerX/S) ∼= H0(X,OX) ⊗
OS

LieX/S (2.1.5.12)

by the projection formula [59, 0I, 5.4.10.1]. The analogous statement is true
if we replace DerX/S (resp. LieX/S) with Ω1

X/S (resp. Lie∨X/S)
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Proof. The morphism DerX/S → f ∗LieX/S is an isomorphism by [22, §4.2,
Prop. 2]. The remaining statements are clear.

If X is an abelian scheme over S, then LiePic(X/S)/S
∼= LieX∨/S by defi-

nition. By the two identifications (2.1.5.12) and (2.1.5.10), we can interpret
(2.1.5.5) as a morphism

dL : LieX/S → LieX∨/S.

Proposition 2.1.5.13. This morphism dL agrees with the differential dλL
of the homomorphism λL : X → X∨ defined by L (in Construction 1.3.2.7).

Proof. Again we may assume that S is affine.
Each section of LieX/S can be realized as a morphism T : S̃ :=

Spec
OS

(OS[ε]/(ε2)) → X extending the identity section eX : S → X. It can

be identified with a section of H0(X,DerX/S) as follows: If a function f on
X is evaluated as some a+ bε under T , for a, b ∈ OS, then b = T (df). Once
this identification is made, we may also regard T as a differentiation.

On the other hand, the pullback (IdX ×
S
T )∗D2(L) of D2(L) under

(IdX ×
S
T ) : X ×

S
S̃ → X ×

S
X gives a deformation of D2(L)|X ×

S
eX
∼= OX

over S̃. By the universal property of the Poincaré invertible sheaf PX ,
this invertible sheaf (IdX ×

S
T )∗D2(L) is the pullback of PX under some

unique morphism (IdX ×T ′) : X ×
S
S̃ → X ×

S
X∨. Since λL is by definition

the unique homomorphism such that D2(L) is the pullback of PX under
(IdX ×λL), the morphism T ′ : S̃ → X∨ is nothing but the section dλL(T ) of
LieX∨/S.

Let us interpret T ′ as a deformation of OX . Let L be defined by some
cocycle represented by some {lαβ}αβ in H1(X,O×X). If we interpret X ×

S
S̃

as an abelian scheme over S̃ lifting X over S, then (IdX ×
S
T )∗D2(L) is an

invertible sheaf lifting the trivial invertible sheaf OX over S. The cocycle for
(IdX ×

S
T )∗D2(L) can be given explicitly by mαβ := [lαβ,0 + T (dlαβ,0)ε]l−1

αβ,0 =

1 +T (d log(lαβ,0))ε. By reading the coefficient of ε, we see that the deforma-
tion (IdX ×

S
T )∗D2(L) corresponds to {T (d log(lαβ))}αβ in H1(X,OX) under

the isomorphism (2.1.5.10) given by Corollary 2.1.5.9. This is exactly the
morphism dL defined by the cup product with d log(L).
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Proposition 2.1.5.14. If X is an abelian scheme over S, then the cup
product morphisms induce an isomorphism ∧i H1(X,OX) ∼= H i(X,OX) of
locally free sheaves for all i ≥ 0, making H•(X,OX) an exterior algebra.

See [18, Prop. 2.5.2] for a proof.

Corollary 2.1.5.15. Let X be an abelian scheme over S. Then the diagram

LieX∨/S ⊗
OS

LieX/S
IdX∨ ⊗ dλL //

can.⊗ can. o
��

LieX∨/S ⊗
OS

LieX∨/S

can.⊗ can.o
��

H1(X,OX) ⊗
OS
H0(X,DerX/S)

Id⊗ dL //

can. o
��

H1(X,OX) ⊗
OS
H1(X,OX)

∪����
H1(X,DerX/S)

dL
// H2(X,OX)

is commutative.

2.1.6 De Rham Cohomology

Let π : X → S be a morphism of schemes. Let Ω•X/S be the complex over X

whose differentials d : Ωi
X/S → Ωi+1

X/S are induced by the canonical d : OX/S →
Ω1
X/S of the Kähler differentials. Then one can define the (relative) de Rham

cohomology H i
dR(X/S) to be the higher direct image Riπ∗Ω

•
X/S relative to S.

Let us suppose from now on that X is smooth. By Lemma 2.1.1.5, we
may find an affine open covering {Uα}α of X such that each Uα is étale over
some affine r-space ArS over S. In this case, locally over the base scheme
S, the sheaf of differentials over Uα has a basis dx1, . . . , dxr given by the
coordinates x1, . . . , xr of ArS. In particular, Riπ∗Ω

q
Uα/S

is trivial for all i > 0
and all q.

This allows us to compute the de Rham cohomology of X explicitly: Let
C•,• be the double complex of sheaves with terms Cp,q := Cp({Uα}α,Ωq

X/S)
and differentials

∂ : Cp({Uα}α,Ωq
X/S)→ Cp+1({Uα}α,Ωq

X/S) :

(xα0...αp) 7→ ((∂x)α0...αp+1) :=
(p+1∑
k=0

(−1)kxα0...α̂k...αp+1

)
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and

d : Cp({Uα}α,Ωq
X/S)→ Cp({Uα}α,Ωq+1

X/S) : (xα0...αp) 7→ (dxα0...αp).

Let C• be the total complex of C•,• with terms Cn := ⊕
p+q=n

Cp,q and differ-

entials
D = Dp,q = ∂⊕(−1)pd : Cp,q → Cp+1,q⊕Cp,q+1.

Note that ∂d = d∂, and henceD2 = 0 by the sign twist we have specified. The
differentials of C• are π−1(OS)-linear, and the formation of C• is compatible
with localizations over S. This is called the Čech complex associated with
Ω•X/S.

Let us define a morphism Ω•X/S → C• by assigning over each open sub-

scheme U of X the morphism Ωn
X/S(U) → C0,n(U) ⊂ Cn(U) sending a dif-

ferential over U to its restrictions over U ∩ Uα. Under the assumption that
Riπ∗Ω

q
Uα/S

is trivial for all i > 0 and all q, it is well known that the higher

direct image of Ω•X/S can be calculated using (relative) Čech cohomology :

Proposition 2.1.6.1. The morphism Ω•X/S → C• induces an isomorphism

Riπ∗Ω
•
X/S

∼→ Riπ∗C
•. (In fact, the morphism Ω•X/S → C• is a quasi-

isomorphism.)

Proof. Since the question is local over S, we may assume that S is affine.
Then the proposition follows from [48, Ch. II, §5]. (See also [59, III-2, 6.2.2]
and the remark in [67, Sec. 3, p. 206].)

Now suppose S ↪→ S̃ is a closed immersion defined by a sheaf of ideals
I such that I 2 = 0. Let X̃ be a scheme smooth over S̃, and let X :=
X̃ ×

S̃

S. By Proposition 2.1.3.2 and its proof, we know that X̃ is glued from

liftings {Ũα}α of affine open smooth subschemes {Uα}α forming an open
covering of X. By refining the open covering if necessary, we may assume
that each of the affine open subscheme Ũα is étale over some affine r-space
Ar
S̃

as above. Then we know that the de Rham cohomology H i
dR(X̃/S̃)

can be computed as the relative cohomology (i.e., higher direct image) of
the total complex C• of Cp,q = Cp({Ũα}α,Ωq

X̃/S̃
). Note that the sheaves

Cp,q are defined only using the information on each Ũα. Namely, we just
need to know the sheaves H0(Uα0...αp ,Ω

q

Ũα1...αp/S
). On the other hand, the

differential D of the complex C• does depend on the gluing isomorphisms
ξαβ : Ũα|Uαβ

∼→ Ũβ|Uαβ . Nevertheless,
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Proposition 2.1.6.2. Let mX̃ ∈ H1(X,DerX/S ⊗
OS

I ), and let X̃ ′ := mX̃ +

X̃ ∈ Lift(X;S ↪→ S̃) denote the object given by mX̃ and X̃ under the ac-
tion of H1(X,DerX/S ⊗

OS
I ) on Lift(X;S ↪→ S̃). Then there is a canonical

isomorphism H1
dR(X̃/S̃) ∼= H1

dR(X̃ ′/S̃), lifting the identity isomorphism on
H1

dR(X/S).

Although this is quite well known, we would like to give a proof here to
show its relation to the theory of obstruction that we have studied so far.

Proof of Proposition 2.1.6.2. Take an affine open covering {Ũα}α of X̃ such
that, if we set Uα := Ũα×

S̃

S and set ξαβ : Ũα|Uαβ
∼→ Ũβ|Uαβ to be the iso-

morphism over S̃ identifying the open subscheme Ũαβ with itself, then X̃ ′

is obtain by replacing this gluing isomorphism ξαβ with ξ′αβ ◦ ηαβ, where

ηαβ ∈ AutS̃(Ũα|Uαβ , S) ∼= H0(Uαβ,DerX/S ⊗
OS

I ) represents the class of mX̃ ∈

H1(Uαβ,DerX/S ⊗
OS

I ). As in the proof of Proposition 2.1.5.3, we iden-

tify η∗αβ = Id +Tαβ ◦ d with Tαβ ∈ HomOUαβ
(Ω1

Uαβ/S
,OUαβ ⊗

OS
I ). Then

(ξ′αβ)∗ = (ηαβ)∗(ξαβ)∗ = (Id +Tαβ)(ξαβ)∗ and T = {Tαβ}αβ defines a class
of H1(X,Ω1

X/S ⊗
OS

I ).

Let C• and (C ′)• be the respective complexes computing H i
dR(X̃/S̃)

and H i
dR(X̃ ′/S̃) as explained above, with the same affine open subschemes

{Ũα}α covering both X̃ and X̃ ′ (with different gluing isomorphisms along
the overlaps). More precisely, we have Cn = ⊕

p+q=n
Cp,q, (C ′)n = ⊕

p+q=n
(C ′)p,q,

Cp,q = H0(Ũα0|Uα0...αp
,Ωq

X̃/S̃
), and (C ′)p,q = H0(Ũα0|Uα0...αp

,Ωq

X̃′/S̃
),

with natural identifications Cp,q ∼= (C ′)p,q which we shall assume in
what follows. Each local section of Cn is represented by a tuple

(x(p,q))p+q=n with x(p,q) = {x(p,q)
α0...αp}α0...αp representing an element in

Cp({Ũα}α,Ωq

X̃/S̃
) = Cp({Ũα}α,Ωq

X̃′/S̃
).

The cup product with T = {Tαβ}αβ defines a morphism Cp,q → Cp+1,q−1 :

x(p,q) 7→ (T ∪ x(p,q)) by (T ∪ x(p,q))α0...αp+1 := Tα0α1x
(p,q)
α1...αp+1 . Naturally,

∂(T ∪ x(p,q)) = (∂T ∪ x(p,q)) + (−1)1(T ∪ ∂x(p,q)), with ∂T = 0 (as T is
a cocycle). The differential ∂′ : (C ′)p,q → (C ′)p+1,q : x(p,q) 7→ ∂′x(p,q) is

defined by (∂′x(p,q))α0...αp+1 := (ξ′α0α1
)∗(x

(p,q)
α1...αp+1) +

∑p+1
k=1(−1)kx

(p,q)
α0...α̂k...αp+1

=
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(ξα0α1)∗(x
(p,q)
α1...αp+1)+(Tα0α1◦d)((ξα0α1)∗(x

(p,q)
α1...αp+1))+

∑p+1
k=1(−1)kx

(p,q)
α0...α̂k...αp+1

=

(∂x(p,q))α0...αp+1 +(Tα0α1 ◦d)(x
(p,q)
α1...αp+1). Thus we simply have ∂′ = ∂+(T ∪d).

On the other hand, although the morphism d : OŨα
→ Ω1

Ũα/S
coming from

the restriction of d : OX̃ → Ω1
X̃/S̃

is unique up to canonical isomorphism, it

does not mean that it is the same as the morphism d′ coming from Ω1
X̃′/S̃

. Let

us measure this difference over Ũα by d′ = (Id +Eα) ◦ d, for some morphism
Eα : Ω1

Ũα/S̃
→ I · Ω1

Ũα/S̃
, or rather a morphism Eα : Ω1

Uα/S
→ Ω1

Uα/S
⊗
OS

I .

This E is canonical because of the universal properties of d and d′. Note that
we need (Eα ◦ d+ d ◦ Eα) ◦ d = 0 in order to make (d′)2 = 0. Then we have
d◦Eα◦d = 0 = Eα◦d◦d, which means that d◦Eα = 0 = Eα◦d as everything
in Ω1

Ũα/S̃
is in the image of d : OŨα

→ Ω1
Ũα/S̃

. Moreover, we need to glue d

(resp. d′) as well using ξαβ (resp. ξ′αβ). Therefore, we need both the relations
d(ξ∗αβ(x)) = ξ∗αβ(dx) and d′((ξ′αβ)∗(x)) = (ξ′αβ)∗(dx). If we expand all the
terms in the second relation and substitute the first relation into it, then we
get Eα(dx)+dTαβ(dx) = ξ∗αβ(Eβ)(dx), and dTαβ = ξ∗αβ(Eβ)−Eα =: −(∂E)αβ,
or simply dT = −∂E.

Now let us specialize to the case n = 1 and consider the morphism

C1 → (C ′)1 : x = (x(1,0), x(0,1)) 7→ x′ = ((x′)(1,0), (x′)(0,1))

given explicitly by

x′ := (x(1,0) + (T ∪ x(0,1)), x(0,1) + Ex(0,1)). (2.1.6.3)

The differential D on C1 sends

x = (x(1,0), x(0,1)) 7→ Dx = (∂x(1,0),−dx(1,0) + ∂x(0,1), dx(0,1)).

On the other hand, we have a similar formula for D′ on x′, whose three
components are given by

1. ∂′(x′)(1,0) = (∂+ (T ∪ d))(x(1,0) + (T ∪ x(0,1))) = ∂x(1,0) + (T ∪ dx(1,0)) +
∂(T ∪ ∂x(0,1)) = ∂x(1,0) − (T ∪ (−dx(1,0) + ∂x(0,1)));

2. −d′(x′)(1,0) + ∂′(x′)(0,1) = −(d + Ed)(x(1,0) + (T ∪ x(0,1))) + (∂ + (T ∪
d))(x(0,1) + Ex(0,1)) = (−dx(1,0) + ∂x(0,1)) − Edx(1,0) − d(T ∪ x(0,1)) +
T ∪ dx(0,1) − ∂(Ex(0,1)) = (−dx(1,0) + ∂x(0,1))−Edx(1,0) − dT ∪ x(0,1) −
(∂E) ∪ x(0,1) − E∂x(0,1) = (Id +E)(−dx(1,0) + ∂x(0,1));
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3. d′(x′)(0,1) = (d + Ed)(x(0,1) + Ex(0,1)) = dx(0,1) + Edx(0,1) + dEx(0,1) =
dx(0,1).

We have used dT = −∂E in the second one. Since Id +E is an automorphism,
we see that D′x′ = 0 if and only if Dx = 0. On the other hand, if x(1,0) =
∂x(0,0) and x(0,1) = dx(0,0) for some (x(0,0)) ∈ C0, then

x(1,0) + (T ∪ x(0,0)) = ∂x(0,0) + T ∪ dx(0,0) = ∂′x(0,0)

and
x(0,1) + Ex(0,1) = dx(0,0) + Edx(0,0) = d′x(0,0).

As a result, there is a unique way to associate with each representative of
mX ∈ H1(X,DerX/S ⊗

OS
I ) an isomorphism from the first relative cohomol-

ogy of (C•, D) to the one of ((C ′)•, D′). If we modify the representative
T = {Tαβ}αβ of mX̃ by a coboundary, then all the Eα are also modified in a
uniquely determined way. This shows that we have constructed a canonical
isomorphism H1

dR(X̃/S̃) ∼= H1
dR(X̃ ′/S̃), as desired.

Now suppose that Ỹ is a scheme over S̃ such that there is a morphism f
from X to Y := Ỹ ×

S̃

S. Then,

Proposition 2.1.6.4. There is a canonical morphism

f̃ ∗ : H1
dR(Ỹ /S̃)→ H1

dR(X̃/S̃)

lifting the canonical morphism f ∗ : H1
dR(Y/S)→ H1

dR(X/S) induced by f .

Proof. We shall denote by dX̃ : OX̃ → Ω1
X̃/S̃

and dỸ : OỸ → Ω1
Ỹ /S̃

the

respective morphisms of universal differentials. Take affine open coverings
{Ũα}α of X̃ and {Ṽα}α of Ỹ as in the proof of Proposition 2.1.3.2 such that
f(Uα) ⊂ Vα. For each α, let f̃α be any morphism over S̃ lifting the restriction
of f to Uα. The composition dX̃ ◦ f̃ ∗α : OṼα

→ Ω1
Ũα/S̃

induces, by the universal

property of Ω1
Ṽα/S̃

, a unique morphism Ω1
Ṽα/S̃
→ Ω1

Ũα/S̃
, which we again denote

by f̃ ∗α, such that f̃ ∗α ◦ dỸ = dX̃ ◦ f̃ ∗α.
By Proposition 2.1.3.2, the obstruction of lifting f globally to some mor-

phism f̃ : X̃ → Ỹ over S̃ is a cohomology class in H1(X, f ∗(DerY/S) ⊗
OS

I )

represented by some T ◦dỸ = {Tαβ◦dỸ }αβ, where the notation Tαβ◦dỸ means
it is the composition of dỸ with Tαβ ∈ HomOUαβ

(f ∗Ω1
Vαβ/S

,OUαβ ⊗
OS

I ). By
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(2.1.3.3) in the proof of Proposition 2.1.3.2, we may assume that Tαβ ◦ dỸ =
f̃ ∗α − f̃ ∗β , which implies that dX̃ ◦ Tαβ = f̃ ∗α − f̃ ∗β .

Let C•
X̃

(resp. C•
Ỹ

) be the complex computing H i
dR(X̃/S̃) (resp.

H i
dR(Ỹ /S̃)) as above, with the affine open subschemes Ũα (resp. Ṽα)

covering X̃ (resp. Ỹ ). Let us define a morphism C1
Ỹ
→ C1

X̃
: y =

(y(1,0), y(0,1)) 7→ x = (x(1,0), x(0,1)) by x
(1,0)
αβ := f̃ ∗α(y

(1,0)
αβ ) + Tαβ(y

(0,1)
β ) and

x
(0,1)
α := f̃ ∗α(y

(0,1)
α ).

The differential DỸ on C1
Ỹ

sends a section y = (y(1,0), y(0,1)) to DỸ y =

(∂Ỹ y
(1,0),−dỸ y(1,0) + ∂Ỹ y

(0,1), dỸ y
(0,1)). On the other hand, we have a similar

formula for DX̃ on sections x of C1
X̃

, with three components given by

1. (∂X̃x
(1,0))αβγ = [f̃ ∗β(y

(1,0)
βγ ) + Tβγ(y

(0,1)
γ )] − [f̃ ∗α(y

(1,0)
αγ ) + Tαγ(y

(0,1)
γ )] +

[f̃ ∗α(y
(1,0)
αβ ) + Tαβ(y

(0,1)
β )] = f̃ ∗α((∂Ỹ y

(1,0))αβγ) + (f̃ ∗β − f̃ ∗α)(y
(1,0)
βγ ) +

(∂T )αβγ(y
(0,1)
γ ) + Tαβ((∂y(0,1))βγ) = f̃ ∗α((∂Ỹ y

(1,0))αβγ) + Tαβ(−dỸ y
(1,0)
βγ +

(∂Ỹ y
(0,1))βγ);

2. (−dX̃x(1,0) + ∂X̃x
(0,1))αβ = −dX̃(f̃ ∗α(y

(1,0)
αβ )) − (dX̃ ◦ Tαβ)(y

(0,1)
β ) −

f̃ ∗β(y
(0,1)
β ) + f̃ ∗α(y

(0,1)
α ) = −dX̃(f̃ ∗α(y

(1,0)
αβ )) − (f̃ ∗α − f̃ ∗β)(y

(0,1)
β ) −

f̃ ∗β(y
(0,1)
β ) + f̃ ∗α(y

(0,1)
α ) = f̃ ∗α(−dỸ y

(1,0)
αβ + (−y(0,1)

β + y
(0,1)
α )) =

f̃ ∗α(−dỸ y
(1,0)
αβ + (∂Ỹ y

(0,1))αβ);

3. dX̃x
(0,1)
α = f̃ ∗α(dỸ y

(0,0)
α ) = dX̃(f̃ ∗α(y

(0,0)
α )).

Therefore, if DỸ y = 0 then DX̃x = 0 as well. On the other hand, if y(1,0) =
∂Ỹ y

(0,0) and y(0,1) = dỸ y
(0,0) for some (y(0,0)) ∈ C0

Ỹ
, then

x
(1,0)
αβ = f̃ ∗α(y

(1,0)
αβ ) + Tαβ(y

(0,1)
β ) = f̃ ∗α(−y(0,0)

β + y(0,0)
α ) + Tαβ(dỸ y

(0,0)
β )

= f̃ ∗α(−y(0,0)
β + y(0,0)

α ) + (f̃ ∗α − f̃ ∗β)(y
(0,0)
β ) = f̃ ∗α(y(0,0)

α )− f̃ ∗β(y
(0,0)
β )

and
x(0,1)
α = f̃ ∗α(dỸ y

(0,0)
α ) = dX̃(f̃ ∗α(y(0,0)

α )).

This shows that x = (x(1,0), x(0,1)) = DX̃(x(0,0)) for x(0,0) = (x
(0,0)
α ) :=

(f̃ ∗α(y
(0,0)
α )). As a result, there is a unique way to associate with each repre-

sentative of o(f ; X̃, Ỹ , S ↪→ S̃) ∈ H1(X, f ∗(DerY/S) ⊗
OS

I ) an isomorphism

from the first relative cohomology of (C•
Ỹ
, DỸ ) to the one of (C•

X̃
, DX̃).
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If we modify T = {Tαβ}αβ by a coboundary then all the morphisms are
also modified in a uniquely determined way that does not affect the result.
This shows that we have constructed the desired morphism H1

dR(Ỹ /S̃) →
H1

dR(X̃/S̃).

By construction of H1
dR(X̃/S̃) using C•, there is a morphism from

H0(X̃,Ω1
X̃/S̃

) to H1
dR(X̃/S̃) and a morphism from H1

dR(X̃/S̃) to H1(X̃,OX̃).

Indeed, they correspond respectively to C0,1 and C1,0 in C1. Alternatively,
consider the truncated subcomplex Ω•≥1

X̃/S̃
of Ω•

X̃/S̃
and the exact sequence

0→ Ω•≥1

X̃/S̃
→ Ω•

X̃/S̃
→ OX̃ → 0, where OX̃ is considered a complex with only

one nonzero term of degree 0. Then taking (relative) first hypercohomology
gives an exact sequence

0→ H0(X̃,Ω1
X̃/S̃

)→ H1
dR(X̃/S̃)→ H1(X̃,OX̃). (2.1.6.5)

When X̃ is an abelian scheme over S̃, it is known that H0(X̃,Ω1
X̃/S̃

) ∼=
e∗
X̃

Ω1
X̃/S̃

=: Lie∨
X̃/S̃
∼= (LieX̃/S̃)∨, that H1(X̃,OX̃) ∼= LieX̃∨/S̃, and that these

are all locally free OS̃-modules. Moreover, by [18, Lem. 2.5.3], the last mor-
phism in (2.1.6.5) is actually surjective, and we obtain the exact sequence

0→ Lie∨
X̃/S̃
→ H1

dR(X̃/S̃)→ LieX̃∨/S̃ → 0. (2.1.6.6)

If we dualize this exact sequence (2.1.6.6), then we obtain the exact sequence

0→ Lie∨
X̃∨/S̃

→ HdR
1 (X̃/S̃)→ LieX̃/S̃ → 0. (2.1.6.7)

Here HdR
1 (X̃/S̃) is the dual of H1

dR(X̃/S̃), formally defined to be the first de
Rham homology of X̃.

If X̃ ′ is a different lifting in Lift(X;S ↪→ S̃), then we have a similar
exact sequence for X̃ ′. Note that the dual of the canonical isomorphism
H1

dR(X̃/S̃) ∼= H1
dR(X̃ ′/S̃) does not map Lie∨

X̃∨/S̃
to Lie∨

(X̃′)
∨
/S̃

: We saw in the

proof of Proposition 2.1.6.2, in particular in the explicit morphism (2.1.6.3),
that if X̃ ′ is a different lifting in Lift(X;S ↪→ S̃), then the part mapping onto
LieX̃∨/S̃ is mapped, under the map C1 → (C ′)1 defining the canonical isomor-
phism, to a submodule different from the part mapping onto Lie

(X̃′)
∨
/S̃

. On

the other hand, since X̃ and X̃ ′ are both liftings of X, all their correspond-
ing objects are identical after pullback from S̃ to S. Therefore, we have two
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subsheaves Lie∨
X̃∨/S̃

and Lie∨
(X̃′)

∨
/S̃

in H1
dR(X̃ ′/S̃) ∼= H1

dR(X̃/S̃) such that

Lie∨
X̃∨/S̃

⊗
OS̃

OS = Lie∨
(X̃′)

∨
/S̃
⊗
OS̃

OS = Lie∨X∨/S

in the same space HdR
1 (X/S). We say in this case that these two subsheaves

are the same modulo I . Let us consider the projective OS̃-submodules M
in HdR

1 (X̃/S̃) such that M become the same as Lie∨X∨/S modulo I and such

that HdR
1 (X̃/S̃)/M are projective. Using the exact sequence (2.1.6.7), we

see that such OS̃-submodules are parameterized by the global sections of

HomOS̃
(Lie∨

X̃∨/S̃
,I · LieX̃/S̃) ∼= HomOS

(Lie∨X∨/S,LieX/S ⊗
OS

I )

∼= LieX∨/S ⊗
OS

LieX/S ⊗
OS

I ∼= H1(X,DerX/S ⊗
OS

I ).

When S is affine, this is the same set H1(X,DerX/S ⊗
OS

I ) that parameterizes

different liftings in Lift(X;S ↪→ S̃). Thus they must coincide. Now we can
conclude with the following analogue of a weaker form of the main theorem
in Grothendieck–Messing theory (cf. [90] and [58]):

Proposition 2.1.6.8. Let S ↪→ S̃ be a closed immersion of affine schemes
defined by a sheaf of ideals I such that I 2 = 0. Let X̃ be an abelian scheme
over S̃. Consider the exact sequence (2.1.6.7) associated with X̃. Then the
objects in Lift(X;S ↪→ S̃) are in bijection with OS̃-submodules M in exact
sequences

0→M → HdR
1 (X̃/S̃)→ N → 0

of projective OS̃-modules such that M ⊗
OS̃

OS = Lie∨X∨/S in HdR
1 (X/S) =

HdR
1 (X̃/S̃) ⊗

OS̃

OS.

Similar analysis for the case of lifting morphisms (following the explicit
construction in the proof of Proposition 2.1.6.4) shows the following:

Proposition 2.1.6.9. With the setting as above, if Ỹ is an abelian scheme
over S̃ and f : X := X̃ ×

S̃

S → Y := Ỹ ×
S̃

S is a morphism of underlying

schemes defined over S, then f can be lifted to a morphism of schemes f̃ :
X̃ → Ỹ over S̃ if and only if Lie∨

X̃∨/S̃
is mapped to Lie∨

Ỹ ∨/S̃
under the dual of

the canonical morphism H1
dR(Ỹ /S̃) → H1

dR(X̃/S̃) (whose reduction modulo
I maps Lie∨X∨/S to Lie∨Y ∨/S).

That is, the bijection in Proposition 2.1.6.8 is functorial in nature.
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2.1.7 Kodaira–Spencer Morphisms

Let S be a scheme over some fixed choice of universal base scheme U. Let S̃
be the first infinitesimal neighborhood of the image of the closed immersion
∆ : S ↪→ S×

U
S. (We are using the running assumption that the scheme S

is separated here.) Concretely, if I is the ideal defining the image of the
closed immersion ∆ : S ↪→ S×

U
S, then S̃ is the subscheme of S×

U
S defined

by I 2. By abuse of notation, we shall denote the pullback of I to S̃ by the
same notation I . Then the closed immersion S ↪→ S̃ is defined by the ideal
sheaf I satisfying I 2 = 0, a typical situation we have studied so far.

The two projections of S×
U
S → S induce two canonical sections pr1, pr2 :

S̃ → S of S ↪→ S̃. By definition, Ω1
S/U := ∆∗(I /I 2), and there is a universal

differential d : OS → Ω1
S/U given by a 7→ a⊗ 1 − 1⊗ a = pr∗1(a) − pr∗2(a) for

all a ∈ OS. In other words, Ω1
S/U is simply the sheaf of ideals I over OS̃

considered as a sheaf of ideals over OS.
Now suppose X is a scheme smooth over S. Then X̃1 := pr∗1(X) and

X̃2 := pr∗2(X) are two elements of Lift(X,S ↪→ S̃). By Proposition 2.1.3.2,
there is an element m ∈ H1(X,DerX/S ⊗

OS
I ) such that X̃1 = m + X̃2 by

the torsor structure of Lift(X,S ↪→ S̃). Since I is identified with Ω1
X/S

in this situation, we have obtained an element m in H1(X,DerX/S ⊗
OS

Ω1
S/U)

describing the difference between X̃1 and X̃2.

Definition 2.1.7.1. This element m is called the Kodaira–Spencer class
of X over S (over the universal base scheme U). We shall denote m by the
symbol KSX/S/U to signify its meaning as a Kodaira–Spencer class.

Let f denote the structural morphism X → S, which is smooth by our
assumption. Then the first exact sequence for X → S → U is of the form

0→ f ∗(Ω1
S/U)→ Ω1

X/U → Ω1
X/S → 0. (2.1.7.2)

By [59, IV-4, 17.2.3, 17.3.1, 17.5.2], smoothness of f implies that (2.1.7.2)
is exact and locally split. By splitting this exact sequence locally over
affine open subschemes, the extension class of this exact sequence in
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Ext1
OX

(Ω1
X/S, f

∗(Ω1
S/U)) is described by a cohomology class of

H1(X,HomOX
(Ω1

X/S, f
∗Ω1

S/U)) ∼= H1(X,DerX/S ⊗
OX
f ∗(Ω1

S/U))

∼= H1(X,DerX/S ⊗
OS

Ω1
S/U).

Proposition 2.1.7.3. The extension class of (2.1.7.2), when represented
in H1(X,DerX/S ⊗

OS
Ω1
S/U), is (up to a sign convention) the Kodaira–Spencer

class KSX/S/U defined in Definition 2.1.7.1.

Proof. Take an affine open covering {Uα}α of X such that each Uα is étale
over the affine r-space ArS over S for some integer r ≥ 0. Via the two
projections from S̃ to S splitting S ↪→ S̃, this open covering can be lifted
to open coverings of X̃i := pr∗i (X) over S̃, for i = 1, 2. Therefore, it suffices
to compare the gluing isomorphisms for X̃1 and X̃2. As in the proof of
Proposition 2.1.3.2, the comparison is given by morphisms Tαβ : Ω1

Uαβ/S
→

OUαβ ⊗
OS

Ω1
S/U, and KSX/S/U is represented by the 1-cocycle formed by these

Tαβ.
Suppose Ω1

Uα/S
has OS-basis elements dx1, . . . , dxr given by the coordi-

nates of ArS, and suppose Ω1
Uβ/S

has OS-basis elements dy1, . . . , dyr given by

the coordinates of ArS (for the same r), then there is a change of coordinates
dxi =

∑
1≤j≤r

aijdyj for some aij ∈ OS as both induce bases for Ω1
Uαβ/S

by

restriction. This form an invertible matrix a = (aij)1≤i≤r,1≤j≤r over OS, and
for convenience let us denote its inverse matrix by a−1 = (aij)1≤i≤r,1≤j≤r.
Note that the comparison of two pullbacks by projections over S̃ gives the
universal differentiation d : OS → Ω1

S/U for OS. Therefore, we have two mor-

phisms dxi 7→
∑

1≤j≤r
pr∗1(aij)dyj and dxi 7→

∑
1≤j≤r

pr∗2(aij)dyj, the first given by

multiplying the corresponding matrix entries of Id +(da)a−1 by the second
one, or more explicitly by multiplying Id +

∑
1≤k≤r

daika
kj by

∑
1≤j≤r

aijdxj. This

shows that (up to a sign convention) Tαβ is given by the matrix (da)a−1.
On the other hand, the statement that Uα is étale over ArS with OS

coordinates x1, . . . , xr also shows that we may split (2.1.7.2) over Uα by
taking the basis elements dx1, . . . , dxr of Ω1

Uα/S
as part of a basis of Ω1

Uα/U
.

Similarly, if we split (2.1.7.2) over Uβ by the basis elements dy1, . . . , dyr of
Ω1
Uβ/S

, then the difference of the two splittings is again measured by (da)a−1.
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This gives exactly the 1-cocycle representing the extension class of (2.1.7.2)
in H1(X,DerX/S ⊗

OS
Ω1
S/U).

Remark 2.1.7.4. In the context of Section 2.1.6, there is a canonical isomor-
phism between the first de Rham cohomologies of the two liftings X̃1 and
X̃2 of X given by the Kodaira–Spencer class KSX/S/U. On the other hand,
since the two liftings come from pullback by projections, they are naturally
isomorphic if we identify the two projections by a flipping isomorphism. The
difference of the two canonical isomorphisms gives a morphism

H1
dR(X̃1/S̃)→ I ·H1

dR(X̃2/S̃), (2.1.7.5)

which induces the morphism

H0(X,Ω1
X/S)→ H1(X,OX ⊗

OS
Ω1
S/U) (2.1.7.6)

on the graded pieces. This is nothing but the morphism defined by the cup
product with the Kodaira–Spencer class KSX/S/U. When Ω1

S/U is locally free

over OS of finite rank (which is, in particular, the case when S is smooth
over U), we can rewrite the morphism (2.1.7.6) as

H0(X,Ω1
X/S)→ H1(X,OX) ⊗

OS
Ω1
S/U (2.1.7.7)

(by the projection formula [59, 0I, 5.4.10.1]). Hence we can rewrite the
morphism (2.1.7.5) as

H1
dR(X/S)→ H1

dR(X/S) ⊗
OS

Ω1
S/U,

which is the so-called Gauss–Manin connection of H1
dR(X/S).

Now let us assume that Ω1
S/U is locally free of finite rank over OS. Sup-

pose X is an abelian scheme over S. Then we have canonical identifi-
cations H0(X,Ω1

X/S) ∼= H0(X,OX) ⊗
OS

Lie∨X/S
∼= Lie∨X/S

∼= (LieX/S)∨ and

H1(X,OX) ∼= LieX∨/S (given by Lemma 2.1.5.11 and Corollary 2.1.5.9). By

the canonical identification Lie∨X∨/S
∼= (LieX∨/S)∨ as well, we may interpret

the morphism (2.1.7.7) as

KSX/S/U : Lie∨X/S ⊗
OS

Lie∨X∨/S → Ω1
S/U. (2.1.7.8)

Definition 2.1.7.9. The morphism KSX/S/U in (2.1.7.8) is called the
Kodaira–Spencer morphism for the abelian scheme X over S (over the
base scheme U).
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2.2 Formal Theory

2.2.1 Local Moduli Functors and Schlessinger’s Crite-
rion

Let us make precise the meaning of local moduli problems, or rather infinites-
imal deformations, associated with MH.

Let S0 = Spec(OF0,(2)) and let s be a point of finite type over S0. Let k
be a finite field extension of k(s). Let p = char(k). If p > 0, then p ∈ 2 and
k(s) and k are necessarily finite fields of characteristic p. By assumption, p is
unramified in F , and by Corollary 1.2.5.7, p is unramified in F0. Therefore the
completion ÔS0,s is simply the Witt vectors W (k(s)) (by Theorem B.1.1.9).
If p = 0, then 2 is necessarily a finite set, and k is a field extension of F0.

Following Lemma B.1.1.11, set Λ := k when p = 0 and set Λ := W (k)
when p > 0. We denote by CΛ the category of Artinian local Λ-algebras with
residue field k and by ĈΛ the category of noetherian complete local Λ-algebras
with residue field k. (These are the same definitions as in Notation B.1.1.)
Then we see that ĈΛ can be viewed as the infinitesimal neighborhoods of
Spec(k)→ S0, and CΛ can be viewed as those in which Spec(k) is defined by
nilpotent ideals. For simplicity, let us abbreviate CΛ by C and ĈΛ by Ĉ. Note
that the notation Λ here is consistent with the one in Section 1.1.3 (with
R0 = Z).

Let us denote by ξ0 : Spec(k) → MH a point of MH corresponding to
an object ξ0 = (A0, λ0, i0, αn,0) in MH(Spec(k)). Let us denote by Defξ0 the

functor from Ĉ to (Sets) defined by the assignment

R 7→ {isomorphism classes of pairs (ξ, f0) } ,

where ξ = (A, λ, i, αH) is an object in MH(Spec(R)), and where

f0 : ξ⊗
R
k := MH(Spec(R)→ Spec(k))(ξ)

∼→ ξ0

is an isomorphism (in the sense of Definition 1.4.1.3) identifying ξ⊗
R
k with

ξ0 (see Appendix B, especially Theorem B.3.9 for the reasoning behind this
definition).

In the remainder of this chapter, our first main objective is to show that
Defξ0 is effectively prorepresentable and formally smooth, and to show that
Theorems B.3.7, B.3.9, and B.3.11 can be applied. (Note that, without the
effectiveness, prorepresentability is a condition for Defξ0|C only.)
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To achieve this, it is helpful to introduce some other functors
deforming fewer structures, and hence easier to understand than
Defξ0 = Def(A0,λ0,i0,αH,0):

1. Let us denote by DefA0 the functor from Ĉ to (Sets) defined by

R 7→ {isomorphism classes of pairs (A, f0) over R},

where

(a) A is an abelian scheme over R;

(b) f0 : A⊗
R
k
∼→ A0 is an isomorphism.

2. Let us denote by Def(A0,λ0) the functor from Ĉ to (Sets) defined by

R 7→ {isomorphism classes of triples (A, λ, f0) over R},

where

(a) A is an abelian scheme over R;

(b) λ : A→ A∨ is a polarization of A;

(c) f0 : A⊗
R
k
∼→ A0 is an isomorphism that pulls λ0 back to λ⊗

R
k.

3. Let us denote by Def(A0,λ0,i0) the functor from Ĉ to (Sets) defined by

R 7→ {isomorphism classes of tuples (A, λ, i, f0) over R},

where

(a) A is an abelian scheme over R;

(b) λ : A→ A∨ is a polarization of A;

(c) i : O → EndR(A) is an endomorphism structure;

(d) LieA/Spec(R) with its O⊗
Z
Z(2)-module structure given naturally by

i satisfies the determinantal condition in Definition 1.3.4.1 given
by (L⊗

Z
R, 〈 · , · 〉, h);

(e) f0 : A⊗
R
k
∼→ A0 is an isomorphism that pulls λ0 back to λ⊗

R
k

and pulls i0 back to i⊗
R
k.
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We will show the prorepresentability and formal smoothness separately.
Let us record Schlessinger’s general criterion of prorepresentability before

we proceed. Following Schlessinger’s fundamental paper [109],

Definition 2.2.1.1. A surjection p : R̃� R in C is a small surjection if
the kernel of p is an ideal I such that I · mR̃ = 0, where mR̃ is the maximal
ideal of R̃.

Remark 2.2.1.2. Every surjection in C is the composition of a finite number
of small surjections.

If a functor F : C → (Sets) is prorepresentable, then the following two
conditions necessarily hold:

1. F (k) has exactly one element. (Here k is understood as the final object
of C.)

2. For all surjections R̃� R and Q� R in C, the functoriality of F gives
an isomorphism

F (Q×
R
R̃)

∼→ F (Q) ×
F (R)

F (R̃). (2.2.1.3)

We may ask how much of the converse is true. The answer is provided
by the following theorem of Schlessinger’s:

Theorem 2.2.1.4. A covariant functor F : C → (Sets) such that F (k) has
exactly one element is prorepresentable if and only if F satisfies (2.2.1.3) for
all surjections R̃� R and Q� R, and dimk(F (k[ε]/(ε2))) <∞. It suffices
to check (2.2.1.3) in the case that the surjection R̃� R is a small surjection
(as in Definition 2.2.1.1).

Moreover, suppose F is prorepresentable by some Runiv ∈ Ĉ that is for-
mally smooth (namely, F (R̃) → F (R) is surjective for every surjection
R̃ � R in C) and satisfies dimk(F (k[ε]/(ε2))) = m. Then there is an iso-
morphism Runiv ∼= Λ[[t1, . . . , tm]].

Proof. The first half is a weakened form of [109, Thm. 2.11]. The second half
is just [109, Prop. 2.5(i)].

Remark 2.2.1.5. For ease of notation, when S̃ = Spec(R̃) and S = Spec(R),
we shall write o(X; R̃ � R) etc. in place of o(X;S ↪→ S̃) etc. in Sec-
tion 2.1. If R̃ � R is a small surjection with kernel I (as in Definition

142



2.2.1.1), then M̃ ⊗
R
I ∼= (M̃/mR̃ · M̃)⊗

k
I for every R̃-module M̃ , because

I · mR̃ = 0. Hence we shall define S0 := Spec(k), X0 := X ⊗
R
k, etc.,

and write H1(X0,DerX0/S0
)⊗
k
I in place of H1(X,DerX/S ⊗

R
I), as it is more

precise. Note that we are allowed to write H1(X0,DerX0/S0
)⊗
k
I instead of

H1(X0,DerX0/S0
⊗
k
I) (by the projection formula [59, 0I, 5.4.10.1]) because I

is free of finite rank over the residue field k = R̃/mR̃.

2.2.2 Rigidity of Structures

Let us retain the notation in Section 2.2.1 and the conventions mentioned in
Remark 2.2.1.5. Apart from Proposition 2.2.2.9 and consequently Corollary
2.2.2.10, where we do need more refined assumptions on k and hence on Λ (to
make Proposition 1.1.2.20 work), the remaining results in this section work
for arbitrary choices of k and Λ as at the beginning of Section 2.2.1 (or in
Section B.1).

Let us first show that DefA0 can be understood by the deformation of the
underlying smooth scheme structures. The rigidity of abelian schemes has
the following implication:

Lemma 2.2.2.1. Let S ↪→ S̃ be a closed immersion defined by a sheaf
of nilpotent ideals I . Let Ã and Ã′ be two abelian schemes over S̃, and
let A := Ã×

S̃

S and A′ := Ã′×
S̃

S. Then the restriction map from the set

of group homomorphisms HomS̃(Ã, Ã′) to HomS(A,A′) is injective. Simi-
larly, the restriction map from the set of group isomorphisms IsomS̃(Ã, Ã′)
to IsomS(A,A′) is injective.

Proof. Suppose f and g are two group homomorphisms from Ã to Ã′ such
that f ×

S̃

S = g×
S̃

S. Then, by Corollary 1.3.1.5, there exists a section η :

S̃ → Ã′ such that g = f + η. Since f and g are group homomorphisms, both
of them send the identity section eÃ of Ã to the identity section eÃ′ of Ã′.
This forces η to be the identity section eÃ′ , and hence f = g. The argument
for group isomorphisms is identical.

In particular, there are no infinitesimal automorphisms for A as an abelian
scheme over S. Note that we might have infinitesimal automorphisms if
we only consider A as a scheme smooth over S. For example, when R =
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k[ε]/(ε2), we know they are parameterized by H0(A0,DerA0/S0
) ∼= LieA0/S0 .

The essential extra freedom is controlled by the choice of identity sections:

Corollary 2.2.2.2. Let S ↪→ S̃ be a closed immersion defined by a sheaf
of nilpotent ideals I . Suppose Ã and Ã′ are abelian schemes over S̃, A :=
Ã×

S̃

S, A′ := Ã′×
S̃

S, and f : A→ A′ is a (group scheme) homomorphism that

is lifted to some morphism f̃ : Ã → Ã′ (not necessarily a homomorphism)
over S̃ in the sense that f̃ ×

S̃

S = f . Then, by replacing f̃ with f̃ − f̃(eÃ), we

obtain the unique homomorphism lifting f .

Proof. The replacement works because of Corollary 1.3.1.6. The claim of
uniqueness is just Lemma 2.2.2.1.

Now we can state the following important fact:

Proposition 2.2.2.3 ([99, Prop. 2.27]). Suppose p : R̃ � R is a small
surjection in Ĉ with kernel I, and suppose (A, f0) represents an object of
DefA0(R). Let

DefA0(p)−1([(A, f0)])

be the set of isomorphism classes of objects (Ã, f̃0) in DefA0(R̃) that are
mapped to the class of (A, f0). Then forgetting the structure of abelian
schemes induces a well-defined bijection

DefA0(p)−1([(A, f0)])→ Lift(A; R̃� R). (2.2.2.4)

Proof. Let us first show that the map (2.2.2.4) is well defined. If DefA0(p)
maps the class of (Ã, f̃0) to (A, f0), then we have some group isomorphism
ψ : Ã⊗

R̃

R
∼→ A reducing to f−1

0 ◦ f̃0 : Ã⊗
R̃

k
∼→ A⊗

R
k. Suppose (Ã′, f̃ ′0)

is also a representative of some object in DefA0(p)−1([(A, f0)]). Let (Ã′, ψ′)
be associated with (Ã′, f̃ ′0) by the above recipe. If there is an isomorphism
h : Ã

∼→ Ã′ over R̃ such that h⊗
R̃

k = (f̃ ′0)−1 ◦ f̃0 defines an isomorphism

(Ã, f̃0)
∼→ (Ã′, f̃ ′0), then both ψ and ψ′ ◦ (h⊗

R̃

R) are isomorphisms from

Ã⊗
R̃

R to A reducing to f̃0 : Ã⊗
R̃

k
∼→ A0. Therefore, by Lemma 2.2.2.1, we

have ψ = ψ′ ◦ (h⊗
R̃

R). This shows that the isomorphism h defines an isomor-

phism (Ã, ψ)
∼→ (Ã′, ψ′) and that the map (2.2.2.4) sending the isomorphism
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class of (Ã, f0) in DefA0(p)−1([(A, f0)]) to the isomorphism class of (Ã, ψ) in
Lift(A; R̃� R) is well defined.

Now suppose we have two pairs (Ã, f̃0) and (Ã′, f̃ ′0) defining classes in
DefA0(p)−1([(A, f0)]). Let (Ã, ψ) and (Ã′, ψ′) be any two choices of pairs
associated respectively with (Ã, f̃0) and (Ã′, f̃ ′0) as above. Note that ψ and ψ′

are chosen to be group isomorphisms. Suppose that there is an isomorphism
h : Ã → Ã′ of the underlying schemes over R̃ that induces an isomorphism
(Ã, ψ)

∼→ (Ã′, ψ′). This means that ψ = ψ′ ◦ (h⊗
R̃

R), and implies that

h⊗
R̃

R is a group isomorphism, as both ψ and ψ′ are. Then, by Corollary

2.2.2.2, we may assume that h is a group isomorphism by replacing h with
h − h(eÃ). Since ψ⊗

R
k = f−1

0 ◦ f̃0 and ψ′⊗
R
k = f−1

0 ◦ f̃ ′0 by construction,

we have h⊗
R̃

k = (ψ′⊗
R
k)−1 ◦ (ψ⊗

R
k) = (f̃ ′0)−1 ◦ f̃0, and hence h defines an

isomorphism (Ã, f̃0)
∼→ (Ã′, f̃ ′0). This shows the injectivity of (2.2.2.4).

Finally, the surjectivity of (2.2.2.4) follows from Proposition 2.2.2.5 below,
by the automatic existence of identity sections by smoothness.

Proposition 2.2.2.5 (cf. [96, Prop. 6.15]). Let p : R̃ � R be a small
surjection in C with kernel I. Let S̃ := Spec(R̃) and S := Spec(R). Let
π̃ : Ã→ S̃ be a proper smooth morphism with a section ẽ : S̃ → Ã. Suppose
A := Ã×

S̃

S → S is an abelian scheme with identity section e := ẽ×
S̃

S. Then

Ã→ S̃ is an abelian scheme with identity section ẽ.

Proof. Let g : A×
S
A → A be the morphism g(x, y) = x − y defined for all

functorial points x and y of A. To show that Ã is an abelian scheme, our first
task is to lift g to some morphism g̃ : Ã×

S̃

Ã→ Ã over S̃. Let S0 := Spec(k),

A0 := Ã×
S̃

S0, and g0 := g̃×
S̃

S0. By Proposition 2.1.3.2, there is an element

o0 := o(g; Ã×
S̃

Ã, Ã, R̃� R) ∈ H1(A0×
S0

A0, g
∗
0(DerA0/S0

))⊗
k
I

whose vanishing is equivalent to the existence of a morphism g̃ lifting g.
Let j1, j2 : Ã → Ã×

S̃

Ã be the morphisms defined by j1(x) = (x, e) and

j2(x) = (x, x), respectively, for all functorial points x of Ã, and let pr1, pr2 :
Ã×

S̃

Ã → Ã be the two projections. By abuse of notation, we shall use
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the same symbols for their pullbacks to S and S0. Then, by repeating the
arguments in the proof of Proposition 2.1.3.2 if necessary, the obstructions

oi := o(g ◦ ji; Ã, Ã, R̃� R) ∈ H1(A0, j
∗
i g
∗
0(DerA0/S0

))⊗
k
I

to lifting g ◦ ji, for i = 1, 2, are related to the obstruction of lifting g by
oi = j∗i (o0) under the canonical homomorphisms

j∗i : H1(A0×
S0

A0, g
∗
0(DerA0/S0

))⊗
k
I → H1(A0, j

∗
i g
∗
0(DerA0/S0

))⊗
k
I.

Since IdÃ and ẽ ◦ π̃ do lift the morphisms g ◦ j1 = IdA and g ◦ j2 = e ◦ π, we
must have oi = 0 for i = 1, 2.

On the other hand, as A0 is an abelian variety, the structure of
H1(A0×

S0

A0, g
∗
0(DerA0/S0

)) can be completely understood by the Künneth

formula (see [59, III-2, 6.7.8]). Moreover, by Lemma 2.1.5.11, DerA0/S0

is canonically isomorphic to the pullback of LieA0/S0
, the latter of which

is constant over S0 = Spec(k) with values in the k-vector space LieA0/S0 .
Explicitly,

H1(A0×
S0

A0, g
∗
0(DerA0/S0

))⊗
k
I ∼= H1(A0×

S0

A0,OA0 ×
S0

A0)⊗
k

LieA0/S0 ⊗
k
I

∼= [pr∗1H
1(A0,OA0)⊕ pr∗2H

1(A0,OA0)]⊗
k

LieA0/S0 ⊗
k
I.

As a result, every element in H1(A0×
S0

A0, g
∗
0(DerA0/S0

))⊗
k
I can be described

as a sum of elements of the two factors [pr∗i H
1(A0,OA0)]⊗

k
LieA0/S0 ⊗

k
I, where

i = 1, 2. As j∗1(o0) = o1 = 0 and pr1 ◦j1 = IdÃ, we see that the first factor of
o0 is trivial. On the other hand, as j∗2(o0) = o2 = 0 and pr2 ◦j2 = IdÃ, we see
that the second factor of o0 is trivial as well. Hence we must have o0 = 0,
and the existence of some morphism g̃ : Ã×

S̃

Ã→ Ã lifting g.

By Proposition 2.1.3.2, Lift(g; Ã×
S̃

Ã, Ã, R̃ � R) is a torsor under

the group H0(A0×
S0

A0, g
∗
0(DerA0/S0

))⊗
k
I, which is canonically isomor-

phic to LieA0/S0 ⊗
k
I by Lemma 2.1.5.11. Similarly, the restrictions of

the liftings g̃ to (ẽ, ẽ) : S̃ → Ã×
S̃

Ã form a torsor under the group

H0(S0, (g0|(eA0
,eA0

))
∗(DerA0/S0

))⊗
k
I, which is also canonically isomorphic to
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LieA0/S0 ⊗
k
I. As the restriction to (ẽ, ẽ) defines a natural morphism between

the two torsors equivariant under the same group, we see that there exists a
unique lifting g̃ of g that sends (ẽ, ẽ) to ẽ.

It remains to prove that g̃ determines a group structure of Ã with identity
section ẽ. The existence of g̃ gives formal definitions of the inverse and mul-
tiplication morphisms, and it only remains to check the various compatibility
relations given by morphisms of the form h : Ã×

S̃

· · · ×
S̃

Ã → Ã, which sends

(ẽ, . . . , ẽ) to ẽ, and sends everything to e over S. Certainly, the condition to
check is that h sends everything to ẽ over S̃. By Proposition 1.3.1.4, there
is necessarily a section η : S̃ → Ã such that h is the composition of the
structural projection Ã×

S̃

· · · ×
S̃

Ã → S̃ with η. Since h sends (ẽ, . . . , ẽ) to ẽ,

this η must be the section ẽ, as desired.

Let us state similar rigidity results for some other structures as corollaries
of Lemma 2.2.2.1:

Corollary 2.2.2.6. Let S ↪→ S̃ be a closed immersion defined by a sheaf
of nilpotent ideals I . Let Ã be an abelian scheme over S̃, A := Ã×

S̃

S,

and λ : A→ A∨ some polarization of A (see Definition 1.3.2.16). Suppose
λ̃ : Ã→ Ã∨ is any homomorphism such that λ̃×

S̃

S = λ. Then λ̃ is necessarily

a polarization of Ã.

Proof. Note that both λ̃ and λ̃∨ lift λ = λ∨, where the symmetry follows
because λ is a polarization. Hence λ̃ = λ̃∨ by Lemma 2.2.2.1. Now that λ̃ is
symmetric, by Proposition 1.3.2.15, it suffices to know that λ̃ is a polarization
over each geometric point of S̃, which is true because λ is a polarization over
each geometric point of S.

Corollary 2.2.2.7. Let S ↪→ S̃ be a closed immersion defined by a sheaf
of nilpotent ideals I . Let Ã be an abelian scheme over S̃ and A := Ã×

S̃

S.

With the setting as in Section 1.3.3, there is at most one way to lift an
O-endomorphism structure from A to Ã. Moreover, to check the existence of
liftings, we do not have to check the Rosati condition.

Proof. It is clear from Lemma 2.2.2.1 that liftings of morphisms are unique
(if they exist). Since the Rosati condition is defined by relations of group
homomorphisms that are already verified over S, it is automatic over S̃ by
Corollary 1.3.1.5.
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Corollary 2.2.2.8. Let S ↪→ S̃ be a closed immersion defined by a sheaf of
nilpotent ideals I . Let (Ã, λ̃, ĩ) be a polarized abelian scheme with endomor-
phism structures over S̃, and let (A, λ, i) := (Ã, λ̃, ĩ)×

S̃

S. With the setting

as in Section 1.3.7, each level structure over A is uniquely liftable to Ã.

Proof. By definition, level structures are orbits of étale-locally-defined mor-
phisms between étale group schemes that are successively liftable to sym-
plectic isomorphisms of higher levels after making étale base changes. Then
the corollary is true because morphisms between schemes étale over S are
uniquely liftable to S̃ by Lemma 2.1.1.6.

Proposition 2.2.2.9. With assumptions as above, let R̃ � R be a surjec-
tion in Ĉ. Suppose that Ã → S̃ is an abelian scheme, that A := Ã×

S̃

S, and

that both of them admit compatibly the necessary polarizations and endomor-
phism structures such that the determinantal condition in Definition 1.3.4.1
is defined. Then LieÃ/S̃ satisfies the condition if and only if LieA/S does.

Proof. It suffices to treat the case R = k. Let A0 := Ã×
S̃

S0, so that

(LieÃ/S̃)⊗
R̃

k ∼= LieA0/S0 as O⊗
Z
k-modules. Let F ′0 and L0 be chosen as in

Lemma 1.2.5.9, with F ′0 unramified at p when p > 0. Since our purpose is
to verify whether an equation is satisfied, we may replace k with a finite
field extension and assume that the homomorphism OF0,(2) → Λ extends to
OF ′0,(p) → Λ. Then we have DetO|V0 = DetO|L0 = DetO|L0 ⊗

O
F ′0

R̃ in k[O∨], and

it follows from Lemma 1.2.5.11 that DetO|LieÃ/S̃
= DetO|V0 in k[O∨] if and

only if DetO|LieA0/S0
= DetO|V0 in k[O∨].

Combining the results above,

Corollary 2.2.2.10. The series of forgetful functors

Def(A0,λ0,i0,αH,0) → Def(A0,λ0,i0) → Def(A0,λ0) → DefA0

induces the series of equivalence or embeddings

Def(A0,λ0,i0,αH,0)
∼= Def(A0,λ0,i0) ↪→ Def(A0,λ0) ↪→ DefA0 ,

realizing each category as a full subcategory of the next one. Moreover, we
may ignore the Rosati condition and the Lie algebra condition when studying
Def(A0,λ0,i0).
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2.2.3 Prorepresentability

Consider a Cartesian diagram

Q̃
π̃ // //

q
����

R̃

r
����

Q π
// // R

(2.2.3.1)

of surjections in which r and q are small surjections with kernels I and
J , respectively. In this case π̃ : Q̃ � R̃ induces an isomorphism J

∼→ I,
which we again denote by π̃. If we define S̃ := Spec(R̃), S := Spec(R),
T̃ := Spec(Q̃), and T := Spec(Q), then we arrive at the setting of Section
2.1.4, together with the isomorphism π̃ : J

∼→ I which makes the results
there more powerful.

According to Schlessinger’s criterion (stated as Theorem 2.2.1.4), a co-
variant functor F : C → (Sets) such that F (k) has exactly one element is
prorepresentable if and only if the following two conditions are satisfied:

1. The natural map
F (Q̃)→ F (Q) ×

F (R)
F (R̃) (2.2.3.2)

is a bijection for each Cartesian diagram (2.2.3.1).

2. Let k[ε]/(ε2) be the ring of dual numbers over k, then

dimk(F (k[ε]/(ε2))) <∞. (2.2.3.3)

We shall check these conditions one by one for DefA0 , Def(A0,λ0), Def(A0,λ0,i0),
and Defξ0 = Def(A0,λ0,i0,αH,0).

Proposition 2.2.3.4. The functor DefA0 is prorepresentable.

Proof. Let us first check the bijectivity of the map

DefA0(Q̃)→ DefA0(Q) ×
DefA0

(R)
DefA0(R̃) (2.2.3.5)

for each diagram (2.2.3.1). If DefA0(Q) ×
DefA0

(R)
DefA0(R̃) is empty, then

DefA0(Q̃) is also empty and (2.2.3.5) is bijective. Therefore we may assume
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that it is nonempty. Let ((AQ, f0,Q), (AR̃, f0,R̃)) be a representative of any

object in DefA0(Q) ×
DefA0

(R)
DefA0(R̃). Then we have

DefA0(π)([(AQ, f0,Q)]) = DefA0(r)([(AR̃, f0,R̃)]) = [(AR, f0,R)]

for some object in DefA0(R) represented by some (AR, f0,R). By Proposition
2.2.2.3 and Corollary 2.1.4.3, we have a commutative diagram

DefA0(r)−1([(AR, f0,R)]) ∼ // Lift(AR; R̃� R)

DefA0(q)−1([(AQ, f0,Q)]) ∼
//

o

OO

Lift(AQ; Q̃� Q)

⊗
Q̃

R̃o

OO
(2.2.3.6)

of isomorphisms (with the dotted arrow induced by the other ar-
rows), which shows that there must be an isomorphism class
[(AQ̃, f0,Q̃)] ∈ DefA0(q)−1([(AQ, f0,Q)]) corresponding to the given
[(AR̃, f0,R̃)] ∈ DefA0(r)−1([(AR, f0,R)]). Moreover, for each (AQ̃, f0,Q̃)

representing the class, there is an isomorphism AQ̃⊗
Q̃

R̃ ∼= AR̃ over

R̃, as this is how the solid vertical arrow in (2.2.3.6) is defined. By
Corollary 2.2.2.2, the existence of such an isomorphism implies the unique
existence of an isomorphism of abelian schemes lifting the isomorphism
f0,R̃ ◦ f

−1

0,Q̃
: AQ̃⊗

R̃

k
∼→ AR̃⊗

R̃

k between the special fibers. Hence we also have

DefA0(π̃)([(AQ̃, f0,Q̃)]) = [(AR̃, f0,R̃)],

which shows the surjectivity of (2.2.3.5). Note that this argument shows that
the dotted arrow in (2.2.3.6) can be identified with DefA0(π̃). As a result, no
two distinct elements in DefA0(q)−1([(AQ, f0,Q)]) can be mapped to the same
element in DefA0(r)−1([(AR, f0,R)]) by DefA0(π̃), which shows the injectivity
of (2.2.3.6) as well.

Now let us compute the dimension of DefA0(k[ε]/(ε2)). Let S0 := Spec(k)
and let t : k[ε]/(ε2)� k denote the canonical surjection. Since DefA0(k) has
only one object [(A0, IdA0)] and since t has a section forcing o(A0; t) = 0, we
have

DefA0(k[ε]/(ε2)) = DefA0(t)−1([(A0, IdA0)])
∼= Lift(A0; t) ∼= H1(A0,DerA0/S0

)
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by Propositions 2.2.2.3 and 2.1.2.2. Since A0 is an abelian scheme over S0,
by Lemma 2.1.5.11, DerA0/S0

is canonically isomorphic to the pullback of
LieA0/S0

, the latter of which is constant over S0 = Spec(k) with values in the
k-vector space LieA0/S0 . By this fact and Corollary 2.1.5.9, we see that

H1(A0,DerA0/S0
) ∼= H1(A0,OA0)⊗

k
LieA0/S0

∼= LieA∨0 /S0
⊗
k

LieA0/S0 ,

where LieA∨0 /S0
= LiePic(A0)/S0 . The dimensions of LieA0/S0 and LieA∨0 /S0

are
both finite and equal to the dimension of A0 over k. Hence

dimk DefA0(k[ε]/(ε2)) = (dimk A0)2 <∞,

as desired.

Proposition 2.2.3.7. The functor Def(A0,λ0) is prorepresentable.

Proof. By Corollary 2.2.2.10, Def(A0,λ0) is a subfunctor of DefA0 . Hence the
map

Def(A0,λ0)(Q̃)→ Def(A0,λ0)(Q) ×
Def(A0,λ0)(R)

Def(A0,λ0)(R̃) (2.2.3.8)

is always injective because (2.2.3.5) is so. It suffices to show that it is also
surjective. Suppose ((AQ, λQ, f0,Q), (AR̃, λR̃, f0,R̃)) is a representative of any
object on the right-hand side of (2.2.3.8). Then we have

Def(A0,λ0)(π)([(AQ, λQ, f0,Q)]) = DefA0(p)([(AR̃, λR̃, f0,R̃)])

= [(AR, λR, f0,R)]

for some object in Def(A0,λ0)(R) represented by some (AR, λR, f0,R). In par-
ticular, because of the existence of the polarization λR̃ : AR̃ → A∨

R̃
as a

morphism between schemes, Lift(λR;AR̃, A
∨
R̃
, R̃� R) is nonempty, and

o(λQ;AQ̃, A
∨
Q̃
, Q̃� Q) = o(λR;AR̃, A

∨
R̃
, R̃� R) = 0

by Corollary 2.1.4.4. Therefore there is some morphism λQ̃,0 : AQ̃ → A∨
Q̃

lifting λQ : AQ → A∨Q, which might not be a homomorphism. But this
is sufficient because Corollaries 2.2.2.2 and 2.2.2.6 then imply the unique
existence of a polarization λQ̃ : AQ̃ → A∨

Q̃
lifting λQ.

Finally, note that

dimk Def(A0,λ0)(k[ε]/(ε2)) ≤ dimk DefA0(k[ε]/(ε2)) <∞,

again because Def(A0,λ0) is a subfunctor of DefA0 .
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Proposition 2.2.3.9. The functor Def(A0,λ0,i0) is prorepresentable.

Proof. By Corollary 2.2.2.10, Def(A0,λ0,i0) is a subfunctor of Def(A0,λ0). More-
over, we may ignore the Rosati condition and the Lie algebra condition when
studying Def(A0,λ0,i0). Therefore the prorepresentability is just a question
about lifting morphisms of schemes, which can be shown by exactly the
same argument as in the proof of Proposition 2.2.3.7.

Finally,

Theorem 2.2.3.10. The functor Defξ0 = Def(A0,λ0,i0,αH,0) is prorepre-
sentable.

Proof. Simply combine Corollary 2.2.2.10 and Proposition 2.2.3.9.

2.2.4 Formal Smoothness

Proposition 2.2.4.1. The functor DefA0 is formally smooth.

Proof. Let S0 := Spec(k). By Proposition 2.2.2.3, this will follow if we can
show that, for every small surjection R̃ � R in C with kernel I, and every
(A, f0) defining an object of DefA0(R), the obstruction

o := o(A; R̃� R) ∈ H2(A0,DerA0/S0
)⊗
k
I

to Lift(A; R̃ � R) vanishes. Let S̃ := Spec(R̃) and S := Spec(R) as usual.
Let us also look at the obstruction

o2 := o(A×
S
A; R̃� R) ∈ H2(A0×

S0

A0,DerA0 ×
S0

A0/S0
)⊗
k
I

to Lift(A×
S
A; R̃ � R). According to the proof of Proposition 2.1.2.2, the

cohomology class o can be calculated by forming an affine open covering
{Uα}α of A over S such that each Uα is lifted to a scheme Ũα smooth over
S̃, and by forming c = {cαβγ}αβγ with

cαβγ ∈ AutS̃(Ũα|Uαβγ , S) ∼= Γ((Uαβγ)0,DerA0/S0
)⊗
k
I

defining the class o = [c] in H2(A0,DerA0/S0
)⊗
k
I. Then we have an affine

open covering {Uα×
S
Uα′}αα′ of A×

S
A enjoying the same smooth lifting prop-

erties, and we can calculate o2 by forming the class of c2 := {pr∗1(cαβγ) +
pr∗2(cα′β′γ′)}αα′ββ′γγ′ in its natural sense.
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Let j1, j2 : A0 → A0×
S0

A0 be the morphisms defined by j1(x) = (x, e)

and j2(x) = (e, x), respectively, for all functorial points x of A0, and let
pr1, pr2 : A0×

S0

A0 → A0 be the two projections. As in the proof of Proposition

2.2.2.5, by the Künneth formula (see [59, III-2, 6.7.8]) and the fact that
DerA0 ×

S0

A0/S0
is canonically isomorphic to the pullback of the constant sheaf

LieA0 ×
S0

A0/S0
, we know that there is a canonical isomorphism

H2(A0×
S0

A0,DerA0 ×
S0

A0/S0
)⊗
k
I

∼= H2(A0×
S0

A0,OA0 ×
S0

A0)⊗
k

LieA0 ×
S0

A0/S0 ⊗
k
I

∼= [pr∗1H
2(A0,OA0)⊕(pr∗1H

1(A0,OA0)⊗
k

pr∗2H
1(A0,OA0))

⊕ pr∗2H
2(A0,OA0)]⊗

k
LieA0 ×

S0

A0/S0 ⊗
k
I,

which decomposes H2(A0×
S0

A0, g
∗
0(DerA0/S0

))⊗
k
I into three factors. By com-

patibly decomposing

DerA0 ×
S0

A0/S0
∼= pr∗1 DerA0/S0

⊕ pr∗2 DerA0/S0

and
LieA0 ×

S0

A0/S0
∼= LieA0/S0 ⊕LieA0/S0

as well (using j1 and j2), we obtain a projection

H2(A0×
S0

A0,DerA0 ×
S0

A0/S0
)⊗
k
I

→
(

pr∗1[H2(A0,OA0)⊗
k

LieA0/S0 ]⊕ pr∗2[H2(A0,OA0)⊗
k

LieA0/S0 ]

)
⊗
k
I

→
(
pr∗1[H2(A0,DerA0/S0

)]⊕ pr∗2[H2(A0,DerA0/S0
)]
)
⊗
k
I,

(2.2.4.2)

which is determined by the two pullbacks under j∗1 and j∗2 .
From the above explicit construction, it is clear that o2 = pr∗1(o)+pr∗2(o).

On the other hand, by Proposition 2.1.2.2, o2 is preserved under the auto-
morphism of A×

S
A defined by α : (x, y) 7→ (x+ y, y) for all functorial points
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x and y of A. Therefore we also have

o2 = (pr1 ◦α)∗(o) + (pr2 ◦α)∗(o) = m∗(o) + pr∗2(o),

where m : A0×
S0

A0 → A0 is the multiplication morphism. Since m ◦ j1 =

m◦ j2 = IdX , we see that m∗(o) and pr∗1(o)+pr∗2(o) have the same projection
under (2.2.4.2). As a result, o2 and pr∗1(o)+2 pr∗2(o) have the same projection
under (2.2.4.2). Since o2 = pr∗1(o) + pr∗2(o), this implies pr∗2(o) = 0 and hence
o = 0 as pr∗2 is injective.

Corollary 2.2.4.3. The functor DefA0 is (noncanonically) prorepresented by
the formally smooth algebra Λ[[x1, . . . , xg2 ]] over Λ, where g = dimk A0.

Proof. By Propositions 2.2.3.4 and 2.2.4.1, and Theorem 2.2.1.4, it suffices
to show that dimk DefA0(k[ε]/(ε2)) = g2. But this has already been seen in
the proof of Proposition 2.2.3.4.

Proposition 2.2.4.4. The functor Def(A0,λ0) is formally smooth.

Proof. For each small surjection R̃� R in C with kernel I, and each (A, λ, f0)
defining an object of Def(A0,λ0)(R), we know from Proposition 2.2.4.1 that

there always exists some abelian scheme (Ã, f̃0) lifting (A, f0). By Proposi-
tion 1.3.2.15, we know that, after making an étale surjective base change if
necessary, we may suppose that λ = λL for some ample invertible sheaf L,
where λL is associated with L by Construction 1.3.2.7. Then the question
becomes whether we can lift L to some invertible sheaf L̃ over Ã. Or, if not,
the question becomes whether there exists a different lifting Ã′ of A such
that L can be lifted to an invertible sheaf L̃ on Ã′.

Let L0 := L⊗
R̃

k, so that λ0 = λL0 . By Proposition 2.1.5.3, we know that

there is an element

o(L; Ã, R̃� R) ∈ H2(A0,OA0)⊗
k
I

such that we can lift L to some L̃ if and only if o(L; Ã, R̃ � R) = 0. Let
S0 := Spec(k). If we replace Ã with m+Ã for some m ∈ H1(A0,DerA0/S0

)⊗
k
I,

then there is a relation

o(L;m + Ã, R̃� R) = o(L; Ã, R̃� R) + dL0(m).
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By Corollary 2.1.5.15, the morphism

dL0 : H1(A0,DerA0/S0
)⊗
k
I → H2(A0,OA0)⊗

k
I

is surjective when

(IdA∨0 ⊗ dλ0⊗ Id) : LieA∨0 /S0
⊗
k

LieA0/S0 ⊗
k
I → LieA∨0 /S0

⊗
k

LieA∨0 /S0
⊗
k
I

is surjective. By assumption, λ0 is prime-to-2 and hence separable. There-
fore dλ0 : LieA0/S0 → LieA∨0 /S0

is an isomorphism, which is in particular,
surjective. This shows the surjectivity of dL0 , and hence the existence of
some element m such that o(L;m + Ã, R� R) = 0, as desired.

Note that the elements m making o(L;m + Ã, R� R) = 0 form a torsor
under the symmetric elements in

H1(A0,DerA0/S0
)⊗
k
I ∼= LieA∨0 /S0

⊗
k

LieA∨0 /S0
⊗
k
I,

namely, the elements that are mapped (under dL0) to zero in

H2(A0,OA0)⊗
k
I ∼= [∧2 H1(A0,OA0)]⊗

k
I ∼= [∧2 LieA∨0 /S0

]⊗
k
I

(see Proposition 2.1.5.14 for the first isomorphism).

Corollary 2.2.4.5. Let R̃� R be a small surjection in C with kernel I, and
let (A, λ, f0) define an object in Def(A0,λ0)(R). Let Lift(A, λ; R̃ � R) denote

the subset of Lift(A; R̃ � R) consisting of liftings Ã of A that admit liftings
λ̃ : Ã → Ã∨ of λ : A → A∨. Note that Lift(A; R̃ � R) is a torsor under the
group H1(A0,DerA0/S0

)⊗
k
I ∼= LieA∨0 /S0

⊗
k

LieA0/S0 ⊗
k
I. Then Lift(A, λ; R̃ �

R) is a torsor under the group of symmetric elements in

LieA∨0 /S0
⊗
k

LieA0/S0 ⊗
k
I.

Proof. Once the we know that this set is nonempty, the statement follows
from either Proposition 2.1.3.2 or simply the observation at the very end of
the proof of Proposition 2.2.4.4.

Corollary 2.2.4.6. Under the assumption that λ0 is separable, the functor
Def(A0,λ0) is (noncanonically) prorepresented by the formally smooth algebra
Λ[[x1, . . . , x 1

2
g(g+1)]] over Λ, where g = dimk A0.
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Proof. By applying Corollary 2.2.4.5 to the small surjection k[ε]/(ε2) � k,
we see that dimk Def(A0,λ0)(k[ε]/(ε2)) is the same as the dimension of the
subspace of symmetric elements in LieA∨0 /S0

⊗
k

LieA∨0 /S0
, which is 1

2
g(g + 1).

Then we can conclude the proof by applying Propositions 2.2.3.7 and 2.2.4.4,
and Theorem 2.2.1.4.

Let us formulate Proposition 2.2.4.4 and Corollary 2.2.4.5 in the context
of Proposition 2.1.6.8. Each polarization λ of an abelian scheme A over
S defines a canonical pairing 〈 · , · 〉λ on HdR

1 (A/S) as follows: As in [37,
1.5], the first Chern class of the Poincaré invertible sheaf PA over A×

S
A∨

induces an alternating pairing between HdR
1 (A/S) and HdR

1 (A∨/S), which is
a perfect duality by [18, 5.1]. In particular, there is a canonical isomorphism
HdR

1 (A/S) ∼= H1
dR(A∨/S). Thus, each polarization λ : A → A∨ canonically

induces a morphism λ∗ : H1
dR(A∨/S) → H1

dR(A/S), and hence a morphism
HdR

1 (A/S) → H1
dR(A/S) giving a pairing 〈 · , · 〉λ on HdR

1 (A/S). Under this
pairing, the Lie∨A∨/S in the exact sequence

0→ Lie∨A∨/S → HdR
1 (A/S)→ LieA/S → 0 (2.2.4.7)

is a totally isotropic submodule of HdR
1 (A/S). Moreover, when λ is separa-

ble, the pairing 〈 · , · 〉λ is a perfect pairing, and the embedding Lie∨A∨/S ↪→
HdR

1 (A/S) induces an isomorphism LieA/S → LieA∨/S, which is nothing but
the differential dλ of the separable isogeny λ : A→ A∨.

Suppose we have a small surjection R̃� R in C with kernel I, and suppose
that we have an abelian scheme Ã over S̃ := Spec(R̃). Let A := Ã⊗

R̃

R,

and let λ : A → A∨ be a polarization. We claim that we can define a
canonical pairing 〈 · , · 〉λ on HdR

1 (Ã/S̃) without knowing the existence of
some polarization λ̃ : Ã → Ã∨ lifting λ. Indeed, the existence of λ gives a
canonical morphism λ∗ : HdR

1 (Ã/S̃)→ HdR
1 (Ã∨/S̃) by dualizing Proposition

2.1.6.4, which necessarily maps Lie∨
(Ã′)

∨
/S̃

to Lie∨
Ã′/S̃

for every lifting Ã′ of A

that does admit a lifting λ̃′ of λ, as can be seen in the proofs of Propositions
2.1.6.2 and 2.1.6.4. This morphism is necessarily an isomorphism, because
it induces an isomorphism HdR

1 (A/S)
∼→ HdR

1 (A∨/S) modulo I (see Lemma
2.1.1.1). Therefore it defines a canonical pairing 〈 · , · 〉λ on HdR

1 (Ã/S̃), which
agrees with 〈 · , · 〉λ̃ whenever there does exist a lifting λ̃ of λ. Moreover,
suppose f1 and f2 are two endomorphisms of A satisfying λ◦f1 = f∨2 ◦λ. (For
example, suppose f1 = i(b?) and f2 = i(b) for some endomorphism structure
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i : O → EndS(A).) Then the canonical morphismsHdR
1 (Ã/S̃)→ HdR

1 (Ã∨/S̃)
defined by λ ◦ f1 and by f∨2 ◦ λ have to agree. This shows that we can have
〈f1,∗(x), y〉λ = 〈x, f2,∗(y)〉λ even without lifting the endomorphisms f1 and f2

to Ã.
Let us return to the situation that Ã is a lifting of A that admits a lifting

λ̃ of the polarization λ. Let us work with modules rather than sheaves, as
our base scheme is now affine. Starting with the totally isotropic submodule
Lie∨

Ã/S̃
of HdR

1 (Ã∨/S̃), the R̃-submodules M as in Proposition 2.1.6.8 that

become the same as Lie∨A∨/S modulo I and are moreover totally isotropic
under the pairing 〈 · , · 〉λ̃ are parameterized by the subgroup of symmet-

ric elements in HomR̃(Lie∨
Ã∨/S̃

, I · LieÃ/S̃) ∼= LieA∨0 /S0
⊗
k

LieA0/S0 ⊗
k
I

Id⊗ dλ
∼→

LieA∨0 /S0
⊗
k

LieA∨0 /S0
⊗
k
I. According to Corollary 2.2.4.5, this is the same set

that parameterizes the liftings of abelian schemes that admit liftings of the
polarization λ of A.

Corollary 2.2.4.8. Let R̃� R be a small surjection in C with kernel I, and
let Ã be an abelian scheme over S̃ = Spec(R̃). As explained in Proposition
2.1.6.8, the objects in Lift(Ã; R̃� R) (which are necessarily abelian schemes
by Proposition 2.2.2.3) are in bijection with modules M in exact sequences

0→M → HdR
1 (Ã/S̃)→ N → 0

of projective R̃-modules such that M ⊗
R̃

R = Lie∨A∨/S in HdR
1 (A/S) =

HdR
1 (Ã/S̃)⊗

R̃

R. Let us denote the abelian scheme corresponding to a sub-

module M as above by ÃM . Suppose, moreover, that A := Ã⊗
R̃

R has a

separable polarization λ : A→ A∨, which defines a perfect pairing 〈 · , · 〉λ on
HdR

1 (Ã/S̃) as explained above. Then the following are true:

1. The polarization λ can be lifted to some polarization λ̃M : ÃM → Ã∨M
if and only if M is a totally isotropic submodule of HdR

1 (Ã/S̃) under
〈 · , · 〉λ (see Corollaries 2.2.2.2 and 2.2.2.6).

2. Suppose that A has a collection of endomorphisms fi : A → A (of
abelian schemes). Then these endomorphisms fi can be lifted to endo-
morphisms f̃i,M : ÃM → ÃM if and only if M is invariant under the
actions of fi,∗ on HdR

1 (Ã/S̃) (see Proposition 2.1.6.4).
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3. Suppose that i : O → EndS(A) is an O-endomorphism structure for
(A, λ). Then i can be lifted to an O-endomorphism structure ĩ : O →
EndS̃(ÃM) for some ÃM that admits a lifting λ̃M of λ if and only if M
is both totally isotropic under 〈 · , · 〉λ and invariant under the actions
on HdR

1 (Ã/S̃) defined by i(b)∗ for all b ∈ O.

Proof. This is just a combination of what we have explained, together with
Corollary 2.2.2.7, with the following additional remark: The compatibility
between different morphisms (including the Rosati condition) is given by
relations defined by group homomorphisms that are trivial over S. Therefore
the usual trick using Corollary 1.3.1.5 is applicable.

Proposition 2.2.4.9. The functor Def(A0,λ0,i0) is formally smooth.

Proof. For each small surjection R̃ � R in C with kernel I, and each
(A, λ, i, f0) defining an object of Def(A0,λ0,i0)(R), we know from Proposi-

tion 2.2.4.1 that there always exists some triple (Ã, λ̃, f̃0) lifting (A, λ, f0).
The question is whether we can also lift i to an endomorphism structure of
(Ã, λ̃, f̃0). If so, then (Ã, λ̃, ĩ) will automatically satisfy the determinantal
condition (see Definition 1.3.4.1) by Proposition 2.2.2.9.

It suffices to show the existence of a projective submoduleM ofHdR
1 (Ã/S̃)

lifting Lie∨A∨/S, as in Corollary 2.2.4.8, that is both totally isotropic under

the perfect pairing 〈 · , · 〉λ̃ defined by the separable isogeny λ̃ and invariant
under the action defined by i. As explained before, 〈 · , · 〉λ̃ is determined by
λ and has the Hermitian property given by the Rosati condition satisfied by
λ and i. That is, (HdR

1 (Ã/S̃), 〈 · , · 〉λ̃) is a self-dual symplectic O⊗
Z
R̃-module

as in Definition 1.1.4.10.
Our assumptions on k and Λ include the hypotheses that there is a ho-

momorphism OF0,(2) → Λ whose composition with Λ → k is of finite type,
that Λ = k when char(k) = 0, and that Λ = W (k) when k is a finite field of
char(k) = p > 0. Let F ′0 and L0 be chosen as in Lemma 1.2.5.9, with F ′0 un-
ramified at p when p > 0. For the purpose of showing formal smoothness of
Def(A0,λ0,i0), we may (and we shall) replace k with a finite extension such that
OF0,(2) → Λ extends to a homomorphism OF ′0,(p) → Λ. By the assumption
that (A0, λ0, i0) satisfies the Lie algebra condition, and by Lemma 1.2.5.11,
we know as in the proof of Proposition 2.2.2.9 that there is an isomorphism
LieA/S ∼= L0 ⊗

OF ′0

R of O⊗
Z
R-modules. By replacing R with a ring R′ finite
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étale over R if necessary, we may assume that R is an Λ′-algebra, where Λ′

is the ring chosen in the decomposition (1.2.5.12), such that (L0 ⊗
OF ′0

R)∨ is a

maximal totally isotropic submodule of L⊗
Z
R; we may also assume that there

is a symplectic isomorphism f : (HdR
1 (A/S), 〈 · , · 〉λ)

∼→ (L⊗
Z
R, 〈 · , · 〉) send-

ing Lie∨A∨/S to (L0 ⊗
OF ′0

R)∨, by Proposition 1.2.3.7, Corollary 1.2.3.10, Lemma

1.2.4.4, and Proposition 1.2.4.5. Moreover, by the fact that the choices of
modules of standard type (see Definition 1.2.3.6) are discrete in nature, we
see that there is also a symplectic isomorphism f̃ : (HdR

1 (Ã/S̃), 〈 · , · 〉λ̃)
∼→

(L⊗
Z
R̃, 〈 · , · 〉). Since f maps Lie∨A∨/S to (L0 ⊗

OF ′0

R)∨ in (L⊗
Z
R, 〈 · , · 〉), we

obtain a point of (GΛ′/P0,Λ′)(R). Then the liftability of Lie∨A∨/S to a projec-

tive submodule M of HdR
1 (Ã/S̃) corresponds to the liftability of the point of

(GΛ′/P0,Λ′)(R) to a point in (GΛ′/P0,Λ′)(R̃), which follows from Proposition
1.2.5.15.

Corollary 2.2.4.10. Let R̃ � R be a small surjection in C with kernel I,
and let (A, λ, i, f0) define an object in Def(A0,λ0,i0)(R). Let Lift(A, λ, i; R̃� R)

denote the subset of Lift(A; R̃ � R) consisting of liftings Ã of A that admit
liftings λ̃ : Ã → Ã∨ of λ : A → A∨ and liftings ĩ : O → EndS̃(Ã) of the
O-endomorphism structure i : O → EndS(A). Then Lift(A, λ, i; R̃� R) is a
torsor under the group of symmetric elements in LieA∨0 /S0

⊗
k

LieA0/S0 ⊗
k
I that

are annihilated by the endomorphisms (d(i(b)∨)⊗ Id⊗ Id)−(Id⊗ d(i(b))⊗ Id)
for all b ∈ O, or equivalently a torsor under the group of k-linear homomor-
phisms

Lie∨A∨0 /S0
⊗
k

Lie∨A0/S0
/

(
x⊗ λ∗0(x′)− x′ ⊗ λ∗0(x)

(bx)⊗ y − x⊗ (b?y)

)
x,x′∈Lie∨

A∨0 /S0
,

y∈Lie∨A0/S0
,b∈O

→ I,

(2.2.4.11)
where bx and b?y mean (i(b)∨)∗(x) and i(b)∗(y), respectively.

Proof. Once we know that the set of liftings is nonempty, the statement
follows from Proposition 2.1.3.2.

Corollary 2.2.4.12. The functor Def(A0,λ0,i0) is (noncanonically) prorepre-
sented by the formally smooth algebra Λ[[x1, . . . , xr]] over Λ, where r is an
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integer that can be calculated as follows: Let V0 be the complex vector space
defined in Section 1.3.4. Then r = dimC Sym%(V0), where

Sym%(V0) := (V0⊗
C
V0)/

(
x⊗ y − y ⊗ x

(bx)⊗ z − x⊗ (b?z)

)
x,y,z∈V0,b∈O

.

Proof. By applying Corollary 2.2.4.10 to the small surjection k[ε]/(ε2)� k,
we see that r := dimk Def(A0,λ0,i0)(k[ε]/(ε2)) is the same as the k-vector-
space dimension of the domain in Corollary 2.2.4.10. By replacing k with
a finite extension as in the proof of Proposition 2.2.4.9, we may assume
that LieA∨0 /S0

∼= L0 ⊗
OF ′0

k as O⊗
Z
k-modules. Let L1 := L0 ⊗

OF ′0

Λ and let

L∨1 := HomΛ(L1,Λ) (with left O-module structure given by composing the
canonical right O-module structure with ? : O ∼→ O). Then, under identifi-
cations induced by λ0, we have LieA0/S0

∼= LieA∨0 /S0
∼= L1⊗

Λ
k and Lie∨A∨0 /S0

∼=
Lie∨A0/S0

∼= L∨1 ⊗
Λ
k as projective O⊗

Z
k-modules. By Proposition 1.2.2.3, we

may identify the dimension r above with the Λ-rank of

Sym%(L
∨
1 ) := (L∨1 ⊗

Λ
L∨1 )/

(
x⊗ y − y ⊗ x

(bx)⊗ z − x⊗ (b?z)

)
x,y,z∈L∨1 ,b∈O

,

or equivalently the Λ-rank of

Sym%(L1) := (L1⊗
Λ
L1)/

(
x⊗ y − y ⊗ x

(bx)⊗ z − x⊗ (b?z)

)
x,y,z∈L1,b∈O

,

because both of the Λ-modules have no nonzero torsion. We may com-
pute this Λ-rank by tensoring everything with a large field containing Λ
and then computing the dimension of the corresponding vector space. Af-
terwards we may replace the large field with a smaller field over which every
object is defined. In particular, its dimension can be calculated by replac-
ing L1 with V0

∼= L0 ⊗
OF ′0

C. Once we have calculated the dimension r of

dimk Def(A0,λ0,i0)(k[ε]/(ε2)), we can conclude the proof as before by applying
Propositions 2.2.3.9 and 2.2.4.9, and Theorem 2.2.1.4.

Theorem 2.2.4.13. The functor Defξ0 = Def(A0,λ0,i0,αH,0) is formally smooth.
Moreover, Defξ0 is (noncanonically) prorepresented by the formally smooth
algebra Λ[[x1, . . . , xr]] over Λ, where r is the integer in Corollary 2.2.4.12.

Proof. Combine Corollary 2.2.2.10 and Proposition 2.2.4.9.
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2.3 Algebraic Theory

2.3.1 Grothendieck’s Formal Existence Theory

Let us summarize several useful results in [59, III-1, §5]. Let R be a noethe-
rian ring I-adically complete for some ideal I of R. Then Sfor := Spf(R, I)
is the formal completion of S := Spec(R) along the closed subscheme S0 :=
Spec(R/I) defined by I. Let f : X → S be a separated morphism of schemes
of finite type. Let Xfor := X ×

S
Sfor, and let ffor : Xfor → Sfor be the morphism

canonically induced by f . For each coherent sheaf F over X, we denote by
Ffor its pullback to Xfor, which is a coherent sheaf over Xfor.

Proposition 2.3.1.1 (see [59, III-1, 5.1.2]). With assumptions and notation
as above, if F is a coherent sheaf over X with support proper over S, then the
canonical homomorphisms H i(X,F )→ H i(Xfor,Ffor) are isomorphisms.

Theorem 2.3.1.2 (see [59, III-1, 5.1.4]). With assumptions and notation
as above, the functor F 7→ Ffor is an equivalence between the category of
coherent sheaves over X with support proper over S, and the category of
coherent sheaves over Xfor with support proper over Sfor.

Theorem 2.3.1.3 (see [59, III-1, 5.4.1]). With assumptions and notation
as above, suppose moreover that Y → S := Spec(R) is a separated mor-
phism of finite type, with formal completion Yfor := Y ×

S
Sfor. Then the map

HomS(X, Y )→ HomSfor
(Xfor, Yfor) : h 7→ hfor := h×

S
Sfor is a bijection.

Thus, the functor Z 7→ Zfor from the category of schemes proper over S to
the category of formal schemes proper over Sfor is fully faithful. We say that a
formal scheme Z proper over Sfor is algebraizable if it is in the essential image
of this functor; that is, there exists (up to unique isomorphism) a scheme Z
proper over S such that Z ∼= Zfor over Sfor.

Theorem 2.3.1.4 (see [59, III-1, 5.4.5]). With assumptions and notation
as above, let Z be a formal scheme proper over Sfor. Suppose there exists
an invertible sheaf L over Z such that L0 := L ⊗

R
(R/I) is ample over

Z0 := Z ×
Sfor

S0. Then Z is algebraizable. Moreover, if Z is a proper scheme

over S such that Zfor
∼= Z, then there exists an ample invertible sheaf M over

Z such that Mfor
∼= L . (In particular, Z is projective over S.)
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2.3.2 Effectiveness of Local Moduli

With the definitions of DefA0 , Def(A0,λ0), Def(A0,λ0,i0), and Def(A0,λ0,i0,αH,0) as
in Section 2.2.1, we have shown the prorepresentability of these deformation
functors in Section 2.2.3. A natural question is whether they are effectively
prorepresentable.

For each of these functors, the prorepresentability means there is a noethe-
rian complete local ring R in Ĉ and a compatible system of abelian schemes
Ai over R/mi+1

R (with some additional structures if necessary), indexed by
integers i ≥ 0, which induce an isomorphism hR to DefA0 via the natural
isomorphism D̂efA0

∼→ Hom(hR,DefA0) (see Section B.1 for more details).
In particular, this means there is a formal abelian scheme ÂR → Spf(RA0).
Whether this moduli problem is effectively prorepresentable means whether
the formal abelian scheme ÂR → Spf(RA0) is algebraizable in the sense of
Section 2.3.1. According to Theorem 2.3.1.4, the answer is affirmative if there
exists a compatible system of ample invertible sheaves Li over Ai.

Proposition 2.3.2.1. All the three functors Def(A0,λ0), Def(A0,λ0,i0), and
Defξ = Def(A0,λ0,i0,αH,0) are effectively prorepresentable.

Proof. Let us first study the case Def(A0,λ0). Suppose that this functor is

prorepresented by a complete local ring R in Ĉ and a compatible system of
polarized abelian schemes (Ai, λi) over R/mi+1. Over each of the Ai, take
Li := (IdAi , λi)

∗PAi , which is ample by definition of polarizations (see Defi-
nition 1.3.2.16 and Proposition 1.3.2.15). Therefore Theorem 2.3.1.4 implies
{(Ai,Li)}i is algebraizable by some algebraic object (A,L) over R. This im-
plies that {A∨i }i is also algebraizable. By Theorem 2.3.1.3, the morphisms
{λi : Ai → A∨i }i are algebraizable by a unique λ : A → A∨, which is neces-
sarily a polarization (by Definition 1.3.2.16 and Proposition 1.3.2.15 again).
This proves that Def(A0,λ0) is effectively prorepresentable. Since the other
two moduli problems Def(A0,λ0,i0) and Defξ0 = Def(A0,λ0,i0,αH,0) only involve
more algebraizations of morphisms, the same argument as above implies they
are effectively prorepresentable as well.

2.3.3 Automorphisms of Objects

Lemma 2.3.3.1. Let A be an abelian scheme over a base scheme S. For each
n ≥ 3, and each polarization λ : A→ A∨ of A, the restriction homomorphism

AutS(A, λ) := {f ∈ AutS(A) : f∨ ◦ λ ◦ f = λ} → AutS(A[n])
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is injective, and its image acts via a subgroup of the roots of unity.

Proof. If the homomorphism is not injective, then it must be so after pullback
to some Artinian local subscheme of S. Therefore, by Lemma 2.2.2.1, it
suffices to treat the case that S is a single point, in which case we can apply
the theory of abelian varieties explained in [94, §21, Thm. 5 and its proof].

Corollary 2.3.3.2. Let S be a scheme over S0 = Spec(OF0,(2)) and let
(A, λ, i, αH) be an object of MH(S). Then (A, λ, i, αH) has no nontrivial au-
tomorphism if H is neat (see Definition 1.4.1.8).

Proof. Let s̄ be any geometric point of S. It suffices to show that the re-
striction of every automorphism of (A, λ, i, αH) to s̄ is trivial. Let f be
any automorphism of (As̄, λs̄, is̄), the pullback of (A, λ, i) to s̄. By Lemma
2.3.3.1, the restriction Auts̄(As̄, λs̄, is̄) → AutO⊗

Z
Ẑ2(T2As̄) is an injection,

and its image acts via a subgroup of the roots of unity. If the image of f
also preserves the H-orbit of any O⊗

Z
Ẑ2-equivariant symplectic isomorphism

α̂ : L⊗
Z
Ẑ2 ∼→ T2As̄ lifting αH over s̄, then it lies in the intersection of H

and a subgroup of the roots of unity, which is {1} by neatness of H.

2.3.4 Proof of Representability

Let us prove Theorem 1.4.1.11 using Artin’s criterion in Appendix B. Ac-
cording to Theorems B.3.7 and B.3.9, to show that MH is an algebraic stack
locally of finite type over the base scheme S0 = Spec(OF0,(2)), which is ei-
ther a field or an excellent Dedekind domain as in the assumption of Artin’s
criterion, it suffices to verify the following conditions:

1. MH is a stack for the étale topology, locally of finite presentation.

2. Suppose ξ and η are two objects in MH(U), where U is some scheme
of finite type over S0. Then IsomU(ξ, η) is an algebraic space locally of
finite type.

3. For k and ξ0 as above, which define a functor Defξ0 : Ĉ→ (Sets) as in
Section 2.2.1, the functor Defξ0 is effectively prorepresentable.

4. If ξ is a (1-)morphism from a scheme U of finite type over S0 to MH,
and if ξ is formally étale at a point u (of U) of finite type over S0, then
ξ is formally étale in a neighborhood of u (in U).
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By Theorems 2.2.4.13 and B.3.11, condition 4 can be suppressed if M0 =
Spec(OF0,(2)) has either one or infinitely many closed points. By Lemma
1.4.4.2, it is harmless for our purpose to replace MH with the moduli problem
defined by the same PEL-type O-lattice with a larger set 2. Therefore, we
shall assume that the set 2 is either empty or infinite.

Let us begin with condition 1. Consider any tuple (A, λ, i, αH) parame-
terized by MH. Let L := (IdA×λ)∗PA. Then the pair (A,L) satisfies étale
descent (or rather fpqc descent) by [56, VIII, 7.8]. The additional structures
λ, i, and αH also satisfy étale descent, because they are defined by a collec-
tion of morphisms, or étale-locally-defined orbits of morphisms. Hence MH
is a stack for the étale topology, which is locally of finite presentation (by
Lemma 1.4.1.10).

To verify condition 2, note that the functor IsomU(ξ, η) is representable
by an algebraic space by the general theory of Hilbert schemes and by [6, Cor.
6.2]. Moreover, it is quasi-finite by Lemma 2.3.3.1. Therefore, it is proper
(and hence finite) over U by the valuative criterion over discrete valuation
rings, using the theory of Néron models.

Remark 2.3.4.1. As soon as MH is an algebraic stack, what we have shown
will imply that the diagonal morphism ∆ : MH → MH×

S0

MH is finite, and

hence that MH is separated over S0. Moreover, if the objects parameterized
by MH have no nontrivial automorphisms, which by Corollary 2.3.3.2 is the
case when H is neat, then ∆ is a closed immersion.

Finally, condition 3 is already proved as Proposition 2.3.2.1, and condition
4 can be suppressed by our technical assumption that the set 2 is either
empty or infinite. Hence we see that MH is an algebraic stack separated and
locally of finite presentation over S0 = Spec(OF0,(2)).

By Corollary 2.3.3.2, the objects of MH do not admit automorphisms
when H is neat. Hence MH is also representable by an algebraic space when
H is neat (or whenever the existence of additional structures forces automor-
phisms of objects to be trivial).

Let us show that MH is of finite type. By Definition A.7.2.7, an algebraic
stack is of finite type if it is quasi-compact and locally of finite type. By
Lemma A.7.2.6, it suffices to show that there is a surjection from a quasi-
compact scheme to MH. Let us describe briefly how such a surjection can be
constructed.

Let S be any locally noetherian scheme, and let (A, λ, i, αH) be any object
in MH(S). Since λ is a polarization, the invertible sheaf L := (IdA, λ)∗PA is
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relatively ample over S (see Definition 1.3.2.16). Moreover, π∗(L⊗3) is locally
free of finite rank over S by [96, Prop. 6.13]. Let m := rankOS(π∗(L⊗3))− 1
(as a locally constant function over S). Whenever a local basis of sections of
π∗(L⊗3) is chosen, the basis vectors define an isomorphism r : PS(π∗(L⊗3))

∼→
PmS and define an embedding of A into PmS , as L⊗3 is very ample over each
fiber of A. Different choices give different embeddings r, which differ by an
automorphism of PmS induced by the action of PGL(m + 1)S. The images
of the embeddings form a family of closed subschemes of PmS , parameterized
by the so-called Hilbert schemes. By Proposition 1.3.3.7, the additional
structures such as endomorphisms and level structures are parameterized
by schemes quasi-compact over the above-mentioned Hilbert schemes. By
limit arguments (using Theorem 1.3.1.3), this shows that if we consider the
moduli problem M̃H parameterizing tuples of the form (A, λ, i, αH, r), then
M̃H is representable by a quasi-compact scheme over S0. On the other hand,
we have a natural surjection M̃H → MH defined by forgetting the structure
r. This shows that MH is also quasi-compact, as desired.

Remark 2.3.4.2. For more details on the use of Hilbert schemes, see [96, Ch.
7], where geometric invariant theory is used to carry out the construction of
moduli of polarized abelian schemes. We could have proceeded in the same
way, but this is logically unnecessary (see Remark 1.4.1.13).

Let us return to the proof of Theorem 1.4.1.11. Since MH is locally of
finite presentation, its subset of points of finite type is dense. Since it is
formally smooth at all of its points of finite type by Theorem 2.2.4.13, it
is smooth everywhere. Thus the moduli problem MH is an algebraic stack
separated, smooth, and of finite type over S0. If the objects parameterized
by MH have no nontrivial automorphisms, then MH is representable by an
algebraic space (separated, smooth, and of finite type over S0) by Proposition
A.7.4 and Remark 2.3.4.1. This concludes the proof of Theorem 1.4.1.11.

2.3.5 Properties of Kodaira–Spencer Morphisms

Definition 2.3.5.1. Let (A, λ, i, αH) be a tuple over S parameterized by
MH over S0 = Spec(OF0,(2)). Then we define the OS-module KS(A,λ,i)/S =
KS(A,λ,i,αH)/S as the (OS-module) quotient

(Lie∨A/S ⊗
OS

Lie∨A∨/S)/

(
λ∗(y)⊗ z − λ∗(z)⊗ y

i(b)∗(x)⊗ y − x⊗ (i(b)∨)∗(y)

)
x∈Lie∨A/S ,

y,z∈Lie∨
A∨/S ,

b∈O

.
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(Here the quotient expression with x ∈ Lie∨A/S etc. means the sheafification
of the presheaf with sections given by quotients of the same form, with x a
section of Lie∨A/S etc.)

Proposition 2.3.5.2. Let S0 = Spec(OF0,(2)) be the base scheme over which
MH is defined. Let f : S → MH be any morphism over S0, and let (A, λ, i, αH)
be the tuple over S associated with f by the universal property of MH. Suppose
that Ω1

S/S0
is locally free over OS. Then the Kodaira–Spencer morphism

KS = KSA/S/S0 : Lie∨A/S ⊗
OS

Lie∨A∨/S → Ω1
S/S0

(see Definition 2.1.7.9) satisfies

KS(λ∗(y)⊗ z) = KS(λ∗(z)⊗ y) (2.3.5.3)

and
KS((i(b)∗(x))⊗ y) = KS(x⊗((i(b)∨)∗(y))) (2.3.5.4)

for all x ∈ Lie∨A/S, y, z ∈ Lie∨A∨/S, and b ∈ O, and hence induces a morphism

KS : KS(A,λ,i)/S → Ω1
S/S0

, (2.3.5.5)

where KS(A,λ,i)/S is defined as in Definition 2.3.5.1. Moreover, the morphism
f is étale if and only if it is flat and KS is an isomorphism.

Proof. Let S̃ be the first infinitesimal neighborhood of the image of S under
the diagonal morphism S → S×

S0

S as in Section 2.1.7. Then the two relations

(2.3.5.3) and (2.3.5.4) are satisfied because of Proposition 2.1.3.2, as each
of the morphisms λ and i(b) (for every b ∈ O) can be lifted to the two
pullbacks Ã1 := pr∗1(A) and Ã2 := pr∗2(A) of A under the two projections
pr1, pr2 : S̃ → S.

Suppose the morphism f is étale. To show that (2.3.5.5) is an isomor-
phism over S, it suffices to show it (universally) over MH, or rather over
the formal completions of any étale presentation of MH at its points of fi-
nite type over the base S0. Let us replace S with the spectrum Spec(R)
of any such complete local ring R with maximal ideal m and residue field
k. Then we may assume that the tuple (A, λ, i, αH) over S prorepresents
the local deformation of the object (A0, λ0, i0, αH,0) associated with some
ξ0 : s = Spec(k) = Spec(R/m)→ MH studied in Section 2.2.1. Since S is the
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formal completion of a scheme smooth and locally of finite type over S0 (cf.

Section 2.3.4), the completion Ω̂1
S/S0

of Ω1
S/S0

with respect to the topology

defined by the maximal ideal m of R is locally free of finite rank over S (cf.
[59, 0IV, 20.4.9]). By considering the image of the Kodaira–Spencer class
KSA/S/S0 (cf. Proposition 2.1.7.3) under the canonical morphism

H1(A,DerA/S ⊗
OS

Ω1
S/S0

)→ H1(A,DerA/S ⊗
OS

Ω̂1
S/S0

)

induced by the canonical morphism Ω1
S/S0
→ Ω̂1

S/S0
, we obtain, as in Section

2.1.7, a canonical morphism

KS : KS(A,λ,i)/S → Ω̂1
S/S0

, (2.3.5.6)

which agrees with the pullback of the analogous morphism over MH. Thus,
to show that (2.3.5.5) is an isomorphism, it suffices to show that (2.3.5.6)
is an isomorphism. Since R is noetherian, since both sides of (2.3.5.6) is

finitely generated, and since Ω̂1
S/S0

is flat over R, by Nakayama’s lemma and
by an argument analogous to that in the proof of Lemma 2.1.1.1, it suffices
to show that the reduction of (2.3.5.6) modulo m is an isomorphism, which
follows from Corollaries 2.2.2.10 and 2.2.4.10. (Note that we do not need
Corollaries 2.2.2.10 and 2.2.4.10 to know that KS is a locally free sheaf. The
local freeness of KS follows from Proposition 1.2.2.3 and the assumption that
(A, λ, i) satisfies the Lie algebra condition.)

Conversely, suppose KS : KS(A,λ,i)/S → Ω1
S/S0

is an isomorphism. By the

previous paragraph, we have an isomorphism KS : KS(A,λ,i)/MH

∼→ Ω1
MH/S0

,

where by abuse of notation we have also used (A, λ, i) to denote the tau-
tological objects over MH. Since the construction of KS(A,λ,i)/S commutes
with base change, and since the association of Kodaira–Spencer morphisms
is functorial, the first morphism in the exact sequence f ∗Ω1

MH/S0
→ Ω1

S/S0
→

Ω1
S/MH

→ 0 is an isomorphism. This shows that f is unramified, and hence
étale because it is flat by assumption.
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Chapter 3

Structures of Semi-Abelian
Schemes

In this chapter, we review notions that are of fundamental importance in
the study of degeneration of abelian varieties. The main objective is to
understand the statement and the proof of the theory of degeneration data,
to be presented in Chapter 4. Our main references for these will be [40], [57],
and in particular, [93].

Technical results worth noting are Theorem 3.1.3.3, Propositions 3.1.5.1,
3.3.1.5, 3.3.1.7, and 3.3.3.6, Theorems 3.4.2.4 and 3.4.3.2, Lemma 3.4.3.1,
and Proposition 3.4.4.1.

3.1 Groups of Multiplicative Type, Tori, and

Their Torsors

3.1.1 Groups of Multiplicative Type

Definition 3.1.1.1 ([40, IX, 1.1]). A group (scheme) of multiplicative
type over a scheme S is a commutative group scheme over S that is fpqc
locally of the form Hom(X,Gm) for some commutative group X.

A fundamental property of groups of multiplicative type is that they are
rigid in the sense that they cannot be deformed. We describe this phe-
nomenon as follows:
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Theorem 3.1.1.2 (see [40, IX, 3.6 and 3.6 bis]). Let S be a quasi-compact
scheme, and let S0 be a closed subscheme of S defined by a sheaf of ideals I
such that I 2 = 0. Let H0 be a group of multiplicative type over S0, let G be
a commutative group scheme smooth over S, and let G0 := G×

S
S0. Then

1. there exists (up to unique isomorphism) a group H of multiplicative
type over S such that H ×

S
S0
∼= H0;

2. each homomorphism u0 : H0 → G0 can be uniquely lifted to a homo-
morphism u : H → G. If u0 is a closed embedding, then so is u.

The definition of groups of multiplicative type can be weakened when we
talk about group schemes of finite type over the base scheme S:

Theorem 3.1.1.3 (see [40, X, 4.5]). Every group of multiplicative type that
is of finite type over a base scheme S is étale locally isomorphic to a
group scheme of the form Hom(X,Gm) for some commutative group X.

Definition 3.1.1.4. For a group H of multiplicative type of finite type, we
denote by X(H) := HomS(H,Gm,S) the character group of H. It is an
étale sheaf of finitely generated commutative groups over S. We say the group
H is split if X(H) is a constant sheaf. (In this case, we shall denote the
constant value group by X(H).) We say the group H is isotrivial if there
is a finite étale covering S ′ → S such that H ×

S
S ′ is split.

Definition 3.1.1.5. A torus T over a scheme S is a group of multiplicative
type of finite type such that X(T ) is an étale sheaf of finitely generated free
commutative groups. A torus is split (resp. isotrivial) if it is split (resp.
isotrivial) as a group of multiplicative type of finite type. The rank of a torus
T is the rank of the geometric stalks of X(T ) (as a locally constant function)
over S, which can be identified with the dimensions of the fibers of T over S.

Lemma 3.1.1.6. The category of groups of multiplicative type of finite type
(resp. tori) over a scheme S is antiequivalent to the category of étale sheaves
of finitely generated commutative groups (resp. finitely generated free com-
mutative groups) over S, the equivalence being given by sending a group H
to the étale sheaf X(H) := HomS(H,Gm,S), with a quasi-inverse given by
sending an étale sheaf X to HomS(X,Gm,S).
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3.1.2 Torsors and Invertible Sheaves

Let us begin by reviewing the notion of torsors. Our main reference is [22,
§6.4].

Definition 3.1.2.1. Given a scheme f : Z → S over some base scheme
S, a scheme M over Z, and a group scheme H over S acting on M by a
morphism

HZ ×
Z
M→M : (g, x) 7→ gx,

where HZ := H ×
S
Z, assume that HZ is (faithfully) flat and locally of finite

presentation over Z. Then M is called an H-torsor over Z (with respect
to the fppf topology) if

1. the structural morphism M → Z is faithfully flat and locally of finite
presentation, and

2. the morphism HZ ×
Z
M → M×

Z
M defined by (g, x) 7→ (gx, x) is an

isomorphism over Z.

Viewing HZ ×
Z
M and M×

Z
M as schemes over M with respect to the

second projections, we see that the isomorphism in 2 of Definition 3.1.2.1
is an isomorphism over M. In other words, M and HZ become isomorphic
after making the base change under M→ Z. The same is true for the base
change under every Y → Z that factors throughM. As a result, if HZ → Z
satisfies any of the properties listed in [59, IV-2, 2.7.1 and IV-4, 17.7.4], such
as being smooth or of finite type, then M → Z also does. (The references
are applicable because we may assume that Z is affine and replace M with
a quasi-compact subscheme when verifying the properties.)

IfM(Z) 6= ∅, the choice of any Z-valued point ofM gives an isomorphism
over Z from HZ to M. We say that the torsor M is trivial in this case. In
general, if M(Z ′) is nonempty for some scheme Z ′ → Z, then the pullback
of M under Z ′ → Z is trivial.

Proposition 3.1.2.2 (see [22, §2.2, Prop. 14, and §6.4]). With assumptions
on HZ andM as in Definition 3.1.2.1, suppose moreover that HZ is smooth.
Then there exists an étale covering Z ′ → Z such that M(Z ′) 6= ∅. Therefore
M is trivial after étale localization.
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In the special case of H = Gm,Z , we have the following generalization of
Hilbert’s Theorem 90 in the absolute setting:

Theorem 3.1.2.3. Let Z be a scheme. We have an isomorphism
H1

ét(Z,Gm)
∼→ Pic(Z), where Pic(Z) is the (absolute) Picard group;

namely, the group of isomorphism classes of invertible sheaves over Z.

See, for example, [14, IX, 3.3], [44, 2.10], or [91, III, 4.9] for the proof.
Since we are interested in the relative setting over S, we shall introduce

the comparison between different topologies for the relative Picard functor.

Definition 3.1.2.4. Let f : Z → S be a morphism of finite presentation.
We say that OS

∼→ f∗OZ holds universally if for every morphism S ′ → S,
the canonical morphism OS′ → (f ×

S
S ′)∗OZ×

S
S′ is an isomorphism.

Theorem 3.1.2.5. Suppose that f : Z → S is a morphism of finite pre-
sentation and that OS

∼→ f∗OZ holds universally. Then we have a series of
natural injections

Pic(Z/S) ↪→ R1f∗zarGm ↪→ R1f∗étGm ↪→ R1f∗fppfGm.

If f has a section globally (resp. locally in the Zariski topology), then all three
(resp. the latter two) injections are isomorphisms. If f has a section locally
in the étale topology, then the last injection is an isomorphism.

See [71, Thm. 9.2.5] for the proof. (The assumption that schemes are
locally noetherian in the beginning of [71] does not interfere there.)

Remark 3.1.2.6. The assumption that OS
∼→ f∗OZ holds universally is true,

for example, if Z is an abelian scheme over S.

Assumption 3.1.2.7. Let us assume from now on that the scheme f : Z →
S is of finite presentation, that OS

∼→ f∗OZ holds universally, and that f
admits a section eZ : S → Z.

Under this assumption, Pic(Z/S) is canonically isomorphic to PiceZ (Z/S)
by rigidifications.

Now suppose H is a split group of multiplicative type of finite type over S.
Then H → S is of finite presentation by its smoothness, and the techniques of
reduction to the noetherian case by Theorem 1.3.1.3 apply. We shall assume
that all our H-torsors M are rigidified, that is, each of them is equipped
with an isomorphism H ∼= e∗ZM (over S).
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By Proposition 3.1.2.2, we can define alternatively an H-torsor M by
giving an étale covering {Ui}i of Z over S, together with trivializations of
H-torsors M|Ui ∼= (HZ ×

Z
Ui) and gluing isomorphisms aij ∈ H(Ui×

Z
Uj)

giving isomorphisms HZ ×
Z

(Ui×
Z
Uj)

aij
∼→ HZ ×

Z
(Ui×

Z
Uj) over Ui×

Z
Uj. We write

such data as {{Ui}i, {aij}ij} and call it the gluing data for M in the étale
topology.

Since H is a split group of multiplicative type of finite type over S, which
is naturally embedded as a subgroup of a split torus over S, the gluing data
{{Ui}i, {aij}ij} define a global section of R1f∗ét(H), which can be identified
with a global section of R1f∗zar(H) by Theorem 3.1.2.5, that is, we may
assume that there is a Zariski open covering {U ′i}i of Z over S trivializing
theH-torsorM with gluing isomorphisms {a′ij}ij as above. Let us summarize
the above as follows:

Corollary 3.1.2.8. If H is a split group of multiplicative type of finite type
over S, then every H-torsor over Z can be defined by some gluing data
{{Ui}i, {aij}ij} in the Zariski (or étale, or fppf) topology over S.

Suppose that we have an H-torsorM. Regarding the torsor as a scheme
relatively affine over Z, with structural morphism π : M → Z, we can
consider the push-forward π∗OM of the structural sheaf OM over OZ . Then
π∗M is an OZ-algebra (over Z), and M∼= Spec

OZ
(π∗OM).

Convention 3.1.2.9. By abuse of notation, and for simplicity, we shall often
write OM for π∗OM in similar cases (when π is relatively affine), and say
that we consider OM as an OZ-algebra (over Z).

Since H is of multiplicative type, the HZ-action on M defines a decom-
position of the quasi-coherent OZ-module OM into weight subsheaves (or
eigensheaves)

OM = ⊕
χ∈X(H)

OM,χ,

each OM,χ being a quasi-coherent OZ-submodule of OM (see [39, I, Prop.
4.7.3]). Since M is an H-torsor, it is isomorphic to H after some étale
surjective base change Therefore, the quasi-coherent sheaf OM,χ is invertible
for each χ ∈ X(H), and the canonical morphism OM,χ ⊗

OZ
OM,χ′ → OM,χ+χ′

is an isomorphism for each χ, χ′ ∈ X(H), because these two statements can
be verified by étale descent (see also [40, VIII, Prop. 4.1]).
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Suppose we have a Zariski open covering {Ui}i of Z over S such
that we have M|Ui ∼= HZ ×

Z
Ui over Ui and gluing isomorphisms

HZ ×
Z

(Ui×
Z
Uj)

aij
∼→ HZ ×

Z
(Ui×

Z
Uj) over Ui×

Z
Uj. Then we have isomorphisms

OM|Ui ∼= OHZ |Ui over Ui, with isomorphisms aij corresponding to multipli-

cations OHZ ,χ(Ui×
Z
Uj)

χ(aij)
∼← OHZ ,χ(Ui×

Z
Uj) in the reverse direction. Thus,

the invertible sheaf OM,χ (defining a global section of R1f∗zar(Z,Gm)) can
be defined by the gluing data {{Ui}i, {(−χ)(aij)}ij}.

Definition 3.1.2.10. Let M be an H-torsor M over Z. The push-out
Mχ of M by a character χ : H → Gm,Z is the quotient of Gm,Z ×

Z
M by the

relations (x, tl) ∼ (xχ(t), l), where x, l, and t are functorial points of Gm,Z,
M, and HZ, respectively. (Then H acts on Mχ by χ : H → Gm,Z.)

By definition, the formation of push-outs is functorial and compatible
with arbitrary base change. Therefore, if the H-torsorM is defined by some
Zariski gluing data {{Ui}i, {aij}ij}, then the push-out Mχ is defined by the
induced gluing data {{Ui}i, {χ(aij)}ij}.

Note that Mχ is naturally rigidified if M is. By comparing the gluing
data, we obtain the following two propositions:

Proposition 3.1.2.11. Under Assumption 3.1.2.7, let M be a rigidified
H-torsor over some scheme Z over S, where H is a split group of multi-
plicative type of finite type over S. Then the push-out operation defines a
homomorphism

X(H)→ PiceZ (Z/S) : χ 7→ Mχ.

In particular, for each χ, χ′ ∈ X(H), there is a canonical isomorphism

Mχ⊗Mχ′
∼=Mχ+χ′ (3.1.2.12)

respecting the rigidifications.

Proposition 3.1.2.13. Under Assumption 3.1.2.7, let M be a rigidified
H-torsor over some scheme Z over S, where H is a split group of multi-
plicative type of finite type over S. Let OM,χ be the weight-χ subsheaf of
OM under the HZ-action, where χ ∈ X(H). Let M−χ be the push-out of
M by (−χ) : H → Gm,Z. Then we have a (necessarily unique) isomorphism
M−χ ∼= IsomOZ

(OZ ,OM,χ) respecting the rigidifications.
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Corollary 3.1.2.14. Under Assumption 3.1.2.7, let L be a Gm-torsor over
some scheme Z over S. Then we have a (necessarily unique) isomorphism
L = L1

∼= IsomOZ
(OZ ,OL,−1) respecting the rigidifications. Here the char-

acter 1 : Gm → Gm (resp. −1 : Gm → Gm) is the identity (resp. inverse)
isomorphism on Gm.

3.1.3 Construction Using Sheaves of Algebras

Proposition 3.1.3.1. Under Assumption 3.1.2.7, let H be a split group of
multiplicative type of finite type over S, with character group X(H), and
suppose that we are given a homomorphism

X(H)→ PiceZ (Z/S) : χ 7→Mχ.

In other words, suppose that we are given a family of rigidified invertible
sheaves Mχ over Z, indexed by χ ∈ X(H), together with the unique iso-
morphisms ∆∗χ,χ′ : Mχ ⊗

OZ
Mχ′

∼= Mχ+χ′ inducing the canonical isomor-

phisms OZ ⊗
OZ

OZ
∼= OZ respecting the rigidifications. By abuse of nota-

tion, set OM := ⊕
χ∈X(H)

Mχ, which is equipped with the structure of an

OZ-algebra ∆∗ : OM ⊗
OZ

OM → OM defined by the isomorphisms ∆∗χ,χ′. Then

M := Spec
OZ

(OM) has the natural structure of a rigidified H-torsor such

that OM,χ = Mχ, where OM,χ is the weight-χ subsheaf under the HZ-action.

Proof. Let us first define an HZ-action on M, namely, a morphism m :
HZ ×

Z
M → M satisfying the usual requirement for an action. (In what

follows, all morphisms will be over Z or OZ , unless otherwise specified.)
Let us write OHZ = ⊕

χ∈X(H)
OHZ ,χ as in the last section. Then OHZ ,χ

∼= OZ ,

because HZ is a trivial H-torsor, and we can write

Mχ

can.∼= OZ ⊗
OZ

Mχ
∼= OHZ ,χ ⊗

OZ
Mχ.

All these isomorphisms are uniquely determined if we require the invertible
modules to be rigidified. In particular, we get a morphism

m∗ : OM = ⊕
χ∈X(H)

Mχ → ⊕
χ∈X(H)

(OHZ ,χ ⊗
OZ

Mχ) ⊂ OHZ ⊗
OZ

OM,
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making the diagrams

OM = ⊕
χ∈X(H)

Mχ
m∗ //

m∗

��

⊕
χ∈X(H)

(OHZ ,χ ⊗
OZ

Mχ)

Id⊗m∗
��

⊕
χ∈X(H)

(OHZ ,χ ⊗
OZ

(OHZ ,χ ⊗
OZ

Mχ))

o can.

��
⊕

χ∈X(H)
(OHZ ,χ ⊗

OZ
Mχ)

m∗HZ
⊗ Id

// ⊕
χ∈X(H)

((OHZ ,χ ⊗
OZ

OHZ ,χ) ⊗
OZ

Mχ)

and

OM = ⊕
χ∈X(H)

Mχ
m∗ //

Id

��

⊕
χ∈X(H)

(OHZ ,χ ⊗
OZ

Mχ)
� _

��
OHZ ⊗

OZ
OM

e∗HZ
⊗ Id

��
OM = ⊕

χ∈X(H)
Mχ

∼
can.

// ⊕
χ∈X(H)

OZ ⊗
OZ

Mχ

commutative.
Translating the above diagrams back to diagrams of schemes, we get a

morphism m : HZ ×
Z
M→M, which is an action because the diagrams

(HZ ×
Z
HZ)×

Z
M

mHZ × Id
//

ocan.

��

HZ ×
Z
M

m

��
HZ ×

Z
(HZ ×

Z
M)

Id×m
// HZ ×

Z
M m

//M

and

M Id //

(eHZ ,Id)

��

M
Id

��
(HZ ×

Z
M) m

//M
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are commutative.
Now we check that (m, pr2) : HZ ×

Z
M → M×M is an isomorphism.

This is true because the diagram

OM ⊗
OZ

OM

o m∗⊗ Id
��

m∗⊗ Id

**
( ⊕
χ∈X(H)

(OHZ ,χ ⊗
OZ

Mχ)) ⊗
OZ

( ⊕
χ∈X(H)

Mχ) �
� //

o can.

��

(OHZ ⊗
OZ

OM) ⊗
OZ

OM

o can.

��
( ⊕
χ∈X(H)

OHZ ,χ) ⊗
OZ

( ⊕
χ′∈X(H)

Mχ ⊗
OZ

Mχ′)
� � //

o Id⊗∆∗

��

OHZ ⊗
OZ

(OM ⊗
OZ

OM)

Id⊗∆∗

��
( ⊕
χ∈X(H)

OHZ ,χ) ⊗
OZ

( ⊕
χ′′∈X(H)

Mχ′′) OHZ ⊗
OZ

OM

is commutative.
The fact that OM is rigidified follows because we have compatible isomor-

phisms e∗ZMχ
∼= OS respecting the canonical isomorphism OS ⊗

OS
OS
∼= OS

induced by the rigidifications. These isomorphisms patch together and give
an isomorphism

e∗ZOM = ⊕
χ∈X(H)

e∗ZMχ
∼= ⊕

χ∈X(H)
OS
∼= OH ,

which gives the rigidification we want.
Finally, let us verify the statement that OM,χ = Mχ. Given any Z-valued

point h : Z → HZ = H ×
S
Z, the multiplication by h on HZ is given by

HZ ∼
can. // Z ×

Z
HZ

h× Id // HZ ×
Z
HZ

mHZ // HZ ,

while the multiplication by h on M is given by

M ∼
can. // Z ×

Z
M h× Id // HZ ×

Z
M m //M .

177



In terms of OZ-algebras, the commutative diagram

OHZ

m∗HZ // OHZ ⊗
OZ

OHZ
h∗⊗ Id // OZ ⊗

OZ
OHZ

∼= OHZ

⊕
χ∈X(H)

OHZ ,χ

m∗HZ // ⊕
χ∈X(H)

(OHZ ,χ ⊗
OZ

OHZ ,χ)
?�

OO

h∗⊗ Id// ⊕
χ∈X(H)

(OZ ⊗
OZ

OHZ ,χ)

ocan.

OO

explains the multiplication on HZ , which implies that

h∗ : ⊕
χ∈X(H)

OHZ ,χ → OZ

is given by ∑
χ∈X(H)

cχX
χ 7→

∑
χ∈X(H)

cχχ(h),

if we denote symbolically by cχX
χ an element in OHZ ,χ sent to cχ under

OHZ ,χ
∼= OZ , and if we view χ(h) as a section of Gm(Z) = O×Z ⊂ OZ . The

commutative diagram

OM
m∗ // OHZ ⊗

OZ
OM

h∗⊗ Id // OZ ⊗
OZ

OM ∼= OM

⊕
χ∈X(H)

Mχ

m∗HZ // ⊕
χ∈X(H)

(OHZ ,χ ⊗
OZ

Mχ)
?�

OO

h∗⊗ Id// ⊕
χ∈X(H)

(OZ ⊗
OZ

Mχ)

ocan.

OO

explains the HZ-action on M, which by comparison implies that Mχ is the
weight-χ subsheaf of OM under the HZ-action, as desired.

Corollary 3.1.3.2. Under Assumption 3.1.2.7, let L be a rigidified invert-
ible sheaf over Z. Identify X(Gm) = Z naturally by sending IdGm to 1, and
let ∆∗i,j : L ⊗ i ⊗

OZ
L ⊗ j ∼= L ⊗ i+j be the canonical isomorphism, which respects

the canonical isomorphism OZ ⊗
OZ

OZ
∼= OZ by the rigidification. Then L has

the natural structure of a rigidified Gm-torsor such that OL,i = L ⊗−i. In
particular, OL,−1 = L .

Theorem 3.1.3.3. Let H be a group of multiplicative type of finite type over
S. Let Z → S be a scheme that satisfies Assumption 3.1.2.7. Then the

178



category of rigidified H-torsors up to H-equivariant isomorphisms over Z is
antiequivalent to the category of homomorphisms

X(H)→ PiceZ (Z/S)

between étale sheaves of groups over S.

Proof. By Propositions 3.1.2.11 and 3.1.3.1 (and their proofs), we have the
antiequivalence for split H, naturally functorial in H. Thus, by étale descent,
we have the antiequivalence for nonsplit H as well.

3.1.4 Group Structures on Torsors

Let us develop a theory of relative Hopf algebras that describes group schemes
G over S that are relatively affine over some (possibly nonaffine) group
schemes A over S.

Suppose that we are given group schemes G → S and A → S, together
with a relatively affine group scheme homomorphism G → A over S. By
taking push-forward and by abuse of language, we may view the structural
sheaf OG of G as an OA-algebra. Let us denote by pr1, pr2, pr3, pr12, pr23,
etc. the projections from products of copies of A. Then the group structure
of G (covering the group structure of A) can be described using the following
morphisms:

1. Comultiplication m∗ : m∗AOG → OG×
S
G = pr∗1 OG ⊗

OA×
S
A

pr∗2 OG as a

homomorphism of OA×
S
A-algebras.

2. Counit e∗ : e∗AOG → OS as a homomorphism of OS-algebras.

3. Coinverse [−1]∗ : [−1]∗AOG → OG as a homomorphism of OA-algebras.

4. Codiagonal ∆∗ : ∆∗A(pr∗1 OG ⊗
OA×

S
A

pr∗2 OG) = OG ⊗
OA

OG → OG as a ho-

momorphism of OA-algebras.

5. Structural morphism (str.)∗ : (str.A)∗OS = OA → OG as a homomor-
phism of OA-algebras.
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The associativity of the comultiplication can be checked by the commu-
tativity of the diagram

(mA× Id)∗m∗AOG ∼
can. //

(mA× Id)∗(m∗)

��

(Id×mA)∗m∗AOG

(Id×mA)∗(m∗)

��
(mA× Id)∗(pr∗1 OG ⊗

OA×
S
A

pr∗2 OG)

ocan.
��

(Id×mA)∗(pr∗1 OG ⊗
OA×

S
A

pr∗2 OG)

o can.
��

pr∗12(m∗AOG)⊗ pr∗3 OG

pr∗12(m∗)
��

pr∗1 OG⊗ pr∗23(m∗AOG)

pr∗23(m∗)
��

(pr∗1 OG⊗ pr∗2 OG)⊗ pr∗3 OG
∼

can.
// pr∗1 OG⊗(pr∗2 OG⊗ pr∗3 OG)

(3.1.4.1)
of OA×

S
A×
S
A-algebras (with unspecified tensor products defined over

OA×
S
A×
S
A).

The validity of the counit can be checked by the commutativity of the
diagram

(Id× eA)∗m∗AOG

(Id× eA)∗(m∗)

��

∼
can. // OG

(Id× eA)∗(pr∗1 OG ⊗
OA×

S
A

pr∗2 OG)

ocan.
��

OG ⊗
OS
e∗AOG Id⊗ e∗

// OG ⊗
OS

OS

o can.

OO (3.1.4.2)

of OS-algebras.
The validity of the coinverse can be checked by the commutativity of the
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diagram

∆∗A(Id× [−1]A)∗m∗AOG

∆∗A(Id× [−1]A)∗(m∗)

��

∼
can. // OG

∆∗A(Id× [−1]∗A)∗(pr∗1 OG ⊗
OA×

S
A

pr∗2 OG)

ocan.

��
∆∗A(pr∗1 OG ⊗

OA×
S
A

pr∗2([−1]∗AOG))
∆∗A(Id⊗ [−1]∗)

// OG ⊗
OA

OG

∆∗

OO (3.1.4.3)

of OA-algebras.
If the OA-algebra OG satisfies all these conditions, then we get a group

structure on G covering the one on A.
As an application, let us assume that A → S is a group scheme that

satisfies Assumption 3.1.2.7, and that G is an H-torsor M over A, where H
is a split group of multiplicative type of finite type over S.

Proposition 3.1.4.4. Under the above hypothesis, suppose that we are given
a homomorphism X(H)→ Pice(A/S) : χ 7→Mχ such that we have a unique
isomorphism

m∗χ : m∗AMχ
∼→ pr∗1 Mχ ⊗

OA×
S
A

pr∗2 Mχ (3.1.4.5)

respecting the rigidifications for each χ ∈ X(H). Then the H-torsor M =

Spec
OA

(
⊕

χ∈X(H)
Mχ

)
defined in Proposition 3.1.3.1 has a group structure cov-

ering the one of A.

Proof. Recall that in the proof of Proposition 3.1.3.1, the morphism ∆∗ :
OM ⊗

OA
OM → OM describing the OA-algebra structure of OM is given by

the unique isomorphisms ∆∗χ,χ′ : Mχ ⊗
OA

Mχ′ → Mχ+χ′ respecting the rigid-

ifications. Moreover, there are the unique isomorphisms (3.1.4.5), which
induce under pullback by (Id, [−1]A)∗ the isomorphisms [−1]∗χ : [−1]∗AMχ

∼→

M⊗−1
χ

can.
∼→ M−χ respecting the rigidifications e∗AMχ

∼→ OS. Let e∗H : OH =
⊕

χ∈X(H)
OH,χ → OS be the counit for the group H, which induces a natural
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isomorphism OH,χ
∼→ OS by restriction. Let us compose the rigidifications

with the inverse isomorphisms OS
∼= OH,χ and write e∗χ : e∗AMχ

∼→ OH,χ.
Let us define the comultiplication m∗ : m∗AOM → pr∗1 OM ⊗

OA×
S
A

pr∗2 OM

by mapping for each χ ∈ X(H) the subsheaf m∗AMχ to the subsheaf
pr∗1 Mχ ⊗

OA×
S
A

pr∗2 Mχ using the isomorphism m∗χ. Let us define the counit

e∗ : e∗AOM → OS by mapping for each χ ∈ X(H) the subsheaf e∗AMχ

to OH,χ
∼= OS using the isomorphism e∗χ. Let us define the coinverse

[−1]∗ : [−1]∗AOM → OM by mapping for each χ ∈ X(H) the subsheaf
[−1]∗AMχ to the subsheaf M−χ using the isomorphism [−1]∗χ.

These explicit choices of m∗, e∗, and [−1]∗ make the diagrams (3.1.4.1),
(3.1.4.2), and (3.1.4.3) commutative, and hence define a group structure on
M covering the one on A.

Corollary 3.1.4.6. Suppose that A → S is a group scheme satisfying As-
sumption 3.1.2.7, and that we have a rigidified Gm-torsor L together with
an isomorphism m∗AL

∼→ pr∗1 L ⊗
OA

pr∗2 L respecting the rigidifications. Then L
has a group structure covering the one of A.

Proof. This follows from Proposition 3.1.4.4 and Corollary 3.1.3.2.

Corollary 3.1.4.7. Suppose that A is an abelian scheme over a base scheme
S, that H is a split group of multiplicative type of finite type over S, and that
we have a homomorphism

X(H)→ Pic0
e(A/S) : χ 7→Mχ.

Then the H-torsor M = Spec
OA

(
⊕

χ∈X(H)
Mχ

)
defined as in Proposition

3.1.3.1 has a group structure covering the one of A.

Proof. This is true because L ∈ Pic0
e(A/S) if and only if there exists an

isomorphism m∗AL
∼→ pr∗1 L ⊗

OA
pr∗2 L .

3.1.5 Group Extensions

Let H be a split group of multiplicative type of finite type over S as before.
LetM be an H-torsor over an abelian scheme A over a base scheme S. (Then
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the structural morphism A→ S satisfies Assumption 3.1.2.7.) Suppose that
M admits a group structure over S such that the structural morphismM→
A is a group scheme homomorphism over S. Let e : S →M be the identity
section of M. Then the orbit of e under H gives an embedding of H into
M, whose image is isomorphic to the kernel of M→ A. In other words, we
have an exact sequence

0→ H →M→ A→ 0

of group schemes over S, giving an extension of the abelian scheme A by the
group scheme H over S.

Proposition 3.1.5.1. The category of commutative group scheme extensions
E of A by H over S is antiequivalent to the category of homomorphisms
X(H)→ Pic0

e(A/S) = A∨ between étale sheaves of groups over S.

Proof. Let Mχ be the rigidified invertible sheaf corresponding to the rigidified
Gm-torsor M−χ defined by push-out by (−χ) ∈ X(H). We have already
seen that this defines a homomorphism X(H) → Pice(A/S) : χ 7→ Mχ,
and conversely that each such homomorphism defines an H-torsor by M :=

Spec
OA

(
⊕

χ∈X(H)
Mχ

)
. The question is whether Mχ is in Pic0

e(A/S).

We claim that Mχ is in Pic0
e(A/S) if M has a group structure covering

the one of A. In this case, the Gm-torsorM−χ would have a group structure
covering the one of A, which gives an isomorphism pr∗1M−χ ⊗

OA
pr∗2M−χ ∼=

m∗AM−χ over A×
S
A. This isomorphism corresponds to an isomorphism

pr∗1 Mχ ⊗
OA

pr∗2 Mχ
∼= m∗AMχ in Pice(A×

S
A/S). In other words,

m∗AMχ ⊗
OA

pr∗1 M⊗−1
χ ⊗

OA
pr∗2 M⊗−1

χ (3.1.5.2)

is trivial in Pice(A×
S
A/S). By the theory of abelian varieties [94, §8] and the

rigidity lemma [96, Prop. 6.1], this is true if and only if Mχ is in Pic0
e(A/S).

The converse is just Corollary 3.1.4.7.
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3.2 Biextensions and Cubical Structures

3.2.1 Biextensions

Definition 3.2.1.1. Let G,H,C be three commutative group schemes
over a base scheme S. A biextension of G×

S
H by C is defined by

the data of a C-torsor M over G×H, and two sections of the in-
duced C-torsors (mG× Id)∗M⊗ p∗13M−1⊗ p∗23M−1 over G×G×H and
(Id×mH)∗M⊗ p∗12M−1⊗ p∗13M−1 over G×H ×H, corresponding to
isomorphisms

c1 : p∗13M⊗ p∗23M
∼→ (mG× Id)∗M

over G×G×H and

c2 : p∗12M⊗ p∗13M
∼→ (Id×mH)∗M

over G×H ×H, respectively, such that the following diagrams of C-torsors
are commutative:

1. (Associativity of c1)

(p∗14M⊗ p∗24M)⊗ p∗34M
can.
∼

//

op∗124(c1)⊗ Id

��

p∗14M⊗(p∗24M⊗ p∗34M)

o Id⊗ p∗234(c1)

��
p∗124(mG× Id)∗M⊗ p∗34M

o(mG× Id× Id)∗(c1)
��

p∗14M⊗ p∗234(mG× Id)∗M
o (Id×mG× Id)∗(c1)
��

(mG× Id× Id)∗(mG× Id)∗M ∼
can.
// (Id×mG× Id)∗(mG× Id)∗M

(3.2.1.2)

2. (Associativity of c2)

(p∗12M⊗ p∗13M)⊗ p∗14M
can.
∼

//

op∗123(c2)⊗ Id

��

p∗12M⊗(p∗13M⊗ p∗14M)

o Id⊗ p∗134(c2)

��
p∗123(Id×mH)∗M⊗ p∗14M

o(Id×mH × Id)∗(c2)

��

p∗12M⊗ p∗134(Id×mH)∗M
o (Id× Id×mH)∗(c2)

��
(Id×mH × Id)∗(Id×mH)∗M ∼

can.
// (Id× Id×mH)∗(Id×mH)∗M

(3.2.1.3)
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3. (Commutativity of c1)

p∗23M⊗ p∗13M
(sG× Id)∗c1 //

ocan.

��

(sG× Id)∗(mG× Id)∗M
o can.

��
p∗13M⊗ p∗23M c1

// (mG× Id)∗M

(3.2.1.4)

Here sG is the symmetry automorphism of G×
S
G switching the two

factors.

4. (Commutativity of c2)

p∗13M⊗ p∗12M
(Id× sH)∗c2 //

ocan.

��

(Id× sH)∗(Id×mH)∗M
o can.

��
p∗12M⊗ p∗13M c2

// (Id×mH)∗M

(3.2.1.5)

Here sH is the symmetry automorphism of H ×
S
H switching the two

factors.

5. (Compatibility between the two composition laws)

(p∗13M⊗ p∗23M)⊗(p∗14M⊗ p∗24M) ∼
can. //

op∗123(c1)⊗ p∗124(c1)

��

(p∗13M⊗ p∗14M)⊗(p∗23M⊗ p∗24M)

o p∗134(c2)⊗ p∗234(c2)

��
p∗123(mG× Id)∗M⊗ p∗124(mG× Id)∗M

ocan.

��

p∗134(Id×mH)
∗M⊗ p∗234(Id×mH)

∗M

o can.

��
(mG× Id× Id)∗(p∗12M⊗ p∗13M)

o(mG× Id× Id)∗(c2)
��

(Id× Id×mH)
∗(p∗13M⊗ p∗23M)

o (Id× Id×mH)∗(c1)
��

(mG× Id× Id)∗(Id×mH)
∗M ∼

can.
// (Id× Id×mH)

∗(Id×mH)
∗M
(3.2.1.6)

The two sections c1 and c2 in Definition 3.2.1.1 are called the two partial
multiplication laws of M.

The most important examples of biextensions are given by Poincaré
Gm-torsors over abelian schemes:
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Proposition 3.2.1.7. For each abelian scheme A → S, the Poincaré
Gm-torsor PA over A×

S
A∨ (defined using Theorem 3.1.2.5) has the

canonical structure of a biextension of A×
S
A∨ by Gm,S.

This is essentially the theorem of the square for (rigidified) invertible
sheaves over the abelian scheme A over S.

3.2.2 Cubical Structures

Let G and C be group schemes over a base scheme S. Let L be any rigidified
C-torsor over a group scheme G. Then we may define functorially

D2(L) := m∗L ⊗ pr∗1 L⊗−1 ⊗ pr∗2 L⊗−1,

which is a C-torsor over G×
S
G, and similarly

D3(L) := m∗123L ⊗m∗12L⊗−1 ⊗m∗23L⊗−1 ⊗m∗13L⊗−1 ⊗ pr∗1 L ⊗ pr∗2 L ⊗ pr∗3 L,

(where m123, m12, etc. are the multiplication morphisms summing up the
corresponding components) which is a C-torsor over G×

S
G×

S
G. Here func-

toriality means the same operations define morphisms D2(f) and D3(f) for
morphisms between C-torsors (and hence also for sections of L because they
are by definition isomorphisms between L and the trivial C-torsor).

Lemma 3.2.2.1. There is a canonical symmetry isomorphism

s∗AD2(L)
∼→ D2(L)

of the invertible sheaf D2(L) covering the symmetry automorphism sA :
A×

S
A
∼→ A×

S
A switching the two factors of A×

S
A.

Remark 3.2.2.2. There are also canonical symmetry isomorphisms for D3(L)
covering the permutations of the factors of A×

S
A×

S
A, which we will not use

explicitly. For more information, and also more formal properties of Dn in
general, see [93, I].

Note that D3(L) can be constructed from D2(L) in two ways. Thus we
have two canonical isomorphisms:

ξ1 : (m×
S

pr3)∗D2(L)⊗ pr∗13D2(L)⊗−1⊗ pr∗23D2(L)⊗−1 ∼→ D3(L) (3.2.2.3)
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and

ξ2 : (pr1×
S
m)∗D2(L)⊗ pr∗12D2(L)⊗−1⊗ pr∗13D2(L)⊗−1 ∼→ D3(L). (3.2.2.4)

Lemma 3.2.2.5. Commutative group scheme structures on a C-torsor M
over a group scheme G correspond bijectively to sections of D2(M) over
G×

S
G.

Proof. This is a special case of [57, VII, 1.1.6 and 1.2].

Each section τ of D3(L) defines sections ξ−1
1 (τ) and ξ−1

2 (τ) of

(m×
S

pr3)∗D2(L)⊗ pr∗13D2(L)⊗−1⊗ pr∗23D2(L)⊗−1

and
(pr1×

S
m)∗D2(L)⊗ pr∗12D2(L)⊗−1⊗ pr∗13D2(L)⊗−1,

respectively.

Definition 3.2.2.6. A cubical structure on a C-torsor L over a group
scheme G over S is a section τ of the C-torsor D3(L) over G×

S
G×

S
G such

that the two sections ξ−1
1 (τ) and ξ−1

2 (τ) define two partial multiplication laws
making D2(L) a biextension of G×

S
G by C (see Definition 3.2.1.1).

Definition 3.2.2.7. A cubical C-torsor is a C-torsor equipped with a
cubical structure τ . A morphism of cubical C-torsors (L, τ) → (L′, τ ′) is
a morphism f : L → L′ of C-torsors such that D3(f) : D3(L) → D3(L′)
satisfies D3(f)(τ) = τ ′. We shall denote by CUBS(G,C) the category of
cubical C-torsors over G.

We leave it to the reader to make explicit the notions of pullbacks of a
cubical C-torsor by a homomorphism G′ → G, of the image by a change of
group structure C → C ′, of trivial cubical C-torsors, of tensor products (or
sums) of C-torsors, of inverse cubical C-torsors, etc. With the operation of
tensor products, CUBS(G,C) is a strictly commutative Picard category in
the sense of [14, XVIII, 1.4.2].

Definition 3.2.2.8. A trivialization of an object (L, τ) in CUBS(G,C) is
an isomorphism from the trivial object to (L, τ), namely, a section σ of L
over G such that D3(σ) = τ .
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Remark 3.2.2.9. The set of trivializations of an object (L, τ) in CUBS(G,C)
is, if nonempty, a torsor under the group Hom(2)(G,C), the pointed mor-
phisms of degree two from G to C, namely, morphisms f : G→ C such that
D3(f) = 1. In particular, there might be more than one way to trivialize a
cubical C-torsor if Hom(2)(G,C) is nontrivial.

Remark 3.2.2.10. When C = Gm,S, the group Hom(2)(G,C) can be identi-
fied with Hom(G,C) under some mild assumptions on G and S, by Lemma
3.2.2.11 below.

Let us recall the following form of Rosenlicht’s lemma:

Lemma 3.2.2.11 ([57, VIII, 4.1] and [30]). Let k be a field. Let Z and
W be two schemes over k, which are of finite type, separated, geometrically
connected, geometrically reduced, and equipped with k-rational points eZ and
eW , respectively. Then every morphism Z ×

k
W → Gm,k that is trivial over

the two subschemes Z ×
k
eW and eZ ×

k
W is trivial.

3.2.3 Fundamental Example

The most important example of cubical structures is given by the so-called
theorem of the cube on abelian schemes, which can be generalized in the
following form:

Proposition 3.2.3.1 (see [93, I, 2.6]). Let G be a smooth commutative group
scheme with geometrically connected fibers over a base scheme S. Suppose
that (at least) one of the following conditions is satisfied:

1. G is an abelian scheme over S.

2. (cf. [24, 2.4]) S is normal, and fibers of G over maximal points of
S (see [60, 0, 2.1.2]) are multiple extensions of abelian varieties, tori
(not necessarily split), and (pullbacks of) the group Ga.

Let us denote by PiceG(G/S) the category of Gm-torsors over G rigidified
along identity section of G. Then the forgetful functor

CUBS(G,Gm,S)→ PiceG(G/S)

is an equivalence of categories.
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Remark 3.2.3.2 ([24, p. 17]). By Chevalley’s theorem (see [26] and [108], or
see [29, Thm. 1.1] for a modern proof), and by taking successive commu-
tators of the unipotent radical of the maximal linear subgroup, condition 2
of Proposition 3.2.3.1 is automatic when the fields defined by the maximal
points of S are perfect.

3.2.4 The Group G(L) for Abelian Schemes

Let S be a scheme, A an abelian scheme over S, and L a Gm-torsor over
A, rigidified at the identity section (hence cubical, by Proposition 3.2.3.1).
Let A∨ be the dual abelian scheme of A over S. By Construction 1.3.2.7, we
know that L defines canonically a symmetric homomorphism λL : A → A∨.
Set

K(L) := kerλL. (3.2.4.1)

This is a closed subgroup scheme of A. The restriction of IdA×λL : A×
S
A→

A×
S
A∨ to A×

S
K(L) induces an isomorphism of biextensions

D2(L)|A×
S
K(L)

∼→ [(IdA×λL)∗PA]|A×
S
K(L)

∼→ (IdA×λL|K(L))
∗(PA|A×

S
eA∨

).

As PA|A×
S
eA∨

is the trivial biextension, we obtain a canonical trivialization

of D2(L)|A×
S
K(L), from which we deduce a structure of a commutative group

scheme on L|K(L), as a central extension

0→ Gm,S → L|K(L) → K(L)→ 0,

as well as a left action (by switching the factors)

∗ : L|K(L)×
S
L → L

of L|K(L) on the Gm-torsor L.
On the other hand, we have the familiar group scheme G(L) over S defined

as follows: For each scheme S ′ over S, the group G(L)(S ′) consists of pairs
(a, ã), where a ∈ K(L)(S ′), and where ã is an automorphism of the Gm-torsor
LS′ covering the translation action Ta : AS′

∼→ AS′ (see, for example, [94, §23]
or [92]).
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Proposition 3.2.4.2 ([93, I, 4.4]). With the above setting, the assignment of
(a, ãu) to each point u ∈ L|K(L) over a ∈ K(L), where ãu(v) = u∗v for all v ∈
L (the symbol ∗ denotes the left action of L|K(L) on L defined above), defines

an isomorphism L|K(L)
∼→ G(L) of central extensions (of K(L) by Gm,S)

over S. The inverse isomorphism is given by the association (a, ã) 7→ ã(εL),
where εL ∈ L|eA(S) is the rigidification at the identity section eA ∈ K(L),
namely, the identity section of the extension L|K(L)

∼= Gm,K(L).

3.2.5 Descending Structures

If G, H, and C are three commutative group schemes over a base scheme
S, we denote by EXTS(G,C) (resp. BIEXTS(G,H;C)) the category of com-
mutative extensions of G by C (resp. the biextensions of G×

S
H by C), in

accordance with [57].
Let us begin by including results in [57, VIII] concerning the descent of

biextensions:

Proposition 3.2.5.1 (see [57, VIII, 3.4]). Let P be a smooth group scheme
of finite presentation over S, with connected geometric fibers. Let T be a
torus over S. Then every biextension of P ×

S
T by Gm,S is trivial.

Corollary 3.2.5.2 (see [57, VIII, 3.5]). With assumptions as in Proposition
3.2.5.1, let 0 → T → Q → Q′ → 0 be an exact sequence of commutative
group schemes over S. Then the pullback functor BIEXTS(P,Q′; Gm,S) →
BIEXTS(P,Q; Gm,S) is an equivalence of categories.

Now let us turn to cubical Gm-torsors. Let T be a torus over S, and let

0→ T
i→ G

π→ H → 0

be an exact sequence of smooth commutative group schemes with connected
geometric fibers over S. Then we have the following results:

Proposition 3.2.5.3 ([93, I, 7.2.1]). For each torus T over S, the category
CUBS(T,Gm,S) is equivalent to the category EXTS(T,Gm,S) of commutative
group extensions of T by Gm,S.

Proposition 3.2.5.4 ([93, I, 7.2.2]). The category CUBS(H,Gm,S) is equiv-
alent to the category of pairs (L, s), where L ∈ Ob CUBS(G,Gm,S) and where
s is a trivialization of i∗L in CUBS(T,Gm,S) (namely, by Proposition 3.2.5.3,
in EXTS(T,Gm,S)).
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Corollary 3.2.5.5 ([93, I, 7.2.3]). In the above setting, let L be a cubical
Gm-torsor over G. Then

1. L⊗ [−1]∗GL comes canonically from a cubical Gm-torsor over H;

2. there exists an étale surjective morphism S ′ → S such that LS′ = L×
S
S ′

comes from a cubical Gm-torsor over HS′ = H ×
S
S ′;

3. if all tori over S are isotrivial (see Definition 3.1.1.5), then we may
suppose in 2 that the surjection S ′ → S is finite étale.

Remark 3.2.5.6 ([93, I, 7.2.3]). The assumption in 3 is satisfied, in particular,
when S is locally noetherian and normal by [40, X, 5.16], or when S is the
spectrum of a complete noetherian local ring by [40, X, 3.3].

Corollary 3.2.5.7 (cf. [93, I, 7.2.4]). Suppose S is locally noetherian and
normal, and suppose S ′ → S is a finite étale covering that splits T . (Such
an S ′ → S exists by Remark 3.2.5.6 above.) Then EXTS′(Gm,S′ ,Gm,S′) = 0,
and hence every cubical Gm-torsor over GS′ comes from HS′ (by Proposition
3.2.5.4).

Proof. It suffices to show that EXTS′(Gm,S′ ,Gm,S′) = 0 under the assump-
tions. Note that the group EXTS′(Gm,S′ ,Gm,S′) is canonically isomorphic to
H1

fppf(S
′,ZS′) because group schemes are sheaves in the fppf topology. By

[55, Thm. 11.7], whose assumptions are trivially satisfied by ZS′ , we have
a canonical isomorphism H1

ét(S
′,ZS′)

∼→ H1
fppf(S

′,ZS′). By [14, IX, 3.6(ii)],
we have H1

ét(S
′,ZS′) = 0 when S ′ is geometrically unibranch, or equiva-

lently by [59, IV-4, 18.8.15] when all strict localizations of S ′ are irreducible.
This is certainly satisfied when S ′ is locally noetherian and normal. Hence
EXTS′(Gm,S′ ,Gm,S′) = 0, as desired.

3.3 Semi-Abelian Schemes

3.3.1 Generalities

Definition 3.3.1.1. A semi-abelian scheme is a separated smooth com-
mutative group scheme G → S such that each fiber Gs (for s ∈ S) is an
extension 0→ Ts → Gs → As → 0 of an abelian variety As by a torus Ts.
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Remark 3.3.1.2. In the above definition, As and Ts are uniquely determined
by Gs as follows: Ts is the largest smooth connected affine subgroup scheme
of Gs, and As is the quotient of Gs by Ts. The torus Ts is called the torus
part of Gs, and the abelian scheme As is called the abelian part of Gs.

Remark 3.3.1.3. For each integer n ≥ 1, we have an extension of group
schemes 0 → Ts[n] → Gs[n] → As[n] → 0, which implies that rk(Gs[n]) =
rk(Ts[n]) rk(As[n]) = ndim(Ts)n2 dim(As). This shows that we can calculate
dim(Ts) = rkZ(X(Ts)) by calculating the rank of the subscheme Gs[n] of Gs

over s (for n > 1).

Lemma 3.3.1.4. Let G → S be a semi-abelian scheme. With notation as
above, the function s 7→ dim(Ts) is upper semicontinuous on S.

Proof. By pulling back to completions of localizations, we may assume that
S is the spectrum of a complete discrete valuation ring. Let n ≥ 1 be any
integer. By [57, IX, 2.2.1], the scheme G[n] is quasi-finite flat over S. By
[57, IX, 2.2.3], the function s 7→ Gs[n] ∼= G[n]s is lower semicontinuous on S.
Hence the claim follows from Remark 3.3.1.3.

Let us quote some other useful results from [42, Ch. I, §2]:

Proposition 3.3.1.5. Let S be a noetherian normal scheme, and G and H
two semi-abelian schemes over S. Suppose that, over a dense open subscheme
U of S, there is a homomorphism φU : HU → GU . Then φU extends uniquely
to a homomorphism φ : H → G over S.

This is originally proved in a more general setting in [105, IX, 1.4], and
proved more directly for semi-abelian schemes in [42, Ch. I, Prop. 2.7].

Corollary 3.3.1.6 ([42, Ch. I, Rem. 2.8]). A semi-abelian scheme G → S
whose geometric fibers are all abelian varieties is proper (and hence an abelian
scheme) over S.

Proof. We may assume that S is the spectrum of a discrete valuation ring
by the valuative criterion. Then G is isomorphic to the Néron model of its
generic fiber by Proposition 3.3.1.5.

Proposition 3.3.1.7. Let S be a noetherian normal scheme, U a dense open
subscheme of S, and G a semi-abelian scheme over S. If a torus HU over U
is a closed subgroup of GU , then the closure of HU in G is a torus H over S
(contained in G).
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This is originally proved in a more general setting in [105, IX, 2.4], and
proved more directly for semi-abelian schemes in [42, Ch. I, Prop. 2.9].

Remark 3.3.1.8. If we drop the assumption that S is normal, then Propo-
sitions 3.3.1.5 and 3.3.1.7 both become false. Let us include an instructive
counterexample in [42, p. 12]: Let S be the nodal curve over an algebraically
closed field k defined by identifying the points 0 and ∞ of P1

k. Then S has
an infinite étale cover by an infinite chain S̃ of P1

k indexed by the integers.
Take the rank-two nonconstant étale sheaf of free commutative group X over
S corresponding to S̃ → S. Let G := HomS(X,Gm,S) and H := G2

m,S. Take
U to be an affine open subscheme of S complementing the unique singular
point of S. Then the restriction XU of X to U is constant. Hence HU

∼→ GU

gives a counterexample to Proposition 3.3.1.5, and taking the closure of the
graph of HU

∼→ GU gives a counterexample of Proposition 3.3.1.7.

Let G → S be a semi-abelian scheme, where S is the spectrum of a
discrete valuation ring V with generic point η and special point s. Then the
generic torus Tη extends to a subtorus of G, whose special fiber is contained
in Ts and defines canonically a surjection X(Ts)→ X(Tη). As a result, there
exists an étale constructible sheaf X(G) over S = Spec(V ) such that, for
each geometric point η̄ above η specializing to a geometric point s̄ above s,
the homomorphism X(Ts̄) → X(Tη̄) induced by the surjection above is the
specialization homomorphism (see [13, VIII, 7.7]) associated with X(G).

In general,

Theorem 3.3.1.9 ([42, Ch. I, Thm. 2.10]). Let G → S be a semi-abelian
scheme, where S is an arbitrary scheme (which does not have to be normal).
There exists a unique étale constructible sheaf X(G) over S such that for
every s ∈ S the pullback of X(G) to s is equal to X(Ts), and such that
for every morphism Spec(V ) → S with V a discrete valuation ring, the
pullback of X(G) to Spec(V ) is the constructible sheaf above. Furthermore,
the formation of X(G) is functorial and commutes with arbitrary base change.
For every torus T over S with character group X(T ), the group HomS(T,G)
is isomorphic to HomS(X(G),X(T )).

Corollary 3.3.1.10 ([42, Ch. I, Cor. 2.11]). Assume that dim(Ts) is locally
constant on S. Then G is globally an extension of an abelian scheme by a
torus. That is, there exists an exact sequence 0 → T → G → A → 0 in
which T is a torus and A is an abelian scheme. In particular, G is a torus
if all its fibers are.
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For each semi-abelian scheme G → S we obtain a stratification of S by
locally closed subsets Sr = {s ∈ S : dim(Ts) = r}. The closure of Sr is
contained in the union of the Si for i ≥ r, and over each Sr the semi-abelian
scheme G is globally the extension of an abelian scheme by a torus.

3.3.2 Extending Structures

Let G be a semi-abelian scheme over a base scheme S. For each scheme S ′

over S, we denote by

ResS,S′ : CUBS(G,Gm,S)→ CUBS′(GS′ ,Gm,S′) (3.3.2.1)

the restriction (or pullback) functor. We denote by U either an open dense
subscheme of S, or the generic point of S when S is irreducible. It is clear that
the functor ResS,U is already faithful in this case. Then natural questions
are about when ResS,U is fully faithful, and when it is an equivalence of
categories.

Proposition 3.3.2.2 (see [93, II, 3.2.1, 3.2.2, 3.2.3]). Let G be a semi-abelian
scheme over a normal base scheme S. Then

1. the functor ResS,U is fully faithful;

2. if S is regular at points of S − U , then ResS,U is an equivalence.

Theorem 3.3.2.3 (cf. [93, II, 3.3]). Let G be a semi-abelian scheme over a
normal base scheme S. Let LU be a cubical Gm-torsor over GU , satisfying
either of the following properties:

1. The underlying Gm-torsor of LU is of finite order in Pic(GU).

2. The underlying Gm-torsor of LU is symmetric. Namely, there exists
an isomorphism LU

∼→ [−1]∗GULU of Gm-torsors over GU .

Then LU is in the essential image of ResS,U .

Now let us state the important semistable reduction theorem:

Theorem 3.3.2.4 ([42, Ch. I, Thm. 2.6]). Let V be a discrete valuation
ring, let K := Frac(V ), and let GK be a semi-abelian variety over K. Then
there exists a finite extension V → V ′ of discrete valuation rings such that
GK′ := GK ⊗

K
K ′, where K ′ := Frac(V ′), extends to a semi-abelian scheme

over Spec(V ′).
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Let us include the proof for the convenience of readers.

Proof of Theorem 3.3.2.4. When GK is an abelian variety, the theorem is
well known and well documented, in which case it means that the Néron
model of GK′ contains a semi-abelian open subgroup scheme over some finite
extension K ′ of K (see, for example, [57, IX] or [15]).

When GK is an extension of an abelian scheme AK by some torus TK , we
may take some finite extension V ′ of V (and hence K ′ of K) such that TK′
becomes a split torus, and such that AK′ extends to a semi-abelian scheme
A over Spec(V ′). Suppose G′ is any smooth group scheme over Spec(V ′)
whose geometric fibers are connected. By Lemma 3.2.2.5, each group scheme
extension G′′K′ of G′K′ by Gm,K′ defines a rigidified Gm-torsor LK′ over G′K′ ,
together with a section of D2(LK′). In particular, LK′ admits a cubical
structure. Hence, by Proposition 3.3.2.2, LK′ extends uniquely to a cubical
Gm-torsor L over G′, with a unique section of D2(L) extending the one of
D2(LK′) by Theorem 3.3.2.6. By Lemma 3.2.2.5 again, this shows that G′′K′
extends to a group scheme extension G′′ of G′ by Gm,V ′ over Spec(V ′). Since
TK′ is a split torus, the above argument of extending G′′ over G′ proves the
theorem by induction on the number of copies of Gm,K′ in TK′ .

Remark 3.3.2.5 ([42, p. 9]). The proof of Theorem 3.3.2.4 shows that, after a
finite extension of K, there exists an extension G of GK such that the torus
part of GK extends to a closed subtorus of G.

To finish, let us include the following result concerning biextensions:

Theorem 3.3.2.6 (cf. [93, II, 3.6]). Let S be a normal integral scheme with
generic point η, and let G and H be two semi-abelian schemes over S. Then
the restriction functor BIEXTS(G,H; Gm,S)→ BIEXTη(Gη, Hη; Gm,η) is an
equivalence of categories.

3.3.3 Raynaud Extensions

Let R be a noetherian integral domain complete with respect to an ideal I,
with rad(I) = I for convenience. Let S = Spec(R) and let η denote the
generic point of S. Let G → S be a semi-abelian scheme. For each integer
i ≥ 0, let Ri := R/I i+1, Si = Spec(R/I i+1), and Gi := G×

S
Si. Let Sfor (resp.

Gfor) be the formal scheme formed by the compatible (inductive) system
(Si)i≥0 (resp. (Gi)i≥0), which can be identified with the formal completion
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of S (resp. G) along its subscheme S0 (resp. G0). Alternatively, we may set
Sfor := Spf(R, I) and Gfor := G×

S
Sfor.

Let us assume that the group scheme G0 → S0 is an extension of an
abelian variety A0 by an isotrivial torus T0 (see Definition 3.1.1.5) over S0.

By Theorem 3.1.1.2, T0 can be lifted uniquely to a multiplicative subgroup
scheme Ti of Gi for every i. The quotient of Gi by Ti is an abelian scheme
because it is smooth and trivially proper. Therefore we obtain (as in [57, IX,
7]) an exact sequence of formal group schemes

0→ Tfor → Gfor → Afor → 0 (3.3.3.1)

over Sfor, which is a compatible system (for all i ≥ 0) of exact sequences of
group schemes

0→ Ti → Gi → Ai → 0 (3.3.3.2)

over Si, where Ai is an abelian scheme over Si and where Ti is a torus over
Si. Then we have the compatible system (ci : X(Ti)→ A∨i )i≥0 of morphisms
corresponding to the sequence (3.3.3.1) (or rather the sequences (3.3.3.2))
under Proposition 3.1.5.1.

The notions of Gm-biextensions and cubical Gm-torsors have their natural
analogues over formal schemes. We have the following formal version of
Corollary 3.2.5.5 (see [93, IV, 2.1] for the first two statements):

Corollary 3.3.3.3. Let Lfor be a cubical Gm-torsor over Gfor (namely, a
compatible system (Li)i≥0 of cubical Gm-torsors Li over Gi, for i ≥ 0). Then

1. the cubical Gm-torsor Lfor⊗ [−1]∗Lfor is canonically isomorphic to the
pullback of a canonical cubical Gm-torsor over Afor;

2. there exists an étale covering S ′for � Sfor such that (Lfor)S′for
is isomor-

phic to the pullback of a cubical Gm-torsor over (Afor)S′for
; this surjection

algebraizes uniquely to a morphism S ′ → S, which is not necessarily
étale (due to potential issues of finiteness);

3. if all tori over S0 are isotrivial (see Definition 3.1.1.5 and Remark
3.2.5.6), then we may suppose in 2 that S ′for � Sfor algebraizes to a
finite étale covering S ′ → S.

Proof. Statement 1 follows by applying 1 of Corollary 3.2.5.5 to the base
schemes Si.
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As for 2, by Propositions 3.2.5.4 and 3.2.5.3, it suffices to trivialize the
restriction of Lfor to Tfor as an extension. By [40, X, 3.2], it suffices to trivialize
L0 over T0, which can be achieved after making some étale base change
R0 ↪→ R′0. Then the unique formally étale I-adically complete R-algebra
R′ (which we shall explain in Remark 3.3.3.4 below) defines the surjection
S ′ = Spec(R′) → S = Spec(R) whose formal completion along S0 gives the
étale surjective morphism S ′for → Sfor.

Under the assumption on S0 in 3, we may assume that R′0 is finite over
R0 in the above argument, and accordingly that the unique R′ above is finite
over R (by Theorem 2.3.1.4, or rather by [59, III-1, 5.4.5]); that is, we may
assume that the covering S ′ → S is finite étale.

Remark 3.3.3.4. The unique lifting R′ in the proof of Corollary 3.3.3.3 can be
realized concretely as follows: For each integer i ≥ 0, let Ri := R/I i+1. Start
with the given étale R0-algebra R′0. For each integer i ≥ 0, suppose R′i′ is
defined for every 0 ≤ i′ ≤ i. Note that Ri+1/(I

i+1 ·Ri+1) ∼= Ri and (I i+1)2 = 0
in Ri+1. Hence, by Lemma 2.1.1.6 (or rather by [59, IV-4, 18.1.2]), there is a
unique étale Ri+1-algebra R′i+1 such that R′i+1/I

i ·R′i+1
∼= R′i. Repeating this

process, we can define R′i for each integer i ≥ 0, forming a projective system
compatible with their structural morphisms as R-algebras. Then we define
the R-algebra R′ := lim←−

i

R′i, which is formally étale over R by construction.

Remark 3.3.3.5. If R0 is a separably closed field k, then the second assertion
in Corollary 3.3.3.3 shows that the pullback functor CUBSfor

(Afor,Gm,Sfor
)→

CUBSfor
(Gfor,Gm,Sfor

) is essentially surjective.

Proposition 3.3.3.6. Let G be a semi-abelian scheme over S such that
G0 is an extension of an abelian scheme A0 by an isotrivial torus T0 (see
Definition 3.1.1.5). Suppose that there exists an ample cubical invertible
sheaf over G. Then the extension (3.3.3.1) is algebraizable by Theorem
2.3.1.4. Namely, there exist uniquely (over S) an abelian scheme A, a torus
T , and an extension

0→ T → G\ → A→ 0 (3.3.3.7)

whose associated extension of formal schemes is (3.3.3.1).

Definition 3.3.3.8. The extension (3.3.3.7) is called the Raynaud exten-
sion associated with G (see [106] and [57, IX]).
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Remark 3.3.3.9. If S is (noetherian and) normal, then G is quasi-projective
over S by [105, XI, 1.13], a theorem of Grothendieck; that is, there exists
an ample invertible sheaf L over G. Moreover, by Proposition 3.2.3.1, the
invertible sheaf L admits a cubical structure as soon as it is rigidified. There-
fore, the hypothesis of the existence of an ample cubical sheaf in Proposition
3.3.3.6 is automatic when S is normal.

The following proof is adapted from [93, IV, 2.2] (see also [57, X, 7]).

Proof of Proposition 3.3.3.6. Let L be any ample cubical invertible sheaf
over G. Then, by 1 of Corollary 3.3.3.3, Lfor⊗ [−1]∗Lfor is canonically iso-
morphic to the pullback of a canonical cubical Gm-torsor Mfor over Afor,
which is ample by [105, XI, 1.11]. By Theorem 2.3.1.4 (or rather [59,
III-1, 5.4.5]), the pair (Afor,Mfor) is algebraizable; that is, there exist an
abelian scheme A over S and an ample invertible sheaf M over A such that
(Afor,Mfor) ∼= (A,M)×

S
Sfor.

On the other hand, by [40, X, 3.2], there is a torus T over S such that
Tfor
∼= T ×

S
Sfor, so that X(Ti) ∼= X(T )×

S
Si for all i ≥ 0. Hence we can

make sense of X(T )for := X(T )×
S
Sfor and interpret the compatible system

(ci : X(Ti) → A∨i )i≥0 as a homomorphism cfor : X(T )for → A∨for of formal
group schemes. Moreover, we may treat the underlying scheme of X(T ) as
a disjoint union of schemes that are finite étale over S. By Theorem 2.3.1.3
(or rather [59, III-1, 5.4.1]), the homomorphism cfor : X(T )for → A∨for is
algebraizable by a unique homomorphism c : X(T ) → A∨. This gives an
extension as in (3.3.3.7) whose formal completion is (3.3.3.1), as desired.

Remark 3.3.3.10. In [42, Ch. II, §1, p. 33], they considered also those G
such that G0 is an extension of an abelian scheme A0 by a torus T0, without
the isotriviality assumption on T0, and without an explanation of the alge-
braizability of Tfor. Since the isotriviality assumption on T0 is also made by
Grothendieck in [57, IX, 7.2.1, 7.2.2], we shall be content with our under-
standing of this more restricted context (which nevertheless suffices for the
construction of compactifications).

Proposition 3.3.3.11. With the same setting as in Proposition 3.3.3.6, the
natural functor

CUBS(G\,Gm,S)→ CUBSfor
(Gfor,Gm,Sfor

) (3.3.3.12)
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induced by the isomorphism G\
for
∼= Gfor is fully faithful, and the essential

image of (3.3.3.12) contains all Lfor coming from a cubical Gm-torsor over
Afor. In particular, if all tori over S0 are isotrivial, then (3.3.3.12) is an
equivalence of categories.

The same proof as in [93, IV, 2.2] applies to our case. We do not include
the proof here because it does not involve information that we will need later.

3.4 The Group K(L) and Applications

3.4.1 Quasi-Finite Subgroups of Semi-Abelian
Schemes over Henselian Bases

Let R be a Henselian local ring with residue field k. Let S := Spec(R), with
closed point S0 := Spec(k). We shall denote pullbacks of objects from S to
S0 by the subscript 0. Let G be a semi-abelian scheme over S (see Definition
3.3.1.1). If X is a scheme that is quasi-finite and separated over S, then we
denote by X f (the finite part of X) its largest finite subscheme over S. Thus
we have a decomposition

X = X f qX ′ (3.4.1.1)

over S (as in [57, IX, 2.2.3]), where X f is finite over S and where the closed
fiber X ′0 of X ′ over S0 is empty.

Now let us take X to be a closed subgroup scheme H of G, where H is
quasi-finite over S. Then H f is an open and closed subgroup scheme of H.
If H1 is a closed subgroup of H, then we verify immediately that

H f
1 = H1 ∩H f. (3.4.1.2)

Suppose H is flat over S. Then H f is also flat over S, because it is open
in H. Let T0 be the torus part of G0 (see Remark 3.3.1.2). Since the group
H ∩T0 is of multiplicative type, it extends (by [57, IX, 6.1]) to a unique finite
subgroup of H, flat and of multiplicative type, which we denote by

Hµ ⊂ H (the torus part of H). (3.4.1.3)

By definition, Hµ ⊂ H f. If H1 ⊂ H is closed and flat over S, then we have

Hµ
1 = H1 ∩Hµ. (3.4.1.4)
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Note that the formations of Hµ and H f commute with base changes under
local morphisms of Henselian local schemes. Finally, we set

Hab := H f/Hµ. (3.4.1.5)

This is a finite and flat group scheme over S, whose closed fiber Hab
0 can be

identified with a subgroup of the abelian part A0
∼= G0/T0 of G0 (see Remark

3.3.1.2). We call this the abelian part of H.
Let U be a noetherian scheme over S, and let HU be a closed subgroup

scheme of GU = G×
S
U that is quasi-finite and flat over U . (In what follows,

U will often be an open subscheme of S.) Then there exists an integer m ≥ 1
such that HU ⊂ GU [m]. Since G is a semi-abelian scheme, the kernel G[m] of
multiplication by m (which is a closed subgroup of G) is flat and quasi-finite
over S (see [57, IX, 2.2.1]). Thus we may set

H f
U/S := HU ∩(G[m]f)U (3.4.1.6)

and
Hµ
U/S := HU ∩(G[m]µ)U . (3.4.1.7)

(We denote here G[m]f = (G[m])f etc.)
By applying (3.4.1.2) and (3.4.1.4) to the inclusions G[m1] ⊂ G[m2] when

m1|m2, we see that the definitions (3.4.1.6) and (3.4.1.7) do not depend on
the choice of m. The two subgroups of HU thus defined are finite over U ,
because they are closed in (G[m]f)U . Moreover, H f

U/S is open in HU , which

implies that H f
U/S is finite and flat over U . The same is true for Hµ

U/S:

Lemma 3.4.1.8 ([93, IV, 1.3.3]). The group Hµ
U/S defined in (3.4.1.7) is flat

over U .

By Lemma 3.4.1.8, we can define the abelian part of HU by

Hab
U/S := H f

U/S/H
µ
U/S.

This is a finite and flat group scheme over U .
When U = S, the groups H f

U/S, Hµ
U/S, and Hab

U/S coincide with the groups

H f
U , Hµ

U , and Hab
U of (3.4.1.1), (3.4.1.3), and (3.4.1.5), respectively. Moreover,

for a fixed scheme S, their formations commute with arbitrary base changes
in schemes U over S.
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3.4.2 Statement of the Theorem on the Group K(L)

Now we retain the hypotheses and notation of Section 3.4.1, and assume
moreover that R is complete. (That is, we also incorporate the assumptions
in Section 3.3.3, so that Raynaud extensions of G can be defined.) Proceeding
explicitly as in [57, IX, 7.3] for the quasi-finite subscheme G[m], we obtain
canonical isomorphisms

(G[m])f ∼= G\[m], (G[m])µ ∼= T [m], (G[m])ab ∼= A[m] (3.4.2.1)

of group schemes over S, characterized by the condition that they induce the
(compatible) canonical isomorphisms (G[m])f

for
∼= (Gfor)[m] ∼= (G\

for)[m] ∼=
(G\[m])for, (G[m])µfor

∼= (T [m])for, and (G[m])ab
for
∼= (A[m])for over the formal

completions.
Now let U be a scheme over S, and let HU be a closed subscheme of

GU , as in Section 3.4.1, which is flat and quasi-finite over U . Then we
have the finite and flat groups Hµ

U/S, H f
U/S, and Hab

U/S over U , contained in

(G[m]µ)U , (G[m]f)U , and (G[m]ab)U , respectively, as soon as HU ⊂ G[m]U .
From the isomorphisms in (3.4.2.1), we have finite and flat group schemes
over U denoted, following Grothendieck, as H[

U/S, H\
U/S, and H]

U/S, which
are defined by the commutative diagram

0 // Hµ
U/S

//

o (3.4.2.1)

��

H f
U/S

//

o (3.4.2.1)
��

Hab
U/S

//

o (3.4.2.1)
��

0

0 // H[
U/S

//
_�

��

H\
U/S

//
_�

��

H]
U/S

//
_�

��

0

0 // (T [m])U // (G\[m])U // (A[m])U // 0

(3.4.2.2)

with exact rows. Note that the subgroups H[
U/S etc., of T , G\, and A are

independent of the choice of m.

Remark 3.4.2.3. Although H f
U/S and H\

U/S are canonically isomorphic, it is

convenient (for our purpose) to retain the difference in notation.

We can now state the main theorem of [93, IV]:

Theorem 3.4.2.4 ([93, IV, 2.4]). Let S be a normal locally noetherian
integral scheme, with generic point η. Let f : G → S be a semi-abelian
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scheme (see Definition 3.3.1.1) such that its generic fiber Gη is an abelian
variety, and let Lη be a cubical Gm-torsor over Gη. Suppose that the following
conditions hold:

• Lη is nondegenerate. In other words, the group K(Lη) is finite (see
(3.2.4.1)). (The group K(Lη) will be denoted Kη.)

• Lη admits a cubical extension LS over S.

The first hypothesis is satisfied, for example, if Lη is ample. The second is
satisfied, for example, if S is regular (by Proposition 3.3.2.2), or if Lη is
symmetric (by Theorem 3.3.2.3). Then we have the following results:

1. Kη := K(Lη) extends to a unique closed subgroup KS of G that is
flat and quasi-finite over S. In this case, KS is necessarily (uniquely
isomorphic to) the schematic closure of Kη in G.

2. There exists a unique alternating pairing

e
Lη
S : KS ×

S
KS → Gm,S

extending the Lη-Weil pairing eLη (see [94, §23]). Moreover, if KS is

finite over S, then e
Lη
S is a perfect duality.

3. The restriction of the biextension D2(LS) to KS ×
S
G is equipped with

a trivialization extending the one of D2(Lη) defined in Section 3.2.4.
Hence, the Gm-torsor G(LS) ∼= LS|KS (see Proposition 3.2.4.2) is
equipped with a natural structure of a central extension 0 → Gm,S →
G(LS) → KS → 0, and with an action of this extension on LS. The

pairing e
Lη
S in 2 coincides with the commutator pairing of the extension

G(LS).

4. (Theorem of orthogonality.) Suppose S is Henselian local, so
that KS is equipped with a filtration Kµ

S ⊂ K f
S ⊂ KS (as in Section

3.4.1). Then K f
S is the annihilator of Kµ

S under the pairing e
Lη
S , and

the induced pairing on the quotient Kab
S is a perfect duality. Moreover,

if KS is finite over S, then Kµ
S is trivial.

5. Suppose S is complete local. Let 0 → T → G\ → A → 0 be the
Raynaud extension associated with G (see Proposition 3.3.3.6). By
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Proposition 3.3.3.11, there exists a unique cubical Gm-torsor L\ over
G\ whose formal completion is isomorphic to (LS)for. Suppose that L\
is isomorphic to the pullback of a (cubical) Gm-torsor M over A. (By
Corollary 3.2.5.5 and Remark 3.2.5.6, this can be achieved after making
some finite étale surjective base change in S.) Then the subgroup K]

S

of A coincides with K(M), and the pairing induced by e
Lη
S on K]

S
∼= Kab

S

in 4 coincides with eM.

3.4.3 Dual Semi-Abelian Schemes

Let S be a normal locally noetherian integral scheme, with generic point η.
Let G → S be a semi-abelian scheme whose generic fiber Gη is an abelian
scheme. A natural question is whether the dual abelian variety (Gη)

∨ of Gη

extends to a semi-abelian scheme G∨ over S.

Lemma 3.4.3.1 ([93, IV, 7.1.2]). Let G be a semi-abelian scheme over a
locally noetherian scheme S. Let K be a closed subgroup scheme of G, flat
and quasi-finite over S. Suppose one of the following hypotheses is satisfied:

1. Locally for the étale topology over S, the scheme G is quasi-projective.

2. K is étale over S.

Then the quotient G/K is representable by a semi-abelian scheme over S.

Proof. Let us first show that G/K is an algebraic space over S. This is clear
in 2. In 1 the question is local over S for the étale topology. Hence we may
suppose that G is quasi-projective over S and that we have an exact sequence
0→ K f → K → E → 0 of group schemes, where K f is finite and flat and E
is étale over S. By [39, V, 4.1], and by the hypothesis of quasi-projectivity,
the quotient G′ := G/K f is a scheme. Hence G/K ∼= G′/E is an algebraic
space.

To see that G/K is a scheme, it suffices to remark that (locally over
S) there exists N ≥ 1 such that K ⊂ G[N ]. Then there exists a quasi-
finite homomorphism G/K → G, and we can conclude by applying [73, II,
6.16] (which says that an algebraic space is a scheme if it is quasi-finite and
separated over a scheme).

Theorem 3.4.3.2 (cf. [93, IV, 7.1]). Let S be a normal locally noetherian
integral scheme with generic point η. Let G be a semi-abelian scheme over S
whose generic fiber Gη is an abelian variety. Then we have the following:

203



1. There exists a unique semi-abelian scheme over S, denoted by G∨,
extending the dual (Gη)

∨ of Gη. Therefore, by Theorem 3.3.2.6, the
Poincaré biextension Pη over Gη×

η
(Gη)

∨ extends to a unique biexten-

sion P over G×
S
G∨ by Gm,S.

2. Let L be a cubical Gm-torsor over G such that Lη is nondegenerate over
Gη. Let KS(Lη) be the schematic closure of K(Lη) in G over S. Then
λLη : Gη → (Gη)

∨ extends to a unique homomorphism λLη ,S : G→ G∨

such that ker(λLη ,S) = KS(Lη). Moreover, we have a canonical isomor-

phism D2(L)
∼→ (IdG×λLη ,S)∗P of biextensions over G×

S
G, extending

the usual isomorphism over Gη×
η
Gη.

Proof. First let us prove 1. The uniqueness of G∨ is a consequence of Propo-
sition 3.3.1.5. As for the existence of G∨, we may suppose that S is local.
By [105, IX, 1.13], there exists an ample invertible sheaf L over G. We
may require that L is rigidified, so that a cubical structure of L exists by
Proposition 3.2.3.1. By Theorem 3.4.2.4, K(Lη) extends to a flat and quasi-
finite subscheme KS(Lη) of G over S. By Lemma 3.4.3.1, the quotient sheaf
G/KS(Lη) is representable by a semi-abelian scheme G∨, extending the quo-
tient Gη/K(Lη) which can be identified with (Gη)

∨ according to the usual
theory of abelian varieties (in, for example, [94]).

Next let us prove 2. Since KS(Lη) is flat and quasi-finite over S by
Theorem 3.4.2.4, the quotient λLη ,S : G→ G/KS(Lη) is between semi-abelian
schemes by Lemma 3.4.3.1. Therefore, by Proposition 3.3.1.5, G/KS(Lη) is
uniquely isomorphic to G∨, and λLη ,S is the unique homomorphism extending

λLη . Now the isomorphism D2(L)
∼→ (IdG×λLη ,S)∗P of biextensions over

G×
S
G follows from Theorem 3.3.2.6.

3.4.4 Dual Raynaud Extensions

Suppose R is a noetherian normal domain complete with respect to an ideal
I, with rad(I) = I for convenience. Let S := Spec(R), K := Frac(K),
η := Spec(K) the generic point of S, Ri := R/I i+1, and Si := Spec(Ri), for
each integer i ≥ 0. Let G be a semi-abelian scheme over S whose generic fiber
Gη is an abelian scheme, such that G0 is an extension of an abelian scheme
A0 by an isotrivial torus T0 (see Definition 3.1.1.5). By Theorem 3.4.3.2 and
its proof, there is a semi-abelian scheme G∨, whose generic fiber is the dual
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abelian variety of Gη, such that the torus part of G∨0 := G∨×
S
S0 is isotrivial

because it is so for G. Hence we may consider the Raynaud extensions (see
Definition 3.3.3.8) associated with G and G∨, denoted 0→ T → G\ → A→ 0
and 0→ T∨ → G∨,\ → A∨ → 0, respectively, by abuse of notation.

Proposition 3.4.4.1. The abelian part A∨ of G∨,\ is the dual abelian scheme
of the abelian part A of G. In fact, the extension P over G×

S
G∨ of the

Poincaré invertible sheaf PGη over Gη×
η

(Gη)
∨ constructed above (in Theorem

3.4.3.2) can be descended to the Poincaré invertible sheaf PA over A×
S
A∨

after first passing to the formal completion.

Proof. By [57, VIII, 3.5] (or Corollary 3.2.5.2), the formal completion Pfor =
{P ×

S
Si}i≥0 of P is a biextension over Gfor×(G∨)for that can be uniquely

descended to a biextension PA,for over Afor×(A∨)for. Since Afor and (A∨)for

are both proper and algebraizable, so is PA,for, by Theorem 2.3.1.2. Denote by
PA the algebraization of PA,for. It remains to check that PA actually defines
a duality between A and A∨. It suffices to check this over η. Hence it suffices
to check that the pairing A[`∞]×A∨[`∞] → Gm,S[`∞] induced by PA is a
perfect pairing over η, for every prime `. The pairing G\[`∞]×G∨,\[`∞] →
Gm,S[`∞] induced by PG,for factors through the previous pairing, because
PG,for is the pullback of PA,for. On the other hand, G\[`∞] ⊂ G[`∞] and
G∨,\[`∞] ⊂ G∨[`∞] canonically, and the pairing G[`∞]×G∨[`∞] → Gm,S[`∞]
induced by P extends the previous pairing. Since G and G∨ are abelian
varieties over η, G[`∞]×G∨[`∞] → Gm,S[`∞] is a perfect pairing over η. If
we can show that the annihilator of G\

η[`
∞] in G∨η [`∞] is T∨η [`∞], the claim

will follow. But this follows from similar statements for pairings defined by
D2(L). Then we can conclude the proof because we may take L to be of
the form L′ ⊗

OG
[−1]∗L′ for some ample cubical invertible sheaf L′ so that Lfor

descends to an ample Mfor over Afor. (This is the argument in [42, Ch. II,
§2]. More details about various facts used in the above argument can be
found in [57, IX].)

By Proposition 3.1.5.1, the two Raynaud extensions 0 → T → G\ →
A→ 0 and 0→ T∨ → G∨,\ → A∨ → 0 are encoded by two homomorphisms
c : X(T ) → A∨ and c∨ : X(T∨) → A. Let us denote G\ → A (resp.
G∨,\ → A∨) by π (resp. π∨), and let X := X(T ) and Y := X(T∨).
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By Proposition 3.3.1.5, each polarization λη : Gη → G∨η extends uniquely
to a homomorphism λG : G → G∨. The functoriality of Raynaud exten-
sions then gives us a homomorphism λ\ : G\ → G∨,\, which induces a ho-
momorphism λ\|T : T → T∨ between the torus parts, and a polarization
λA : A → A∨ between the abelian parts. By Lemma 3.1.1.6, the homomor-
phism λ\|T determines (and is determined by) a homomorphism φ : Y → X,
and the two morphisms φ and λA satisfy the compatible relation λAc

∨ = cφ.
Note that the two étale sheaves of finitely generated free commutative groups
X and Y have the same rank, and φ is injective with finite cokernel (because
λ\|T is surjective with finite kernel).

Conversely, the two homomorphisms φ and λA satisfying λAc
∨ = cφ de-

termines λ\ uniquely, because every homomorphism from an abelian scheme
to a torus is trivial, and more concretely because we can describe λ\ explicitly
as follows: Consider Mc(χ) := (Id, c(χ))∗PA ∈ Pic0

e(A/S) (corresponding to
c(χ) ∈ A∨) and Mc∨(χ) := (c∨(χ), Id)∗PA ∈ Pic0

e(A
∨/S) (corresponding to

c∨(χ) ∈ (A∨)∨ ∼= A). Then λ\ : G\ → G∨,\ can be described explicitly as

G\ ∼= Spec
OA

(
⊕
χ∈X

Mc(χ)

)
→ λ∗A(G∨,\) := G∨,\ ×

A∨,λA
A ∼= Spec

OA

(
⊕
χ∈Y

λ∗AMc∨(χ)

)
∼= Spec

OA

(
⊕
χ∈Y

MλAc∨(χ)

)
= Spec

OA

(
⊕
χ∈Y

Mc(φ(χ))

)
(see Propositions 3.1.2.11 and 3.1.5.1). Let us record this observation as the
following lemma:

Lemma 3.4.4.2. The datum of a homomorphism λ\ : G\ → G∨,\ is equiva-
lent to the datum of a pair of homomorphisms φ : Y → X and λA : A→ A∨

such that λAc
∨ = cφ.

(The argument explained above does not require that λA is a polariza-
tion.)

Lemma 3.4.4.3. We have the relations deg(λ\) = [X : φ(Y )] deg(λA) and
deg(λGη) = [X : φ(Y )]2 deg(λA).

Proof. These can be verified after replacing S with complete discrete valua-
tion rings centered at S0, which then follow from Theorem 3.4.2.4.
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Chapter 4

Theory of Degeneration for
Polarized Abelian Schemes

In this chapter we reproduce the theory of degeneration data for abelian
varieties, following Mumford’s original paper [95] and the first three chapters
of Faltings and Chai’s monograph [42]. Although there is essentially nothing
new in this chapter, some modifications have been introduced to make the
statements compatible with our understanding of the proofs. Moreover, since
[95] and [42] have supplied full details only in the completely degenerate case,
we will balance the literature by avoiding the special case and treating all
cases equally.

The main objective in this chapter will be to state and prove Theorems
4.2.1.14, 4.4.16, and 4.6.3.43. Technical results worth noting are Proposi-
tions 4.3.2.10, 4.3.3.6, 4.3.4.5, and 4.5.1.15, Theorems 4.5.3.6 and 4.5.3.10,
Proposition 4.5.3.11, Theorem 4.5.4.17, Propositions 4.5.5.1, 4.5.6.1, 4.5.6.3,
4.5.6.5, 4.6.1.5 and 4.6.2.11, and Theorem 4.6.3.16. Some of the differences
among our work and the corresponding parts in [95] and [42], notably in
the statements of Definitions 4.2.1.1 and 4.5.1.2, and Theorem 4.2.1.14, are
explained in Remarks 4.2.1.2, 4.2.1.3, 4.2.1.17 and 4.5.1.4.

4.1 The Setting for This Chapter

Let R be a noetherian normal domain complete with respect to an ideal
I, with rad(I) = I for convenience. Let S := Spec(R), K := Frac(R),
η := Spec(K) the generic point of S, Ri := R/I i+1, Si := Spec(Ri), for each
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integer i ≥ 0, and Sfor = Spf(R, I).
This setting will be assumed throughout the chapter, unless otherwise

specified.

4.2 Ample Degeneration Data

The idea of introducing periods to degenerating abelian varieties is originally
due to Tate in the case of elliptic curves. In the context of rigid analytic geom-
etry, the idea is generalized by Raynaud [106, §1]. In the context of schemes
over noetherian complete adic bases, the idea is generalized by Mumford [95]
for degeneration into tori, and then generalized by Faltings and Chai [42, Ch.
II] for degeneration into semi-abelian varieties.

In this section, we will introduce the notion of ample degeneration data,
and state the main theorem of [42, Ch. II] associating such data with de-
generating abelian varieties with ample cubical invertible sheaves. The proof
will be given in Section 4.3 using the Fourier expansions of theta functions.

4.2.1 Main Definitions and Main Theorem of Degen-
eration

Let us begin with the category DEGample(R, I):

Definition 4.2.1.1. With assumptions as in Section 4.1, the category
DEGample(R, I) has objects of the form (G,L), where

1. G is a semi-abelian scheme over S such that Gη is an abelian variety,
and such that G0 = G×

S
S0 is an extension 0 → T0 → G0 → A0 →

0 of an abelian scheme A0 by an isotrivial torus T0 (see Definition
3.1.1.5) over S0;

2. L is an ample cubical invertible sheaf over G rigidified along the identity
section such that Lfor is in the essential image of (3.3.3.12) (the cubical
structure on L exists uniquely by Proposition 3.2.3.1).

The morphisms of DEGample(R, I) are naive isomorphisms (over S) respect-
ing all structures. (We shall often omit this statement in similar definitions.)

If R is local and I is the maximal ideal of R, we shall drop I from the
notation DEGample(R, I). (We shall adopt the same convention for similar
definitions.)
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Remark 4.2.1.2. Since we assume the isotriviality of T0 in Definition 4.2.1.1,
we do not need the following technical assumption in [42, Ch. II, §3, p.
36]: For each étale R0-algebra R′0, its unique lifting R′ to a formally étale
I-adically complete R-algebra (as in Remark 3.3.3.4) is normal (see Remark
3.3.3.10).

Remark 4.2.1.3. In [42, Ch. II, §3, p. 36], they only assume that Lη is ample
over Gη. However, they claim in the same section that étale locally Lfor

descends to an ample invertible sheafMfor, and they stated explicitly in [42,
Ch. II, §5, p. 49] that L is ample over G. Therefore, we believe they mean
to assume that L is ample over G. (This is harmless when Lη is symmetric.
See Lemma 4.2.1.6 below and [93, VI, 3.1 and 3.1.1].)

Lemma 4.2.1.4. Let G be a semi-abelian scheme over S such that Gη is an
abelian variety (but does not necessarily satisfy other conditions in 1 of Defi-
nition 4.2.1.1), and let L be a cubical invertible sheaf over G such that Lη is
nondegenerate. As in Theorem 3.4.3.2, let P be the unique Gm-biextension
of G×

S
G extending the Poincaré Gm-biextension Pη of Gη×

η
Gη, and let

λ = λLη ,S : G → G∨ be unique homomorphism extending λη = λLη (see
Proposition 3.3.1.5). Then (IdG, λ)∗P ∼= L ⊗

OG
[−1]∗L.

Proof. Since (IdG×λ)∗P ∼= D2(L) by Theorem 3.4.3.2, we have to show
that (IdG, IdG)∗D2(L) ∼= L ⊗

OG
[−1]∗L. Since L is cubical, this follows by

pulling back D3(L) (which is trivialized by the cubical structure of L) under
(IdG, IdG, [−1]) : G→ G×

S
G×

S
G (cf. [94, §6, Cor. 3]).

Convention 4.2.1.5. With the assumptions in Lemma 4.2.1.4, we say that
λ = λLη ,S is the homomorphism induced by L, and write λ = λL.

Lemma 4.2.1.6. With the assumptions in Lemma 4.2.1.4, if Lη is symmet-
ric, then L is ample if and only if Lη is ample, and if and only if λη = λLη
is a polarization (see Definition 1.3.2.16).

Proof. The implication from Lη to L follows from [105, XI, 1.16] and the
uniqueness of cubical extensions (see Proposition 3.3.2.2 and Theorem
3.3.2.3; see also [93, VI, 3.1]). The remaining implications then follow from
the definitions.
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Next let us describe the category DDample(R, I) of ample degeneration
data:

First, we need a semi-abelian scheme G\ (see Definition 3.3.1.1) that is
globally an extension of an abelian scheme A by a torus T . What we have
in mind is that G\ should be the Raynaud extension associated with G (see
Section 3.3.3), so that G\

for = Gfor and so that, in particular, T0
∼= T ×

S
S0

and A0
∼= A×

S
S0 if T0 and A0 are as in Definition 4.2.1.1. By Proposition

3.1.5.1, we know that the structure of G\ as a commutative group scheme
extension of A by T is determined by a homomorphism

c : X = X(T )→ Pic0
e(A/S) = A∨.

Second, we need a notion of a period homomorphism ι : Y η → G\
η. For

reasons that will be seen later, we need Y to be an étale sheaf of free com-
mutative groups of rank r = dimS(T ) = rankS(X). If we compose this ι
with the canonical homomorphism G\

η → Aη, then we obtain a homomor-
phism Y η → Aη. What we have in mind is that this should come from the
homomorphism

c∨ : Y → A

describing the Raynaud extension G∨,\ of the dual G∨ of G, as described by
Theorem 3.4.3.2 and Proposition 3.4.4.1.

Lemma 4.2.1.7. With the setting as above, a group homomorphism ι : Y η →
G\
η lifting c∨ : Y → A as above determines and is determined by a trivializa-

tion
τ−1 : 1Y ×

S
X,η

∼→ (c∨× c)∗PA,η

of the biextension (c∨× c)∗PA,η over the étale group scheme (Y ×
S
X)η.

The proof of Lemma 4.2.1.7 will be given in Section 4.2.2. For conve-
nience, we shall denote the (tensor) inverse of τ−1 by

τ : 1Y ×
S
X,η

∼→ (c∨× c)∗P⊗−1
A,η .

So far we have described data that are related to G. Next, we need data
that are related to the ample cubical invertible sheaf L.

First, we need an ample cubical invertible sheaf L\ over G\. What we have
in mind is that L\for and Lfor should be canonically isomorphic over G\

for
∼=
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Gfor, and there is a unique such L\ by Proposition 3.3.3.11 and by our assump-
tion that Lfor is in the essential image of (3.3.3.12). By Corollary 3.2.5.2, the
Gm-biextension D2(L\) over G\×

S
G\ descends uniquely to a Gm-biextension

over A×
S
A, which is isomorphic to (IdA×λA)∗PA for a unique homomor-

phism λA : A → A∨ (as in Construction 1.3.2.7). These statements are
compatible with the corresponding statements over Sfor. Moreover, we need
a homomorphism φ : Y ↪→ X which is dual to an isogeny from T to the torus
part T∨ of G∨,\. We shall require that λAc

∨ = cφ. Then, by Lemma 3.4.4.2,
we have a homomorphism λ\ : G\ → G∨,\ inducing λA and φ.

Lemma 4.2.1.8. The homomorphism λA above is a polarization. Equiva-
lently, (IdA, λA)∗PA is an ample invertible sheaf (see Definition 1.3.2.16).

The proof of Lemma 4.2.1.8 will be given after the next paragraph.
Let i : T → G\ and π : G\ → A denote the canonical morphisms. By

Corollary 3.2.5.7, which is applicable because S is noetherian and normal,
after making a finite étale surjective base change in S if necessary, we may
assume that the étale sheaf X is constant and that the cubical invertible
sheaf i∗L\ is trivial. In this case, each cubical trivialization s : i∗L\ ∼→ OT

determines a cubical invertible sheaf M over A and a cubical isomorphism
L\ ∼= π∗M, both depending uniquely on the choice of s. By [105, XI, 1.11],
M is ample because L\ is.

Proof of Lemma 4.2.1.8. After making a finite étale surjective base change
in S if necessary, we may assume that L\ ∼= π∗M for some ample M. Then
Corollary 3.2.5.2 shows that (IdA×λA)∗PA ∼= D2(M), because they both
descend from D2(L\). Hence (IdA, λA)∗PA ∼= M⊗

OA
[−1]∗M is ample, as

desired.

Second, we need a Y η-action on L\η covering the Y η-action on G\
η defined

by ι, which commutes with the T -action up to a character. Let us make this
precise by stating the following lemma:

Lemma 4.2.1.9. With the setting as above, such an action determines and
is determined by a cubical trivialization

ψ : 1Y ,η
∼→ ι∗(L\η)⊗−1

compatible with (IdY ×φ)∗τ : 1Y ×
S
Y ,η

∼→ (c∨× cφ)∗P⊗−1
A,η in the sense that

D2(ψ) = (IdY ×φ)∗τ .
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The proof will be given in Section 4.2.3.
This compatibility makes sense because the biextension D2(L\) uniquely

descends to the biextension (IdA×λA)∗PA of A×
S
A over S. Moreover, it

forces τ to be symmetric with respect to φ in the sense that (IdY ×φ)∗τ is
a trivialization of the biextension (c∨× cφ)∗P⊗−1

A,η
∼= (c∨×λAc∨)∗P⊗−1

A,η
∼=

(c∨× c∨)∗(IdA×λA)∗P⊗−1
A,η that is invariant under the symmetric isomor-

phism of (IdA×λA)∗PA. Here (IdA×λA)∗PA has a symmetric isomorphism
because λA is symmetric by the definition of a polarization (see Definitions
1.3.2.12 and 1.3.2.16), or equivalently because it is étale locally of the form
D2(M) for some invertible sheaf M over A (see Lemma 3.2.2.1).

The trivializations τ and ψ will be useful only if we have some suitable
positivity conditions. After making a finite étale surjective base change in S
if necessary, let us assume that both X and Y are constant with values X
and Y , respectively, and that there is a cubical invertible sheaf M over A
such that L\ ∼= π∗M. Then,

Definition 4.2.1.10. The positivity condition for τ can be stated as fol-
lows: For each element y in Y , the section τ(y, φ(y)) extends to a section of
the invertible sheaf (c∨(y)× cφ(y))∗P⊗−1

A over S, and for each nonzero ele-
ment y in Y , the section τ(y, φ(y)) is congruent to zero modulo I in the sense
that τ(y, φ(y)) induces a morphism (c∨(y)× cφ(y))∗PA → OS whose image
factors through I, where I is the invertible subsheaf of OS corresponding to
the ideal I ⊂ R.

Definition 4.2.1.11. The positivity condition for ψ can be stated as fol-
lows: For each element y ∈ Y , the section ψ(y) extends to a section of the
invertible sheaf c∨(y)∗M⊗−1 = M(c∨(y))⊗−1 over S. Moreover, given any
integer n ≥ 1, for all but finitely many y in Y , the section ψ(y) is congruent
to zero modulo In in the sense that ψ(y) induces a morphismM(c∨(y))→ OS

whose image factors through In, where I is defined as above.

Lemma 4.2.1.12. The positivity condition for τ (in Definition 4.2.1.10) and
the positivity condition for ψ (in Definition 4.2.1.11) are equivalent to each
other.

The proof of Lemma 4.2.1.12 will be given in Section 4.2.4.
Now let us state the definition of the category of degeneration data:
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Definition 4.2.1.13. With assumptions as in Section 4.1, the category
DDample(R, I) has objects of the form (A,X, Y , φ, c, c∨,L\, τ, ψ), with entries
described as follows:

1. An abelian scheme A and a torus T over S, and an extension

0→ T → G\ → A→ 0

over S, which determines and is determined by a homomorphism c :
X = X(T )→ A∨ via (−1 times the) push-out.

2. An étale sheaf of free commutative groups Y of rank r = dimS(T ).

3. A homomorphism c∨ : Y → A, which determines an extension

0→ T∨ → G∨,\ → A∨ → 0

over S, where T∨ is a torus with character group Y .

4. An injective homomorphism φ : Y → X with finite cokernel.

5. An ample cubical invertible sheaf L\ over G\ inducing a polarization
λA : A → A∨ of A over S such that λAc

∨ = cφ, or equivalently a
homomorphism from G\ to G∨,\ inducing a polarization λA : A → A∨

of A over S.

6. A trivialization
τ : 1Y ×

S
X,η

∼→ (c∨× c)∗P⊗−1
A,η

of the biextension (c∨× c)∗P⊗−1
A,η over the étale group scheme (Y ×

S
X)η

symmetric with respect to φ (i.e., (IdY ×φ)∗τ is symmetric; see the sec-
ond paragraph after Lemma 4.2.1.9), which determines a trivialization
τ−1 : 1Y ×

S
X,η

∼→ (c∨× c)∗PA,η and hence a homomorphism ι : Y η → G\
η

lifting c∨ by Lemma 4.2.1.7.

7. A cubical trivialization

ψ : 1Y ,η
∼→ ι∗(L\η)⊗−1

compatible with (IdY ×φ)∗τ : 1Y ×
S
Y ,η

∼→ (c∨× cφ)∗P⊗−1
A,η in the sense

that D2(ψ) = (IdY ×φ)∗τ , which by Lemma 4.2.1.9 determines and is
determined by a Y η-action on L\η covering the Y η-action on G\

η defined
by ι, which commutes with the T -action up to a character.
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The two trivializations τ and ψ are required to satisfy their respective posi-
tivity conditions (see Definitions 4.2.1.10 and 4.2.1.11) which are equivalent
to each other by Lemma 4.2.1.12. (As in Definition 4.2.1.1, the morphisms
of DDample(R, I) are naive isomorphisms over S respecting all structures.
We shall often omit this statement in similar definitions. Similarly, if R
is local and I is the maximal ideal of R, we shall drop I from the notation
DEGample(R, I). We shall adopt the same convention for similar definitions.)

Let us state our version of [42, Ch. II, Thm. 6.2] as follows:

Theorem 4.2.1.14. With assumptions as in Section 4.1, there is a functor

Fample(R, I) : DEGample(R, I)→ DDample(R, I) :

(G,L) 7→ (A,X, Y , φ, c, c∨,L\, τ, ψ)

called the association of ample degeneration data. Moreover, the associ-
ation of A, X, Y , c, and c∨ does not depend on the choice of L, but only on
its existence (see Remark 4.2.1.15 below). The association of φ, τ , and the
homomorphism λA : A→ A∨ induced by L\ (as explained above) depends on
the homomorphism λ : G → G∨ induced by L, but not on the precise choice
of L (see Remark 4.2.1.16 below).

Apart from several basic justifications in Sections 4.2.2, 4.2.3, and 4.2.4,
the proof of Theorem 4.2.1.14 will be given in Section 4.3.

Remark 4.2.1.15. The association of A, X, and c in Theorem 4.2.1.14 depends
only on G and not on L, as they exist by the association of the Raynaud
extension G\ with G. The association of Y and c∨ in Theorem 4.2.1.14
depends also only on G, because it depends only on the dual G∨ of G defined
in Theorem 3.4.3.2, and then on the association of G∨,\ with G∨ as described
by Proposition 3.4.4.1.

Remark 4.2.1.16. The association of ι and equivalently τ in Theorem 4.2.1.14
depends a priori on the choice of L, but we will show in Section 4.3.4 that it
depends only on the homomorphism λ : G→ G∨ induced by L. In fact, two
polarizations λ1, λ2 : G → G∨ induce the same τ if N1λ1 = N2λ2 for some
positive integers N1 and N2 (see also Remark 4.2.1.17 below).

Remark 4.2.1.17. The claim in [42] that the independence of ι on the choice
of L should follow after proving the equivalences of categories in Theorem
4.4.16 using Mumford’s constructions requires some further explanation. In
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the proof of [42, Ch. III, Thm. 7.1], they set L1 = f ∗(L2) after assuming
that f is an isomorphism, but it is still not clear that the object (G\

1, ι1) in
DD(R, I) is part of the degeneration data in DDample(R, I) associated with
(G1,L1). (This is the independence of ι1 on the choice of L1 that we wanted
to know.) Therefore a circulation of reasoning is invoked if we conclude
as in [42, Ch. III, Cor. 7.2]. We consulted Chai about this issue, and he
kindly suggested a different approach that could repair the argument. We
will explain an argument based on his suggestion in Section 4.5.5.

4.2.2 Equivalence between ι and τ

Proof of Lemma 4.2.1.7. For simplicity, after making a finite étale surjective
base change in S if necessary, let us assume that the étale sheaves X =
X(T ) and Y = X(T∨) are constant with values X and Y , respectively. Let
us interpret τ as a collection {τ(y, χ)}y∈Y,χ∈X over η, where each τ(y, χ)
is a section of PA(c∨(y), c(χ))⊗−1

η , satisfying the bimultiplicative conditions
coming from the axioms of biextensions. Namely, for each y1, y2 ∈ Y and
χ ∈ X, the section τ(y1, χ)⊗ τ(y2, χ) is mapped to the section τ(y1 + y2, χ)
under the isomorphism

PA(c∨(y1), c(χ))⊗−1
η ⊗

OS,η
PA(c∨(y2), c(χ))⊗−1

η
∼→ PA(c∨(y1 + y2), c(χ))⊗−1

η

given by the first partial multiplication law of the biextension structure of
PA,η, and, for each y ∈ Y and χ1, χ2 ∈ X, the section τ(y, χ1)⊗ τ(y, χ2) is
mapped to the section τ(y, χ1 + χ2) under the isomorphism

PA(c∨(y), c(χ1))⊗−1
η ⊗

OS,η
PA(c∨(y), c(χ2))⊗−1

η
∼→ PA(c∨(y), c(χ1 + χ2))⊗−1

η

given by the second partial multiplication law of the biextension structure of
PA,η. By abuse of notation, we shall denote these bimultiplicative conditions
symbolically by

τ(y1, χ)τ(y2, χ) = τ(y1 + y2, χ)

and
τ(y, χ1)τ(y, χ2) = τ(y, χ1 + χ2).

Then it follows from the compatibility between the two partial multiplication
laws of the biextension structure of PA,η that it makes sense to write

τ(y1, χ1)τ(y2, χ1)τ(y1, χ2)τ(y2, χ2) = τ(y1 + y2, χ1 + χ2),
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verifying the compatibility between the two partial multiplication laws.
For each y ∈ Y , we have a collection {τ(y, χ)}χ∈X of sections τ(y, χ) of

PA(c∨(y), c(χ))⊗−1
η . Let us denote the invertible sheaf (Id, c(χ))∗PA over A

by Oχ, and denote the invertible sheaf PA(c∨(y), c(χ)) = (c∨(y)× c(χ))∗PA
over S by Oχ(c∨(y)) = (c∨(y))∗Oχ. Considering the canonical isomorphism
Oχ(c∨(y))η ⊗

OS,η
Oχ(c∨(y))⊗−1

η
∼= OS,η for each χ ∈ X, we can interpret

τ(y, χ) ∈ Oχ(c∨(y))⊗−1
η as “multiplication by τ(y, χ)”:

τ(y, χ) : Oχ(c∨(y))η → OS,η.

Putting together the morphisms corresponding to all χ ∈ X, we obtain

c∨(y)∗OG,η = c∨(y)∗( ⊕
χ∈X

Oχ)η

∑
χ
τ(y,χ)

−→ OS,η.

Here the notation makes sense if we interpret OG\ as an OA-module (as
in Section 3.1.4) using the fact that G\ is relatively affine over A, and if
we interpret OS,η as an OS-module. For this to define a homomorphism of
OS-algebras, we need to map τ(y, χ1)⊗ τ(y, χ2) to τ(y, χ1 + χ2) for each
y ∈ Y and χ1, χ2 ∈ X under the isomorphism

(c∨(y)∗Oχ1)η ⊗
OS,η

(c∨(y)∗Oχ2)η
∼→ (c∨(y)∗Oχ1+χ2)η,

which is exactly the isomorphism

PA(c∨(y), c(χ1))⊗−1
η ⊗

OS,η
PA(c∨(y), c(χ2))⊗−1

η
∼→ PA(c∨(y), c(χ1 + χ2))⊗−1

η

given by the biextension structure of PA,η. Namely, we need the multiplica-
tive condition

τ(y, χ1)τ(y, χ2) = τ(y, χ1 + χ2). (4.2.2.1)

This is indeed the same as giving a point ι(y) of G\
η lifting the point c∨(y) of

A.
It still remains to show that τ defines a homomorphism ι : Y → Gη lifting

c∨ : Y → A, namely, ι(y1) + ι(y2) = ι(y1 + y2) for all y1, y2 ∈ Y under the
multiplication of G\. Recall that the multiplication of G\ is defined by

m∗ : m∗AOG\
∼= m∗A( ⊕

χ∈X
Oχ) ∼= ⊕

χ∈X
m∗AOχ

can.
∼→ ⊕

χ∈X
(pr∗1 Oχ ⊗

OA×
S
A

pr∗2 Oχ)
can.
↪→ pr∗1 OG\ ⊗

OA×
S
A

pr∗2 OG\

can.
∼→ OG\×

S
G\ ,
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where each of the isomorphisms m∗AOχ
∼→ pr∗1 Oχ ⊗

OA×
S
A

pr∗2 Oχ exists uniquely

because Oχ ∈ Pic0
e(A/S) and because we require it to respect the rigidifica-

tions. Applying (c∨(y1)× c∨(y2))∗ to this morphism, we obtain

(c∨(y1)× c∨(y2))∗m∗ :

(c∨(y1)× c∨(y2))∗m∗AOG\
∼→ ⊕

χ∈X
(c∨(y1)× c∨(y2))∗(pr∗1 Oχ ⊗

OA×
S
A

pr∗2 Oχ),

which is essentially

c∨(y1 + y2)∗OG\
∼→ ⊕

χ∈X
(c∨(y1)∗Oχ ⊗

OS
c∨(y2)∗Oχ).

Therefore the compatibility ι(y1) + ι(y2) = ι(y1 + y2) follows because the
diagram

⊕
χ∈X

c∨(y1 + y2)∗Oχ,η

o(c∨(y1)× c∨(y2))∗m∗

��

ι(y1+y2)∗ // OS,η

o can.

��

⊕
χ∈X

(c∨(y1)∗Oχ,η ⊗
OS
c∨(y2)∗Oχ,η)

� _

��
( ⊕
χ∈X

c∨(y1)∗Oχ,η) ⊗
OS

( ⊕
χ∈X

c∨(y2)∗Oχ,η)
ι(y1)∗⊗ ι(y2)∗

// OS,η ⊗
OS,η

OS,η

is commutative. Since the morphism ι(y1 + y2)∗ is defined by the “mul-
tiplication by τ(y1 + y2, χ)”, while the morphism ι(y1)∗⊗ ι(y2)∗ is defined
by the “multiplication by τ(y1, χ)⊗ τ(y2, χ)”, the commutativity follows if
τ(y1, χ)⊗ τ(y2, χ) is mapped to τ(y1 + y2, χ) under the isomorphism

PA(c∨(y1), c(χ))⊗−1
η ⊗

OS
PA(c∨(y2), c(χ))⊗−1

η
∼→ PA(c∨(y1 + y2), c(χ))⊗−1

η

given by the biextension structure of PA,η. Namely, we need the multiplica-
tive condition

τ(y1 + y2, χ) = τ(y1, χ)τ(y2, χ), (4.2.2.2)

together with the compatibility between (4.2.2.2) and (4.2.2.1) making τ a
trivialization of the biextension (c∨× c)∗P⊗−1

A,η .
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Now that we have settled the case where X and Y are constant, the
general case follows by étale descent.

To summarize, a homomorphism ι : Y η → G\
η determines and is deter-

mined by a trivialization τ : 1Y ×
S
X,η

∼→ (c∨× c)∗P⊗−1
A,η of biextensions, which

is exactly the statement of Lemma 4.2.1.7.

4.2.3 Equivalence between ψ and Actions on L\η
The proof of Lemma 4.2.1.9 is similar to the proof of Lemma 4.2.1.7 in nature,
but needs some more preparation.

For simplicity, assume again that the étale sheaves X = X(T ) and Y =
X(T∨) are constant with values X and Y , respectively, by making a finite
étale surjective base change in S. Assume further that we have made a choice
of a cubical trivialization s : i∗L ∼= OT , so that by Proposition 3.2.5.4 we
have a cubical isomorphism L\ ∼= π∗M for some invertible sheaf M over A.
These assumptions are justified by étale descent, as in Section 4.2.2.

Since L\ is an OG\-module, and since G\ is relatively affine over A,
we would like to think of L\ as an OA-module with the structure of an
OG\-module, where OG\ is interpreted as an OA-algebra (as in Section 3.1.4).
This is the same as considering π∗L\ as a π∗OG\-module, with the abuse of
language of suppressing all the π∗’s in the notation. From now on, we shall
adopt this abuse of language whenever possible.

By defining Oχ as in Section 4.2.2, we can write OG\
∼= ⊕

χ∈X
Oχ and

L\ ∼=M⊗
OA

OG\
∼= ⊕

χ∈X
(M⊗

OA
Oχ). Let us denote M⊗

OA
Oχ by Mχ. Then the

OG\-module structure of L\, given by a morphism

L\ ⊗
OA

OG\
∼= ( ⊕

χ∈X
Mχ) ⊗

OA
( ⊕
χ∈X

Oχ)→ L\ ∼= ⊕
χ∈X
Mχ

of OA-modules, can be obtained by the canonical isomorphisms

Mχ ⊗
OA

Oχ′
∼= (M⊗

OA
Oχ) ⊗

OA
Oχ′

∼→M⊗
OA

Oχ+χ′
∼=Mχ+χ′

determined by the unique isomorphisms Oχ ⊗
OA

Oχ′
∼→ Oχ+χ′ respecting the

rigidifications (and giving the OG\ the structure of an OA-algebra) for all
χ, χ′ ∈ X. To summarize, the OG\-module structure of L\ is obtained by
making Oχ act on L\ by translation of weights by χ.
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If we take M′ := Mχ0 for some χ0 ∈ X and consider L\′ := π∗M′,

then we get L\′ ∼= ⊕
χ∈X

((M⊗
OA

Oχ0) ⊗
OA

Oχ) ∼= ⊕
χ∈X
Mχ+χ0 . The OG\-module

structure of L\′ is again given by translation of weights by χ, namely, the
canonical isomorphisms Mχ+χ0 ⊗

OA
Oχ′

∼→ Mχ+χ′+χ0 . The only difference is

that every weight is shifted by χ0.
As an OA-module, L\ can be canonically identified with L\′, by sending

the subsheaf Mχ of L\ identically to Mχ of L\′ for all χ. Let us denote
this isomorphism by Idχ0 , because it is the identity on the same underlying
OG\-module. We claim that this isomorphism is also a cubical isomorphism.
This is because Idχ0 is given by putting together the canonical isomorphisms
Mχ ⊗

OA
Oχ0

∼→ Mχ+χ0 , and so D3(Idχ0) is given by the canonical isomor-

phisms D3(Mχ) ⊗
OA×

S
A×
S
A

D3(Oχ0)
∼→ D3(Mχ+χ0). Now D3(Oχ0), D3(Mχ),

and D3(Mχ+χ0) are all isomorphic to the trivial invertible sheaf by the usual
theorem of the cube (see Proposition 3.2.3.1), with unique choices of isomor-
phisms respecting the rigidifications. Therefore, the isomorphism D3(Idχ0)
must agree with the canonical isomorphism between trivial invertible sheaves.
On the other hand, the cubical structures on L and on L′ differ by the pull-
back of the canonical cubical structure of Oχ0 , which is again built up by the
same canonical isomorphisms in D3(Idχ0). This justifies the claim.

By Rosenlicht’s lemma (see Lemma 3.2.2.11) and by Remark 3.2.2.10, the
set of cubical trivializations s : i∗L\ ∼= OT is a torsor under Hom(1)(T,Gm,S),
namely, the character group X of T . By the above arguments, we see that
this set as an X-module is equivalent to the set of choices of OG\-module
structures on L\, on which a character χ ∈ X acts by translation of weights
by χ.

Let us record the above observation:

Lemma 4.2.3.1. With assumptions as in Definition 4.2.1.13, each two cu-
bical invertible sheaves M and M′ over A such that L\ ∼= π∗M∼= π∗M′ (as
cubical invertible sheaves) are related to each other by M′ ∼= M⊗

OA
Oχ for

some χ ∈ X = X(T ).

Proof of Lemma 4.2.1.9. To define a Y -action on L\ covering the Y -action
on G\

η defined by (multiplication by) ι : Y → G\
η, let us first understand the
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multiplication by ι(y) covering c∨(y), which makes the diagram

G\
η

can.
G\ //

��

η×
η
G\
η

ι(y)× Id //

��

G\
η×
η
G\
η

m
G\ //

��

G\
η

��
Aη can.A

// η×
η
Aη

c∨(y)× Id
// Aη×

η
Aη mA

// Aη

commutative. By pulling back all sheaves to the lower-left Aη, we get a
diagram

T ∗c∨(y)OG\,η

oT ∗
ι(y)

��

(can.A)∗(c∨(y)× Id)∗m∗AOG\,η

(can.A)∗(c∨(y)× Id)∗(m∗)

��
(can.A)∗(c∨(y)× Id)∗(pr∗1 OG\,η ⊗

OAη ×
η
Aη

pr∗2 OG\,η)

(can.A)∗(pr∗1 c
∨(y)∗OG\,η ⊗

Oη×
η
Aη

pr∗2 OG\,η)

(can.A)∗(ι(y)∗⊗ Id)
��

OG\,η (can.A)∗(pr∗1 OS,η ⊗
Oη×

η
Aη

pr∗2 OG\,η)(can.G)∗
oo
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of OA,η-algebras. More precisely, this is defined by a diagram

T ∗c∨(y)OG\,η

oT ∗
ι(y)

��

(can.A)∗(c∨(y)× Id)∗m∗A( ⊕
χ∈X

OX,η)

o (can.A)∗(c∨(y)× Id)∗(m∗)

��
⊕
χ∈X

(can.A)∗(c∨(y)× Id)∗(pr∗1 Oχ,η ⊗
OAη ×

η
Aη

pr∗2 Oχ,η)

⊕
χ∈X

(can.A)∗(pr∗1 c
∨(y)∗Oχ,η ⊗

Oη×
η
Aη

pr∗2 Oχ,η)

o (can.A)∗(ι(y)∗⊗ Id)
��

⊕
χ∈X

Oχ,η = OG\,η ⊕
χ∈X

(can.A)∗(pr∗1 OS,η ⊗
Oη×

η
Aη

pr∗2 Oχ,η)
∼

(can.G)∗
oo

of isomorphisms, which relies essentially on the isomorphisms

T ∗c∨(y)Oχ,η
∼= Oχ(c∨(y))η ⊗

OS,η
Oχ(0)⊗−1

η ⊗
OS,η

Oχ,η

(unique isomorphism in Pic0
e(Aη/η))

∼= Oχ(c∨(y))η ⊗
OS,η

Oχ,η

(rigidification of Oχ(0)η)
∼= Oχ,η

(multiplication by τ(y, χ) ∈ Oχ(c∨(y))⊗−1
η )

(4.2.3.2)

for each χ ∈ X.
If we want to define a Y -action on L\η (which commutes with the T -action

up to a character), we need to write down an isomorphism between T ∗c∨(y)L\η
and L\η. Again, the essential point is to understand the restriction of this
isomorphism to the weight-χ subsheaf T ∗c∨(y)Mχ,η. Since M induces λA, we

know that the invertible sheaf T ∗c∨(y)M⊗
OA
M⊗−1 is equivalent to the invert-

ible sheaf in Pic0(A/S) corresponding to the point λAc
∨(y) = cφ(y) in A∨,

namely, the invertible sheaf Oφ(y). By matching the rigidifications (along the
identity section of A), we obtain a uniquely determined isomorphism

T ∗c∨(y)M∼=M⊗
OA

Oφ(y) ⊗
OS
M(c∨(y)) ∼=Mφ(y) ⊗

OS
M(c∨(y)).

221



Then we have

T ∗c∨(y)Mχ
∼= T ∗c∨(y)M⊗

OA
T ∗c∨(y)Oχ

∼=Mχ+φ(y) ⊗
OS
M(c∨(y)) ⊗

OS
Oχ(c∨(y)).

Now, for each y ∈ Y , we can interpret the section ψ(y) of ι∗(y)∗(L\η)⊗−1 ∼=
M(c∨(y))⊗−1

η as “multiplication by ψ(y)”:

ψ(y) :M(c∨(y))η → OS,η.

Similarly, for each χ ∈ X, we have “multiplication by τ(y, χ)”:

τ(y, χ) : Oχ(c∨(y))η → OS,η.

Putting these together, we have (symbolically) “multiplication by
ψ(y)τ(y, χ)”:

ψ(y)τ(y, χ) :Mχ(c∨(y))η ∼=M(c∨(y))η ⊗
OS,η

Oχ(c∨(y))η → OS,η,

which enables us to define

ψ(y)τ(y, χ) : T ∗c∨(y)Mχ,η
∼=Mχ+φ(y),η ⊗

OS,η
Mχ(c∨(y))η →Mχ+φ(y),η.

These isomorphisms sum together into an isomorphism

T̃ι(y) : T ∗c∨(y)L\η → L\η,

with the shift of weights by φ(y) described above.
For this to define a Y -action on L\η, we need to show that the diagram

T ∗c∨(y1+y2)L\η ∼
T̃ι(y1+y2) //

∼
T ∗
c∨(y1)

(T̃ι(y2)) &&

L\η

T ∗c∨(y1)L\η

∼
T̃ι(y1)

;;

is commutative, or equivalently, that the diagram

T ∗c∨(y1+y2)Mχ,η ∼
ψ(y1+y2)τ(y1+y2,χ) //

∼
T ∗
c∨(y1)

(ψ(y2)τ(y2,χ)) ))

Mχ+φ(y1)+φ(y2),η

T ∗c∨(y1)Mχ+φ(y2),η

∼
ψ(y1)τ(y1,χ+φ(y2))

55
(4.2.3.3)
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is commutative.
The first object T ∗c∨(y1+y2)Mχ is isomorphic to Mχ(c∨(y1) +

c∨(y2)) ⊗
OS,η
Mχ+φ(y1)+φ(y2). On the other hand, by pulling back the

isomorphism Tc∨(y2)Mχ
∼→Mχ+φ(y2) ⊗

OS,η
Mχ(c∨(y2)) under c∨(y1), we obtain

an isomorphism

Mχ(c∨(y1) + c∨(y2))
∼→Mχ+φ(y2)(c

∨(y1)) ⊗
OS,η
Mχ(c∨(y2)).

If we pull back the isomorphism

ψ(y2)τ(y2, χ) : T ∗c∨(y2)Mχ
∼=Mχ+φ(y2) ⊗

OS,η
Mχ(c∨(y2))→Mχ+φ(y2)

under T ∗c∨(y1), then we obtain

T ∗c∨(y1)(ψ(y2)τ(y2,χ)) :

T ∗c∨(y1)+c∨(y2)Mχ
∼= (T ∗c∨(y1)Mχ+φ(y2)) ⊗

OS,η
Mχ(c∨(y2))

∼=Mχ+φ(y1)+φ(y2) ⊗
OS,η
Mχ+φ(y2)(c

∨(y1)) ⊗
OS,η
Mχ(c∨(y2))

→ T ∗c∨(y1)Mχ+φ(y2)
∼=Mχ+φ(y1)+φ(y2) ⊗

OS,η
Mχ+φ(y2)(c

∨(y1)),

which is the same “multiplication by ψ(y2)τ(y2, χ)” applied to a different
invertible sheaf. Therefore, for the diagram (4.2.3.3) to be commutative, the
essential point is to have (symbolically)

ψ(y1 + y2)τ(y1 + y2, χ) = ψ(y1)τ(y1, χ)ψ(y2)τ(y2, χ+ φ(y1)),

or equivalently, the compatibility

ψ(y1 + y2)ψ(y1)−1ψ(y2)−1 = τ(y1, φ(y2)) (4.2.3.4)

verifying D2(ψ)(y1, y2) = (IdY ×φ)∗τ(y1, y2) in Lemma 4.2.1.9.

Remark 4.2.3.5. By symmetry, we obtain

τ(y1, φ(y2)) = D2(ψ)(y1, y2) = D2(ψ)(y2, y1) = τ(y2, φ(y1)),

that is, (IdY ×φ)∗τ is a symmetric trivialization because D2(ψ) is.
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4.2.4 Equivalence between the Positivity Condition for
ψ and the Positivity Condition for τ

Definition 4.2.4.1. Let R be a noetherian integral domain. Then we denote
by Inv(R) the group of invertible R-submodules of K := Frac(R).

Let υ be a valuation of K. For an invertible R-submodule J of K, we
define υ(J) to be the minimal value of υ on nonzero elements of J .

Since R is noetherian and normal, we know that R is the intersection of
the valuation rings of its discrete valuations defined by height-one primes,
namely, R = ∩

p prime
ht p=1

Rp (see, for example, [88, Thm. 11.5]). Let us denote by

Υ1 the set of valuations of K defined by height-one primes of R. Then,

Lemma 4.2.4.2. An invertible R-submodule J of K satisfies J ⊂ R if and
only if υ(J) ≥ 0 for all υ ∈ Υ1.

Lemma 4.2.4.3 ([116, pp. 95–96, proof of Thm. 35, §14, Ch. VI]). Let R be
a noetherian integral domain with fractional field K. Then, for each prime
ideal p of R, there is a discrete valuation υ : K× → Z of K such that R ⊂ Rυ

and p = R ∩ mυ, where Rυ is the valuation ring of υ, and where mυ is the
maximal ideal of Rυ.

Let us denote by ΥI the set of discrete valuations υ of K such that R ⊂ Rυ

and Iυ := I ⊗
R
Rυ ( Rυ. In other words, ΥI is the set of discrete valuations of

K that are nonnegative on R and has center on S0 = Spec(R0) = Spec(R/I).
This is determined essentially only by rad(I) = I. Then,

Lemma 4.2.4.4. An invertible R-submodule J of R satisfies J ⊂ rad(I) = I
if and only if υ(J) > 0 for all υ ∈ ΥI .

The section ψ(y) of M(c∨(y))⊗−1
η is an isomorphism OS,η

∼→
M(c∨(y))⊗−1

η , which induces an isomorphism M(c∨(y))η
∼→ OS,η. Since

M(c∨(y))η has an integral structure given byM(c∨(y))⊗−1, the isomorphism
ψ(y) : M(c∨(y))η

∼→ OS,η carries this integral structure to an invertible
R-submodule of K = OS,η.

Definition 4.2.4.5. We shall denote this submodule of K by Iy.
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In this case, we can interpret ψ(y) as an isomorphism ψ(y) :M(c∨(y))
∼→

Iy. If Iy ⊂ In ⊂ R for some nonnegative integer n, we obtain a morphism
M(c∨(y)) → OS whose image factors through In, where I is the invertible
subsheaf of OS corresponding to the ideal I ⊂ R. We will write symbolically
υ(ψ(y)) = υ(Iy), as if ψ(y) were an invertible R-submodule of K.

Similarly, the section τ(y, χ) of Oχ(c∨(y))⊗−1
η is an isomorphism OS,η

∼→
Oχ(c∨(y))⊗−1

η , which induces an isomorphism Oχ(c∨(y))η
∼→ OS,η. Since

Oχ(c∨(y))η has an integral structure given by Oχ(c∨(y))⊗−1, the isomorphism
τ(y, χ) : Oχ(c∨(y))η

∼→ OS,η carries this integral structure to an invertible
R-submodule of K = OS,η.

Definition 4.2.4.6. We shall denote this submodule of K by Iy,χ.

In this case, we can interpret τ(y, χ) as an isomorphism
τ(y, χ) : Oχ(c∨(y))

∼→ Iy,χ. If Iy,χ ⊂ In ⊂ R for some nonnegative
integer n, we obtain a morphism Oχ(c∨(y)) → OS whose image factors
through In, where I is as above. The valuation υ(Iy,χ) is defined to
be the minimal valuation of υ on nonzero elements in Iy,χ. We will
write symbolically υ(τ(y, χ)) = υ(Iy,χ), as if τ(y, χ) were an invertible
R-submodule of K.

Proof of Lemma 4.2.1.12. By the symbolic relation (4.2.3.4), ψ(y) can be
interpreted as a quadratic function in y, with associated bilinear pairing
τ(y1, φ(y2)). For each valuation υ of K and each y ∈ Y , define a function
fυ,y : Z→ Z by fυ,y(k) := υ(ψ(ky)). Then we have the quadratic relation

fυ,y(k + 1)− 2fυ,y(k) + fυ,y(k − 1) = υ(τ(y, φ(y))). (4.2.4.7)

The implication from the positivity condition for ψ (in Definition 4.2.1.11)
to the positivity condition for τ (in Definition 4.2.1.10) can be justified as
follows:

Suppose υ ∈ Υ1. The first half of the positivity condition for ψ implies
that υ(ψ(y)) ≤ 0 for all but finitely many y in Y . If y ∈ Y , y 6= 0, and
υ(τ(y, φ(y))) < 0, then the relation (4.2.4.7) shows that it is impossible that
fυ,y(k) ≥ 0 for all but finitely many k. As a result, υ(τ(y, φ(y))) ≥ 0 for all
υ ∈ Υ1, which implies that Iy,φ(y) ⊂ R by Lemma 4.2.4.2 and by noetherian
normality of R.

Suppose υ ∈ ΥI . The second half of the positivity condition for ψ implies
that for each given value n0 and each y ∈ Y such that y 6= 0, there can only

225



be finitely many integers k such that fυ,y(k) ≤ n0. If υ(τ(y, φ(y))) ≤ 0, then
the relation (4.2.4.7) shows that there are infinitely many integers k such
that fυ,y(k) ≤ f(0), which is a contradiction. As a result, υ(τ(y, φ(y))) > 0
for all υ ∈ ΥI , which implies that Iy,φ(y) ⊂ I by Lemma 4.2.4.4 and by the
known fact that Iy,φ(y) ⊂ R. This verifies the positivity condition for τ .

Conversely, the positivity condition for τ shows that υ(τ(y1, φ(y2))) de-
fines a positive semidefinite form for all υ ∈ Υ1 and defines a positive definite
form for all υ ∈ ΥI . Therefore, the associated quadratic form υ(τ(y, φ(y)))
is positive semidefinite for all υ ∈ Υ1 and is positive definite for all υ ∈ ΥI .
This implies the positivity condition for ψ, using the fact that Y is finitely
generated and the assumption that R is noetherian.

4.3 Fourier Expansions of Theta Functions

In this section we investigate the Fourier expansions of theta functions,
namely, the sections of Γ(G,L), and use the result to prove Theorem 4.2.1.14.

4.3.1 Definition of ψ and τ

With the setting as in Section 4.1, suppose that the Raynaud extension of G
is

0→ T
i→ G\ π→ A→ 0

over S, and suppose that the Raynaud extension of G∨ is

0→ T∨ → G∨,\ → A∨ → 0,

so that X = X(T ) and Y = X(T∨). Let us suppose that X and Y are
constant with values X and Y , respectively, and suppose that a cubical triv-
ialization s : i∗L\ ∼= OT is chosen, so that we have a cubical isomorphism
L\ ∼= π∗M for some ample invertible sheaf M over A. Then we have an
isomorphism π∗L\ ∼= ⊕

χ∈X
(Oχ ⊗

OA
M) = ⊕

χ∈X
Mχ, where π∗OG\ = ⊕

χ∈X
Oχ is the

decomposition into weight subsheaves under the T -action, introduced in Sec-
tion 4.2.3. (Recall that in Section 4.2.2 we defined Oχ := (Id, c(χ))∗PA,
the pullback of the Poincaré invertible sheaf PA over A×

S
A∨ under the

morphism (Id, c(χ)) : A → A×
S
A∨, and that in Section 4.2.3 we defined

Mχ := Oχ ⊗
OA
M.)
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Let us consider the formal completions

0→ Tfor → Gfor
πfor→ Afor → 0,

over Sfor as a compatible system (for all i ≥ 0) of exact sequences of group

schemes 0→ Ti → Gi
πi→ Ai → 0 over Si, where Ai is an abelian scheme over

Si, and where Ti is a torus over Si (see Section 3.3.3).
Since Γ(Gi,OGi)

∼= Γ(Ai, π∗OGi)
∼= ⊕

χ∈X
Γ(Ai,Oχ) (compatibly for each i),

we can write

Γ(Gfor,OG,for) ∼= lim←−
i

Γ(Gi,OGi)
∼= ⊕̂

χ∈X
Γ(Afor,Oχ,for) ∼= ⊕̂

χ∈X
Γ(A,Oχ),

where ⊕̂
χ∈X

stands for I-adic completion, and where Γ(Afor,Oχ,for) ∼= Γ(A,Oχ)

follows from Proposition 2.3.1.1 for each χ ∈ X. Then we can form the
Fourier expansion of regular functions by assigning to each f ∈ Γ(Gfor,OG,for)
the infinite sum

f =
∑
χ∈X

σχ(f),

where σχ(f) lies in Γ(A,Oχ) for each χ ∈ X, and where the sum is I-adically
convergent in the sense that if we consider f as a limit of (f mod I i+1) ∈
Γ(Gi,OGi), then the corresponding sum

∑
χ∈X

σχ(f) mod I i+1 has only finitely

many nonzero terms for each i.
Similarly, since we have

Γ(Gi,Li) ∼= Γ(Gi, π
∗
iMi) ∼= Γ(Ai, πi,∗π

∗
iMi) ∼= ⊕

χ∈X
Γ(Ai,Mχ,i)

(compatibly for each i), we can write

Γ(Gfor,Lfor) ∼= lim←−
i

Γ(Gi,Li) ∼= ⊕̂
χ∈X

Γ(Afor,Mχ,for) ∼= ⊕̂
χ∈X

Γ(A,Mχ).

Then we can form the Fourier expansion of theta functions by assigning to
each s ∈ Γ(Gfor,Lfor) the infinite sum

s =
∑
χ∈X

σχ(s),

where σχ(s) lies in Γ(A,Mχ) for each χ ∈ X, and where the sum is I-adically
convergent in the sense that it has only finitely many nonzero terms modulo
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each power I i+1 of I as in the case of Γ(Gfor,OG,for). Symbolically, we shall
write σχ(s) ≡ 0 (mod I i+1) for all but finitely many χ ∈ X, for each fixed i.

If we consider the canonical embedding Γ(G,L) ↪→ Γ(Gfor,Lfor), then we
obtain a morphism

σχ : Γ(G,L)→ Γ(A,Mχ),

which extends naturally to

σχ : Γ(G,L)⊗
R
K → Γ(A,Mχ)⊗

R
K.

(This is now a morphism between K-vector spaces.) Since Γ(Gη,Lη) ∼=
Γ(G,L)⊗

R
K and Γ(Aη,Mχ,η) ∼= Γ(A,Mχ)⊗

R
K, the morphism σχ above can

be written as
σχ : Γ(Gη,Lη)→ Γ(Aη,Mχ,η).

Note that (in the case of either Γ(G,L) or Γ(Gη,Lη)) the morphisms σχ
do depend on the choice ofM. We shall write σχ = σMχ to signify this choice
when necessary.

Remark 4.3.1.1. By Lemma 4.2.3.1, each different choice of s : i∗L\ ∼= OT

gives a different choice of M′ such that L\ ∼= π∗M, which is necessarily of
the form M′ ∼= Mχ = M⊗

OA
Oχ for some χ ∈ X. This results in a shift of

the indices for the σχ’s above, and we will see later (in Lemmas 4.3.1.14 and
4.3.1.15) that this is harmless for defining the trivializations τ and ψ.

Since Γ(Gη,Lη) is finite-dimensional (by properness of Gη), we expect
some redundancy in the full collection {σχ}χ∈X indexed by X (which is an
infinite group when it is nontrivial). To make this precise, we shall compare

T ∗c∨(y) ◦ σχ : Γ(Gη,Lη)→ Γ(Aη, T
∗
c∨(y)Mχ,η)

∼= Γ(Aη,Mχ+φ(y),η)⊗
K
Mχ(c∨(y))η

(given by T ∗c∨(y)Mχ
∼=Mχ+φ(y)⊗

R
Mχ(c∨(y))) with

σχ+φ(y) : Γ(Gη,Lη)→ Γ(Aη,Mχ+φ(y),η).

We claim that (as morphisms over the generic fiber η)

σχ 6= 0 (4.3.1.2)
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for all χ ∈ X, and we claim that for each y ∈ Y and χ ∈ X there exists a
unique section ψ(y, χ) in Mχ(c∨(y))⊗−1

η defining an isomorphism

ψ(y, χ) :Mχ(c∨(y))
∼→ OS,η,

or rather a section of Mχ(c∨(y))⊗−1, such that

ψ(y, χ) T ∗c∨(y) ◦ σχ = σχ+φ(y). (4.3.1.3)

For each y ∈ Y , let us define a section ψ(y) of M(c∨(y))⊗−1
η by setting

ψ(y) := ψ(y, 0). (4.3.1.4)

For each y ∈ Y and χ ∈ X, under the canonical isomorphism
Mχ(c∨(y))⊗−1

η
∼=M(c∨(y))⊗−1

η ⊗
OS,η

Oχ(c∨(y))⊗−1
η , let us also define a section

τ(y, χ) of Oχ(c∨(y))⊗−1
η
∼=M(c∨(y))η ⊗

OS,η
Mχ(c∨(y))⊗−1

η by setting

τ(y, χ) := ψ(y)−1ψ(y, χ), (4.3.1.5)

so that we have the (symbolic) relation

ψ(y, χ) = ψ(y)τ(y, χ). (4.3.1.6)

Then we can rewrite the above relation (4.3.1.3) as

ψ(y)τ(y, χ) T ∗c∨(y) ◦ σχ = σχ+φ(y). (4.3.1.7)

Lemma 4.3.1.8. 1. We have (symbolically) ψ(0) = 1 in the sense that
ψ(0) : OS,η

∼→ M(c∨(0))⊗−1
η = M(0)⊗−1

η coincides with the rigidifica-
tion of M⊗−1

η .

2. For all χ ∈ X, we have (symbolically) τ(0, χ) = 1, in the sense that
τ(0, χ) : OS,η

∼→ Oχ(c∨(0))⊗−1
η = Oχ(0)⊗−1

η coincides with the rigidifi-
cation of O⊗−1

χ,η .

3. For all y ∈ Y , we have (symbolically) τ(y, 0) = 1, in the sense that the
inverse morphism of τ(y, 0) : OS,η

∼→ O0(c∨(y))⊗−1
η
∼= c∨(y)∗OA,η coin-

cides with the structural isomorphism given by the section c∨(y) : η →
Aη. Here O⊗−1

0
∼= OA is the unique isomorphism given by the rigidifica-

tion of PA, and the inverse of τ(y, 0) is interpreted as an isomorphism
c∨(y)∗OA,η

∼→ OS,η.
(Under (4.3.1.6), 3 implies 1, and 1 implies 2.)
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Proposition 4.3.1.9. If we assume the relations (4.3.1.2) and (4.3.1.7)
above, then the following relations are natural consequences of the defini-
tions:

1. For all y1, y2 ∈ Y , we have (symbolically)

ψ(y1 + y2) = ψ(y1)ψ(y2)τ(y1, φ(y2)) (4.3.1.10)

under the Gm-torsor isomorphism

(c∨× c∨)∗D2(M)⊗−1
η
∼= (c∨× cφ)∗P⊗−1

A,η .

By symmetry, we also have

ψ(y1 + y2) = ψ(y2)ψ(y1)τ(y2, φ(y1)). (4.3.1.11)

2. For all y1, y2 ∈ Y , we have (symbolically)

τ(y1, φ(y2)) = τ(y2, φ(y1))

under the symmetry isomorphism of

(c∨× c∨)∗D2(M)⊗−1
η
∼= (c∨× cφ)∗P⊗−1

A,η .

(This is a formal consequence of (4.3.1.10) and (4.3.1.11).)

3. If we have (symbolically)

τ(y, χ1 + χ2) = τ(y, χ1)τ(y, χ2) (4.3.1.12)

(under the biextension structure of P⊗−1
A,η as in Section 4.2.2) for all

χ1, χ2 ∈ X and y ∈ Y , then we have (symbolically)

τ(y1 + y2, χ) = τ(y1, χ)τ(y2, χ) (4.3.1.13)

(under the biextension structure of P⊗−1
A,η as in Section 4.2.2) for all χ ∈

X and y1, y2 ∈ Y . (Note that (4.3.1.12) has to be proved independently
later.)

4. For all but finitely many y ∈ Y , the section ψ(y) extends to a section
of M(c∨(y))⊗−1 and is congruent to zero modulo I.

This is a special case of the stronger statement: For each integer n > 0,
for all but finitely many y ∈ Y , the section ψ(y) extends to a section
of (the invertible sheaf) M(c∨(y))⊗−1 and is congruent to zero modulo
In. (This is the positivity condition for ψ; see Definition 4.2.1.11.)
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5. For all nonzero y ∈ Y , the section τ(y, φ(y)) extends to a section of (the
invertible sheaf) (c∨(y)× cφ(y))∗P⊗−1

A and is congruent to zero modulo
I. (This is the positivity condition for τ ; see Definition 4.2.1.10.)

Proof. Claims 1 and 2 can be verified as follows: Consider the relations

ψ(y1 + y2) T ∗c∨(y1)+c∨(y2) ◦ σ0

= ψ(y1 + y2)τ(y1 + y2, 0) T ∗c∨(y1)+c∨(y2) ◦ σ0 = σφ(y1+y2)

and

ψ(y1)ψ(y2)τ(y1, φ(y2)) T ∗c∨(y1)+c∨(y2) ◦ σ0

= ψ(y1)τ(y1, φ(y2))ψ(y2)τ(y2, 0) T ∗c∨(y1)T
∗
c∨(y2) ◦ σ0

= ψ(y1)τ(y1, φ(y2)) T ∗c∨(y2)σφ(y2) = σφ(y1)+φ(y2).

Then the uniqueness of ψ(y, χ) = ψ(y)τ(y, χ) implies (4.3.1.10).
Claim 3 can be verified as follows: Consider the relations

ψ(y1 + y2)τ(y1 + y2, χ) T ∗c∨(y1)+c∨(y2) ◦ σχ = σχ+φ(y1+y2)

and

ψ(y1)ψ(y2)τ(y1, χ+ φ(y2))τ(y2, χ) T ∗c∨(y1)+c∨(y2) ◦ σχ
= ψ(y1)τ(y1, χ+ φ(y2))ψ(y2)τ(y2, χ) T ∗c∨(y1)T

∗
c∨(y2) ◦ σχ

= ψ(y1)τ(y1, χ+ φ(y2)) T ∗c∨(y2)σχ+φ(y2) = σχ+φ(y1)+φ(y2).

Then the uniqueness of ψ(y, χ) = ψ(y)τ(y, χ) and (4.3.1.12) imply

ψ(y1 + y2)τ(y1 + y2, χ) = ψ(y1)ψ(y2)τ(y1, χ+ φ(y))τ(y2, χ)

= ψ(y1)ψ(y2)τ(y1, χ)τ(y1, φ(y2))τ(y2, χ).

By cancellation using (4.3.1.10), we obtain (4.3.1.13).
Claims 4 and 5 can be verified as follows: It suffices to establish the

positivity condition for τ , as the equivalence between the positivity conditions
for τ and for ψ has already been established in Section 4.2.4.

By (4.3.1.2), there exists s0 ∈ Γ(Gη,Lη) such that σ0(s0) 6= 0. Since
Γ(Gη,Lη) ∼= Γ(G,L)⊗

R
K, we may and we shall assume that s0 ∈ Γ(G,L)

instead. Then we have T ∗c∨(y) ◦ σ0(s0) 6= 0 for all y ∈ Y . On the other hand,
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we have σφ(y)(s0) = ψ(y) T ∗c∨(y) ◦ σ0(s0) ∈ Γ(A,Mφ(y)) for all y ∈ Y . As a

result, we have σ0(s0) ∈ Γ(A,M0)⊗
R
I⊗−1
y for all y ∈ Y .

Let us fix a y 6= 0 in Y . Suppose there is a discrete valuation υ ∈ Υ1 such
that υ(τ(y, φ(y))) < 0. Then, by (4.2.4.7), we have lim

k→∞
υ(ψ(ky)) → −∞,

and hence σ0(s0) ∈ Γ(A,M0)⊗
R
mN
υ for all N > 0. Since Γ(A,M0) is a

finitely generated R-module, this is possible only when σ0(s0) = 0, which is
a contradiction. Thus we see that υ(τ(y, φ(y))) ≥ 0 for every υ ∈ Υ1, which
implies that Iy,φ(y) ⊂ R by noetherian normality of R. In other words, the
section τ(y, φ(y)) of Oφ(y)(c

∨(y))⊗−1
η extends to a section of Oφ(y)(c

∨(y))⊗−1 ∼=
(c∨(y) × cφ(y))∗P⊗−1

A . This shows the first half of the positivity condition
for τ .

For the second half, suppose that there is a y 6= 0 in Y such that τ(y, φ(y))
is not congruent to zero modulo I. Then υ(τ(y, φ(y))) = 0 for some υ ∈ ΥI ,
and hence υ(ψ(ky)) = kυ(ψ(y)) for all k ∈ Z. Let i > 0 be an integer such
that symbolically σ0(s0) 6≡ 0 (mod mi+1

υ ). That is, the image of σ0(s0) under
the pullback Γ(A,M) → Γ(Aυ,i,Mυ,i) is nonzero, where Aυ,i and Mυ,i are
the pullbacks of A andM to Sυ,i = Spec(Rυ/m

i+1
υ ), respectively. After com-

position with the pullback of the isomorphism T ∗c∨(ky) to Sυ,i, we have symboli-

cally T ∗c∨(ky)◦σ0(s0) 6≡ 0 (mod mi+1
υ ). Since σφ(ky)(s0) = ψ(ky) T ∗c∨(ky)◦σ0(s0),

we have υ(σφ(ky)(s0)) = υ(σ0(s0)) + kυ(ψ(y)) for all k ∈ Z. In particular,
there exist infinitely many k such that σφ(ky)(s0) 6≡ 0 (mod mi+1

υ ). This im-
plies that there exist infinitely many k such that σφ(ky)(s0) 6≡ 0 (mod I i+1),
which contradicts the fact that s0 ≡

∑
χ∈X

σχ(s0) (mod I i+1) is a finite sum

for all i. This shows the full positivity condition for τ .

Lemma 4.3.1.14. The definition of τ is independent of the M we choose.

Proof. If we replaceM above withM′ :=Mχ0 =M⊗
OA

Oχ0 for some χ0 ∈ X,

then the indices of σχ are all shifted by χ0. As a result, if we denote the new τ
by τ ′, then ψ(y)τ(y, χ) = ψ′(y)τ ′(y, χ−χ0) for every χ. Hence τ(y, χ−χ′) =
τ ′(y, χ− χ′) for every two χ, χ′ ∈ X. This shows that τ = τ ′.

Lemma 4.3.1.15. The definition of ψ as a cubical trivialization of ι∗(L\η)⊗−1

(rather than (c∨)∗M⊗−1
η ) is independent of the M we choose. (This is called

the invariant formulation in [42, Ch. II, §5].)

Proof. Continuing the proof of Lemma 4.3.1.14, the cubical trivialization
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1Y ,η
∼→ ι∗(L\η)⊗−1 remains the same because it is not affected by shifting the

indices of the σχ’s by χ0.

Corollary 4.3.1.16. Assuming the relations (4.3.1.2) and (4.3.1.7) above,
the association (G,L) 7→ (A,X, Y , φ, c, c∨,L\, τ, ψ) (described thus far) de-
fines a functor Fample(R, I) : DEGample(R, I)→ DDample(R, I).

Convention 4.3.1.17. The tuple (A,X, Y , φ, c, c∨,L\, τ, ψ) is called the de-
generation datum associated with (G,L).

We will see variants of this usage later when we study other kinds of
additional structures.

Now that we have seen the rather formal consequences of the definitions,
the proof of Theorem 4.2.1.14 will be completed by verifying the relations
(4.3.1.2) and (4.3.1.7), and Proposition 4.3.4.5 below, using the theory of
theta representations.

To conclude, let us record the following observation:

Lemma 4.3.1.18. For every section g : S → G, if we replace L with L′ :=
T ∗gL, then the τ and ψ defined by L and by L′ remain the same.

Proof. Let gfor : Sfor → Gfor
∼= G\

for be the formal section defined by the
I-completion of g : S → G, which induces a formal section πfor(gfor) : Sfor →
Afor. This formal section of Afor algebraizes to a section S → A, which we
denote by π(g) by abuse of notation. Then we have (L′)\ ∼= π∗M′ forM′ :=
T ∗π(g)M, and we can translate the morphism σMχ : Γ(G,L) → Γ(A,Mχ) to

σM
′

χ : Γ(G,L′) → Γ(A,M′
χ), where M′

χ := M′ ⊗
OA

Oχ. Since the definitions

of τ and ψ are given by comparing σχ with σχ+φ(y), they remain the same if
we replace L and M with L′ and M′ (by translations), respectively.

4.3.2 Relations between Theta Representations

In this section we use the uniqueness of irreducible theta representations
(which are algebro-geometric analogues of Heisenberg group representations)
to deduce (4.3.1.7) from (4.3.1.2). Since (4.3.1.7) is an equality, in order
to prove it, we may localize and make the convenient assumption that R is
complete local.

By Theorem 3.4.2.4, the group K(Lη) extends to a quasi-finite flat sub-
group scheme K(L) in G over S. The group scheme K(L) has the fi-
nite part K(L)f, which is the largest finite subscheme of K(L), and the
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torus part K(L)µ, which is isomorphic to K(L)[ = K(L)\ ∩ T , a subgroup
of T . The pairing eLη : K(Lη)×

η
K(Lη) → Gm,η extends to a pairing

eL := e
Lη
S : K(L)×

S
K(L) → Gm,S, which can be identified with the com-

mutator pairing of the central extension structure

0→ Gm,S → G(L)→ K(L)→ 0. (4.3.2.1)

(Here G(L) ∼= L|K(L) by Proposition 3.2.4.2.) Under this commutator pair-
ing, K(L)µ is totally isotropic, and K(L)f is the annihilator of K(L)µ. Let
G(L)µ := G(L)|K(L)µ

∼= L|K(L)µ and G(L)f := G(L)|K(L)f
∼= L|K(L)f . Then we

have the following commutative diagram.

0 // G(L)µ //

can.

��

G(L)f //

can.

��

K(M) // 0

0 // K(L)µ // K(L)f // K(M) // 0

Now K(L)µ being totally isotropic in K(L) under eL implies that the
extension (4.3.2.1) splits over K(L)µ, namely, there exists a splitting

K(L)µ ↪→ G(L)µ = G(L)|K(L)µ . (4.3.2.2)

Among all possible splittings as above, there is a natural choice coming from
the cubical isomorphism s : i∗L\ ∼= OT , which can be explained as fol-
lows: Recall (from (3.4.2.2)) that we have isomorphisms K(L)\ ∼= K(L)f and
K(L)[ ∼= K(L)µ between finite flat group schemes over S, where K(L)\ ⊂ G\,
K(L)[ ⊂ T ⊂ G\, K(L)f ⊂ G, and K(L)µ ⊂ G. Using the canonical isomor-
phisms L\for

∼= Lfor and K(L)\for
∼= K(L)f

for over Sfor, we obtain a canonical
isomorphism L\|K(L)\for

∼= L|K(L)f
for

, which by Theorem 2.3.1.2 (using finite-

ness of K(L)\ ∼= K(L)f) algebraizes uniquely to a canonical isomorphism
L\|K(L)\

∼= L|K(L)f , inducing a canonical isomorphism L\|K(L)[
∼= L|K(L)µ by

restriction. The cubical isomorphism s above can be interpreted as an iso-
morphism s : L\|T ∼= Gm,T of cubical Gm-torsors over T . Since K(L)µ ⊂ T ,
we obtain by restriction an isomorphism s|K(L)[ : L\|K(L)[

∼= Gm,K(L)[ . This

gives us a natural choice of a splitting of L\|K(L)[ over K(L)[, and hence a

natural choice of (4.3.2.2) via the canonical isomorphism L\|K(L)[
∼= L|K(L)µ

above. Let us fix this choice of the splitting from now on. We say that this
is the choice compatible with the cubical trivialization s : i∗L\ ∼= OT .
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The set of choices of the splitting (4.3.2.2) form a torsor under the group
of group homomorphisms HomS(K(L)µ,Gm,S), namely, the character group
of K(L)µ. Since K(L)µ ∼= K(L)[ = K(L)\ ∩ T is the kernel of T � T∨

induced by λ\ : G\ → G∨,\, and since T � T∨ is by definition dual to
φ : Y → X, we can identify the character group of K(L)µ with X/φ(Y ) such
that the canonical embedding K(L)µ ↪→ T is dual to the canonical surjection
X → X/φ(Y ).

Since Γ(G,L) is a representation of G(L), we have an action of K(L)µ

on Γ(G,L) via the above-chosen splitting (4.3.2.2). Since K(L)µ is of mul-
tiplicative type, the representation Γ(G,L) can be decomposed according to
the character group X/φ(Y ) of K(L)µ. Hence we can write

Γ(G,L) ∼= ⊕
χ̄∈X/φ(Y )

Γ(G,L)χ̄,

where Γ(G,L)χ̄ is the weight-χ̄ subspace of Γ(G,L) under the action of
K(L)µ. Note that this depends on the choice of the splitting (4.3.2.2).

Lemma 4.3.2.3. The weight subspaces under the actions of K(L)µ and T
are compatible in the sense that, for each χ ∈ X and χ̄ = χ+ φ(Y ), we have

Γ(G,L)χ̄ ↪→ Γ(Gfor,Lfor)χ̄ ∼= ⊕̂
χ′∈χ+φ(Y )

Γ(A,Mχ′)

under the canonical morphisms

Γ(G,L) ↪→ Γ(Gfor,Lfor) ∼= ⊕̂
χ′∈X

Γ(A,Mχ′).

Proof. Since weight subspaces under both actions are determined by the cu-
bical trivialization s : i∗Lfor

∼= OTfor
, which algebraizes to a cubical trivializa-

tion i∗L\ ∼= OT equivalent to an algebraic T -action on the sections of L\, the
lemma follows because the restriction of T to K(L)[ induces the canonical
homomorphism X → X/φ(Y ) : χ 7→ χ̄ = χ+ φ(Y ).

The fact that K(L)µ is totally isotropic under the pairing eLS implies
that G(L)µ is commutative. Moreover, the choice (4.3.2.2) of a splitting of
G(L)µ → K(L)µ gives us an action of K(L)µ on Γ(G,L), as we saw above.
Let

hχ̄ : G(L)µ → Gm,S

be the group scheme homomorphism that is the identity homomorphism on
Gm,S and is χ̄ on K(L)µ via the above-chosen splitting, so that hχ̄ reflects
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the character of the (commutative) action of G(L)µ on Γ(G,L). Then the
push-out

0 // G(L)µ //

hχ̄

��

G(L)f //

��

K(M) // 0

0 //Gm,S
// G(L)f

χ̄
// K(M) // 0

by hχ̄ : G(L)µ → Gm,S defines a group scheme G(L)f
χ̄.

Lemma 4.3.2.4. The push-out G(L)f
χ̄ is naturally isomorphic to

0→ Gm,S → G(Mχ)→ K(Mχ)→ 0

as extensions of K(M) = K(Mχ) by Gm,S.

Proof. Given the chosen cubical trivialization s : i∗L\ ∼= OT or s : L\|T ∼=
Gm,T , we obtain a splitting of L\|T over T given by the identity section
of Gm,T , and all the other possible cubical trivializations can be identified
with the character group of T . Since the cubical isomorphism L\ ∼= π∗M
restricts to s over T , the Gm-torsor M over A can be identified with the
weight-0 subsheaf of π∗L under the T -action (defined by the splitting from T
to Gm,T

∼= L\|T ), or the invariant subsheaf of L under the T -action described
above. If the splitting is modified by adding a character −χ of T to the
splitting of Gm,T over T , which we denote by sχ : i∗L\ ∼= OT , then T acts
by −χ on M as a subsheaf of L\, which implies that the invariant subsheaf
should be given by Mχ = Oχ ⊗

OA
M, together with an isomorphism L\ ∼=

π∗Mχ that restricts to sχ over T .
If we restrict sχ to sχ|K(L)[ : L\|K(L)[

∼= Gm,K(L)[ , then we obtain a
splitting of G(L)µ over K(L)µ, compatible with the cubical trivialization sχ
(instead of s). Note that this splitting maps K(L)µη isomorphically onto the

kernel of hχ̄ over the generic fiber. The group K(L)[ is the kernel of the
homomorphism λ̄ : G\ → λ∗A(G∨,\) = G∨,\ ×

A∨,λA
A induced by λ\ : G\ → G∨,\.

These homomorphisms fit into the following commutative diagram.

0 // T //

dual to φ
����

G\ //

λ̄
��

λ\

��

A // 0

0 // T∨ // λ∗A(G∨,\) //

��

A //

λA
��

0

0 // T∨ // G∨,\ // A∨ // 0
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Each cubical trivialization sχ as above corresponds to a cubical Gm-torsor L\χ̄
over λ∗A(G∨,\), together with a cubical isomorphism L\ ∼= λ̄∗L\χ̄ that restricts
to sχ|K(L)[ over K(L)[. (This is just finite flat descent, which is simpler than,
but certainly consistent with, the descent used in proving Proposition 3.2.5.4
in [57, VIII, 3.4] and [93, I, 7.2].) We can interpret L\χ̄ as the subsheaf of
λ̄∗L\ on which K(L)[ acts by χ̄.

Let π̄ : λ∗A(G∨,\) → A be the structural morphism. The compatibility
of the splitting of G(L)µ over K(L)µ with sχ gives us cubical isomorphisms

L\ ∼= λ̄∗L\χ̄, L\χ̄ ∼= π̄∗Mχ, and L\ ∼= π∗Mχ such that the cubical isomorphism
L\ ∼= λ̄∗π̄∗Mχ induced by the first two cubical isomorphisms agrees with the
third one. By restriction, we obtain a commutative diagram

L\|K(L)\
//

((

L\χ̄|K(L)\/K(L)[

uu
G(Mχ) =Mχ|K(Mχ)

of group schemes, where K(L)\/K(L)[ is identified with the image of K(L)\

in λ∗A(G∨,\) (under λ̄). The rigidifications give compatible homomorphisms
from Gm,S to these group schemes, inducing a commutative diagram

0 //Gm,S
// L\χ̄|K(L)\/K(L)[

//

��

K(L)\/K(L)[ //

o
��

0

0 //Gm,S
// G(Mχ) // K(Mχ) // 0

in which the middle vertical arrow is forced to be an isomorphism. The
group scheme L\χ̄|K(L)\/K(L)[ can be identified with the quotient of L\|K(L)\

∼=
L|K(L)f = G(L)f by ker(hχ̄), which is the push-out G(L)f

χ̄. Therefore G(L)f
χ̄

is naturally isomorphic to G(Mχ), as desired.

Since G(L)f is the annihilator of G(L)µ under the commutator pairing
of G(L), or equivalently since K(L)f is the annihilator of K(L)µ under the
pairing eL induced by the commutator pairing of G(L), we may interpret
Γ(G,L)χ̄ as a G(L)f-invariant submodule of Γ(G,L). Therefore the push-
out group scheme G(L)f

χ̄ acts naturally on Γ(G,L)χ̄, because ker(hχ̄) acts
trivially, and because push-out by hχ̄ just means forming the quotient by
ker(hχ̄).
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Lemma 4.3.2.5. Under the identification G(L)f
χ̄
∼= G(Mχ) given

by Lemma 4.3.2.4, the morphism σχ : Γ(G,L)χ̄ → Γ(A,Mχ) is
G(L)f

χ̄
∼= G(Mχ)-equivariant.

Proof. By definition, the morphism σχ above factors through

Γ(G,L)χ̄ ↪→ Γ(Gfor,Lfor)χ̄ ∼= Γ(λ∗A(G∨,\)for,L\χ̄,for)

∼= ⊕̂
y∈Y

Γ(Afor,Mχ+φ(y),for)→ Γ(Afor,Mχ,for) ∼= Γ(A,Mχ),
(4.3.2.6)

where the first inclusion is G(L)f
χ̄-equivariant.

Since D2(L\χ̄) (together with its canonical trivialization descended from
D2(L\)) descends down to D2(Mχ), the diagram

(L\χ̄|K(L)f/K(L)µ)×
S
L\χ̄

��

//

))

L\χ̄

��

��
(Mχ|K(Mχ))×

S
Mχ

��

//Mχ

��

(K(L)f/K(L)µ)×
S
λ∗A(G∨,\) //

))

λ∗A(G∨,\)

��
K(Mχ)×

S
A // A

(4.3.2.7)
is commutative. By identifying G(L)f

χ̄
∼= L\χ̄|K(L)f/K(L)µ with G(Mχ) ∼=

Mχ|K(Mχ) as in the proof of Lemma 4.3.2.4, we may interpret the two rectan-
gles in the diagram (4.3.2.7) as describing the respective actions of G(L)f

χ̄ and
G(Mχ) on Γ(G,L)χ̄ and Γ(A,Mχ). Then the G(L)f

χ̄
∼= G(Mχ)-equivariance

of (4.3.2.6) follows from the commutativity of the diagram (4.3.2.7), as de-
sired.

Let us pullback everything to the generic point η. Then we obtain an
equivariant morphism

σχ : Γ(Gη,Lη)χ̄ → Γ(Aη,Mχ,η) (4.3.2.8)

between two representations of the same group.
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Lemma 4.3.2.9. Both representations in (4.3.2.8) are nonzero and irre-
ducible. As a result, the morphism σχ in (4.3.2.8) is an intertwining operator
between two irreducible representations, which is either zero or unique up to
a nonzero scalar multiple in K.

Proof. For every χ ∈ X, since L\χ̄ is the subsheaf of λ̄∗L\ on which

K(L)[ acts by χ̄, we have Γ(Gη,Lη)χ̄ ∼= Γ((λ∗A(G∨,\))η, (L\χ̄)η) 6= 0.
Then dimK Γ(Gη,Lη)χ̄ ≥ dimK Γ(Aη,Lχ,η) because Γ(Aη,Mχ,η) is an
irreducible representation of G(Mχ,η) by [93, VI, §2]. By the Riemann–Roch
theorem [94, §16], dimK Γ(Aη,Mχ,η) = deg(λA)1/2. By Lemma 3.4.4.3,
dimK Γ(Gη,Lη) = deg(λG)1/2 = [X : φ(Y )] deg(λA)1/2. Since the two
sides of the inequality dimK Γ(Gη,Lη) =

∑
χ̄∈X/φ(Y )

dimK Γ(Gη,Lη)χ̄ ≥∑
χ̄∈X/φ(Y )

dimK Γ(Aη,Mχ,η) are equal (where for Γ(Aη,Mχ,η) we can take any

representative χ of χ̄), we must have dimK Γ(Gη,Lη)χ̄ = dimK Γ(Aη,Lχ,η)
for each χ ∈ X, as desired.

Proposition 4.3.2.10. If (4.3.1.2) (i.e., σχ 6= 0) is true for every χ ∈ X,
then (4.3.1.3) is true.

Proof. For each χ ∈ X, by (4.3.2.6) then σχ = 0 on Γ(Gη,Lη)χ̄′ if χ̄′ 6= χ̄
in X/φ(Y ). Since σχ 6= 0 on the whole of Γ(Gη,Lη), the induced morphism
(4.3.2.8) is nonzero. By Lemma 4.3.2.9, we see that σχ is a nonzero inter-
twining operator between two irreducible representations, which is unique up
to a nonzero multiple in K.

By restricting the two morphisms T ∗c∨(y) ◦ σχ : Γ(Gη,Lη) →
Γ(Aη,Mχ+φ(y),η)⊗

K
M(c∨(y))η and σχ+φ(y) : Γ(Gη,Lη) → Γ(Aη,Mχ+φ(y),η)

to the weight-χ̄ subspace Γ(Gη,Lη)χ̄ = Γ(Gη,Lη)χ+φ(y), we obtain

T ∗c∨(y) ◦ σχ : Γ(Gη,Lη)χ̄ → Γ(Aη,Mχ+φ(y),η)⊗
K
M(c∨(y))η

and
σχ+φ(y) : Γ(Gη,Lη)χ+φ(y) → Γ(Aη,Mχ+φ(y),η),

respectively, both of which are nonzero equivariant homomorphisms
between irreducible representations of G(L)f

χ̄ = G(L)f
χ+φ(y)

∼= G(Mχ,η) by

Lemma 4.3.2.9. Therefore they must be proportional (up to a nonzero
multiple in K) if we identity the two spaces Γ(Aη,Mχ+φ(y),η)⊗

K
M(c∨(y))η
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and Γ(Aη,Mχ+φ(y),η) as K-vector spaces. This is equivalent to say-
ing that there exists a section ψ(y, χ) of M(c∨(y))⊗−1

η satisfying
ψ(y, χ) T ∗c∨(y) ◦ σχ = σχ+φ(y), which is just the desired relation (4.3.1.3).

The proof for the assumption that (4.3.1.2) (i.e., σχ 6= 0) is true for all
χ ∈ X will be given in the next section using the so-called addition formula
for theta functions .

4.3.3 Addition Formulas

In this section, we introduce the addition formula for theta functions, and
prove both (4.3.1.2) and (4.3.1.12).

Since (4.3.1.2) and (4.3.1.12) are about inequalities and equalities, after
making base changes under continuous injections, we may and we will assume
that R is a complete discrete valuation ring, with maximal ideal m and
residue field k = R/m. In this case, the normalizations of R in finite algebraic
extensions of K = Frac(R) are again discrete valuation rings. Hence, we may
and we will also make further base changes R → R′ to finite flat extensions
of complete discrete valuation rings whenever necessary.

Remark 4.3.3.1. The assumption that S0 = Spec(k) is the spectrum of a
field k is convenient for the following purpose. Later we will have to replace
L with some other cubical invertible sheaf, and for (G,L) to qualify as an
object of DEGample(R, I) (see Definition 4.2.1.1), we have to verify that Lfor

lies in the essential image of (3.3.3.12). Let us claim that this is automatic
(under the assumption that S0 = Spec(k)). By Corollary 3.2.5.7, there is a
finite étale extension of S0 over which L0

∼= π∗0M0 for some M0 over A0.
As explained in the proof of Corollary 3.3.3.3, we have accordingly a finite
formally étale extension of Sfor over which Lfor

∼= π∗forMfor for someMfor over
Afor. By Theorems 2.3.1.3 and 2.3.1.2, there is a finite étale extension of S
over which Mfor algebraizes to some M over A. Hence L\ := π∗M satisfies
L\for

∼= Lfor and descends to S, which shows that Lfor lies in the essential
image of (3.3.3.12), as desired.

Definition 4.3.3.2. Under the above assumptions, we say that two cubi-
cal invertible sheaves L1 and L2 are algebraically equivalent if N :=
L1 ⊗

OG
L⊗−1

2 as a Gm-torsor has the structure of a commutative group scheme.

In other words, L1 and L2 are algebraically equivalent over the generic fiber
Gη in the usual sense of algebraic equivalence for invertible sheaves over an
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abelian variety. (By Proposition 3.3.2.2, it suffices to verify the statements
over the generic fibers.)

Let us consider the isogeny Φ : G×
S
G → G×

S
G defined by (x, y) 7→

(x+ y, x− y) for all functorial points x and y of G.

Lemma 4.3.3.3. If L1 and L2 are algebraically equivalent cubical invertible
sheaves, then we have a canonical isomorphism

Φ∗(pr∗1 L1 ⊗
OG×

S
G

pr∗2 L2)
∼→ pr∗1(L1 ⊗

OG
L2) ⊗

OG×
S
G

pr∗2(L1 ⊗
OG

[−1]∗L2), (4.3.3.4)

where pr1 and pr2 are the two projections.

Proof. By Proposition 3.3.2.2, it suffices to verify the statements over the
generic fibers. If L1

∼= L2, then (4.3.3.4) follows from the pullback of the
theorem of the cube under Gη×

η
Gη → Gη×

η
Gη×

η
Gη : (x, y) 7→ (x, y,−y).

Hence we may assume that L1 is trivial and that L2 is algebraically equivalent
to the trivial invertible sheaf. Then (4.3.3.4) follows from the theorem of the
square.

Lemma 4.3.3.5 (see [42, Ch. II, Lem. 4.3]). Let f : H ′ → H be an isogeny of
semi-abelian schemes over R such that both Hη and H ′η are abelian schemes,
and such that both the torus parts of H0 = H ⊗

R
k and H ′0 = H ′⊗

R
k are split

tori. Let H\ (resp. (H ′)\) be the Raynaud extension of H (resp. H ′), with
torus part T (resp. T ′) and abelian part A (resp. A′). The isogeny f induces
an isogeny

0 // T ′ i′ //

fT

��

(H ′)\ π′ //

f\

��

A′ //

fA

��

0

0 // T
i
// H\

π
// A // 0

between Raynaud extensions, where the homomorphism fT between tori is
dual to the homomorphism f ∗T : X(T )→ X(T ′) between character groups.

Let F be a cubical invertible sheaf over H, and let F ′ := f ∗F . Choose a
trivialization s : i∗F \ ∼= OT , which determines a cubical invertible sheaf N
over A such that F \ ∼= π∗N . Then the pullback s′ := f ∗T (s) is a trivialization
s′ : (i′)∗(F ′)\ ∼= OT ′, which determines a cubical invertible sheaf N ′ over
A′ such that (F ′)\ ∼= (π′)∗(N ′). Let the invertible sheaf Nχ := N ⊗

OA
Oχ
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(resp. N ′χ′ := N ′ ⊗
OA′

Oχ′) be determined as usual for each χ ∈ X(T ) (resp.

χ′ ∈ X(T ′)) as the weight-χ subsheaf (resp. weight-χ′ subsheaf) of π∗F \ (resp.
(π′)∗(F ′)\). Then we have the natural compatibility N ′f∗T (χ)

∼= f ∗ANχ. In

particular, N ′ ∼= f ∗AN .
For each section s of Γ(H,F), we have a decomposition s =

∑
χ∈X(T )

σNχ (s),

where each σNχ (s) is an element in Γ(A,Nχ). Similarly, for each section s′ of

Γ(H ′, f ∗F), we have a decomposition s′ =
∑

χ′∈X(T ′)

σN
′

χ′ (s′), where each σN
′

χ′ (s′)

is an element in Γ(A′,N ′χ′). Then, with the compatible choices above, we have

f ∗A(σNχ (s)) = σN
′

f∗T (χ)(f
∗s),

where f ∗A : Γ(A,Nχ)→ Γ(A′,N ′fT ∗(χ)) is the canonical morphism.

The proof of this lemma follows immediately from the definitions.
Applying this lemma to the isogeny Φ : G×

S
G → G×

S
G, we obtain the

following proposition:

Proposition 4.3.3.6 (addition formula; see [42, Ch. II, p. 40]). Let π :
G\ → A be the structural morphism, and let L1 and L2 be algebraically
equivalent cubical invertible sheaves over G such that L\1 ∼= π∗M1 and L\2 ∼=
π∗M2 for some cubical invertible sheaves M1 and M2 over A. Let F :=
pr∗1 L1 ⊗

OG×
S
G

pr∗2 L2 and F ′ := Φ∗F . Let N := pr∗1M1 ⊗
OA×

S
A

pr∗2M2 and let

N ′ := Φ∗AN , where ΦA is the isogeny induced by Φ on the abelian part, given
similarly by (x, y) 7→ (x + y, x − y) for all functorial points x and y of A.
Then we have F ∼= (π× π)∗N and F ′ ∼= (π× π)∗N ′, and

Φ∗A(σN(χ,µ)(pr∗1 s1 ⊗ pr∗2 s2)) = σN
′

(χ+µ,χ−µ)(Φ
∗(pr∗1 s1 ⊗ pr∗2 s2)) (4.3.3.7)

for all s1, s2 ∈ Γ(G,L) and χ, µ ∈ X.

Since σN(χ,µ) = σM1
χ ⊗ σM2

µ and σN
′

(χ+µ,χ−µ) = σM1⊗M2
χ+µ ⊗ σM1⊗[−1]∗M2

χ−µ , we

may rewrite the addition formula (4.3.3.7) as

Φ∗A ◦ (σM1
χ ⊗ σM2

µ ) = (σM1⊗M2
χ+µ ⊗ σM1⊗[−1]∗M2

χ−µ ) ◦ Φ∗. (4.3.3.8)
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Here the domains and codomains of the morphisms can be described in the
following commutative diagram.

Γ(G,L1)⊗
R

Γ(G,L2)

σ
M1
χ ⊗σM2

µ

��
Γ(A,M1,χ)⊗

R
Γ(A,M2,µ) Γ(G,L1 ⊗

OG
L2)⊗

R
Γ(G,L1 ⊗

OG
[−1]∗L2)

σ
M1 ⊗M2
χ+µ ⊗σM1 ⊗ [−1]∗M2

χ−µ
��

Φ∗

%%

Γ(A, (M1 ⊗
OA
M2)χ+µ)⊗

R
Γ(A, (M1 ⊗

OA
[−1]∗M2)χ−µ)

Φ∗A ))

Now assume that L1 and L2 are ample and algebraically equivalent to L,
so that the arguments in Section 4.3.2 (such as restriction to weight subspaces
under the K(L)µ-action) apply. For χ, µ ∈ X, the above diagram induces
the following commutative diagram.

Γ(Gη,L1,η)χ̄⊗
K

Γ(Gη,L2,η)µ̄

σ
M1
χ ⊗σM2

µ

��
Γ(Aη,M1,χ,η)⊗

K
Γ(Aη,M2,µ,η)

Γ(Gη,L1,η ⊗
OGη

L2,η)χ+µ⊗
K

Γ(Gη,L1,η ⊗
OGη

[−1]∗L2,η)χ−µ

σ
M1⊗M2
χ+µ ⊗σM1⊗[−1]∗M2

χ−µ
��

prχ+µ,χ−µ ◦Φ∗

��

Γ(Aη, (M1 ⊗
OA
M2)χ+µ,η)⊗

K
Γ(Aη, (M1 ⊗

OA
[−1]∗M2)χ−µ,η)

Φ∗A

��

Here the χ̄ and µ̄ on the left-hand side are classes in X/φ(Y ), while the χ+ µ
and χ− µ on the right-hand side are classes in X/2φ(Y ). We have to use 2φ
instead of φ because the polarizations defined by L1 ⊗

OG
L2 and L1 ⊗

OG
[−1]∗L2

are both twice that defined by L. The morphism pr = prχ+µ,χ−µ above is the
projection to the weight-(χ+ µ, χ− µ) subspace.

For our purpose, the following observation will be useful:

Lemma 4.3.3.9. The left-hand side of (4.3.3.8), when restricted to
Γ(Gη,L1,η)χ̄⊗

K
Γ(Gη,L2,η)µ̄, is nonzero if and only if σM1

χ 6= 0 and σM2
µ 6= 0.
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For the same reason, the right-hand side of (4.3.3.8), when restricted to
Γ(Gη,L1,η ⊗

OGη

L2,η)χ+µ⊗
K

Γ(Gη,L1,η ⊗
OGη

[−1]∗L2,η)χ−µ, is nonzero if and only

if σM1⊗M2
χ+µ 6= 0, σM1⊗M2

χ−µ 6= 0, and prχ+µ,χ−µ ◦Φ∗ 6= 0.

Lemma 4.3.3.10. Given any ample cubical invertible sheaf L over G, there
exists a finite flat homomorphism R→ R′ of complete discrete valuation rings
such that L⊗

R
R′ is algebraically equivalent to a symmetric ample cubical

invertible sheaf L′ over R′. Moreover, we can assume that (L′)\ ∼= π∗M′ for
some symmetric (ample cubical) invertible sheafM over A⊗

R
R′ (see Remark

4.3.3.1 for the justification of (L′)\).

Proof. First let us show that, after replacing K = Frac(R) with a finite ex-
tension K → K ′ of fields, the generic fiber Lη of L is algebraically equivalent
to some symmetric invertible sheaf L′η. Then we can take R′ to be the nor-
malization of R in K ′, and take L′ to be the unique cubical invertible sheaf
extending L′η (by Proposition 3.2.3.1 and Theorem 3.3.2.3).

Since the polarizations induced by Lη and [−1]∗Lη are the same, the
invertible sheaf Lη ⊗

OGη

[−1]∗L⊗−1
η defines a point of the dual abelian variety

G∨η . Since abelian varieties are 2-divisible, by replacing K with a finite
extension field, we may assume that there exists some invertible sheaf N
defining a point of G∨η such that N⊗2 ∼= Lη ⊗

OGη

[−1]∗L⊗−1
η (and [−1]∗N ∼=

N⊗−1). Then L′η := Lη ⊗
OGη

N⊗−1 ∼= [−1]∗Lη ⊗
OGη

N ∼= [−1]∗L′η is symmetric.

It remains to explain the last statement. We shall enlarge R′ freely to
make the following work: By 3 of Corollary 3.2.5.5, we may assume that (L′)\
descends to some (possibly nonsymmetric) M′. Since M′ is ample, T ∗aM′

is symmetric for some torsion point a of A. Let ã be a torsion point of G\

mapping to a, which is canonically identified with a torsion point of G as in
Section 3.4.1. Then it suffices to replace L′ with T ∗ãL′.

By Lemma 4.3.3.10, let us assume from now on that the ample cubical
invertible sheaf L is symmetric and that L\ ∼= π∗M for some symmetric M.

For every χ̄ ∈ X/φ(Y ), since Γ(G,L)χ̄ 6= 0 by Lemma 4.3.2.9, there exists
some χ0 in χ̄ such that σMχ0

6= 0. In particular, σMφ(y0) 6= 0 for some y0 ∈ Y .

Then, by (4.3.3.8) (and Lemma 4.3.3.9), we obtain pr0̄,0̄ ◦Φ∗ 6= 0, σM
⊗2

φ(2y0) 6= 0,

and σM
⊗2

0 6= 0. By (4.3.3.8) again, we obtain σM0 6= 0.
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Lemma 4.3.3.11. The subset Z := {χ ∈ φ(Y ) : σMχ 6= 0} is a subgroup of
φ(Y ).

Proof. We have seen that 0 ∈ Z. If χ, µ ∈ Z, then (4.3.3.8) gives σM
⊗2

2χ 6= 0

and σM
⊗2

2µ 6= 0. Applying (4.3.3.8) again, we get σMχ+µ 6= 0 and σLχ−µ 6= 0.
Hence χ+ µ ∈ Z and χ− µ ∈ Z, as desired.

Lemma 4.3.3.12. We have Z = φ(Y ) in Lemma 4.3.3.11.

Proof. Let W be any subgroup of finite index in φ(Y ) containing Z. We
would like to show that any such W is the whole group φ(Y ).

Let H be the finite flat subgroup of T containing K(L)µ such that W is
the kernel of the restriction X = X(T ) → X(H). As in Section 4.3.2, the
trivialization of i∗Lfor induces a K(L)µ-action on L, so that L descends to an
ample cubical invertible sheaf L over the quotient semi-abelian scheme G :=
G/K(L)µ. By replacing G, H, and L with G, H/K(L)µ, and L, respectively,
we are reduced to the case that φ(Y ) = X (and K(L)µ = 1). Since W
contains Z, each section s ∈ Γ(G,L) has a Fourier expansion s =

∑
χ∈W

σMχ (s)

involving only terms with χ ∈ W . Translating L by elements of G(R), we
see that the same is true for every L′ algebraically equivalent to L (with a
suitable trivialization of i∗L′).

Now we quote the following result of Mumford:

Proposition 4.3.3.13 (Mumford; recorded as [42, Ch. I, Prop. 5.3]). Sup-
pose Z is an abelian variety over an algebraically closed field k, and suppose
L1 and L2 are two ample line bundles over Z. Then Γ(Z,L1 ⊗

OZ
L2) is spanned

by the images of Γ(Z,L1 ⊗
OZ
N )⊗

k
Γ(Z,L2 ⊗

OZ
N⊗−1)→ Γ(Z,L1 ⊗

OZ
L2), for N

running over a Zariski dense subset of Z∨(k).

Proof. The images span a subspace stable under G(L1 ⊗
OZ
L2).

Let us return to the proof of Lemma 4.3.3.12. After making a suitable base
change R ↪→ R′ if necessary, we may assume that Γ(G,L⊗nη ) is generated by
elements of the form T ∗x1

(s)⊗· · ·⊗T ∗xn(s) for n ≥ 1, where x1, . . . , xn ∈ G(R)
satisfy x1+· · ·+xn = 0. Then Proposition 4.3.3.13 implies that every element
of Γ(G,L⊗n) has a Fourier expansion involving only terms with χ ∈ W . As
a result, elements of Γ(G,L⊗n) factor through G/H. (This conclusion is
independent of the base change we made.) Since L is ample over G, this is
possible only if H is trivial and W = φ(Y ), as desired.
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Now we are ready to prove (4.3.1.2) and (4.3.1.12).

Proof of (4.3.1.2). As in the context of (4.3.1.2), let L be any given ample cu-
bical invertible sheaf over G such that L\ ∼= π∗M for some cubical invertible
sheaf M over A. Given any χ ∈ X, since Γ(G,L)χ̄ 6= 0 by Lemma 4.3.2.9,
there exists ξ such that ξ ≡ χ (mod φ(Y )) and such that σM1

ξ 6= 0. On
the other hand, by Lemmas 4.3.3.10 and 4.3.3.12 (and also Remark 4.3.3.1),
after making a finite flat (surjective) base change if necessary, there exists an
ample cubical invertible sheaf L′ over G that is algebraically equivalent to L,
such that (L′)\ ∼= π∗M′ for some cubical invertible sheafM′ over A, with the
additional property that σM

′
µ 6= 0 for every µ ∈ φ(Y ). Then (4.3.3.8) implies

that prξ+µ,ξ−µ ◦Φ∗ 6= 0, σM⊗M
′

ξ+µ 6= 0, and σ
M⊗[−1]∗M′
ξ−µ 6= 0 for every µ ∈ φ(Y ).

Writing χ = ξ + µ = ξ − (−µ), we obtain prχ̄,χ̄ ◦Φ∗ 6= 0, σM⊗M
′

χ 6= 0, and

σ
M⊗[−1]∗M′
χ 6= 0. By (4.3.3.8) again, we obtain σMχ 6= 0, as desired.

Proof of (4.3.1.12). Let us denote by τL and ψL (resp. τL
⊗2

and ψL
⊗2

) the
trivializations associated with L (resp. L⊗2). (As explained in the proofs of
Lemmas 4.3.1.14 and 4.3.1.15, τL and ψL do not depend on the choice ofM,
because a different choice only results in a shift of the indices of the σMχ ’s.

Similarly, τL
⊗2

and ψL
⊗2

do not depend on the choice of M⊗2.)
For all χ, µ ∈ X and y ∈ Y , we have by definition,

σMχ+φ(y) = ψL(y)τL(y, χ) T ∗c∨(y) ◦ σMχ

and
σMχ+µ+φ(y) = ψL(y)τL(y, χ+ µ) T ∗c∨(y) ◦ σMχ+µ.

We have similar formulas for τL
⊗2

and ψL
⊗2

. By (4.3.3.8), we have

Φ∗A ◦ (σMχ+φ(y) ⊗ σMµ+φ(y)) = (σM⊗Mχ+µ+2φ(y) ⊗ σ
M⊗[−1]∗M
χ−µ ) ◦ Φ∗

and
Φ∗A ◦ (σMχ ⊗ σMµ ) = (σM⊗Mχ+µ ⊗ σM⊗[−1]∗M

χ−µ ) ◦ Φ∗.

Since translation by (ι(y), ι(y)) ∈ Gη×
η
Gη corresponds to translation by

(2ι(y), 0) under Φ, we obtain

ψL(y)2τL(y, χ)τL(y, µ) = ψL
⊗2

(2y)τL
⊗2

(2y, χ+ µ).
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By replacing (χ+ µ, 0) with (χ, µ), we obtain similarly

ψL(y)2τL(y, χ+ µ) = ψL
⊗2

(2y)τL
⊗2

(2y, χ+ µ).

Comparing these two relations, we obtain the multiplicativity

τL(y, χ+ µ) = τL(y, χ)τL(y, µ)

of τ in the second variable, as desired.

4.3.4 Dependence of τ on the Choice of L
In this section our goal is to show that τ does not depend fully on L, but
only on the homomorphism λ : G → G∨ induced by L. More precisely,
suppose we have two pairs (G,L1) and (G,L2) in DEGample(R, I), with both
L1,η and L2,η ample over Gη, such that the induced polarizations satisfy
N1λ1,η = N2λ2,η for some integers N1, N2 > 0. Suppose the associated de-
generation data in DDample(R, I) (using the constructions so far) are, respec-

tively, (A,X, Y , φ1, c, c
∨,L\1, τ1, ψ1) and (A,X, Y , φ2, c, c

∨,L\2, τ2, ψ2). Then
our goal is to show that τ1 = τ2.

The starting point is the following:

Lemma 4.3.4.1 (cf. [42, Ch. II, Lem. 6.1]). Let (G,L1), (G,L2), and
(G,L) be three objects in DEGample(R, I), such that L ∼= L1 ⊗

OG
L2,

with respective associated degeneration data (A,X, Y , φ1, c, c
∨,L\1, τ1, ψ1),

(A,X, Y , φ2, c, c
∨,L\2, τ2, ψ2), and (A,X, Y , φ, c, c∨,L\, τ, ψ) as in Corollary

4.3.1.16. Suppose we already know that τ1 = τ2. Then φ = φ1 + φ2,
τ = τ1 = τ2, and ψ = ψ1ψ2.

Proof. Let us assume that L\1 ∼= π∗M1 and L\2 ∼= π∗M2 for some cubical
invertible sheaves M1 and M2 over A, where π : G\ → A is the structural
morphism. Then we also have L\ ∼= π∗M for M := M1 ⊗

OA
M2. Since

the morphisms λ, λ1, and λ2 defined by L, L1, and L2, respectively, satisfy
λ = λ1 + λ2, we have λ\ = λ\1 + λ\2 and hence φ = φ1 + φ2.

Suppose we have nonzero sections s1 ∈ Γ(G,L1) and s2 ∈ Γ(G,L2). Let
s := s1⊗ s2 ∈ Γ(G,L1 ⊗

OG
L2). Then σMχ (s) =

∑
χ1+χ2=χ

σM1
χ1

(s1)⊗σM2
χ2

(s2). If

we translate by c∨(y) and compare the morphisms over η using (4.3.1.7),
then σMχ (s) receives a factor ψ(y)τ(y, χ), while each of the summand

247



σM1
χ1

(s1)⊗σM2
χ2

(s2) receives a factor ψ1(y)τ1(y, χ1)ψ2(y)τ2(y, χ2), which is
equal to ψ1(y)ψ2(y)τ1(y, χ) because τ1 = τ2. If σMχ (s) 6= 0, then we obtain
ψ(y)τ(y, χ) = ψ1(y)ψ2(y)τ1(y, χ). As a result, we see that τ1(y, · ) = τ(y, · )
over the subset of X consisting of differences χ − χ′ between χ and χ′ such
that σMχ (s) 6= 0 and σMχ′ (s) 6= 0. We claim that this subset of X is the whole
X. Then ψ = ψ1ψ2 will also follow.

In the above argument, s has to be in the image of Γ(G,L1)⊗
K

Γ(G,L2)→
Γ(G,L). By Lemma 4.3.1.18, for i = 1, 2, the two trivializations τi and
ψi remain unchanged if we replace Li and Mi respectively with T ∗giLi
and T ∗π(gi)

Mi, where π(gi) is defined by algebraizing πfor(gi,for) by abuse

of notation as in the proof of Lemma 4.3.1.18. Since (4.3.1.2) is true for
all χ ∈ X, it suffices to show that Γ(Gη,Lη) is spanned by images of
Γ(Gη, T

∗
g1
L1,η)⊗

K
Γ(Gη, T

∗
g2
L2,η) → Γ(Gη,Lη), with (g1, g2) running through

a set of S-points of G×
S
G such that T ∗g1

L1 ⊗
OG
T ∗g2
L2
∼= L1 ⊗

OG
L2
∼= L, or

equivalently λ1(g1)+λ2(g2) = 0. Since our goal is to compare morphisms, we
may and we shall make a base change in R and restart with the assumption
that R is a complete discrete valuation ring with algebraically closed residue
field. Then S-points of G∨ (which are of the form λ1(g1) = −λ2(g2)) are
Zariski-dense on G∨, and the claim follows from Proposition 4.3.3.13.

Corollary 4.3.4.2. Let (G,L) be an object in DEGample(R, I) with associ-
ated degeneration datum (A,X, Y , φ, c, c∨,L\, τ, ψ) in DDample(R, I). Then
(A,X, Y , nφ, c, c∨, (L\)⊗n, τ, nψ), with the same τ , is the degeneration datum
associated with (G,L⊗n).

Lemma 4.3.4.3. Let (G,L1) and (G,L2) be two objects in DEGample(R, I),

with respective associated degeneration data (A,X, Y , φ1, c, c
∨,L\1, τ1, ψ1) and

(A,X, Y , φ2, c, c
∨,L\2, τ2, ψ2), such that L1 = f ∗L2 for some f : G → G

whose restriction fη : Gη → Gη to η is an isogeny. Let fY : Y → Y
and f \ : G\ → G\ be the homomorphisms induced by f : G → G, and let
ι1 : Y η → G\

η and ι2 : Y η → G\
η be the homomorphisms corresponding to

τ1 and τ2, respectively (see Lemma 4.2.1.7). Then ι1 and ι2 are related by
f \ ◦ ι1 = ι2 ◦ fY .

In particular, if f = [−1] : G→ G, then ι1 = ι2 as homomorphisms from
Y η to G\

η, or equivalently τ1 = τ2 as trivializations of (c∨× c)∗P⊗−1
A,η .

Proof. By étale descent if necessary, we may assume that X and Y are con-
stant with values X and Y , respectively, and that L\2 ∼= π∗M2 for some
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cubical invertible sheaf M2 over A, where π : G\ → A is the structural
morphism. Let M1 := f ∗AM2, so that naturally L\1 ∼= π∗M1. Let us de-
note by fT : T � T and fA : A � A the isogenies induced by f \, and
let fT∨ : T∨ → T∨ be the isogeny induced by f∨,\. Let fX : X ↪→ X and
fY : Y ↪→ Y be the homomorphisms corresponding to fT and fT∨ , respec-
tively. Consider the morphism

f ∗ : Γ(G,L2)→ Γ(G, f ∗L2) ∼= Γ(G,L1)

given by pulling back the sections by f , and consider the corresponding
weight subspaces

f ∗A : Γ(A,M2,χ)→ Γ(A, f ∗A(M2,χ)) ∼= Γ(A,M1,fX(χ))

for all χ ∈ X, where the last isomorphism follows from fA∨c = cfX . Note
that we have φ1 = fXφ2fY , coming from the relation λ1 = f∨λ2f , where λ1

and λ2 are defined by L1 and L2, respectively. The comparison between σM2
χ

and σM2

χ+φ2(fY (y)) over η gives the relation

ψ2(fY (y))τ2(fY (y), χ) T ∗c∨(fY (y)) ◦ σM2
χ = σM2

χ+φ2(fY (y)),

while the comparison between σM1

fX(χ) and σM1

fX(χ)+φ1(y) gives the relation

ψ1(y)τ1(y, fX(χ)) T ∗c∨(y) ◦ σ
M1

fX(χ) = σM1

fX(χ)+φ1(y).

Since fX(φ2(fY (y))) = φ1(y), pulling back by fA matches the two relations
and gives the natural functorial relation

τ1(y, fX(χ)) = τ2(fY (y), χ).

This is exactly what it means by f \ ◦ ι1 = ι2 ◦ fY .

Corollary 4.3.4.4. Let (G,L) be an object in DEGample(R, I). Then, in the
associated degeneration datum (A,X, Y , φ, c, c∨,L\, τ, ψ), the trivialization τ
depends only on L ⊗

OG
[−1]∗L, and hence only on the λ induced by L.

Proof. Combine Lemmas 4.3.4.1, 4.3.4.3, and 4.2.1.4.

Proposition 4.3.4.5. Let (G,L1) and (G,L2) be two objects in
DEGample(R, I), with associated degeneration data (A,X, Y , φ1, c, c

∨,L\1, τ1, ψ1)

and (A,X, Y , φ2, c, c
∨,L\2, τ2, ψ2), respectively. Then τ1 = τ2 if there are

positive integers N1 and N2 such that N1λ1 = N2λ2, where λ1, λ2 : G → G
are the homomorphisms induced by L1 and L2, respectively.
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Proof. Combine Corollaries 4.3.4.2 and 4.3.4.4.

Remark 4.3.4.6. The proof of Theorem 4.2.1.14 is now complete.

Remark 4.3.4.7. As mentioned in Remark 4.2.1.17, we will show in Section
4.5.5 that the association of τ is independent of the choice of polarizations
(or their positive multiplies), using more details in Mumford’s construction.

4.4 Equivalences of Categories

Our goal in this section is to define, following [42, Ch. III], the categories
DEGpol(R, I), DEGIS(R, I), DEG(R, I), DDpol(R, I), DDIS(R, I), and
DD(R, I), and state the main Theorem 4.4.16 that sets up the equivalences
of categories DEGample(R, I) ∼= DDample(R, I), DEGpol(R, I) ∼= DDpol(R, I),
DEGIS(R, I) ∼= DDIS(R, I), and DEG(R, I) ∼= DD(R, I), using Mumford’s
construction (so-called), including in particular, quasi-inverses of the functor
Fample(R, I) : DEGample(R, I)→ DDample(R, I) in Theorem 4.2.1.14 (defined
by Fourier expansions of theta functions, in Section 4.3) and of the functor
Fpol(R, I) : DEGpol(R, I) → DDpol(R, I) to be defined below (in Definition
4.4.8, following Corollary 4.3.4.4).

First, let us define the categories DEG(R, I), DEGpol(R, I), and
DEGIS(R, I) as follows:

Definition 4.4.1. With assumptions as in Section 4.1, the category
DEG(R, I) has objects G with same conditions as in Definition 4.2.1.1.

By [105, XI, 1.13] (see also Remark 3.3.3.9), since S is noetherian and
normal, each G in DEG(R, I) carries some ample cubical invertible sheaf L.

Definition 4.4.2. With assumptions as in Section 4.1, the category
DEGpol(R, I) has objects of the form (G, λη), where G is an object in
DEG(R, I), and where λη : Gη → G∨η is a polarization of Gη.

Remark 4.4.3. Since S is noetherian and normal as assumed in Section 4.1,
λη : Gη → G∨η extends to a unique homomorphism λ : G → G∨ by Propo-
sition 3.3.1.5. Thus it is unambiguous to write objects of DEGpol(R, I) as
(G, λ).
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Lemma 4.4.4. Given any object (G, λ) in DEGpol(R, I), the invertible sheaf
L := (IdG, λ)∗P, where P is as in Theorem 3.4.3.2, is a (symmetric) ample
cubical invertible sheaf satisfying 2 in Definition 4.2.1.1. In other words,
(G,L) defines an object in DEGample(R, I).

Proof. By Lemma 4.2.1.6, the ampleness of L follows from the ampleness of
the symmetric Lη (see Definition 1.3.2.16). By Proposition 3.3.3.11, since
Lfor is the pullback ofMfor := (IdAfor

, λAfor
)∗PAfor

, it is in the essential image
of (3.3.3.12), as desired.

Definition 4.4.5. With assumptions as in Section 4.1, the category
DEGIS(R, I) has objects of the form (G,F), where G is an object in
DEG(R, I), and where F is an invertible sheaf over G rigidified along the
identity section (and hence endowed with a unique cubical structure by
Proposition 3.2.3.1).

Next, let us define the categories DD(R, I), DDpol(R, I), and DDIS(R, I)
as follows:

Definition 4.4.6. With assumptions as in Section 4.1, the category
DDpol(R, I) has objects of the form (A, λA, X, Y , φ, c, c

∨, τ), with entries
(together with the positivity condition for τ) described as in Definition
4.2.1.13.

Remark 4.4.7. Each object (A, λA, X, Y , φ, c, c
∨, τ) of DDpol(R, I) defines an

object of DDample(R, I) as follows: Let M := (Id, λA)∗PA. Let L\ := π∗M,
where π : G\ → A is the structural morphism. Then L\ admits a canonical
Y -action over η given by

ψ := (IdY , φ)∗τ : 1Y ,η
∼→ (c∨, cφ)∗P⊗−1

A,η
∼= (c∨, λAc

∨)∗P⊗−1
A,η

∼= (c∨)∗M⊗−1
η
∼= ι∗(L\η)⊗−1,

and (A,X, Y , 2φ, c, c∨,L\, τ, ψ) defines an object of DDample(R, I). (However,
this object induces 2λA instead of λA.)

Definition 4.4.8. Following Corollary 4.3.4.4, the functor Fample(R, I) :
DEGample(R, I)→ DDample(R, I) induces a functor

Fpol(R, I) : DEGpol(R, I)→ DDpol(R, I) : (G, λ) 7→ (A, λA, X, Y , φ, c, c
∨, τ),

where A, λA, X, Y , φ, c, and c∨ are defined canonically by (G, λ), and where
τ is defined by any (G,L) in DEGample(R, I) such that L induces a multiple
of λ.
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Remark 4.4.9. For the definition of τ , we can always take L to be (Id, λ)∗P ,
where P is as in Theorem 3.4.3.2 (see Lemma 4.4.4 and Remark 4.4.7).

Definition 4.4.10. With assumptions as in Section 4.1, the category
DD(R, I) has objects of the form (A,X, Y , c, c∨, τ) (or equivalently of
the form (G\, ι : Y η → G\

η)), with entries described as in Definition
4.2.1.13, that can be extended to objects of DDpol(R, I) (or, equivalently, of
DDample(R, I); cf. Remark 4.4.7).

Remark 4.4.11. The extendability of an object in DD(R, I) to an object in
DDpol(R, I) is crucial, because the statements of both the positivity and
symmetry conditions for τ require some choices of λA and φ.

Definition 4.4.12. With assumptions as in Section 4.1, the category
DDIS(R, I) has objects of the form (A,X, Y , fY , c, c

∨,F \, τ, ζ), where
(A,X, Y , c, c∨, τ) defines an object in DD(R, I) (see Definition 4.4.10), with
the remaining entries explained as follows:

1. F \ is a cubical invertible sheaf over G\ (where G\ is defined by c :
X → A∨), defining a Gm-biextension D2(F \) of G\×

S
G\, which (by

Corollary 3.2.5.2) descends uniquely to a Gm-biextension of A×
S
A that

(as an invertible sheaf over A×
S
A) induces a homomorphism λA : A→

A∨ of abelian schemes over S (by the universal property of A∨, as in
Construction 1.3.2.7).

2. fY : Y → X is a homomorphism such that fAc
∨ = cfY . By Lemma

3.4.4.2, fA and fY induce a homomorphism f \ : G\ → G∨,\.

3. A cubical trivialization ζ : 1Y ,η
∼→ ι∗F⊗−1

η compatible with

(IdY × fY )∗τ : 1Y ×
S
Y ,η

∼→ (c∨× cfY )∗P⊗−1
A,η in the sense that

D2(ζ) = (IdY × fY )∗τ . This compatibility makes sense because the
biextension D2(F \) over G\×

S
G\ uniquely descends to a biextension

over A×
S
A, which by 1 above is just (IdA× fA)∗PA.

Moreover, ζ has to satisfy the following finiteness condition (cf. Defini-
tion 4.2.1.11): After passing to a finite étale covering over S that makes Y
constant, there is an integer n ≥ 1 such that Iy · I⊗ny,φ(y) ⊂ R for every y in Y ,
where Iy is defined by ζ as in the case of ψ in Definition 4.2.4.5, and where
Iy,φ(y) is defined by τ as in Definition 4.2.4.6.
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Definition 4.4.13. The forgetful functor DDIS(R, I)→ DD(R, I) has a nat-
ural structure of a (strictly commutative) Picard category (see [14, XVIII,
1.4.2]) defined by the following tensor operations: The tensor product

(A,X, Y , fY , c, c
∨,F \, τ, ζ)⊗(A,X, Y , f ′Y , c, c

∨,F \′, τ, ζ ′)

of two objects in DDIS(R, I) (over the same object in DD(R, I)) is defined to
be

(A,X, Y , fY + f ′Y , c, c
∨,F \ ⊗

O
G\

F \′, τ, ζ + ζ ′).

The tensor inverse

(A,X, Y , fY , c, c
∨,F \, τ, ζ)⊗−1

of an object in DDIS(R, I) is defined to be

(A,X, Y ,−fY , c, c∨, (F \)⊗−1, τ, ζ−1).

Similarly, there are natural tensor operations

(G,F)⊗(G,F ′) := (G,F ⊗
OG
F ′)

and
(G,F)⊗−1 := (G,F⊗−1)

making the forgetful functor DEGIS(R, I) → DEG(R, I) a (strictly commu-
tative) Picard category.

Since DDample(R, I) is naturally a full subcategory of DDIS(R, I), we can
talk about tensor products of objects in DDample(R, I).

Lemma 4.4.14. For each object (A,X, Y , fY , c, c
∨,F \, τ, ζ) in DDIS(R, I),

there exist (noncanonically) objects (A,X, Y , φ1, c, c
∨,L\1, τ, ψ1) and

(A,X, Y , φ2, c, c
∨,L\2, τ, ψ2) in DDample(R, I) such that fY = φ1 − φ2,

F \ ∼= L\1 ⊗
O
G\

(L\2)⊗−1, and ζ = ψ1ψ
−1
2 . In other words, we have

(A,X, Y , fY , c, c
∨,F \, τ, ζ)

∼= (A,X, Y , φ1, c, c
∨,L\1, τ, ψ1)⊗(A,X, Y , φ2, c, c

∨,L\2, τ, ψ2)⊗−1.
(4.4.15)
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Proof. By the positivity condition in Definition 4.4.12, the tuple
(A,X, Y , c, c∨, τ) defines an object in DD(R, I). By Definition 4.4.10, this
means there is an object (A,X, Y , φ, c, c∨,L\, τ, ψ) in DDample(R, I) that
extends (A,X, Y , c, c∨, τ).

Let us translate the statements preceding Definition 4.2.1.13 almost ver-
batim to this context: Let i : T → G\ and π : G\ → A denote the canonical
morphisms. By the normality assumption on S and by Corollary 3.2.5.7,
after making a finite étale surjective base change in S if necessary, we may
assume that the étale sheaf X is constant and that the cubical invertible
sheaves i∗F \ and i∗L\ are trivial.

In this case, each cubical trivialization sF\ : i∗F \ ∼→ OT (resp. s : i∗L\ ∼→
OT ) determines a cubical invertible sheafN (resp. an ample cubical invertible
sheaf M) over A and a cubical isomorphism F \ ∼= π∗N (resp. L\ ∼= π∗M),
depending uniquely on the choice of sF\ (resp. s). Take a sufficiently large
integerN > 0 such thatM1 := N ⊗

OA
M⊗N andM2 :=M⊗N are both ample.

Let L\1 := π∗M1 and L\2 := π∗M2, so that F \ ∼= L\1 ⊗
OA

(L\2)⊗−1 because

N ∼= M1 ⊗
OA
M⊗−1

2 . Let φ2 = Nφ, and let ψ2 = ψN . Then φ2 : Y ↪→ X

is injective because φ is, and ψ2 satisfies the positivity and compatibility
conditions because ψ does. Set φ1 = fY + φ2 and ψ1 = ζψ2. By increasing
N if necessary, we may assume that φ1 : Y ↪→ X is injective, and that
ψ1 satisfies the positivity and compatibility conditions as ψ2 does (by the
finiteness condition for ζ; see Definition 4.4.12).

Thus, by étale descent, we obtain two objects (A,X, Y , φ1, c, c
∨,L\1, τ, ψ1)

and (A,X, Y , φ2, c, c
∨,L\2, τ, ψ2) in DDample(R, I) (over the original base

scheme) realizing the relation (4.4.15), as desired.

Theorem 4.4.16. With assumptions as in Section 4.1, there are equivalences
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of categories

Mample(R, I) : DDample(R, I)→ DEGample(R, I) :

(A,X, Y , φ, c, c∨,L\, τ, ψ) 7→ (G,L),

Mpol(R, I) : DDpol(R, I)→ DEGpol(R, I) :

(A, λA, X, Y , φ, c, c
∨, τ) 7→ (G, λη),

MIS(R, I) : DDIS(R, I)→ DEGIS(R, I) :

(A,X, Y , fY , c, c
∨,F \, τ, ζ) 7→ (G,F),

M(R, I) : DD(R, I)→ DEG(R, I) :

(G\, ι : Y η → G\
η) or (A,X, Y , c, c∨, τ) 7→ G,

which are given by generalizations of Mumford’s construction in [95] and
are compatible with each other under the natural forgetful functors. The
quasi-inverses of Mample(R, I) and Mpol(R, I) are given, respectively, by the
functors

Fample(R, I) : DEGample(R, I)→ DDample(R, I)

and
Fpol(R, I) : DEGpol(R, I)→ DDpol(R, I)

defined above in Theorem 4.2.1.14 and Definition 4.4.8. Moreover, the func-
tors MIS(R, I) and M(R, I) respect the tensor structures of DDIS(R, I) →
DD(R, I) and DEGIS(R, I)→ DEG(R, I) in Definition 4.4.13.

The proof will be given in Section 4.5 following Faltings and Chai’s gen-
eralization of Mumford’s construction.

4.5 Mumford’s Construction

The aim of this section is to explain Mumford’s construction, which
is a construction designed by Mumford in [95] that assigns objects in
Ob(DEGample(R, I)) to a certain subcollection of the split objects in
Ob(DDample(R, I)) (to be described in Section 4.5.1). In [42, Ch. III],
Faltings and Chai explained that Mumford’s construction (for split objects)
is sufficient for defining a functor from (all of) DDIS(R, I) to DEGIS(R, I)
that induces quasi-inverses for Fample(R, I) and Fpol(R, I). We will explain
their arguments in Section 4.5.4.
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4.5.1 Relatively Complete Models

Definition 4.5.1.1. With assumptions as in Section 4.1, the category
DDsplit

ample(R, I) has objects consisting of 9-tuples (A,M, X, Y , φ, c, c∨, τ, ψ)
as in Definition 4.2.1.13 (with the positivity conditions for ψ and τ),
where X and Y are constant with values X and Y , respectively, and where
M is an ample invertible sheaf over A. (In this case, for simplicity,
we shall often denote X and Y by X and Y , respectively.) There is a
natural functor DDsplit

ample(R, I) → DDample(R, I) defined by sending the tuple

(A,M, X, Y , φ, c, c∨, τ, ψ) to (A,X, Y , φ, c, c∨,L\ := π∗M, τ, ψ), where
π : G\ → A is the structural morphism.

Then ψ : 1Y ,η
∼→ ι∗(L\η)⊗−1 can be viewed as a trivialization of the cubical

invertible sheaf (c∨)∗M⊗−1
η over the constant group Yη, which extends to a

section of (c∨)∗M⊗−1 over YS and is congruent to zero modulo I (cf. Defini-
tion 4.2.1.11). Note that DDsplit

ample(R, I) is not embedded as a subcategory of
DDample(R, I), because in general there is no unique choice of M satisfying
L\ = π∗M. Indeed, the possible choices of such M form a torsor under X
(by Lemma 3.2.2.11, Remark 3.2.2.10, and Proposition 3.2.5.4).

Our first major goal is to construct an object (G,L) in DEGample(R, I)

for each object (A,M, X, Y, φ, c, c∨, τ, ψ) in DDsplit
ample(R, I), such that (G,L)

gives (up to isomorphism) the tuple (A,X, Y, φ, c, c∨, φ,L\ := π∗M, τ, ψ) via
Theorem 4.2.1.14. One of Mumford’s insights is to axiomatize the desired
conditions of partial compactifications of (G\,L\) on which Y acts:

Definition 4.5.1.2. A relatively complete model of an object
(A,M, X, Y, φ, c, c∨, τ, ψ) in DDsplit

ample(R, I) consists of the following data:

1. An integral scheme P \ locally of finite type over A (and hence over
S) containing G\ as an open dense subscheme. Again, we denote the
structural morphism by π : P \ → A.

2. An invertible sheaf over P \ extending the invertible sheaf π∗M over G\,
which we again denote by L\ by abuse of notation.

3. An action of G\ on P \ extending the translation action of G\ on itself.
We shall denote this action by Tg : P \ ∼→ P \ for each functorial point
g of G\.
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4. An action of Y on (P \,L\) extending the action of Y on (G\
η, π

∗Mη).

We shall denote this action by Sy : P \ ∼→ P \ and S̃y : S∗yL\
∼→ L\ for

each y ∈ Y . (Since P \ contains the identity section of G\, this action
defines for each y ∈ Y an extension of ι(y) to a section of P \ over S.)

5. An action of G\ on the invertible sheaf N := L\ ⊗
O
P\

π∗M⊗−1 over P \

extending the translation action of G\ on OG\. We shall denote this
action by T̃g : T ∗gN

∼→ N for each functorial point g of G\.

Moreover, the above data are required to satisfy the following conditions:

(i) There exists an open G\-invariant subscheme U ⊂ P \ of finite type over
S such that P \ = ∪

y∈Y
Sy(U).

(ii) L\ is ample over P \ in the sense that the complement of the zero
sets of global sections of (L\)⊗n for all n ≥ 1, define a basis of the
(Zariski) topology of P \. (In [59, II, 4.5] Grothendieck gave several mu-
tually equivalent definitions of ampleness, but only over quasi-compact
schemes. As Mumford remarked in [95, §2], the generalization here
seems to be the most suitable for our purpose.)

(iii) (Completeness condition) Let Υ(G\) be the set of all valuations υ of
the rational function field K(G\) of G\ such that υ(R) ≥ 0, namely, the
underlying set of Zariski’s Riemann surface of K(G\)/R. For each
υ in Υ(G\) with valuation ring Rυ, let Sυ := Spec(Rυ), and denote by
xυ the center of υ on A (which exists because A is proper over S), which
can be interpreted as an Sυ-valued point x̃υ : Sυ → A. For each y ∈ Y
and χ ∈ X, let Iy,χ be the invertible R-submodule of K as in Definition
4.2.4.6. Then the completeness condition is: For each υ ∈ Υ(G\) such
that υ(I) > 0, υ has a center on P \ (which then necessarily lies on
P \

0 := P \×
S
S0) if, for each y ∈ Y , there exists an integer ny > 0 such

that υ(I
⊗ny
y,φ(y) · x̃∗υ(Oφ(y))) ≥ 0.

Remark 4.5.1.3. In the completeness condition (iii), we need to allow valua-
tions of rank greater than one (see [116, Ch. VI] for a classical treatment on
this topic).

Remark 4.5.1.4. Our completeness condition is much weaker than Mumford’s
[95, Def. 2.1(ii)] and Faltings–Chai’s [42, Ch. III, Def. 3.1(3)], as we only
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require one direction of the implications in the special case that υ(I) > 0. We
weaken the condition because the original condition is only used in Mumford’s
proof of [95, Prop. 3.3] to show that the irreducible components of P \

0 are
proper, and because our weaker version suffices.

We will prove the existence of relatively complete models by writing down
explicitly the Proj of an explicit graded OA-algebra, under a stronger assump-
tion to be specified later. We shall follow the constructions in [95] and [42,
Ch. III, §3] very closely.

Construction 4.5.1.5. Let π : G\ → A denote the canonical morphism, and
let us write OG\ instead of π∗OG\ by abuse of notation as before. Let us
define two graded OA-algebras

S1 := OA[Oχθ]χ∈X = ⊕
n≥0

( ⊕
χ∈X

Oχ)θn ∼= ⊕
n≥0

OG\θ
n

and
S2 := OA[M⊗

OA
Oχθ]χ∈X = ⊕

n≥0
( ⊕
χ∈X

(M⊗n ⊗
OA

Oχ))θn,

where θ is a free variable of degree 1 giving the gradings.
Note that G\ acts on OG\ by translation, or by the OA×

S
A-algebra

morphism m∗ : m∗AOG\ → pr∗1 OG\ ⊗
O
G\ ×

S
G\

pr∗2 OG\ , whose restric-

tion to each weight-χ subspace factors through the isomorphism
m∗χ : m∗AOχ

∼→ pr∗1 Oχ ⊗
OA×

S
A

pr∗2 Oχ given by the theorem of the square over

A×
S
A. For each g ∈ G\, these can be written as morphisms of OA-modules

T̃g : T ∗π(g)Oχ
∼→ Oχ,

which induces an action of G\ on S1 given by

T̃g : T ∗π(g)Oχ
∼→ Oχ

covering the translation by π(g) on A. In particular, if t ∈ T , then π(t) = eA,
and we have

T̃t : Oχ
∼→ Oχ

given exactly by multiplication by χ(t).
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Recall that (in Section 4.3.1) the Y -action on (π∗M)η ∼=
⊕
χ∈X

(Mη ⊗
OA,η

Oχ,η) is given by

ψ(y)τ(y, χ) : T ∗c∨(y)(Mη ⊗
OA,η

Oχ,η)

∼=Mη ⊗
OA,η

Oχ+φ(y),η ⊗
OS,η
Mχ(c∨(y))

∼→Mη ⊗
OA,η

Oχ+φ(y),η.

This action extends to an action on the whole of S2,η by

S̃y = ψ(y)nτ(y, χ) : T ∗c∨(y)(M⊗n
η ⊗

OA,η
Oχ,η)

∼→M⊗n
η ⊗

OA,η
Oχ+nφ(y),

which covers the translation by c∨(y) on A. Note that this agrees with T̃ι(y)

when n = 0.
Following [95] and [42], we define a star F in X to be a finite subset of

X generating X (as a commutative group) such that 0 ∈F and −F =F.
Let F be such a star; we define two subsheaves of graded OA-algebras of

S1,η and S2,η, respectively, by

R1,F := OA[(Iy · Iy,α · Oα+φ(y))θ]y∈Y,α∈F

and

R2,F := OA[(Iy · Iy,α · M ⊗
OA

Oα+φ(y))θ]y∈Y,α∈F

∼= OA[S̃y(T
∗
c∨(y)(M⊗

OA
Oα))θ]y∈Y,α∈F.

Here we have used the isomorphisms ψ(y) : M(c∨(y))
∼→ Iy and τ(y, α) :

Oχ(c∨(y))
∼→ Iy,α by the very definitions of Iy and Iy,α (see Definitions

4.2.4.5 and 4.2.4.6).
By construction of Proj, we have a canonical isomorphism

Proj
OA

(R1,F) ∼= Proj
OA

(R2,F). We shall denote this scheme (up to

the above-mentioned isomorphism) by P \ = P \
(φ,ψ),F, with structural

morphism π : P \ → A. Regarding P \
(φ,ψ),F as Proj

OA
(R1,F) endows it with

an invertible sheaf N that is relatively ample over A (in the appropriate
sense for morphisms only locally of finite type as in Definition 4.5.1.2),
because sections of powers of N must give a basis of Proj

OA
(R1,F) by the

very construction of Proj. On the other hand, regarding it as Proj
OA

(R2,F)
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endows it with an ample invertible sheaf L\ = N ⊗
O
P\

π∗M (again in the

sense of Definition 4.5.1.2) because M is ample.
The pair (P \

(φ,ψ),F,L\) inherits a natural G\-action from the action T̃ on

S1,η, because T ∗π(g)R1,F, for each functorial point g of G\, is generated by

T ∗π(g)(Iy · Iy,α · Oα+φ(y))θ, and we have

T̃g : T ∗π(g)(Iy · Iy,α · Oα+φ(y))
∼→ Iy · Iy,α · Oα+φ(y)

because Iy and Iy,α are invertible R-submodules in K, which do not intervene
with the translation by π(g) : S → A. We shall denote this action by
Tg : P \ ∼→ P \ for each functorial point g of G\.

Similarly, the pair (P \
(φ,ψ),F,L\) inherits a natural Y -action from

the action S̃ on S2,η, because T ∗c∨(z)R2,F, for z ∈ Y , is generated by

T ∗c∨(z)S̃y(T
∗
c∨(y)(M⊗

OA
Oα))θ, and because S̃zT

∗
c∨(z)S̃yT

∗
c∨(y) = S̃z+yT

∗
c∨(z+y)

by the definition of S̃. We shall denote this action by Sz : P \ ∼→ P \ and
S̃z : S∗zL\

∼→ L\. (This finishes Construction 4.5.1.5.)

To make P \
(φ,ψ),F a relatively complete model, we need one additional

condition:

Condition 4.5.1.6. We have Iy · Iy,α ⊂ R for all y ∈ Y and all α ∈F.

This condition is not necessarily satisfied by an arbitrary split object
(A,M, X, Y, φ, c, c∨, τ, ψ) in DDsplit

ample(R, I).

Lemma 4.5.1.7 (cf. [95, Lem. 1.4] and [42, Ch. III, Prop. 3.2]). Let R be
a noetherian normal domain with fraction field K. Let a, a′ : Y → Inv(R)
be multiplicatively quadratic functions, b : Y × X → Inv(R) a bimultiplica-
tive function, and φ, φ′ : Y → X homomorphisms between free commutative
groups of the same finite rank such that φ is injective and such that

a(y1 + y2) = a(y1) · a(y2) · b(y1, φ(y2))

and
a′(y1 + y2) = a′(y1) · a′(y2) · b(y1, φ

′(y2))

for all y1, y2 ∈ Y . Suppose moreover that a(y) ⊂ R and a′(y) ⊂ R for all but
finitely many y ∈ Y . Then, for each α in X, there exists an integer n0 > 0
such that, for all y ∈ Y and n ≥ n0,

a(y) · b(y, 2nφ(y)) · b(y, α) ⊂ R,
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and
a′(y) · b(y, 2nφ(y)) · b(y, α) ⊂ R.

Proof. Since X and Y are finitely generated, all but finitely many discrete
valuations υ ∈ Υ1 satisfy υ(a(y)) = 0, υ(a′(y)) = 0, and υ(b(y, χ)) = 0 for
all y ∈ Y and χ ∈ X. Hence, by Lemma 4.2.4.2, we are reduced to the
case where R is a discrete valuation ring, by taking the maximum of the n0’s
obtained from (the finitely many) such cases. Let us take any υ ∈ Υ1. Then
υ ◦ a is a real-valued quadratic function, whose associated bilinear pairing
υ ◦ b is symmetric and positive semidefinite on Y ×φ(Y ) ⊂ Y ×X.

Note that υ(b( · , φ( · ))) defines a positive semidefinite symmetric bilinear
pairing on (Y⊗

Z
R)×(Y⊗

Z
R), which restricts to υ(b( · , · )) on Y ×X when we

realize both Y and X as lattices inside Y⊗
Z
R.

Suppose y ∈ Y is not in Rad(υ(b( · , φ( · )))), the radical (namely, the
annihilator of the whole space) of the positive semidefinite symmetric bi-
linear pairing υ(b( · , φ( · ))) on Y . Then there is some z ∈ Y such that
υ(b(y, φ(z))) 6= 0. If υ(b(y, φ(y))) = 0, then υ(b(ny + z, φ(ny + z))) =
2nυ(b(y, φ(z))) + υ(b(z, φ(z))) < 0 for some n ∈ Z, which contradicts the
positive semidefiniteness of υ(b( · , φ( · ))). As a result, υ(b(y, φ(y))) > 0 if
and only if y 6∈ Rad(υ(b( · , φ( · )))).

We claim that it suffices to show that there is an integer n1 > 0 such that
υ(b(y, 2nφ(y)) · b(y, α)) ≥ 0 for all y ∈ Y and n ≥ n1.

This is because there are only finitely many y ∈ Y such that υ(a(y)) < 0
or υ(a′(y)) < 0. If υ(a(y)) < 0, then, as in Section 4.2.4, the fact that
a(ky) ⊂ R for all but finitely many k ∈ Z forces υ(b(y, φ(y))) > 0. Similarly,
if υ(a′(y)) < 0, then υ(b(y, φ′(y))) > 0 shows that y 6∈ Rad(υ(b( · , φ( · )))),
and hence υ(b(y, φ(y))) > 0. In either case, there is an integer n2 > 0 such
that υ(a(y)b(y, n2φ(y))) ≥ 0 and υ(a′(y))b(y, n2φ(y)) ≥ 0 for all y ∈ Y , and
it suffices to take n0 = n1 + n2. This proves the claim.

Now let us assume that υ(b( · , φ( · ))) is positive definite by replacing
Y⊗
Z
R with its quotient by Rad(υ(b( · , φ( · )))). The images of Y and X

under this quotient are again lattices because Rad(υ(b( · , φ( · )))) is ratio-
nally defined. Then υ(b( · , φ( · ))) defines a norm ‖ · ‖υ defined by ‖y‖υ :=
υ(b(y, φ(y)))1/2 on the real vector space Y⊗

Z
R, and we have the Cauchy–

Schwarz inequality |υ(b(y, α))| ≤ ‖y‖υ‖α‖υ. As a result, we have

υ(b(y, 2nφ(y))b(y, α)) ≥ 2n‖y‖2
υ − ‖y‖υ‖α‖υ ≥ (2n‖y‖υ − ‖α‖υ)‖y‖υ.
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Now it suffices to show that there exists an integer n1 > 0 such that ‖y‖υ ≥
1

2n1
‖α‖υ for all y 6= 0 in Y . Since Y is a lattice in Y⊗

Z
R, which is discrete

with respect to the topology defined by ‖ · ‖υ, there is an open ball {y ∈
Y⊗
Z
R : ‖y‖υ < r} that contains no element of Y but 0. Hence we can take

any integer n1 >
1
2r
‖α‖υ.

Corollary 4.5.1.8. Given an object (A,M, X, Y, φ, c, c∨, τ, ψ) in
DDsplit

ample(R, I), and given an invertible sheaf M′ over A that is either ample
or trivial, suppose that we have φ′ and ψ′ such that

(A,X, Y, φ′, c, c∨, (L\)′ = π∗M′, τ, ψ′)

defines an object in DDIS(R, I). Then there is an integer n0 > 0 such that,
for every n ≥ n0, both the tuples

(A,M⊗n+1 ⊗
OA

[−1]∗M⊗n, X, Y, (2n+ 1)φ, c, c∨, τ, ψn+1[−1]∗ψn)

and

(A,M′ ⊗
OA
M⊗n ⊗

OA
[−1]∗M⊗n, X, Y, φ′ + 2nφ, c, c∨, τ, ψ′ψn[−1]∗ψn)

satisfy Condition 4.5.1.6.

Proof. Let Iy and Iy,α be defined by (A,M, X, Y, φ, c, c∨, τ, ψ) as usual (see
Definitions 4.2.4.5 and 4.2.4.6). Let I ′y be either trivial, in the case thatM′ is
trivial, or otherwise defined by the tuple (A,M′, X, Y, φ′, c, c∨, τ, ψ′) as usual.

Let us consider the functions a : Y → Inv(R) : y 7→ Iy, a
′ : Y → Inv(R) :

y′ 7→ I ′y, and b : Y ×X → Inv(R) : (y, χ) 7→ Iy,χ, which together with φ and
φ′ satisfy the requirement of Lemma 4.5.1.7. Then there is an integer n0 ≥ 2
such that Iy · Iy,2nφ(y) · Iy,α ⊂ R and I ′y · Iy,2nφ(y) · Iy,α ⊂ R for all n ≥ n0 and
all of the finitely many α ∈F. Note that Condition 4.5.1.6 for the tuple

(A,M⊗n+1 ⊗
OA

[−1]∗M⊗n, X, Y, (2n+ 1)φ, c, c∨, τ, ψn+1[−1]∗ψn)

is given by

I(n+1)y · I−ny · Iy,α = Iy · Iy,n(n+1)φ(y) · Iy,α ⊂ R,
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and Condition 4.5.1.6 for the tuple

(A,M′ ⊗
OA
M⊗n ⊗

OA
[−1]∗M⊗n, X, Y, φ′ + 2nφ, c, c∨, τ, ψ′ψn[−1]∗ψn)

is given by
I ′y · Iny · I−ny · Iy,α = I ′y · Iy,n2φ(y) · Iy,α ⊂ R,

which are both satisfied because n(n+ 1) ≥ n2 ≥ 2n and Iy,φ(y) ⊂ R.

By the very definition of Proj, the scheme P \
(φ,ψ),F is covered by open

subschemes

Uy,α := Spec
OA

(OA[I−1
y · I−1

y,α · Iz · Iz,β · Oβ−α+φ(z−y)]z∈Y,β∈F)

relatively affine over A, with y ∈ Y and α ∈F, which are all integral schemes
over S. Moreover, for each z ∈ Y , it is clear from the construction that Sz
maps Uy,α to Uz+y,α. Therefore, there are only finitely many Y -orbits in the
collection {Uy,α}y∈Y,α∈F, with representatives given by {U0,α}α∈F.

Lemma 4.5.1.9. If Condition 4.5.1.6 is satisfied, then the open subscheme
U0,0 of P \

(φ,ψ),F is isomorphic to G\.

Proof. If Iz · Iz,β ⊂ R for all z ∈ Y and α ∈ F, then we have U0,0 =
Spec

OA
(OA[Iz · Iz,β · Oβ+φ(z)]z∈Y,β∈F) = Spec

OA
(OA[Oβ]β∈F) ∼= G\.

Lemma 4.5.1.10 (cf. [95, Lem. 1.3]). Suppose that for every y in Y − {0},
we are given an integer ny > 0. Then there exist finitely many y1, . . . , yk ∈
Y − {0}, and a finite set Q ⊂ Y such that, for each z ∈ Y −Q,

Iyi,φ(z) = Iz,φ(yi) ⊂ I
⊗nyi
yi,φ(yi)

(4.5.1.11)

for some yi, 1 ≤ i ≤ k.

Proof. Since Y is finitely generated, all but finitely many discrete valuations
υ ∈ Υ1 satisfy υ(Iy,φ(z)) = 0 for all y, z ∈ Y . Hence, by Lemma 4.2.4.2, it
suffices to fix a choice of a discrete valuation υ ∈ Υ1 and verify (4.5.1.11) by
evaluating υ.

Note that B(y, z) := υ(Iy,φ(z)) defines a positive semidefinite symmet-
ric pairing on Y ×Y , which extends by linearity to a positive semidefinite
symmetric pairing on (Y⊗

Z
R)×(Y⊗

Z
R). For each y ∈ Y − {0}, let

Cy :=

{
z ∈ Y⊗

Z
R : B(y, z) > nyB(y, y) for all i

such that y 6∈ Rad(B), the radical of B

}
.
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Then Cy is a nonempty convex open subset of Y⊗
Z
R, and r · Cy ⊂ Cy if

r ∈ R≥1. We claim that
∞
∪
N=1

∪
y∈Y−{0}

1
N
Cy = Y⊗

Z
R− {0}.

Since the radicals Rad(B) are all spanned by elements in Y , they are
rationally defined subspaces. Therefore, for each z ∈ Y⊗

Z
R, we can find

y ∈ Y⊗
Z
Q such that

1. if z ∈ Rad(B), then y ∈ Rad(B) as well;

2. if z 6∈ Rad(B), then B(y, z) > 0.

That is, we can approximate each z ∈ Y⊗
Z
R by an element in Y⊗

Z
Q in the

intersection of those Rad(B) containing z. On the other hand, for those
Rad(B) not containing z, we have B(z, z) > 0 (as in the proof of Lemma
4.5.1.7), and hence B(y, z) > 0 when y is close to z. Therefore N · z ∈ Cy if
N is sufficiently large, and hence z ∈ 1

N
Cy. This proves the claim.

By compactness of the unit sphere in Y⊗
Z
R (with respect to the Euclidean

norm defined by any basis), there exist finitely many yj ∈ Y−{0} and integers

Nj > 0, such that
l
∪
j=1

1
Nj
Cyj ⊃ (unit sphere). Then we also have

l
∪
j=1

Cyj ⊃
∪
r∈R

r≥N := max
1≤j≤l

(Nj)

r · (unit sphere). Let Q be the set of elements of Y that lie

inside the ball of radius N = max
1≤j≤l

(Nj), which is finite because Y is discrete.

Then, for each z ∈ Y −Q, there is a yj such that B(z, yj) ≥ nyjB(yj, yj), as
desired.

Proposition 4.5.1.12 (cf. [95, Prop. 2.4]). If Condition 4.5.1.6 is satisfied,
then the open subscheme U0,α of P \ is of finite type over S for every α ∈F.

Proof. For each β ∈F and z ∈ Y set

Mz,β := Iz · Iz,β · Oβ−α+φ(z).

Then U0,α = Spec
OA

(OA[Mz,β]z∈Y,β∈F). We would like to show that it suffices

to take finitely many Mz,β’s as “generators”.
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For each y ∈ Y , we have the following relations:

Mz,β = Iz · Iz,β · Oβ−α+φ(z) = Iy+(z−y) · Iy+(z−y),β · Oβ−α+φ(y)+φ(z−y)

= Iy · Iz−y · Iy,φ(z−y) · Iy,α · Iy,β−α · Iz−y,β · Oφ(y) · Oβ−α+φ(z−y)

= Iy,φ(z−y) · Iy,β−α · (Iy · Iy,α · Oφ(y)) · (Iz−y · Iz−y,β · Oβ−α+φ(z−y))

= Iy,φ(z−y)+β−α ·My,α ·Mz−y,β.

For each integer n, let us write

Iy,φ(z−y)+β−α

= Iy,φ(z) · I⊗−1
y,φ(y) · Iy,β−α = (Iy,φ(z) · I⊗−ny,φ(y)) · (I

⊗n−2
y,φ(y) · Iy,β−α) · Iy,φ(y).

By Lemma 4.5.1.7, there is an integer n0 > 0 such that I⊗n0−2
y,φ(y) ·Iy,β−α ⊂ R for

all y and for all of the finitely many β ∈ F. By Lemma 4.5.1.10, there is a
finite subset {y1, . . . , yk} of nonzero elements in Y and a finite subset Q ⊂ Y
such that, for each z ∈ Y −Q, there is some yi such that Iyi,φ(z) · I⊗−n0

yi,φ(yi)
⊂ R.

By the positivity condition of τ , we have Iyi,φ(yi) ⊂ I, because yi 6= 0. Hence,
for each z ∈ Y −Q, there is some yi such that

Mz,β ⊂ I ·Myi,α ·Mz−yi,β.

We may repeat this process as long as z−yi 6∈ Q. We claim that this process
always stops in a finite number of steps. Then the proposition will follow,
because we only need the finitely many generators Myi,α and Mq,β for q ∈ Q
(instead of all of Mz,β).

By Condition 4.5.1.6,

Mz,β = Iz · Iz,β · Oβ−α+φ(z) ⊂ Oβ−α+φ(z)

for all z ∈ Y and β ∈F. If we have

Mz,β ⊂ I ·Myi1 ,α
·Mz−yi1 ,β ⊂ I2 ·Myi1 ,α

·Myi2 ,α
·Mz−yi1−yi2 ,β

⊂ · · · ⊂ Im ·Myi1 ,α
·Myi2 ,α

· . . . ·Myim ,α
·Mz−

∑
1≤i≤m

yim ,β
,

then

Mz,β ⊂ Im · Oφ(yi1 ) · Oφ(yi2 ) · . . . · Oφ(yim ) · Oβ−α+φ(z)−
∑

1≤i≤m
φ(yim )

⊂ Im · Oβ−α+φ(z).
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If this happens for all m > 0, then Mz,β ⊂
∞
∩
m=1

(Im ·Oβ−α+φ(z)) = 0, because

Oβ−α+φ(z) is an invertible sheaf over the abelian scheme A overR, and because
R is noetherian; but this is impossible. Therefore the process must stop in a
finite number of steps, as claimed.

Corollary 4.5.1.13. If Condition 4.5.1.6 is satisfied, then the affine open
subscheme Uy,α of P \ is of finite type over S for all y ∈ Y and all α ∈F.

Proof. This is because Uy,α = Sy(U0,α).

Corollary 4.5.1.14. Suppose Condition 4.5.1.6 is satisfied. If we take U to
be the finite union of those U0,α with α running over elements in F, then U
is of finite type over S, and we have P \ = ∪

y∈Y
Sy(U). In particular, P \ is

locally of finite type.

Proposition 4.5.1.15 (cf. [95, Thm. 2.5] and [42, Ch. III, Prop. 3.3]). If
Condition 4.5.1.6 is satisfied, then the pair (P \

(φ,ψ),F,L\) given in Construc-
tion 4.5.1.5 is a relatively complete model.

Proof. So far we have constructed (P \
(φ,ψ),F,L\) with all the data 1–5 in

Definition 4.5.1.2, and we have verified conditions (i) and (ii) in the definition
as well. It only remains to verify condition (iii), namely, the completeness
condition. That is, for each υ ∈ Υ(G\) (with center xυ on A) such that
υ(I) > 0 and such that, for each y ∈ Y , there exists an integer ny > 0 such

that υ(I
⊗ny
y,φ(y) · x̃∗υ(Oφ(y))) ≥ 0, we need to show that υ has a center on P \

(φ,ψ),F.

Since P \
(φ,ψ),F is the union of Uy,α, each of which is relatively affine over

A, the valuation υ has a center on P \
(φ,ψ),F if it has one on some x̃∗υ(Uy,α).

For each z ∈ Y and β ∈F, set

Nz,β := Iz · Iz,β · Oβ+φ(z),

so that

x̃∗υ(Uy,α) ∼= Spec(Rυ[x̃
∗
υ(Ny,α)⊗−1 ⊗

Rυ
x̃∗υ(Nz,β)]z∈Y,β∈F).

Then υ has a center on P \
(φ,ψ),F if min

z∈Y
υ(x̃∗υNz,β) exists for each of the finitely

many β ∈F. Let us fix a choice of β from now on.
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Consider the following relations for each y ∈ Y (cf. the proof of Proposi-
tion 4.5.1.12):

Nz,β = Iz · Iz,β · Oβ+φ(z) = Iy+(z−y) · Iy+(z−y),β · Oβ+φ(y)+φ(z−y)

= Iy · Iz−y · Iy,φ(z−y) · Iy,β · Iz−y,β · Oφ(y) · Oβ+φ(z−y)

= Iy,φ(z−y) · Iy,β · (Iy · Oφ(y)) · (Iz−y · Iz−y,β · Oβ+φ(z−y))

= Iy,φ(z−y)+β · (Iy · Oφ(y)) ·Nz−y,β.

For each integer n, let us write

Iy,φ(z−y)+β · (Iy · Oφ(y))

= Iy,φ(y) · (Iy,φ(z) · I⊗−2−n−ny
y,φ(y) ) · (I⊗ny,φ(y) · Iy,β) · (Iy · I⊗nyy,φ(y) · Oφ(y)),

where ny > 0 is an integer such that υ(I
⊗ny
y,φ(y) · x̃∗υ(Oφ(y))) ≥ 0, which exists by

assumption. By Lemma 4.5.1.7, there is an integer n0 > 0 such that I⊗n0

y,φ(y) ·
Iy,β ⊂ R for all y. By Lemma 4.5.1.10, there is a finite subset {y1, . . . , yk}
of Y − {0} and a finite subset Q ⊂ Y such that, for all z ∈ Y − Q, there
is some yi such that Iyi,φ(z) · I⊗−2−n0−ny

yi,φ(yi)
⊂ R. By the positivity condition of

τ , we have Iyi,φ(yi) ⊂ I because yi 6= 0. Hence, for each z ∈ Y − Q, there is
some yi such that

Nz,β ⊂ I · (Iyi · I
⊗nyi
yi,φ(yi)

· Oφ(yi)) ·Nz−yi,β,

and so that, by taking the value of υ at x̃υ,

υ(x̃∗υNz,β) ≥ υ(I) + υ(Iyi · I
⊗nyi
yi,φ(yi)

· x̃∗υ(Oφ(yi))) + υ(x̃∗υNz−yi,β)

> υ(x̃∗υNz−yi,β).

Here we have used Iy ⊂ R and υ(R) ≥ 0. This shows that the minimum of
υ(x̃∗υNz,β) occurs in the finite set Q, and proves the existence of the center

of υ on P \ (or rather P \
0 := P \×

S
S0).

4.5.2 Construction of the Quotient

Suppose now that we are given a relatively complete model (P \,L\) of an
object (A,M, X, Y, φ, c, c∨, τ, ψ) in DDsplit

ample(R, I). (We do not assume that
it satisfies Condition 4.5.1.6.) The goal of this section is to construct a
“quotient” of (G\,L\) by Y in an appropriate sense.
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Remark 4.5.2.1. To avoid unnecessary misunderstandings, let us emphasize
that nothing in Sections 4.5.2 and 4.5.3 is due to us. The arguments in [95]
are followed almost verbatim in most steps. (Although [42] has provided
brief outlines for necessary modifications from the completely degenerate
case to the general case, we have decided to supply more details for ease of
understanding.) We hope that the works of Mumford, Faltings, and Chai are
so well known that there should be no confusion.

Proposition 4.5.2.2 (cf. [95, Prop. 3.1] and [42, Ch. III, Prop. 4.1]).
For each y ∈ Y , we have a canonical embedding Oφ(y)⊗

R
R[I⊗−1

y,φ(y)] ↪→

π∗OP \ ⊗
R
R[I⊗−1

y,φ(y)]. That is, sections of Oφ(y) define regular functions on P \

over Spec(R[I⊗−1
y,φ(y)]).

Proof. By Lemma 4.5.1.7, for each y ∈ Y and χ ∈ X, there exists an integer
n > 0 such that I⊗ny,φ(y) · Iy,χ ⊂ R, in which case the section τ(y, χ) can be

defined over R[I⊗−1
y,φ(y)]. Therefore, ι(y) extends to an element of G\(R[I⊗−1

y,φ(y)])
for every y ∈ Y .

The translation action Tι(y) : P \ ∼→ P \ and the action Sy : P \ ∼→ P \

have to agree whenever they are both defined. Hence it makes sense to
compare the G\-action T̃ι(y) : T ∗ι(y)N

∼→ N on N with the isomorphism S̃y :

S∗yN
∼→ N ⊗

O
P\

π∗Oφ(y) deduced from the Y -action S̃y : S∗yL\
∼→ L\ on L\ over

R[I⊗−1
y,φ(y)]. This gives an isomorphismN ∼→ N ⊗

O
P\

π∗Oφ(y) of invertible sheaves

over R[I⊗−1
y,φ(y)], or equivalently an isomorphism ζ : OP \

∼→ OP \ ⊗
O
P\

π∗Oφ(y) over

R[I⊗−1
y,φ(y)], both extending the isomorphism OG\

∼→ OG\ ⊗
O
G\

π∗Oφ(y) by shifting

the weights in the decomposition π∗OG\
∼= ⊕

χ∈X
Oχ into weight subsheaves

under the T -action.
The T -action on P \ also gives a decomposition π∗OP \ = ⊕

χ∈X
(π∗OP \)χ.

Since G\ is open dense in P \, we have a canonical embedding (π∗OP \)χ ↪→ Oχ

for each χ ∈ X. In particular, we have (π∗OP \)0 = OA because OA is al-
ready contained in π∗OP \ via the structural morphism π : P \ → A.
The isomorphism ζ above induces a collection of isomorphisms
(π∗OP \)χ+φ(y)⊗

R
R[I⊗−1

y,φ(y)]
∼→ (π∗OP \)χ ⊗

OA
Oφ(y)⊗

R
R[I⊗−1

y,φ(y)]. By taking χ = 0,

we obtain an isomorphism (π∗OP \)φ(y)⊗
R
R[I⊗−1

y,φ(y)]
∼→ Oφ(y)⊗

R
R[I⊗−1

y,φ(y)],
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whose inverse defines the desired embedding Oφ(y)⊗
R
R[I⊗−1

y,φ(y)] ↪→

π∗OP \ ⊗
R
R[I⊗−1

y,φ(y)].

Corollary 4.5.2.3 (cf. [95, Cor. 3.2] and [42, Ch. III, Cor. 4.2]). The open
immersion G\ ↪→ P \ induces an isomorphism G\

η
∼→ P \

η .

Proof. Since there is some integer N ≥ 1 such that NX ⊂ φ(Y ), Proposition
4.5.2.2 implies that, for every χ ∈ X, sections of Oχ,η define regular func-

tions on the normalization of P \
η . Since G\ ∼= Spec

OA

(
⊕
χ∈X

Oχ

)
is a normal

subscheme of P \, this forces G\ ↪→ P \ to be an isomorphism.

The following technical lemma and its proof are quoted almost verbatim
from [95, Lem. 3.4]:

Lemma 4.5.2.4. Let f : Z → Z ′ be a morphism locally of finite type, with Z
an irreducible scheme but Z ′ arbitrary. If f satisfies the valuative criterion
for properness for all valuations, then f is proper.

Proof. The usual valuative criterion (such as, for example, [59, II, 7.3]) would
hold if we know that f is of finite type. It suffices to prove that f is quasi-
compact. As this is a topological statement, we may replace Z with Zred,
and Z ′ with Z ′red. By working locally on the base, we may assume Z ′ is
affine, say Spec(A). Finally, we may assume that f is dominant. Then A is
a subring of the rational function field K(Z) of Z. Let Z denote Zariski’s
Riemann surface of K(Z)/A, whose underlying set is the set of valuations
υ on K(Z) such that υ(A) ≥ 0 (see [116, p. 110] or [88, p. 73]). By the
valuative criterion, every υ has a uniquely determined center on Z. Hence
there is a natural map π : Z → Z taking υ to its center, which is continuous
and surjective. Since Z is a quasi-compact topological space (by [88, Thm.
10.5]), we see that Z is quasi-compact, as desired.

Proposition 4.5.2.5 (cf. [95, Prop. 3.3]). Every irreducible component of
P \

0 := P \×
S
S0 is proper over A0 := A×

S
S0, or equivalently, over S0.

Proof. By Lemma 4.5.2.4, it suffices to show that if Z is any component of
P \

0 , and if υ is any valuation of its rational function field K(Z) such that
υ(R0) ≥ 0, then v has a center on Z. To show this, let υ1 be a valuation of
K(G\) such that υ(R) ≥ 0 and such that the center of υ1 is Z, and let υ2
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be the composite of the valuations υ and υ1. Then υ2(I) > 0 because Z is a
scheme over Spec(R0). Let xυ1 (resp. xυ2) be the center of υ1 (resp. υ2) on
A, which exists by properness of A. By Proposition 4.5.2.2, for each y ∈ Y
there is an integer ny > 0 such that υ1(I

⊗ny
y,φ(y) · x̃∗υ1

(Oφ(y))) ≥ 0. Suppose
y 6= 0. By the positivity condition of τ , we know that Iy,φ(y) ⊂ I. Since υ1

has a center on the scheme Z over Spec(R0), we may increase ny and assume
that υ1(I

⊗ny
y,φ(y) · x̃∗υ1

(Oφ(y))) > 0, and hence that υ2(I
⊗ny
y,φ(y) · x̃∗υ2

(Oφ(y))) > 0.

Otherwise, suppose y = 0. Then υ2(I⊗ny,φ(y) · x̃∗υ2
(Oφ(y))) = υ2(x̃∗υ2

(OA)) ≥ 0 by

definition of xυ2 . In either case, υ2 has a center on P \ by the completeness
condition (iii) in Definition 4.5.1.2. This implies that υ has a center on Z,
as desired.

Corollary 4.5.2.6 (cf. [95, Cor. 3.5]). Let U0 := U ×
S
S0, where U is as in 1

of Definition 4.5.1.2. Then the closure U0 of U0 in P \
0 is proper over S0.

Proof. This is true because U is of finite type over S, and hence U0 has only
finitely many irreducible components.

Proposition 4.5.2.7 (cf. [95, Prop. 3.6] and [42, Ch. III, Prop. 4.5]). There
is a finite subset Q ⊂ Y such that Sy(U0) ∩ Sz(U0) = ∅ if y − z 6= Q.

Proof. For each functorial point g of G\, we have by assumption the action
isomorphism T̃g : T ∗gN

∼→ N , where N = L\ ⊗
O
P\

π∗M⊗−1. Since T acts

trivially on A, each functorial point t of T acts canonically on π∗M⊗−1 and
gives an isomorphism T̃t : T ∗t L\

∼→ L\. On the other hand, for each y ∈ Y we
have by assumption the action isomorphism S̃y : S∗yL\

∼→ L\. Therefore it

makes sense to compare the two isomorphisms T̃t ◦T ∗(S̃y) : T ∗t ◦S∗y(L\)
∼→ L\

and S̃y ◦ S∗(T̃t) : S∗y ◦ T ∗t (L\) ∼→ L\ with the same source and target. We
claim that they satisfy the commutation relation

T̃t ◦ T ∗(S̃y) = φ(y)(t) S̃y ◦ S∗(T̃t). (4.5.2.8)

It suffices to verify this over P \
η = G\

η. As in Section 4.2.3, étale locally, L\η
can be decomposed into a sum of weight subsheavesMχ,η. Since translation
by ι(y) shifts the weights under the T -action by φ(y), the claim follows.

Consider the action of T0 := T ×
S
S0 on P0. Let F be the closed subset of

P0 which is the locus of geometric points fixed by T0. Since T0 is a connected
solvable linear algebraic group, and since every irreducible component of P0 is
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proper (by Proposition 4.5.2.5), Borel’s fixed point theorem (see, for example,
[112, Thm. 6.2.6]) shows that F intersects every irreducible component of P0.
Since U0 is of finite type, the set U0 ∩ F has only finitely many connected
components C1, . . . , Cn. For each 1 ≤ i ≤ n, T0 acts on L\|Ci via a character
χi. By (4.5.2.8), T0 acts on L\Sy(Ci)

via the character χi + φ(y). Then we can

conclude the proof by taking Q := φ−1({χi−χj : 1 ≤ i ≤ n, 1 ≤ j ≤ n}).

Corollary 4.5.2.9 (cf. [95, Cor. 3.7]). The group Y acts freely on P \
0 .

Proof. Since every nontrivial subgroup of Y is infinite, and since P \
0 =

∪
y∈Y

Sy(U0), this follows from Proposition 4.5.2.7.

Next we would like to show that P \
0 is connected. The proof requires some

preparation. Since R is I-adically complete, and since R has no idempotents,
we know that R0 has no idempotents either. That is, S0 is connected. There-
fore, G\

0 is a connected open subscheme of P \
0 , and it determines a canonical

connected component of P \
0 .

Let x be an arbitrary point of P \
0 . Let υ be a discrete valuation ofK(P \) =

K(G\) (cf. Corollary 4.5.2.3) such that υ(R) ≥ 0 and has center x. Then
υ induces a discrete valuation ῡ of K with valuation ring Rῡ. Let Sῡ :=
Spec(Rῡ) and P \

ῡ := P \×
S
Sῡ. Then S and Sῡ have the same generic point,

and P \ and P \
ῡ have the same generic fiber. Let (P \

ῡ)
′ be the closure of the

generic fiber of P \
ῡ in P \

ῡ. By definition, (P \
ῡ)
′ is an integral scheme with the

same rational function field K(G\) as P \, and it is locally of finite type over
the valuation ring Rῡ. Let (P \

ῡ)
′
0 be the fiber of (P \

ῡ)
′ over the closed point

of Sῡ. Then there is a natural morphism

(P \
ῡ)
′
0 → P \

0 . (4.5.2.10)

Lemma 4.5.2.11. Both x and G\
0 meet the image of (4.5.2.10).

Proof. Let Rυ ⊂ K(G\) be the valuation ring of υ. By definition of υ, we
have a morphism Sυ := Spec(Rυ) → P \

ῡ taking the generic point of Sυ to
the generic fiber of P \

ῡ. Hence (4.5.2.10) factors through (P \
ῡ)
′. Then x lies

in the image of (4.5.2.10) because the image of the closed point of Sυ in
(P \

ῡ)
′
0 lies over x. As for G\, since G\ is smooth over S and G\ ⊂ P \, we

know that G\
ῡ := G\×

S
Sῡ is smooth over Sῡ and G\

ῡ ⊂ P \
ῡ. Since every point

of G\
ῡ comes from specialization of a point in the generic fiber, this forces

G\
ῡ ⊂ (P \

ῡ)
′. Hence G\

0 also meets the image of (4.5.2.10).
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We claim that (P \
ῡ)
′ satisfies a stronger completeness condition than con-

dition (iii) of Definition 4.5.1.2:

Lemma 4.5.2.12 (cf. [95, Lem. 3.9]). Let $ be a generator of the maximal
ideal of Rῡ, so that ($) = I · Rῡ in Rῡ. Let υ′ be a valuation of K(G\)
such that υ′(Rῡ) ≥ 0 and υ′($) > 0. Let xυ′ be the center of υ′ on Aυ :=
A×

S
Sυ, which exists because Aυ is proper over Sυ. Then υ′ has a center on

(P \
ῡ)
′ if and only if, for all χ ∈ X, there is some integer nχ > 0 such that

−nχυ′($) ≤ υ′(x̃∗υ′(Oχ)) ≤ nχυ
′($).

Proof. By the original completeness condition (iii) in Definition 4.5.1.2 for
P \, we know that υ′ with υ′($) = υ′(I ·Rῡ) > 0 has a center on P \

ῡ if, for each
y ∈ Y , there exists an integer ny > 0 such that υ′(I

⊗ny
y,φ(y) · x̃∗υ′(Oφ(y))) ≥ 0.

Since Iy,φ(y) ·Rῡ ⊂ I ·Rῡ = ($) when y 6= 0, and since φ(Y ) has finite index in
X, the above condition implies the condition in the statement of the lemma.
Since this center necessarily lies in the closure of the generic fiber of P \

ῡ, we
see that the new condition holds for (P \

ῡ)
′.

Conversely, for each y ∈ Y , since Iy,φ(y) ⊂ I and I · Rῡ = ($) in Rῡ,
Proposition 4.5.2.2 implies that there is an integer ny > 0 such that both
υ′($ny x̃∗υ′(Oφ(y))) ≥ 0 and υ′($ny x̃∗υ′(O−φ(y))) ≥ 0. Since φ(Y ) has finite
index in X, the analogous statement holds for χ ∈ X as well, and we obtain
the condition in the lemma, as desired.

Lemma 4.5.2.13. The scheme (P \
ῡ)
′
0 is connected.

Proof. For simplicity, in the proof of this lemma, let us replace R with Rῡ,
S with Sῡ, P

\ with its integral subscheme (P \
ῡ)
′, and G\ with G\

ῡ. We shall
also replace T with T ×

S
Sῡ and A with Aῡ, so that G\ is still the extension of

A by T , and so that P \ is still a scheme over A. Let us take $, as in Lemma
4.5.2.12, to be any element of R such that ($) defines the maximal ideal of
R. Then the old ideal I in the old R is replaced with the new maximal ideal
($) in the new R.

Fix any choice of a basis χ1, . . . , χr of X. For each n > 0, set

P (n) := Spec
OA

(OA[$nOχ1 , $
nO−χ1 , . . . , $

nOχr , $
nO−χr ]).

Locally over A, over which each of the Oχi , where 1 ≤ i ≤ r, becomes
principal and generated by some element ui, we have

P (n) ∼= Spec
OA

(OA[$nu1, $
nu−1

1 , . . . , $nur, $
nu−1

r ])

∼= Spec
OA

(OA[u1, v1, . . . , ur, vr]/(u1v1 −$2n, . . . , urvr −$2n)),
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where vi := u−1
i for each 1 ≤ i ≤ r. This shows that P (n) is a relative

complete intersection in A2r
A over A, and is smooth over A outside a subset of

codimension two. In particular, it is a normal scheme (by Serre’s criterion;
see [59, IV-2, 5.8.6]). By construction, P (n) is isomorphic to G\ when $ is
invertible. Therefore, P (n) and P \ have the same generic fiber isomorphic
to that of G\, and hence both of them have the same rational function field
K(G\). Let Z(n) ⊂ P (n)×

A
P \ be the join of this birational correspondence,

namely, the closure of the diagonal of the common generic fiber. By Lemma
4.5.2.12, all valuations of K(G\) with a center on P (n) also have a center on P .
Since Z(n) is locally of finite type over P (n), by Lemma 4.5.2.4, Z(n) → P (n) is
proper because it satisfies the valuative criterion for properness. By Zariski’s
connectedness theorem (see [59, III-1, 4.3.1]), this shows that all fibers of
Z(n) → P (n) are connected, because this is the case over the generic fiber.
Locally over A0 = A⊗

R
(R/($)), the closed fiber of P (n) is isomorphic to

Spec
OA0

(OA0 [u1, v1, . . . , ur, vr]/(u1v1, . . . , urvr)), which is clearly connected.

Therefore the closed fiber of Z(n) is connected. If we set Wn := pr2(Z
(n)
0 ) ⊂

P \, then Wn is connected too.
By Lemma 4.5.2.12, every valuation υ′ with a center x on P \

0 has a center
on P (n) for some n > 0. Therefore, for some n > 0, x can be lifted to a
point of Z(n), or equivalently x ∈ Wn. This shows that P \

0 = ∪
n>0

Wn. By

the explicit expressions of the OA-algebras defining the schemes, there is a
morphism from P (m) to P (n) when n|m, which is an isomorphism over the
generic fiber. In particular, Wn and Wm have nontrivial intersection when
n|m. This shows that P \

0 = ∪
n>0

Wn is connected, as desired.

Proposition 4.5.2.14 (cf. [95, Prop. 3.8]). The scheme P \
0 is connected.

Proof. Since x is an arbitrary point of P \
0 , this follows from Lemmas 4.5.2.11

and 4.5.2.13.

Proposition 4.5.2.15 (cf. [95, Thm. 3.10] and [42, Ch. III, Prop./Def. 4.8]).
For each integer i ≥ 0, let P \

i := P \×
S
Si. There exists a scheme Pi projective

over Si = Spec(R/I i+1) and an étale surjective morphism πi : P \
i → Pi

such that Pi is the quotient of P \
i as an fpqc sheaf and such that the ample

invertible sheaf L\⊗
R
Ri over P \

i descends to an ample invertible sheaf Li over

Pi. The schemes Pi fit together as i varies and form a formal scheme Pfor,
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and the ample invertible sheaves Li also fit together and form a formal ample
invertible sheaf Lfor over Pfor. Hence, by Theorem 2.3.1.4, the pair (Pfor,Lfor)
algebraizes to a pair (P,L), where P is a projective scheme over S, and where
L is an ample invertible sheaf over P .

Proof. By Proposition 4.5.2.7, there exists an integer k ≥ 1 such that, for
every y, no two distinct points of Sy(U)×

S
Si are identified with each other

under the action of the subgroup kY ⊂ Y on P \×
S
Si. Thus we can form the

quotient

π′i : P \×
S
Si = ∪

y∈Y
Sy(U)×

S
Si → P ′i := (P \×

S
Si)/(kY )

by gluing the open subschemes Sy(U)×
S
Si along their overlaps. Since L\⊗

R
Ri

inherits a Y -action from L\, it descends to an invertible sheaf L′i over P ′i .
Choose representatives y1, . . . , yt in Y for the cosets in Y/kY . The re-

striction of π′i gives a surjection
t
∪
j=1

Syj(U)×
S
Si → P ′i , and hence a surjection

t
∪
j=1

Syj(U0)×
S
Si → P ′i . (4.5.2.16)

Since the scheme on the left-hand side of (4.5.2.16) is a finite union of schemes
proper over Si by Proposition 4.5.2.5, we see that P ′i is also proper over Si.
The invertible sheaf L′i over P ′i pulls back to the restriction of L\⊗

R
Ri on the

left-hand side of (4.5.2.16), which is ample there. Then L′i over P ′i is also
ample by Nakai’s criterion (see [70]).

Without going into technical details, let us explain Nakai’s criterion as
follows: The criterion states that a Cartier divisor over a complete algebraic
scheme is ample if and only if it is arithmetically positive. When the alge-
braic scheme in question is a nonsingular variety, this condition means that
for each integer n > 0, its nth power has strictly positive intersection num-
bers with all n-dimensional subvarieties. In general, one defines an analogue
condition using polynomials defined by the Euler–Poincaré characteristics of
the corresponding invertible sheaves. In any case, these conditions can be
checked on each irreducible component. Since the two sides of (4.5.2.16)
are locally glued from isomorphic irreducible components (without altering
the local structures), the conditions are the same for both sides. Hence the
ampleness of L\⊗

R
Ri is equivalent to the ampleness of L′i, as desired.
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Finally, the finite group Y/kY acts freely (by Corollary 4.5.2.9) on the
projective scheme P ′i over Si, and on the ample sheaf L′i. Hence, a quotient
Pi = P ′i/(Y/kY ) exists in the category of projective schemes over Si (by [39,
V, 4.1]), and L′i descends to an ample invertible sheaf Li over Pi. These pro-
jective schemes (Pi,Li) over Si fit together as i varies and form a projective
formal scheme (Pfor,Lfor) over Sfor = Spf(R, I), as in the statement of the
proposition.

Construction 4.5.2.17 (cf. [95, §3, p. 253] and [42, Ch. III, Def. 4.9]). Given
the “quotient” (P,L) of (P \,L\) by Y in Proposition 4.5.2.15, we would like
to define an open subscheme G of P such that (Gη,Lη) can be interpreted
as the “quotient” of (G\

η,L\η) by the action of ι(Y ). Practically, we shall
construct the complement C of G in P , with the following steps:

1. G\,∗ := ∪
y∈Y

Sy(G
\) ⊂ P \ is an open subscheme of P \, whose pullback

over Si defines, under the quotient by Y , an open subscheme Gi of Pi.
The formation of quotients is compatible among different i’s as in the
case of Pi’s, and we obtain an open formal subscheme Gfor of Pfor, which
is canonically isomorphic to G\

for because Gi is canonically isomorphic

to G\
i = G\×

S
Si for each i.

2. C\ := (P \−G\,∗)red is a closed reduced subscheme of P \, whose pullback
over Si defines, under the quotient by Y , a reduced closed subscheme Ci
of Pi, whose underlying topological space coincides with that of Pi−Gi.
The formation of quotients is again compatible among different i’s,
and we obtain a closed formal subscheme Cfor of Pfor whose underlying
topological space coincides with that of Pfor −Gfor.

3. Cfor algebraizes to a reduced closed subscheme C of P . Define G to be
the open subscheme P − C of P . Then the formal completion Gfor of
G is canonically isomorphic to G\

for.

We will prove in Section 4.5.3 that G is a group scheme whose group structure
is compatible with the one of G\ via the canonical isomorphism Gfor

∼= G\
for.

We shall regard G as the “quotient” of G\,∗ under Y , and regard (after taking
generic fibers) Gη as the “quotient” of G\

η by ι(Y ).

Definition 4.5.2.18. By abuse of language, with the setting as in Propo-
sition 4.5.2.15 and Construction 4.5.2.17, we shall say that (P,L) (resp.
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(G,L) = (G,L|G), resp. G, resp. Gη) is the “Mumford quotient” of
(P \,L\) (resp. (G\,L), resp. G\, resp. G\

η) by Y or ι(Y ). (Though none
of these is a genuine quotient in the category of schemes.)

Let us record some properties of G. Our first claim is that G is smooth
over S. This follows from a general criterion provided by Mumford:

Proposition 4.5.2.19 (cf. [95, Prop. 4.1]). Let fj : Pj → S, j = 1, 2
be two schemes over S such that f2 is proper. Suppose that there is an
étale surjective morphism p : P1,for → P2,for over Sfor between the formal
completions, and suppose that there are two closed subschemes C1 ⊂ P1 and
C2 ⊂ P2 such that

1. P1 − C1 is smooth over S of relative dimension r;

2. C1,for is a formal subscheme of p−1(C2,for).

Then P2 − C2 is also smooth over S of relative dimension r.

Proof. First we need to check that P2−C2 is flat over S. Let M ⊂ N be two
OS-modules. Consider for j = 1, 2 the two kernels 0 → Kj → M ⊗

OS
OPj →

N ⊗
OS

OPj . Since P1 −C1 is flat over S, we have Supp(K1) ⊂ C1, and hence,

for all x ∈ P1, we have (K1)x · (IC1)⊗nx = (0) for some integer n > 0. Taking
I-adic completions, we get for j = 1, 2 two exact sequences 0 → Kj,for →
M ⊗

OSfor

OPj,for
→ N ⊗

OSfor

OPj,for
, and it follows that K1,for

∼= p∗K2,for because

p is flat. Since (K1,for)x ·(IC1,for
)⊗nx = (0) for all x ∈ P1,for, and since C1,for is a

formal subscheme of p−1(C2,for), it follows that (K2,for)p(x) · (IC2,for
)⊗np(x) = (0).

This implies that, in an open neighborhood of f−1
2 (S0), K2 is annihilated by

IC2 , and hence Supp(K2) ⊂ C2 in that neighborhood. Since P2 is proper over
S, all closed points of P2 lie over S0, and hence Supp(K2) ⊂ C2 everywhere.

To show that P2 − C2 is smooth over S, it suffices to show that, in
addition to being flat, it is differentially smooth (see [59, IV-4, 16.10.1]).
Namely, Ω1

P2/S
is locally free of rank r outside C2, and the canonical morphism

Symi
OP2

(Ω1
P2/S

) → Gri PP2/S is an isomorphism outside C2 for each i ≥ 0.
Since we know these are true for P1 over S, we deduce in particular, that the
following two statements are true at all points x of f−1

1 (S0):

1. For each h ∈ (IC1)x, the OP1,x[1/h]-module (Ω1
P1/S

)x[1/h] is locally free
of rank r.
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2. For each i ≥ 0, the kernel and cokernel of the canonical morphism
Symi

OP1
(Ω1

P1/S
)x → Gri PP1/S,x are annihilated by powers of (IC1)x.

These two facts imply the corresponding facts for the formal scheme P1,for.
Since p is étale, p∗(Ω1

P2/S
) ∼= Ω1

P1/S
and p∗(PP2/S) ∼= PP1/S. Hence the

assumption that C1,for is a formal subscheme of p−1(C2,for) implies the corre-
sponding facts for P2,for, and hence for P2 at points x of P2×

S
S0. Since P2

is proper over S, they hold everywhere on P2. This shows that P2 − C2 is
differentially smooth over S as well.

Corollary 4.5.2.20 (cf. [95, Cor. 4.2]). The scheme G is smooth over S.

Proof. Since G\ and hence G\,∗ are smooth over S, this follows from Propo-
sition 4.5.2.19 with P1 = P \, P2 = P , C1 = C\, and C2 = C.

Proposition 4.5.2.21 (cf. [95, Prop. 4.2]). The scheme P is irreducible.

Proof. After making base changes to complete discrete valuation rings, we
may assume that S is excellent (see [87, 34.B]). Then we may replace P \ with
its normalization, and the excellence of S implies that P \

for is also normal.

This implies that Pfor and P are also normal. By Proposition 4.5.2.14, P \
0

and hence P0 = P \
0/Y are connected. Since P → S is proper, P is also

connected. This shows that P is irreducible because it is normal.

Remark 4.5.2.22. As pointed out in [42, Ch. III, §0], this is the only place
in Mumford’s original paper [95, Thm. 4.3] where the excellence of the base
scheme S is used. Hence we can remove the excellence assumption by making
base changes to complete discrete valuation rings.

Proposition 4.5.2.23 (cf. [42, Ch. III, Prop. 4.12] and [95, Cor. 4.9]). As
subschemes of P , we have Gη = Pη. In particular, Gη is proper over η.

Proof. Since G\
η = P \

η , there is a nonzero element r of R annihilating OC\ .
Then OC is also annihilated by r. In particular, we have Gη = Pη as well.
This shows that Gη is proper over η because P is.

4.5.3 Functoriality

In this section, we would like to establish the functoriality of “Mumford
quotients” (see Definition 4.5.2.18), and obtain as a by-product the group
structure of each G as in Construction 4.5.2.17.
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Definition 4.5.3.1 (cf. [95, Def. 4.4] and [42, Ch. III, Def. 5.1]). Let G\
1

be a semi-abelian subscheme of G\ (i.e., a subgroup scheme of G\ that is a
semi-abelian scheme) such that G\

1 is the extension of an abelian subscheme
A1 of A by a (necessarily split) subtorus T1 of T . Let Y1 be the subgroup
ι−1(G\

1,η) of Y . Then we say that G\
1 is integrable if rkZ(Y1) = dimS(T1).

Construction 4.5.3.2. Let us start with an inclusion j\ : G\
1 ↪→ G\ with-

out assuming that G\
1 is integrable. Let us denote the induced inclusion

Y1 ↪→ Y by jY and the induced homomorphism ι|Y1 : Y1 → G\
1,η by ι1. Let

us denote by c1 : X1 → A∨1 the homomorphism giving the extension struc-
ture of G\

1 and by π1 : G\
1 → A1 the structural morphism. The inclusion

j\ induces the inclusions jT : T1 ↪→ T and jA : A1 ↪→ A, and hence the
surjections jX : X � X1 := X(T1) and j∨A : A∨ � A∨1 , justifying the com-
patibility c1jX = j∨Ac. Let c∨1 : Y1 → A1 be the unique homomorphism
extending π1ι1 : Y1 → A1,η by the properness of A1, satisfying another
compatibility jAc

∨
1 = c∨jY by definition. Let φ1 := jXφjY : Y1 → X1

and let λA1 := j∨AλAjA : A1 → A∨1 . Then we have the compatibility
c1φ1 = λA1c

∨
1 induced by the compatibility cφ = λAc

∨. If, étale locally,
λA is induced by some ample invertible sheafM, then λA1 is induced by the
pullback MA1 := j∗AM. Hence λA1 is a polarization. The homomorphism
ι1 : Y1 → G\

1,η corresponds to a trivialization τ1 : 1Y1×X1,η
∼→ (c∨1 × c1)∗P⊗−1

A1,η

of biextensions. For each y1 ∈ Y1 and χ1 ∈ X1, where χ1 = jX(χ) for some
element χ ∈ X, we have (c∨1 (y1), c1(χ1))∗PA1,η

∼= (c∨1 (y1), c1jX(χ))∗PA1,η
∼=

(c∨1 (y1), j∨Ac(χ))∗PA1,η
∼= (c∨jY (y1), c(χ))∗PA,η. The isomorphism τ1(y1, χ1) :

(c∨1 (y1), c1(χ1))∗PA1,η
∼→ Oη is by definition the isomorphism τ(jY (y1), χ) :

(c∨jY (y1), c(χ))∗PA,η
∼→ Oη. Since the positivity of τ1 is defined by the

image of (c∨1 (y1), c1(φ1(y1)))∗PA under τ1(y1, φ1(y1)), which is the same as
the image of (c∨jY (y1), c(φjY (y1)))∗PA under τ(jY (y1), φjY (y1)), the positiv-
ity of τ implies the positivity of τ1, because τ1|1Y1 ×φ1(Y1),η

: 1Y1×φ1(Y1),η
∼→

(c∨1 × c1)∗P⊗−1
A1,η

is the restriction of τ |Y ×φ(Y ),η : 1Y ×φ(Y ),η
∼→ (c∨× c)∗P⊗−1

A,η

to Y1×φ1(Y1) (see Definition 4.2.1.10). In particular, φ1 is injective, and
rkZ(Y1) ≤ dimS(T1). Moreover, ψ1 := ψ|Y1 : 1Y1,η

∼→ ι∗1(L\|G\1)⊗−1
η is a cubical

trivialization compatible with τ1 because τ1 is a restriction of τ .

If the equality rkZ(Y1) = dimS(T1) holds, namely, if G\
1 is integrable,

then we have everything we need for defining an object in DDample(R, I) or
DDpol(R, I). Let us record this fact as the following lemma:
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Lemma 4.5.3.3. Suppose we are given an object (A, λA, X, Y, φ, c, c
∨, τ)

in DDpol(R, I) (resp. an object (A,X, Y, φ, c, c∨,L\, τ, ψ) in DDample(R, I),

resp. an object (A,M, X, Y, φ, c, c∨, τ, ψ) in DDsplit
ample(R, I)), and suppose G\

1

is an integrable semi-abelian subscheme of G\. Then Construction 4.5.3.2
defines an object (A1, λA1 , X1, Y1, φ1, c1, c

∨
1 , τ1) in DDpol(R, I) (resp. an

object (A1, X1, Y1, φ1, c1, c
∨
1 ,L\|G\1 , τ1, ψ1) in DDample(R, I), resp. an object

(A1,MA1 , X1, Y1, φ1, c1, c
∨
1 , τ1, ψ1) in DDsplit

ample(R, I)).

Construction 4.5.3.4 (cf. [95, §4, p. 255] and [42, Ch. III, 5.3]). Suppose that
(P \,L\) is a relatively complete model of an object (A,M, X, Y, φ, c, c∨, τ, ψ)
in DDsplit

ample(R, I), and G\
1 ↪→ G\ an integrable semi-abelian subscheme of G\.

We shall construct a closed subscheme W of P such that the intersection of
W with G is an open subscheme G1 of W such that G1,for

∼= G\
1,for, with the

following steps:

1. Let W \
1 be the scheme-theoretic closure of G\

1 in P \. Then W \
1 is invari-

ant under the restriction of the action of Y to Y1 as G\
1,η is. Moreover,

W \
1 is reduced because G\

1 is.

2. Since W \
1,for is invariant under the action of Y1 (as W \

1 is), we set

W \
for := ∪

y∈Y
Sy(W

\
1,for) = ∪

y∈Y/Y1

Sy(W
\
1,for)

as a formal subscheme of P \
for. This is not fully justified until we can

show that the right-hand side is a locally finite union.

3. Let Wfor := W \
for/Y , which is a closed formal subscheme of Pfor.

4. Wfor algebraizes to a closed subscheme W of P . Then we take G1 :=
W ∩G.

To validate Construction 4.5.3.4, we need to show the local finiteness of
the union in step 2. This requires the integrability condition of G\

1:

Proposition 4.5.3.5 (cf. [95, Prop. 4.5] and [42, Ch. III, Prop. 5.4]). Let
G\

1 be an integrable semi-abelian subscheme of G\, and let W \
1 be the scheme-

theoretic closure of G\
1 in P \. Then there is a finite subset Q ⊂ Y such that

(W \
1 ×
S
S0) ∩ Sy(U0) = ∅ for all y 6∈ Q+ Y1.
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Proof. Let X ′ be the kernel of the surjection X � X1, which is the subgroup
of characters of T that are identically trivial on T1. Since τ1(z, χ) = 1 for all
χ ∈ X ′ and z ∈ Y1, we have φ−1(X ′)∩Y1 = {0}. Therefore, Y1 +φ−1(X ′) has
finite index in Y . Let Y ′ := {y ∈ Y : ny ∈ Y1 for some integer n ≥ 1}. Then
Y = Y ′⊕φ−1(X ′), and the R-submodules Iz,χ of K for z ∈ Y and χ ∈ X ′
depend (by taking discrete valuations) only on the value of z modulo Y ′.

For each nonzero y ∈ Y , choose an integer ny > 0 such that I
⊗ny
y,φ(y) ·Oφ(y) is

contained in (π|U)∗OU and is congruent to zero modulo I. This is possible by
Proposition 4.5.2.2, because U is of finite type. By Lemma 4.5.1.10, there is
a finite subset {y1, . . . , yk} of φ−1(X ′), and a finite subset Q′ of Y , such that,
for each z ∈ Y such that z 6∈ Q′+Y ′, there exists some nonzero yj, 1 ≤ j ≤ k,

such that Iz,φ(yj) ⊂ I
⊗nyj
yj ,φ(yj)

⊂ I. Under the translation Sz : U
∼→ Sz(U), the

sections of Oχ|Sz(U) correspond to sections of Iz,χ ·Oχ|U . If z 6∈ Q′+ Y ′, then
sections of Iz,φ(yj) · Oφ(yj)|U consist of regular functions congruent to zero
modulo I. Hence Sz(U0) and U0 do not overlap. Now we can conclude the
proof by taking Q to be a (finite) set of representatives of (Q′ + Y ′)/Y1.

Now we are ready for the main result of this section, namely, the functo-
riality of “Mumford quotients”:

Theorem 4.5.3.6 (cf. [95, Thm. 4.6] and [42, Ch. III, Thm. 5.5]). For
j = 1, 2, let (Aj,Mj, Xj, Yj, φj, cj, c

∨
j , τj, ψj) be an object of DDsplit

ample(R, I)

with relatively complete model (P \
j ,L

\
j), with the “Mumford quotient” (Pj,Lj)

(see Definition 4.5.2.18) containing an open subscheme Gj as in Construc-
tion 4.5.2.17. Suppose we have a homomorphism fY : Y1 → Y2 and a ho-
momorphism f \ : G\

1 → G\
2 over S such that ι2 ◦ fY = f \ ◦ ι1. Then there

is a unique homomorphism f : G1 → G2 over S whose formal completion
ffor : G\

1,for → G\
2,for is identical to f \for : G1,for → G2,for.

Proof. Consider the fiber product object

(A1×
S
A2, pr∗1M1 ⊗

OA1 ×
S
A2

pr∗2M2, X1×X2, Y1×Y2,

φ1×φ2, c1× c2, c
∨
1 × c∨2 , τ1× τ2 := pr∗13 τ + pr∗24 τ, ψ1×ψ2)

in DDsplit
ample(R, I) with relatively complete model

(P \
1 ×
S
P \

2 , pr∗1 L1 ⊗
O
P
\
1 ×S

P
\
2

pr∗1 L2).
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Here the definition of τ1× τ2 makes sense because

PA1×
S
A2
∼= pr∗13PA1 ⊗

OA1 ×
S
A2 ×

S
A∨1 ×S

A∨2

pr∗24PA2 .

Let H\ := image((IdG\ , f
\) : G\

1 → G\
1×
S
G\

2) be the graph of f \, which defines

an integrable sub-semi-abelian scheme of G\
1×
S
G\

2 because ι2 ◦ fY = f \ ◦ ι1.

As in Construction 4.5.3.4 and Proposition 4.5.3.5, this H\ induces a closed
subscheme of G1×

S
G2 as follows:

1. W \
1 := scheme-theoretic closure of H\ in P \

1 ×
S
P \

2 .

2. W \
for := ∪

y∈Y1×Y2

Sy(W
\
1,for) as a formal subscheme of P \

1,for ×
Sfor

P \
2,for.

3. Wfor := W \
for/(Y1×Y2) is a formal subscheme of P1,for ×

Sfor

P2,for =

P \
1,for ×

Sfor

P \
2,for/(Y1×Y2).

4. H := W ∩ (G1×
S
G2), where W is the algebraization of Wfor.

We claim that H defines the graph of a morphism from G1 to G2.
First, we need to show that the projection pr1 : W → P1 is smooth of rela-

tive dimension zero outside C1 := (P1−G1)red. This follows by essentially the
same argument used in the proof of Proposition 4.5.2.19, as pr1 : W \

1 → P \
1 is

smooth of relative dimension zero outside C\
1 := (P \

1−G
\
1)red. Locally at every

point, W \
for is the formal completion of a finite union Sy1(W \

1)∪ · · · ∪Syk(W
\
1)

for some y1, . . . , yk ∈ Y1×Y2. Since this is also smooth of relative dimen-
sion zero outside C\

1, the same is true for pr1 : W \
for → P \

1,for. Here, by

smooth outside C\
1, we do not mean just smooth at points of P \

1,for − C
\
1,for.

Instead, we mean smoothness in the sense of the two statements in the proof
of Proposition 4.5.2.19, namely, smoothness after localizing by the ideal IC\1

.

This property descends to smoothness for pr1 : Wfor → P1,for, and hence for
pr1 : W → P1 as well.

Second, we need to prove that W ∩ (P1×
S
C2) ⊂ C1×

S
C2. This

follows by descending a stronger ideal-theoretic property on the schemes
before quotient: For every finite subset {y1, . . . , yk} of Y1×Y2, we
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have [Sy1(W \
1)∪ · · · ∪Syk(W

\
1)] ∩ (P \

1 ×
S
C\

2) ⊂ C\
1×
S
C\

2. Hence, over

P \
1,for ×

Sfor

P \
2,for, we have IW \

for
+ IP \1,for ×

Sfor

C\2,for
⊃ I ⊗N

C\1,for ×
Sfor

C\2,for

for some

integer N > 0. This property descends and algebraizes, which shows that
W ∩ (P1×

S
C2) ⊂ C1×

S
C2. Since pr1 : W → P1 is a proper morphism, its

pullback pr1 : H → G1 (under G1 ↪→ P1, on the target) is also proper.
Combining these two assertions, it follows that pr1 : H → G1 is finite and

étale. Since Hfor
∼= H\

for is the graph of f \for : G\
1,for → G\

2,for, the morphism
pr1 : H → G1 has degree one over S0. Since G1 is irreducible, pr1 has degree
1 everywhere. This proves that H is the graph of a morphism f : G1 → G2

over S such that ffor = f \for. Finally, since G1 is irreducible, such an f is
unique because it is determined by ffor.

Corollary 4.5.3.7 (cf. [95, Cor. 4.7] and [42, Ch. III, Cor. 5.6]). The scheme
G depends (up to isomorphism) only on (A,X, Y, c, c∨, τ) as an object of
DD(R, I), and is independent of the choice of φ, ψ, M, and the relatively
complete model (P \,L\).

Proof. Let (A,Mj, X, Y, φj, c, c
∨, τ, ψj), j = 1, 2, be any two tuples in

DDsplit
ample(R, I) extending the same tuple (A,X, Y, c, c∨, τ) in DD(R, I). Let

(G1,L1) and (G2,L2) be constructed respectively for the two tuples for some
choices of relatively complete models. Then, by applying Theorem 4.5.3.6
to the identities IdG\ : G\ ∼→ G\ and IdY : Y

∼→ Y , we obtain a canonical
isomorphism G1

∼→ G2 inducing IdG\for
: G\

for

∼→ G\
for, as desired.

Corollary 4.5.3.8 (cf. [95, Cor. 4.8] and [42, Ch. III, Cor. 5.7]). G is a
group scheme over S.

Proof. By applying Theorem 4.5.3.6 to the multiplication morphisms mG\ :
G\×

S
G\ → G\ and mY : Y ×Y → Y (with other fiber product objects given

as in the proof of Theorem 4.5.3.6), we obtain a morphism mG : G×
S
G→ G.

By applying Theorem 4.5.3.6 to the inverse isomorphisms [−1]G\ : G\ ∼→ G\

and [−1]Y : Y
∼→ Y , we obtain an isomorphism [−1]G : G

∼→ G. The
compatibility relations for mG and [−1]G to define a group structure on G
are satisfied, because they are satisfied by (mG\ ,mY ) and ([−1]G\ , [−1]Y ) and
because of the uniqueness statement in Theorem 4.5.3.6.

Corollary 4.5.3.9 (cf. [95, Cor. 4.9] and [42, Ch. III, Cor. 5.8]). The scheme
Gη is an abelian variety.
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Proof. By Proposition 4.5.2.23, and by Corollaries 4.5.2.20 and 4.5.3.8, Gη is
a proper smooth group scheme. Since P is irreducible by Proposition 4.5.2.21,
and since we may enlarge the completely discrete valuation ring used in the
proof of Proposition 4.5.2.21, Gη = Pη is geometrically irreducible. Hence
Gη is an abelian variety, as desired.

To prove that G has connected fibers and is indeed a semi-abelian scheme
over S, it suffices to have a description of torsion points of G. Let G\,∗ =
∪
y∈Y

Sy(G
\) ⊂ P \ as before. For each y ∈ Y , let σy : S → G\,∗ be the

unique section of G\,∗ over S such that σy(η) = ι(y). This is nothing but the
translation of the identity section eG\ : S → G\ under the action Sy on P \.
For each integer n ≥ 1, consider the fiber product

(n)Z
\

y := S ×
σy ,G\,∗,[n]

G\,∗,

where [n] : G\,∗ → G\,∗ is the multiplication by n. For each y, z ∈ Y , the

translation Sz induces a canonical isomorphism (n)Z
\

y
∼→ (n)Z

\

y+nz. Therefore

the disjoint union
∐

y∈Y/nY

(n)Z
\

y is well defined and has the structure of a

commutative group scheme over S in a canonical way.

Theorem 4.5.3.10 (cf. [95, Thm. 4.10]). The group scheme G[n] is canoni-

cally isomorphic to the group scheme
∐

y∈Y/nY

(n)Z
\

y over S constructed above.

Proof. Let (n)Z
\
y denote the closure of (n)Z

\

y in P \. By the valuation prop-

erty of the relatively complete model P \, all valuations of (n)Z
\
y have centers

on (n)Z
\
y. By Lemma 4.5.2.4, this implies that (n)Z

\
y is proper over S. Let

( (n)Z
\
y)for be its I-adic completion. We saw in the proofs of Proposition

4.5.3.5 and Theorem 4.5.3.6 that if (n)W
\

1 is the closure in P \×
S
P \ of the

graph of x 7→ nx, then (n)W
\

:= ∪
y∈Y

S(0,y)(
(n)W

\

1,for) ⊂ P \
for ×

Sfor

P \
for is a lo-

cally finite union. Since (n)Z
\
y×
S
σy(S) ⊂ (n)W

\

1, and hence (n)Z
\
y×
S
σ0(S) ⊂

S(0,−y)(
(n)W

\

1), it follows from Proposition 4.5.3.5 that ∪
y∈Y

( (n)Z
\
y)for ⊂ P \

for
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is a locally finite union, and that

∪
y∈Y

( (n)Z
\
y)for = (n)W

\

for ∩ (P \
for ×

Sfor

σ0(Sfor)).

Taking compatible quotients by Y and Y ×Y , we obtain a closed formal
subscheme

( (n)Z)for :=
[
∪
y∈Y

( (n)Z
\
y)for

]
/Y = (n)Wfor ∩ (Pfor ×

Sfor

σ0(Sfor))

of P \
for, where (n)Wfor = (n)W

\

for/(Y ×Y ). It follows that ( (n)Z)for algebraizes

to a closed subscheme (n)Z of P such that (n)Z = (n)W ∩(P ×
S
σ0(S)), where

(n)W is the algebraization of (n)Wfor. Hence (n)Z := (n)Z∩G satisfies (n)Z =
(n)H ∩ (G×

S
σ0(S)), where (n)H ⊂ G×

S
G is the graph of the homomorphism

x 7→ nx. Thus we see that (n)Z is the kernel G[n] of the multiplication by n
in G.

Now for every finite subset Y0 ⊂ Y , we have a formal morphism

qfor : ∪
y∈Y0

( (n)Z
\
y)for → ( (n)Z)for.

Since these formal schemes are the completions of the schemes ∪
y∈Y0

(n)Z
\
y and

(n)Z, which are proper over S, this formal morphism qfor algebraizes uniquely
to a morphism

q : ∪
y∈Y0

(n)Z
\
y → (n)Z

\

of schemes (by Theorem 2.3.1.3). Since C\ = (P \−G\)red is the preimage of

C = (P−G)red under the étale morphism P \ → P , we see that ∪
y∈Y0

( (n)Z
\
y)for∩

C\
for is the preimage of ( (n)Z)for ∩Cfor. Hence ∪

y∈Y0

(n)Z
\
y ∩C\ is the preimage

of (n)Z ∩ C. Therefore the above morphism restricts to a proper morphism

q : ∪
y∈Y0

(n)Z
\

y → (n)Z.

Since qfor : ∪
y∈Y

( (n)Z
\
y)for → ( (n)Z)for is étale and surjective, for each fixed

y0 ∈ Y , there is a finite subset Y0 of Y containing y0 such that qfor :

284



∪
y∈Y0

( (n)Z
\
y)for → ( (n)Z)for is étale at all points of ( (n)Z

\
y0

)for, and is surjective.

Therefore, its algebraization q has the same properties. On the other hand,

when we intersect with G\, the union ∪
y∈Y0

(n)Z
\

y is disjoint. Hence it follows

that q : ∪
y∈Y0

(n)Z
\

y → (n)Z is étale for every Y0, and is surjective for Y0 large

enough.

Since Sz maps (n)Z
\

y isomorphically to (n)Z
\

y+nz for each y, z ∈ Y , the

morphism q : ∪
y∈Y0

(n)Z
\

y → (n)Z is surjective when Y0 is a set of coset repre-

sentatives of Y/nY . By identifying ∪
y∈Y0

(n)Z
\

y with
∐

y∈Y/nY

(n)Z
\

y, we obtain a

natural group scheme structure on ∪
y∈Y0

(n)Z
\

y, and we see that q has degree

one over σ0(S0) ⊂ G0. Moreover, over S0, (n)Z
\

y = ∅ unless y ∈ nY , (n)Z
\

0 is

the kernel of [n] of the semi-abelian scheme G\
0 over S0, and q : (n)Z

\

0 → (n)Z
is the restriction to the kernel of [n] of the canonical isomorphism between
G\

0 and G0 over S0. Thus we see that q has degree one, or equivalently,

q :
∐

y∈Y/nY

(n)Z
\

y
∼→ (n)Z = G[n] is an isomorphism.

Proposition 4.5.3.11 (cf. [42, Ch. III, Prop. 5.10]). For each s ∈ S and
each fixed y ∈ Y and n ≥ 1, the following statements are equivalent:

1. ( (n)Z
\

y)s 6= ∅.

2. There exists z ∈ Y such that ι(y − nz) extends to a section of G\ over
Spec(OS,s). (In this case, we write ι(y − nz) ∈ G\(Spec(OS,s)).)

3. There exists z ∈ Y such that Iy−nz,φ(y−nz) · OS,s = OS,s.

4. y ∈ Ys + nY , where

Ys := {z ∈ Y : Iz,φ(z) · OS,s = OS,s} = {z ∈ Y : ι(z) ∈ G\(Spec(OS,s))}.

Proof. Firstly, let us show that 1 and 2 are equivalent. By definition, (n)Z
\

y 6=
∅ if there is a subscheme H of G\ such that the subscheme Sz(H) of Sz(G

\)
is mapped to σy(s) = Sy(eG\) under the multiplication [n] : G\,∗ → G\,∗.
Then Snz([n](H)) = Sy(eG\), and Sy−nz(eG\) is a subscheme of G\

s. That is,
ι(y − nz) extends to a section of G\ over s, and hence over Spec(OS,s) by
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smoothness of G\. Conversely, if ι(y−nz) ∈ G\(Spec(OS,s)), then ( (n)Z
\

y)s 6=
∅ because [n](Sz(G

\
s[n])) = Sy(eG\s).

Secondly, let us show that 2 and 3 are equivalent. If w = y − nz, then
ι(w) ∈ G\(Spec(OS,s)) if and only if Iw,χ · OS,s = OS,s for all χ ∈ X, as
these Iw,χ are defined by τ(w, χ), or equivalently by ι(w) (see Section 4.2.2
and Definition 4.2.4.6). Therefore, ι(w) ∈ G\(Spec(OS,s)) if and only if
Iw,χ · OS,s = OS,s for all χ ∈ X. Since S is normal, to verify equivalences
between equalities, we may replace R with a discrete valuation ring of K
with valuation υ and center s. Consider the positive semidefinite pairing
B( · , · ) : (Y⊗

Z
R)×(X⊗

Z
R)→ R defined by (y, χ) 7→ υ(Iy,χ). As in the proof

of Lemma 4.5.1.7, w ∈ Rad(B) if and only if B(w, φ(w)) = 0. Therefore,
ι(w) ∈ G\(Spec(OS,s)) if and only if Iw,φ(w) · OS,s = OS,s.

Finally, 4 is just a combination of 2 and 3.

Corollary 4.5.3.12 (cf. [95, Cor. 4.11] and [42, Ch. III, Cor. 5.11]). For
each integer n ≥ 1, and for each s ∈ S, there is a natural exact sequence

0→ G\[n]s → G[n]s → 1
n
Ys/Ys → 0.

After taking limits, we obtain an exact sequence

0→ (G\
s)tors → (Gs)tors → Ys⊗

Z
(Q/Z)→ 0.

Proof. As we saw in the proofs of Theorem 4.5.3.10 and Proposition 4.5.3.11,
G[n]s is isomorphic to the union of the translations of G\[n]s under a coset
representative of Ys/nYs. Hence the corollary follows.

Corollary 4.5.3.13 (cf. [95, Cor. 4.12] and [42, Ch. III, Cor. 5.12]). The
geometric fibers of G over S are all connected with trivial unipotent radical.
That is, G is a semi-abelian scheme over S.

Proof. This follows from the general fact that if a commutative algebraic
group H over an algebraically closed field has the property that the p-primary
torsion of H is p-divisible (in the sense of group schemes) and scheme-
theoretically dense in H for every prime number p, then H is connected with
trivial unipotent radical, and hence is an extension of an abelian variety by
a torus. (By reducing to the connected case, this follows from Chevalley’s
theorem; see [26] and [108], or see [29, Thm. 1.1] for a modern proof.) By
Corollary 4.5.3.12, this is exactly the case for G.
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4.5.4 Equivalences and Polarizations

Definition 4.5.4.1. The category DDsplit,∗
ample(R, I) is the full subcategory

of DDsplit
ample(R, I) formed by objects in DDsplit

ample(R, I) satisfying Condition
4.5.1.6.

The constructions in Sections 4.5.2 and 4.5.3, following Mumford and
Faltings–Chai, define a functor

Msplit,∗
ample(R, I) : DDsplit,∗

ample(R, I)→ DEGample(R, I) :

(A,M, X, Y, φ, c, c∨, τ, ψ) 7→ (G,L).
(4.5.4.2)

The goal of this section is to show that the functor Msplit,∗
ample(R, I) induces

functors

M(R, I) : DD(R, I)→ DEG(R, I),

Mample(R, I) : DDample(R, I)→ DEGample(R, I),

Mpol(R, I) : DDpol(R, I)→ DEGpol(R, I),

MIS(R, I) : DDIS(R, I)→ DEGIS(R, I),

compatible with each other in the obvious sense, such that Mample(R, I) and
Mpol(R, I) give quasi-inverses of the associations

Fample(R, I) : DEGample(R, I)→ DDample(R, I) :

(G,L) 7→ (A,X, Y , φ, c, c∨,L\, τ, ψ)

and

Fpol(R, I) : DEGpol(R, I)→ DDpol(R, I) :

(G, λ) 7→ (A, λA, X, Y , φ, c, c
∨, τ),

described in Theorem 4.2.1.14 and Definition 4.4.8, respectively. Then
Mample(R, I), Mpol(R, I), Fample(R, I), and Fpol(R, I) will all be equivalences
of categories as claimed in Theorem 4.4.16.

Definition 4.5.4.3. The category DD∗ample(R, I) is the full subcategory of
DDample(R, I) consisting of objects (A,X, Y , φ, c, c∨,L\, τ, ψ) over S such that
the following is true: Over a finite étale covering S ′ = Spec(R′) → S =
Spec(R) (with I ′ = rad(I ·R′) ⊂ R′) where the étale sheaves X and Y are con-
stant with values X and Y , respectively, so that there exists an ample invert-
ible sheaf M over A⊗

R
R′ such that L\⊗

R
R′ ∼= π∗M (by Corollary 3.2.5.7),

the tuple (A,M, X, Y , c, c∨, τ, ψ)⊗
R
R′ defines an object of DDsplit,∗

ample(R′, I ′).
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Proposition 4.5.4.4. Let (A,X, Y , φ, c, c∨,L\, τ, ψ) be an object in
DD∗ample(R, I). Then the functor Msplit,∗

ample(R, I) in (4.5.4.2) extends to a
functor

M∗ample(R, I) : DD∗ample(R, I)→ DEGample(R, I) :

(A,X, Y , φ, c, c∨,L\, τ, ψ) 7→ (G,L)

compatible with finite étale surjective base changes in S ′ = Spec(R′) → S =
Spec(R) (with I ′ = rad(I ·R′) ⊂ R′).

Proof. By assumption, there exists a finite étale covering S ′ = Spec(R′) →
S = Spec(R) (with I ′ = rad(I · R′) ⊂ R′) over which both X and Y are
constant with values X and Y , respectively, and over which L\⊗

R
R′ ∼= π∗M′

for some ample invertible sheafM′ over A⊗
R
R′. Then we obtain an object in

DDsplit,∗
ample(R′, I ′) (with this choice ofM′), and Msplit,∗

ample(R′, I ′) gives us an object
(G′,L′) in DEGample(R

′, I ′). Since L′ is ample over G′, the pair (G′,L′)
descends uniquely to a pair (G,L) over S by fpqc descent (see [56, VIII,
7.8]).

In order to extend the source of the functor M∗ample(R, I) :
DD∗ample(R, I) → DEGample(R, I) to the whole category DDample(R, I), we
would like to show that M∗ample(R, I) is compatible with the tensor operation
in DDIS(R, I) (see Definition 4.4.13):

Lemma 4.5.4.5. Let (A,X, Y , φ1, c, c
∨,L\1, τ, ψ1) be an object in

DDample(R, I). Let (A,X, Y , φ2, c, c
∨,L\2, τ, ψ2) be either an object in

DDample(R, I), or an object in DDIS(R, I) such that all of φ2, L\2, and ψ2

are trivial. Then there is an integer n0 > 0 such that, for every n ≥ n0, both
the tuples

(A,X, Y , (2n+ 1)φ1, c, c
∨, (L\1)⊗n+1 ⊗

O
G\

[−1]∗(L\1)⊗n, τ, ψn+1
1 [−1]∗ψn1 )

and

(A,X, Y , φ2 + 2nφ1, c, c
∨,L\2 ⊗

O
G\

(L\1)⊗n ⊗
O
G\

[−1]∗(L\1)⊗n, τ, ψ2ψ
n
1 [−1]∗ψn1 )

define objects in DD∗ample(R, I).
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Proof. This follows from Corollary 4.5.1.8 after making a finite étale surjec-
tive base change in S as in Definition 4.5.4.3.

Construction 4.5.4.6. Let (A,X, Y , fY , c, c
∨,F \, τ, ζ) be any object in

DDIS(R, I). By Lemma 4.4.14, there exist (A,X, Y , φ1, c, c
∨,L\1, τ, ψ1) and

(A,X, Y , φ2, c, c
∨,L\2, τ, ψ2) in DDample(R, I) such that

(A,X, Y , fY , c, c
∨,F \, τ, ζ)

∼= (A,X, Y , φ1, c, c
∨,L\1, τ, ψ1)⊗(A,X, Y , φ2, c, c

∨,L\2, τ, ψ2)⊗−1.

By Lemma 4.5.4.5, there is an integer n > 0 such that both the tuples

(A,X, Y , (2n+ 1)φ1, c, c
∨, (L\1)⊗n+1 ⊗

O
G\

[−1]∗(L\1)⊗n, τ, ψn+1
1 [−1]∗ψn1 )

and

(A,X, Y , φ2 + 2nφ1, c, c
∨,L\2 ⊗

O
G\

(L\1)⊗n ⊗
O
G\

[−1]∗(L\1)⊗n, τ, ψ2ψ
n
1 [−1]∗ψn1 )

define objects in DD∗ample(R, I). For simplicity, let us replace the tuples

(A,X, Y , φ1, c, c
∨,L\1, τ, ψ1) and (A,X, Y , φ2, c, c

∨,L\2, τ, ψ2) with these two
tuples, respectively. Then the functor M∗ample(R, I) defines objects (G,L1)
and (G,L2) in DEGample(R, I) for these two tuples in DD∗ample(R, I) (with the

same G, by Theorem 4.5.3.6), and defines an object (G,F := L1 ⊗
OG
L⊗−1

2 ) in

DEGIS(R, I) (see Definition 4.4.13). The point is to show that the assignment

(A,X, Y , fY , c, c
∨,F \, τ, ζ) 7→ (G,F) (4.5.4.7)

does not depend on the choices.

Lemma 4.5.4.8. Given any tuple (A,M1, X, Y, φ1, c, c
∨, τ, ψ1) (resp.

(A,M2, X, Y, φ2, c, c
∨, τ, ψ2)) in DDsplit

ample(R, I) that admits a relatively

complete model (P \
1 ,L

\
1) (resp. (P \

2 ,L
\
2)) extending (G\,L\1 := π∗M1)

(resp. (G\,L\2 := π∗M2)), let (G,L1) (resp. (G,L2)) be the corresponding
“Mumford quotient” of (G\,L\1) (resp. (G\,L\2)) (see Definition 4.5.2.18).
Then the tensor product (A,M1 ⊗

OA
M2, X, Y, φ1 + φ2, c, c

∨, τ, ψ1ψ2) admits

a relatively complete model (P \,L\) extending (G\,L\ := L\1 ⊗
O
G\

L\2), and

(G,L1 ⊗
OG
L2) is (isomorphic to) the “Mumford quotient” of (G\,L\).
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Proof. Consider the diagonal embedding of

(A,M1 ⊗
OA
M2, X, Y, φ1 + φ2, c, c

∨, τ, ψ1ψ2)

into its fiber product with itself (defined as in the proof of Theorem
4.5.3.6). Then a relatively complete model for the fiber product object can
be given by (P \

1 ×
S
P \

2 , pr∗1 L
\
1 ⊗

O
P
\
1 ×S

P
\
2

pr∗2 L
\
2), and the “Mumford quotient”

of (G\×
S
G\, pr∗1 L

\
1 ⊗

O
G\ ×

S
G\

pr∗2 L
\
2) is (G×

S
G, pr∗1 L1 ⊗

OG×
S
G

pr∗2 L2). By taking

the closure P \ of the diagonal image of G\ → G\×
S
G\ ↪→ P \

1 ×
S
P \

2 , and by

taking the restriction of pr∗1 L
\
1 ⊗

O
P
\
1 ×S

P
\
2

pr∗2 L
\
2 to P \, we obtain a relatively

complete model of (A,M1 ⊗
OA
M2, X, Y, φ1 + φ2, c, c

∨, τ, ψ1ψ2). Since the

pullback of pr∗1 L1 ⊗
OG×

S
G

pr∗2 L2 under the diagonal morphism G ↪→ G×
S
G is

L1 ⊗
OG
L2, Theorem 4.5.3.6 implies that the “Mumford quotient” of (G\,L\)

is (G,L1 ⊗
OG
L2), as desired.

Corollary 4.5.4.9. The assignment (4.5.4.7) in Construction 4.5.4.6 is in-
dependent of choices, and defines a functor

MIS(R, I) : DDIS(R, I)→ DEGIS(R, I)

extending M∗ample(R, I) : DD∗ample(R, I) → DEGample(R, I). By restriction, it
defines a functor

Mample(R, I) : DDample(R, I)→ DEGample(R, I).

By extending and forgetting extra structures, it also defines a functor

M(R, I) : DD(R, I)→ DEG(R, I).

Proof. Since uniqueness can be verified under étale descent, we may
assume that both X and Y are constant with values X and Y , re-
spectively, and that we have four objects (A,M1, X, Y, φ1, c, c

∨, τ, ψ1),
(A,M2, X, Y, φ2, c, c

∨, τ, ψ2), (A,M′
1, X, Y, φ

′
1, c, c

∨, τ, ψ′1), and (A,M′
2, X, Y, φ

′
2, c, c

∨, τ, ψ′2)
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such that, for L\1 := π∗M1, L\2 := π∗M2, L\1
′

:= π∗M′
1, and L\2

′
:= π∗M′

2,
we have

(A,X, Y, fY , c, c
∨,F \, τ, ζ)

∼= (A,X, Y, φ1, c, c
∨,L\1, τ, ψ1)⊗(A,X, Y, φ2, c, c

∨,L\2, τ, ψ2)⊗−1

∼= (A,X, Y, φ′1, c, c
∨,L\1

′
, τ, ψ′1)⊗(A,X, Y, φ′2, c, c

∨,L\2
′
, τ, ψ′2)⊗−1.

Let (G,L1), (G,L2), (G,L′1), and (G,L′2) be the respective “Mumford quo-
tients” of the four objects in DDsplit

ample(R, I) that we have introduced. Then

we have two possible definitions of (G,F), which are (G,L1 ⊗
OG
L⊗−1

2 ) and

(G,L′1 ⊗
OG

(L′2)⊗−1). We need to show that L1 ⊗
OG
L⊗−1

2
∼= L′1 ⊗

OG
(L′2)⊗−1, or

equivalently L1 ⊗
OG
L′2 ∼= L2 ⊗

OG
L′1. This follows from Lemma 4.5.4.8 because

we have by assumption an isomorphism of tensor products of objects in
DDsplit

ample(R, I):

(A,X, Y, φ1, c, c
∨,L\1, τ, ψ1)⊗(A,X, Y, φ′2, c, c

∨,L\2
′
, τ, ψ′2)

∼= (A,X, Y, φ2, c, c
∨,L\2, τ, ψ2)⊗(A,X, Y, φ′1, c, c

∨,L\1
′
, τ, ψ′1).

The remaining statements of the corollary are clear.

Let us construct a functor Mpol(R, I) : DDpol(R, I) → DEGpol(R, I)
as well. For this purpose, we also need to construct the dual of G us-
ing Mumford’s construction. Let (A,X, Y , c, c∨, τ) be a tuple in DD(R, I).
Let fY ×

S
X : Y ×

S
X

∼→ X ×
S
Y be the isomorphism switching the two fac-

tors. Let fA×
S
A∨ : A×

S
A∨

∼→ A∨×
S
A be the isomorphism switching the

two factors, over which we have an isomorphism PA
∼→ PA∨ covering it.

Let τ∨ : 1X ×
S
Y ,η

∼→ (c∨× c)∗P⊗−1
A∨,η be defined by switching the factors in

τ : 1Y ×
S
X,η

∼→ (c× c∨)∗P⊗−1
A,η using the (inverses of the) above-mentioned

isomorphisms.

Definition 4.5.4.10. Let (A,X, Y , c, c∨, τ) be an object in DD(R, I). We
define its dual tuple to be the tuple

(A∨, Y ,X, c∨, c, τ∨)

(which is not yet known to be a tuple in DD(R, I) as we do not know its
extendability to an object in DDpol(R, I)).
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Lemma 4.5.4.11. The dual tuple (A∨, Y ,X, c∨, c, τ∨) defined above is also
an object in DD(R, I). (Then τ∨ corresponds to a period homomorphism
ι∨ : 1X,η

∼→ G∨,\η by Lemma 4.2.1.7.)

Proof. We have to show that there exists

(A∨, λA∨ , Y ,X, φ
∨, c∨, c, τ∨)

in DDpol(R, I) extending (A∨, Y ,X, c∨, c, τ∨), such that τ∨ satisfies the pos-
itivity condition defined using φ∨.

Let G\ (resp. G∨,\) denote the extension defined by c : X → A∨ (resp. c∨ :
Y → (A∨)∨ ∼= A). Let us take any φ and λA in addition to (A, λA, X, Y , φ, τ)
that (altogether) define an object in DDpol(R, I), and let us take an integer
N > 0 sufficiently large such that there exists a homomorphism λ∨,\ : G∨,\ →
G\ such that λ∨,\λ\ = [N ] and λ\λ∨,\ = [N ] are the multiplications byN onG\

and G∨,\. (Do not interpret λ∨,\ as defined by the dual of any homomorphism.
The notation simply means we are defining a homomorphism on the dual
objects.) Then there exist an embedding φ∨ : X ↪→ Y and an isogeny
λA∨ : A∨ → A with the compatibility c∨φ∨ = λA∨c defining λ∨,\ such that
φ′φ = [N ], φφ′ = [N ], λA∨λA = [N ], and λAλA∨ = [N ] are the multiplications
byN on Y , X, A, and A∨. Then λA∨ is necessarily a polarization by Corollary
1.3.2.21.

After making a finite étale surjective base change in S such that X and
Y become constant with values X and Y , respectively, the positivity con-
dition is satisfied for τ over Y ×φ(Y ) ⊃ φ′(X)×φ(φ′(X)) = φ′(X)×NX,
and hence for τ∨ over NX ×φ′(X), or equivalently over X ×φ′(X) by the
bimultiplicativity. This shows that the tuple (A∨, λA∨ , Y ,X, φ

∨, c∨, c, τ∨) is
in DDpol(R, I), as desired.

By applying the functor M(R, I) to the dual tuple (A∨, Y ,X, c∨, c, τ∨) of
(A,X, Y , c, c∨, τ), we obtain an object G′ in DEG(R, I). We would like to
show that this G′ is the dual semi-abelian scheme G∨ of G defined in The-
orem 3.4.3.2. For this purpose, we shall construct an birigidified invertible
sheaf P over G×

S
G′ such that χ(Pη) = ±1. Then Pη sets up a divisorial

correspondence between Gη and G′η, as in [94, §8, Prop. 2, and §13, Prop.],
making G′η isomorphic to the dual abelian variety of Gη.

Lemma 4.5.4.12. Under the switching isomorphism fA×
S
A∨ : A×

S
A∨

∼→
A∨×

S
A, we have D2(PA) ∼= (IdA×

S
A∨ × fA×

S
A∨)∗PA×

S
A∨.
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Proof. By evaluating D2(PA) at each functorial point (a1, a
′
1, a2, a

′
2) of

A×
S
A∨×

S
A×

S
A∨, we obtain (using the biextension structure of PA)

PA|(a1+a2,a′1+a′2) ⊗
OS

(PA|(a1,a′1))
⊗−1 ⊗

OS
(PA|(a2,a′2))

⊗−1

∼= PA|(a1,a′2) ⊗
OS
PA|(a2,a′1)

∼= PA|(a1,a′2) ⊗
OS
PA∨ |(a′1,a2).

This shows that D2(PA) ∼= pr∗14PA ⊗
OA×

S
A∨ ×

S
A×
S
A∨

pr∗23PA∨ , which is equivalent

to what we need.

Lemma 4.5.4.13. Let τ× := pr∗13 τ+pr∗24 τ
∨. Then D2(τ) = pr∗14 τ+pr∗23 τ =

(IdY ×
S
X × fY ×

S
X)∗τ×.

Proof. This is because we have

D2(τ)(y1, χ1, y2, χ2) = τ(y1 + y2, χ1 + χ2)τ(y1, χ1)−1τ(y2, χ2)−1

= τ(y1, χ2)τ(y2, χ1) = τ(y1, χ2)τ∨(χ1, y2)

at each functorial point (y1, χ1, y2, χ2) of Y ×
S
X ×

S
Y ×

S
X,

Construction 4.5.4.14. Let us first construct (G×
S
G′,P) as an object

in DEGIS(R, I) (see Definition 4.4.12). Since the object G (resp. G′)
in DEG(R, I) is associated with the object (A,X, Y , c, c∨, τ) (resp.
(A∨, Y ,X, c∨, c, τ∨)) in DD(R, I), their fiber product G×

S
G′ is associated

with

(A×
S
A∨, X ×

S
Y , Y ×

S
X, c× c∨, c∨× c, τ× = pr∗13 τ + pr∗24 τ

∨). (4.5.4.15)

Let π : G\ → A and π∨ : G∨,\ → A∨ denote the structural morphisms. In
order to define an object in DDIS(R, I) over the object (4.5.4.15) in DD(R, I),
we need

1. the switching isomorphisms fY ×
S
X : Y ×

S
X

∼→ X ×
S
Y and

fA×
S
A∨ : A×

S
A∨

∼→ A∨×
S
A, satisfying the compatibility

(c× c∨)fY ×
S
X = fA×

S
A∨(c∨× c);

293



2. the cubical invertible sheaf P\ := (π× π∨)∗PA, compatible with fA×
S
A∨

by Lemma 4.5.4.12;

3. the cubical trivialization ψP : 1Y ×
S
X,η

∼→ (ι× ι∨)∗P\η defined by

τ : 1Y ×
S
X,η

∼→ (c× c∨)∗PA,η(ι× ι∨)∗(π× π∨)∗PA,η ∼= (ι× ι∨)∗P\η,

which is compatible with τ× by Lemma 4.5.4.13.

Thus (A×
S
A∨, X ×

S
Y , Y ×

S
X, fY ×

S
X , c, c

∨,P\, τ×, ψP) defines an object in

DDIS(R, I), and we obtain, by applying MIS(R, I), an object (G×
S
G′,P) in

DEGIS(R, I).

As explained above, we need χ(Pη) = ±1 to show that Pη establishes a
divisorial correspondence between Gη and G′η.

We shall prove a more general result that computes χ(Fη)2 when (G,F)
is associated with some tuple (A,X, Y , fY , c, c

∨,F \, τ, ζ) in DDIS(R, I) under
MIS(R, I). Since this is a question about equalities, we can always make a
finite étale surjective base change in S and assume that both X and Y are
constant with values X and Y , respectively, and that F ∼= π∗N for some
invertible sheaf N over A inducing fA : A→ A∨.

Lemma 4.5.4.16. Let χ ∈ X. For each n > 0, we have Iy · Iy,χ ⊂ In for all
but finitely many y ∈ Y (see Definitions 4.2.4.5 and 4.2.4.6).

Proof. As in Section 4.2.3, let us denote by Υ1 the set of valuations of K
defined by height-one primes of R, and let us denote by ΥI the set of discrete
valuations υ of K having centers on S0 = Spec(R0).

For convenience, let us denote the function Y → Inv(R) : y 7→ Iy (resp.
Y ×X → Inv(R) : (y, χ) 7→ Iy,χ) by a (resp. b).

First let us show that Iy · Iy,χ ⊂ R for all but finitely many y 6∈ Q.
Note that Iy ⊂ R for all but finitely many y ∈ Y . So it suffices to consider
the finitely many valuations υ in Υ1 for which υ(Iy,χ) < 0 can happen.
As in the proof of Lemma 4.5.1.7, by forming a quotient by the radical
of the associated pairing for each υ, we may assume that υ(b( · , φ( · ))) is
positive definite. Let ‖y‖υ := υ(b(y, φ(y)))1/2 be the associated norm on the
real vector space Y⊗

Z
R, in which we have two lattices X and Y with X

embedded in Y⊗
Z
R via the embedding φ : Y ↪→ X with finite cokernel. Since

294



the quadratic function υ(a( · )) has associated bilinear pairing υ(b( · , φ( · ))),
which is positive semidefinite, there are constants κ

(2)
υ , κ

(1)
υ , κ

(0)
υ ∈ R, with

κ
(2)
υ > 0, such that

υ(a(y)) > κ(2)
υ ‖y‖2

υ + κ(1)
υ ‖y‖υ + κ(0)

υ

for all y ∈ Y . Now υ(b(y, χ)) > ‖y‖υ‖χ‖υ, and hence we have

υ(a(y)) > κ(2)
υ ‖y‖2

υ + (κ(1)
υ − ‖χ‖υ)‖y‖υ + κ(0)

υ

with κ
(2)
υ > 0. In particular, υ(a(y) · b(y, χ)) ≥ 0 for all but finitely many

y. Since the number of υ to consider is finite, by Lemma 4.2.4.2, we have
Iy · Iy,χ ⊂ R for all but finitely many y ∈ Y .

Next let us show that, for each n > 0, we have Iy · Iy,χ ⊂ In for all but
finitely many y ∈ Y . Let us first exclude those y ∈ Y such that Iy · Iy,χ ⊂ R
is not true. By the positivity condition for ψ, we have Iy ⊂ In for all but
finitely many y ∈ Y . As a result, we only need to consider those finitely many
υ ∈ ΥI for which υ(b(y, χ)) < 0 can happen. Moreover, for each υ ∈ ΥI ,

there are again constants κ
(2)
υ , κ

(1)
υ , κ

(0)
υ ∈ R, with κ

(2)
υ > 0, such that

υ(a(y)) > κ(2)
υ ‖y‖2

υ + κ(1)
υ ‖y‖υ + κ(0)

υ

for all y ∈ Y . Now υ(b(y, χ)) > ‖y‖υ‖χ‖υ, and hence we have

υ(a(y)) > κ(2)
υ ‖y‖2

υ + (κ(1)
υ − ‖χ‖υ)‖y‖υ + κ(0)

υ

with κ
(2)
υ > 0. In particular, υ(a(y) · b(y, χ)) ≥ n for all but finitely many

y. Since the number of υ to consider is finite, by Lemma 4.2.4.4, we have
Iy · Iy,χ ⊂ In for all but finitely many y ∈ Y , as desired.

Theorem 4.5.4.17 (cf. [42, Ch. III, Thm. 6.1]). For every object
(A,N , X, Y, fY , c, c∨, τ, ζ) such that (A,X, Y, fY , c, c

∨,F \ = π∗N , τ, ζ)
is an object in DDIS(R, I), we have χ(Fη)2 = χ(Nη)2 · deg(f ∗Y )2 =
deg(fA) · deg(f ∗Y )2. (The degrees are zero for morphisms that are not finite.)

Proof. The relation χ(Nη)2 = deg(fA) follows from the Riemann–Roch the-
orem for abelian varieties (see [94, §16]). Therefore it suffices to prove the
first equality. With the given object (A,N , X, Y, fY , c, c∨, τ, ζ), there is al-
ways an object (A,M0, X, Y, φ0, c, c

∨, τ, ψ0) in DDsplit
ample(R, I) such that for

some integer n0 > 0, the tuple (A,N ⊗
OA
M⊗n

0 , X, Y, fA + nφ0, c, c
∨, τ, ζψn0 ) is
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an object in DDsplit
ample(R, I) for all n ≥ n0 because we only need the injectivity

of fA + nφ0 and the relative ampleness of N ⊗
OA
M⊗n

0 . This is still true if we

replace M0 with M1 := M0 ⊗
OA

[−1]∗M0, φ0 with φ1 := φ0 + [−1]∗φ0, and

ψ0 with ψ1 := ψ0 [−1]∗ψ0. By Corollary 4.5.1.8, there is another n1 ≥ n0

such that (A,N ⊗
OA
M⊗n

1 , X, Y, fA + nφ1, c, c
∨, τ, ζψn1 ) is in DDsplit,∗

ample(R, I) for

all n ≥ n1. Let (G,L1) be the pair in DEGample(R, I) associated with

(A,X, Y, φ1, c, c
∨,L\1 = π∗M1, τ, ψ1) in DDample(R, I) by Mample(R, I). Con-

sider χ(Fη ⊗
OG,η
L⊗n1,η )2 and χ(Nη ⊗

OA,η
M⊗n

1,η )2 · deg(f ∗Y + nφ∗1), which are both

polynomials in n by the Riemann–Roch theorem for abelian varieties (see [94,
§16] again). Therefore, if the equality holds for all n ≥ n1, then it actually
holds for all n, and in particular, n = 0. Therefore it suffices to deal with
the case that we have an object (A,M, X, Y, φ, c, c∨, τ, ψ) in DDsplit

ample(R, I),
with a “Mumford quotient” (P,L) defined by some relatively complete model
(P \,L\) (see Definition 4.5.2.18).

Recall (from Section 4.3) that the Fourier expansion of a section s ∈
Γ(G,L) is obtained by writing s as an I-adically complete sum

∑
χ∈X

σχ(s) in

Γ(Gfor,Lfor) ∼= Γ(G\
for,L

\
for)
∼= ⊕̂

χ∈X
Γ(A,M⊗

OA
Oχ), formed according to the

T -action, where σχ(s) ∈ Γ(A,M⊗
OA

Oχ). Since Pη = Gη, there is a nonzero

element r ∈ R such that r · s ∈ Γ(P,L). Since (Pfor,Lfor) is the quotient of
(P \

for,L
\
for) under Y , we have an embedding

Γ(P,L) ∼= Γ(Pfor,Lfor) ∼= Γ(P \
for,L

\
for)

Y ↪→ Γ(P \
for,L

\
for). (4.5.4.18)

Since the union of Y -translations of G\
for form an open dense formal sub-

scheme of P \
for, the composition of Γ(P \

for,L
\
for)

Y ↪→ Γ(P \
for,L

\
for) with the

restriction Γ(P \
for,L

\
for) → Γ(G\

for,L
\
for) remains injective. Therefore we have

a canonical embedding

Γ(P,L) ↪→ Γ(G\
for,L

\
for), (4.5.4.19)

from which we obtain the Fourier expansion r · s =
∑
χ∈X

r · σχ(s), with

Y -invariance described by

σχ+φ(y)(s) = S̃y(T
∗
c∨(y)σχ(s)) = ψ(y)τ(y, χ) T ∗c∨(y)σχ(s) (4.5.4.20)
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(see Construction 4.5.1.5). Let V be the K-subspace of Γ(Gfor,Lfor)⊗
R
K ∼=

Γ(G\
for,L

\
for)⊗

R
K consisting of the (Y -invariant) infinite sums

{ ∑
χ∈X

θχ : θχ ∈ Γ(Aη,Mη ⊗
OA,η

Oχ,η),

θχ+φ(y) = ψ(y)τ(y, χ) T ∗c∨(y)(θχ) ∀y}

}
. (4.5.4.21)

Then (4.5.4.19) identifies Γ(Gη,Lη) ∼= Γ(P,L)⊗
R
K as a K-subspace of V .

By Lemma 4.5.4.16, for each χ ∈ X and θχ ∈ Γ(Aη,Mη ⊗
OA,η

Oχ,η), there

is a nonzero r ∈ R such that

r
∑
y∈Y

(ψ(y)τ(y, χ) T ∗c∨(y)(θχ)) (4.5.4.22)

converges I-adically. That is, for each n > 0, the sum (4.5.4.22) has
only finitely many nonzero terms modulo In (see Section 4.3.1). Since
dimK Γ(Aη,Mη ⊗

OA,η
Oχ,η) = dimK Γ(Aη,Mη) = χ(Mη) (for all χ ∈ X),

this shows that dimK V = χ(Mη) · [X : φ(Y )] = χ(Mη) · deg(f ∗Y ). On the
other hand, since there is an G\-invariant open subscheme U ⊂ P \ of finite
type over S such that ∪

y∈Y
Sy(U) = P \, the convergent sum (4.5.4.22) lies

in the image of (4.5.4.18). Since χ ∈ X and θχ are arbitrary, this shows
that V = Γ(Gη,Lη). Since dimK Γ(Gη,Lη) = χ(Lη), we obtain the relation
χ(Lη) = χ(Mη) · deg(f ∗Y ), as desired.

Corollary 4.5.4.23. Given any tuple (A,X, Y , c, c∨, τ) in DD(R, I)
that defines G by M(R, I) : DD(R, I) → DEG(R, I), the dual tuple
(λA, Y ,X, c

∨, c, τ∨) as in Definition 4.5.4.10 defines G∨ by M(R, I).

Proof. This is because deg(fY ×
S
X) = 1 and deg(fA×

S
A∨) = 1.

Corollary 4.5.4.24 (of the proof of Theorem 4.5.4.17). Suppose
(A,M, X, Y, φ, c, c∨, τ, ψ) is an object in DDsplit

ample(R, I), with a “Mumford
quotient” (G,L) defined by some relatively complete model. Then the image
of the canonical morphism Γ(Gη,Lη) ↪→ Γ(G\

for,L
\
for)⊗

R
K is the Y -invariant

K-subspace of Γ(G\
for,L

\
for)⊗

R
K described by (4.5.4.21).
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Lemma 4.5.4.25 (see [42, Ch. II, p. 51]). Suppose that we have a mor-
phism f : (G1,L1) → (G2,L2) in DEGample(R, I), and suppose that, under
the functor Fample(R, I) in Theorem 4.2.1.14, f induces an isomorphism in
DDample(R, I). Then f is an isomorphism. That is, Fample(R, I) detects
isomorphisms.

Proof. For i = 1, 2, let (Ai, X i, Y i, φi, ci, c
∨
i ,L

\
i, τi, ψi) be the degeneration

data in DDample(R, I) associated with (Gi,Li) under Fample(R, I). By Lemma
4.5.4.5, up to making a finite étale surjective base change in S, and up to
replacing L1 and L2 with L⊗m1 and L⊗m2 for some integer m > 0, we may as-
sume that the two degeneration data are induced by objects in DDsplit,∗

ample(R, I),
which admit relatively complete models by Proposition 4.5.1.15. By assump-
tion, f induces isomorphisms fA : A1

∼→ A2, fX : X2
∼→ X1, fY : Y 1

∼→ Y 2,
f \ : G\

1 → G\
2, and L\1

∼→ (f \)∗L\2, and hence, by Corollary 4.3.4.2, com-
patible isomorphisms Γ(G\

2,for, (L
\
2,for)

⊗n)
∼→ Γ(G\

1,for, (L
\
1,for)

⊗n) for all n ≥
0. By Corollary 4.5.4.24, the action of Y 1 (resp. Y 2) on (L\1,for)

⊗n (resp.

(L\2,for)
⊗n) defined by τ1 and ψ1 (resp. τ2 and ψ2) characterizes the image of

the canonical embedding Γ(G1,η, (L1,η)
⊗n) ↪→ Γ(G\

1,for, (L
\
1,for)

⊗n)⊗
R
K (resp.

Γ(G2,η, (L2,η)
⊗n) ↪→ Γ(G\

2,for, (L
\
2,for)

⊗n)⊗
R
K). Therefore, the identification

between (τ1, ψ1) and (τ2, ψ2) under the other isomorphisms induces isomor-
phisms Γ(G2,η,L⊗n2,η )

∼→ Γ(G1,η,L⊗n1,η ) for all n ≥ 0, which are nothing but
the compatible morphisms induced by fη. Since L1,η and L2,η are ample,
this implies that fη is an isomorphism. Hence, f is also an isomorphism, by
Proposition 3.3.1.5.

Corollary 4.5.4.26. The functor Fample(R, I) : DEGample(R, I) →
DDample(R, I) (given by Theorem 4.2.1.14) is a quasi-inverse of
Mample(R, I), and hence both Fample(R, I) and Mample(R, I) are equivalences
of categories.

Proof. By reduction to the case of objects in DDsplit,∗
ample(R, I) (again),

we see in the proof of Theorem 4.5.4.17 that the composition
Fample(R, I) Mample(R, I) is canonically isomorphic to the identity.
Then Fample(R, I) Mample(R, I) Fample(R, I) is also canonically isomorphic to
Fample(R, I). Since Fample(R, I) detects isomorphisms by Lemma 4.5.4.25,
Mample(R, I) Fample(R, I) must be also isomorphic to the identity. This
shows that Fample(R, I) and Mample(R, I) are quasi-inverses of each other,
and hence are both equivalences of categories.
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Finally, we are ready to define Mpol(R, I).

Construction 4.5.4.27. For each (A, λA, X, Y , φ, c, c
∨, τ) in DDpol(R, I), we

obtain a morphism from (A,X, Y , c, c∨, τ) to (A∨, Y ,X, c∨, c, τ∨) in DD(R, I)
given by λA : A→ A∨, φ : Y ↪→ X, and φ : Y ↪→ X. By Corollary 4.5.4.23,
the tuple (A∨, Y ,X, c∨, c, τ∨) defines G∨ by M(R, I). As a result, we obtain
a homomorphism λ : G→ G∨.

Lemma 4.5.4.28. The restriction λη : Gη → G∨η is a polarization.

Proof. By Definition 1.3.2.16, we shall verify the condition in Proposition
1.3.2.15 that the pullback (IdGη , λη)

∗P is ample over Gη. Equivalently, by
Lemma 4.2.1.6, we shall verify that (IdG, λ)∗P is ample over G.

The morphism (IdG, λ) : G→ G×
S
G∨ is given by the morphism

(A,X, Y , c, c∨, τ)→ (A×
S
A∨, X ×

S
Y , Y ×

S
X, c× c∨, c∨× c, τ×),

where τ× = pr∗13 τ pr13 + pr∗24 τ
∨ pr24 (see Lemma 4.5.4.13), defined by the

morphisms (IdA, λA) : A → A×
S
A∨, IdX +φ : X ×

S
Y → X, and (IdY , φ) :

Y ↪→ Y ×
S
X. On the other hand, in Construction 4.5.4.14, (G×

S
G∨,P) is

given by

(A×
S
A∨, X ×

S
Y , Y ×

S
X, fY ×

S
X , c× c∨, c∨× c,P\ := (π× π∨)∗PA, τ×, ψP).

The pullback of fY ×
S
X is the composition (IdX +φ)(fY ×

S
X)φ, which is sim-

ply 2φ. Since φ is injective, 2φ is also injective. The pullback of (π× π∨)∗PA
is π∗(IdA, λA)∗PA because (π× π∨)(IdG\ , λ\) = (π, λ\π) = (IdA, λA)π. Since
λA is a polarization, (IdA, λA)∗PA is ample, and hence π∗(IdA, λA)∗PA
is also ample. The pullback of ψP = τ is ψ := (IdY , φ)∗τ , with the
compatibility D2(ψ) = (IdY × 2φ)∗τ given by the bimultiplicativity of
the trivialization τ of biextensions. As a result, the pullback object
(A,X, Y , 2φ, c, c∨, π∗(IdA, λA)∗PA, τ, ψ), which is a priori an object in
DDIS(R, I), defines an object in DDample(R, I). Since this object defines
(G, (IdG, λ)∗P) under M(R, I), we see that (IdG, λ)∗P is ample, as
desired.

Corollary 4.5.4.29. The assignment

(A, λA, X, Y , φ, c, c
∨, τ) 7→ (G, λ)
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in Construction 4.5.4.27 defines a functor

Mpol(R, I) : DDpol(R, I)→ DEGpol(R, I).

Corollary 4.5.4.30. The functors Mample(R, I) : DDample(R, I) →
DEGample(R, I), Mpol(R, I) : DDpol(R, I) → DEGpol(R, I), MIS(R, I) :
DDIS(R, I) → DEGIS(R, I), and M(R, I) : DD(R, I) → DEG(R, I) are
compatible with each other under the natural forgetful functors. Moreover,
Mample(R, I) and Mpol(R, I) are compatible with the “pullback functor”
DEGpol(R, I) → DEGample(R, I) described in Lemma 4.4.4 and the
analogous functor DDpol(R, I)→ DDample(R, I).

Proof. The compatibilities with forgetful functors follow from the very con-
structions of the functors. The compatibilities with the pullback functors
follow from the proof of Lemma 4.5.4.28.

Corollary 4.5.4.31. The functor Fpol(R, I) : DEGpol(R, I) → DDpol(R, I)
(see Definition 4.4.8) is a quasi-inverse of Mpol(R, I), and hence both
Fpol(R, I) and Mpol(R, I) are equivalences of categories.

Proof. This follows from Corollaries 4.5.4.26 and 4.5.4.30.

4.5.5 Dependence of τ on the Choice of L, Revisited

The major goal of this section is to prove the following:

Proposition 4.5.5.1. Let (G, λ) be an object in DEGpol(R, I) with associ-
ated degeneration data (A, λA, X, Y , φ, c, c

∨, τ) in DDpol(R, I) as in Defini-
tion 4.4.8. Then the homomorphism ι : Y η → G\

η corresponding to τ (see
Lemma 4.2.1.7) is independent of the choice of λ.

Lemma 4.5.5.2. To prove Proposition 4.5.5.1, it suffices to show that the
image of ι is independent of the choice of λ.

Proof. We may replace R with a finite étale extension and assume that Y
is constant. By Corollary 4.5.3.12 (with s = η), ι is injective and induces
a canonical isomorphism 1

n
Y/Y

∼→ G[n]η/G
\[n]η of group schemes for each

integer n ≥ 1 (if we identify Y with the character group of the torus part
of G∨,\). Thus the conclusion follows from Serre’s lemma that no nontrivial
root of unity can be congruent to 1 modulo n if n ≥ 3.
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With the same setting as in Proposition 4.5.5.1, after making a finite étale
base change in S if necessary (cf. Corollary 3.2.5.7), suppose moreover that X
and Y are constant with values X and Y , respectively. Let L := (IdG, λ)∗P
(cf. Lemma 4.2.1.4). Let λA : A → A∨ be the polarization induced by
λ\ : G\ → G∨,\, and let M := (IdA, λA)∗PA. Then L\ is isomorphic to the
pullback of M, and we have H0(G\, (L\)⊗m) ∼= ⊕

χ∈X
H0(A,M⊗m ⊗

OA
Oχ) for

all integers m ≥ 0, as usual.

Proposition 4.5.5.3 (cf. [42, Ch. III, Prop. 8.1]). With assumptions as
above, suppose moreover that R is a complete discrete valuation ring. Then
there is a canonical map pK : G\(K) → G(K) of sets, independent of the
choice of polarizations, realizing G(K) as a quotient of G\(K) under the
natural multiplication action of ι(Y ).

Proof. By Proposition 4.3.4.5, we may replace λ with its multiple by a suf-
ficiently large integer without changing ι, such that a relatively complete
model P \ of G\ exists (by Corollary 4.5.1.8 and Proposition 4.5.1.15).

Consider the canonical morphisms G\(K)→ P \(K)← P \(R), where the
first map is bijective by Corollary 4.5.2.3. We claim that the second map
is also bijective. By separateness, it suffices to show that every K-valued
point x : Spec(K) → P \ extends to an R-valued point, as follows: Choose
a valuation of the rational function field K(P \) ∼= K(G\) centered at x.
By composing this valuation with an extension of the valuation υ of R to
K, we obtain a valuation υ1 satisfying the assumptions in the completeness
condition (iii) in Definition 4.5.1.2 (because of the positivity of τ associated
with the period homomorphism ι). This shows that υ1 has a center on P \,
which shows that x extends to an R-valued point of P \, as desired.

On the other hand, we have the canonical morphisms G(K)→ P (K)←
P (R), where the first map is bijective by Proposition 4.5.2.23, and where
the second map is bijective because P is projective (and hence proper) over
S = Spec(R) (cf. Proposition 4.5.2.15).

Since Pfor is a genuine quotient of P \
for in the category of formal

schemes (cf. Proposition 4.5.2.15), we have the canonical isomorphisms
G(K) ∼= P (K) ∼= P (R) ∼= Pfor(R) ∼= P \

for(R)/Y ∼= P \(R)/Y ∼= P \(K)/Y ∼=
G\(K)/ι(Y ), defining the desired map pK : G\(K) → G(K) realizing G(K)
as a quotient of G\(K) under the natural multiplication action of ι(Y ).

The map pK can be described more explicitly as follows: Evaluation at
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each x ∈ G\(K) defines a morphism

x∗ : ⊕
m≥0

Γ(G\, (L\)⊗m)→ ⊕
m≥0

x∗(L\)⊗m.

Since Γ(G\
for, (L

\
for)
⊗m) ∼= ⊕̂χ∈XΓ(A,M⊗m ⊗

OA
Oχ) for every m ≥ 0 (cf.

Section 4.3.1), x∗ extends to every subalgebra of ⊕
m≥0

Γ(Gfor,L⊗mfor ) ∼=

⊕
m≥0

Γ(G\
for, (L

\
for)
⊗m) over which the I-adic sums converge. Given

the existence of the relatively complete model P \ above, x∗ de-
fines convergent sums over the image of the canonical morphism
⊕
m≥0

Γ(G,L⊗m) → ⊕
m≥0

Γ(Gfor, (Lfor)
⊗m) (cf. Corollary 4.5.4.24).

Hence we obtain a morphism from the point Proj( ⊕
m≥0

x∗(L\)⊗m) to

Gη
∼= Proj( ⊕

m≥0
Γ(Gη,L⊗mη )), realizing pK(x) ∈ G(K). This morphism does

not depend on the choice of P \, because we have only used the existence of
P \ for the I-adic convergence of evaluations.

In [106, §1] and [21, §1], the construction of the Raynaud extensions comes
equipped with a canonical “rigid analytic quotient” pan : G\

an → Gan, and
the above description (by evaluating sections of powers of an ample invertible
sheaf) shows that pK is the map on K-points induced by pan. In particular,
pK is independent of the choice of λ (or rather L and L\), as desired.

Remark 4.5.5.4. The idea of realizing general abelian varieties as rigid ana-
lytic quotients has had a long history since [106], generalizing Tate’s earlier
idea for elliptic curves. Readers who would like to know more about the
rigid analytic treatment of such a construction over (not necessarily discrete)
complete valuation rings may refer to [115]. The simpler case of quotients
of tori can also be found in [45]. We will not explore this idea further in
our work, because (for the purpose of construction of compactifications in
general) we will need noetherian complete adic rings which are not neces-
sarily local. (The boundary of toroidal compactifications almost always has
nontrivial crossings.)

Now Proposition 4.5.5.1 follows from Lemma 4.5.5.2 and Proposition
4.5.5.3, because whether ι is independent of the choice of polarizations is
about equalities, which (as in Section 4.3.3) can be checked after making
base changes from R to complete discrete valuation rings (under continuous
injections).
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Corollary 4.5.5.5 (cf. [42, Ch. III, Thm. 7.1]). Let (G\
1, ι1 : Y 1,η → G\

1,η)

(resp. (G\
2, ι2 : Y 2,η → G\

2,η)) be an object in DD(R, I), with image G1

(resp. G2) under M(R, I) : DD(R, I) → DEG(R, I) as in Corollary 4.5.4.9.
Suppose there is a homomorphism fη : G1,η → G2,η between abelian vari-
eties. Then there is a uniquely determined morphism (fY : Y 1 → Y 2, f

\ :
G\

1 → G\
2), satisfying f \ ◦ ι1 = ι2 ◦ fY and hence defining a morphism in

DD(R, I), such that (fY , f
\) defines under M(R, I) the unique homomor-

phism f : G1 → G2 extending fη (cf. Proposition 3.3.1.5). In particular,
the functor M(R, I) is fully faithful and defines an equivalence of categories
with quasi-inverse F(R, I) : DEG(R, I) → DD(R, I) induced by Fample(R, I)
(which is well defined by Proposition 4.5.5.1).

Proof. The unique homomorphism f : G1 → G2 extending fη induces the

homomorphism f \ : G\
1 → G\

2 by functoriality of Raynaud extensions. The
dual isogeny f∨η : G∨2,η → G∨1,η induces similarly the homomorphism G∨,\2 →
G∨,\1 , and hence the homomorphism fY : Y 2 → Y 1 on the character groups
of torus parts. Thus there is no ambiguity in the choices of fY and f \. The
only question is whether they satisfy f \ ◦ ι1 = ι2 ◦ fY .

Consider the fiber product G := G1×
S
G2, and consider the isomorphism

h : G→ G defined by (x1, x2) 7→ (x1, f(x1) + x2) for all functorial points x1

of G1 and x2 of G2, respectively. Let Y := Y 1×
S
Y 2, and let ι := ι1× ι2 :

Y → G\ ∼= G\
1×
S
G\

2. By forming the fiber product of objects in DDpol(R, I)

extending (G\
1, ι1) and (G\

2, ι2), respectively, and by Corollary 4.5.4.31, we
see that G is isomorphic to M(R, I)(G\, ι). Moreover, the morphisms hY :
Y → Y and h\ : G\ → G\ canonically induced by h : G → G are given by
hY (y1, y2) = (y1, fY (y1)+y2) and h\(z1, z2) = (z1, f

\(z1)+z2) for all functorial
points y1 of Y 1, y2 of Y 2, z1 of G\

1, and z2 of G\
2.

Let us take any ample invertible sheaf L over G such that (G,L) is an
object of DEGample(R, I). By Proposition 4.5.5.1, both Fample(G,L) and
Fample(G, h

∗L) are objects in DDample(R, I) extending (up to isomorphism)
the same tuple (G\, ι), because ι is independent of the choice of polarization.
Then Lemma 4.3.4.3 shows that h\◦ι = ι◦hY , or equivalently f \◦ι1 = ι2◦fY ,
as desired.

Corollary 4.5.5.6 (cf. [42, Ch. III, Cor. 7.2]). The functor
MIS(R, I) : DDIS(R, I) → DEGIS(R, I) is an equivalences of cate-
gories, with quasi-inverse FIS(R, I) : DEGIS(R, I) → DDIS(R, I) induced

303



by Fample(R, I) by taking tensor products of any choices of objects in
DEGample(R, I) (which is well defined by Proposition 4.5.5.1).

Proof. This follows from Corollary 4.5.5.5 and the proof of Corollary 4.5.4.9,
because we know from Proposition 4.5.5.1 that the association of τ is inde-
pendent of the choice of polarizations.

Remark 4.5.5.7. This finishes the proof of Theorem 4.4.16.

4.5.6 Two-Step Degenerations

Let R be a noetherian normal complete local domain with maximal ideal I.
Then R is excellent (see [87, 34.B]), and S := Spec(R) fits into the setting of
Section 4.1, with generic point η = Spec(K) and special point s = Spec(k(s)).

Suppose t = Spec(k(t)) is any point of S, not necessarily s, whose closure
S1 in S (with its reduced structure) is normal. Note that S1 contains s
because R is local. Let S1,for be the formal completion of S1 along s. Let R1

denote the completion of the localization Rt of R at t, and let S1 := Spec(R1),
K1 := Frac(R1), η1 := Spec(K1), and S1

/1 := Spf(R1). Note that R is

naturally a subring of R1, and K is naturally a subfield of K1. Let I1 be the
ideal of R defining the closed subscheme S1 of S. Let S/1 := Spf(R, I1). We
shall denote by subscripts s, t, or S1 the pullback of objects to the respective
base schemes. However, we shall never denote pullbacks to S1 and S/1 by
the subscripts 1 and /1.

Both S1 and S1 fit into the setting of Section 4.1, and objects in
DEGample(R, I) determine semi-abelian schemes (with ample cubical
invertible sheaves) over S1 and S1 by pullback. Our goal is to analyze these
pullbacks using the theory of degeneration. This can be interpreted as
analyzing the degeneration in two steps.

Let (G,L) be an object in DEGample(R, I). By Theorem 4.4.16, we
know that (G,L) is isomorphic to the image under Mample(R, I) of a tu-
ple (A,X, Y , φ, c, c∨,L\, τ, ψ) in DDample(R, I). Let λ : G → G∨ and λA :
A → A∨ be induced by L and L\ as in Section 4.2.1. For simplicity, let
us assume that the torus parts of fibers of G and G∨ over s and over t are
all split, and that L\ descends to some M over A. (By Remark 3.2.5.6 and
Corollary 3.2.5.7, these can be achieved by passing to a finite étale covering
of S.)

Let us denote by X, Y , X1, Y 1 the character groups of the torus parts
of Gs, G

∨
s , Gt, and G∨t , respectively. By normality of S1 and by Propositions
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3.3.1.5 and 3.3.1.7, the torus part of Gt (resp. G∨t ) extends uniquely to a
subtorus of GS1 (resp. G∨S1

), and hence we have a canonical surjection X �
X1 (resp. Y � Y 1), whose kernel we denote by X1 (resp. Y1). Let T , T∨,
T1, T∨1 , T 1, and T 1,∨ denote the tori over S having character groups X,
Y , X1, Y1, X1, and Y 1, respectively. Then the torus parts of Gs, G

∨
s , Gt,

and G∨t can be identified with Ts, T
∨
s , T 1

t , and T 1,∨
t , respectively, the latter

two extending to subtori T 1
S1

and T 1,∨
S1

of GS1 and G∨S1
, respectively. The

quotient TS1/T
1
S1

(resp. T∨S1
/T 1,∨

S1
) can be identified with T1,S1 (resp. T∨1,S1

).
The homomorphism φ : Y → X induces homomorphisms φ1 : Y1 → X1 and
φ1 : Y 1 → X1, corresponding to homomorphisms between tori over s induced
by λ.

The object (G1 := G×
S
S1, L1 := L×

S
S1) of DEGample(R

1) corresponds

by Theorem 4.4.16 to an object

(A1, X1, Y 1, φ1, c1, c1,∨,L1,\, τ 1, ψ1)

of DDample(R
1), where X1, Y 1, and φ1 agree with what we defined above.

The abelian scheme A1 is the unique algebraization of the abelian part A1
/1

of G1
/1 := G×

S
S1
/1.

By Proposition 3.2.5.4 and Corollary 3.2.5.7, the descent of the invertible
sheaf L\ to some M over A is determined by cubical trivializations of the
pullback of Lfor := L×

S
Sfor (over Gfor := G×

S
Sfor) to Tfor := T ×

S
Sfor, where

Sfor = Spf(R, I). Since all tori involved are split, the restriction of this
cubical trivialization to T 1

for := T 1×
S
Sfor partially algebraizes to a cubical

trivialization of the pullback of L×
S
S/1 to T 1×

S
S/1, which pulls back to a

cubical trivialization of the pullback of L×
S
S1
/1 to T 1×

S
S1
/1. This last action

determines the descent of L1,\ to an invertible sheaf M1 over A1.
The data c1, c1,∨, M1, τ 1, and ψ1 define (see Definitions 4.2.4.6 and

4.2.4.5) invertible R1-submodules I1
y1,χ1 and I1

y1 in K1 for each y1 ∈ Y 1 and

χ1 ∈ X1. Concretely, the invertible R1-submodule I1
y1,χ1 of K1 is defined

by the isomorphism τ 1(y1, χ1) : (c1,∨(y1), c1(χ1))∗PA1,η1
∼→ OS1,η1 and the

integral structure of (c1,∨(y1), c1(χ1))∗PA1,η1 given by (c1,∨(y1), c1(χ1))∗PA1 .
On the other hand, the R1-submodule I1

y1 of K1 is defined by the isomorphism

(c1,∨(y))∗Mη1
∼→ OS1,η1 and the integral structure of (c1,∨(y))∗M1

η1 given by

(c1,∨(y))∗M1. We will show the following proposition below:
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Proposition 4.5.6.1. For each y ∈ Y and χ ∈ X mapped to y1 and χ1

under the canonical surjections Y � Y 1 and X � X1, respectively, we have
I1
y1,χ1 = Iy,χ ·R1 and I1

y1 = Iy ·R1.

Unless Gt is an abelian scheme, the pullback (GS1 ,LS1) does not define an
object of DEGample(R

1). Nevertheless, G1 := GS1/T
1
S1

has an abelian generic
fiber (over t). The above-mentioned cubical trivialization of the pullback of
L×

S
S/1 to T 1×

S
S/1 (used in the descent of L1,\ to an invertible sheaf M1)

gives by pullback to S1 a cubical trivialization of the pullback of LS1 to
T 1
S1

, which determines (by Proposition 3.2.5.4) a descent of LS1 to a cubical
invertible sheaf L1 on G1. By construction, L1 is compatible with the choices
of M1 and M in the sense that M1

t
∼= L1,t and the pullback of Ms to G1,s

is isomorphic to L1,t.
Then (G1,L1) defines an object of DEGample(R1), which by Theorem

4.4.16 corresponds to an object

(A1, X1, Y1, φ1, c1, c
∨
1 ,L

\
1, τ1, ψ1) (4.5.6.2)

of DDample(R1), where X1, Y1, and φ1 agree with what we have defined above
because T1,s

∼= Ts/T
1
s and T∨1,s

∼= T∨s /T
1,∨
s can be identified with the torus

parts of G1,s and G∨1,s, respectively. Here G∨1 := G∨S1
/T 1,∨

S1
, and the pullback

λS1 : GS1 → G∨S1
(of the λ : G → G∨ defined by L) descends to λ1 :

G1 → G∨1 . The abelian scheme A1 over S1 is the unique algebraization
of A1,for := AS1 ×

S1

S1,for, hence can be identified with AS1 . Since G1,for :=

G1×
S1

S1,for (resp. G∨1,for := G∨1 ×
S1

S1,for) is a quotient of GS1,for
:= GS1 ×

S1

S1,for

(resp. G∨S1,for
:= G∨S1

×
S1

S1,for), we see that c1 : X1 → A∨1 (resp. c∨1 : Y1 → A1)

is the restriction to X1 (resp. Y1) of the pullback of c : X → A∨ (resp.
c∨ : Y → A) to S1. By Proposition 4.5.3.11 and Corollary 4.5.3.12, τ :
1Y ×X,η

∼→ (c∨× c)∗P⊗−1
A,η extends over a subscheme of S containing t, and

the pullback τt : 1Y ×X,t
∼→ (c∨× c)∗P⊗−1

A,t makes sense and determines by

restriction a trivialization τ ?
1 : 1Y1×X1,t

∼→ (c∨1 × c1)∗P⊗−1
A1,t

. This determines

by Lemma 4.2.1.7 a homomorphism ι?1 : Y1,t → G\
1,t. Similarly, we obtain by

extension and restriction a trivialization ψ?
1 : 1Y1,t

∼→ (ι?1)∗(L\1,t)⊗−1. We will
show the following proposition later:

Proposition 4.5.6.3. We have τ ?
1 = τ1 and ψ?

1 = ψ1.

306



Consider (a priori) another object

(A,X1, Y1, φ1, c2, c
∨
2 ,L

\
2, τ2, ψ2) (4.5.6.4)

in DDample(R, I). Here A, X1, Y1, and φ1 are exactly as above, and we

set c2 := c|X1 and c∨2 := c∨|Y1 . Then we have the Raynaud extension G\
2

(resp. G∨,\2 ) determined by c2 (resp. c∨2 ), whose torus part is isomorphic to
T1 (resp. T∨1 ). Let L\2 be the pullback of M under the structural morphism
G\

2 → A. The trivialization τ : 1Y ×X,η
∼→ (c∨× c)∗P⊗−1

A,η determines by

restriction a trivialization τ2 : 1Y1×X1,η
∼→ (c∨1 × c1)∗P⊗−1

A,η , and the trivial-

ization ψ : 1Y,η
∼→ ι∗(L\η)⊗−1 ∼= (c∨)∗(Mη)

⊗−1 determines by restriction a

trivialization ψ : 1Y1,η
∼→ ι∗2(L\2,η)⊗−1 ∼= (c∨2 )∗(Mη)

⊗−1. By Theorem 4.4.16,
they define by Mample(R, I) an object (G2,L2) in DEGample(R, I). This will
be the link between the two steps of degeneration. We will show the following
proposition later:

Proposition 4.5.6.5. There are canonical isomorphisms G2×
S
S1
∼= G1 and

L2×
S
S1
∼= L1.

Proof. Since (4.5.6.2) is the pullback of (4.5.6.4) to S1, we can conclude the
proof by taking projective spectra as in the proof of Lemma 4.5.4.25.

Let us prove the propositions by relating the objects we have defined.
The key point is the Fourier expansions of theta functions studied in Section
4.3, which were used to prove Theorems 4.2.1.14 and 4.4.16.

Recall that S/1 = Spf(R, I1). Let A/1 := GS/1/T
1
S/1

. (Then A/1 ×
S/1

S1
/1
∼=

A1
/1
∼= A1×

S1
S1
/1. However, A/1 ×

S/1

S1
∼= G1, and A/1 6∼= A×

S
S/1 in gen-

eral.) The above-mentioned cubical trivialization of the pullback of L×
S
S/1

to T 1×
S
S/1 determines (by Proposition 3.2.5.4) a descent M/1 of L×

S
S/1

over A/1. Let A/1,for := A/1 ×
S/1

Sfor and M/1,for := M/1 ×
S/1,for

Sfor. We have

A/1,for/T1,for
∼= Afor := ASfor

, and the pullback of Mfor from Afor to A/1,for is

307



canonically isomorphic to M/1,for. Now the diagram

Γ(G,L) // Γ(G×
S
S/1,L×

S
S/1) //

��

Γ(Gfor,Lfor)

��
⊕̂

χ1∈X1
Γ(A/1,M/1,χ1) // ⊕̂

χ1∈X1
Γ(A/1,for,M/1,χ1,for)

��
⊕̂
χ∈X

Γ(Afor,Mχ,for)

explains the Fourier expansions of theta functions, with symbolic relations

s =
∑
χ1∈X1

σ1
χ1(s) ∈ ⊕̂

χ1∈X1
Γ(A/1,M/1,χ1) (4.5.6.6)

and
s =

∑
χ∈X

σχ(s) ∈ ⊕̂
χ∈X

Γ(Afor,Mχ,for) ∼= ⊕̂
χ∈X

Γ(A,Mχ) (4.5.6.7)

for each s ∈ Γ(G,L). If we choose any homomorphism X1 → X splitting
X � X1 = X/X1, then we can make sense of Oχ1 and Mχ1 = M⊗

OA
Oχ1

over A, and the comparison between (4.5.6.6) and (4.5.6.7) gives

σ1
χ1(s) =

∑
χ1∈X1

σ
Mχ1

1,χ1
(σ1

χ1(s)).

By defining σ1,χ := σ
Mχ1

1,χ1
when χ = χ1 + χ1, we can rewrite this relation as

σ1
χ1(s) =

∑
χ∈χ1

σ1,χ(σ1
χ1(s)). (4.5.6.8)

This formulation is independent of the choice of the splitting of X � X1.
Then we have

σχ(s) = σ1,χ ◦ σ1
χ1(s). (4.5.6.9)

Proof of Proposition 4.5.6.1. By Proposition 4.5.3.11, Iy,φ(y) ·Rt = Rt if and
only if y lies in Y1. Then the same linear algebraic technique as in the proof
of Lemma 4.5.1.7 shows that Iy,χ is trivial after localizing at a point s if either
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y ∈ Y1 or χ ∈ X1. As a result, the Rt-submodule Iy,χ ·Rt of K depends only
on the images y1 (resp. χ1) of y (resp. χ) in Y 1 = Y/Y1 (resp. X1 = X/X1).
Since Iy+y′ = Iy · Iy′ · Iy,y′ , the Rt-submodule Iy · Rt of K depends only on
the image of y1 of y in Y 1. Since the relation (4.3.1.7) defining τ and ψ (and
hence Iy,χ and Iy for each y ∈ Y and χ ∈ X) remains valid after making flat
base changes, we can define Iy,χ ·Rt and Iy ·Rt by comparing the morphisms
σ1
χ1 in (4.5.6.6). Since the pullback of the relation (4.5.6.6) to S1

/1 = Spf(R1)
agrees with the corresponding relation

s1 =
∑
χ1∈X1

σ1
χ1(s1) ∈ ⊕̂

χ1∈X1
Γ(A1

/1,M1
/1,χ1)

over S1
/1 = Spf(R1), and since τ 1 and ψ1 (and hence I1

y1,χ1 and I1
y1 for each

y1 ∈ Y 1 and χ1 ∈ X1) are determined by comparison of pullbacks of σ1
χ1 ’s

using the analogue of (4.3.1.7) over R1, Proposition 4.5.6.1 follows.

Proof of Proposition 4.5.6.3. The composition

Γ(G2,L2)→ Γ(G2×
S
S/1,L2×

S
S/1)

→ Γ(G2,for,L2,for)→ ⊕̂
χ1∈X1

Γ(Afor,Mχ1,for) ∼= ⊕̂
χ1∈X1

Γ(A,Mχ1)

of canonical morphisms explains the Fourier expansions for sections in
Γ(G2,L2). In this case, we obtain a symbolic relation

s =
∑
χ1∈X1

σ2,χ1(s) ∈ ⊕̂
χ1∈X1

Γ(A,Mχ1) (4.5.6.10)

for each s ∈ Γ(G2,L2), and we know that

ψ(y1)τ(y1, χ1) T ∗c∨1 (y1) ◦ σ2,χ1 = σ2,χ1+φ1(y1), (4.5.6.11)

because τ2 and ψ2 are defined to be restrictions of τ and ψ. Since G2×
S
S1
∼=

G1 and L2×
S
S1
∼= L1 by Proposition 4.5.6.5, then Proposition 4.5.6.3 follows

from comparing (4.5.6.11) with (4.3.1.7) over S1.

4.6 Kodaira–Spencer Morphisms

In this section we study how Kodaira–Spencer morphisms for abelian schemes
extend to their degenerations. The notationRi and Si in the previous sections
will no longer have their meanings in this section.
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Let us fix a choice of a universal base scheme U in this section. For the
moment let us take U to be locally noetherian. Later, in Theorem 4.6.3.43 we
will need U to be excellent and normal, mainly for retaining the noetherian
normality after passing to completions of étale localizations.

4.6.1 Definition for Semi-Abelian Schemes

Let S be any scheme separated and locally of finite presentation over U such
that Ω1

S/U is locally free of finite rank over OS. This is the case, for example,
when S is separated and smooth over U.

Suppose that we are given a semi-abelian scheme G\ of the form 0 →
T → G\ → A → 0 over S associated with a homomorphism c : X =
X(T )→ A∨. By general argument in Section 2.1.7 applied to the scheme G\

smooth over S, we know that there is a Kodaira–Spencer class KSG\/S/U ∈
H1(G\,DerG\/S ⊗

OS
Ω1
S/U) describing the deformation of G\, which determines

a global section of H1(G\,DerG\/S ⊗
OS

Ω1
S/U) ∼= H1(G\,OG\) ⊗

OS
LieG\/S ⊗

OS
Ω1
S/U.

Since G\ → S is a smooth group scheme, by Lemma 2.1.5.11, if we con-
sider Lie∨G\/S := e∗

G\
Ω1
G\/S

and LieG\/S
∼= e∗

G\
DerG\/S, then they are canoni-

cally dual to each other, and Ω1
G\/S

and DerG\/S are canonically isomorphic

to their respective pullbacks. However, although H1(G\,DerG\/S ⊗
OS

Ω1
S/U) is

the space describing the deformation of G\ as a scheme smooth over S, there
is not enough rigidity (for semi-abelian schemes like G\) to force an arbitrary
lifting to have a structure of a commutative group extension of an abelian
scheme by a torus as G\ does. Therefore we would like to single out a sub-
group of H1(G\,DerG\/S ⊗

OS
Ω1
S/U) that does describe the deformation of G\

as a commutative group extension.
According to Proposition 3.1.5.1, the liftings of G\ as commutative group

extensions are the same as the liftings of the pair (A, c), or rather as liftings
of T -torsors. Let S ↪→ S̃ be an embedding defined by a sheaf of ideals I
such that I 2 = 0. The liftings of A as an abelian variety to S̃, if nonempty,
is a torsor under the group H1(A,DerA/S ⊗

OS
I ) ∼= H1(A,LieA/S ⊗

OS
OA ⊗

OS
I )

(see Propositions 2.1.2.2 and 2.2.2.3, and Lemma 2.1.5.11).

Proposition 4.6.1.1. Liftings of the pair (A, c) to S̃, if nonempty, is a
torsor under the group H1(A,LieG\/S ⊗

OS
OA ⊗

OS
I ). Moreover, the forgetful
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map from the liftings of (A, c) to liftings of A, if the source is nonempty, is
equivariant with the canonical morphism

H1(A,LieG\/S ⊗
OS

OA ⊗
OS

I )→ H1(A,DerA/S ⊗
OS

I )

induced by the canonical morphism LieG\/S → LieA/S given by the structural

morphism G\ → A over S.

Proof. Let (Ãi, c̃i), where i = 1, 2, be any two liftings of (A, c) to S̃. Let G̃\
i

be the extension of Ãi by T̃ := HomS̃(X,Gm,S̃) defined by c̃i.
Let r = dimS(A) and r′ = dimS(T ) (both being the relative dimensions).

Take an affine open covering {Uα}α of A such that each Uα is étale
over ArS. By refining this open covering if necessary, we may assume
that G\ is trivialized as a T -bundle over each Uα. Then Uα×

S
T is étale

over Ar+r′S because T is an affine open subscheme of Ar′S , and the open
coverings {Uα}α and {Uα×

S
T}α are lifted to open coverings of Ãi and

G̃\
i over S̃, respectively, for i = 1, 2. Now we can proceed as in the

proof of Proposition 2.1.2.2. The difference here is that, instead of
considering AutS̃((Ũα×

S̃

T̃ )|Uαβ ×
S
T , S) ∼= H0(Uαβ ×

S
T,DerG\/S ⊗

OS
I ) ∼=

H0(Uαβ ×
S
T,HomO

G\
(Lie∨G\/S ⊗

OS
OG\ ,I ⊗

OS
OG\)), which describes the

automorphisms of the underlying schemes, we shall consider automor-
phisms of T̃ -torsors (compatible with the action of T̃ ; cf. Theorem
3.1.1.2), which we denote as AutT̃ ((Ũα×

S̃

T̃ )|Uαβ , T ) and is isomorphic to

H0(Uαβ,HomOA
(Lie∨G\/S ⊗

OS
OA,I ⊗

OS
OA)) ∼= H0(Uαβ,LieG\/S ⊗

OS
OA ⊗

OS
I ).

(The remainder of the proof is as in the proof of Proposition 2.1.2.2.
The equivariance stated in this proposition follows from the very
constructions.)

If the embedding S ↪→ S̃ is given by the first infinitesimal neighborhood
of the diagonal morphism ∆ : S → S×

U
S, then I ∼= Ω1

S/U. By pulling back

under the two projections, we obtain two liftings G̃\
i := pr∗i G

\ of G\, and
hence an element KS(A,c)/S/U of H1(A,LieG\/S ⊗

OS
OA ⊗

OS
I ) sending G̃\

1 to G̃\
2.

The element KS(A,c)/S/U defines a global section of LieA∨/S ⊗
OS

LieG\/S ⊗
OS

Ω1
S/U
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by Proposition 4.6.1.1, which by duality can be interpreted as a morphism

Lie∨G\/S ⊗
OS

Lie∨A∨/S → Ω1
S/U,

which we denote by KS(A,c)/S/U.

Definition 4.6.1.2. The element KS(A,c)/S/U (resp. the morphism
KS(A,c)/S/U) above is called the Kodaira–Spencer class (resp. the
Kodaira–Spencer morphism) for (A, c).

Since the liftings of G\ as commutative group scheme extensions to S̃
are also liftings of the underlying smooth scheme, the canonical pullback
morphism

H1(A,LieG\/S ⊗
OS

OA ⊗
OS

Ω1
S/U)→ H1(G\,DerG\/S ⊗

OS
Ω1
S/U) (4.6.1.3)

sends KS(A,c)/S/U (up to a sign convention) to KSG\/S/U.

Lemma 4.6.1.4. The canonical pullback morphism H i(A,OA)→ H i(G,OG)
is an embedding for every integer i ≥ 0.

Proof. Let us fix any integer i ≥ 0 as in the statement of the lemma. Denote
the structural morphism G\ → A by π. Since π is relatively affine (with
fibers étale locally isomorphic to T ), so that Rjπ∗OG\ vanishes for all j >
0, the Leray spectral sequence (see [48, Ch. II, Thm. 4.17.1]) shows that
H i(A, π∗OG\) ∼= H i(G\,OG\). After making a finite étale surjective base
change in S that splits T if necessary, we may assume that X is constant with
value X. Then we have a decomposition π∗OG\

∼= ⊕
χ∈X

Oχ, where Oχ is the

rigidified invertible sheaf corresponding to the point c(χ) ∈ A∨. This gives a
corresponding decomposition H i(A, π∗OG\) ∼= ⊕

χ∈X
H i(A,Oχ). In particular,

we have a canonical inclusion H i(A,OA) ↪→ H i(G\,OG\) corresponding to the
term O0 = OA, independent of the trivialization of X. Hence étale descent
applies and shows that the inclusion is defined over S. Moreover, it has to
agree with the canonical morphism H i(A,OA) → H i(G,OG). In particular,
the canonical morphism is injective.

Proposition 4.6.1.5. The morphism (4.6.1.3) induces an injection

LieA∨/S ⊗
OS

LieG\/S ⊗
OS

Ω1
S/U ↪→ H1(G\,OG\) ⊗

OS
LieG\/S ⊗

OS
Ω1
S/U. (4.6.1.6)
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The global section of the target defined by KSG\/S/U lies in the image of
(4.6.1.6), which agrees (up to a sign convention) with the image of the global
section of the source defined by KS(A,c)/S/U.

Proof. Following the proof of Proposition 4.6.1.1, we may assume that S is
affine, and apply Lemma 4.6.1.4.

4.6.2 Definition for Periods

Let S be any scheme separated and locally of finite presentation over U, such
that Ω1

S/U is locally free of finite rank over OS, and such that all connected

components of S are integral. Let G\ be an extension of an abelian scheme A
by a torus T over S. Let X be the character group of T , and let c : X → A∨

be the homomorphism describing the extension class of G\. Let Y be the
character group of some torus T∨ having the same dimension as T , and
let c∨ : Y → A be a homomorphism that describes an extension G∨,\ of
A∨ by T∨. Let S1 be an open dense subscheme of S over which we have
a homomorphism ι : Y S1

→ G\
S1

, such that the composition of ι with the

structural morphism G\
S1
→ AS1 coincides with the restriction of c∨ to S1.

We shall investigate how liftings of the pair (G\, ι) to an embedding S ↪→ S̃
defined by a sheaf of ideals I such that I 2 = 0 should be classified, under
some suitable additional assumptions.

Let S̃1 be an open subscheme of S̃ lifting S1, and let I1 := (S̃1 ↪→ S̃)∗I ∼=
I ⊗

OS
OS1 be the ideal defining the embedding S1 ↪→ S̃1. The compatible

homomorphisms c∨ : Y → A and ι : Y S1
→ G\

S1
can be interpreted as

compatible actions of Y on A and G\
S1

. Hence the question is about the
liftings of actions of Y . For technical simplicity, let us assume in this section
that X and Y are constant with values X and Y , respectively.

Definition 4.6.2.1. Let H be any scheme with a Y -action over some base
scheme Z. Let E1 and E2 be two OH-modules with Y -actions covering the
Y -action on H. A Y -equivariant extension of E1 by E2 (over Z) is a
sheaf E of OH-modules admitting a Y -action (covering the action of Y on H),
which fits into an Y -equivariant exact sequence 0 → E2 → E → E1 → 0. An
isomorphism (or equivalence) of Y -equivariant extensions is a Y -equivariant
isomorphism of (usual) extensions of OH-modules. We denote the group of
Y -equivariant extension classes of E1 by E2 by Ext1,Y (E1, E2), and denote
the associated sheaf over Z by Ext1,Y

OZ
(E1, E2).
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Lemma 4.6.2.2. H i(A,OA)Y = H i(A,OA) for all i ≥ 0.

Proof. By Proposition 2.1.5.14, it suffices to treat the case i = 1. By Corol-
lary 2.1.5.9, we know that H1(A,OA) ∼= LieA∨/S

∼= Pic0(A/S). Since Y acts

on A by translations, and since translations act trivially on Pic0(A/S) by the
theorem of the square, we see that Y acts trivially on H1(A,OA).

Corollary 4.6.2.3. Ext1
OS

(OA,OA)Y ∼= Ext1
OS

(OA,OA) ∼= LieA∨/S.

Lemma 4.6.2.4. The forgetful morphism Ext1,Y
OS

(OAS ,OAS) →
Ext1

OS
(OAS ,OAS) can be canonically identified with the canonical morphism

LieG∨,\/S → LieA∨/S induced by the structural morphism π∨ : G∨,\ → A∨.

Proof. We may assume that S is affine. Consider the pullback
P ′ := (Id× π∨)∗PA of PA to A×

S
G∨,\. Let G∨,\(1) (resp. T∨(1), resp. A∨(1)) be

the first infinitesimal neighborhood of eG∨,\ : S → G∨,\ (resp. eT∨ : S → T∨,
resp. eA∨ : S → A∨), and let Sε := Spec

OS
(OS[ε]/(ε2)), which contains S

as a subscheme defined by ε = 0. Then we may identify global sections
of LieG∨,\/S with morphisms v : Sε → G∨,\(1) such that v|S = eG∨,\ . For

each such v, the pullback (Id× v)∗P ′ over A×
S
Sε can be identified with an

extension Ev of OA by OA, because A and A×
S
Sε have the same underlying

topological spaces. We claim that there is a canonical action of Y on Ev,
or rather on P ′. Let Oy := PA|{c∨(y)}×A∨ . Then the construction of G∨,\

from c∨ shows that π∨∗OG∨,\
∼= ⊕

y∈Y
Oy. By the biextension structure of

PA, we see that (Tc∨(y)× IdA)∗PA ∼= PA ⊗
OA×A∨

pr∗2 Oy. Therefore there is

a canonical isomorphism (Tc∨(y)× IdA)∗P ′ ∼= P ′ covering the translation
action of Y on the first factor A of A×

S
G∨,\, or in other words a canonical

action of Y on P ′. This proves the claim. It is clear from the proof of the
claim that P ′ is universal for such a property. As a result, we see that
the association v 7→ Ev (with its Y -action) gives a canonical isomorphism
LieG∨,\/S → Ext1,Y

OS
(OA,OA).

If we replace P ′ = (Id× π∨)∗PA with PA in the above construction, then
we obtain the canonical morphism LieA∨/S → Ext1

OS
(OA,OA). This shows

that the forgetful morphism Ext1,Y
OS

(OAS ,OAS) → Ext1
OS

(OAS ,OAS) is com-
patible with π∨, as desired.
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Proposition 4.6.2.5. Liftings of the tuple (AS1 , c, c
∨, ι) to S̃1, if nonempty,

is a torsor under the group

Ext1,Y (Lie∨
G\S1

/S1
⊗

OS1

OAS1
,I1 ⊗

OS1

OAS1
).

Moreover, the forgetful map from the liftings of (AS1 , c, c
∨, ι) to the liftings of

(AS1 , c), if the source is nonempty, is equivariant with the canonical forgetful
morphism

Ext1,Y (Lie∨
G\S1

/S1
⊗

OS1

OAS1
,I1 ⊗

OS1

OAS1
)

→ Ext1(Lie∨
G\S1

/S1
⊗

OS1

OAS1
,I1 ⊗

OS1

OAS1
)

∼= H1(AS1 ,LieG\S1
/S1
⊗

OS1

OAS1
⊗

OS1

I1).

Proof. For simplicity, we may assume that S = S1 is affine. Let (Ãi, c̃i, c
∨
i , ιi),

where i = 1, 2, be any two liftings of (A, c, c∨, ι) to S̃. Let G̃\
i be the extension

of Ãi by T̃ := HomS̃(X,Gm,S̃) defined by c̃i.
Take an affine open covering {Uα}α (resp. {Uα×

S
T}α) that is lifted

to an open covering of Ãi (resp. G̃\
i) over S̃, for i = 1, 2, as in the proof

of Proposition 4.6.1.1. By Lemma 2.1.1.7 and by abuse of notation,
let us use the same notation Ũα (resp. Ũα×

S̃

T̃ ) for the lifting of Uα to

Ã1 and Ã2 (resp. Uα×
S
T to G̃\

1 and G̃\
2) over S̃. As in the proof of

Proposition 2.1.2.2, for i = 1, 2, the scheme G̃\
i is given by a collection

of gluing isomorphisms ξαβ,i : (Ũα×
S̃

T̃ )|Uαβ
∼→ (Ũβ ×

S̃

T̃ )|Uαβ such that

ξαγ,i = ξβγ,i ◦ ξαβ,i, and their difference is (up to a sign convention) measured
by the collection of automorphisms {ξ−1

αβ,2 ◦ ξαβ,1}αβ, each member lying in

AutT̃ ((Ũα×
S̃

T̃ )|Uαβ , T ) ∼= H0(Uαβ,HomOA
(Lie∨G\/S ⊗

OS
OA,I ⊗

OS
OA)) (as in

the proof of Proposition 4.6.1.1), which altogether defines a 1-cocycle in
H1(A,HomOA

(Lie∨G\/S ⊗
OS

OA,I ⊗
OS

OA)), or rather a collection of splittings

of a global extension 0→ I ⊗
OS

OA → E → Lie∨G\/S ⊗
OS

OA → 0 over {Uα}α.

Let us also consider the difference between ι1 and ι2, which can be
interpreted as actions of Y . Each of the Y -actions is given by a collection of
isomorphisms η(y)α,i : (Ũα×

S̃

T̃ )
∼→ Tιi(y)(Ũα×

S̃

T̃ ), which has to satisfy the
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compatibility η(y)β,i ◦ ξαβ,i = T ∗ιi(y)(ξαβ,i)◦η(y)α,i. In other words, the classes

of the two 1-cocycles {ξαβ}αβ and {Tιi(y)(ξαβ)}αβ differ by a 1-coboundary,
and hence they are equivalent. This shows that we only need to consider
Y -equivariant extensions E above. Moreover, the difference between the two
actions are (up to a sign convention) measured by a collection of elements
{η(y)−1

α,2 ◦ η(y)α,1}α, each member lying in HomS(Y,AutT̃ (Ũα×
S̃

T̃ , T )) ∼=

H0(Uα,HomOA
(Lie∨G\/S ⊗

OS
OA,I ⊗

OS
OA)), which altogether defines

a global section of HomS(Y,HomOA
(Lie∨G\/S ⊗

OS
OA,I ⊗

OS
OA)) ∼=

HomS(Y,HomOS
(Lie∨G\/S,I )). This corresponds to modifying the

Y -action on E by morphisms from Lie∨G\/S ⊗
OS

OA to I ⊗
OS

OA for each Y .

On the other hand, every two Y -actions on E differ by such a difference.
Hence we see that the liftings of (A, c, c∨, ι) to S̃ form a torsor under
Ext1,Y (Lie∨G\/S ⊗

OS
OA,I ⊗

OS
OA). This is the first statement.

Since forgetful map (A, c, c∨, ι) → (A, c) corresponds to forgetting the
Y -actions on the extensions E above, the second statement follows by com-
paring the previous two paragraphs.

For simplicity, let us call the liftings of the tuple (AS1 , c, c
∨, ι) liftings of

the pair (G\
S1
, ι), with the understanding that we will only consider liftings

of G\
S1

that are commutative group scheme extensions of abelian schemes

by tori. If the embedding S ↪→ S̃ is given by the first infinitesimal neigh-
borhood of the diagonal morphism ∆ : S → S×

U
S, then I ∼= Ω1

S/U, and

I1
∼= Ω1

S1/U
. By comparing the pullbacks under the two projections, we ob-

tain an element KS(G\S1
,ι)/S1/U

of Ext1,Y (Lie∨G\/S ⊗
OS

OAS1
,I1 ⊗

OS1

OAS1
) sending

pr∗1(G\
S1
, ι) to pr∗2(G\

S1
, ι), by Proposition 4.6.2.5. By Lemma 4.6.2.4, the ele-

ment KS(G\S1
,ι)/S1/U

defines a global section of LieG∨,\S1
/S1
⊗

OS1

LieG\S1
/S1
⊗

OS1

Ω1
S1/U

,

which by duality can be interpreted as a morphism

Lie∨
G\S1

/S1
⊗

OS1

Lie∨
G∨,\S1

/S1
→ Ω1

S1/U
,

which we denote by KS(G\S1
,ι)/S1/U

.
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Definition 4.6.2.6. The element KS(G\S1
,ι)/S1/U

(resp. the morphism

KS(G\S1
,ι)/S1/U

) above is called the Kodaira–Spencer class (resp. the

Kodaira–Spencer morphism) for (G\
S1
, ι).

Remark 4.6.2.7. According to Lemma 4.2.1.7 (or rather its proof in Section
4.2.2), the homomorphism ι : Y → G\

S1
can be identified with a trivialization

τ : 1(Y ×X)S1

∼→ (c∨× c)∗P−1
AS1

of biextensions, and hence a homomorphism

ι∨ : X → G∨,\S1
lifting c : X → A∨S1

. Then we can apply Proposition 4.6.2.5
to the dual situation of (A∨S1

, c∨, c, ι∨) as well. The various Kodaira–Spencer
classes fit into the natural commutative diagram

LieG∨,\S1
/S1
⊗

OS1

LieG\S1
/S1
⊗

OS1

Ω1
S1/U

//

��

LieA∨S1
/S1
⊗
OS

LieG\S1
/S1
⊗

OS1

Ω1
S1/U

��
LieG∨,\S1

/S1
⊗

OS1

LieAS1
/S ⊗

OS1

Ω1
S1/U

// LieA∨S1
/S1
⊗

OS1

LieAS1
/S1
⊗

OS1

Ω1
S1/U

so that
KS(G\S1

,ι)/S1/U
� //

_

��

KS(AS1
,c)/S1/U_

��
KS(A∨S1

,c∨)/S1/U
� // KSAS1

/S1/U

by forgetting structures. (We view LieG∨,\S1
/S1
⊗

OS1

LieAS1
/S1
⊗

OS1

Ω1
S1/U

as

LieAS1
/S1
⊗

OS1

LieG∨,\S1
/S1
⊗

OS1

Ω1
S1/U

when considering KS(A∨S1
,c∨)/S1/U as its

section.)

Suppose that the connected components of S are all integral, so
that OS is naturally a subsheaf of (S1 ↪→ S)∗OS1 , or simply OS1 by
abuse of language. If we consider Lie∨G\/S ⊗

OS
Lie∨G∨,\/S as a subsheaf of

(S1 ↪→ S)∗(Lie∨
G\S1

/S1
⊗

OS1

Lie∨
G∨,\S1

/S1
), and consider the restriction of the

Kodaira–Spencer morphism (S1 ↪→ S)∗(KS(G\S1
,ι)/S1/U

) to this subsheaf, then

we obtain a morphism

KS(G\,ι)/S/U : Lie∨G\/S ⊗
OS

Lie∨G∨,\/S → (S1 ↪→ S)∗Ω
1
S1/U

. (4.6.2.8)
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For later purposes, it is desirable to replace the target (S1 ↪→ S)∗Ω
1
S1/U

with
some subsheaf of it with a better finiteness property. Since A, c, and c∨

are all defined over the whole base scheme S, the morphisms KS(AS1
,c)/S1/U,

KS(A∨S1
,c∨)/S1/U, and KSAS1

/S1/U all extend over S. This shows that the images

of both Lie∨G\/S ⊗
OS

Lie∨A∨/S and Lie∨A/S ⊗
OS

Lie∨G∨,\/S are contained in the image

of Ω1
S/U in (S1 ↪→ S)∗Ω

1
S1/U

(under the canonical morphism). Hence the
question is about the target of the induced morphism

Lie∨T/S ⊗
OS

Lie∨T∨/S → ((S1 ↪→ S)∗Ω
1
S1/U

)/Ω1
S/U. (4.6.2.9)

Since the answer is related only to ι, let us fix a particular lifting of the triple
(A, c, c∨) to S̃, and investigate the liftings of ι to S̃1. (Note that such liftings
exist because G\

S1
is smooth over S1.)

As already mentioned above, the homomorphism ι : Y S1
→ G\

S1

is equivalent to a trivialization τ : 1(Y ×X)S1

∼→ (c∨× c)∗P−1
AS1

of

biextensions, which we can interpret as a collection of isomorphisms
τ(y, χ) : OS1

∼→ (c∨(y), c(χ))∗P⊗−1
AS1

(satisfying certain bimultiplicative

relations) for y ∈ Y and χ ∈ X. This collection {τ(y, χ)}y∈Y,χ∈X defines
a collection of OS-invertible submodules Iy,χ of OS1 , with OS-module
isomorphisms from Iy,χ to (c∨(y), c(χ))∗P⊗−1

A induced by τ(y, χ) (see Defi-
nition 4.2.4.6). If we interpret these as isomorphisms between Gm-torsors
over S1, then over each lifting of (A, c, c∨), the liftings of the collection
{τ(y, χ)}y∈Y,χ∈X to S̃1 form a torsor under the group of homomorphisms
Y ⊗X → I1, which can be identified with

LieT∨S1
/S1
⊗

OS1

LieTS1
/S1
⊗

OS1

I1.

If the embedding S ↪→ S̃ is the first infinitesimal neighborhood of the diag-
onal morphism ∆ : S → S×

U
S, then I ∼= Ω1

S/U and I1
∼= Ω1

S1/U
. For each

local generator q of Iy,χ, which we can interpret as a local section of Gm,S1 , the
difference between the two pullbacks of the section τ(y, χ) is given additively
by the local section dq = pr∗2(q) − pr∗1(q) of q∗Ω1

Gm,S1
/S1

, or rather the local

section d log(q) := q−1dq of OS1
∼= e∗Ω1

Gm,S1
/S1

. Such log differentials define

an invertible OS-submodule d log(Iy,χ) of (S1 ↪→ S)∗Ω
1
S1/U

, independent of

the (local) choice of q.
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Definition 4.6.2.10. With the setting as above, the OS-module Ω1
S/U[d log∞]

is the OS-submodule of (S1 ↪→ S)∗Ω
1
S1/U

generated by the image of the canon-

ical morphism Ω1
S/U → (S1 ↪→ S)∗Ω

1
S1/U

and by d log(Iy,χ), for all y ∈ Y

and χ ∈ X. We call this OS-module Ω1
S/U[d log∞] the sheaf of log 1-

differentials generated by d log(Iy,χ).

Then the liftings of ι (over each particular lifting of (A, c, c∨)) form a
torsor under a subgroup of the global sections of

LieT∨/S ⊗
OS

LieT/S ⊗
OS

Ω1
S/U[d log∞].

Hence we may replace the image ((S1 ↪→ S)∗Ω
1
S1/U

)/Ω1
S/U in (4.6.2.9) with

(Ω1
S/U[d log∞])/Ω1

S/U, and consequently the image (S1 ↪→ S)∗Ω
1
S1/U

in

(4.6.2.8) with Ω1
S/U[d log∞]. To summarize this,

Proposition 4.6.2.11. With the setting as above, the Kodaira–Spencer mor-
phism

KS(G\S1
,ι)/S1/U

: Lie∨
G\S1

/S1
⊗

OS1

Lie∨
G∨,\S1

/S1
→ Ω1

S1/U

for (G\
S1
, ι) over S1 can be extended to a morphism

KS(G\,ι)/S/U : Lie∨G\/S ⊗
OS

Lie∨G∨,\/S → Ω1
S/U[d log∞]

over S.

Definition 4.6.2.12. The morphism KS(G\,ι)/S/U defined above is called the
extended Kodaira–Spencer morphism for (G\, ι).

Remark 4.6.2.13. Certainly, the sheaf Ω1
S/U[d log∞] has a much better mean-

ing in the case when S is smooth over U, when the complement of S1 in S is a
relative Cartier divisor of normal crossings, and when the sheaves d log(Iy,χ)
are closely related to the definition of this relative Cartier divisor. (This will
be the case when we construct the toroidal compactifications in Chapter 6.)
But we do not need these when defining the morphisms.

4.6.3 Compatibility with Mumford’s Construction

Let S = Spec(R) be any affine scheme fitting into the setting of

Section 4.1 such that Ω̂1
S/U, the completion of Ω1

S/U with respect to
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the topology of R defined by I, is locally free of finite rank over
OS (cf. [59, 0IV, 20.4.9]). Suppose we have an object (G, λ) in
DEGpol(R, I) mapped to an object (A, λA, X, Y , φ, c, c

∨, τ) in DDpol(R, I)
by Fpol(R, I) : DEGpol(R, I) → DDpol(R, I) (see Definition 4.4.8). Let
(A,X, Y , c, c∨, τ) or equivalently (G\, ι : Y η → G\

η) be the underlying object
in DD(R, I). By Mumford’s construction, if we introduce the notion of
relatively complete models and pass to the category of formal schemes,
we could interpret G as a quotient of G\ by the period homomorphism ι
(although it is not a quotient in the category of schemes).

Let us suppose that there exists a nonempty open subscheme S1 of S
such that G is an abelian scheme GS1 over S1, and such that ι : Y η → G\

η

extends (necessarily uniquely) to a homomorphism Y S1
→ G\

S1
. Such an

open subscheme exists because Gη is an abelian scheme over η, and because
of Proposition 4.5.3.11 and Corollary 4.5.3.12. By abuse of notation, let us
denote by Ω̂1

S1/U
the pullback of Ω̂1

S/U to the subscheme S1 of S. Then the

canonical morphism Ω1
S/U → Ω̂1

S/U induces a canonical morphism Ω1
S1/U

→
Ω̂1
S1/U

. Let us also define Ω̂1
S/U[d log∞] as in Definition 4.6.2.10, which is the

OS-submodule of (S1 ↪→ S)∗Ω̂
1
S1/U

generated by Ω̂1
S/U and d log(Iy,χ), for all

y ∈ Y and χ ∈ X. Then we also have a canonical morphism Ω1
S/U[d log∞]→

Ω̂1
S/U[d log∞] compatible with Ω1

S/U → Ω̂1
S/U.

Since the OS-module (resp. OS1-module) Ω̂1
S/U (resp. Ω̂1

S1/U
) is locally free

of finite rank, the constructions of Kodaira–Spencer morphisms in Sections
2.1.7, 4.6.1, and 4.6.2 are valid if we use Ω̂1

S/U (resp. Ω̂1
S1/U

) instead of Ω1
S/U

(resp. Ω1
S1/U

). (The construction of Kodaira–Spencer classes does not require

the local freeness of sheaves of differentials such as Ω1
S/U. Once the Kodaira–

Spencer classes are defined, by considering their images under the morphisms
induced by canonical morphisms such as Ω1

S/U → Ω̂1
S/U, we can translate these

images into Kodaira–Spencer morphisms using the local freeness of sheaves
such as Ω̂1

S/U.) Then, as in Definition 2.1.7.9, GS1 admits a Kodaira–Spencer
morphism

KSGS1
/S1/U : Lie∨GS1

/S1
⊗

OS1

Lie∨G∨S1
/S1
→ Ω̂1

S1/U
.

On the other hand, as in Definition 4.6.2.6, (G\
S1
, ι) defines the morphism

KS(G\S1
,ι)/S1/U

: Lie∨
G\S1

/S1
⊗

OS1

Lie∨
G∨,\S1

/S1
→ Ω̂1

S1/U
,
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which extends to the morphism

KS(G\,ι)/S/U : Lie∨G\/S ⊗
OS

Lie∨G∨,\/S → Ω̂1
S/U[d log∞]

as in Definition 4.6.2.12. Since Gfor
∼= G\

for and hence Lie∨Gfor/Sfor

∼= Lie∨
G\for/Sfor

over Sfor, by Theorem 2.3.1.2, there is a canonical isomorphism Lie∨G/S
∼=

Lie∨G\/S. Similarly, there is a canonical isomorphism Lie∨G∨/S
∼= Lie∨G∨,\/S.

Therefore the two morphisms KSGS1
/S1/U and KS(G\S1

,ι)/S1/U
have the same

source and target, and it is natural to compare them.
Since the identification between two morphisms can be achieved locally

in the étale topology, we shall assume until we finish the proof of Theorem
4.6.3.16 that X and Y are constant with values X and Y , for simplicity.

Elements in

H1(GS1 ,DerGS1
/S1
⊗

OS1

Ω̂1
S1/U

) ∼= Ext1(Ω1
GS1

/S1
, Ω̂1

S1/U
⊗

OS1

OGS1
)

parameterize extensions E of the form

0→ Ω̂1
S1/U

⊗
OS1

OGS1
→ E → Ω1

GS1
/S1
→ 0. (4.6.3.1)

By Proposition 2.1.7.3, the Kodaira–Spencer class

KSGS1
/S1/U ∈ H1(GS1 ,DerGS1

/S1
⊗

OS1

Ω1
S1/U

),

interpreted as an element of Ext1(Ω1
GS1

/S1
,Ω1

S1/U
⊗

OS1

OGS1
), is the extension

class of the first exact sequence

0→ Ω1
S1/U

⊗
OS1

OGS1
→ Ω1

GS1
/U → Ω1

GS1
/S1
→ 0 (4.6.3.2)

of GS1 . The image of KSGS1
/S1/U under the canonical morphism

H1(GS1 ,DerGS1
/S1
⊗

OS1

Ω1
S1/U

)→ H1(GS1 ,DerGS1
/S1
⊗

OS1

Ω̂1
S1/U

)

induced by the canonical morphism Ω1
S1/U
→ Ω̂1

S1/U
, interpreted as an element

of Ext1(Ω1
GS1

/S1
, Ω̂1

S1/U
⊗

OS1

OGS1
), is the extension class of the push-out

0→ Ω̂1
S1/U

⊗
OS1

OGS1
→ Ω̂1

GS1
/U → Ω1

GS1
/S1
→ 0 (4.6.3.3)
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of (4.6.3.2) under the canonical morphism Ω1
S1/U

→ Ω̂1
S1/U

. (Here Ω̂1
GS1

/U is

defined as the push-out. Later we can give an alternative identification of
Ω̂1
GS1

/U using Mumford’s construction.) Similarly, elements in

H1(G\
S1
,DerG\S1

/S1
⊗

OS1

Ω̂1
S1/U

) ∼= Ext1(Ω1

G\S1
/S1
, Ω̂1

S1/U
⊗

OS1

OG\S1

)

parameterize extensions E \ of the form

0→ Ω̂1
S1/U

⊗
OS1

OG\S1

→ E \ → Ω1

G\S1
/S1
→ 0; (4.6.3.4)

the Kodaira–Spencer class

KSG\S1
/S1/U

∈ H1(G\
S1
,DerG\S1

/S1
⊗

OS1

Ω1
S1/U

)

corresponds by Proposition 2.1.7.3 to the extension class of the first exact
sequence

0→ Ω1
S1/U

⊗
OS1

OG\S1

→ Ω1

G\S1
/U
→ Ω1

G\S1
/S1
→ 0 (4.6.3.5)

of G\, and the image of KSG\S1
/S1/U

under the canonical morphism

H1(G\
S1
,DerG\S1

/S1
⊗

OS1

Ω1
S1/U

)→ H1(G\
S1
,DerG\S1

/S1
⊗

OS1

Ω̂1
S1/U

)

induced by the canonical morphism Ω1
S1/U
→ Ω̂1

S1/U
corresponds to the push-

out
0→ Ω̂1

S1/U
⊗

OS1

OG\S1

→ Ω̂1

G\S1
/U
→ Ω1

G\S1
/S1
→ 0 (4.6.3.6)

of (4.6.3.5) under the canonical morphism Ω1
S1/U
→ Ω̂1

S1/U
.

Since Y acts equivariantly on all three terms in (4.6.3.6), the sequence also

defines an Y -equivariant extension class in Ext1,Y (Ω1

G\S1
/S1
, Ω̂1

S1/U
⊗

OS1

OG\S1

).

Remark 4.6.3.7. Assume for the moment (in this remark) that we had the hy-
pothetical situation that GS1 is a quotient of G\

S1
(in the category of schemes)

by the translation action of ι : Y → G\
S1

. Let us denote the quotient mor-

phism by p : G\
S1
→ GS1 . Assume that p is étale, that the Y -action defined
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by ι is free, and that there is an integer k ≥ 1 such that every point of G\
S1

admits an affine open neighborhood U such that ∪y∈kY (ι(y))(U) is a disjoint

union. Then we can factor p : G\
S1
→ GS1 as a composition p = p1 ◦ p2

of two quotient morphisms, such that p2 is a local isomorphism and p1 is a
quotient by a finite group action. Under this hypothesis, there is a canonical
morphism

H1(GS1 ,DerGS1
/S1
⊗

OS1

Ω1
S1/U

)→ H1(G\
S1
,DerG\S1

/S1
⊗

OS1

Ω1
S1/U

)

defined by pullback, which can be interpreted as the canonical morphism

Ext1(Ω1
GS1

/S1
,Ω1

S1/U
⊗

OS1

OGS1
)→ Ext1(Ω1

G\S1
/S1
,Ω1

S1/U
⊗

OS1

OG\S1

),

which pulls back the extension class of E as in (4.6.3.1) to the extension class
of E \ as in (4.6.3.4), and which necessarily pulls back the extension class
KSGS1

/S1/U of Ω1
GS1

/U to the extension class KSG\S1
/S1/U

of Ω1

G\S1
/U

. Moreover,

the image is exactly those extension classes that are invariant under the
action of Y . Each representative E \ of such an extension class admits a
Y -action. Then the theory of descent (for a quotient morphism defined by
a group action that is free and moreover a local isomorphism on a subgroup
of finite index) implies that there is an equivalence between Y -equivariant
extension classes of E \ over G\

S1
and the usual extension classes of E over

GS1 that pulls back to E \ over G\
S1

. Consequently, the canonical pullback
morphism

Ext1(Ω1
GS1

/S1
,Ω1

S1/U
⊗

OS1

OGS1
)→ Ext1,Y (Ω1

G\S1
/S1
,Ω1

S1/U
⊗

OS1

OG\S1

)

is an isomorphism. Moreover, this isomorphism is compatible
with the canonical surjections of the two sides to the Y -invariants
Ext1(Ω1

G\S1
/S1
,Ω1

S1/U
⊗

OS1

OG\S1

)Y in Ext1(Ω1

G\S1
/S1
,Ω1

S1/U
⊗

OS1

OG\S1

), and com-

patible with the push-outs under the canonical morphism Ω1
S1/U

→ Ω̂1
S1/U

.

(Remark 4.6.3.7 ends here.)

Let us return to reality and resume our setting before Remark 4.6.3.7.

Lemma 4.6.3.8. For every integer i ≥ 0, the canonical embedding
H i(AS1 ,OAS1

) ↪→ H i(G\
S1
,OG\S1

) has image in H i(G\
S1
,OG\S1

)Y . The
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induced morphism H i(AS1 ,OAS1
) → H i(G\

S1
,OG\S1

)Y is an isomorphism if

(the restriction of) τ (to η) satisfies the positivity condition in Definition
4.2.1.10.

Proof. According to (4.2.3.2), for each y ∈ Y , the translation by ι(y) on G\
S1

is described by the isomorphisms

τ(y, χ) : T ∗c∨(y)Oχ,S1
∼= Oχ,S1(c∨(y))S1 ⊗

OS1

Oχ,S1

∼→ Oχ,S1 .

The action of ι(y) on H i(G\
S1
,OG\S1

) ∼= ⊕
χ∈X

H i(AS1 ,Oχ,S1) (cf. the proof of

Lemma 4.6.1.4) is described componentwise by

H i(AS1 ,Oχ,S1)

T ∗
c∨(y)
∼→ H i(AS1 , T

∗
c∨(y)Oχ,S1)

τ(y,χ)
∼→ H i(AS1 ,Oχ,S1).

If χ = 0, then we know that τ(y, χ) = 1 in the sense of 3 of Lemma 4.3.1.8,
namely, it is the canonical structural isomorphism given by translations.
Hence, by Lemma 4.6.2.2, the action of Y on H i(AS1 ,OAS1

) is trivial. This
proves the first statement of the lemma.

Suppose that τ satisfies the positive condition, and that χ 6= 0. Take
an integer N ≥ 1 such that Nχ ∈ φ(Y ). Let y ∈ Y be such that Nχ =
φ(y). Then y 6= 0, and we know that Iy,Nχ ⊂ I. Suppose x is a section
of H i(AS1 ,Oχ,S1) invariant under the action of Ny. By multiplying by a
nonzero scalar in R, we may assume that x ∈ H i(A,Oχ). By repeating the
action of Ny, we see that x ∈ Ik ·H i(A,Oχ) for all k ≥ 0. Since H i(A,Oχ) is
finitely generated over R, and since R is noetherian and I-adically complete,
this implies that x = 0. This proves the second statement of the lemma.

Corollary 4.6.3.9. The embedding (4.6.1.6) induces a canonical isomor-
phism

LieA∨/S ⊗
OS1

LieG\S1
/S1
⊗

OS1

Ω̂1
S1/U
∼= Ext1

OS1
(Ω1

G\S1
/S1
, Ω̂1

S1/U
⊗

OS1

OG\S1

)Y

sending the global section of the source defined by KS(AS1
,c)/S1/U to the global

section of the target defined by the extension class of Ω̂1

G\S1
/U

in (4.6.3.6).
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Proof. Consider the composition of the canonical isomorphisms

LieA∨S1
/S1
⊗

OS1

LieG\S1
/S1
⊗

OS1

Ω̂1
S1/U

∼= H1(AS1 ,OAS1
) ⊗

OS1

LieG\S1
/S1
⊗

OS1

Ω̂1
S1/U

∼→ H1(G\
S1
,OG\S1

/S1
)Y ⊗

OS1

LieG\S1
/S1
⊗

OS1

Ω̂1
S1/U

∼= H1(G\
S1
,DerG\S1

/S1
⊗

OS1

Ω̂1
S1/U

)Y

∼= Ext1
OS1

(Ω1

G\S1
/S1
, Ω̂1

S1/U
⊗

OS1

OG\S1

)Y

(compatible with (4.6.1.6)), where the second isomorphism is the one given
by Lemma 4.6.3.8.

Lemma 4.6.3.10. The diagram (of canonical morphisms)

Ext1,Y
OS1

(OAS1
,OAS1

)
pullback //

forget

��

Ext1,Y
OS1

(OG\S1

,OG\S1

)

forget

��
Ext1

OS1
(OAS1

,OAS1
)Y

pullback
// Ext1

OS1
(OG\S1

,OG\S1

)Y

(4.6.3.11)

is commutative, and its horizontal rows are isomorphisms.

Proof. The commutativity follows from their definitions. The bottom row is
an isomorphism by Lemma 4.6.3.8. To show that the top row is an isomor-
phism, we claim that the induced morphism between the kernels of vertical
arrows is an isomorphism. The kernel of the vertical arrow on the left-
hand side is HomS1

(Y,H0(AS1 ,OAS1
)Y ), while the kernel of the vertical ar-

row on the right-hand side is HomS1
(Y,H0(G\

S1
,HomO

G
\
S1

(OG\S1

,OG\S1

)Y )) ∼=

HomS1
(Y,H0(G\

S1
,OG\S1

)Y ). Hence the question is whether the canonical

morphism H0(AS1 ,OAS1
)Y → H0(G\

S1
,OG\S1

)Y defined by pullback is an iso-

morphism, which again follows from Lemma 4.6.3.8.

Corollary 4.6.3.12. Ext1,Y
OS1

(OG\S1

,OG\S1

) is canonically isomorphic to

LieG∨,\S1
/S1

as an extension of LieA∨S1
/S1

by LieT∨S1
/S1

.
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Proof. This is because we have HomS1
(Y,H0(AS1 ,OAS1

)Y ) ∼=
HomS1

(Y,OS1) ∼= LieT∨S1
/S1

in the proof of Lemma 4.6.3.10, and

because we have Lemma 4.6.2.4.

Corollary 4.6.3.13. The canonical isomorphism

Ext1,Y
OS1

(Ω1

G\S1
/S1
, Ω̂1

S1/U
⊗

OS1

OG\S1

) ∼= LieG∨,\S1
/S1
⊗

OS1

LieG\S1
/S1
⊗

OS1

Ω̂1
S1/U

(4.6.3.14)
given by Corollary 4.6.3.12 respects the structures of both sides as extensions
of LieA∨S1

/S1
⊗

OS1

LieG\S1
/S1
⊗

OS1

Ω̂1
S1/U

by LieT∨S1
/S1
⊗

OS1

LieG\S1
/S1
⊗

OS1

Ω̂1
S1/U

.

Proof. This follows from Proposition 4.6.2.5.

Proposition 4.6.3.15. The isomorphism (4.6.3.14) sends the global section

on the left-hand side defined by the Y -equivariant extension class of Ω̂1

G\S1
/U

in

(4.6.3.6) to the global section on the right-hand side defined by the Kodaira–
Spencer class KS(G\S1

,ι)/S1/U
.

Proof. If we reproduce the argument of the proof of Proposition 2.1.7.3 using
open coverings of G\

S1
as in the proof of Proposition 4.6.2.5, then we see that

the isomorphism

Ext1
OS1

(Ω1

G\S1
/S1
, Ω̂1

S1/U
⊗

OS1

OG\S1

) ∼= LieA∨S1
/S1
⊗

OS1

LieG\S1
/S1
⊗

OS1

Ω̂1
S1/U

induced by (4.6.3.14) (by forgetting Y -actions of the parameterized objects)
sends the global section defined by the Y -equivariant extension class of
Ω̂1

G\S1
/U

in (4.6.3.6) to the global section defined by the Kodaira–Spencer

class KS(AS1
,c)/S1/U. Let us also take the Y -actions into account. For sim-

plicity of notation, let us assume that S = S1. Let us choose a basis dxi of
Ω1
G\/S

over Uα using coordinates of some ArS’s as in the proof of Proposition

2.1.7.3, and write the Y -action on Ω1
G\/S

as η(y)α : dxi 7→ dTι(y)(dxi). (These

differentials are taken over S.) Take a basis of Ω̂1
G\/U including the dxi above,

which is possible because Ω̂1
G\/U is defined as a push-out. Since the differen-

tials are taken over U, the Y -action might no longer send dxi to dTι(y)(dxi).

The difference is measured by an element in LieG\/S ⊗
S

Ω̂1
S/U for each y. On
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the other hand, the differentials over U, by definition, can be explicitly ob-
tained by comparing the two pullbacks pr∗1(η(y)α) and pr∗2(η(y)α) to the first
infinitesimal neighborhood S̃ of the diagonal embedding S ↪→ S×

U
S. Up

to the morphisms induced by the canonical morphism Ω1
S/U → Ω̂1

S/U, this is

(up to a sign convention) how we compared the difference between liftings of
Y -actions in the proof of Proposition 4.6.2.5.

Now the question is whether we can find a canonical isomorphism between

LieG∨S1
/S1
⊗

OS1

LieGS1
/S1
⊗

OS1

Ω̂1
S1/U
∼= Ext1

OS1
(Ω1

GS1
/S1
, Ω̂1

S1/U
⊗

OS1

OGS1
)

and

LieG∨,\S1
/S1
⊗

OS1

LieG\S1
/S1
⊗

OS1

Ω̂1
S1/U
∼= Ext1,Y

OS1
(Ω1

G\S1
/S1
, Ω̂1

S1/U
⊗

OS1

OG\S1

),

that matches the global section defined by the extension class of Ω̂1
GS1

/U with

the global section defined by the Y -equivariant extension class of Ω̂1

G\S1
/U

.

Although GS1 is not a quotient of G\
S1

in the category of schemes, Mum-
ford’s construction using relatively complete models does realize the formal
completion of some proper model P of GS1 as a quotient. This enables us to
prove the following:

Theorem 4.6.3.16. The two morphisms KSGS1
/S1/U and KS(G\S1

,ι)/S1/U
are

identified with each other under the restriction of the two canonical isomor-
phisms Lie∨G/S

∼= Lie∨G\/S and Lie∨G∨/S
∼= Lie∨G∨,\/S to S1. In this case, we can

identify KS(G\S1
,ι)/S1/U

with a morphism

KSG/S/U : Lie∨G/S ⊗
OS

Lie∨G∨/S → Ω̂1
S/U[d logD∞]

extending KSGS1
/S1/U, which we call the extended Kodaira–Spencer

morphism for G over S.

The proof of Theorem 4.6.3.16 will be given after some preparation. Since
we are comparing two existing morphisms, we are allowed to prove the theo-
rem after making some finite étale surjective base change. Therefore, we may
assume that both X and Y are constant with values X and Y , respectively.
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According to Lemma 4.5.4.5 (which uses Corollary 4.5.1.8) and Proposition
4.5.1.15, we know that if we start with an ample invertible sheaf M over
A, pull it back to a cubical invertible sheaf L over G\, and replace it with
a sufficiently high tensor power, then we may assume that we have a rela-
tively complete model (P \,L\) over S for the pair (G\,L\), together with a
Y -action over the whole S extending the one on G\

η. Let us denote by (P,L)
the “Mumford quotient” of (G\,L\) by Y (see Definition 4.5.2.18). Since
GS1 → S1 is proper, GS1 = PS1 .

For j = 1, 2, let Ej be a coherent sheaf over P such that its restriction to
G is the pullback of a locally free sheaf E0

j of finite rank over S.

Lemma 4.6.3.17. The canonical morphism

Ext1
OS

(E1, E2) ⊗
OS

OS1 → Ext1
OS1

(E1 ⊗
OS

OS1 , E2 ⊗
OS

OS1) (4.6.3.18)

is an isomorphism.

Proof. Let E := HomOP
(E1, E2). Since P is separated and of finite type over

S, we have a canonical isomorphism

H1(P, E) ⊗
OS

OS1

∼→ H1(GS1 , E ⊗
OS

OS1).

By assumptions on the restrictions of E1 and E2 to G, the local higher exten-
sion classes of E1 by E2 (over P ) are all supported on C = (P − G)red (see
[52]), which has empty fiber over S1. As a result, the local-to-global spectral
sequence (over P ) implies that the kernel and cokernel of the canonical mor-
phism H1(P, E) → Ext1

OS
(E1, E2) are not supported on S1. This shows that

the canonical morphism (4.6.3.18) is an isomorphism, as desired.

Let us denote formal completions by the subscript “for” as usual. Since
P is proper over S, by Theorem 2.3.1.2, we have a canonical isomorphism[

Ext1
OS

(E1, E2)
]

for

∼→ Ext1
OSfor

(E1,for, E2,for). (4.6.3.19)

(Here we extend Definition 4.6.2.1 naturally to formal schemes.)
Let p : P \

for → Pfor denote the quotient morphism. For j = 1, 2, suppose

E \j is a coherent sheaf over P \ with a Y -action covering the Y -action on P \,

such that its restriction to G\ is the pullback of Ej (the same locally free sheaf

over S appeared in the assumption for Ej), and such that E \j,for
∼= p∗Ej,for.
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Lemma 4.6.3.20. The canonical pullback morphism

Ext1
OSfor

(E1,for, E2,for)→ Ext1,Y
OSfor

(E \1,for, E
\
2,for) (4.6.3.21)

is an isomorphism.

Proof. By construction, Pfor is a quotient of P \
for (in the category of formal

schemes) as in the hypothetical situation in Remark 4.6.3.7 (with the nice
properties that the action is free and that the quotient can be realized as a
local isomorphism followed by a quotient by finite group action). Hence the
lemma follows from the argument in Remark 4.6.3.7.

On the other hand, since P \ is not proper over S in general, we cannot
apply Theorem 2.3.1.2 to the canonical morphisms from the formal comple-
tion of the cohomology groups of P \ to the cohomology groups of the formal
completion P \

for. Since we only care about Y -invariant classes together with
Y -actions on them, and since we only care if there is an isomorphism after
we annihilate nonzero torsion elements (which are not supported on S1), we
might circumvent this difficulty by passing to cohomology groups on A, as
follows:

Let G\,∗ = ∪
y∈Y

Sy(G
\) and C\ = (P \−G\,∗)red be as before, with Y -actions

inherited from P \. Then C\ has empty fiber over S1, and the formal comple-
tion Cfor of C is the quotient of the formal completion C\

for of C\ by Y (see
Construction 4.5.2.17). For j = 1, 2, set E0

j,P \
:= (P \ → S)∗E0

j .

Lemma 4.6.3.22. The sheaves Ext1,Y
OSfor

(E0
1,P \,for

, E0
2,P \,for

) and Ext1,Y
OSfor

(E \1,for, E
\
2,for)

over Sfor are coherent (and hence algebraizable). Let us denote the al-
gebraization of a coherent sheaf by the subscript “alg”. Then there is a
canonical isomorphism[

Ext1,Y
OSfor

(E0
1,P \,for, E

0
2,P \,for)

]
alg
⊗
OS

OS1 →
[
Ext1,Y

OSfor
(E \1,for, E

\
2,for)

]
alg
⊗
OS

OS1

(4.6.3.23)
(although we do not have morphisms between E \j,for and E0

j,P \,for
for j = 1, 2).

Proof. The coherence of the two modules in question follows from the facts
that the action of a finite index subgroup of Y on Pfor (and hence G\,∗

for

and Cfor) is given by local isomorphisms, and that P \ is covered by the
Y -translations of a scheme of finite type over S. For j = 1, 2, since the
restrictions of E \j,for and E0

j,P \,for
to G\,∗

for are isomorphic by assumption, their

difference is given by local higher cohomology supported on C\
for.
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Let us denote the structural morphism P \ → A by π, and denote its
formal completion by πfor. For j = 1, 2, set E0

j,A := (A→ S)∗E0
j .

Lemma 4.6.3.24. The kernel and cokernel of the pullback morphism

Ext1,Y
OSfor

(E0
1,A,for, E0

2,A,for)→ Ext1,Y
OSfor

(E0
1,P \,for, E

0
2,P \,for) (4.6.3.25)

(as coherent sheaves over S) are not supported on S1.

Proof. The Leray spectral sequence (see [48, Ch. II, Thm. 4.17.1]) shows that
the kernel and cokernel of the canonical morphism H i(Afor, πfor,∗OP \for

) →
H i(P \

for,OP \for
) are subquotients of H i−j(Afor, R

jπfor,∗OP \for
) with j > 0. If we

take Y -invariants, then for the same reason as before we obtain coherent
modules that algebraize. Hence the kernel and cokernel of

H i(Afor, πfor,∗OP \for
)Y → H i(P \

for,OP \for
)Y (4.6.3.26)

(as coherent sheaves over S) are not supported on S1. On
the other hand, the T -action on P \ induces a decomposition
πfor,∗OP \for

∼= ⊕
χ∈X

(πfor,∗OP \for
)χ into weight subsheaves under the Tfor-action.

By construction of P \, the Y -action on P \ is defined component-
wise by the canonical isomorphisms τ(y, χ) : T ∗c∨(y)(πfor,∗OP \for

)χ ∼=
(πfor,∗OP \for

)χ(c∨(y)) ⊗
OSfor

(πfor,∗OP \for
)χ

∼→ (πfor,∗OP \for
)χ. Accordingly, the

action S(y)∗ : H i(Afor, πfor,∗OP \for
)Y

∼→ H i(Afor, πfor,∗OP \for
)Y decomposes com-

ponentwise as τ(y, χ) : H i(Afor, (πfor,∗OP \for
)χ)Y

∼→ H i(Afor, (πfor,∗OP \for
)χ)Y .

By coherence of H i(Afor, πfor,∗OP \for
)Y , and hence the coherence of each

component H i(Afor, (πfor,∗OP \for
)χ)Y , the positivity condition of τ implies, as

in the proof of Lemma 4.6.3.8, that

H i(Afor, πfor,∗OP \for
)Y ∼= H i(Afor, (πfor,∗OP \for

)0)Y ∼= H i(Afor,OAfor
)Y .

(4.6.3.27)
Here the Y -action on Afor is induced by the homomorphism c∨ : Y → A,
and we know by Lemma 4.6.2.2 that H i(Afor,OAfor

)Y ∼= H i(Afor,OAfor
).

Nevertheless, it is suggestive to consider the Y -equivariant extensions
Ext1,Y

OSfor
(Lie∨

G\for/Sfor
⊗

OSfor

OAfor
,Ω1

Sfor/U
⊗

OSfor

OAfor
), although it is the same as

the ones without Y -equivariant actions. Now we can conclude the proof by
combining (4.6.3.26) and (4.6.3.27).
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Since A is proper, there is a canonical isomorphism[
Ext1,Y

OS
(E0

1,A, E0
2,A)
]

for
→ Ext1,Y

OSfor
(E0

1,A,for, E0
2,A,for) (4.6.3.28)

(of coherent sheaves over Sfor). Moreover, there is a canonical isomorphism

Ext1,Y
OS

(E0
1,A, E0

2,A) ⊗
OS

OS1

∼→ Ext1,Y
OS1

(E0
1,A ⊗

OS
OS1 , E0

2,A ⊗
OS

OS1). (4.6.3.29)

By Lemma 4.6.3.10, there is a canonical isomorphism

Ext1,Y
OS1

(E0
1,A ⊗

OS
OS1 , E0

2,A ⊗
OS

OS1)
∼→ Ext1,Y

OS1
(E \1 ⊗

OS
OS1 , E

\
2 ⊗

OS
OS1). (4.6.3.30)

Let us combine the results we have obtained. Denote the algebraization
of a coherent sheaf or a morphism by the subscript “alg” (as above).

Proposition 4.6.3.31. For each E1, E2, E0
1 , E0

2 , E \1, and E \2 as above, there
is a canonical isomorphism

Ext1
OS1

(E1 ⊗
OS

OS1 , E2 ⊗
OS

OS1)
∼→ Ext1,Y

OS1
(E \1 ⊗

OS
OS1 , E

\
2 ⊗

OS
OS1), (4.6.3.32)

which can be (canonically) identified with the tensor product of

HomOS1
(E0

1 ⊗
OS

OS1 , E0
2 ⊗

OS
OS1)

with (both sides of) the simplest special case

Ext1
OS1

(OGS1
,OGS1

)
∼→ Ext1,Y

OS1
(OG\S1

,OG\S1

) (4.6.3.33)

of (4.6.3.32) with E1 = E2 = OG, E0
1 = E0

2 = OS, and E \1 = E \2 = OG\.

Proof. The morphism (4.6.3.32) is the composition of the canoni-
cal isomorphisms (4.6.3.18)−1, (4.6.3.19)alg ⊗

OS
OS1 , (4.6.3.21)alg ⊗

OS
OS1 ,

(4.6.3.23)−1
alg ⊗

OS
OS1 , (4.6.3.25)−1

alg ⊗
OS

OS1 , (4.6.3.28)−1
alg ⊗

OS
OS1 , (4.6.3.29), and

(4.6.3.30). This composition is compatible with the simplest special case
because all canonical isomorphisms involved are compatible with tensoring
with Ext1

OS1
(E0

1 ⊗
OS

OS1 , E0
2 ⊗

OS
OS1).
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Corollary 4.6.3.34. We have a canonical isomorphism

Ext1
OS1

(Ω1
GS1

/S1
, Ω̂1

S1/U
⊗

OS1

OGS1
)
∼→ Ext1,Y

OS1
(Ω1

G\S1
/S1
, Ω̂1

S1/U
⊗

OS1

OG\S1

)

(4.6.3.35)
compatible with the canonical isomorphisms LieG/S

∼= LieG\/S and LieG∨/S
∼=

LieG∨,\/S.

Proof. The isomorphism (4.6.3.35) is obtained from (4.6.3.32) by substituting

E1 = Ω1
P/S, E2 = Ω̂1

S/U ⊗
OS

OP , E0
1 = Lie∨G/S

∼= Lie∨G\/S, E0
2 = Ω̂1

S/U, E1 = Ω1
P \/S

,

and E2 = Ω̂1
S/U ⊗

OS
OP \ . The compatibility with the canonical isomorphism

LieG/S
∼= LieG\/S is already implicit in the validity of the choice of E0

1 . On
the other hand, by Proposition 4.6.3.31, (4.6.3.35) can be identified with the

tensor product of LieGS1
/S1
⊗

OS1

Ω̂1
S1/U

with (4.6.3.33). We claim that (4.6.3.33)

can be canonically identified with the canonical isomorphism LieG∨S1
/S1
∼=

LieG∨,\S1
/S1

. Since the two sides of (4.6.3.33) can be canonically identified

with LieG∨S1
/S1

and LieG∨,\S1
/S1

, respectively, as in the proof of Lemma 4.6.2.4

using Poincaré invertible sheaves, the claim follows from the proof of Lemma
4.6.3.20 because P (over G×

S
G∨) is the “Mumford quotient” of the pullback

of PA to G\×G∨,\ as in Construction 4.5.4.14.

Proof of Theorem 4.6.3.16. Consider the first exact sequence

Ω1
S/U ⊗

OS
OP → Ω1

P/U → Ω1
P/S → 0 (4.6.3.36)

of P over S. The first morphism in (4.6.3.36) is not necessarily injective,
but it becomes injective if we pullback the sequence to OS1 . By taking com-
pletions with respect to the topology of R defined by I, the exact sequence
(4.6.3.36) induces an exact sequence

Ω̂1
S/U ⊗

OS
OP → Ω̂1

P/U → Ω1
P/S → 0, (4.6.3.37)

whose pullback to S1 coincides with the exact sequence (4.6.3.3) and defines
an element in

Ext1
OS

(Ω1
P/S, Ω̂

1
S/U ⊗

OS
OP ) ⊗

OS
OS1 , (4.6.3.38)

(cf. (4.6.3.18)).
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Similarly, consider the first exact sequence

Ω1
S/U ⊗

OS
OP \ → Ω1

P \/U → Ω1
P \/S → 0 (4.6.3.39)

of P \ over S. This has a Y -equivariant structure because the Y -action on
G\
η extends to the relatively complete model P \ over the whole S. By tak-

ing completions with respect to the topology of R defined by I, the exact
sequence (4.6.3.39) induces an exact sequence

Ω̂1
S/U ⊗

OS
OP \ → Ω̂1

P \/U → Ω1
P \/S → 0, (4.6.3.40)

with an induced Y -equivariant structure. Its pullback to Sfor defines an
element in[

Ext1,Y
OSfor

(Ω1

P \for/Sfor
,Ω1

Sfor/U
⊗

OSfor

OP \for
)
]

alg
⊗
OS

OS1 (4.6.3.41)

(note that Ω̂1
S/U
∼=
(
Ω1
Sfor/U

)
alg

by definition), whose image under the canoni-

cal isomorphism[
Ext1,Y

OSfor
(Ω1

P \for/Sfor
,Ω1

Sfor/U
⊗

OSfor

OP \for
)
]

alg
⊗
OS

OS1

∼→ Ext1,Y
OS1

(OG\S1

, Ω̂1
S1/U

⊗
OS1

OG\S1

) ⊗
OS1

LieG\S1
/S1

(following the second half of the definition of (4.6.3.32), with choices of mod-
ules as in the definition of (4.6.3.35)) gives the Y -equivariant extension class
of the sequence (4.6.3.6).

By Mumford’s construction of Pfor as a quotient of P \
for, the pullback of

the exact sequence (4.6.3.37) to Sfor can be realized as a quotient of the pull-
back of the extension class of the pullback of the exact sequence (4.6.3.40)
to Sfor. Therefore, the classes they define in (4.6.3.38) and in (4.6.3.41) are
identified with each other under the composition of (4.6.3.19)alg ⊗

OS
OS1 and

(4.6.3.21)alg ⊗
OS

OS1 . That is, the extension class of the sequence (4.6.3.3) is

identified with the Y -equivariant extension class of the sequence (4.6.3.6) un-
der the isomorphism (4.6.3.35). By duality (using the global sections they de-
fined), we obtain the identification between the Kodaira–Spencer morphisms
KSGS1

/S1/U and KS(G\S1
,ι)/S1/U

, as desired.
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Remark 4.6.3.42. The definition of KS(G\S1
,ι)/S1/U

in [42, Ch. III, §9] involves

some different formulations using universal extensions (see [90] and [89]),
which we believe is compatible with ours. Nevertheless, the validity of The-
orem 4.6.3.43 below does not depend on the particular definition one takes
along the formal completions. Although there is no intentional difference
between our Theorem 4.6.3.16 and [42, Ch. III, Thm. 9.4], we do not need
to know whether they follow from each other.

Let us globalize Theorem 4.6.3.16 as follows:

Theorem 4.6.3.43. Let S be an algebraic stack separated and smooth over
an excellent normal base scheme U. Let G be a semi-abelian scheme over S.
Suppose there is an open dense subalgebraic stack S1 of S, with complement
D∞ := S − S1 a divisor of normal crossings, such that the restriction GS1 of
G to S1 is an abelian scheme. In this case, there is a semi-abelian scheme
G∨ (up to unique isomorphism) such that the restriction G∨S1

of G∨ to S1

is the dual abelian scheme of GS1. Then there is a unique extension of the
Kodaira–Spencer morphism

KSGS1
/S1/U : Lie∨GS1

/S1
⊗

OS1

Lie∨G∨S1
/S1
→ Ω1

S1/U

to a morphism

KSG/S/U : Lie∨G/S ⊗
OS

Lie∨G∨/S → Ω1
S/U[d logD∞].

Here Ω1
S/U[d logD∞] is the sheaf of log 1-differentials, namely, the subsheaf

of (S1 ↪→ S)∗Ω
1
S1/U

generated locally by Ω1
S/U and those d log q where q is a

local generator of a component of D∞.

Proof. By local freeness of Lie∨G/S ⊗
OS

Lie∨G∨/S and Ω1
S/U, and by normality of

S, there is always an extension Lie∨G/S ⊗
OS

Lie∨G∨/S → (S1 ↪→ S)∗Ω
1
S1/U

. There-

fore the question is whether the image of the extension lies in the subsheaf
Ω1
S/U[d logD∞] of (S1 ↪→ S)∗Ω

1
S1/U

. Since this question is local in nature, we
may replace the smooth algebraic stack S with its completions of étale local-
izations by affine schemes, which are noetherian and normal by our assump-
tion of excellent normality on U and hence fit into the setting of Section 4.1.
Let us also replace S1 and D∞ with their corresponding pullbacks. (Then we

can consider Ω̂1
S/U[d logD∞] and Ω̂1

S1/U
instead of Ω1

S/U[d logD∞] and Ω1
S1/U

,
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respectively.) We may also assume that GS1 is equipped with some polariza-

tion λS1 because whether the extension lies in the subsheaf Ω̂1
S/U[d logD∞]

of (S1 ↪→ S)∗Ω̂
1
S1/U

(or not) does not depend on this choice of polariza-
tion. Then, by Theorem 4.6.3.16, we may take KSG/S/U to be the morphism
KS(G\,ι)/S/U, where (G\, ι) is the object in DD(R, I) underlying the degener-
ation datum (A, λA, X, Y , φ, c, c

∨, τ) in DDpol(R, I) associated with (G, λ) in
DEGpol(R, I) via the functor Fpol(R, I) in Definition 4.4.8. Since the period
homomorphism ι can be defined over S1, we only need log 1-differentials with
poles supported on D∞, by construction in Section 4.6.2.

Definition 4.6.3.44. The extended morphism KSG/S/U in Theorem 4.6.3.43
is called the extended Kodaira–Spencer morphism for G over S.
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Chapter 5

Degeneration Data for
Additional Structures

In this chapter, we supply a theory of degeneration for abelian varieties
with additional structures of PEL-type, based on the theory developed in
Chapter 4. The running assumptions and notation in Chapter 4 (see 4.1)
will be continued in this chapter without further remark. Moreover, we fix
some choices of B, O, and (L, 〈 · , · 〉, h) as in Section 1.4.

The main objective is to state and prove Theorem 5.3.1.19, with Theorem
5.3.3.1 and the notion of cusp labels in Section 5.4 as by-products. Technical
results worth noting are Propositions 5.1.2.4, 5.2.2.23, 5.2.3.3, and 5.2.3.9,
Theorem 5.2.3.14, and Proposition 5.4.3.8. The preparation and proof of
Theorem 5.2.3.14 in Sections 5.2.4, 5.2.5 and 5.2.6 form the technical heart
of this chapter.

5.1 Data without Level Structures

5.1.1 Data for Endomorphism Structures

Let S be a base scheme satisfying the assumptions in Section 4.1, with generic
point η, and let (G, λ) be an object in DEGpol(R, I) (see Definition 4.4.2 and
Remark 4.4.3).

Suppose moreover that (Gη, λη) is equipped with a ring homomorphism
iη : O → Endη(Gη) defining an O-endomorphism structure (with image in
Endη(Gη); see Definition 1.3.3.1). Recall that our convention is to view Gη as
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a left O-module (see Remark 1.3.3.3). By Proposition 3.3.1.5, the restriction
EndS(G) → Endη(Gη) is an isomorphism under the noetherian normality
assumption on the base scheme S. Therefore, iη extends (uniquely) to a ring
homomorphism i : O → EndS(G).

By functoriality of M(R, I) in Theorem 4.4.16 (with its quasi-inverse
F(R, I) given in Corollary 4.5.5.5), the O-endomorphism structure i : O →
Endη(Gη) of (Gη, λη) → η corresponds to the following data on the tuple
(A, λA, X, Y , φ, c, c

∨, τ):

1. A ring homomorphism iA : O → EndS(A) compatible with λA in the
sense that it satisfies the Rosati condition iA(b)∨ ◦ λA = λA ◦ iA(b?) for
all b ∈ O. This defines an O-endomorphism structure of (A, λA) → S
(with image in EndS(A)).

2. A ring homomorphism iT : O → EndS(T ) giving a left O-module struc-
ture of T , which is equivalent to a ring homomorphism iop

X : Oop →
EndS(X) giving a right O-module structure of X, and a ring homo-
morphism iop

T∨ : Oop → EndS(T∨) giving a right O-module structure of
T∨, which is equivalent to a ring homomorphism iY : O → EndS(Y )
giving a left O-module structure of Y .

Note that the O-module structures above satisfy the compatibility
tiop
X (b) = iT (b) (resp. tiY (b) = iop

T∨(b)) under the transposition defined
by the canonical pairing between X and T (resp. Y and T∨). Hence the
two O-module structures on Y and X make φ an antilinear O-module
morphism, in the sense that iX(b?) ◦ φ = φ ◦ iY (b) for all b ∈ O.

If we view X (resp. T∨) as a left O-module via the ring homomorphism
iX : O → EndS(X) (resp. iT∨ : O → EndS(T∨)) defined by composing
the natural anti-isomorphism O → Oop : b 7→ b? with iop

X (resp. iop
T∨),

then we can view φ : Y ↪→ X as an O-equivariant morphism between
left O-modules. We will adopt this convention whenever possible.

3. The O-equivariances of c : X → A∨ and c∨ : Y → A. Here we endow
A∨ with a left O-module structure by iA∨ : O → EndS(A∨) defined
by iA∨(b) := iA(b?)∨ for every b ∈ O. Alternatively, we may define
a natural right O-module structure iop

A∨ : Oop → EndS(A∨) on A∨ by
iop
A∨(b) := iA(b)∨, and then set iA∨ to be the composition of the natural

anti-isomorphism O → Oop with iop
A∨ .
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(The data so far, together with the compatibility λAc
∨ = cφ, corre-

spond to a ring homomorphism i\ : O → EndS(G\) compatible with
λ\ : G\ → G∨,\ in the sense that i\(b)

∨ ◦ λ\ = λ\ ◦ i\(b?) for all b ∈ O.)

4. The O-equivariance of the period homomorphism ι : Y → G\
η. This is

equivalent to the condition for the trivialization τ : 1Y ×
S
X,η

∼→ (c∨ ×
c)∗P⊗−1

A,η of biextensions that

(iY (b)× IdX)∗τ = (IdY ×iop
X (b))∗τ = (IdY ×iX(b?))∗τ

for all b ∈ O (cf. the proofs of Lemma 4.3.4.3 and Corollary 4.5.5.5),
which makes sense because (f × IdA∨)∗PA ∼= (IdA×f∨)∗PA for all f ∈
EndS(A) (by Lemma 1.3.2.10), and because c and c∨ are O-equivariant.

Lemma 5.1.1.1. Over a finite étale covering of S trivializing the étale
sheaves X and Y , their respective values X and Y are O-lattices with their
(left) O-module structure.

Proof. It suffices to know thatX and Y are Z-lattices (by Definition 1.1.1.22),
which is the case because T and T∨ are tori (by Definition 3.1.1.5).

Definition 5.1.1.2. With assumptions as in Section 4.1, the category
DEGPE,O(R, I) has objects of the form (G, λ, i) (over S), where the pair
(G, λ) defines an object in DEGpol(R, I), and where i : O → EndS(G)
defines by restriction an O-structure iη : O → Endη(Gη) of (Gη, λη). (By
Proposition 3.3.1.5, the restriction homomorphism EndS(G)→ Endη(Gη) is
an isomorphism.)

Definition 5.1.1.3. With assumptions as in Section 4.1, the category
DDPE,O(R, I) has objects of the form (A, λA, iA, X, Y , φ, c, c

∨, τ), with
(A, λA, X, Y , φ, c, c

∨, τ) defining an object in DDpol(R, I), and with
additional O-structure compatibilities described as follows:

1. iA : O → EndS(A) defines an O-structure for (A, λA).

2. The étale sheaves X and Y are equipped with ring homomorphisms
iX : O → EndS(X) and iY : O → EndS(Y ), respectively, making
them étale sheaves of O-lattices of the same O-multirank (see Definition
1.2.1.21). The embedding φ : Y ↪→ X is O-equivariant with respect to
these O-module structures.
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3. The homomorphisms c : X → A∨ and c∨ : Y → A are both
O-equivariant as morphisms between O-modules.

4. The trivialization τ : 1Y ×
S
X,η

∼→ (c∨×c)∗P⊗−1
A,η satisfies the compatibility

(iY (b)× IdX)∗τ = (IdY ×iX(b?))∗τ for all b ∈ O, which gives rise to the
O-equivariance of the period homomorphism ι : Y → G\

η.

Then our result in this section can be summarized as follows:

Theorem 5.1.1.4. There is an equivalence of categories

MPE,O(R, I) : DDPE,O(R, I)→ DEGPE,O(R, I) :

(A, λA, iA, X, Y , φ, c, c
∨, τ) 7→ (G, λ, i).

5.1.2 Data for Lie Algebra Conditions

In this section we continue with the setting in Section 5.1.1. Although it
might be natural to treat the Lie algebra conditions as part of the endomor-
phism structures, they should be viewed as the de Rham analogue of the
level structures defined by Tate modules.

Let V0 and V c
0 be theO⊗

Z
C-module defined by (L, 〈 · , · 〉, h) as in (1.2.5.1),

with signatures (pτ )τ and (qτ )τ (see Definition 1.2.5.2), respectively, satisfy-
ing pτ = qτ◦c.

Lemma 5.1.2.1. With assumptions as above, let W be an O⊗
Z
R-module such

that W ⊗
R
C has O⊗

Z
C-multirank (rτ )τ (see Definition 1.2.1.25 and Lemma

1.2.1.31). Then there is a totally isotropic embedding W⊗
Z
R ↪→ L⊗

Z
R of

O⊗
Z
R-modules if we have pτ ≥ rτ and qτ ≥ rτ for all τ : F → C.

Proof. For each homomorphism τ : F → C, let Wτ be the unique simple
O⊗
Z
C-module on which F acts by τ . Let (mτ )τ be the O⊗

Z
C-multirank

of L⊗
Z
C. Then we have decompositions L⊗

Z
C ∼= ⊕

τ :F→C
W⊕mτ
τ ,

V0
∼= ⊕

τ :F→C
W⊕ pτ
τ , V c

0
∼= ⊕

τ :F→C
W⊕ qτ
τ , and W ∼= ⊕

τ :F→C
W⊕ rτ
τ of

O⊗
Z
C-modules.

We say that τ : F → C is real if τ(F ) ⊂ R, and complex otherwise.
Let W[τ ]c := Wτ if τ is real, and let W[τ ]c := Wτ ⊕Wτ◦c if τ is complex.
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Then we have a decomposition L⊗
Z
C ∼= ⊕

[τ ]c
W
⊕m[τ ]c

[τ ]c
, where [τ ]c denotes a

Gal(C/R)-orbit of morphisms F → C, and m[τ ]c = mτ for every representa-

tive τ of [τ ]c. Similarly, we have W ⊗
R
C ∼= ⊕

[τ ]c

W
⊕ r[τ ]c

[τ ]c
, where r[τ ]c = rτ for

every representative τ of [τ ]c.
If pτ ≥ rτ and qτ = pτ◦c ≥ rτ for every τ : F → C, then by compar-

ison of O⊗
Z
C-multiranks there exists an embedding ε1 : W ⊗

R
C ↪→ V0 of

O⊗
Z
C-modules. Note that V0 carries not only the O⊗

Z
C-action, but also

the C-action induced by h : C → EndO⊗
Z
R(L⊗

Z
R). By taking the complex

conjugation with respect to the C-action induced by h (while keeping the
O⊗
Z
C-action the same), we obtain a second embedding ε2 : W ⊗

R
C ↪→ V c

0

of O⊗
Z
C-modules. Then we define ε : W ⊗

R
C ↪→ L⊗

Z
C ∼= V0⊕V c

0 by

x 7→ ε(x) = ε1(x) + ε2(x) using the decomposition (1.2.5.1). Since h(z)
acts by 1⊗ z (resp. by 1⊗ zc) on V0 (resp. V c

0 ) by definition, the complex
conjugation with respect to the O⊗

Z
C-action also interchanges ε1 and ε2.

Thus ε induces an embedding W⊗
Z
R ↪→ L⊗

Z
R of O⊗

Z
R-modules.

By definition of h (see Definition 1.2.1.2), for each x, y ∈ W ⊗
R
C, we have

the symmetry

〈ε(x), h(
√
−1)ε(y)〉 = 〈ε(y), h(

√
−1)ε(x)〉.

By definition of V0 and V c
0 (see (1.2.5.1)), we have

〈ε(x), h(
√
−1)ε(y)〉 = 〈ε1(x) + ε2(x), ε1((1⊗

√
−1)y) + ε2(−(1⊗

√
−1)y)〉

=
√
−1(−〈ε1(x), ε2(y)〉+ 〈ε1(y), ε2(x)〉)

and hence the antisymmetry

〈ε(x), h(
√
−1)ε(y)〉 = −〈ε(y), h(

√
−1)ε(x)〉.

These show that they must be all zero, and hence ε defines a totally isotropic
embedding, as desired.

Proposition 5.1.2.2. With assumptions as above, let X be an O-lattice such
that X⊗

Z
C has O⊗

Z
C-multirank (rτ )τ . Suppose there exists a totally isotropic

embedding HomR(X⊗
Z
R,R(1)) ↪→ L⊗

Z
R of O⊗

Z
R-modules, where X is the

341



O-lattice given by the value of X over some geometric point over η. Let us
denote the image of this embedding by Z−2,R, and denote its annihilator by
Z−1,R. Let Z0,R be L⊗

Z
R and Z−3,R be 0. Then we have a symplectic admis-

sible filtration ZR := {Z−i,R} on L⊗
Z
R (by construction). The pairing 〈 · , · 〉

and the polarization h induce a pairing 〈 · , · 〉11,R and a polarization h−1 on
GrZ−1,R := Z−1,R/Z−2,R. The isomorphism class of the polarized symplectic
O⊗
Z
R-module (GrZ−1,R, 〈 · , · 〉11,R, h−1) is independent of the choice of the em-

bedding HomR(X⊗
Z
R,R(1)) ↪→ L⊗

Z
R, and has the same reflex field F0 (see

Definition 1.2.5.4) as (L⊗
Z
R, 〈 · , · 〉, h) does. Moreover, we have pτ ≥ rτ and

qτ ≥ rτ for all τ : F → C, and the signatures of (GrZ−1,R, 〈 · , · 〉11,R, h−1) are
(pτ − rτ , qτ − rτ )τ .

Proof. Note that h is determined by h(
√
−1), and the positive definiteness

of 1
2π
√
−1
◦ 〈 · , h(

√
−1) · 〉 (see Definition 1.2.1.2) implies (essentially by

R-dimension counting) that the composition of canonical morphisms
h(
√
−1)(Z−2,R) ↪→ L⊗

Z
R � GrZ0,R = Z0,R/Z−1,R (of O⊗

Z
R-modules)

is an isomorphism. In particular, Z−2,R ∩h(
√
−1)(Z−2,R) = {0}. If

we set Z−2,h(C) := Z−2,R⊕h(
√
−1)(Z−2,R), then Z−2,h(C) embeds as an

O⊗
Z
R-submodule of L⊗

Z
R, and taking the annihilator of Z−2,h(C) under

〈 · , · 〉 defines an O⊗
Z
R-equivariant orthogonal direct sum

(L⊗
Z
R, 〈 · , · 〉) ∼= (Z−2,h(C), 〈 · , · 〉|Z−2,h(C)

)
⊥
⊕(Z⊥−2,h(C), 〈 · , · 〉|Z⊥−2,h(C)

) (5.1.2.3)

respected by the action of C under h. Since Z⊥−2,h(C) ⊂ Z⊥−2,R = Z−1,R,

we obtain a morphism Z⊥−2,h(C) → GrZ−1,R = Z−1,R/Z−2,R, which (again, by

R-dimension counting) underlies a symplectic isomorphism

(Z⊥−2,h(C), 〈 · , · 〉|Z⊥−2,h(C)
)
∼→ (GrZ−1,R, 〈 · , · 〉11,R).

Then the restriction of h to Z⊥−2,h(C) induces the desired polarization h−1 of

(GrZ−1,R, 〈 · , · 〉11,R). Since (Z−2,h(C), 〈 · , · 〉|Z−2,h(C)
, h|Z−2,h(C)

) has signatures
(rτ , rτ )τ and reflex field Q (essentially by definition), the decomposition
(5.1.2.3) shows that pτ ≥ rτ and qτ ≥ rτ for all τ : F → C, that the
signatures of (GrZ−1,R, 〈 · , · 〉11,R, h−1) are (pτ − rτ , qτ − rτ )τ , and that
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(GrZ−1,R, 〈 · , · 〉11,R, h−1) has the same reflex field F0 (see Definition 1.2.5.4)
as (L⊗

Z
R, 〈 · , · 〉, h) does.

The choice of the embedding HomR(X⊗
Z
R,R(1)) ↪→ L⊗

Z
R is immaterial,

because every two choices of the embedding will determine orthogonal
direct sums as in (5.1.2.3) whose right-hand sides are isomorphic symplectic
O⊗
Z
R-modules by comparison of signatures. Then they can be mapped

to each other by some element of G(R) acting on the left-hand side
(L⊗

Z
R, 〈 · , · 〉), matching the data (GrZ−1,R, 〈 · , · 〉11,R, h−1) on the middle

graded pieces.

Now let us assume the setting of Section 4.1, and assume moreover that
the generic point η of the base scheme S is defined over Spec(OF0,(2)), where
F0 is defined by (L⊗

Z
R, 〈 · , · 〉, h) as in Definition 1.2.5.4. (We do not need

the whole scheme S to be defined over Spec(OF0,(2)).)

Proposition 5.1.2.4. With assumptions as above, suppose (G, λ, i)
is an object in DEGPE,O(R, I), with associated degeneration datum
(A, λA, iA, X, Y , φ, c, c

∨, τ) in DDPE,O(R, I). Then, for (Gη, λη, iη) to
satisfy the Lie algebra condition defined by (L⊗

Z
R, 〈 · , · 〉, h) (see Definition

1.3.4.1), it is necessary that there exists a totally isotropic embedding
HomR(X⊗

Z
R,R(1)) ↪→ L⊗

Z
R of O⊗

Z
R-modules, where X is the O-lattice

given by the value of X over some geometric point over η. Moreover,
suppose that such a totally isotropic embedding does exist. Then, for
(Gη, λη, iη) to satisfy the Lie algebra condition defined by (L⊗

Z
R, 〈 · , · 〉, h),

it is both necessary and sufficient that (Aη, λA,η, iA,η) satisfies the Lie algebra
condition defined by (GrZ−1,R, 〈 · , · 〉11,R, h−1).

Proof. Let (rτ )τ be the O⊗
Z
C-multirank of X⊗

Z
C (see Definition 1.2.1.21).

By Lemma 5.1.2.1, to show that there is a totally isotropic embedding
HomR(X⊗

Z
R,R(1)) ↪→ L⊗

Z
R of O⊗

Z
R-modules, we have to show pτ ≥ rτ

and qτ ≥ rτ for all τ : F → C.
By assumption above that η = Spec(K) is defined over Spec(OF0,(2)),

the characteristic p of K is unramified in F . Suppose the morphism η →
Spec(OF0,(2)) factors through η → Spec(k) → Spec(OF0,(2)) for some field
k, which we assume to be finite when p > 0. Let Ksep denote a separable
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closure of K, and let ksep denote the separable closure of k in Ksep. Accord-
ing to Lemma 1.1.3.4, finitely generated projective O⊗

Z
Λ-modules M admit

decompositions M ∼= M⊕mτ
τ . If we tensor any such decomposition with

ksep, then we obtain a decomposition compatible with the classification of
O⊗

Z
ksep-modules as in Proposition 1.1.2.20. On the other hand, if we tensor

any such decomposition with a separable closure Frac(Λ)sep of Frac(Λ), we
obtain a decomposition compatible with the classification of O⊗

Z
C-modules

if we embed Frac(Λ)sep into C. When p > 0, this can be achieved by choos-
ing an auxiliary isomorphism C ∼= Cp, which has the effect of matching
HomQ(F,C) and HomFp(OF ⊗

Z
Fp, F̄p) because p is unramified in F . Then we

can talk about the signatures of O⊗
Z
ksep-modules and O⊗

Z
Ksep-modules as

if they were O⊗
Z
C-modules.

Let F ′0 and L0 be chosen as in Lemma 1.2.5.9, with F ′0 unrami-
fied at p when p > 0. Suppose that LieGη/η satisfies the Lie algebra
condition defined by (L⊗

Z
R, 〈 · , · 〉, h). Then we have an isomorphism

LieGη/η⊗
K
Ksep ∼= L0 ⊗

OF ′0

Ksep of O⊗
Z
Ksep-modules by Proposition 1.1.2.20,

and hence LieGη/η⊗
K
Ksep has the same signatures (pτ )τ as V0 by the above

identification.
The (separable) polarization λη : Gη → G∨η defines an O-equivariant iso-

morphism dλη : LieGη/η
∼→ LieG∨η /η. The action of OF ⊗

Z
K on LieGη/η and on

Lie∨G∨η /η differ by the restriction of the involution ? to OF (which is compati-

ble with the complex conjugation under any homomorphism OF ↪→ F
τ→ C).

Therefore, if LieGη/η⊗
K
Ksep has signatures (pτ )τ , then Lie∨G∨η /η⊗K

Ksep has

signatures (qτ )τ because qτ = pτ◦c.
Let X and Y denote the values of X and Y over the geometric point

η̄ := Spec(Ksep) over η. (This redefines X up to an isomorphism of
O-modules, but doing so is harmless for our purpose.) Since there is an
O-equivariant embedding φ : Y ↪→ X of finite index, X⊗

Z
R ∼= Y⊗

Z
R

as O⊗
Z
R-modules. By definition, we have canonical isomorphisms

Tη̄ ∼= Homη̄(X,Gm,η̄) and T∨η̄
∼= Homη̄(Y,Gm,η̄) with compatible O-actions,

and hence there are canonical isomorphisms LieTη̄/η̄
∼= Hom(X,Ksep)

and LieT∨η̄ /η̄
∼= Hom(Y,Ksep) as O⊗

Z
Ksep-modules. As a result, the
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O⊗
Z
Ksep-modules LieTη̄/η̄

∼= LieTη/η⊗
K
Ksep, LieT∨η̄ /η̄

∼= LieT∨η /η⊗
K
Ksep, and

hence Lie∨T∨η /η⊗K
Ksep all have the same signatures (rτ )τ as X⊗

Z
C.

By Theorem 2.3.1.2, we have a canonical isomorphism LieG/S
∼= LieG\/S,

because Gfor
∼= G\

for and hence LieGfor/Sfor

∼= LieG\for/Sfor
over Sfor. Similarly,

we have a canonical isomorphism LieG∨/S
∼= LieG∨,\/S. Both of the canonical

isomorphisms areO⊗
Z
K-equivariant, by the functoriality in Theorem 2.3.1.2.

Then pτ ≥ rτ (resp. qτ ≥ rτ ) for all τ : F → C because LieTη/η (resp. Lie∨T∨η /η)

is a O⊗
Z
K-subquotient of LieG\η/η (resp. Lie∨

G∨,\η /η
).

Since LieTη/η⊗
K
Ksep ∼= Hom(X,Ksep) as O⊗

Z
Ksep-modules, LieTη/η sat-

isfies the Lie algebra condition defined by (Z−2,h(C), 〈 · , · 〉|Z−2,h(C)
, h|Z−2,h(C)

)
in the sense that DetO|LieTη/η

agrees with the image of DetO|Z−2,R =

DetO|HomR(X⊗
Z
R,R(1)) = DetO|Hom(X,Z(2)) under the structural homomor-

phism Z(2) → K (cf. Definition 1.3.4.1). Then the exact sequence
0→ LieTη/η → LieG\η/η → LieAη/η → 0 of O⊗

Z
K-modules and the orthogonal

direct sum (5.1.2.3) show that (Gη, λη, iη) satisfies the Lie algebra condition
defined by (L⊗

Z
R, 〈 · , · 〉, h) if and only if (Aη, λA,η, iA,η) satisfies the Lie

algebra condition defined by (GrZ−1,R, 〈 · , · 〉11,R, h−1), as desired.

Definition 5.1.2.5. With assumptions as in the paragraph preceding Propo-
sition 5.1.2.4, the category DEGPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I) has objects of the form

(G, λ, i) (over S = Spec(R)), each defining an object in DEGPE,O(R, I) such
that (Gη, λη, iη) satisfies the Lie algebra condition defined by (L⊗

Z
R, 〈 · , · 〉, h)

(see Definition 1.3.4.1).

Definition 5.1.2.6. With assumptions as in the paragraph preceding Propo-
sition 5.1.2.4, the category DDPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I) has objects of the form

(A, λA, iA, X, Y , φ, c, c
∨, τ), each tuple defining an object in DDPE,O(R, I),

such that there exists a totally isotropic embedding HomR(X⊗
Z
R,R(1)) ↪→

L⊗
Z
R of O⊗

Z
R-modules, where X is the value of X over some geometric point

over η, and such that (Aη, λA,η, iA,η) satisfies the Lie algebra condition defined
by (GrZ−1,R, 〈 · , · 〉11,R, h−1) (see Definition 1.3.4.1 and Proposition 5.1.2.4).

Then Theorem 5.1.1.4 can be strengthened as follows:
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Theorem 5.1.2.7. There is an equivalence of categories

MPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I) :

DDPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I)→ DEGPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I) :

(A, λA, iA, X, Y , φ, c, c
∨, τ) 7→ (G, λ, i).

5.2 Data for Principal Level Structures

5.2.1 The Setting for This Section

Let G be defined by (L, 〈 · , · 〉) as in Definition 1.2.1.6, and let H ⊂ G(Ẑ2)
be an open compact subgroup. Let the moduli problem MH be defined over
S0 = Spec(OF0,(2)) as in Definition 1.4.1.4.

For technical reasons regarding the existence of splittings of filtrations, we
shall assume that L satisfies Condition 1.4.3.10 (see Lemma 5.2.2.4 below).
Practically, this means we might have to replace L with a larger lattice L′

such that the action of O extends to a maximal order O′ containing O. By
Corollary 1.4.3.8, although this assumption does impose a restriction on the
order O and the O-lattice L that we could work with, it does not affect our
purpose of studying and compactifying the moduli problem MH if H can
still be chosen to be contained in G(Ẑ2) under this assumption (see Remark
1.4.3.9).

With the same setting as in Section 4.1, assume moreover that the
generic point η = Spec(K) of the base scheme S = Spec(R) is defined over
Spec(OF0,(2)). (We do not need the whole scheme S to be defined over
Spec(OF0,(2)).) Fix a choice of a geometric point η̄ = Spec(K̄) over η. Let

K ↪→ K̃ be any finite separable subextension of K ↪→ K̄ defining a finite
étale morphism η̃ = Spec(K̃) → η = Spec(K). In this case, the inclusion
K̃ ↪→ K̄ allows us to lift η̄ canonically to a geometric point over η̃. Recall
that we have the following:

Lemma 5.2.1.1. Let R1 be any noetherian normal domain with field of
fractions K1. Suppose K2 is a finite separable extension of K1, and let R2 be
the integral closure of R1 in K2. Then R2 is a finite R1-module. In particular,
R2 is again noetherian.

This convenient fact can be found, for example, in [88, §33, Lem. 1] or
[41, Prop. 13.14]. (For general extensions K1 ↪→ K2, it may not be true that
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R2 is noetherian. Nevertheless, it is true if R1 is excellent or, more generally,
Nagata. See [87, §§31–34] for discussions on this.)

5.2.2 Analysis of Principal Level Structures

In this section we study the construction of (principal) level-n structures
using the theory of degeneration, assuming the theory in Section 5.1.2 for
Lie algebra conditions.

With the setting as in Section 5.2.1, consider any triple (G, λ, i)
defining an object in DEGPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I). By Theorem 5.1.2.7,

we have an associated degeneration datum (A, λA, iA, X, Y , φ, c, c
∨, τ) in

DDPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I). Assume for simplicity that X and Y are constant

with values X and Y , respectively. Then X and Y are O-lattices of the
same O-multirank (see Definition 1.2.1.21), as we saw in Lemma 5.1.1.1.
Let φ : Y ↪→ X be the O-equivariant embedding defined by λ. We know
that the homomorphism λ : G → G∨ induces a homomorphism between
Raynaud extensions λ\ : G\ → G∨,\, and induces a polarization λA : A→ A∨

(of the abelian part) because λ extends a polarization λη : Gη → G∨η .
By Corollary 4.5.3.12, with the general theorem of orthogonality in mind

(see, for example, [57, IX, 2.4] and [93, IV, 2.4], or Theorem 3.4.2.4), the
structure of G[n]η can be described as follows:

Proposition 5.2.2.1. With the setting as above, we have a canonical
O-equivariant exact sequence of finite étale group schemes

0→ G\[n]η → G[n]η → 1
n
Y/Y → 0

over Spec(R), which induces, by taking the limit over n with 2 - n, an exact
sequence

0→ T2G\
η̄ → T2Gη̄ → Y⊗

Z
Ẑ2 → 0

of O⊗
Z
Ẑ2-modules. Moreover, we have a canonical O-equivariant exact se-

quence of finite étale group schemes

0→ T [n]→ G\[n]→ A[n]→ 0

over Spec(R), which induces, by taking the limit over n with 2 - n, an exact
sequence

0→ T2 Tη̄ → T2G\
η̄ → T2Aη̄ → 0
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of O⊗
Z
Ẑ2-modules. Under the λη-Weil pairing eλη , the submodules T2 Tη̄

and T2G\
η̄ of T2Gη̄ are identified with the annihilators of each other, which

induce the λA-Weil pairing eλA on T2Aη̄, and a pairing

eφ : T2 Tη̄×(Y⊗
Z
Ẑ2)→ T2 Gm,η̄

which is the canonical one

T2 Tη̄×(Y⊗
Z
Ẑ2)

can.
∼→ HomẐ2(X⊗

Z
Ẑ2,T2 Gm,η̄)×Y⊗

Z
Ẑ2

Id×φ→ HomẐ2(X⊗
Z
Ẑ2,T2 Gm,η̄)×X⊗

Z
Ẑ2 can.→ T2 Gm,η̄

with the sign convention that eφ(t, y) = t(φ(y)) = (φ(y))(t) for all t ∈ T2 Tη̄
and y ∈ Y⊗

Z
Ẑ2. (This is compatible with the sign convention that we will

adopt later in Sections 5.2.4 and 5.2.6.)

Now let η̃ → η be any finite étale morphism defined by a field extension
as in Section 5.2.1. (The reason to consider such étale localizations of η is
for the applicability of the theory to the study of level structures that are
not principal, as defined in Section 1.3.7.)

Suppose there is a level-n structure of (Gη̃, λη̃, iη̃) of type (L⊗
Z
Ẑ2, 〈 · , · 〉)

(defined over η̃; see Definition 1.3.6.2). By Lemma 1.3.6.5, this means
we have an O-equivariant isomorphism αn : L/nL

∼→ G[n]η̃ that can be

lifted (noncanonically) to an O⊗
Z
Ẑ2-equivariant symplectic isomorphism α̂ :

L⊗
Z
Ẑ2 ∼→ T2Gη̄, together with an isomorphism ν(αn) : Ẑ2(1)

∼→ T2 Gm,η̄ (of

Ẑ2-modules), which carry the chosen pairing 〈 · , · 〉 on L⊗
Z
Ẑ2 to the λη-Weil

pairing. Then for each choice of the lifting α̂, the O⊗
Z
Ẑ2-module filtration

0 ⊂ T2 Tη̄ ⊂ T2G\
η̄ ⊂ T2Gη̄

on T2G[n]η̄ (described in Proposition 5.2.2.1) induces an O⊗
Z
Ẑ2-module

filtration
0 ⊂ Z−2 ⊂ Z−1 ⊂ Z0 := L⊗

Z
Ẑ2
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on L⊗
Z
Ẑ2, together with isomorphisms (of O⊗

Z
Ẑ2-modules)

GrZ−2 := Z−2
∼→ T2 Tη̄,

GrZ−1 := Z−1/Z−2
∼→ T2Aη̄,

GrZ0 := Z0/Z−1
∼→ Y⊗

Z
Ẑ2

on the graded pieces. Here the first isomorphism can be given more precisely
by the composition

GrZ−2
∼→ HomẐ2(X⊗

Z
Ẑ2, Ẑ2(1))

∼→ HomẐ2(X⊗
Z
Ẑ2,T2 Gm,η̄)

∼→ T2 Tη̄,

in which the first is the essential datum, in which the second is given by
the isomorphism ν(α̂) : Ẑ2(1)

∼→ T2 Gm,η̄ given by α̂, and in which the
third is canonical. Different choices of the lifting α̂ might induce different
filtrations on L⊗

Z
Ẑ2, but the reductions modulo n are the same. Moreover,

the isomorphism between the filtrations is symplectic. Namely, Z−2 and Z−1

are the annihilators of each other under the pairing 〈 · , · 〉 of L⊗
Z
Ẑ2 (as T2 Tη̄

and T2G\
η̄ are), and the induced isomorphisms

GrZ−2×GrZ0
∼→ T2 Tη̄×(Y⊗

Z
Ẑ2)

and
GrZ−1×GrZ−1

∼→ T2Aη̄×T2Aη̄

on the graded pieces respect the pairings on both sides under the same unique
isomorphism ν(α̂) : Ẑ2(1)

∼→ T2 Gm,η̄ given by α̂, induced respectively by

the pairing 〈 · , · 〉 on L⊗
Z
Ẑ2 and the λ-Weil pairing on T2Gη̄.

On the other hand, having isomorphisms on the graded pieces alone is not
sufficient for recovering the isomorphism between the whole modules. Let us
introduce some noncanonical choices in this setting, namely, splittings of the
underlying modules (see Section 1.2.6).

Now suppose that we are given some O⊗
Z
Ẑ2-module filtration

0 ⊂ Z−2 ⊂ Z−1 ⊂ Z0 = L⊗
Z
Ẑ2.

It does not make sense to consider arbitrary such filtrations, as the filtrations
on T2Gη̄ do satisfy some special conditions.
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Lemma 5.2.2.2. Every filtration Z = {Z−i}i coming from T2Gη̄ as above is
integrable and symplectic (see Definitions 1.2.6.2 and 1.2.6.8).

Proof. Let Z be such a filtration. The fact that Z is symplectic follows
from Proposition 5.2.2.1 and the explanation above. Let us denote by
(GrZ−1, 〈 · , · 〉11) the induced symplectic O⊗

Z
Ẑ2-module. By Propositions

5.1.2.4 and 5.1.2.2, we also have a filtration ZR on L⊗
Z
R, with an induced

polarized symplectic O⊗
Z
R-module (GrZ−1,R, 〈 · , · 〉11,R, h−1). Let us show

that Z is integrable. By the construction above, it is clear that GrZ−2 and
GrZ0 are integrable. Therefore it remains to show that GrZ−1 is integrable.
Consider the abelian part (Aη̃, λAη̃ , ii,η̃, ϕ−1,n) (over η̃) of the data we
have, which defines a point of the smooth moduli problem defined by
(GrZ−1,R, 〈 · , · 〉11,R, h−1) and (GrZ−1, 〈 · , · 〉11). Then, as explained in Remark
1.4.3.14, there exists (noncanonically) a PEL-type O-lattice (LZ, 〈 · , · 〉Z, hZ)
as in Definition 1.2.1.3 such that (GrZ−1, 〈 · , · 〉11) ∼= (LZ⊗

Z
Ẑ2, 〈 · , · 〉Z)

(over Ẑ2) and (GrZ−1,R, 〈 · , · 〉11,R, h−1) ∼= (LZ⊗
Z
R, 〈 · , · 〉Z, hZ) (over R). In

particular, GrZ−1 is integrable, as desired.

As a preparation for Lemma 5.2.2.4 below, let us include the following:

Lemma 5.2.2.3. Let C be any finite-dimensional semisimple algebra over
Q, and let C ′ be a finitely generated Z-subalgebra of C. Then C ′ is generated
as a Z-algebra by finitely many elements in C ′ ∩ C×.

Proof. First we claim that, for each element c ∈ C ′ but c 6∈ C×, there exists
an integer nc ∈ Z (depending on c) such that c + nc ∈ C×. To justify this
claim, consider elements of C as endomorphisms of the complex vector space
C ⊗

Q
C. Then an element c is invertible if all its finitely many eigenvalues are

nonzero, and the claim follows because addition of an integer n increases all
the eigenvalues by n. Now that we have the claim, by adding integers to a
set of generators of C ′ over Z, we may assume that they are all in C ′ ∩ C×,
as desired.

By Corollary 1.2.6.5, we know that an integrable filtration is automati-
cally split when O is maximal. For general O (which might not be maximal),
we have the following:
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Lemma 5.2.2.4. Under the assumption that the PEL-type O-lattice
(L, 〈 · , · 〉) satisfies Condition 1.4.3.10, every O⊗

Z
Ẑ2-module filtration Z

on Z0 = L⊗
Z
Ẑ2 that can be realized as a pullback of the O⊗

Z
Ẑ2-module

filtration 0 ⊂ T2 Tη̄ ⊂ T2G\
η̄ ⊂ T2Gη̄ by an O⊗

Z
Ẑ2-equivariant symplectic

isomorphism α̂ : L⊗
Z
Ẑ2 ∼→ T2Gη̄ is necessarily split.

Proof. Condition 1.4.3.10 means that the action of O on L extends to an
action of some maximal order O′ in B containing O. By Lemma 5.2.2.3,
O′ is generated as a Z-algebra by O′ ∩ B×. By Proposition 1.1.1.21, there
exists an integer m ≥ 1, with no prime factors other than those of Disc,
such that mO′ ⊂ O. Hence elements of O′ ∩ B× define Z×(2)-isogenies. By

Lemma 1.3.5.2, such Z×(2)-isogenies are determined by their induced mor-
phisms on V2Gη̄, or rather their induced morphisms on L⊗

Z
A∞,2 via the

O⊗
Z
A∞,2-equivariant symplectic isomorphism L⊗

Z
A∞,2 ∼→ V2Gη̄ induced

by α̂. Since the action of O on L extends to an action of O′ on L, we see
that the morphisms induced by elements of O′ ∩ B× on V2Gη̄ map T2Gη̄

to itself. This shows that elements of O′ ∩B× define endomorphisms of Gη̄,
or rather Gη′ for some point η′ = Spec(K ′) finite étale over η̃. As a result,
all elements of O′ define endomorphisms of Gη′ .

Let R′ be the normalization of R in K ′. By Lemma 5.2.1.1, R′ with I ′ :=
rad(I ·R′) ⊂ R′ satisfies the requirements in Section 4.1. Let S ′ = Spec(R′),
and let G′ = G×

S
S ′. By Proposition 3.3.1.5, the endomorphisms of Gη′

defined by O′ extend to endomorphisms of G′ over S ′, which also induce
endomorphisms of (G′)\ := G\×

S
S ′ (resp. T ′ := T ×

S
S ′) by the functoriality

of Raynaud extensions. Thus, the action of O′ on T2Gη̄ maps T2G\
η̄ (resp.

T2 Tη̄) to itself.

Now 0 ⊂ T2 Tη̄ ⊂ T2G\
η̄ ⊂ T2Gη̄ is an integrable filtration of

O⊗
Z
Ẑ2-modules (respected by the action of O′), with each of the graded

pieces of the form M⊗
Z
Ẑ2 for some O-lattices M . Writing Ẑ2 =

(
∏

p|Disc

Zp)×(
∏

2-p-Disc

Zp), we see that O⊗
Z

(
∏

2-p-Disc

Zp) = O′⊗
Z

(
∏

2-p-Disc

Zp). In

particular, M ⊗
Z

(
∏

2-p-Disc

Zp) is projective also as an O′⊗
Z

(
∏

2-p-Disc

Zp)-module.

On the other hand, for each of the finitely many p | Disc, the Zp-module
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M ⊗
Z
Zp is torsion-free. By Definition 1.1.1.22, M ⊗

Z
Zp is an O′⊗

Z
Zp-lattice,

because of its induced O′-action. By Proposition 1.1.1.23, M ⊗
Z
Zp is

projective as an O′⊗
Z
Zp-module. Putting the finite product together

again, we see that the filtration is projective (see Definition 1.2.6.2), and
is therefore split (by Lemma 1.2.6.4). Since O′⊗

Z
Ẑ2 contains O⊗

Z
Ẑ2 as a

subring, the splitting is O⊗
Z
Ẑ2-equivariant as well, as desired.

Corollary 5.2.2.5 (of the proof of Lemma 5.2.2.4). Under the assumption
that the PEL-type O-lattice (L, 〈 · , · 〉, h) satisfies Condition 1.4.3.10, suppose
that the action of O on L extends to an action of some maximal order O′ in B
containing O, and that there exists at least one O⊗

Z
Ẑ2-equivariant symplectic

isomorphism α̂ : L⊗
Z
Ẑ2 ∼→ T2Gη̄. Then the actions of O on T , A, and Y all

extend to actions of O′ compatible with c : X → A∨ and c∨ : Y → A. (Here
the O′-action on T (resp. A) is defined (in Section 5.1.1) to be equivalent to
the (O′)?-action on X (resp. A∨), where (O′)? is the image of O′ under the
anti-isomorphism ? : B

∼→ Bop.)

As a result, for the purpose of studying level structures, we only need to
consider O⊗

Z
Ẑ2-module filtrations Z on L⊗

Z
Ẑ2 that are integrable, symplec-

tic, and split. Recall that (in Definition 1.2.6.6) a filtration on an integrable
module is called admissible if it is both integrable and split. For simplicity, in
what follows, we shall often suppress modifiers such as “O⊗

Z
Ẑ2-equivariant”

or “of O⊗
Z
Ẑ2-modules” for admissible filtrations, their splittings, and various

related objects.

Definition 5.2.2.6. The O-multirank of a symplectic admissible filtration
Z on L⊗

Z
Ẑ2 is the O-multirank (see Definition 1.2.1.25) of Z−2 as an inte-

grable O⊗
Z
Ẑ2-module.

Let us investigate the possible splittings of an admissible filtration on
L⊗
Z
Ẑ2. Let us define GrZ−i := Z−i/Z−i−1 as before.

If there is a first splitting, then we obtain a direct sum decomposition

δ̂ : GrZ := GrZ−2⊕GrZ−1⊕GrZ0
∼→ L⊗

Z
Ẑ2.

352



The pairing 〈 · , · 〉 on L⊗
Z
Ẑ2 can thus be expressed in matrix form as 〈 · , · 〉20

〈 · , · 〉11 〈 · , · 〉10

〈 · , · 〉02 〈 · , · 〉01 〈 · , · 〉00

 ,

where the pairings

〈 · , · 〉ij : GrZ−i×GrZ−j → Ẑ2(1)

satisfy 〈 · , · 〉ij = − t〈 · , · 〉?ji for all i and j. Namely, they satisfy 〈x, by〉ij =

〈b?x, y〉ij = −〈y, b?x〉ji for all x ∈ GrZ−i, y ∈ GrZ−j, and b ∈ O. Here we
have nothing on the three upper-left blocks because Z−2 and Z−1 are the
annihilators of each other.

If there is a second splitting δ̂′ : GrZ
∼→ L⊗

Z
Ẑ2, then there is a change of

basis ẑ : GrZ
∼→ GrZ such that δ̂′ = δ̂ ◦ ẑ. In matrix form, we can write

ẑ =

1 z21 z20

1 z10

1

 ,

where
zij : GrZ−j → GrZ−i

are morphisms between the graded pieces. The matrix of the pairing 〈 · , · 〉
on L⊗

Z
Ẑ2 using the second splitting can be expressed by 〈 · , · 〉′20

〈 · , · 〉′11 〈 · , · 〉′10

〈 · , · 〉′02 〈 · , · 〉′01 〈 · , · 〉′00


:=

 1
tz
?
21 1

tz
?
20

tz
?
10 1

 〈 · , · 〉20

〈 · , · 〉11 〈 · , · 〉10

〈 · , · 〉02 〈 · , · 〉01 〈 · , · 〉00

1 z21 z20

1 z10

1

 ,

where

〈 · , · 〉′20 = 〈 · , · 〉20,

〈 · , · 〉′11 = 〈 · , · 〉11,

〈 · , · 〉′10 = 〈 · , · 〉10 + tz
?
21〈 · , · 〉20 + 〈 · , · 〉11z10,

〈 · , · 〉′00 = 〈 · , · 〉00 + ( tz
?
20〈 · , · 〉20 − t〈 · , · 〉?20z20)

+ ( tz
?
10〈 · , · 〉10 − t〈 · , · 〉?10z10) + tz

?
10〈 · , · 〉11z10,
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and where

tz
?
ki〈x, y〉kj = 〈zki(x), y〉kj,
〈x, y〉ikzkj = 〈x, zkj(y)〉ik,

tz
?
ki〈x, y〉klzlj = 〈zki(x), zlj(y)〉kl

for all x ∈ GrZ−i and y ∈ GrZ−j. The notation thus designed then satisfies the
symbolic relation

t( tz
?
ki〈 · , · 〉kj)

?
= t〈 · , · 〉?kjzki = −〈 · , · 〉jkzki.

Definition 5.2.2.7. Two pairs of pairings (〈 · , · 〉10, 〈 · , · 〉00) and
(〈 · , · 〉′10, 〈 · , · 〉′00) as above are equivalent under (〈 · , · 〉20, 〈 · , · 〉11), denoted

(〈 · , · 〉10, 〈 · , · 〉00) ∼ (〈 · , · 〉′10, 〈 · , · 〉′00),

if there are some z21, z10, and z20 such that

〈 · , · 〉′10 = 〈 · , · 〉10 + tz
?
21〈 · , · 〉20 + 〈 · , · 〉11z10,

〈 · , · 〉′00 = 〈 · , · 〉00 + ( tz
?
20〈 · , · 〉20 − t〈 · , · 〉?20z20)

+ ( tz
?
10〈 · , · 〉10 − t〈 · , · 〉?10z10) + tz

?
10〈 · , · 〉11z10.

Thus, 〈 · , · 〉20 and 〈 · , · 〉11 are independent of the splitting δ̂ : GrZ
∼→

L⊗
Z
Ẑ2, while 〈 · , · 〉10 and 〈 · , · 〉00 are well defined only up to equivalence.

Now suppose that we are given any splitting δ̂ : GrZ
∼→ L⊗

Z
Ẑ2. By

reduction modulo n, we obtain an admissible filtration

0 ⊂ Z−2,n ⊂ Z−1,n ⊂ Z0,n := L/nL,

where Z−i,n := Z−i/nZ−i, with graded pieces GrZ−i,n := Z−i,n/Z−i−1,n
∼=

GrZ−i /nGrZ−i. We shall always follow the convention that −i ≤ 0 and n ≥ 1,
so that there is no ambiguity when we write

δn : GrZn := GrZ−2,n⊕GrZ−1,n⊕GrZ0,n
∼→ L/nL

as the reduction modulo n of δ̂.
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Remark 5.2.2.8. To keep the information after reduction modulo n, we shall
equip the filtration Zn := {Z−i,n}i with the notion of O-multiranks, given by
the O-multiranks (see Definition 5.2.2.6) of the (admissible) filtrations Z we
started with. Therefore, even if n = 1, in which case L/nL is trivial, there
might still be different filtrations Zn on L/nL because there might be different
multiranks. This convention will be tacitly assumed in all our arguments.

Definition 5.2.2.9. An admissible filtration

0 ⊂ Z−2,n ⊂ Z−1,n ⊂ Z0,n = L/nL

on L/nL of a prescribed O-multirank is called symplectic-liftable if it is
the reduction modulo n of some symplectic admissible filtration

0 ⊂ Z−2 ⊂ Z−1 ⊂ Z0 = L⊗
Z
Ẑ2

(see Definitions 1.2.6.6 and 1.2.6.8) of the prescribed O-multirank. Equiva-
lently, a symplectic-liftable filtration Zn on L/nL is an equivalence class of
symplectic admissible filtrations Z on L⊗

Z
Ẑ2, where two symplectic admissi-

ble filtrations Z and Z′ are defined to be equivalent if their O-multiranks are
the same, and if their reductions modulo n are the same.

Definition 5.2.2.10. A splitting δn : GrZn
∼→ L/nL for a symplectic-liftable

filtration {Z−i,n}i on L/nL is called liftable if it is the reduction modulo n

of some splitting δ̂ : GrZ
∼→ L⊗

Z
Ẑ2.

On the other hand, we would like to perform the same analysis for T2Gη̄.
In particular, we shall investigate the possible splittings of the filtration

0 ⊂ T2 Tη̄ ⊂ T2G\
η̄ ⊂ T2Gη̄

(when it is admissible). In analogous notation, let us define

W−2 := T2 Tη̄, W−1 := T2G\
η̄, W0 := T2Gη̄,

GrW−i := W−i/W−i−1, GrW := GrW−2⊕GrW−1⊕GrW0

as in the case of GrZ. Then we know that GrW−2 = T2 Tη̄, GrW−1
∼= T2Aη̄, and

GrW0
∼= Y⊗

Z
Ẑ2. A splitting of this filtration corresponds to an isomorphism

ς̂ : GrW ∼= T2 Tη̄⊕T2Aη̄⊕(Y⊗
Z
Ẑ2)

∼→ T2Gη̄.
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Let us denote the multiplication and inversion in T2 Gm,η̄ additively by the
notation + and − when we talk about matrix entries. Then the λη-Weil
pairing eλη on T2Gη̄ can be expressed in matrix form as e20

e11 e10

e02 e01 e00


where the pairings

eij : GrW−i×GrW−j → T2 Gm,η̄

satisfy eij = − te
?
ji for all i and j. Namely, they satisfy eij(x, by) =

eij(b
?x, y) = −eji(y, b

?x) for all x ∈ GrW−i, y ∈ GrW−j, and b ∈ O. Here we
have nothing on the three upper-left blocks because W−2 and W−1 are the
annihilators of each other. Note that e20 = eφ and e11 = eλA .

If there is now a second splitting ς̂ ′ : GrW
∼→ T2Gη̄, then there is a change

of basis ŵ : GrW
∼→ GrW such that ς̂ ′ = ς̂ ◦ ŵ. In matrix form, we have

ŵ =

1 w21 w20

1 w10

1

 ,

where
wij : GrW−j → GrW−i

are morphisms between the graded pieces. The matrix of the pairing eλη on
T2Gη̄ using the second splitting can be expressed by e′20

e′11 e′10

e′02 e′01 e′00

 :=

 1
tw
?
21 1

tw
?
20

tw
?
10 1

 e20

e11 e10

e02 e01 e00

1 w21 w20

1 w10

1

 ,

where

e′20 = e20 = eφ,

e′11 = e11 = eλA ,

e′10 = e10 + tw
?
21e20 + e11w10,

e′00 = e00 + ( tw
?
20e20 − te

?
20) + ( tw

?
10e10 − te

?
10) + tw

?
10e11w10,

and the terms such as tw
?
21e20 are interpreted in the same way as before.
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Definition 5.2.2.11. Two pairs of pairings (e10, e00) and (e′10, e
′
00) as above

are equivalent under (e20, e11) = (eφ, eλA), denoted

(e10, e00) ∼ (e′10, e
′
00),

if there are some w21, w10, and w20 such that

e′10 = e10 + tw
?
21e20 + e11w10,

e′00 = e00 + ( tw
?
20e20 − te

?
20) + ( tw

?
10e10 − te

?
10) + tw

?
10e11w10.

Thus, e20 = eφ and e11 = eλA are independent of the splitting ς̂ : GrW
∼→

T2Gη̄, while e10 and e00 are well defined only up to equivalence.
Let us denote the reduction modulo n of the filtration {W−i}i by {W−i,n}i.

Then we have the filtration

0 ⊂ W−2,n = T [n]η ⊂ W−1,n = G\
η ⊂ W0,n = G[n]η,

with GrW−i,n := W−i,n/W−i−1,n and GrWn := GrW−2,n⊕GrW−1,n⊕GrW0,n as in the case
of GrZn. By abuse of notation, we shall denote the pullbacks of the objects
W−i,n to η̃ or η̄ by the same symbols. We write

ςn : GrWn
∼→ G[n]η̄

as the reduction modulo n of ς̂. If it is defined over η̃, then we also denote it
by ςn : GrWn

∼→ G[n]η̃.

Definition 5.2.2.12. A splitting ςn : GrWn
∼→ G[n]η̃ for the filtration {W−i,n}i

on G[n]η̃ is called liftable if it is the reduction modulo n of some splitting
ς̂ : GrW

∼→ T2Gη̄.

Now suppose that we have a level-n structure αn : L/nL
∼→ G[n]η̃ de-

fined over η̃, which by definition can be lifted to some O⊗
Z
Ẑ2-equivariant

symplectic isomorphism α̂ : L⊗
Z
Ẑ2 ∼→ T2Gη̄. The filtration W = {W−i}i on

T2Gη̄ induces a symplectic admissible filtration Z = {Z−i}i on L⊗
Z
Ẑ2 by

α̂, with isomorphisms Gr−i(α̂) : GrZ−i
∼→ GrW−i on the graded pieces. Let

Gr(α̂) := ⊕
i

Gr−i(α̂). A splitting ς̂ : GrW
∼→ T2Gη̄ determines (and is deter-

mined by) a splitting of δ̂ : GrZ
∼→ L⊗

Z
Ẑ2 by the relation δ̂ = α̂−1 ◦ ς̂ ◦Gr(α̂).

357



If the λη-Weil pairing eλη on T2Gη̄ and the symplectic pairing 〈 · , · 〉 on

L⊗
Z
Ẑ2 are given under the splittings δ̂ and δ̂ in matrix forms 〈 · , · 〉20

〈 · , · 〉11 〈 · , · 〉10

〈 · , · 〉02 〈 · , · 〉01 〈 · , · 〉00

 and

 e20

e11 e10

e02 e01 e00

 ,

respectively, then we would like to match eij with 〈 · , · 〉ij under Gr(α̂).

Definition 5.2.2.13. Given splittings δ̂ : GrZ
∼→ L⊗

Z
Ẑ2 and ς̂ : GrW

∼→

T2Gη̄, a graded isomorphism f̂ : GrZ
∼→ GrW is a symplectic isomorphism

with respect to δ̂ and ς̂ if ς̂ ◦ f̂ ◦ δ̂−1 : L⊗
Z
Ẑ2 ∼→ T2Gη̄ is a symplectic

isomorphism. (Note that f̂ is equipped with an isomorphism ν(f̂) : Ẑ2(1)
∼→

T2 Gm,η̄, as in Definition 1.1.4.8.)

By definition, the Gr(α̂) constructed above is symplectic. We shall view δ̂
and ς̂ as symplectic isomorphisms by setting the similitudes to be ones (i.e.,
the identity homomorphisms). Then the relation δ̂ = α̂−1 ◦ ς̂ ◦ Gr(α̂) above
is an identity of symplectic isomorphisms.

Lemma 5.2.2.14. Suppose we are given splittings δ̂ : GrZ
∼→ L⊗

Z
Ẑ2 and

ς̂ : GrW
∼→ T2 Gm,η̄, so that we have the induced pairings 〈 · , · 〉ij and eij

defined on the graded pieces. Then a graded isomorphism f̂ : GrZ
∼→ GrW (with

an isomorphism ν(f̂) : Ẑ2(1)
∼→ T2 Gm,η̄) defines a symplectic isomorphism

with respect to δ̂ and ς̂ in the sense of Definition 5.2.2.13 if and only if
f̂ ∗(eij) = ν(f̂) ◦ 〈 · , · 〉ij for every i and j.

Definition 5.2.2.15. A triple (δ̂, ς̂ , f̂) as in Definition 5.2.2.13 such that f̂
is symplectic with respect to δ̂ and ς̂ is called a symplectic triple.

The filtration Z = {Z−i}i on L⊗
Z
Ẑ2 defines by reduction modulo n a

filtration Zn = {Z−i,n}i on L/nL, which depends on αn but not on the choice
of the lifting α̂ of αn. The isomorphisms Gr−i(α̂) : GrZ−i

∼→ GrW−i induced by

reduction modulo n isomorphisms Gr−i,n(αn) : GrZ−i,n
∼→ GrW−i,n on the graded

pieces, and a symplectic isomorphism Grn(αn) := ⊕
i

Gr−i,n : GrZn
∼→ GrWn,

all of which depend on αn but not on the choice of α̂. This symplectic
isomorphism Grn(αn) is the reduction modulo n of the above symplectic
isomorphism Gr(α̂).
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Definition 5.2.2.16. Suppose we are given a symplectic-liftable filtration
{Z−i,n}i on L⊗

Z
Ẑ2, and liftable splittings δn : GrZn

∼→ L/nL and ςn : GrWn
∼→

G[n]η̃ (defined over η̃). A graded symplectic isomorphism fn : GrZn
∼→ GrWn

defined over η̃ is called symplectic-liftable if there are splittings δ̂ : GrW
∼→

L⊗
Z
Ẑ2 and ς̂ : GrW

∼→ T2Gη̄ lifting δn and ςn, respectively, such that fn is the

reduction modulo n of a graded isomorphism f̂ : GrZ
∼→ GrW that is symplectic

with respect to δ̂ and ς̂ (i.e., ς̂ ◦ f̂ ◦ δ̂−1 is a symplectic isomorphism), and
such that ν(fn) is the reduction modulo n of ν(f̂).

For simplicity, we shall call a symplectic-liftable graded symplectic iso-
morphism a symplectic-liftable graded isomorphism, omitting the second ap-
pearance of symplectic.

By definition, the Grn(αn) constructed above is symplectic-liftable.
Conversely, suppose we are given a symplectic-liftable filtration {Z−i,n}i

on L⊗
Z
Ẑ2, and liftable splittings δn : GrZn

∼→ L/nL and ςn : GrWn
∼→ G[n]η̃.

Suppose we are given a symplectic-liftable graded isomorphism fn : GrZn
∼→

GrWn defined over η̃. Then there are splittings δ̂ : GrZ
∼→ L⊗

Z
Ẑ2 and ς̂ :

GrW
∼→ T2Gη̄, together with a graded isomorphism f̂ : GrZ

∼→ GrW lifting

fn, which is symplectic with respect to δ̂ and ς̂. From these we can produce
a symplectic isomorphism αn : L/nL

∼→ G[n]η̃ (defined over η̃) by setting
αn := ςn ◦ fn ◦ δ−1

n , which is symplectic-liftable because it is the reduction
modulo n of the symplectic isomorphism α̂ : L⊗

Z
Ẑ2 ∼→ T2Gη̄ defined by

setting α̂ := ς̂ ◦ f̂ ◦ δ̂−1. In other words, αn is a (principal) level-n structure
(of type (L⊗

Z
Ẑ2, 〈 · , · 〉)). (The O-equivariance is implicitly assumed in the

above analysis; see the paragraph preceding Definition 5.2.2.6.)

Definition 5.2.2.17. A triple (δn, ςn, fn) defined over η̃ as in Definition
5.2.2.16 such that fn is symplectic-liftable with respect to δn and ςn is called
a symplectic-liftable triple.

If we start with a level-n structure αn : L/nL
∼→ G[n]η̃, then we can

recover αn from Grn(αn) by applying the above process to fn = Grn(αn).
We may obtain different level-n structures αn if we intentionally modify

the splittings. Indeed, this is equivalent to having a change of basis zn :
GrZn

∼→ GrZn that is the reduction modulo n of some change of basis ẑ : GrZ
∼→
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GrZ given by a matrix of the form

1 z21 z20

1 z10

1

. Then αn = ςn ◦ fn ◦ δ−1
n

is replaced with α′n = ςn ◦ fn ◦ z−1
n ◦ δ−1

n .

Definition 5.2.2.18. Two symplectic triples (δ̂, ς̂ , f̂) and (δ̂′, ς̂ ′, f̂ ′) as in
Definition 5.2.2.15 are equivalent if f̂ ◦ ẑ = ŵ ◦ f̂ ′, where ẑ is the change
of basis such that δ̂′ = δ̂ ◦ ẑ, and where ŵ is the change of basis such that
ς̂ ′ = ς̂ ◦ ŵ. (Then necessarily ς̂ ◦ f̂ ◦ δ̂−1 = ς̂ ′ ◦ f̂ ′ ◦ (δ̂′)−1.)

Definition 5.2.2.19. A change of basis zn : GrZn
∼→ GrZn of the form zn =1 z21,n z20,n

1 z10,n

1

 is called liftable if it is the reduction modulo n of some

change of basis ẑ : GrZ
∼→ GrZ of the form ẑ =

1 z21 z20

1 z10

1

.

Definition 5.2.2.20. A change of basis wn : GrWn
∼→ GrWn of the form wn =1 w21,n w20,n

1 w10,n

1

 is called liftable if it is the reduction modulo n of some

change of basis ŵ : GrW
∼→ GrW of the form ŵ =

1 w21 w20

1 w10

1

.

Definition 5.2.2.21. Two symplectic-liftable triples (δn, ςn, fn) and
(δ′n, ς

′
n, f

′
n) as in Definition 5.2.2.17 are said to be equivalent if

fn ◦ zn = wn ◦ f ′n, where zn is the liftable change of basis such that
δ′n = δn ◦ zn, and where wn is the liftable change of basis such that
ς ′n = ςn ◦ wn. Then necessarily ςn ◦ fn ◦ δ−1

n = ς ′n ◦ f ′n ◦ (δ′n)−1.

We can summarize our analysis in this section as follows:

Proposition 5.2.2.22. Suppose that we are given a symplectic admissible
filtration Z := {Z−i}i on L⊗

Z
Ẑ2. Then the (O⊗

Z
Ẑ2-equivariant) symplectic

isomorphisms α̂ : L⊗
Z
Ẑ2 ∼→ T2Gη̄ matching the filtration Z with the filtration

W are in bijection with equivalence classes of symplectic triples (δ̂, ς̂ , f̂) as in
Definition 5.2.2.18.
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Proposition 5.2.2.23. Suppose that we are given a symplectic-liftable ad-
missible filtration Zn := {Z−i,n}i on L/nL in the sense of Definition 5.2.2.9.

Then the level-n structures αn : L/nL
∼→ G[n]η̃ of type (L⊗

Z
Ẑ2, 〈 · , · 〉) (as

in Definition 1.3.6.2) matching the filtration Zn with the filtration Wn are
in bijection with equivalence classes of symplectic-liftable triples (δn, ςn, fn)
(defined over η̃) as in Definition 5.2.2.21.

5.2.3 Analysis of Splittings for G[n]η

Retaining the setting of Section 5.2.1, suppose that we have a triple
(G, λ, i) defining an object in DEGPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I), which by

Theorem 5.1.1.4 corresponds to a tuple (A, λA, iA, X, Y , φ, c, c
∨, τ) in

DDPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I). For simplicity, let us continue to assume that X

and Y are constant with values X and Y , respectively.
Let η̃ → η be a finite étale morphism defined by a field exten-

sion as in Section 5.2.2. We would like to study level-n structures
αn : L/nL

∼→ G[n]η̃ of (Gη̃, λη̃, iη̃, αn) of type (L⊗
Z
Ẑ2, 〈 · , · 〉) as in Definition

1.3.6.2, under the additional assumption that (G, λ, i) defines an object
in DEGPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I). Based on the analysis in Section 5.2.2, we

would like to study splittings ςn : GrWn
∼→ G[n]η̃ that are liftable to splittings

ς̂ : GrW
∼→ T2Gη̄. Let us first proceed without the liftability condition.

(For the purpose of studying the splittings ςn and ς̂, it suffices to proceed
with the assumption that (G, λ, i) defines an object in DEGPE,O(R, I), not
necessarily in DEGPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I).)

To split the filtration

0 ⊂ W−2,n = T [n]η̃ ⊂ W−1,n = G\[n]η̃ ⊂ W0,n = G[n]η̃,

we need to split both the surjections G\[n]η̃ � A[n]η̃ and G[n]η̃ � 1
n
Y/Y .

If we have a splitting for the surjection G\[n]η̃ � A[n]η̃, then the image of
the splitting gives a closed subgroup scheme of G\[n]η̃, which we again denote

by A[n]η̃. Thus this splitting defines an isogeny G\
η̃ � G\

η̃

′
:= G\

η̃/A[n]η̃. The

subgroup scheme Tη̃ of G\
η̃ embeds into a subgroup scheme T ′η̃ of G\

η̃

′
, because
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Tη̃ ∩ A[n]η̃ = 0. Hence we have the following commutative diagram.

0 // Tη̃ //

o
��

G\
η̃

//

��

Aη̃ //

mod A[n]η̃

��

0

0 // T ′η̃ // G\
η̃

′ // Aη̃ // 0

We can complete this to a diagram

0 // Tη̃ //

o
��

G\
η̃

//

��

Aη̃ //

mod A[n]η̃

��

0

0 // T ′η̃ //

mod T ′η̃ [n]

��

G\
η̃

′ //

��

Aη̃ // 0

0 // Tη̃ // G\
η̃

// Aη̃ // 0

in which every composition of two vertical arrows is the multiplication by n.
Therefore, finding a splitting of G\[n]η̃ � A[n]η̃ is equivalent to finding an

isogeny G\
η̃

′
� G\

η̃ of the following form.

0 // T ′η̃ //

mod T ′η̃ [n]

��

G\
η̃

′ //

��

Aη̃ // 0

0 // Tη̃ // G\
η̃

// Aη̃ // 0

Since the surjection T ′η̃ � Tη̃ is the dual of the inclusion X ↪→ 1
n
X, by

Proposition 3.1.5.1, isogenies G\
η̃

′ → G\
η̃ of the above form are equivalent to

liftings cn : 1
n
X → A∨η̃ over η̃ of the homomorphism c : X → A∨ defining the

extension structure of 0→ T → G\ → A→ 0. Since all the homomorphisms
we consider above are O-equivariant, the lifting cn is also O-equivariant by
functoriality of Proposition 3.1.5.1. To summarize the above investigation,

Lemma 5.2.3.1. With the setting as above, splittings of G\[n]η̃ � A[n]η̃
correspond bijectively to liftings cn : 1

n
X → A∨η̃ of c : X → A∨ over η̃.

Next let us study splittings for the surjection G[n]η̃ � 1
n
Y/Y , which form

a torsor under the group scheme HomO( 1
n
Y/Y,G\[n]η̃).
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Let S̃ = Spec(R̃)� S = Spec(R) be the normalization of S over η̃ → η,
which is noetherian and normal by Lemma 5.2.1.1. Let Ĩ := rad(I · R̃) ⊂ R̃.
For technical simplicity, let us replace R̃ with a discrete valuation ring
of Frac(R̃) containing R̃ and with a center on Spec(R̃/Ĩ), which is pos-
sible by Lemma 4.2.4.3, and replace S̃ accordingly. (The generic point
η̃ = Spec(Frac(R̃)) of S̃ is unchanged.)

Let (A′, λA′ , iA′ , X
′, Y ′, φ′, c′, (c∨)′, τ ′) be any tuple defined as follows:

1. A′ := AS̃, iA′ is canonically induced by iA, and λA′ is the pullback of

the composition A
[n]→ A

λA→ A∨
[n]→ A∨ to S̃, which is simply n2λA,S̃.

2. X ′ := X, Y ′ := 1
n
Y , and φ′ : Y ′ → X ′ is the pullback of the composition

1
n
Y

[n]
∼→ Y

φ→ X
[n]→ X to S̃, which (by abuse of notation) is the pullback

of n2φn : 1
n
Y → nX ↪→ X if we extend φ naturally to φn : 1

n
Y → 1

n
X.

3. c′ := cS̃, and (c∨)′ : Y ′ = 1
n
Y → A′ = AS̃ is the unique extension

of some lifting c∨n : 1
n
Y → A′η̃ = Aη̃ of c∨η̃ : Y → Aη̃. Such a unique

extension exists because R̃ is a discrete valuation ring, and because
AS̃ → S̃ (as the pullback of A→ S) is proper. Note that we have the
compatibility λA′(c

∨)′ = c′φ′ because

(n2λA,η̃)(c
∨
n( 1

n
y)) = nλA,η̃(c

∨(y)) = ncη̃(φ(y)) = cη̃(n
2φn( 1

n
y))

for all y ∈ Y .

4. τ ′ : 1 1
n
Y ×X,η̃

∼→ (c∨n × c)∗P⊗−1
A,η̃ is a trivialization of biextensions satis-

fying τ ′|1Y ×X,η̃ = τη̃. By the same convention as cn and c∨n , we will also
denote τ ′ by τn and consider it as a lifting of τη̃.

Note that we have the symmetry τn( 1
n
y1, φ

′( 1
n
y2)) = τn( 1

n
y2, φ

′( 1
n
y1))

for all y1, y2 ∈ Y , because

τn( 1
n
y1, n

2φn( 1
n
y2)) = τn(y1, φ(y2)) = τ(y1, φ(y2))

= τ(y2, φ(y1)) = τn(y2, φ(y1)) = τn( 1
n
y2, n

2φn( 1
n
y1)).

It is convenient to replace the relation

τn( 1
n
y1, n

2φn( 1
n
y2)) = τn( 1

n
y2, n

2φn( 1
n
y1))
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for all y1, y2 ∈ Y with the equivalent relation

τn(y1, φ(y2)) = τn(y2, φ(y1))

for all y1, y2 ∈ Y , whose validity is more transparent because the re-
striction of τn to 1Y ×X,η̃ is τη̃.

We require moreover that τn satisfies the compatibility τn(b 1
n
y, χ) =

τn( 1
n
y, b?χ) for all 1

n
y ∈ 1

n
Y , χ ∈ X, and b ∈ O.

Then (A′, λA′ , iA′ , X
′, Y ′, φ′, c′, (c∨)′, τ ′) defines an object in DDPE,O(R̃, Ĩ).

Each pair of liftings (c∨η̃ , τn) as above corresponds to a period homomor-

phism ιn : 1
n
Y → G\

η̃ lifting the pullback ιη̃ of ιη : Yη → G\
η to η̃, such that

ιn|Y = ιη̃. Therefore the tuples (A′, λA′ , iA′ , X
′, Y ′, φ′, c′, (c∨)′, τ ′) as above

form a torsor under the group scheme HomO( 1
n
Y/Y,G\[n]η̃), the same one

we saw above.
By Theorem 5.1.1.4, each tuple (A′, λA′ , iA′ , X

′, Y ′, φ′, c′, (c∨)′, τ ′) as
above defines an object (G′, λ′, i′) of DEGPE,O(R̃, Ĩ). The morphisms

AS̃
∼→ A′ = AS̃

[n]→ AS̃, X
[n]→ X ′

=
∼→ X, and Y S̃ ↪→ Y ′ = 1

n
Y S̃

[n]
∼→ Y S̃

define morphisms (AS̃, X, Y S̃, cS̃, c
∨
S̃
, τη̃) → (A′, X ′, Y ′, c′, (c∨)′, τ ′) →

(AS̃, X, Y S̃, cS̃, c
∨
S̃
, τη̃) in DD(R̃, Ĩ) (see Definition 4.4.10), which by Theorem

4.4.16 induce homomorphisms GS̃ → G′ → GS̃ defining morphisms in
DEG(R̃, Ĩ) (which are O-equivariant by functoriality), whose composition
is nothing but the multiplication by n on GS̃. This shows that both the
homomorphisms GS̃ → G′ and G′ → GS̃ are isogenies (see Definition
1.3.1.9) with quasi-finite flat kernels (see Lemma 1.3.1.11) annihilated by
multiplication by n.

The first isogeny GS̃ → G′ induces an isomorphism G\

S̃

∼→ (G′)\ between

the Raynaud extensions because it is defined by AS̃
∼→ A′ = AS̃ and Y S̃ ↪→

Y ′, and because c′ := cS̃. Since we have a canonical short exact sequence
0→ G\[n]η̃ → G[n]η̃ → 1

n
Y/Y → 0, this shows that the kernel of GS̃ → G′ is

isomorphic to 1
n
Y/Y and defines a splitting for the surjection G[n]η̃ � 1

n
Y/Y .

By the proofs of Theorem 4.5.3.10 and Corollary 4.5.3.12, the assignment
to each lifting ιn : 1

n
Y → G\

η̃ of ιη̃ a splitting for the surjection G[n]η̃ �
1
n
Y/Y is equivariant with the actions of HomO( 1

n
Y/Y,G\[n]η̃). Thus we have

obtained the following lemma:

Lemma 5.2.3.2. With the setting as above, (O-equivariant) splittings of
G[n]η̃ � 1

n
Y/Y correspond bijectively to (O-equivariant) liftings ιn : 1

n
Y →
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G\
η̃ of ι : Y → G\

η, and hence bijectively to liftings (c∨n , τn) of (c∨, τ) over η̃,

in the sense that c∨n : 1
n
Y → Aη̃ and τn : 1 1

n
Y ×X,η̃

∼→ (c∨n × cη̃)∗P⊗−1
A,η̃ respect

the O-structures as c∨ and τ do, and satisfy c∨n |Y = c∨η̃ and τn|1Y ×X ,η̃ = τη̃,
respectively. In this case, τn satisfies the symmetry condition τn(y1, φ(y2)) =
τn(y2, φ(y1)) for all y1, y2 ∈ Y .

Proposition 5.2.3.3. Let (A, λA, iA, X, Y , φ, c, c
∨, τ) be a tuple in

DDPE,O(R, I) corresponding to a triple (G, λ, i) in DEGPE,O(R, I) via
Theorem 5.1.1.4. Assume for simplicity that X and Y are constant
with values X and Y , respectively. Let {W−i,n}i denote the filtration
0 ⊂ W−2,n = T [n]η̃ ⊂ W−1,n = G\[n]η̃ ⊂ W0,n = G[n]η̃ on G[n]η̃, with graded
pieces GrW−i,n := W−i,n/W−i−1,n. Then splittings ςn : GrWn = ⊕

i
GrW−i,n

∼→ G[n]η̃

of the filtration are in bijection with triples (cn, c
∨
n , τn) lifting (c, c∨, τ) over

η̃, in the sense that the homomorphisms cn : 1
n
X → A∨η̃ , c∨n : 1

n
Y → Aη̃, and

τn : 1 1
n
Y ×X,η̃

∼→ (c∨n × cη̃)∗P⊗−1
A,η̃ respect the O-structures as c, c∨, and τ do,

and satisfy cn|X = cη̃, c
∨
n |Y = c∨η̃ , and τn|1Y ×X ,η̃ = τη̃, respectively.

Definition 5.2.3.4. A triple (cn, c
∨
n , τn) as in Proposition 5.2.3.3 is called

liftable if it is liftable to some (cm, c
∨
m, τm) over η̄ as in Proposition 5.2.3.3

for all m such that n|m and 2 - m. We shall write a compatible system of
such liftings {(cm, c∨m, τm)}n|m,2-m symbolically as a triple (ĉ, ĉ∨, τ̂), where the

homomorphisms are written as ĉ : X⊗
Z
Ẑ2 → A∨η̄ , as ĉ∨ : Y⊗

Z
Ẑ2 → Aη̄, and

as τ̂ : 1(Y⊗
Z
Ẑ2)×Y,η̄

∼→ (ĉ∨× cη̄)∗P⊗−1
A,η̄ , respectively.

Corollary 5.2.3.5. With the setting as in Proposition 5.2.3.3, ςn is liftable
(see Definition 5.2.2.12) if and only if the triple (cn, c

∨
n , τn) is liftable (see

Definition 5.2.3.4). In this case, a lifting ς̂ corresponds to a symbolic triple
(ĉ, ĉ∨, τ̂) as in Definition 5.2.3.4.

It is natural to ask whether a lifting (cn, c
∨
n , τn) (over η̃) determines the

original triple (c, c∨, τ). To answer this, let us introduce some new notation:

Definition 5.2.3.6. Let U be a scheme. Let N be any étale sheaf of left
O-modules that becomes constant over a finite étale covering of U . Let (Z, λZ)
be any polarized abelian scheme over U with left O-module structure given by
some iZ : O → EndU(Z). Then we denote by HomO(N,Z) the (commutative)
group functor of O-equivariant group homomorphisms from the group functor
N to the group functor Z.
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Lemma 5.2.3.7. Suppose that W is a commutative proper group scheme
of finite presentation over U . Suppose that W0 is an abelian subscheme of
W (i.e., a subgroup scheme that is an abelian scheme), and that there is
an integer m ≥ 1 invertible in OU such that multiplication by m defines a
homomorphism [m] : W → W with schematic image a (closed) subscheme
of W0 and such that W [m], the m-torsion subgroup scheme of W , is finite
étale over U . Then, for every geometric point s̄ → U , the fiber (W0)s̄ is
the connected component of Ws̄ containing the identity section. The quotient
group functor W/W0 is representable by a commutative finite étale group
scheme E. The group π0(Ws̄) of connected components can be canonically
identified with the s̄-valued points of Es̄.

Proof. Since W is commutative and since W0 is (fppf locally) m-divisible as
an abelian scheme, the condition that [m] sends W to W0 shows that W/W0

can be identified with the quotient of W [m] by W0[m] = W0 ∩W [m]. Since
m is invertible in OU , both W [m] and W0[m] are finite étale, and hence the
quotient W/W0 can be representable by a finite étale group scheme. The
statements on the identity components and group of connected components
of geometric fibers are obvious.

Definition 5.2.3.8. Suppose W0 is an abelian subscheme of a proper group
scheme W over a base scheme U , such that for every geometric point s̄→ U ,
the fiber (W0)s̄ is the connected component of Ws̄ containing the identity
section. Then we say that W0 is the fiberwise geometric identity com-
ponent of W , and denote it by W ◦. (By [59, IV-2, 4.5.13], it is also correct
to say that W0 is the fiberwise identity component, without the term
geometric; cf. Remark 1.3.1.2.)

Suppose the quotient group functor W/W0 is representable by a finite
group scheme E. Then we say that E is the group scheme of fiberwise
geometric connected components, and denote it by π0(W/U).

By Lemma 5.2.3.7, the finite group scheme π0(W/U) is defined and is
finite étale over U if W is commutative and if there is an integer m ≥ 1
invertible in OU such that multiplication by m defines a homomorphism
[m] : W → W with schematic image a (closed) subscheme of W0 and such
that W [m] is finite étale over U .

Proposition 5.2.3.9. With the setting as in Definition 5.2.3.6, suppose N is
constant with value some finitely generated O-module N . Then the following
are true:

366



1. The group functor HomO(N,Z) is representable by a proper subgroup
scheme of an abelian scheme over U .

2. If N is torsion with number of elements prime to the residue charac-
teristics of U , then HomO(N,Z) is finite étale over U .

3. If N is projective as an O-module, then HomO(N,Z) is representable
by an abelian scheme over U .

4. If N is an O-lattice, and if the residue characteristics of U are unram-
ified in O, then HomO(N,Z) is representable by a proper smooth group
scheme over U which is an extension of a (commutative) finite étale
group scheme, whose rank has no prime factors other than those of the
discriminant Disc = DiscO/Z, by an abelian scheme over U .

Following Definition 5.2.3.8, we shall say that HomO(N,Z) is the ex-
tension of the finite étale group scheme π0(HomO(N,Z)/U) by the
abelian scheme HomO(N,Z)◦ over U .

This is called Serre’s construction. (Definition 5.2.3.6, Lemma 5.2.3.7,
Definition 5.2.3.8, and Proposition 5.2.3.9 all generalize naturally to the case
when U is an algebraic stack.)

Proof. Since O is (left) noetherian (see, for example, [107, Cor. 2.10]), and
since N is finitely generated, there is a free resolution

O⊕ r1 → O⊕ r0 → N → 0

for some integers r0, r1 ≥ 0. By taking HomO( · , Z), we obtain an exact
sequence

0→ HomO(N,Z)→ Zr0 → Zr1 (5.2.3.10)

(of fppf sheaves) over U , where Zr0 (resp. Zr1) stands for the fiber products
of r0 (resp. r1) copies of Z over U , which shows that HomO(N,Z) is repre-
sentable because it is the kernel of the homomorphism Zr0 → Zr1 between
abelian schemes in (5.2.3.10).

To show that HomO(N,Z) is proper over U , note that the first homomor-
phism in (5.2.3.10) is a closed immersion because Zs is separated over U , and
every closed subscheme of Zr is proper over U . This proves 1 of Proposition
5.2.3.9.

SupposeN is torsion with number of elements prime to the residue charac-
teristics of U . Let m ≥ 1 be an integer that is invertible in OU and annihilates
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every element in N . Then HomO(N,Z) is isomorphic to the closed subscheme
HomO(N,Z[m]) of the finite étale group scheme Hom(N,Z[m]) over U . Over
an étale covering of U over which Z[m] with its O-action becomes a constant
group scheme, the condition of compatibility with O-actions is both open
and closed on the pullback of Hom(N,Z[m]). This shows that HomO(N,Z)
is finite étale over U , and proves 2 of Proposition 5.2.3.9.

If N is projective, then it is, in particular, flat (by [107, Cor. 2.16]).
This is the same for its dual (right) O-module N∨. Hence, for every
embedding U ↪→ Ũ defined by an ideal I such that I 2 = 0, the surjectivity
of the morphism Z(Ũ) → Z(U) of O-modules implies the surjectivity of
the morphism (N∨⊗

O
Z)(Ũ) ∼= N∨⊗

O
Z(Ũ) → (N∨⊗

O
Z)(U) ∼= N∨⊗

O
Z(U).

This shows that HomO(N,Z) → U is formally smooth, and hence smooth
because it is (locally) of finite presentation (see [59, IV-4, 17.3.1 and
17.5.2]). Moreover, since N is projective, there exists some projective
O-module N ′ such that N ⊕N ′ ∼= O⊕ r for some r ≥ 0. Then we have
HomO(N,Z)×

U
HomO(N ′, Z) ∼= Zr, which shows that the geometric fibers

of HomO(N,Z) → U are connected. Hence we see by definition that
HomO(N,Z) is an abelian scheme over U . This proves 3 of Proposition
5.2.3.9.

Finally, suppose that N is an O-lattice, and that the residue characteris-
tics of U are unramified in O.

Let O′ be any maximal order in B containing O. By Proposition 1.1.1.21,
there exists an integer m ≥ 1, with no prime factors other than those of Disc,
such that mO′ ⊂ O. Therefore, there is an isogeny Z � Z ′ with kernel a
subgroup scheme of Z[m] such that the action of O on Z induces an action
of O′ on Z ′. In this case, there is also a canonical isogeny Z ′ � Z whose
pre- and postcompositions with the previous isogeny Z � Z ′ are multipli-
cations by m on Z and Z ′, respectively. Let N ′ be the O′-span of N in
N⊗

Z
Q. Since N ′ is the O′-space of N , the canonical isogeny Z � Z ′ in-

duces a canonical homomorphism HomO(N,Z) → HomO′(N
′, Z ′). On the

other hand, the canonical isogeny Z ′ � Z above induces a canonical homo-
morphism HomO′(N

′, Z ′) → HomO(N,Z), whose pre- and postcomposition
with the previous canonical homomorphism HomO(N,Z) → HomO′(N

′, Z ′)
is nothing but the multiplications by m on HomO(N,Z) and HomO′(N

′, Z ′),
respectively. As usual, we denote by [m] all such multiplications by m.

Since O′ is maximal, N is projective as an O′-module by Propo-
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sition 1.1.1.23. By 3 of Proposition 5.2.3.9 proved above, we know
that HomO′(N

′, Z ′) is an abelian scheme. Since [m] : HomO(N,Z) →
HomO(N,Z) factors as the composition of canonical homomorphisms
HomO(N,Z) → HomO′(N

′, Z ′) → HomO(N,Z), this shows that the
schematic image of [m] : HomO(N,Z)→ HomO(N,Z) is an abelian scheme.
On the other hand, by working over an étale covering of U over which Z[m]
with its O-action becomes a constant group scheme (as in the proof of 2 of
Proposition 5.2.3.9 above), we see that HomO(N,Z)[m] ∼= HomO(N,Z[m])
is finite étale (of rank dividing a power of m) over U . Hence, by Lemma
5.2.3.7, we see that both π0(HomO(N,Z)/U) and HomO(N,Z)◦ are defined
with the desired properties.

Let us return to the context preceding Definition 5.2.3.6. As a
consequence of Proposition 5.2.3.9, we see that group functors such as
HomO(X,A∨) and HomO(Y,A) are representable by proper schemes over S
(which are smooth over each subscheme of S over which the discriminant
Disc is invertible). In particular,

Corollary 5.2.3.11. The morphism c (resp. c∨) is determined (as a unique
extension) by its pullback cη (resp. c∨η ) to η by noetherian normality of S,
and hence by cn (resp. c∨n) if cn|X (resp. c∨n |Y ) descends to η.

Note that λAc
∨ = cφ implies that (λA,η̃c

∨
n − cnφn)( 1

n
y) is n-torsion in

A∨η̃ for all y ∈ Y . Also, the relation τn(y1, φ(y2)) = τn(y2, φ(y1)) implies that
τn( 1

n
y1, φ(y2))τn( 1

n
y2, φ(y1))−1 is n-torsion in Gm,η̃ for all y1, y2 ∈ Y . Here the

comparison between τn( 1
n
y1, φ(y2)) and τn( 1

n
y2, φ(y1))−1 makes sense because

we have a canonical isomorphism

PA,η̃|(c∨n( 1
n
y1),cφ(y2))

can.
∼→ D2(M⊗n

η̃ )|(c∨n( 1
n
y1),c∨n( 1

n
y2))

sym.
∼→ D2(M⊗n

η̃ )|(c∨n( 1
n
y2),c∨n( 1

n
y1))

can.
∼→ PA,η̃|(c∨n( 1

n
y2),cφ(y1)).

Let us record this observation as follows:

Lemma 5.2.3.12. With the setting as in Proposition 5.2.3.3, each splitting
ςn : GrWn

∼→ G[n]η̃ that corresponds to a lifting (cn, c
∨
n , τn) of (c, c∨, τ) over η̃

defines two pairings:

1. The first pairing

d10,n : GrW−1,n×GrW0,n
∼= A[n]η̃×( 1

n
Y/Y )→ µn,η̃

369



sends (a, 1
n
y) to eA[n](a, (λA,η̃c

∨
n − cnφn)( 1

n
y)), where

eA[n] : A[n]×A∨[n]→ µn,S

is the canonical pairing between A[n] and A∨[n]. The pairing eA[n] al-
lows us to identify A∨[n] with HomS(A[n],Gm,S) ∼= HomS(A[n],µn,S),
the Cartier dual of A[n]. (For simplicity, we use the same notation for
the pullback of eA[n] to η̃.)

2. The second pairing

d00,n : GrW0,n×GrW0,n
∼= ( 1

n
Y/Y )×( 1

n
Y/Y )→ µn,η̃

sends ( 1
n
y1,

1
n
y2) to τn( 1

n
y1, φ(y2))τn( 1

n
y2, φ(y1))−1.

Then − td
?
00,n = d00,n (in additive notation, as in Section 5.2.2).

Corollary 5.2.3.13. With the setting as in Corollary 5.2.3.5, each splitting
ς̂ : GrW

∼→ T2Gη̄ that corresponds to a lifting (ĉ, ĉ∨, τ̂) = {(cm, c∨m, τm)}n|m,2-m
of (c, c∨, τ) defines two pairings:

1. The first pairing

d10 : GrW−1×GrW0
∼= T2Aη̄×(Y⊗

Z
Ẑ2)→ T2 Gm,η̄

is defined by the pairings {d10,m}n|m,2-m. We can interpret this pairing

as defined by sending (a, y) to eA(a, (λA,η̄ ĉ
∨ − ĉφ̂)(y)), where

eA : T2Aη̄×T2A∨η̄ → T2 Gm,η̄

is the canonical pairing defined by {eA[m]}2-m.

2. The second pairing

d00 : GrW0×GrW0
∼= (Y⊗

Z
Ẑ2)×(Y⊗

Z
Ẑ2)→ Gm,η̄

is defined by the pairings {d00,m}n|m,2-m.

Then − td
?
00 = d00 (in additive notation, as in the context of Section 5.2.2).
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On the other hand, the splitting ςn : GrWn
∼→ G[n]η̃ allows us to write the

λη-Weil pairing eλη on G[n]η̃ in matrix form e20,n

e11,n e10,n

e02,n e01,n e00,n

 ,

where
eij,n : GrW−i,n×GrW−j,n → µn,η̃

are the pairings induced by ςn. We know that e20,n = eφ and e11,n = eλA (in
their natural modulo-n versions). The point is to identify e10,n and e00,n with
something we can parameterize.

The following comparison is the key to the generalization of Faltings and
Chai’s theory:

Theorem 5.2.3.14. With the setting as above, we have e10,n = d10,n and
e00,n = d00,n.

Corollary 5.2.3.15. With the setting as above, we have e10 = d10 and e00 =
d00.

5.2.4 Weil Pairings in General

Before we present the proof of Theorem 5.2.3.14, let us review the calculation
of Weil pairings in general. (In particular, let us make clear our choice of
sign conventions.)

In this section, we shall assume that we are given an abelian scheme A
over an arbitrary base scheme S. Whenever possible, we shall intention-
ally confuse the notion of Gm-torsors and invertible sheaves (see Corollary
3.1.2.14). In particular, we shall use OA to denote both the trivial invertible
sheaf and the trivial Gm-torsor over A. Moreover, OA will also be used to
mean the structural sheaf of A. We hope that the convenience of such an
abuse of notation will outweigh the confusion it incurs.

Let us denote by PA the Poincaré biextension of A×
S
A∨ by Gm,S, and

denote by Nh the invertible sheaf PA|A×
S
{h} for each h : S → A∨. (Here

we are using an abuse of notation alluded to above.) Then the tautological
rigidification PA|e×

S
A∨

∼→ OA∨ gives a rigidification Nh(e)
∼→ OA∨(h)

∼→ OS.
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The last isomorphism OA∨(h) := h∗OA∨
∼→ OS is the tautological one given

by the structural morphism h∗ : OA∨ → OS of h : S → A∨.
Let us first explain how to calculate the canonical perfect pairing

eA[n] : A[n]×A∨[n]→ µn,S

for each integer n ≥ 1. More generally, suppose that we have an isogeny
f : A → A′ with kernel K. Suppose that the dual isogeny f∨ : (A′)∨ → A∨

has kernel K∨. Then the kernels K and K∨ are related by a canonical perfect
pairing

eK : K ×K∨ → Gm,S,

and eA[n] is the special case of eK with K = A[n]. We shall explain how to
calculate eK for general K.

For each point h ∈ K∨, the invertible sheaf Nh := PA′ |A′×
S
{h} satisfies

f ∗Nh = f ∗(PA′|A′×
S
{h})

can.
∼→ ((f × Id(A′)∨)∗PA′)|A×

S
{h}

can.
∼→ ((IdA× f∨)∗PA)|A×

S
{h}

can.
∼→ PA|A×

S
{f∨(h)}

can.
∼→ PA|A×

S
{e}

rig.
∼→ OA,

because of the canonical isomorphism (f × Id(A′)∨)∗PA′
can.
∼→ (IdA× f∨)∗PA

given by Lemma 1.3.2.10, and because of the rigidification along the first
factor of the Poincaré biextension. On the other hand, we shall interpret f :
A→ A′ as identifying A′ with the quotient A/K of A by the finite flat group
scheme K of finite presentation. Therefore, by the theory of descent, the
isomorphism f ∗Nh

∼→ OA corresponds to the descent datum on OA describing
N as a descended form of OA. The descent datum is given by an action of
K on OA, which is a compatible collection of isomorphisms

κ(a) : T ∗aOA
∼→ OA

for each a ∈ K. On the other hand, the structural morphism of the transla-
tion isomorphism Ta : A

∼→ A gives another isomorphism

str.(a) : T ∗aOA
∼→ OA.

Since A is an abelian scheme, which satisfies Assumption 3.1.2.7, the two
isomorphisms can only differ in the rigidifications. We shall redefine κ(a)
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(resp. str.(a)) to be the isomorphism OA(a)
∼→ OS inducing the original κ(a)

(resp. str.(a)) above by composing T ∗aOA

can.
∼→ OA ⊗

OS
OA(a)

∼→ OA ⊗
OS

OS
∼= OA.

Their difference is a section

h̃(a) := str.(a) ◦ κ(a)−1 : OS
∼→ OS,

which (with varying a ∈ K) defines a morphism

h̃ : K → Gm,S.

The multiplicative structure of A gives a commutative diagram as follows.

OA(a+ a′) can.
∼
//

str.(a+a′) o

��

OA(a) ⊗
OS

OA(a′)

o str.(a)⊗str.(a′)
��

OS can.
∼ // OS ⊗

OS
OS

(5.2.4.1)

The compatibility of the action of K, which compares

T ∗a+a′OA

can.
∼→ T ∗a (OA ⊗

OS
OA(a′))

can.
∼→ OA ⊗

OS
OA(a) ⊗

OS
OA(a′)

∼→ OA

using κ(a) : OA(a)
∼→ OS and κ(a′) : OA(a′)

∼→ OS with

T ∗a+a′OA

can.
∼→ OA ⊗

OS
OA(a+ a′)

∼→ OS

using κ(a + a′) : OA(a + a′)
∼→ OA (resp. str.(a + a′) : OA(a + a′)

∼→ OA),
gives another commutative diagram:

OA(a+ a′) can.
∼
//

κ(a+a′) o

��

OA(a) ⊗
OS

OA(a′)

o κ(a)⊗κ(a′)
��

OS can.
∼ // OS ⊗

OS
OS

(5.2.4.2)

The comparison of (5.2.4.1) and (5.2.4.2) shows that the morphism h̃ is a ho-
momorphism. That is, h̃ is an element of HomS(K,Gm,S), the Cartier dual of
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K. This sets up an identification between h ∈ K∨ and h̃ ∈ HomS(K,Gm,S),
which defines an isomorphism K∨

∼→ HomS(K,Gm,S). Hence we have a
perfect pairing

eK : K ×K∨ → Gm,S.

This is essentially the argument of [94, §15, proof of Thm. 1].
Let us summarize the above argument as follows:

Lemma 5.2.4.3. The diagram

((f × Id(A′)∨)∗PA′)|(a,h)
can.
∼
//

can. o
��

can.
∼

))

PA′ |(f(a),h) PA′|(e,h)
rig.

∼
// OS

((IdA× f∨)∗PA)|(a,h)

can. o
��

(f ∗(Nh))(a)

ocan.

��

∼ // OS

h̃(a)=eK(a,h)o
��

PA|(a,f∨(h)) OA(a)
str.(a)

∼ //

κ(a) ∼

55

OS

PA|(a,e) rig.

∼ //

can.
∼

55

OS

is commutative.

Proof. The key point is to observe that the action morphism κ(a) : T ∗aOA
∼→

OA is the composition of T ∗aOA

can.
∼→ T ∗a f

∗Nh
can.
∼→ f ∗T ∗f(a)Nh = f ∗T ∗eNh =

f ∗Nh
can.
∼→ OA. If we pullback under the identity section e : S → A, and com-

pose with the rigidification OA(e)
∼→ OS, then we see that κ(a) : OA(a)

∼→

OA(e)
rig.
∼→ OS is the composition OA(a)

∼→ (f ∗(Nh))(a)
∼→ Nh(f(a)) =

PA′|(f(a),h) = PA′ |(e,h)

rig.
∼→ OS, which is exactly the upper half of the diagram.

The commutativity of the remainder of the diagram is clear.

This diagram shows that, in order to compute eK(a, h), it is not necessary
to know the isomorphisms κ(a) and str.(a). The following proposition is the
essential point we need:

Proposition 5.2.4.4. The canonical pairing

eK : K ×K∨ → Gm,S
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gives, for each a ∈ K and h ∈ K∨, the isomorphism eK(a, h) which makes
the diagram

((f × Id(A′)∨)∗PA′)|(a,h)
can.
∼
//

can. o
��

PA′ |(f(a),h) PA′|(e,h)
rig.

∼
// OS

eK(a,h) o
��

((IdA× f∨)∗PA)|(a,h) can.
∼ // PA|(a,f∨(h)) PA|(a,e) rig.

∼ // OS

commutative. That is, eK(a, h) measures the difference between the two rigid-
ifications of the biextension ((f × Id(A′)∨)∗PA′)|(a,h)

∼= ((IdA× f∨)∗PA)|(a,h).

Now suppose that we are given a polarization λA : A → A∨ of A (see
Definition 1.3.2.16). Then the λA-Weil pairing eλA (on A[n]) is defined to be
the composition

A[n]×A[n]
IdA×λA→ A[n]×A∨[n]

eA[n]→ µn,S.

That is, eλA(a, a′) = eA[n](a, λA(a′)) for all a, a′ ∈ A[n].
Suppose that (after an étale localization if necessary) λA is of the form

λM for some invertible sheaf M over A (relatively ample over S) (see Con-
struction 1.3.2.7 and Proposition 1.3.2.15). Then (IdA×λA)∗PA ∼= D2(M),
and we have the following corollary:

Corollary 5.2.4.5. The λA-Weil pairing

eλA : A[n]×A[n]→ µn,S

gives, for each a, a′ ∈ A[n], the isomorphism eλA(a, a′) which makes the dia-
gram

D2(M⊗n)|(a,a′) can.
∼
// (([n]A×λA)∗PA)|(a,a′) can.

∼
//

can. o
��

PA|(e,λA(a′))
rig.

∼
// OS

eλA (a,a′) o
��

D2(M⊗n)|(a,a′) can.
∼ // ((IdA×nλA)∗PA)|(a,a′) can.

∼ // PA|(a,e) rig.

∼ // OS

commutative. That is, eλA(a, a′) measures the difference between the two
rigidifications of the biextension D2(M⊗n)|(a,a′).
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Now let us relate this calculation to the so-called Riemann form de-
fined by an invertible sheave M over A relatively ample over S. Suppose
K = K(M) := ker(λM) is defined as in (3.2.4.1). Then, for each a ∈ K,

we have an isomorphism D2(M)|A×{a}
can.
∼→ PA|A×

S
{e}

rig.
∼→ OA given by one of

the rigidifications of the Poincaré biextension. This gives a canonical isomor-

phism T ∗aM
can.
∼→ M⊗

OS
M(a) as usual. Therefore, each section ã ∈ M(a), or

rather ã : OS
∼→M(a), gives an isomorphism ã−1 :M(a)

∼→ OS, and hence
an isomorphism ã−1 : T ∗aM

∼→ M. Let G(M) := M|K . Then ã defines
by restriction an isomorphism ã−1 : T ∗aG(M)

∼→ G(M), and hence a group
structure on G(M) covering the group structure on K.

For each a, a′ ∈ K, ã ∈ M(a), and ã′ ∈ M(a′), the group structure
defines a composition ã ∗ ã′ ∈M(a+ a′) such that its inverse

(ã ∗ ã′)−1 : T ∗a+a′M
can.
∼→ M⊗

OS
M(a+ a′)

∼→M

makes the diagram

T ∗aT
∗
a′M

T ∗a ((ã′)−1)

∼
//

can. o
��

T ∗aM

ã−1o
��

T ∗a+a′M (ã′∗ã)−1

∼ //M

commutative. In other words, we define

(ã ∗ ã′)−1 := ã−1 ◦ T ∗a ((ã′)−1).

In alternative language, the isomorphism

D2(M)|(a,a′)
can.
∼→ PA|(a,λM(a′)) = PA|(a,e)

rig.
∼→ OS

gives an isomorphismM(a+a′)⊗M(a)⊗−1⊗M(a′)⊗−1 ∼→ OS, or equivalently
an isomorphism

M(a)⊗−1 ⊗M(a′)⊗−1 ∼→M(a+ a′)⊗−1,

which sends ã−1 ⊗ (ã′)−1 to (ã ∗ ã′)−1 according to our definition.
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Definition 5.2.4.6. The Riemann form

eM : K ×K → Gm,S

is defined by setting eM(a, a′) to be the difference between the two sections
ã ∗ ã′ and ã′ ∗ ã of M(a+ a′), for each ã ∈M(a) and ã′ ∈M(a′), such that
the diagram

OS
ã∗ã′
∼

//M(a+ a′)

OS
ã′∗ã
∼ //M(a+ a′)

eM(a,a′)o

OO

is commutative, or equivalently such that the diagram

T ∗aT
∗
a′M

T ∗a ((ã′)−1)

∼
//

can. o
��

T ∗aM
ã−1

∼
//M

T ∗a′T
∗
aM T ∗

a′ (ã
−1)

∼ // T ∗a′M (ã′)−1

∼ //M

eM(a,a′)o

OO

is commutative. (Note that eM is alternating by definition.)

The construction above of ã ∗ ã′ using one of the rigidifications of PA
implies the following:

Proposition 5.2.4.7. The Riemann form

eM : K ×K → Gm,S

gives, for each a, a′ ∈ K, the isomorphism eM(a, a′) which makes the diagram

D2(M)|(a,a′) can.
∼
//

OO
sym. o

��

PA|(a,e)
rig.

∼
// OS

D2(M)|(a′,a) can.
∼ // PA|(a′,e) rig.

∼ // OS

eM(a,a′)o

OO

commutative. That is, eM(a, a′) measures the difference between the two
rigidifications of the biextension D2(M)|(a,a′) ∼= D2(M)|(a′,a). (Here the sym-
metry isomorphism is the canonical one as in Lemma 3.2.2.1.)
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The same argument applies when we replace M with M⊗n. Suppose
moreover that a ∈ A[n] and a′ ∈ K(M⊗n) = [n]−1K(M) = λ−1

M(A∨[n]).
Then the diagram

D2(M⊗n)|(a,a′) can.
∼
//

OO
sym. o

��

PA|(a,e)
rig.

∼
// OS

D2(M⊗n)|(a′,a) can.
∼ // PA|(a′,e) rig.

∼ // OS

eM
⊗n

(a,a′)o

OO

is commutative. On the other hand, for formal reasons, the diagram

D2(M⊗n)|(a′,a)
can.
∼
//

OO
sym. o

��

((IdA×nλM)∗PA)|(a′,a)
can.
∼
// PA|(a′,e)

rig.

∼
//

OO
sym. o

��

OS

D2(M⊗n)|(a,a′) can.
∼ // (([n]A×λM)∗PA)|(a,a′) can.

∼ // PA|(e,λM(a′)) rig.

∼ // OS

is also commutative. Comparing the diagrams, we obtain the following:

Corollary 5.2.4.8. The restriction of the Riemann form

eM
⊗n

: K(M⊗n)×K(M⊗n)→ Gm,S

to A[n]×K(M⊗n) gives, for each a ∈ A[n] and a′ ∈ ×K(M⊗n), the iso-
morphism eM

⊗n
(a, a′) which makes the diagram

D2(M⊗n)|(a,a′) can.
∼
// PA|(e,λM(a′))

rig.

∼
// OS

eM
⊗n

(a,a′)o
��

D2(M⊗n)|(a,a′) can.
∼ // PA|(a,e) rig.

∼ // OS

commutative. That is, eM
⊗n

(a, a′) measures the difference between the two
rigidifications of the biextension D2(M⊗n)|(a,a′).

Comparing Corollary 5.2.4.8 with Corollary 5.2.4.5, we arrive at the fol-
lowing important formula (cf. [94, §23, p. 228, (5)]):

Proposition 5.2.4.9. If M is an invertible sheaf over A relatively ample
over S, then

eλM(a, a′) = eA[n](a, λM(a′)) = eM
⊗n

(a, a′)

for all a, a′ ∈ A[n].
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Since every polarization λA is étale locally of the form λM for some in-
vertible sheaf M over A relatively ample over S (by Definition 1.3.2.16 and
Proposition 1.3.2.15), we have the following:

Corollary 5.2.4.10. The λA-Weil pairing eλA is alternating for every po-
larization λA.

(This is the same argument used in [94, §23].)

Remark 5.2.4.11. Although Proposition 5.2.4.9 is the main tool people use
for calculating eλA , the realization of the Weil pairings or Riemann forms as
differences between rigidifications of pullbacks of the Poincaré biextension
will be crucial for us in later arguments.

5.2.5 Splittings of G[n]η in Terms of Sheaves of Alge-
bras

Now let us return to the context of Section 5.2.3, with the additional (harm-
less) assumption that η̃ = η and S̃ = S for simplicity of notation.

As we saw in Section 5.2.3, the splitting ςn : GrWn
∼→ G[n]η can be described

by a triple (cn, c
∨
n , τn), where cn : 1

n
X → A∨η corresponds to a splitting of

G\[n]η � A[n]η, and where the pair (c∨n , τn), being equivalent to a lifting
ιn : 1

n
Y → G\

η, corresponds to a splitting of G[n]η � 1
n
Y/Y .

Let us first describe the splitting G\[n]η � A[n]η given by cn. For sim-
plicity, we shall assume that cn extends to a homomorphism 1

n
X → A∨ over

S, which we still denote by cn, and describe instead the corresponding split-
ting G\[n] � A[n]. (We can achieve this by replacing S with the spectrum
of a discrete valuation ring, without changing η, as in the proof of Lemma
5.2.3.2.) By a convention we have adopted since Chapter 4 (see, in particular,
Section 4.2.2), we shall identify OG\ with its push-forward under the affine
morphism π : G\ → A, and write OG\ as a sum OG\

∼= ⊕
χ∈X

Oχ of weight sub-

sheaves under the T -action. (In what follows, we shall adopt such an abuse
of notation for other push-forwards under affine morphisms, without further
remark.) Then the homomorphism c : X → A∨ is defined by the isomor-
phism Oχ

∼= Nc(χ) := PA|A×
S
{c(χ)} in Pic0

e(A/S) (respecting rigidifications) for

every χ ∈ X.
In terms of relatively affine group schemes over A[n], we have a short
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exact sequence

0 // G\[n] // G\|A[n]
“[n]” // [n]∗A(G\|{e}) // 0

(in which e means the identity section of A, not of G\). In terms of
OA[n]-algebras, OG\[n] is given by the cokernel of the injection

[n]∗A( ⊕
χ∈X

Oχ|eA) ∼= ⊕
χ∈X

([n]∗AOχ)|A[n] ↪→ ⊕
χ∈X

Oχ|A[n].

Let us write this as a short exact sequence

0→ ⊕
χ∈X

([n]∗AOχ)|A[n] → ⊕
χ∈X

Oχ|A[n] → ⊕
χ̄∈X/nX

Oχ̄ → 0.

The point is the isomorphism

Onχ|A[n]

can.
∼→ ([n]∗Oχ)|A[n]

[n]∗(rig.)
∼→ ([n]∗OA)|A[n]

can.
∼→ OA|A[n],

where rig. can be identified with the composition rig. : Oχ(e)
rig.
∼→ OS

str.
∼→ OA(e).

Hence there is an isomorphism

Oχ+nχ′|A[n]

can.
∼→ Oχ|A[n] ⊗

OS
Onχ′|A[n]

∼→ Oχ|A[n]

for each χ, χ′ ∈ X. If we take a representative χ for each class χ̄ of X/nX,
and define Oχ̄ to be Oχ|A[n], then the algebra structure of OG\ given by

Oχ ⊗
OA

Oχ′

can.
∼→ Oχ+χ′ induces isomorphisms Oχ̄ ⊗

OA[n]

Oχ̄′

can.
∼→ Oχ̄+χ̄′ giving the

algebra structure of ⊕
χ̄∈X/nX

Oχ̄. This gives a realization ⊕
χ̄∈X/nX

Oχ̄ of the

OA[n]-algebra OG\[n] (based on our choices of representatives of X/nX), which
is unique up to unique isomorphism.

Similarly, suppose G\
n is the group scheme defined by cn : 1

n
X → A∨,

which can be given in terms of OA-algebras by OG\n
∼= ⊕

1
n
χ∈ 1

n
X

O 1
n
χ. Then the

subgroup scheme G\
n[n] of G\

n can be realized via the short exact sequence

0→ ⊕
1
n
χ∈ 1

n
X

[n]∗AO 1
n
χ|A[n] → ⊕

1
n
χ∈ 1

n
X

O 1
n
χ|A[n] → ⊕

1
n
χ̄∈ 1

n
X/X

O 1
n
χ̄ → 0
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as ⊕
1
n
χ̄∈ 1

n
X/X

O 1
n
χ̄, where O 1

n
χ̄ is defined as above using the sheaves O 1

n
χ|A[n]

defined by representatives 1
n
χ of 1

n
χ̄.

Note that there is a structural morphism OA|A[n]
∼→ O 1

n
0̄ ↪→ ⊕

1
n
χ̄∈ 1

n
X/X

O 1
n
χ̄,

because there is an isomorphism from OA|A[n]
∼= O 1

n
0|A[n] to O 1

n
0̄ = O 1

n
χ0
|A[n],

for whatever representative 1
n
χ0 we choose for 1

n
0̄ ∈ 1

n
X/X. (Here we are

using clumsy notation such as O 1
n

0̄ to avoid identification with O0̄. They

should not be confused.)
Now the natural diagram

0 // G\
n[n] //

��

G\
n|A[n]

//

��

[n]∗(G\
n|{e}) //

��

0

0 // G\[n] // G\|A[n]
// [n]∗(G\|{e}) // 0

corresponds to the natural diagram

0 // ⊕
χ∈X

[n]∗AOχ|A[n]
//

��

⊕
χ∈X

Oχ|A[n]
//

��

⊕
χ̄∈X/nX

Oχ̄
//

��

0

0 // ⊕
1
n
χ∈ 1

n
X

[n]∗AO 1
n
χ|A[n]

// ⊕
1
n
χ∈ 1

n
X

O 1
n
χ|A[n]

// ⊕
1
n
χ̄∈ 1

n
X/X

O 1
n
χ̄

// 0

of sheaves. Since the image of ⊕
χ∈X

Oχ|A[n] lies in O 1
n

0̄ inside ⊕
1
n
χ̄∈ 1

n
X/X

O 1
n
χ̄, the

induced morphism ⊕
χ̄∈X/nX

Oχ̄ → ⊕
1
n
χ̄∈ 1

n
X/X

O 1
n
χ̄ factors through ⊕

χ̄∈X/nX
Oχ̄ �

O 1
n

0̄ ↪→ ⊕
1
n
χ̄∈ 1

n
X/X

O 1
n
χ̄. However, this shows that the structural morphism

OA|A[n]
∼→ O0̄ ↪→ ⊕

χ̄∈X/nX
Oχ̄ for G[n] � A[n] has a right inverse given by

⊕
χ̄∈X/nX

Oχ̄ � O 1
n

0̄
∼→ OA|A[n]. In other words, G\[n] � A[n] splits. In

particular, since every Oχ̄ is isomorphic to O0̄ because it is also mapped
isomorphically to O 1

n
0̄
∼→ OA|A[n], the splitting defines an isomorphism

⊕
χ̄∈X/nX

Oχ̄
∼→ OA|A[n] ⊗

OS
( ⊕
χ̄∈X/nX

OS,χ̄),

where OS,χ̄ is just a copy of OS with the prescribed weight χ̄ under the
action of T [n]. In other words, ⊕

χ̄∈X/nX
OS,χ̄ is a realization of OT [n] as an
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OS-algebra. This corresponds to the isomorphism A[n]×
S
T [n]

∼→ G[n] de-

fined by the splitting, because the homomorphism T [n] ↪→ G|{e} is given by

the rigidification isomorphisms Oχ(e)
∼→ OS respected by the isomorphisms

O 1
n

0̄
∼→ OA|A[n] above.

For each point a ∈ A[n], the splitting gives a morphism S → G\, which
can be described in terms of sheaves of algebras by a surjection

OG\(a) ∼= ⊕
χ∈X

Oχ(a)→ OS

whose restriction to each Oχ(a) is given by the isomorphism

Oχ(a)
can.
∼→ PA|(a,c(χ)) = PA|(a,ncn( 1

n
χ))

can.
∼→ PA|(na,cn( 1

n
χ)) = PA|(e,cn( 1

n
χ))

rig.
∼→ OS.

Let us denote this isomorphism by r(a, cn( 1
n
χ)), to signify the choice of cn

involved in this definition.
Every lifting c′n : 1

n
X → A∨ of c is necessarily of the form c′n = cn + dn

for some homomorphism dn : 1
n
X → A∨[n], or rather dn : 1

n
X/X → A∨[n],

because we need to have c′n|X = cn|X = c. Let us investigate the effect of
such a modification.

The splitting defined by c′n = cn + dn is defined by

⊕
χ∈X

r(a, c′n( 1
n
χ)) : OG\(a) ∼= ⊕

χ∈X
Oχ(a)→ OS

with morphisms r(a, c′n( 1
n
χ)) : Oχ(a)

∼→ OS defined by

Oχ(a)
can.
∼→ PA|(a,c(χ)) = PA|(a,n(cn+dn)( 1

n
χ))

can.
∼→ PA|(na,cn( 1

n
χ)+dn( 1

n
χ)) = PA|(e,cn( 1

n
χ)+dn( 1

n
χ))

rig.
∼→ OS.

We can compare r(a, cn( 1
n
χ)) and r(a, cn( 1

n
χ) + dn( 1

n
χ)) using the com-
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mutative diagram

PA|(a,c(χ))
can.
∼

// Oχ(a)

r(a,cn( 1
n
χ)+dn( 1

n
χ))o

��
PA|(e,cn( 1

n
χ)+dn( 1

n
χ))

rig.

∼
//

can. o

OO

OS

PA|(e,cn( 1
n
χ)) ⊗

OS
PA|(e,dn( 1

n
χ))

rig.⊗ rig.

∼
//

can. o

OO

can. o
��

OS ⊗
OS

OS

can.o

OO

PA|(a,c(χ)) ⊗
OS
PA|(a,e) can.⊗ rig.

∼ // Oχ(a) ⊗
OS

OS

r(a,cn( 1
n
χ))⊗ eA[n](a,dn( 1

n
χ))−1o

OO

in which we have used Proposition 5.2.4.4 to find the correct isomorphism
eA[n](a, dn( 1

n
χ)). As a result, we obtain the symbolic relation

r(a, cn( 1
n
χ) + dn( 1

n
χ)) = r(a, cn( 1

n
χ))eA[n](a, dn( 1

n
χ))−1.

On the other hand, consider the canonical isomorphism

HomS( 1
n
X,A∨[n]) ∼= HomS(A[n], Tn[n]) ∼= HomS(A[n], T [n]),

which we denote by dn 7→ tdn, with sign convention determined by the
relation χ( tdn(a)) = eA[n](a, dn( 1

n
χ)) for all χ ∈ X and a ∈ A[n]. Then,

by definition of χ, the multiplication by tdn(a) is given by multiplication by
χ( tdn(a)) = eA[n](a, dn( 1

n
χ)) on Oχ. As a result, the modified splitting

r(χ, cn( 1
n
χ) + dn( 1

n
χ)) : Oχ(a)

∼→ OS

can be interpreted as a composition

Oχ(a)
χ(− tdn(a))

∼→ Oχ(a)

r(χ,cn( 1
n
χ))

∼→ OS,

which is the same as multiplying the section S → G\ defined by cn by tdn(a) ∈
T [n]. This completes the picture of splittings produced by cn.

We will not need a description (in terms of sheaves of algebras) of the
splitting G[n]η � 1

n
Y/Y described by cn and τn. What we will need is a
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description of the lifting ιn : 1
n
Y → G\

η of ι : Y → G\
η, which is given by the

isomorphisms
τn( 1

n
y, χ) : Oχ(c∨n( 1

n
y))η

∼→ OS,η

for χ ∈ X that altogether form the algebra homomorphism

ιn( 1
n
y)∗ := ⊕

χ∈X
τn( 1

n
y, χ) : OG\(c

∨
n( 1

n
y))η ∼= ⊕

χ∈X
Oχ(c∨n( 1

n
y))η → OS,η

of ιn( 1
n
y) : η → G\

η. This lifts the structure homomorphism

ι(y)∗ := ⊕
χ∈X

τ(y, χ) : OG\(c
∨(y))η ∼= ⊕

χ∈X
Oχ(c∨(y))η → OS,η

of ι(y) : η → G\
η when we restrict to the subgroup Y of 1

n
Y .

To make the picture complete, we would like to see what happens when
we have different liftings ((c∨n)′, τ ′n) of (c∨η , τ). As in the case of cn, ev-
ery lifting (c∨n)′ of c∨η is necessarily of the form (c∨n)′ = c∨n + d∨n for some
homomorphism d∨n : 1

n
Y → A[n]η, or rather d∨n : 1

n
Y/Y → A[n]η. Us-

ing the splitting of G\[n] � A[n] defined by cn, which defines an isomor-
phism A[n]η ⊕ T [n]η

∼→ G\[n]η, every lifting ι′n of ι is given by the difference
ι′n − ιn : 1

n
Y → G\[n]η covering the difference (c∨n)′ − c∨n = d∨n : 1

n
Y in the

A[n]η component. Therefore the essential new information is the difference of
ι′n− ιn in the T [n]η component, given by a homomorphism en : 1

n
Y → T [n]η,

or rather en : 1
n
Y/Y → T [n]η.

The multiplication morphism on G\, which covers the multiplication mor-
phism on A, is given by isomorphisms

m∗AOχ
∼→ pr∗1 Oχ⊗ pr∗2 Oχ

for χ ∈ X given by the theorem of the square (see Section 3.1.4). In par-
ticular, for each a ∈ A[n], the translation by a on G\ (using the splitting)
defined by cn is given by the compositions of isomorphisms

T ∗aOχ

can.
∼→ Oχ ⊗

OS
Oχ(a)

r(a,cn( 1
n
χ))

∼→ Oχ

for χ ∈ X, which we shall also denote by r(a, cn( 1
n
χ)) when the context is

clear.
As a result, the translation ι′n( 1

n
(y)) of ιn( 1

n
y) by (c∨n( 1

n
y), en( 1

n
y)) in

A[n]η×T [n]η
∼→ G\[n]η corresponds to the isomorphisms

τ ′n( 1
n
y, χ) : Oχ(c∨n( 1

n
y))η

∼→ OS,η
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for χ ∈ X, each of which is as defined by the dotted arrow in the diagram

Oχ(c∨n( 1
n
y) + d∨n( 1

n
y))η

χ(en( 1
n
y))

∼
//

τ ′n( 1
n
y,χ) o

��

Oχ(c∨n( 1
n
y) + d∨n( 1

n
y))η

can.o
��

Oχ(c∨n( 1
n
y))η ⊗

OS,η
Oχ(d∨n( 1

n
y))η

τn( 1
n
y,χ)⊗ r(d∨n( 1

n
y),cn( 1

n
χ))o

��
OS,η OS,η ⊗

OS,η
OS,ηcan.

∼oo

(5.2.5.1)
by the composition of the other arrows. Symbolically, we can write this as

τ ′n( 1
n
y, χ) = τn( 1

n
y, χ)r(d∨n( 1

n
y), cn( 1

n
χ))χ(en( 1

n
y)).

5.2.6 Weil Pairings for G[n]η via Splittings

Let us continue with the notation and assumptions in Section 5.2.5. In par-
ticular, we shall retain the assumptions that η̃ = η and S̃ = S for simplicity.
The goal of the section is to compute the λη-Weil pairing eλη on G[n]η and
prove Theorem 5.2.3.14. Although the argument is elementary in nature, it
is the technical heart of this chapter.

By étale localization if necessary, let us assume moreover that the tuple
(A, λA, iA, X, Y , φ, c, c

∨, τ) in DDPE,O(R, I) is a split object, in the sense that
X and Y are constant with values X and Y , respectively, and that λ is
induced by some ample invertible sheaf L over G such that L\ is the pullback
(via π : G\ → A) of some ample invertible sheafM over A. This assumption
is harmless for the calculation of Weil pairings.

By Proposition 5.2.4.9, we can compute eλη on G[n]η using the Riemann
form defined by L⊗nη . Ideally, for two points g1 and g2 of G[n]η, we shall
find sections of L⊗nη (g1) and L⊗nη (g2), which are unique up to constants in

Gm,η and can be realized as isomorphisms T ∗g1
L⊗nη

∼→ L⊗nη and T ∗g2
L⊗nη

∼→ L⊗nη ,
where Tg1 and Tg2 are translations on G. Then the difference between the two
compositions T ∗g1

T ∗g2
L⊗nη

∼→ T ∗g1
L⊗nη

∼→ L⊗nη and T ∗g1
T ∗g2
L⊗nη

∼→ T ∗g2
L⊗nη

∼→ L⊗nη
gives us the constant eλη(g1, g2) in Gm,η. Note that this constant can be found
by comparing the effects of the isomorphisms on any of the nonzero global
sections. To proceed further, let us make use of the full invertible sheaf L over
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S (extending Lη over η), and pass to the formal completion Lfor
∼= L\for over

Gfor
∼= G\

for. Then the sections of Γ(Gη,Lη) can be realized using its Fourier

expansions (as defined in Section 4.3) as elements in Γ(G\
for,Lfor)⊗

R
K.

Recall that we have decomposed OG\ as an OA-algebra as ⊕
χ∈X

Oχ, so

that sections of OG\,for can be realized as the I-adically convergent sums in
⊕̂χ∈XOχ,for. By fixing the choice of M over A such that L\ = π∗M (via
π : G\ → A), we can decompose L\ as an OA-module as ⊕

χ∈X
(M⊗

OA
Oχ),

and so that sections of L\for are written as the I-adically convergent sums in
⊕̂χ∈X(Mfor ⊗

OA,for

Oχ,for). To compute the λη-Weil pairing eλη using Riemann

forms for g1, g2 ∈ G[n]η, we shall replace the isomorphisms T ∗g1
L⊗nη

∼→ L⊗nη
and T ∗g2

L⊗nη
∼→ L⊗nη with suitable isomorphisms T ∗

g\1
(L\η)⊗n

∼→ (L\η)⊗n and

T ∗
g\2

(L\η)⊗n
∼→ (L\η)⊗n, with choices of g\1, g

\
2 ∈ G\

η to be made clear later, so

that the pullback of these isomorphisms to their formal completions are com-
patible with the formation of Fourier expansions. Since we have a splitting
GrWn

∼→ G[n]η, it suffices to calculate the λη-Weil pairing eλη between pairs
consisting of elements in T [n]η, A[n]η, and 1

n
Y/Y only.

The choices of g\i can be made as follows: For points of T [n]η and A[n]η,
they are already identified with points in G\[n]η under the splitting. For
points of 1

n
Y/Y , we take any representatives of them in 1

n
Y , and embed

them into G\
η using the given lifting ιn : 1

n
Y ↪→ G\

η of ι : Y ↪→ G\
η. Note that

the action of any of these elements can be described in terms of its effect on
the weight subsheavesM⊗n

η ⊗Oχ,η, and the resulting pairing eλη(g1, g2), as a
constant in Gm,η, can be seen on any of the weight subsheaves we consider.
Therefore we can disregard the notion of I-adic sums and formal completions
from now on, and focus only on the weight subsheaves M⊗Oχ as part of
the sections of L\η.

Let us summarize the information we have at this point:
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1. The Y -action on L\η is given by the isomorphisms

T ∗c∨(y)(Mη ⊗
OA,η

Oχ,η)

can.
∼→ Mη ⊗

OA,η
Oχ+φ(y),η ⊗

OS,η
M(c∨(y))η ⊗

OS,η
Oχ(c∨(y))η

ψ(y)τ(y,χ)
∼→ Mη ⊗

OA,η
Oχ+φ(y),η

covering the translation by ι(y) given by the isomorphisms

T ∗c∨(y)Oχ,η

can.
∼→ Oχ,η ⊗

OS,η
Oχ(c∨(y))η

τ(y,χ)
∼→ Oχ,η

for y ∈ Y and χ ∈ X.

2. If we tensor n copies of L\η together, then we obtain the isomorphisms

(Mη ⊗
OA,η

Oχ1,η) ⊗
OA,η

(Mη ⊗
OA,η

Oχ2,η) ⊗
OA,η
· · · ⊗

OA,η
(Mη ⊗

OA,η
Oχn,η)

∼→M⊗n
η ⊗

OA,η
Oχ1+χ2+···+χn,η

for χ1, χ2, . . . , χn ∈ X, with Y -action given by

ψ(y)nτ(y, χ) : T ∗c∨(y)(M⊗n
η ⊗

OA,η
Oχ,η)

∼→M⊗n
η ⊗

OA,η
Oχ+φ(ny),η

for y ∈ Y and χ ∈ X.

3. The translation by T [n]η on G\
η is given by the isomorphisms

χ(t) : Oχ,η
∼→ Oχ,η

for t ∈ T [n]η and χ ∈ X.

4. The translation by A[n]η on G\
η, using the splitting defined by cn, is

given by the isomorphisms

r(a, cn( 1
n
χ)) : T ∗aOχ,η

can.
∼→ Oχ,η ⊗

OS,η
Oχ,η(a)

∼→ Oχ,η

for a ∈ A[n]η and χ ∈ X.
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5. The translation by 1
n
Y on G\

η, using the period homomorphism ιn :
1
n
Y → G\

η, is given by the isomorphisms

τn(y, χ) : T ∗
c∨n( 1

n
y)

Oχ,η

can.
∼→ Oχ,η ⊗

OS,η
Oχ(c∨n( 1

n
y))η

∼→ Oχ,η

for y ∈ Y and χ ∈ X.

We would like to compute eλη(t, t′), eλη(t, a), eλη(t, 1
n
y), eλη(a, a′),

eλη(a, 1
n
y), and eλη( 1

n
y, 1

n
y′) for each t, t′ ∈ T [n]η, a, a′ ∈ A[n]η, and

1
n
y, 1

n
y′ ∈ 1

n
Y . The reason to include the pairings on A[n]η×A[n]η and

on T [n]η× 1
n
Y/Y is to make sure that the sign conventions in Proposition

5.2.2.1, Theorem 5.2.3.14, and Section 5.2.4 are compatible with each other.
To do this, we need to choose isomorphisms of the form T ∗

g\
(L\η)⊗n

∼→
(L\η)⊗n covering the translation morphisms Tg\ on G\. Let us give the choices
we need in each case:

1. For each t ∈ T [n]η, we consider the isomorphisms

χ(t) :M⊗n
η ⊗

OA,η
Oχ,η

∼→M⊗n
η ⊗

OA,η
Oχ,η,

which is the pullback to η of the action of T [n] on L\ which makes the
cubical Gm-torsor L\ over G\ descend to M over A.

2. For each a ∈ A[n]η, which in particular, satisfies a ∈ K(M⊗n
η ), we

consider isomorphisms

T ∗a (M⊗n
η ⊗

OA,η
Oχ,η)

can.
∼→ M⊗n

η ⊗
OA,η

Oχ,η ⊗
OS,η
M⊗n

η (a) ⊗
OS,η

Oχ,η(a)

ã−1⊗ r(a,cn( 1
n
χ))

∼→ M⊗n
η ⊗

OA,η
Oχ,η,

where ã−1 :M⊗n
η (a)

∼→ OS,η is given by some section ã ∈M⊗n
η (a).

3. For each 1
n
y ∈ 1

n
Y , we need to make some additional choices.

Note that

ψ(y)n = ψ(y)n−2ψ(y)ψ(y) = ψ(y)n−2ψ(2y)τ(y, φ(y))−1

= ψ(y)n−3ψ(y)ψ(2y)τ(y, φ(y))−1

= ψ(y)n−3ψ(3y)τ(y, φ(2y))−1τ(y, ψ(y))−1

= · · · = ψ(ny)τ(y, φ(1
2
(n− 1)ny))−1

388



under the pullback to η of the composition of canonical isomorphisms

(c∨)∗M⊗n ∼→ (nc∨)∗M⊗
OA

(IdY ,
1
2
(n− 1)nφ)∗(c∨× c)∗P⊗−1

A

can.
∼→ (nc∨)∗M⊗

OA
(c∨, 1

2
(n− 1)ncφ)∗P⊗−1

A

= (nc∨)∗M⊗
OA

(c∨, 1
2
(n− 1)nλAc

∨)∗P⊗−1
A

can.
∼→ (nc∨)∗M⊗

OA
(c∨, 1

2
(n− 1)nc∨)∗(IdA×λA)∗P⊗−1

A

can.
∼→ (c∨)∗([n]∗AM⊗

OA
(IdA, [

1
2
(n− 1)n]A)∗D2(M)⊗−1).

This composition is the pullback under c∨ of the canonical isomorphism

M⊗n
can.
∼→ [n]∗AM⊗

OA
(IdA, [

1
2
(n− 1)n]A)∗D2(M)⊗−1

given by repeated application of the canonical isomorphisms

[m1]∗M⊗[m2]∗M
can.
∼→ [m1 +m2]∗M⊗

OA
(m1,m2)∗D2(M)⊗−1

can.
∼→ [m1 +m2]∗M⊗

OA
(1,m1m2)∗D2(M)⊗−1.

(The upshot is that there is nowhere in these isomorphisms that we use
any of the two rigidifications of PA.)

If we pullback the canonical isomorphisms (over η) by c∨n , then we get

(c∨n)∗M⊗n
η

can.
∼→ (c∨n)∗([n]∗AMη ⊗

OA,η
(IdA, [

1
2
(n− 1)n]A)∗D2(Mη)

⊗−1)

can.
∼→ (c∨)∗Mη ⊗

OA,η
(c∨n ,

1
2
(n− 1)nc∨n)∗D2(Mη)

⊗−1.

Let us set ε = 1 when n is odd and ε = 2 when n is even. Then the
above composition can be rewritten as

(c∨n)∗M⊗n
η

can.
∼→ (c∨)∗Mη ⊗

OA,η
(c∨n ,

1
2
(n− 1)εc∨ε )∗D2(Mη)

⊗−1.
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Certainly, it would be desirable if the pullback

τn ◦ (IdY ×φ) : 1 1
n
Y ×Y,η

∼→ (c∨n , cφ)∗P⊗−1
A,η

= (c∨n , λAc
∨)∗P⊗−1

A,η

can.
∼→ (c∨n , c

∨)∗D2(Mη)
⊗−1

is liftable to some trivialization

τ̃n,ε : 1 1
n
Y × 1

ε
Y
∼→ (c∨n , c

∨
ε )∗D2(Mη)

⊗−1,

where c∨ε = c∨n | 1
ε
Y : 1

ε
Y → A is the restriction. Then we can define ψn

by
ψn( 1

n
y) = ψ(y)τ̃n,ε(

1
n
y, n−1

2
y)−1,

where ψn( 1
n
y) is interpreted as a section ofM⊗n

η (c∨n( 1
n
y))⊗−1. Note that

we have, in particular,
ψn(y) = ψ(y)n

for every y ∈ Y . Since Y is finitely generated, this is always true after
a finite étale localization (over η). Therefore, we may assume that all
the ψn( 1

n
y)’s that we need exist and have been chosen. The value of the

λη-Weil pairing is invariant under étale localizations and independent
of the choices.

We shall consider the isomorphisms

ψn( 1
n
y)τn( 1

n
y, χ) : T ∗

c∨n(
1
n
y)

(M⊗n
η ⊗Oχ,η)→M⊗n

η ⊗Oχ+φ(y),η,

which covers the translation by ιn( 1
n
Y ) on G\

η.

Note that we do not check that these isomorphisms commute with the
Y -action on (L\η)⊗n defined by ψ. This statement will be a by-product (see
Proposition 5.2.6.3 below) when we compute the commutators between
these isomorphisms, because the restriction of ψn to Y can always be chosen
to be ψn, and other choices only differ by an element in Gm,η.

Let us start with the computation of pairings involving T [n]η:

Proposition 5.2.6.1. Suppose t, t′ ∈ T [n]η. Then eλη(t, t′) = 1 (as in Propo-
sition 5.2.2.1).

Proof. Since we have an action of (the commutative group scheme) T [n] on
L\, the commutator between χ(t) and χ(t′) is always trivial.
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Proposition 5.2.6.2. Suppose t ∈ T [n]η and a ∈ A[n]η. Then eλη(t, a) = 1
(as in Proposition 5.2.2.1).

Proof. Using the splitting defined by cn, we have eλη(t, a) = 1 because the
diagram

T ∗a (M⊗n
η ⊗

OA,η
Oχ,η)

ã−1⊗r(a,cn( 1
n
χ))

∼
//

χ(t) o
��

M⊗n
η ⊗

OA,η
Oχ,η

χ(t)o
��

T ∗a (M⊗n
η ⊗

OA,η
Oχ,η)

ã−1⊗r(a,cn( 1
n
χ))

∼ //M⊗n
η ⊗

OA,η
Oχ,η

is commutative.

Proposition 5.2.6.3. Suppose t ∈ T [n]η and 1
n
y ∈ 1

n
Y . Then eλη(t, y) =

(φ(y))(t) (as in Proposition 5.2.2.1). In particular, the T [n]η-action com-
mutes with the Y -action on (L\η)⊗n (regardless of the choice of ψn above).

Proof. Since the diagram

T ∗
c∨n( 1

n
y)

(M⊗n
η ⊗

OA,η
Oχ,η)

ψn( 1
n
y)τn( 1

n
y,χ)

∼
//

χ(t) o

��

M⊗n
η ⊗

OA,η
Oχ+φ(y),η

(χ+φ(y))(t)o
��

M⊗n
η ⊗

OA,η
Oχ+φ(y),η

T ∗
c∨n( 1

n
y)

(M⊗n
η ⊗

OA,η
Oχ,η)

ψn( 1
n
y)τn( 1

n
y,χ)

∼ //M⊗n
η ⊗

OA,η
Oχ+φ(y),η

(φ(y))(t)o

OO

is commutative, by comparing this with the sign convention in Definition
5.2.4.6, and by Proposition 5.2.4.9, we see that eλη(t, y) = (φ(y))(t). (This
is the same sign convention that we used in Proposition 5.2.2.1.)

Let us calculate those pairings involving A[n]η:

Proposition 5.2.6.4. Suppose a, a′ ∈ A[n]η. Then eλη(a, a′) = eλA(a, a′) (as
in Proposition 5.2.2.1).
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Proof. Choose sections ã ∈M⊗n
η (a) and ã′ ∈M⊗n

η (a′), which define isomor-

phisms ã−1 :M⊗n
η (a)

∼→ OS,η and (ã′)−1 :M⊗n
η (a′)

∼→ OS,η, respectively.
Let us analyze the first combination

T ∗aT
∗
a′(M⊗n

η ⊗
OA,η

Oχ,η)
∼→ T ∗a (M⊗n

η ⊗
OA,η

Oχ,η)
∼→M⊗n

η ⊗
OA,η

Oχ,η.

More precisely, this isomorphism is the composition of the following canonical
isomorphisms

T ∗aT
∗
a′(M⊗n

η ⊗
OA,η

Oχ,η)

can.
∼→ T ∗a (M⊗n

η ⊗
OA,η

Oχ,η ⊗
OS,η
M⊗n

η (a′) ⊗
OS,η

Oχ,η(a
′))

can.
∼→ T ∗a (M⊗n

η ⊗
OA,η

Oχ,η) ⊗
OS,η
M⊗n

η (a′) ⊗
OS,η

Oχ,η(a
′) ⊗

OS,η
OA,η(a)

can.
∼→ M⊗n

η ⊗
OA,η

Oχ,η ⊗
OS,η
M⊗n

η (a) ⊗
OS,η

Oχ,η(a)

⊗
OS,η
M⊗n

η (a′) ⊗
OS,η

Oχ,η(a
′) ⊗

OS,η
OA,η(a)

with the isomorphisms

ã−1 :M⊗n
η (a)

∼→ OS,η,

r(a, cn( 1
n
χ)) : Oχ,η(a)

∼→ OS,η,

(ã′)−1 :M⊗n
η (a′)

∼→ OS,η,

r(a′, cn( 1
n
χ)) : Oχ,η(a

′)
∼→ OS,η,

str.(a) : OA,η(a)
∼→ OS,η.

The second combination

T ∗a′T
∗
a (M⊗n

η ⊗
OA,η

Oχ,η)
∼→ T ∗a′(M⊗n

η ⊗
OA,η

Oχ,η)
∼→M⊗n

η ⊗
OA,η

Oχ,η

can be described analogously by switching the roles of a and a′. Therefore, the
essential difference between the two combinations is given by the difference
between the two isomorphisms str.(a) and str.(a′), and the diagram

OA,η(a) can.
∼
// D2(Mη)|(a,e)

rig.

∼
//

OO
sym. o

��

OS,η

OA,η(a
′) can.

∼ // D2(Mη)|(a′,e) rig.

∼ // OS,η

eλη (a,a′)o

OO
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is commutative. (Here the isomorphism sym. in the middle is induced by the
symmetry of D2(M⊗n

η ).) Comparing this with Corollary 5.2.4.5, we see that
eλη(a, a′) = eλA(a, a′), as desired.

Proposition 5.2.6.5. Suppose a ∈ A[n]η and 1
n
y ∈ 1

n
Y . Then eλη(a, 1

n
y) =

eA[n](a, bn( 1
n
y)), where bn := λAc

∨
n−cnφn as in Lemma 5.2.3.12. (This proves

the first part of Theorem 5.2.3.14.)

Proof. Choose a section ã ∈ M⊗n
η (a) that defines an isomorphism ã−1 :

M⊗n
η (a)

∼→ OS,η. On the other hand, we have ψn( 1
n
y) ∈ M⊗n

η (c∨n( 1
n
y))⊗−1

chosen above.
Let us analyze the first combination

T ∗aT
∗
c∨n( 1

n
y)

(M⊗n
η ⊗

OA,η
Oχ,η)

∼→ T ∗a (M⊗n
η ⊗

OA,η
Oχ+φ(y),η)

∼→M⊗n
η ⊗

OA,η
Oχ+φ(y),η.

More precisely, this isomorphism is the composition of the following canonical
isomorphisms

T ∗aT
∗
c∨n( 1

n
y)

(M⊗n
η ⊗

OA,η
Oχ,η)

can.
∼→ T ∗a (M⊗n

η ⊗
OA,η

Oχ,η ⊗
OA,η

Oφ(y),η ⊗
OS,η
M⊗n

η (c∨n( 1
n
y)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y)))

can.
∼→ T ∗a (M⊗n

η ⊗
OA,η

Oχ,η) ⊗
OA,η

Oφ(y),η

⊗
OS,η
M⊗n

η (c∨n( 1
n
y)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y)) ⊗

OS,η
Oφ(y),η(a)

can.
∼→ M⊗n

η ⊗
OA,η

Oχ,η ⊗
OS,η
M⊗n

η (a) ⊗
OS,η

Oχ,η(a) ⊗
OA,η

Oφ(y),η

⊗
OS,η
M⊗n

η (c∨n( 1
n
y)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y)) ⊗

OS,η
Oφ(y),η(a)

can.
∼→ M⊗n

η ⊗
OA,η

Oχ+φ(y),η ⊗
OS,η
M⊗n

η (a) ⊗
OS,η

Oχ,η(a)

⊗
OS,η
M⊗n

η (c∨n( 1
n
y)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y)) ⊗

OS,η
Oφ(y),η(a)
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with the isomorphisms

ã−1 :M⊗n
η (a)

∼→ OS,η,

r(a, cn( 1
n
χ)) : Oχ,η(a)

∼→ OS,η,

ψn( 1
n
y) :M⊗n

η (c∨n( 1
n
y))

∼→ OS,η,

τn( 1
n
y, χ) : Oχ,η(c

∨
n( 1

n
y))

∼→ OS,η,

r(a, cn( 1
n
φ(y))) : Oφ(y),η(a)

∼→ OS,η.

On the other hand, the second combination

T ∗
c∨n( 1

n
y)
T ∗a (M⊗n

η ⊗
OA,η

Oχ,η)
∼→ T ∗

c∨n( 1
n
y)

(M⊗n
η ⊗

OA,η
Oχ,η)

∼→M⊗n
η ⊗

OA,η
Oχ+φ(y),η

is the composition of the following canonical isomorphisms

T ∗
c∨n( 1

n
y)
T ∗a (M⊗n

η ⊗
OA,η

Oχ,η)

can.
∼→ T ∗

c∨n( 1
n
y)

(M⊗n
η ⊗

OA,η
Oχ,η ⊗

OS,η
M⊗n

η (a) ⊗
OS,η

Oχ,η(a))

can.
∼→ T ∗

c∨n( 1
n
y)

(M⊗n
η ⊗

OA,η
Oχ,η) ⊗

OS,η
M⊗n

η (a) ⊗
OS,η

Oχ,η(a) ⊗
OS,η

OA,η(c
∨
n( 1

n
y))

can.
∼→ M⊗n

η ⊗
OA,η

Oχ+φ(y) ⊗
OS,η
M⊗n

η (c∨n( 1
n
y)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y))

⊗
OS,η
M⊗n

η (a) ⊗
OS,η

Oχ,η(a) ⊗
OS,η

OA,η(c
∨
n( 1

n
y))

with the isomorphisms

ψn( 1
n
y) :M⊗n

η (c∨n( 1
n
y))

∼→ OS,η,

τn( 1
n
y, χ) : Oχ,η(c

∨
n( 1

n
y))

∼→ OS,η,

ã−1 :M⊗n
η (a)

∼→ OS,η,

r(a, cn( 1
n
χ)) : Oχ,η(a)

∼→ OS,η,

str.(c∨n( 1
n
y)) : OA,η(c

∨
n( 1

n
y))

∼→ OS,η.
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The essential difference between these two combinations is given by the dif-
ference between

D2(M⊗n
η )|(a,c∨n( 1

n
y))

can.
∼→ D2(Mη)|(a,c∨(y))

can.
∼→ PA,η|(a,λAc∨(y))

= PA,η|(a,cφ(y))

can.
∼→ Oφ(y),η(a)

r(a,cn( 1
n
φ(y)))

∼→ OS,η

and

D2(M⊗n
η )|(c∨n( 1

n
y),a)

can.
∼→ D2(Mη)|(c∨n( 1

n
y),na) = D2(Mη)|(c∨n( 1

n
y),e)

can.
∼→ PA,η|(c∨n( 1

n
y),e)

rig.
∼→ OA,η(c

∨
n( 1

n
y))

str.
∼→ OS,η.

(Here str. is the same isomorphism as str.(c∨n( 1
n
y)) above.) The last part of

the composition

PA,η|(c∨n( 1
n
y),e)

rig.
∼→ OA,η(c

∨
n( 1

n
y))

str.
∼→ OS,η

can be interpreted alternatively as

PA,η|(c∨n( 1
n
y),e)

sym.
∼→ PA,η|(e,λAc∨n( 1

n
y))

rig.
∼→ OS,η,

and hence the diagram

Oφ(y),η(a) can.
∼
//

can. o
��

PA,η|(a,cφ(y))
can.
∼
//

sym. o
��

PA,η|(e,cnφn( 1
n
y))

rig.

∼
// OS,η

OA,η(c
∨
n( 1

n
y)) can.

∼ // PA,η|(c∨n( 1
n
y),e) sym.

∼ // PA,η|(e,λAc∨n( 1
n
y)) rig.

∼ // OS,η

eλη (a, 1
n
y) o

OO

is commutative. There are some obvious redundancy in the diagram. By
considering bn = λAc

∨
n − cnφn, the commutativity of above diagram implies

that the diagram

PA,η|(e,−λAc∨n( 1
n
y)) ⊗

OS,η
PA,η|(e,bn( 1

n
y))

rig.⊗ rig.o
��

P⊗nA,η|(a,−λAc∨n( 1
n
y)) ⊗

OS,η
P⊗nA,η|(a,bn( 1

n
y))

can. o
��

can.
∼

11

OS,η ⊗
OS,η

OS,η

Id⊗ eλη (a, 1
n
y)o

��
PA,η|(e,−λAc∨n( 1

n
y)) ⊗

OS,η
PA,η|(a,e) rig.⊗ rig.

∼ // OS,η ⊗
OS,η

OS,η
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is commutative. After removing canonical isomorphisms, the essential con-
tent is that the diagram

PA,η|(e,bn( 1
n
y))

rig.

∼
//

can. o
��

OS,η

eλη (a, 1
n
y)o

��
PA,η|(a,e) can.

∼ // OS,η

is commutative. Comparing this with Proposition 5.2.4.4, we obtain
eλη(a, 1

n
y) = eA[n](a, bn( 1

n
y)), as desired.

Finally, let us calculate the pairing on ( 1
n
Y/Y )×( 1

n
Y/Y ):

Proposition 5.2.6.6. Suppose 1
n
y, 1

n
y′ ∈ 1

n
Y/Y . Then (symbolically)

eλη( 1
n
y, 1

n
y′) = τn( 1

n
y, φ(y′))τn( 1

n
y′, φ(y))−1. (5.2.6.7)

(This proves the second part of Theorem 5.2.3.14.)

Proof. Let us analyze the first combination

T ∗
c∨n( 1

n
y)
T ∗
c∨n( 1

n
y′)

(M⊗n
η ⊗

OA,η
Oχ,η)

∼→ T ∗
c∨n( 1

n
y)

(M⊗n
η ⊗

OA,η
Oχ+φ(y′),η)

∼→M⊗n
η ⊗

OA,η
Oχ+φ(y)+φ(y′),η.

More precisely, this isomorphism is the composition of the following canonical
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isomorphisms

T ∗
c∨n( 1

n
y)
T ∗
c∨n( 1

n
y′)

(M⊗n
η ⊗

OA,η
Oχ,η)

can.
∼→ T ∗

c∨n( 1
n
y)

(M⊗n
η ⊗

OA,η
Oχ,η ⊗

OA,η
Oφ(y′),η

⊗
OS,η
M⊗n

η (c∨n( 1
n
y′)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y′)))

can.
∼→ T ∗

c∨n( 1
n
y)

(M⊗n
η ⊗

OA,η
Oχ,η) ⊗

OA,η
Oφ(y′),η

⊗
OS,η
M⊗n

η (c∨n( 1
n
y′)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y′)) ⊗

OS,η
Oφ(y′),η(c

∨
n( 1

n
y))

can.
∼→ M⊗n

η ⊗
OA,η

Oχ+φ(y),η ⊗
OS,η
M⊗n

η (c∨n( 1
n
y)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y)) ⊗

OA,η
Oφ(y′),η

⊗
OS,η
M⊗n

η (c∨n( 1
n
y′)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y′)) ⊗

OS,η
Oφ(y′),η(c

∨
n( 1

n
y))

can.
∼→ M⊗n

η ⊗
OA,η

Oχ+φ(y)+φ(y′),η ⊗
OS,η
M⊗n

η (c∨n( 1
n
y)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y))

⊗
OS,η
M⊗n

η (c∨n( 1
n
y′)) ⊗

OS,η
Oχ,η(c

∨
n( 1

n
y′)) ⊗

OS,η
Oφ(y′),η(c

∨
n( 1

n
y))

with the isomorphisms

ψn( 1
n
y) :M⊗n

η (c∨n( 1
n
y))

∼→ OS,η,

τn( 1
n
y, χ) : Oχ,η(c

∨
n( 1

n
y))

∼→ OS,η,

ψn( 1
n
y′) :M⊗n

η (c∨n( 1
n
y′))

∼→ OS,η,

τn( 1
n
y′, χ) : Oχ,η(c

∨
n( 1

n
y′))

∼→ OS,η,

τn( 1
n
y, φ(y′)) : Oφ(y′),η(c

∨
n( 1

n
y))

∼→ OS,η.

As in the case of eλη(a, a′), the second combination

T ∗
c∨n( 1

n
y′)
T ∗
c∨n( 1

n
y)

(M⊗n
η ⊗

OA,η
Oχ,η)

∼→ T ∗
c∨n( 1

n
y′)

(M⊗n
η ⊗

OA,η
Oχ+φ(y),η)

∼→M⊗n
η ⊗

OA,η
Oχ+φ(y)+φ(y′),η.

can be described analogously by switching the roles of y and y′. Therefore,
the essential difference between the two combinations is given by the differ-
ence between the two isomorphisms τn( 1

n
y, φ(y′)) and τn( 1

n
y′, φ(y)), and the
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diagram

D2(M⊗n
η )|(c∨n( 1

n
y),c∨n( 1

n
y′))

can.
∼
//

OO
sym. o

��

PA,η|(c∨n( 1
n
y),cφ(y′))

τn( 1
n
y,φ(y′))

∼
//

can. o
��

OS,η

D2(M⊗n
η )|(c∨n( 1

n
y′),c∨n( 1

n
y)) can.

∼ // PA,η|(c∨n( 1
n
y′),cφ(y))

τn( 1
n
y′,φ(y))

∼ // OS,η

eλη ( 1
n
y, 1
n
y′) o

OO

is commutative. This implies the symbolic relation (5.2.6.7), as desired.

Now Theorem 5.2.3.14 follows from the combination of Propositions
5.2.6.5 and 5.2.6.6.

5.2.7 Construction of Principal Level Structures

With the same setting as in Section 5.2.1, assume that we have a tuple
(A, λA, iA, X, Y , φ, c, c

∨, τ) in DDPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I). Then we know by

Theorem 5.1.2.7 that there is an object (G, λ, i) in DEGPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I)

corresponding to the tuple above via MPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I). For simplicity,

let us continue to assume that X and Y are constant with values X
and Y , respectively. One of the assumptions for having an object in
DDPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I) is that there exists a totally isotropic embedding

HomR(X⊗
Z
R,R(1)) ↪→ (L⊗

Z
R) (see Definition 5.1.2.6). In this case, there

is an induced filtration ZR = {Z−i,R}i on L⊗
Z
R determining a unique

isomorphism class of the induced symplectic module (GrZ−1,R, 〈 · , · 〉11,R) over
O⊗
Z
R (see Proposition 5.1.2.2).

Motivated by Lemma 5.2.2.2 and its proof,

Definition 5.2.7.1. We say that a symplectic admissible filtration Z on
L⊗
Z
Ẑ2 is fully symplectic with respect to (L, 〈 · , · 〉) if there is a sym-

plectic admissible filtration ZA2 = {Z−i,A2}i on L⊗
Z
A2 that extends Z in the

sense that Z−i,A2 ∩ (L⊗
Z
Ẑ2) = Z−i in L⊗

Z
A2 for all i.

Remark 5.2.7.2. Implicit in Definition 5.2.7.1 is that Z−i,A2 is in-
tegrable for every i. In this case, there exists (noncanonically) a
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PEL-type O-lattice (LZ, 〈 · , · 〉Z, hZ) such that there exists an iso-
morphism (GrZ−1,A2 , 〈 · , · 〉11, h−1)

∼→ (LZ⊗
Z
A2, 〈 · , · 〉Z, hZ) (over A2).

By modifying (LZ, 〈 · , · 〉Z) if necessary, we may assume that there
exist isomorphisms (GrZ−1, 〈 · , · 〉11)

∼→ (LZ⊗
Z
Ẑ2, 〈 · , · 〉Z) (over Ẑ2) and

(GrZ−1,R, 〈 · , · 〉11,R, h−1)
∼→ (LZ⊗

Z
R, 〈 · , · 〉Z, hZ) (over R), and that [(LZ)# : LZ]

contains no prime factors other than those of [L# : L].

Definition 5.2.7.3. A symplectic-liftable admissible filtration Zn on L/nL
is called fully symplectic-liftable with respect to (L, 〈 · , · 〉) if it is the
reduction modulo n of some admissible filtration Z on L⊗

Z
Ẑ2 that is fully

symplectic with respect to (L, 〈 · , · 〉) as in Definition 5.2.7.1.

Remark 5.2.7.4. As explained in Remark 5.2.2.8, even when n = 1, in which
case the whole space L/nL is trivial, we shall still distinguish the filtrations
by their equipped O-multiranks.

Lemma 5.2.7.5. Let Zn be an admissible filtration on L/nL that is fully
symplectic-liftable with respect to (L, 〈 · , · 〉). Let (GrZ−1, 〈 · , · 〉11) be induced
by some fully symplectic lifting Z of Zn, and let (GrZ−1,R, 〈 · , · 〉11,R, h−1) be
determined as in Proposition 5.1.2.2 (which has the same reflex field F0 as
(L⊗

Z
R, 〈 · , · 〉, h) does). Then there is a (noncanonical) PEL-type O-lattice

(LZn , 〈 · , · 〉Zn , hZn) satisfying Condition 1.4.3.10 such that

1. [(LZn)# : LZn ] is prime-to-2;

2. there exist (noncanonical) O-equivariant isomorphisms (GrZ−1, 〈 · , · 〉11)
∼→

(LZn⊗
Z
Ẑ2, 〈 · , · 〉Zn) (over Ẑ2) and (GrZ−1,R, 〈 · , · 〉11,R, h−1)

∼→
(LZn⊗

Z
R, 〈 · , · 〉Zn , hZn) (over R);

3. the moduli problem MZn
n (over S0 = Spec(OF0,(2))) defined by the non-

canonical (LZn , 〈 · , · 〉Zn , hZn), as in Definition 1.4.1.2, is canonical in
the sense that it depends (up to isomorphism) only on Zn, but not on
the choice of (LZn , 〈 · , · 〉Zn , hZn).

Proof. The existence of (LZn , 〈 · , · 〉Zn , hZn) with the given properties is ex-
plained in Remark 5.2.7.2. As pointed out in Remark 1.4.3.14, the moduli
problem MZn

n is smooth and has at least one complex point.
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Remark 5.2.7.6. To avoid unnecessarily introducing more noncanonical data,
we shall sometimes suppress the choice of (LZn , 〈 · , · 〉Zn , hZn), and say that
MZn
n is defined by (GrZ−1, 〈 · , · 〉11) and (GrZ−1,R, 〈 · , · 〉11,R, h−1).

Let us begin with a symplectic-liftable admissible filtration Zn = {Z−i,n}i
on L/nL that is fully symplectic with respect to (L, 〈 · , · 〉). By Proposition
5.2.2.23, this is the most basic information we have about a level-n structure.
Our goal is to describe the additional data for producing a level-n structure
of (Gη̃, λη̃, iη̃) of type (L⊗

Z
Ẑ2, 〈 · , · 〉) over η̃.

In particular, being symplectic-liftable, the admissible filtration Zn is the
reduction modulo n of some symplectic admissible filtration Z = {Z−i}i on
L⊗
Z
Ẑ2. The pairing 〈 · , · 〉 induces the pairings

〈 · , · 〉20 : GrZ−2×GrZ0 → Ẑ2(1)

and
〈 · , · 〉11 : GrZ−1×GrZ−1 → Ẑ2(1),

both satisfying 〈bx, y〉ij = 〈x, b?y〉ij for all x ∈ GrZ−i, y ∈ GrZ−j, and b ∈ O.
For simplicity, let us assume for the moment that the étale sheaves X

and Y in the datum (A, λA, iA, X, Y , φ, c, c
∨, τ) are constant with respective

values X and Y .
The data X, Y , and φ : Y ↪→ X define a pairing

〈 · , · 〉φ : HomZ(X,Z(1))×Y → Z(1)

by sending (x, y) to x(φ(y)) for all x ∈ HomZ(X,Z(1)) and y ∈ Y .
The O-module structure O → EndZ(X) induces by transposition a
right Oop-module structure Oop → EndZ(HomZ(X,Z(1))), and hence an
O-module structure by precomposition with the natural anti-isomorphism
O → Oop : b 7→ b?. The O-equivariance of φ implies that

〈bx, y〉φ = (bx)(φ(y)) = x(b?φ(y)) = 〈x, b?y〉φ

for all x ∈ HomZ(X,Z(1)), y ∈ Y , and b ∈ O. By extension of scalars, the
pairing 〈 · , · 〉φ induces naturally a pairing

〈 · , · 〉φ : HomZ(X⊗
Z
Ẑ2, Ẑ2(1))×(Y⊗

Z
Ẑ2)→ Ẑ2(1).
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Then it makes sense to consider pairs (ϕ−2, ϕ0) of O-equivariant isomor-
phisms

ϕ−2 : GrZ−2
∼→ HomẐ2(X⊗

Z
Ẑ2, Ẑ2(1))

and
ϕ0 : GrZ0

∼→ Y⊗
Z
Ẑ2

such that
〈x, y〉φ = 〈ϕ−1

−2(x), ϕ−1
0 (y)〉20 (5.2.7.7)

for all x ∈ HomẐ2(X⊗
Z
Ẑ2, Ẑ2(1)) and y ∈ Y⊗

Z
Ẑ2. (In order to make later

constructions compatible, the sign convention for 〈 · , · 〉φ is chosen to be
analogous to the one for eφ in Proposition 5.2.2.1.)

On the other hand, GrZ−1 is paired with itself under 〈 · , · 〉11, and

(GrZ−1, 〈 · , · 〉11) is symplectic isomorphic to (LZ⊗
Z
Ẑ2, 〈 · , · 〉Z) for some

PEL-type O-lattice (LZ, 〈 · , · 〉Z, hZ) by Lemma 5.2.7.5. Therefore it
makes sense to consider level-n structures ϕ−1,n : GrZ−1,n

∼→ A[n]η̃ of type
(GrZ−1, 〈 · , · 〉11) as in Definition 1.3.6.2.

Suppose that we have chosen a liftable splitting δn : GrZn
∼→ L/nL, which

can be lifted to some δ̂ : GrZ
∼→ L⊗

Z
Ẑ2. Then, as in Section 5.2.2, the pairing

〈 · , · 〉 can be expressed in matrix form as some 〈 · , · 〉20

〈 · , · 〉11 〈 · , · 〉10

〈 · , · 〉02 〈 · , · 〉01 〈 · , · 〉00

 ,

extending the pairings 〈 · , · 〉20 and 〈 · , · 〉11 above between the graded pieces.
The level-n structure ϕ−1,n : GrZ−1,n

∼→ A[n]η̃ can be lifted noncanonically to

some symplectic isomorphism ϕ−1 : GrZ−1
∼→ T2Aη̄, which we can take as

f̂−1 : GrZ−1
∼→ GrW−1. The symplectic isomorphism ϕ−1 gives, in particular, an

isomorphism ν(ϕ−1) : Ẑ2(1)
∼→ T2 Gm,η̄. Suppose we have a pair (ϕ−2, ϕ0)

as above satisfying (5.2.7.7). Then we can define isomorphisms

f̂−2 : Z−2

ϕ−2
∼→ HomẐ2(X⊗

Z
Ẑ2, Ẑ2(1))

ν(ϕ−1)
∼→ HomẐ2(X⊗

Z
Ẑ2,Gm,η̄)

can.
∼→ T2 Tη̄ ∼= GrW−2,
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and f̂0 : GrZ0

ϕ0
∼→ Y⊗

Z
Ẑ2 ∼= GrW0, and a graded isomorphism f̂ := ⊕

i
f̂i. As soon

as f̂ is symplectic (as in Definition 5.2.2.13) with respect to some suitable
choices of the isomorphism ν(f̂) : Ẑ2(1)

∼→ T2 Gm,η̄ and of the splitting
ς̂ : GrW

∼→ T2Gη̄, we will obtain a symplectic isomorphism α̂ such that

Gr(α̂) = f̂ by applying Proposition 5.2.2.22.
To find the condition for f̂ to be symplectic, or equivalently the condition

for ς̂ to make f̂ symplectic, let us assume that a liftable splitting ςn : GrWn
∼→

G[n]η̃ is given in terms of a liftable triple (cn, c
∨
n , τn) over η̃, which can be

lifted to a splitting ς̂ : GrW
∼→ T2Gη̄ given in terms of a triple (ĉ, ĉ∨, τ̂). Then

we can write the λη-Weil pairing eλη on T2Gη̄ in matrix form as e20

e11 e10

e02 e01 e00

 .

By Lemma 5.2.2.14, the condition for f̂ to be symplectic is the condition that
f̂ ∗(eij) = ν(f̂)◦〈 · , · 〉ij for all i and j for the isomorphism ν(f̂) accompanying

f̂ (which we have not chosen yet). By the construction of f̂ = ⊕
i
f̂−i, and

by Proposition 5.2.2.1, we know that if we take ν(f̂) = ν(ϕ−1), then it is
automatic that f̂ ∗(e20) = ν(f̂) ◦ 〈 · , · 〉20 and f̂ ∗(e11) = ν(f̂) ◦ 〈 · , · 〉11. This
forces the choice of ν(f̂) if f̂ is ever going to be symplectic. Therefore we see
that the condition is that e10 and e00 must satisfy f̂ ∗(e10) = ν(ϕ−1) ◦ 〈 · , · 〉10

and f̂ ∗(e00) = ν(ϕ−1) ◦ 〈 · , · 〉00.
By Corollaries 5.2.3.15 and 5.2.3.5, we know that e10 and e00 must agree

with the pairings d10 and d00, respectively, defined using the triple (ĉ, ĉ∨, τ̂)
corresponding to the splitting ς̂ : GrW

∼→ T2Gη̄ that we have not specified
yet. Therefore we must require the condition that (cn, c

∨
n , τn) is liftable to

some triple (ĉ, ĉ∨, τ̂) that allows the existence of a splitting ς̂ satisfying the
condition we have just found.

Assume that this condition is achieved. Then the graded isomorphism f̂ :
GrZ

∼→ GrW defined above is symplectic by Lemma 5.2.2.14. By Proposition
5.2.2.22, the symplectic triple (δ̂, ς̂ , f̂) defines a symplectic isomorphism α̂ :
L⊗
Z
Ẑ2 ∼→ T2Gη̄ by α̂ := ς̂◦f̂◦δ̂−1. Then α̂ necessarily respects the filtrations,

and Gr(α̂) = f̂ necessarily induces the isomorphisms we have specified on
the graded pieces. By reduction modulo n, we obtain a level-n structure
αn : L/nL

∼→ G[n]η̃, as desired. This αn depends only on the reduction
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modulo n of the above choices (Z, ϕ−2, ϕ−1, ϕ0, δ̂, ĉ, ĉ
∨, τ̂), which we denote

by a tuple (Zn, ϕ−2,n, ϕ−1,n, ϕ0,n, δn, cn, c
∨
n , τn).

This gives a recipe for producing level-n structures from tuples of the
form above, which exhausts all possible level-n structures defined over η̃ by
Proposition 5.2.2.22. In order to state the result in general, we shall assume
from now on that étale sheaves such as X and Y are not necessarily constant.
Since the statements about Weil pairings can always be verified by passing
to étale localizations, our arguments remain valid in the more general setting
by étale descent.

Definition 5.2.7.8. With the setting as in Section 5.2.1, suppose we are
given a tuple (A, λA, iA, X, Y , φ, c, c

∨, τ) in DDPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I). A pre-

level-n structure datum of type (L⊗
Z
Ẑ2, 〈 · , · 〉) over η̃ is a tuple

α\n := (Zn, ϕ−2,n, ϕ−1,n, ϕ0,n, δn, cn, c
∨
n , τn)

consisting of the following data:

1. Zn is an admissible filtration on L/nL that is fully symplectic-liftable
with respect to (L, 〈 · , · 〉) (see Definition 5.2.7.3). The admissible filtra-
tion Zn, being, in particular, symplectic-liftable, is the reduction mod-
ulo n of some symplectic admissible filtration Z on L⊗

Z
Ẑ2. This de-

termines the pairings 〈 · , · 〉20 : GrZ−2×GrZ0 → Ẑ2(1) and 〈 · , · 〉11 :

GrZ−1×GrZ−1 → Ẑ2(1), whose reduction modulo n are pairings 〈 · , · 〉20,n

and 〈 · , · 〉11,n depending only on Zn and not on the choice of Z.

2. ϕ−1,n : GrZ−1,n
∼→ A[n]η̃ is a principal level-n structure of (Aη̃, λA,η̃, iA,η̃)

of type (GrZ−1, 〈 · , · 〉11) over η̃ (see Lemma 5.2.7.5 and Remark 5.2.7.6).
By definition (see Definition 1.3.6.2), ϕ−1,n comes together with an iso-
morphism ν(ϕ−1,n) : (Z/nZ)(1)

∼→ µn,η̃, such that ϕ−1,n and ν(ϕ−1,n)

are the reductions modulo n of some isomorphisms ϕ−1 : GrZ−1
∼→ T2Aη̄

and ν(ϕ−1) : Ẑ2(1)
∼→ T2 Gm,η̄ forming a symplectic isomorphism

ϕ−1 : GrZ−1
∼→ T2Aη̄ in the sense that they match the pairing 〈 · , · 〉11

on GrZ−1 with the λA-Weil pairing on T2Aη̄.

3. ϕ−2,n : GrZ−2,n
∼→ Homη̃((X/nX)η̃, (Z/nZ)(1)) and ϕ0,n :

GrZ0,n
∼→ (Y /nY )η̃ are isomorphisms that are liftable to some
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ϕ−2 : GrZ−2
∼→ HomẐ2(X⊗

Z
Ẑ2, Ẑ2(1)) and ϕ0 : GrZ0

∼→ Y⊗
Z
Ẑ2 over η̄,

such that the pairing eφ is pulled back via (ν(ϕ−1) ◦ ϕ−2,n)×ϕ0,n to

the pairing ν(ϕ−1) ◦ 〈 · , · 〉20, where eφ : T2 Tη̄×(Y⊗
Z
Ẑ2) → T2 Gm,η̄

is the canonical pairing defined as in Proposition 5.2.2.1.

4. δn : GrZn
∼→ L/nL is a liftable splitting as in Definition 5.2.2.10, which

is the reduction modulo n of some splitting δ̂ : GrZ
∼→ L⊗

Z
Ẑ2. This δ̂

determines the pairings 〈 · , · 〉10 : GrZ−1×GrZ0 → Ẑ2(1) and 〈 · , · 〉00 :

GrZ0×GrZ0 → Ẑ2(1), whose reductions modulo each integer m such that
n|m and 2 - m define pairings 〈 · , · 〉10,m and 〈 · , · 〉00,m, depending only
on Zm and not on the full Z.

5. The homomorphism cn : 1
n
Y η̃ → Aη̃, (resp. c∨n : 1

n
X η̃ → A∨η̃ , resp.

τn : 1 1
n
Y ×
S
X,η̃

∼→ (c∨n , cη̃)
∗P⊗−1

A,η̃ ) is a lifting of c (resp. c∨, resp. τ)

over η̃, such that the triple (cn, c
∨
n , τn) is liftable to some compatible

system of liftings (ĉ, ĉ∨, τ̂) = {(cm, c∨m, τm)}n|m,2-m (as in Definition
5.2.3.4), which determines two compatible systems of pairings {d10,m :
A[m]η̄×( 1

m
Y/Y ) → µm,η̄}n|m,2-m and {d00,m : ( 1

m
Y/Y )×( 1

m
Y/Y ) →

µm,η̄}n|m,2-m (as in Lemma 5.2.3.12), and hence two pairings d10 :

T2Aη̄×(Y⊗
Z
Ẑ2) → T2 Gm,η̄ and d00 : (Y⊗

Z
Ẑ2)×(Y⊗

Z
Ẑ2) → Gm,η̄

(as in Corollary 5.2.3.13), by setting

d10,m(a, 1
m
y) := eA[m](a, (λAc

∨
m − cmφm)( 1

m
y)) ∈ µm(η̄)

for each a ∈ A[m]η̄ and 1
m
y ∈ 1

m
Y , and by setting

d00,m( 1
m
y, 1

m
y′) := τm( 1

m
y, φ(y′))τm( 1

m
y′, φ(y))−1 ∈ µm(η̄)

for each 1
m
y, 1

m
y′ ∈ 1

m
Y .

We say that the pre-level-n structure datum α\n is symplectic-liftable,
and call it a level-n structure datum of type (L⊗

Z
Ẑ2, 〈 · , · 〉) over

η̃, if the following condition is satisfied: There exists some lifting
α̂\ := (Z, ϕ−2, ϕ−1, ϕ0, δ̂, ĉ, ĉ

∨, τ̂) of α\n as above, which is symplectic in the
sense that

(ϕ−1×ϕ0)∗(d10) = ν(ϕ−1) ◦ 〈 · , · 〉10
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and
(ϕ0×ϕ0)∗(d00) = ν(ϕ−1) ◦ 〈 · , · 〉00

(see Lemma 5.2.2.14).

Proposition 5.2.7.9. With the setting as in Section 5.2.1, suppose we
are given a tuple (A, λA, iA, X, Y , φ, c, c

∨, τ) in DDPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I)

corresponding to a triple (G, λ,i) in DEGPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I) via Theorem

5.1.2.7, and a level-n structure datum α\n of type (L⊗
Z
Ẑ2, 〈 · , · 〉) defined

over η̃ as in Definition 5.2.7.8 (without the assumption that X and
Y are constant). Then the datum α\n gives, in particular, a splitting
ςn : GrWn

∼→ G[n]η̃ of the filtration

0 ⊂ W−2,n = T [n]η̃ ⊂ W−1,n = G\[n]η̃ ⊂ W0,n = G[n]η̃,

and a graded symplectic isomorphism fn : GrZn
∼→ GrWn defined over η̃, such

that αn = ςn◦fn◦δ−1
n : L/nL

∼→ G[n]η̃ defines a level-n structure of (Gη̃, λη̃, iη̃)

of type (L⊗
Z
Ẑ2, 〈 · , · 〉) as in Definition 1.3.6.2. Moreover, every level-n

structure αn : L/nL
∼→ G[n]η̃ of (Gη̃, λη̃, iη̃) of type (L⊗

Z
Ẑ2, 〈 · , · 〉) arises

in this way from some α\n (defined over η̃).

However, this association is not one to one. In general, there can be
different level-n structure data α\n and α\n

′
that produce the same level-n

structure αn. Therefore we would like to introduce equivalences among the
level-n structure data, such that the equivalence classes of them correspond
bijectively to the level-n structures.

If we start with a level-n structure αn : L/nL
∼→ G[n]η̃, then we see

that the filtration Zn is necessarily determined by Wn under αn, and moreover
Gr−2,n(αn) = ν(ϕ−1,n) ◦ ϕ−2,n, Gr−1,n(αn) = ϕ−1,n, and Gr0,n(αn) = ϕ0,n

are all uniquely determined by Grn(αn). Hence the only possible difference
between two objects giving the same level-n structure is in the choices of
(δn, cn, c

∨
n , τn). Let us suppose that we have a different tuple (δ′n, c

′
n, (c

∨
n)′, τ ′n)

giving the same level structure αn.
On the one hand, as elaborated on in Section 5.2.3, the liftable triple

(cn, c
∨
n , τn) corresponds to a liftable splitting ςn : GrWn

∼→ G[n]η̃, and the
different choice (c′n, (c

∨
n)′, τ ′n) corresponds to a different splitting ς ′n : GrWn

∼→
G[n]η̃ that is related to ςn by a liftable change of basis wn : GrWn

∼→ GrWn
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as in Definition 5.2.2.20, in the sense that ς ′n = ςn ◦ wn. Here the matrix
entries are homomorphisms w21,n : A[n]η̃ → T [n]η̃, w10,n : ( 1

n
Y /Y )η̃ → A[n]η̃,

and w20,n : ( 1
n
Y /Y )η̃ → T [n]η̃, which correspond to a homomorphism dn :

1
n
X → A∨[n]η̃, a homomorphism d∨n : 1

n
Y → A[n]η̃, and a pairing en :

1
n
Y η̃×X η̃ → µn,η̃, respectively. As we saw in Section 5.2.5, the triples

(dn, d
∨
n , en) and (c′n, (c

∨
n)′, τ ′n) can be related by c′n = cn + dn, (c∨n)′ = c∨n +

d∨n , and more elaborately (over an étale covering over which both X and Y
become constant) τ ′n( 1

n
y, χ) = τn( 1

n
y, χ)r(d∨n( 1

n
y), cn( 1

n
χ))χ(en( 1

n
y)) for each

1
n
y ∈ 1

n
Y and χ ∈ X as in (5.2.5.1) (see Section 5.2.5 for details).

Definition 5.2.7.10. We say in this case that (dn, d
∨
n , en) translates

(cn, c
∨
n , τn) to (c′n, (c

∨
n)′, τ ′n).

Hence we have a dictionary between the change of basis wn and the trans-
lation by the triple (dn, d

∨
n , en), both giving the difference between ςn and

ς ′n.
On the other hand, the two different choices of liftable splittings δn, δ

′
n :

GrZn
∼→ L/nL are related by a liftable change of basis zn : GrZn

∼→ GrZn as in
Definition 5.2.2.19, in the sense that δ′n = δn ◦ zn.

By Proposition 5.2.2.23, we know that level-n structures are in bijection
with equivalence classes of symplectic-liftable triples as in Definition 5.2.2.21.
Therefore, the key point of the equivalence is the commutativity of the dia-
gram

GrZn = GrZ−2,n⊕GrZ−1,n⊕GrZ0,n
zn
∼
//

Grn(αn) o
��

GrZn = GrZ−2,n⊕GrZ−1,n⊕GrZ0,n

Grn(αn)o
��

GrWn
∼= T [n]η̃⊕A[n]η̃⊕( 1

n
Y /Y )η̃ wn

∼ // GrWn
∼= T [n]η̃⊕A[n]η̃⊕( 1

n
Y /Y )η̃

in which Grn(αn) = (ν(ϕ−1,n) ◦ ϕ−2,n)⊕ϕ−1,n⊕ϕ0,n, which is equivalent to
the compatibilities (ν(ϕ−1,n)◦ϕ−2,n)◦z21 = w21◦ϕ−1,n, ϕ−1,n◦z10 = w10◦ϕ0,n,
and (ν(ϕ−1,n) ◦ ϕ−2,n) ◦ z20 = w20 ◦ ϕ0,n.

Let us formulate this observation as follows:

Definition 5.2.7.11. With the setting as in Section 5.2.1, suppose we are
given a tuple (A, λA, iA, X, Y , φ, c, c

∨, τ) in DDPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I). Two

level-n structure data

α\n = (Zn, ϕ−2,n, ϕ−1,n, ϕ0,n, δn, cn, c
∨
n , τn)
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and
(α\n)′ = (Z′n, ϕ

′
−2,n, ϕ

′
−1,n, ϕ

′
0,n, δ

′
n, c
′
n, (c

∨
n)′, τ ′n)

of type Mn defined over η̃ (as in Definition 5.2.7.8) are called equivalent if
the following conditions are satisfied:

1. The following identities hold: Zn = Z′n, ϕ−2,n = ϕ′−2,n, ϕ−1,n = ϕ′−1,n,
and ϕ0,n = ϕ′0,n.

2. There is a liftable change of basis zn : GrZn
∼→ GrZn, given in matrix

form by zn =

1 z21,n z20,n

1 z10,n

1

, such that δ′n = δn ◦ zn.

3. If we consider the homomorphisms dn : 1
n
X → A∨[n]η̃, d

∨
n : 1

n
Y →

A[n]η̃, and en : 1
n
Y η̃ → T [n]η̃ defined respectively by the relations

eA[n](a, dn( 1
n
χ)) = χ(ν(ϕ−1,n) ◦ ϕ−2,n ◦ z21,n ◦ ϕ−1

−1,n(a)),

d∨n( 1
n
y) = ϕ−1,n ◦ z10,n ◦ ϕ−1

0,n( 1
n
y),

en( 1
n
y) = ν(ϕ−1,n) ◦ ϕ−2,n ◦ z20,n ◦ ϕ−1

0,n( 1
n
y),

for each a ∈ A[n]η̃, χ ∈ X η̃, and 1
n
y ∈ 1

n
Y η̃, then (dn, d

∨
n , en) translates

(cn, c
∨
n , τn) to (c′n, (c

∨
n)′, τ ′n) in the sense of Definition 5.2.7.10. (Here we

identify ϕ0,n : GrZ0,n
∼→ Y/nY also as an isomorphism GrZ0,n

∼→ 1
n
Y/Y

by the canonical isomorphism Y/nY
∼→ 1

n
Y/Y .)

Definition 5.2.7.12. With the setting as in Section 5.2.1, the category
DEGPEL,Mn,η̃(R, I) has objects of the form (G, λ, i, αn) (over S = Spec(R)),
where

1. (G, λ, i) defines an object in DEGPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I);

2. αn : L/nL
∼→ G[n]η̃ is a level-n structure of (Gη̃, λη̃, iη̃) of type

(L⊗
Z
Ẑ2, 〈 · , · 〉) (see Definition 1.3.6.2).

For simplicity, when η̃ = η, we shall denote DEGPEL,Mn,η(R, I) by
DEGPEL,Mn(R, I).

Definition 5.2.7.13. With the setting as in Section 5.2.1, the category
DDPEL,Mn,η̃(R, I) has objects of the form (A, λA, iA, X, Y , φ, c, c

∨, τ, [α\n]),
where
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1. (A, λA, iA, X, Y , φ, c, c
∨, τ) is an object in DDPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I);

2. [α\n] is an equivalence class of level-n structure data α\n of type
(L⊗

Z
Ẑ2, 〈 · , · 〉) defined over η̃ (see Definitions 5.2.7.8 and 5.2.7.11).

For simplicity, when η̃ = η, we shall denote DDPEL,Mn,η̃(R, I) by
DDPEL,Mn(R, I).

We can now replace Proposition 5.2.7.9 with the following theorem, which
is our main result of Section 5.2:

Theorem 5.2.7.14. There is an equivalence of categories

MPEL,Mn,η̃(R, I) : DDPEL,Mn,η̃(R, I)→ DEGPEL,Mn,η̃(R, I) :

(A, λA, iA, X, Y , φ, c, c
∨, τ, [α\n]) 7→ (G, λ, i, αn).

For simplicity, when η̃ = η, we shall denote MPEL,Mn,η̃(R, I) by
MPEL,Mn(R, I).

5.3 Data for General PEL-Structures

Let us continue with the same setting as in Section 5.2 in this section.

5.3.1 Formation of Étale Orbits

With the setting as in Section 5.2.1, let (G, λ, i) be an object in
DEGPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I) associated with a tuple (A, λA, iA, X, Y , φ, c, c

∨, τ)

in DDPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I) by the equivalence MPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I) in

Theorem 5.1.2.7.
LetH be an open compact subgroup of G(Ẑ2), and let n ≥ 1 be an integer

such that 2 - n and U2(n) ⊂ H. Let Hn := H/U2(n) (see Remark 1.2.1.9
for the definition of U2(n)). By definition, an integral level-H structure
αH of (Gη, λη, iη) is given by an Hn-orbit αHn of étale-locally-defined level-n
structures. In other words, there exists an étale morphism η̃ → η (which we
may assume to be defined by a field extension as in Section 5.2.1) such that
the pullback of Hn to η̃ is the disjoint union of all elements in the Hn-orbit
of some level-n structure αn : L/nL

∼→ G[n]η̃ defined over η̃. According to
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Theorem 5.2.7.14, αn is associated with an equivalence class [α\n] of level-n
structure data α\n = (Zn, ϕ−2,n, ϕ−1,n, ϕ0,n, δn, cn, c

∨
n , τn). Then the Hn-orbit

of αn is naturally associated with the Hn-orbit of α\n, if we can explain how
the action of Gess(Z/nZ) on the set of αn’s (defined by αn 7→ αn ◦ gn) is
translated into an action of Gess(Z/nZ) on the set of α\n’s. Even better, we
would like to work out a direct way to define an action of G(Ẑ2) on the set of
α̂\’s, which induces the action of Gess(Z/nZ) on the set of α\n’s by reduction
modulo n. This is the goal of this section.

Let us fix a choice of αn that corresponds to α\n as above. Let α̂ :
L⊗
Z
Ẑ2 ∼→ T2Gη̄ be any symplectic isomorphism lifting αn. Let α̂\ =

(Z, ϕ−2, ϕ−1, ϕ0, δ̂, ĉ, ĉ
∨, τ̂) be any element lifting α\n (as a reduction mod-

ulo n). By construction of α\n, we may arrange that Z is the pullback of
W under α̂, and that ϕ−2, ϕ−1, and ϕ0 are determined uniquely by Gr(α̂).
There is a freedom in making the choice of the splitting δ̂ : GrZ

∼→ L⊗
Z
Ẑ2,

but then the pairing 〈 · , · 〉 and α̂ force a unique choice of (ĉ, ĉ∨, τ̂) for each
particular choice of δ.

Let gn be any element of Gess(Z/nZ), and let g be any element of G(Ẑ2)
lifting gn. If we replace α̂ with α̂ ◦ g, then the relation W = α̂(Z) is replaced
with W = (α̂ ◦ g)(g−1(Z)). Hence we see that we should replace Z with Z′ :=
g−1(Z), which is related to Z by the induced isomorphisms g : Z′ = g−1(Z−i)

∼→
Z−i for i = 0, 1, 2. This determines the isomorphisms Gr−i(g) : GrZ

′

−i
∼→ GrZ−i

on the graded pieces, and suggests the following accordingly:

Construction 5.3.1.1. 1. We shall replace ϕ0 : GrZ0
∼→ Y⊗

Z
Ẑ2 with ϕ′0 :=

ϕ0 ◦Gr0(g).

2. We shall replace ϕ−1 : GrZ−1
∼→ T2Aη̄ with ϕ′−1 := ϕ−1 ◦ Gr−1(g), and

accordingly ν(ϕ−1) : Ẑ2(1)
∼→ T2 Gm,η̄ with ν(ϕ′−1) = ν(ϕ−1) ◦ ν(g).

3. We shall replace ϕ−2 : GrZ−2
∼→ HomẐ2(X⊗

Z
Ẑ2, Ẑ2(1)) with ϕ′−2 :=

ν(g)−1 ◦ϕ−2 ◦Gr−2(g). This is because (when X 6= 0 and hence L 6= 0)
the commutativity of the diagram

GrZ−2×GrZ0
Gr−2(α̂)×Gr0(α̂) // T2 Tη̄×(Y⊗

Z
Ẑ2) eφ // T2 Gm,η̄

GrZ
′

−2×GrZ
′

0

Gr−2(α̂◦g)×Gr0(α̂◦g)//

Gr−2(g)×Gr0(g)o

OO

T2 Tη̄×(Y⊗
Z
Ẑ2) eφ // T2 Gm,η̄
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forces the commutativity of the diagram

GrZ−2×GrZ0
ϕ−2×ϕ0 // HomẐ2(X⊗

Z
Ẑ2, Ẑ2(1))×(Y⊗

Z
Ẑ2) can. // Ẑ2(1)

GrZ
′

−2×GrZ
′

0

ϕ′−2×ϕ′0 //

Gr−2(g)×Gr0(g)o

OO

HomẐ2(X⊗
Z
Ẑ2, Ẑ2(1))×(Y⊗

Z
Ẑ2) can. //

ν(g)× Ido

OO

Ẑ2(1)

ν(g)o

OO

with the canonical pairing

HomẐ2(X⊗
Z
Ẑ2, Ẑ2(1))×(Y⊗

Z
Ẑ2)→ Ẑ2(1)

given by the composition of Id×φ with the canonical pairing
HomẐ2(X⊗

Z
Ẑ2, Ẑ2(1))×(X⊗

Z
Ẑ2)→ Ẑ2(1).

4. Then f̂−2 := ν(ϕ−1) ◦ ϕ−2, f̂−1 := ϕ−1, and f̂0 := ϕ0 are replaced with
f̂ ′−2 := ν(f ′−2) ◦ ϕ′−2 = ν(f−2) ◦ ν(g) ◦ ϕ−2 ◦ Gr−2(g) = f̂−2 ◦ (ν(g) ◦
Gr−2(g)), with f̂ ′−1 = f̂−1 ◦Gr−1(g), and with f̂ ′0 = f̂0 ◦Gr0(g), respec-

tively. This replaces the symplectic isomorphism f̂ = f̂−2⊕ f̂−1⊕ f̂0 :
GrZ

∼→ GrW with the symplectic isomorphism f̂ ′ = f̂ ′−2⊕ f̂ ′−1⊕ f̂ ′0 :

GrZ
′ ∼→ GrW, so that f̂ ′ = f̂ ◦Gr(g) and accordingly ν(f̂ ′) = ν(f̂)◦ν(g).

5. Let ς̂ : W
∼→ T2Gη̄ be the splitting determined by (ĉ, ĉ∨, τ̂). Then the

relation α̂ = ς◦f̂◦δ̂−1 can be rewritten as α̂◦g = ς̂◦f̂ ′◦(g−1◦δ̂◦Gr(g))−1.
This shows that, if we take δ̂′ := g−1 ◦ δ̂ ◦Gr(g) as one of the possible
ways to modify it (as it is not canonical), then we may set ς̂ ′ := ς̂ and
retain the relation α̂ ◦ g = ς̂ ′ ◦ f̂ ′ ◦ (δ̂′)−1. (Note that ν(δ̂) and ν(δ̂′) are
both the identity because ν(g−1) and ν(Gr(g)) cancel each other.)

Summarizing,

Proposition 5.3.1.2. There is a natural action of G(Ẑ2) on tuples of the
form α̂\ = (Z, ϕ−2, ϕ−1, ϕ0, δ̂, ĉ, ĉ

∨, τ̂), defined for each g ∈ G(Ẑ2), by sending
α̂\ as above to

(Z′, ϕ′−2, ϕ
′
−1, ϕ

′
0, δ̂
′, ĉ, ĉ∨, τ̂),

where

1. Z′ := g−1(Z);
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2. ϕ′−2 := ν(g) ◦ ϕ−2 ◦Gr−2(g);

3. ϕ′−1 := ϕ−1 ◦Gr−1(g) and accordingly ν(ϕ′−1) := ν(ϕ−1) ◦ ν(g)−1;

4. ϕ′0 := ϕ0 ◦Gr0(g);

5. δ̂′ := g−1 ◦ δ̂ ◦Gr(g);

6. (ĉ, ĉ∨, τ̂) is unchanged.

Proposition 5.3.1.3. By taking reduction modulo n of the action defined
in Proposition 5.3.1.2, we obtain an action of Gess(Z/nZ) on the level-n
structure data of the form α\n = (Zn, ϕ−2,n, ϕ−1,n, ϕ0,n, δn, cn, c

∨
n , τn), defined

for each gn ∈ Gess(Z/nZ) by sending α\n as above to

(Z′n, ϕ
′
−2,n, ϕ

′
−1,n, ϕ

′
0,n, δ

′
n, cn, c

∨
n , τn),

where

1. Z′n := g−1
n (Zn);

2. ϕ′−2,n := ν(gn) ◦ ϕ−2,n ◦Gr−2(gn);

3. ϕ′−1,n := ϕ−1,n ◦ Gr−1,n(gn) and accordingly ν(ϕ′−1,n) := ν(ϕ−1,n) ◦
ν(gn)−1;

4. ϕ′0,n := ϕ0,n ◦Gr0,n(gn);

5. δ′n := g−1
n ◦ δn ◦Grn(gn);

6. (cn, c
∨
n , τn) is unchanged.

This action respects the equivalence relations among level-n structure data,
and hence induces an action on the equivalence classes [α\n] as well.

Proof. Everything is clear except the last statement. The last statement is
essentially a tautology, because the equivalence classes of level-n structure
data correspond bijectively to level-n structures, and the action is defined by
the action on level-n structures.

Now let Hn be a subgroup of Gess(Z/nZ) as above, which is Hn =
H/U2(n) for some open compact subgroup H of G(Ẑ2). We would like
to find the correct formulation of an Hn-orbit of [α\n] over η̃, so that we can
descend the orbit to some similar object over η.
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Definition 5.3.1.4. Let Zn be a fully symplectic-liftable filtration on
L/nL. Then we define the following subgroups or quotients of subgroups of
Gess(Z/nZ):

Pess
Zn

:= {gn ∈ Gess(Z/nZ) : g−1
n (Zn) = Zn},

Zess
Zn

:= {gn ∈ Pess
Zn

: Gr−1,n(gn) = IdGrZ−1,n
and ν(gn) = 1},

Uess
Zn

:= {gn ∈ Pess
Zn

: Grn(gn) = IdGrZn
and ν(gn) = 1},

Gess
h,Zn :=

{
(g−1,n, rn) ∈ GLO(GrZ−1,n)×Gm(Z/nZ) :

∃gn ∈ Pess
Zn

s.t. Gr−1,n(gn) = g−1,n and ν(gn) = rn

}
,

Gess
l,Zn :=

{
(g−2,n, g0,n) ∈ GLO(GrZ−2,n)×GLO(GrZ0,n) :

∃gn ∈ Zess
Zn

s.t. Gr−2,n(gn) = g−2,n and Gr0,n(gn) = g0,n

}
,

Uess
2,Zn :=

{
g20,n ∈ HomO(GrZ0,n,GrZ−2,n) :

∃gn ∈ Uess
Zn

s.t. δ−1
n ◦ gn ◦ δn =

(
1 g20,n

1
1

)} ,
Uess

1,Zn :=

{
(g21,n, g10,n) ∈ HomO(GrZ−1,n,GrZ−2,n)×HomO(GrZ0,n,GrZ−1,n) :

∃gn ∈ Uess
Zn

s.t. δ−1
n ◦ gn ◦ δn =

( 1 g21,n g20,n

1 g10,n

1

)
for some g20,n

}
.

Remark 5.3.1.5. Since ν(Gr−1,n(gn)) = ν(gn) by definition, the condition
ν(gn) = 1 in the definition of Zess

Zn
is redundant if we interpret Gr−1,n(gn) =

IdGrZ−1,n
as an identity of symplectic isomorphisms (see Definition 1.1.4.8).

Lemma 5.3.1.6. By definition, there are natural inclusions

Uess
2,Zn ⊂ Uess

Zn
⊂ Zess

Zn
⊂ Pess

Zn
⊂ Gess

Zn
, (5.3.1.7)

and natural exact sequences

1→ Zess
Zn
→ Pess

Zn
→ Gess

h,Zn → 1, (5.3.1.8)

1→ Uess
Zn
→ Zess

Zn
→ Gess

l,Zn → 1, (5.3.1.9)

1→ Uess
2,Zn → Uess

Zn
→ Uess

1,Zn → 1. (5.3.1.10)

Definition 5.3.1.11. Let Hn be a subgroup of Gess(Z/nZ) as above. For
each of the subgroups > in (5.3.1.7), we define Hn,> := Hn ∩>. For each of
the quotients of two groups > = >1/>2 in (5.3.1.7), (5.3.1.8), (5.3.1.9), or
(5.3.1.10), we define Hn,> := Hn,>1/Hn,>2. Thus we have defined the groups
Hn,Pess

Zn
, Hn,Zess

Zn
, Hn,Uess

Zn
, Hn,Gess

h,Zn
, Hn,Gess

l,Zn
, Hn,Uess

2,Zn
, and Hn,Uess

1,Zn
, so that we

have the natural inclusions

Hn,Uess
2,Zn
⊂ Hn,Uess

Zn
⊂ Hn,Zess

Zn
⊂ Hn,Pess

Zn
⊂ Hn
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and natural exact sequences

1→ Hn,Zess
Zn
→ Hn,Pess

Zn
→ Hn,Gess

h,Zn
→ 1,

1→ Hn,Uess
Zn
→ Hn,Zess

Zn
→ Hn,Gess

l,Zn
→ 1,

1→ Hn,Uess
2,Zn
→ Hn,Uess

Zn
→ Hn,Uess

1,Zn
→ 1.

Let us return to the question of the description of Hn-orbits of [α\n]. Note
that the filtration Zn in each equivalence class [α\n] is independent of the
representative α\n we take for [α\n].

Given any particular fully symplectic-liftable filtration Zn on L/nL, the
elements in its Hn-orbit can be parameterized by the left cosets Hn,PZn

\Hn.
Then an étale-locally-defined Hn-orbit of Zn is a scheme ZHn finite étale over
η that is isomorphic to the constant scheme Hn,PZn

\Hn over some finite étale
scheme over η.

Let us work over ZHn . Suppose η̃ is a point of ZHn , which is finite étale over
η, over which we have a representative Zn in the orbit ZHn . Let us investigate
the Hn,Pess

Zn
-orbits of the remaining objects. The next natural object to study

is the Hn,Pess
Zn

-orbit of principal level-n structures ϕ−1,n : GrZ−1,n
∼→ A[n]η̃

of (Aη̃, λA,η̃, iA,η̃) of type (GrZ−1,n, 〈 · , · 〉11) (see Lemma 5.2.7.5 and Remark
5.2.7.6). Since the action of gn ∈ Hn,Pess

Zn
is realized as GrZ−1,n(gn) for each gn ∈

Pess(Z/nZ), an Hn,Pess
Zn

-orbit of ϕ−1,n is also an Hn,Gess
h,Zn

-orbit. By patching
over points of ZHn over finite étale extensions of η, we obtain an étale sheaf
Gr

ZHn
−1,n over ZHn , whose fibers over each η̃ as above is the middle graded piece

GrZ−1,n of the filtration Zn at that point, and we obtain an étale subscheme
ϕ−1,Hn of

IsomZHn
(Gr

ZHn
−1,n, A[n]ZHn ) ×

ZHn

IsomZHn
(((Z/nZ)(1))ZHn ,µn,ZHn

),

whose fiber over each η̃ as above is an Hn,Gess
h,Zn

-orbit of étale-locally-defined

level-n structures of (Aη̃, λA,η̃, iA,η̃) of type (GrZ−1,n, 〈 · , · 〉11). Then ϕ−1,Hn �
η is finite étale.

Over ϕ−1,Hn , we have étale locally over each point a choice of some
(Zn, ϕ−1,n) in its Hn-orbit. The next natural object to study is the
Hn,Zess

Zn
-orbit of (ϕ−2,n, ϕ0,n). The natural group to consider is the subgroup

Hn,Gess
l,Zn

of Gess
l,Zn
∼= Zess

Zn
/Uess

Zn
. By abuse of notation, let us denote the

Hn,Gess
l,Zn

-orbit of a particular pair (ϕ−2,n, ϕ0,n) by (ϕ−2,Hn , ϕ0,Hn). Although
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the notation of using a pair is misleading, we shall interpret (ϕ−2,Hn , ϕ0,Hn)
as an étale subscheme of the pullback of

HomO(GrZ−2,n,Homη((X/nX)η, ((Z/nZ)(1))η))×
η

HomO(GrZ0,n, (Y /nY )η)

to ϕ−1,Hn . Then (ϕ−2,Hn , ϕ0,Hn)� η is finite étale.
Over (ϕ−2,Hn , ϕ0,Hn), we have étale locally over each point a choice of some

(ZHn , ϕ−2,Hn , ϕ−1,Hn , ϕ0,Hn) in its Hn-orbit. Let us study the Hn,Uess
Zn

-orbit of
the remaining objects (δn, cn, c

∨
n , τn) up to equivalence.

If we use the action we have defined so far on the representatives, then
the action is realized on δn, but the objects (cn, c

∨
n , τn) over η̃ are never

changed under the actions. This is not pertinent for our purpose because
we want to have descended forms of them over η. On the other hand, if we
allow ourselves to take equivalent objects, then we may modify the action
of Uess

Zn
on the representatives as follows: The elements gn ∈ Uess

Zn
satisfy

Grn(gn) = IdGrZn
by definition. Hence the action of gn sends (δn, cn, c

∨
n , τn)

to (g−1
n ◦ δn, cn, c∨n , τn). Suppose δ−1

n ◦ gn ◦ δn =
( 1 g21,n g20,n

1 g10,n

1

)
. Let us write

g−1
n ◦ δn = δn ◦ (δ−1

n ◦ g−1
n ◦ δn), where zn := δ−1

n ◦ g−1
n ◦ δn is now viewed

as a change of basis. Then (as in Proposition 5.2.7.11) we have morphisms
dn, d∨n , and en determined by g21,n, g10,n, and g20,n, respectively, so that
(g−1
n ◦ δn, cn, c∨n , τn) is equivalent to (δn, c

′
n, (c

∨
n)′, τ ′n), where (c′n, (c

∨
n)′, τ ′n) is

the translation of (cn, c
∨
n , τn) by the (dn, d

∨
n , en) (as in Definition 5.2.7.10).

By the explicit formulas, the modified action of Uess
Zn

on (cn, c
∨
n) factors

through Uess
1,Zn = Uess

Zn
/Uess

2,Zn . Hence it makes sense to form Hn,Uess
1,Zn

-orbits of

(cn, c
∨
n) and denote it by (cHn , c

∨
Hn

). Again, although the notation of using a
pair is misleading, we shall interpret (cHn , c

∨
Hn

) as a subscheme of the pullback
of HomO( 1

n
Xη, A

∨
η )×HomO( 1

n
Y η, Aη) to (ϕ−2,Hn , ϕ0,Hn). (In general, such

an ambient scheme is larger than the parameter space of all pairs that we
allow. A more precise construction will be given in Section 6.2.3.) Then
(cHn , c

∨
Hn

)� η is finite étale.
Over (cHn , c

∨
Hn

), we have étale locally over each point a choice of some
representative (cHn , c

∨
Hn

) in its Hn,Uess
1,Zn

-orbit. Then it only remains to under-
stand the action of Hn,Uess

2,Zn
on τn. Let us denote by τn,Hn the Hn,Uess

2,Zn
-orbit

of τn, and denote by ιn,Hn the Hn,Uess
2,Zn

-orbit of ιn. Similarly to the case of

(cHn , c
∨
Hn

) above, we shall identify τn,Hn with ιn,Hn as schemes over η, and in-
terpret ιn,Hn as a subscheme of the pullback of HomO( 1

n
Y η, G

\
η) to (cHn , c

∨
Hn

),
although this is not the precise parameter space we wanted. Then τn,Hn � η
is finite étale.
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Finally, over τn,Hn , we have étale locally over each point a choice of all
the data, including the unique choice of δn, which we shall denote by δHn .
If we replace δn with δn ◦ zn before we construct (cHn , c

∨
Hn
, τHn), then we

shall replace accordingly the whole orbit (cHn , c
∨
Hn
, τHn) with another triple

(c′Hn , (c
∨
Hn

)′, τ ′Hn) (which is another scheme finite étale over η). (Therefore
the notion of equivalences carries over naturally to the context of Hn-orbits.)

To facilitate the language, we shall often ignore the fact that the above
objects are schemes finite étale over η, and denote them by tuples as if they
were usual objects:

Definition 5.3.1.12. With the setting as in Section 5.2.1, suppose we are
given a tuple (A, λA, iA, X, Y , φ, c, c

∨, τ) in DDPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I). Let

n ≥ 1 be an integer such that 2 - n. Let Hn be a subgroup of Gess(Z/nZ). By
an Hn-orbit of étale-locally-defined level-n structure data, we mean
a scheme

α\Hn = (ZHn , ϕ−2,Hn , ϕ−1,Hn , ϕ0,Hn , δHn , cHn , c
∨
Hn , τHn)

(or rather just τHn) finite étale over η, which is étale locally (over η) the
disjoint union of all elements in some Hn-orbit of level-n structure data (as
in Definition 5.2.7.8). We use the same terminology, Hn-orbit of étale-
locally-defined, for each of the entries in α\Hn.

Definition 5.3.1.13. With the setting as in Definition 5.3.1.12, we say that
two Hn-orbits α\Hn and (α\Hn)′ are equivalent if there is a finite étale ex-

tension η̃ → η over which α\Hn contains some level-n structure datum that
is equivalent (as in Definition 5.2.7.11) to some level-n structure datum in
(α\Hn)′.

Definition 5.3.1.14. With the setting as in Section 5.2.1, suppose we are
given a tuple (A, λA, iA, X, Y , φ, c, c

∨, τ) in DDPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I). Let H

be any open compact subgroup of G(Ẑ2). For each integer n ≥ 1 such that 2 -
n and U2(n) ⊂ H, set Hn := H/U2(n) as usual. Then a level-H structure
datum of type (L⊗

Z
Ẑ2, 〈 · , · 〉) over η is a collection α\H = {α\Hn}n indexed

by integers n ≥ 1 such that 2 - n and U2(n) ⊂ H, with elements α\Hn
described as follows:

1. For each index n, the element α\Hn is an Hn-orbit of étale-locally-defined
level-n structure data as in Definition 5.3.1.12.
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2. For all indices n and m such that n|m, the Hn-orbit α\Hn is determined

by the Hm-orbit α\Hm by reduction modulo n.

It is customary to denote α\H by a tuple

α\H = (ZH, ϕ−2,H, ϕ−1,H, ϕ0,H, δH, cH, c
∨
H, τH),

each subtuple or entry being a collection indexed by n as α\H is, and to denote
by ιH the collection corresponding to τH.

Convention 5.3.1.15. To facilitate the language, we shall call α\H an
H-orbit, with similar usages applied to other objects with subscript H. If
we have two open compact subgroups H′ ⊂ H, and if we have an object α\H′
at level H′, then there is a natural meaning of the object α\H at level H
determined by α\H′. We say in this case that α\H is the H-orbit of α\H′.

Definition 5.3.1.16. With the setting as in Definition 5.3.1.14, we say that
two level-H structure data α\H = {α\Hn}n and (α\H)′ = {(α\Hn)′}n are equiv-

alent if there is an index n such that α\Hn and (α\Hn)′ are equivalent as in
Definition 5.3.1.13.

Definition 5.3.1.17. With the setting as in Section 5.2.1, the category
DEGPEL,MH(R, I) has objects of the form (G, λ, i, αH) (over S), where

1. (G, λ, i) defines an object in DEGPELie,(L⊗
Z
R,〈 · , · 〉,h)(R, I);

2. αH is a level-H structure of (Gη, λη, iη) of type (L⊗
Z
Ẑ2, 〈 · , · 〉) as in

Definition 1.3.7.6.

Definition 5.3.1.18. With the setting as in Section 5.2.1, the category
DDPEL,MH(R, I) has objects of the form (A, λA, iA, X, Y , φ, c, c

∨, τ, [α\H]),
where

1. (A, λA, iA, X, Y , φ, c, c
∨, τ) is an object in DDPELie,(L⊗

Z
R,〈 · , · 〉,h)(R, I);

2. [α\H] is an equivalence class of level-H structure data α\H of type

(L⊗
Z
Ẑ2, 〈 · , · 〉) defined over η (see Definitions 5.3.1.14 and 5.3.1.16).

Then we have the following consequence of Theorem 5.2.7.14:

Theorem 5.3.1.19. There is an equivalence of categories

MPEL,MH(R, I) : DDPEL,MH(R, I)→ DEGPEL,MH(R, I) :

(A, λA, iA, X, Y , φ, c, c
∨, τ, [α\H]) 7→ (G, λ, i, αH).
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5.3.2 Degenerating Families

For ease of exposition later, let us make the following definitions:

Definition 5.3.2.1. Let S be a normal locally noetherian algebraic stack. A
tuple (G, λ, i, αH) over S is called a degenerating family of type MH, or
simply a degenerating family when the context is clear, if there exists a
dense subalgebraic stack S1 of S, such that S1 is defined over Spec(OF0,(2)),
and such that we have the following:

1. By viewing group schemes as relative objects, G is a semi-abelian
scheme over S whose restriction GS1 to S1 is an abelian scheme. In
this case, the dual semi-abelian scheme G∨ (as in Theorem 3.4.3.2)
exists (up to unique isomorphism), whose restriction G∨S1

to S1 is the
dual abelian scheme of GS1 (see Proposition 3.3.1.5).

2. λ : G
∼→ G∨ is a homomorphism that induces by restriction a prime-

to-2 polarization λS1 of GS1.

3. i : O → EndS(G) is a homomorphism that defines by restriction an
O-structure iS1 : O → EndS1(GS1) of (GS1 , λS1).

4. LieGS1
/S1

with its O⊗
Z
Z(2)-module structure given naturally by iS1

satisfies the determinantal condition in Definition 1.3.4.1 given by
(L⊗

Z
R, 〈 · , · 〉, h).

5. αH is a level-H structure for (GS1 , λS1 , iS1) of type (L⊗
Z
Ẑ2, 〈 · , · 〉) as

in Definition 1.3.7.6, defined over S1.

In other words, we require (GS1 , λS1 , iS1 , αH)→ S1 to define a tuple parame-
terized by the moduli problem MH.

Remark 5.3.2.2. Conditions 2, 3, 4, and 5 are closed conditions for struc-
tures on abelian schemes defined over Spec(OF0,(2)). Hence the rather weak
condition for S1 in Definition 5.3.2.1 is justified because S1 can always be
replaced with the largest subalgebraic stack of S over Spec(OF0,(2)) (which
is open dense in S) such that GS1 is an abelian scheme. (Conditions 2 and
3 are closed by Lemma 4.2.1.6, Corollary 1.3.1.12, and Proposition 3.3.1.5.
Condition 4 is closed because it is defined by an equality of polynomial func-
tions. Condition 5 is closed because αH is defined by isomorphisms between
finite étale group schemes.)
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Definition 5.3.2.3. With the setting as in Definition 5.3.2.1, suppose n ≥
1 is an integer prime-to-2. Then a tuple (G, λ, i, αn) over S is called a
degenerating family of type Mn if it satisfies the same definitions as in
Definition 5.3.2.1 except that 5 in Definition 5.3.2.1 is replaced with

5′. αn is a principal level-n structure for (GS1 , λS1 , iS1) of type
(L⊗

Z
Ẑ2, 〈 · , · 〉) as in Definition 1.3.6.2, defined over S1.

Definition 5.3.2.4. We define a tuple (G, λ, i) over S to be a degenerating
family of type MH (resp. Mn) without level structures, or still simply
a degenerating family when the context is clear, if G, λ, and i satisfy 1,
2, 3, and 4 as in Definition 5.3.2.1, without a level structure described by 5
(resp. 5′) as in the definition of MH (resp. Mn).

5.3.3 Criterion for Properness

Here is an interesting consequence of Theorem 5.3.1.19:

Theorem 5.3.3.1. Let M′ be an algebraic stack separated and of finite-type
over an arbitrary locally noetherian algebraic stack S′. (In particular, we
allow any residue characteristic to appear in S′.) Suppose there is an open
dense subalgebraic stack S′1 of S′ such that the following conditions are satis-
fied:

1. M′×
S′
S′1 is open dense in M′.

2. There exists a morphism S′1 → S0 = Spec(OF0,(2)) and a mor-

phism M′×
S′
S′1

f→ MH×
S0

S′1 such that, for each complete discrete

valuation ring V with algebraically closed residue field, a morphism
ξ1 : Spec(Frac(V )) → M′×

S′
S′1 defining a tuple (G, λ, i, αH) by

composition with f extends to a morphism ξ : Spec(V )→ M′ whenever
the abelian scheme G extends to an abelian scheme over Spec(V ).

3. Every admissible filtration Z on L⊗
Z
Ẑ2 that is fully symplectic with

respect to (L, 〈 · , · 〉) has O-multirank zero (see Definitions 5.2.7.1 and
5.2.2.6).

Then M′ → S′ is proper.
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Proof. To show that M′ → S′ is proper, we need to verify the valuative cri-
terion for it. By 1 (and by Remark A.7.2.13), it suffices to show that, for
each Spec(V )→ S′ where V is a complete discrete valuation ring with alge-
braically closed residue field, each morphism ξ1 : Spec(Frac(V )) → M′×

S′
S′1

extends to a morphism ξ : Spec(V ) → M′. By composition with the mor-
phism f in 2, each morphism ξ1 : Spec(Frac(V )) → M′×

S′
S′1 induces a mor-

phism f ◦ ξ1 : Spec(Frac(V )) → MH×
S0

S′1 defining an object (G, λ, i, αH) of

MH over Spec(Frac(V )). By Theorem 3.3.2.4, we know that G extends to a
semi-abelian scheme over Spec(V ). By Proposition 3.3.1.5, both λ and i ex-
tends uniquely over Spec(V ). Note that Spec(Frac(V )) is defined over S0 via
the morphism S′1 → S0 in 2. Therefore it makes sense to say that we have a
degenerating family of type MH over Spec(V ) (see Definition 5.3.2.1) extend-
ing (G, λ, i, αH). Since every torus over the algebraically closed residue field
of V is trivial, this degenerating family satisfies the isotriviality condition
in Definition 4.2.1.1 and defines an object of DEGPEL,MH(V ). By Theorem
5.3.1.19, this corresponds to an object of DDPEL,MH(V ). In particular, we

obtain an H-orbit of admissible filtrations Z on L⊗
Z
Ẑ2 that are fully sym-

plectic with respect to (L, 〈 · , · 〉). By 3, the O-multirank of every such Z is
zero. Therefore, the torus part of the semi-abelian scheme extending G must
be trivial, which means G extends to an abelian scheme over Spec(V ) (see
Remark 3.3.1.3 and Lemma 3.3.1.4). Then the valuative criterion is verified
by 2, as desired.

Remark 5.3.3.2. Condition 2 in Theorem 5.3.3.1 is satisfied when M′ → S′

is MH → S0 (see Remark 5.3.2.2; cf. the proof of properness in [76, end
of §5]). Condition 3 in Theorem 5.3.3.1 is satisfied, for example, when B is
simple and the signatures (pτ , qτ )τ of (L⊗

Z
R, 〈 · , · 〉, h) (see Definition 1.2.5.2)

satisfy min(pτ , qτ ) = 0 for at least one τ . (In this case, instead of applying
Theorem 5.3.1.19 in the proof of Theorem 5.3.1.19, we may apply the much
simpler Theorem 5.1.2.7.) More generally, condition 3 is satisfied if the group
G(Qυ) contains no unipotent elements for some (finite or infinite) place υ of
Q prime-to-2.

Remark 5.3.3.3. Theorem 5.3.3.1 is applicable, for example, to proving the
properness of moduli problems defining integral models of Shimura varieties
with reasonable bad reductions (satisfying conditions 1 and 2).
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5.4 Notion of Cusp Labels

5.4.1 Principal Cusp Labels

Definition 5.4.1.1. With the setting as in Section 5.2.1, the category
DDfil.-spl.

PEL,Mn
(R, I) has objects of the form

(Zn, (X, Y , φ, ϕ−2,n, ϕ0,n), (A, λA, iA, ϕ−1,n), δn, (cn, c
∨
n , τn)),

where

1. X (resp. Y ) is constant with value X (resp. Y );

2. cn|X : X → A∨η (resp. c∨n |Y : Y → Aη) extends to an O-equivariant
homomorphism c : X → A∨ (resp. c∨ : Y → A) over S (which is
unique by Corollary 5.2.3.11);

3. if we set τ := τn|1Y ×X,η and α\n := (Zn, ϕ−2,n, ϕ−1,n, ϕ0,n, δn, cn, c
∨
n , τn),

then α\n is a level-n structure datum as in Definition 5.2.7.8, and
(A, λA, iA, X, Y , φ, c, c

∨, τ, [α\n]) is an object in DDPEL,Mn(R, I) as in
Definition 5.2.7.13.

Remark 5.4.1.2. There is a natural functor DDfil.-spl.
PEL,Mn

(R, I) →
DDPEL,Mn(R, I) defined by assigning the class [α\n] to the representa-
tive α\n.

Now let us introduce the idea of cusp labels. We would like to define our
cusp labels as equivalence classes of the tuples (Zn, (X, Y , φ, ϕ−2,n, ϕ0,n), δn),
because it is the part of the degeneration datum that is discrete in nature.
Later our construction will produce for each cusp label a formal scheme over
which we have tautological data of (A, λA, iA, ϕ−1,n) and (cn, c

∨
n , τn). These

formal schemes should be interpreted as our boundary components, because
their suitable algebraic approximations will be glued to the moduli problem
Mn in the étale topology (and then form the desired compactification). Since
the gluing process will be carried out in the étale topology, there is no loss
of generality to assume (in the definition of cusp labels) that X and Y are
constant with values X and Y , respectively.

Definition 5.4.1.3. Given a fully symplectic admissible filtration Z

on L⊗
Z
Ẑ2 with respect to (L, 〈 · , · 〉) as in Definition 5.2.7.1, a torus

argument Φ for Z is a tuple Φ := (X, Y, φ, ϕ−2, ϕ0), where
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1. X and Y are O-lattices of the same O-multirank (see Definition
1.2.1.21), and φ : Y ↪→ X is an O-equivariant embedding;

2. ϕ−2 : GrZ−2
∼→ HomẐ2(X⊗

Z
Ẑ2, Ẑ2(1)) and ϕ0 : GrZ0

∼→ Y⊗
Z
Ẑ2 are iso-

morphisms such that the pairing 〈 · , · 〉20 : GrZ−2×GrZ0 → Ẑ2(1) defined
by Z is the pullback of the pairing

〈 · , · 〉φ : HomẐ2(X⊗
Z
Ẑ2, Ẑ2(1))×(Y⊗

Z
Ẑ2)→ Ẑ2(1)

defined by the composition

HomẐ2(X⊗
Z
Ẑ2, Ẑ2(1))×(Y⊗

Z
Ẑ2)

Id×φ→ HomẐ2(X⊗
Z
Ẑ2, Ẑ2(1))×(X⊗

Z
Ẑ2)→ Ẑ2(1),

with the sign convention that 〈 · , · 〉φ(x, y) = x(φ(y)) = (φ(y))(x) for

all x ∈ HomẐ2(X⊗
Z
Ẑ2, Ẑ2(1)) and y ∈ Y⊗

Z
Ẑ2.

Definition 5.4.1.4. Given a fully symplectic-liftable admissible filtration Zn
on L/nL with respect to (L, 〈 · , · 〉) as in Definition 5.2.7.3, a torus argu-
ment Φn at level n for Zn is a tuple Φn := (X, Y, φ, ϕ−2,n, ϕ0,n), where

1. X and Y are O-lattices of the same O-multirank (see Definition
1.2.1.21), and φ : Y ↪→ X is an O-equivariant embedding;

2. ϕ−2,n : GrZ−2,n
∼→ Hom(X/nX, (Z/nZ)(1)) and ϕ0,n : GrZ0,n

∼→ Y/nY
are isomorphisms that are reductions modulo n of some isomorphisms
ϕ−2 : GrZ−2

∼→ HomẐ2(X⊗
Z
Ẑ2, Ẑ2(1)) and ϕ0 : GrZ0

∼→ (Y⊗
Z
Ẑ2), re-

spectively, such that Φ = (X, Y, φ, ϕ−2, ϕ0) form a torus argument as
in Definition 5.4.1.3.

We say in this case that Φn is the reduction modulo n of Φ.

Definition 5.4.1.5. Let Φn = (X, Y, φ, ϕ−2,n, ϕ0,n) and Φ′n =
(X ′, Y ′, φ′, ϕ′−2,n, ϕ

′
0,n) be two torus arguments at level n. We say

that Φn and Φ′n are equivalent if there exists a pair of isomorphisms
(γX : X ′

∼→ X, γY : Y
∼→ Y ′) such that φ = γXφ

′γY , ϕ′−2,n = tγXϕ−2,n, and
ϕ′0,n = γY ϕ0,n. In this case, we say that Φn and Φ′n are equivalent under the

pair of isomorphisms (γX , γY ), which we denote by (γX , γY ) : Φn
∼→ Φ′n.
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Definition 5.4.1.6. The group functor GLφ = GLX,Y,φ over Spec(Z) is de-
fined by assigning to each Z-algebra R the group

GLφ(R) := {(gX , gY ) ∈ GLO(X)×GLO(Y ) : φ = gXφgY }.

Definition 5.4.1.7. The group Γφ = ΓX,Y,φ is the group GLφ(Z), or equiv-
alently the group of pairs of isomorphisms (γX : X

∼→ X, γY : Y
∼→ Y ) in

GLO(Y )×GLO(X) such that φ = γXφγY .

By functoriality, we have a natural homomorphism

Γφ = GLφ(Z)→ GLφ(R) ↪→ GLO(X⊗
Z
R)×GLO(Y⊗

Z
R)

for each Z-algebra R. (Here Γφ is understood as a group independent of R.)
We have the following simple observation:

Lemma 5.4.1.8. For each triple (X, Y, φ), if two torus arguments Φn =
(X, Y, φ, ϕ−2,n, ϕ0,n) and Φ′n = (X, Y, φ, ϕ′−2,n, ϕ

′
0,n) at level n are equivalent

under some (γX , γY ), then necessarily (γX , γY ) ∈ Γφ.

Definition 5.4.1.9. A (principal) cusp label at level n for a PEL-type
O-lattice (L, 〈 · , · 〉, h), or a cusp label of the moduli problem Mn, is an equiv-
alence class [(Zn,Φn, δn)] of triples (Zn,Φn, δn), where

1. Zn is an admissible filtration on L/nL that is fully symplectic-liftable
in the sense of Definition 5.2.7.3;

2. Φn is a torus argument at level n for Zn;

3. δn : GrZn
∼→ L/nL is a liftable splitting.

Two triples (Zn,Φn, δn) and (Z′n,Φ
′
n, δ
′
n) are equivalent if Zn and Z′n are iden-

tical, and if Φn and Φ′n are equivalent as in Definition 5.4.1.5.

Convention 5.4.1.10. For simplicity, we shall often suppress Zn from the
notation (Zn,Φn, δn), with the understanding that the data Φn and δn require
an implicit choice of Zn. Even though we suppress Zn in the representatives
of cusp labels, we shall still retain the notation (LZn , 〈 · , · 〉Zn , hZn) and MZn

n

as in Lemma 5.2.7.5.
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Lemma 5.4.1.11. Suppose we are given a representative (Zn,Φn, δn) of a
cusp label at level n, with Φn = (X, Y, φ, ϕ−2,n, ϕ0,n). Then, for each object
(A, λA, iA, X, Y , φ, c, c

∨, τ, [α\n]) in DDPEL,Mn(R, I) such that X and Y are
constant with values X and Y , respectively, there is a unique object

(Zn, (X, Y, φ, ϕ−2,n, ϕ0,n), (A, λA, iA, ϕ−1,n), δn, (cn, c
∨
n , τn))

in DDfil.-spl.
PEL,Mn

(R, I) such that α\n = (Zn, ϕ−2,n, ϕ−1,n, ϕ0,n, δn, cn, c
∨
n , τn) is a

representative of [α\n].

Definition 5.4.1.12. The O-multirank of a cusp label at level n repre-
sented by some (Zn,Φn, δn) is the O-multirank of Zn (see Definitions 5.2.2.6,
5.2.2.9, and Remark 5.2.2.8).

Lemma 5.4.1.13. Suppose we have a cusp label at level n represented by
some (Zn,Φn, δn), with Φn = (X, Y, φ, ϕ−2,n, ϕ0,n). For each admissible sur-
jection sX : X � X ′ of O-lattices (see Definition 1.2.6.7), there is a canon-
ically determined cusp label at level n which can be represented by some
(Z′n,Φ

′
n, δ
′
n) with Φ′n = (X ′, Y ′, φ′, ϕ−2,n, ϕ0,n) described as follows:

1. X ′ is the same X ′ we have in the surjection sX .

2. An admissible surjection sY : Y � Y ′ of O-lattices for some Y ′ deter-
mined by setting ker(sY ) = φ−1(ker(sX)).

3. The definitions of sY and Y ′ induce an embedding φ′ : Y ′ → X ′ such
that sXφ = φ′sY .

4. The admissible surjection sX : X � X ′ defines an admissible embed-
ding

s∗X : Hom(X ′/nX ′, (Z/nZ)(1)) ↪→ Hom(X/nX, (Z/nZ)(1)).

The image of s∗X is mapped to an admissible submodule Z′−2,n

of Z−2,n, and defines an isomorphism ϕ′−2 : GrZ
′

−2,n = Z′−2,n
∼→

Hom(X ′/nX ′, (Z/nZ)(1)).

The composition of the admissible surjection Z0,n � Z0,n/Z−1,n = GrZ0,n
with ϕ0,n : GrZ0,n

∼→ Y/nY defines a surjection Z0,n � Y/nY , and hence
the admissible surjection sY : Y � Y ′ defines an admissible surjection
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Z0,n � Y ′/nY ′, whose kernel defines an admissible submodule Z′−1,n of

Z0,n = L/nL. This defines an isomorphism ϕ′0,n : GrZ
′

0,n
∼→ Y ′/nY ′.

These two submodules Z′−2,n and Z′−1,n of L/nL define a fully symplectic-
liftable admissible filtration Z′n = {Z′−i,n}i on L/nL.

5. δ′n : GrZn
∼→ L/nL is just any liftable splitting.

This construction determines a unique pair (Z′n,Φ
′
n), and hence a unique cusp

label at level n.

Proof. The upshot is to show that the tuple (Z′n,Φ
′
n, δ
′
n) we arrive at, with

Φ′n = (X ′, Y ′, φ′, ϕ′−2,n, ϕ
′
0,n), is a representative of a cusp label. In other

words, the filtration Z′n has to be fully symplectic-liftable and admissible,
and the torus argument Φ′n at level n has to be a reduction modulo n of
some torus argument Φ′ for some fully symplectic lifting Z of Zn.

Let us fix some symplectic lifting Z of Zn, and fix some liftings ϕ−2 :
GrZ−2

∼→ HomẐ2(X⊗
Z
Ẑ2, Ẑ2(1)) and ϕ0 : GrZ0

∼→ Y⊗
Z
Ẑ2 of ϕ−2,n : GrZ−2,n

∼→

Hom(X/nX, (Z/nZ)(1)) and ϕ0,n : GrZ0,n
∼→ Y/nY , respectively.

The admissible surjection sX : X � X ′ defines an admissible embedding

s∗X : HomẐ2(X ′⊗
Z
Ẑ2, Ẑ2(1)) ↪→ HomẐ2(X⊗

Z
Ẑ2, Ẑ2(1)).

By the choice of ϕ−2 above, this defines an admissible submodule Z′−2 of Z−2,
whose reduction modulo n is the admissible submodule Z′−2,n of Z−2,n. This

defines an isomorphism ϕ′−2 : GrZ
′

−2 = Z′−2
∼→ HomẐ2(X ′⊗

Z
Ẑ2, Ẑ2(1)) lifting

the isomorphism ϕ′−2,n : GrZ
′

−2,n = Z′−2,n
∼→ Hom(X ′/nX ′, (Z/nZ)(1)).

On the other hand, the composition of the admissible surjection Z0 �
Z0/Z−1 = GrZ0 with the isomorphism ϕ−1

0 : GrZ0
∼→ Y⊗

Z
Ẑ2 defines an admissi-

ble surjection Z0 � Y⊗
Z
Ẑ2, and hence the admissible surjection sY : Y � Y ′

defines an admissible surjection Z0 � Y ′⊗
Z
Ẑ2. The kernel of Z0 � Y ′⊗

Z
Ẑ2

defines an admissible submodule Z′−1 of Z0 = L⊗
Z
Ẑ2, whose reduction modulo

n is the admissible submodule Z−1,n of Z0,n = L/nL. This defines an isomor-

phism ϕ′0 : GrZ
′

0
∼→ Y ′⊗

Z
Ẑ2 lifting the isomorphism ϕ′0,n : GrZ

′

0,n
∼→ Y ′/nY ′.

The filtration Z′ = {Z′−i}i thus defined is admissible by construction, and
it is symplectic because of the definition of φ and φ′. Indeed, we can define
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Z′−1 as the annihilator of Z′−2. Also, it is fully symplectic because Z′−2 is a
submodule of Z−2. Hence the filtration Z′n = {Z′−i,n}i is fully symplectic-
liftable and admissible, as desired.

The realization of Y ′ as an admissible quotient of Y is unique in the
construction of Lemma 5.4.1.13. However, once we fix a particular realization
of Y ′ as a quotient of Y , by possibly a different quotient homomorphism, the
remaining construction in the proof of Lemma 5.4.1.13 carries over without
any necessary modification. Hence, for comparing two objects in general, it
will be more convenient if we can allow a twist of the identification of Y ′ by
an isomorphism, as long as the kernel of sY : Y � Y ′ remains the same.

Definition 5.4.1.14. A surjection (Zn,Φn, δn)� (Z′n,Φ
′
n, δ
′
n) between rep-

resentatives of cusp labels at level n, where Φn = (X, Y, φ, ϕ−2,n, ϕ0,n) and
Φ′n = (X ′, Y ′, φ′, ϕ′−2,n, ϕ

′
0,n), is a pair (of surjections) (sX : X � X ′, sY :

Y � Y ′) such that

1. both sX and sY are admissible surjections, and they are compatible with
φ and φ′ in the sense that sXφ = φ′sY ;

2. Z′−2,n is an admissible submodule of Z−2,n, and the natural embedding

GrZ
′

−2,n ↪→ GrZ−2,n satisfies ϕ−2,n ◦ (GrZ
′

−2,n ↪→ GrZ−2,n) = s∗X ◦ ϕ′−2,n;

3. Z−1,n is an admissible submodule of Z′−1,n, and the natural surjection

GrZ0,n � GrZ
′

0,n satisfies sY ◦ ϕ0,n = ϕ′0,n ◦ (GrZ0,n � GrZ
′

0,n).

(In other words, Z′n and (ϕ′−2,n, ϕ
′
0,n) are assigned to Zn and (ϕ−2,n, ϕ0,n)

respectively under (sX , sY ) as in Lemma 5.4.1.13.) In this case, we write
(sX , sY ) : (Zn,Φn, δn)� (Z′n,Φ

′
n, δ
′
n).

Lemma 5.4.1.15. Let (Φn, δn), (Φ′n, δ
′
n), (Φ′′n, δ

′′
n), and (Φ′′′n , δ

′′′
n ) be repre-

sentatives of cusp labels at level n (see Convention 5.4.1.10), with Φn =
(X, Y, φ, ϕ−2,n, ϕ0,n), Φ′n = (X ′, Y ′, φ′, ϕ′−2,n, ϕ

′
0,n), etc. Suppose (γX : X ′

∼→
X, γY : Y

∼→ Y ′) defines an isomorphism (Φn, δn)
∼→ (Φ′n, δ

′
n), (sX′ : X ′ �

X ′′, sY ′ : Y ′ � Y ′′) defines a surjection (Φ′n, δ
′
n) � (Φ′′n, δ

′′
n), and (γX′′ :

X ′′′
∼→ X ′′, γY ′′ : Y ′′

∼→ Y ′′′) defines an isomorphism (Φ′′n, δ
′′
n)

∼→ (Φ′′′n , δ
′′′
n ).

Then (γ−1
X′′sX′γ

−1
X : X � X ′′′, γY ′′sY ′γY : Y � Y ′′′) defines a surjection

(Φn, δn)� (Φ′′′n , δ
′′′
n ).

This justifies the following:
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Definition 5.4.1.16. We say that there is a surjection from a cusp label at
level n represented by some (Zn,Φn, δn) to another cusp label at level n repre-
sented by some (Z′n,Φ

′
n, δ
′
n) if there is a surjection (sX , sY ) from (Zn,Φn, δn)

to (Z′n,Φ
′
n, δ
′
n).

5.4.2 General Cusp Labels

In this section, we give analogues of the definitions in Section 5.4.1 whenever
it is appropriate in the context.

Suppose we are given a collection of orbits ZH = {ZHn}n as in Definition
5.3.1.14. For each integer n ≥ 1 such that 2 - n and U2(n) ⊂ H, we
have an Hn-orbit ZHn of fully symplectic-liftable admissible filtrations on
L/nL, which we shall assume to be a constant scheme over the base scheme.
(This is harmless for our purpose.) We say in this case that ZH and each of
ZHn are split. Over each point, namely, for each choice of Zn in this orbit,
it determines a subgroup Pess

Zn
. Each element gn ∈ Pess

Zn
acts on the torus

arguments at level n by sending (X, Y, φ, ϕ−2,n, ϕ0,n) to (X, Y, φ, ϕ′−2,n, ϕ
′
0,n)

with ϕ′−2,n := ν(gn)−1 ◦ ϕ−2,n ◦Gr−2,n(gn) and ϕ′0,n := ϕ0,n ◦Gr0,n(gn). Then
it makes sense to talk about the Hn,Pess

Zn
-orbits of torus arguments over Zn,

and hence about Hn-orbits ΦHn of étale-locally-defined torus arguments over
ZHn .

We would like to focus on the situation when ΦHn is also split in the
sense that it is formed by orbits that are already defined over the same base
(without having to make étale localizations):

Definition 5.4.2.1. Given a collection of split orbits ZH = {ZHn}n as in
Definition 5.3.1.14, a torus argument ΦH at level H for ZH is a tuple
ΦH := (X, Y, φ, ϕ−2,H, ϕ0,H) which is a collection ΦH = {ΦHn}n of Hn-orbits
of torus arguments at levels n with elements ΦHn described as follows:

1. For each index n, there is an element Zn in ZHn and a torus argument
(X, Y, φ, ϕ−2,n, ϕ0,n) at level n for Zn, such that ΦHn is the Hn-orbit of
(X, Y, φ, ϕ−2,n, ϕ0,n).

2. For all indices n and m such that n|m, the Hn-orbit ΦHn is determined
by the Hm-orbit ΦHm by reduction modulo n.

By abuse of notation, we shall write ΦHn = (X, Y, φ, ϕ−2,Hn , ϕ0,Hn) and ΦH =
(X, Y, φ, ϕ−2,H, ϕ0,H).
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Definition 5.4.2.2. Two torus arguments ΦH = {ΦHn}n and Φ′H = {Φ′Hn}n
at level H are equivalent if and only if there exists a pair of isomorphisms
(γX : X ′

∼→ X, γY : Y
∼→ Y ′) and some index n such that ΦH contains some

torus argument at level n that is equivalent under (γX , γY ) (as in Definition
5.4.1.5) to some torus argument at level n in Φ′H. In this case, we say that
ΦH and Φ′H are equivalent under the isomorphism (γX , γY ), which we denote
by (γX , γY ) : ΦH

∼→ Φ′H.

The following is a trivial reformulation of Lemma 5.4.1.8:

Lemma 5.4.2.3. If two torus arguments ΦH and Φ′H at level n are equivalent
under some (γX , γY ), then necessarily (γX , γY ) ∈ Γφ.

On the other hand, over each point of ZHn , namely, for each choice of Zn
in this orbit, we can make sense of a liftable splitting δn over it, and hence
we can talk about Hn-orbits of (ZHn , δHn) with the understanding that δHn
is defined pointwise over ZHn . We say in this case that δHn is a splitting of
ZHn . Hence it also makes sense to talk about a splitting δH of ZH.

Definition 5.4.2.4. A cusp label at level H for a PEL-type O-lattice
(L, 〈 · , · 〉, h), or a cusp label of the moduli problem MH, is an equivalence
class of triples (ZH,ΦH, δH), where

1. ZH = {ZHn}n is a collection of orbits of admissible filtration on L/nL
that are fully symplectic-liftable in the sense of Definition 5.2.7.3;

2. ΦH is a torus argument at level H for ZH;

3. δH is a liftable splitting of ZH.

Two triples (ZH,ΦH, δH) and (Z′H,Φ
′
H, δ

′
H) are equivalent if ZH and Z′H are

identical, and if ΦH and Φ′H are equivalent as in Definition 5.4.2.2. If ΦH
and Φ′H are equivalent under some (γX , γY ) as in Definition 5.4.2.2, then we
say that (ZH,ΦH, δH) and (Z′H,Φ

′
H, δ

′
H) are equivalent under (γX , γY ).

Convention 5.4.2.5. As in Convention 5.4.1.10, to simplify the notation,
we shall often suppress ZH from the notation (ZH,ΦH, δH), with the under-
standing that the data ΦH and δH require an implicit choice of ZH.

We shall nevertheless define the notation (LZH , 〈 · , · 〉ZH , hZH) and MZH
H

even when we suppress ZH from the notation in the representatives of cusp
labels (see Convention 5.4.1.10 and Lemma 5.2.7.5):
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Definition 5.4.2.6. The PEL-type O-lattice (LZH , 〈 · , · 〉ZH , hZH) is a fixed
(noncanonical) choice of any of the PEL-type O-lattice (LZn , 〈 · , · 〉Zn , hZn)
in Lemma 5.2.7.5 for any element Zn in any ZHn (in ZH = {ZHn}n). It
determines some group functor G(LZn ,〈 · , · 〉Zn ,hZn ), such that there is an identi-
fication Gess

h,Zn
∼= Gess

(LΦn ,〈 · , · 〉Φn ,hZn )(Z/nZ). Let Hh be the preimage of Hn,Gess
h,Zn

under the surjection G(LZn ,〈 · , · 〉Zn ,hZn )(Ẑ2) � Gess
h,Zn

. Then we define MHh to
be the moduli problem defined by (LZn , 〈 · , · 〉Zn , hZn) with level-Hh structures
as in Lemma 5.2.7.5. (The isomorphism class of MHh is well defined and
independent of the choice of (LZH , 〈 · , · 〉ZH , hZH) = (LZn , 〈 · , · 〉Zn , hZn).) We
define MΦH

H to be the quotient of
∐

MZn
n by Hn, where the disjoint union is

over representatives (Zn,Φn, δn) (with the same (X, Y, φ)) in (ZH,ΦH, δH),
which is finite étale over MHh by construction. (The isomorphism class of
MΦH
H is independent of the choice of n and the representatives (Zn,Φn, δn)

we use. We have MΦH
H

∼→ MHh when, for some (and hence every) choice of
a representative (Zn,Φn, δn) in (ZH,ΦH, δH), the canonical image of Hn,Pess

Zn

in Gess
h,Zn
×Gess

l,Zn
is the direct product Hn,Gess

h,Zn
×Hn,Gess

l,Zn
.) We then (abu-

sively) define MZH
H to be the quotient of MΦH

H by the subgroup of Γφ sta-
bilizing ΦH (whose action factors through a finite quotient group), which
depends only on the cusp label [(ZH,ΦH, δH)], but not on the choice of the
representative (ZH,ΦH, δH). By construction, we have finite étale morphisms
MΦH
H → MZH

H → MHh (which can be identified with MH′h → MH′′h → MHh for
some canonically determined open compact subgroups H′h ⊂ H′′h ⊂ Hh).

Definition 5.4.2.7. The O-multirank of a cusp label at level H represented
by some (ZH,ΦH, δH) is the O-multirank (see Definition 5.4.1.12) of any Zn
in any ZHn in ZH.

Definition 5.4.2.8. With the setting as in Section 5.2.1, the category
DDfil.-spl.

PEL,MH
(R, I) has objects of the form

(ZH, (X, Y , φ, ϕ
∼
−2,H, ϕ

∼
0,H), (A, λA, iA, ϕ−1,H), δH, (cH, c

∨
H, τH))

such that

1. X (resp. Y ) is constant with value X (resp. Y );

2. (ϕ∼−2,H, ϕ
∼
0,H) is a subscheme of (ϕ−2,H, ϕ0,H) ×

ZH
ϕ−1,H, where

(X, Y, φ, ϕ−2,H, ϕ0,H) is a torus argument at level H as in Definition
5.4.2.1 above, and where (ϕ∼−2,H, ϕ

∼
0,H) is an étale-locally-defined
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Hn-orbit which surjects under the two projections to the or-
bits defining (ϕ−2,H, ϕ0,H) and ϕ−1,H; in this case we say that
(ϕ−2,H, ϕ0,H) is induced by (ϕ∼−2,H, ϕ

∼
0,H) (then, by the universal

property of MΦH
H because of its very construction, the torus part

(ZH,Φ
∼
H = (X, Y, φ, ϕ∼−2,H, ϕ

∼
0,H), δH) and abelian part (A, λA, iA, ϕ−1,H)

canonically define a morphism S = Spec(R)→ MΦH
H );

3. cH|X : X → A∨η (resp. c∨H|Y : Y → Aη; these restrictions are defined
by taking the common induced element in the étale-locally-defined orbit
and performing descent) extends to an O-equivariant homomorphism
c : X → A∨ (resp. c∨ : Y → A) over S (which is unique by Corollary
5.2.3.11);

4. if we set τ := τH|1Y ×X,η (defined by descent as in the case of cH|X
and c∨H|Y ) and α\H := (ZH, ϕ−2,H, ϕ−1,H, ϕ0,H, δH, cH, c

∨
H, τH), then

α\H is a level-H structure datum as in Definition 5.3.1.14, and
(A, λA, iA, X, Y , φ, c, c

∨, τ, [α\H]) is an object in DDPEL,MH(R, I) as in
Definition 5.3.1.18.

Remark 5.4.2.9. There is a natural functor DDfil.-spl.
PEL,MH

(R, I) →
DDPEL,MH(R, I) defined by assigning the class [α\H] to the represen-

tative α\H.

Lemma 5.4.2.10. Suppose we are given a representative (ZH,ΦH, δH) of a
cusp label at level H, with ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H). Then for each object

(A, λA, iA, X, Y , φ, c, c
∨, τ, [α\H])

in DDPEL,MH(R, I) with split ZH and constant X and Y in any represen-

tative of [α\H], there is (up to isomorphisms inducing automorphisms of
(X, Y, λ, ϕ−2,H, ϕ0,H)) a unique object

(ZH, (X, Y, φ, ϕ
∼
−2,H, ϕ

∼
0,H), (A, λA, iA, ϕ−1,H), δH, (cH, c

∨
H, τH))

in DDfil.-spl.
PEL,MH

(R, I) (where (ϕ∼−2,H, ϕ
∼
0,H) induces (ϕ−2,H, ϕ0,H) as in Definition

5.4.2.8) such that α\H = (ZH, ϕ
∼
−2,H, ϕ−1,H, ϕ

∼
0,H, δH, cH, c

∨
H, τH) is a represen-

tative of [α\H].
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Lemma 5.4.2.11. Suppose we have a cusp label at level H represented by
some (ZH,ΦH, δH), with ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H). For each admissible
surjection sX : X � X ′ of O-lattices (see Definition 1.2.6.7), there is canon-
ically determined cusp label at level H which can be represented by some
(Z′H,Φ

′
H, δ

′
H) with Φ′H = (X ′, Y ′, φ′, ϕ−2,H, ϕ0,H) described as follows:

1. X ′ is the same X ′ we have in the surjection sX .

2. An admissible surjection sY : Y � Y ′ of O-lattices for some Y ′ deter-
mined by setting ker(sY ) = φ−1(ker(sX)).

3. The definitions of sY and Y ′ induce an embedding φ′ : Y ′ → X ′ such
that sXφ = φ′sY .

4. Let us write ZH = {ZHn}n, with indices given by integers n ≥ 1 such
that 2 - n and U2(n) ⊂ H. For each index n, the recipe in Lemma
5.4.1.13 determines an assignment of Z′n and (ϕ′−2,n, ϕ

′
0,n) to Zn and

(ϕ−2,n, ϕ0,n) respectively under (sX , sY ), which is compatible with the
process of taking orbits. Hence we have an induced assignment of Z′Hn
and (ϕ′−2,Hn

, ϕ′0,Hn) to ZHn and (ϕ−2,Hn , ϕ0,Hn) respectively, and hence
an induced assignment of Z′H and (ϕ′−2,H, ϕ

′
0,H) to ZH and (ϕ−2,H, ϕ0,H)

respectively under (sX , sY ).

5. δ′H is just any liftable splitting of Z′H

This construction determines a unique pair (Z′H,Φ
′
H), and hence a unique

cusp label at level H.

Definition 5.4.2.12. A surjection (ZH,ΦH, δH) � (Z′H,Φ
′
H, δ

′
H) between

representatives of cusp labels at level H, where ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H)
and Φ′H = (X ′, Y ′, φ′, ϕ′−2,H, ϕ

′
0,H), is a pair (of surjections) (sX : X �

X ′, sY : Y � Y ′) such that

1. both sX and sY are admissible surjections, and they are compatible with
φ and φ′ in the sense that sXφ = φ′sY ;

2. Z′H and (ϕ′−2,H, ϕ
′
0,H) are assigned to ZH and (ϕ−2,H, ϕ0,H) respectively

under (sX , sY ) as in Lemma 5.4.2.11. (We do not need to know if sY
is the canonically determined surjection as in Lemma 5.4.2.11 for the
construction there.)
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In this case, we write (sX , sY ) : (ZH,ΦH, δH)� (Z′H,Φ
′
H, δ

′
H).

Alternatively, we can view such a surjection as a collection of orbits of
surjections described in Definition 5.4.1.14, in its natural sense.

Then a trivial analogue of Lemma 5.4.1.15 justifies the following:

Definition 5.4.2.13. We say that there is a surjection from a cusp label at
level H represented by some (ZH,ΦH, δH) to a cusp label at level H represented
by some (Z′H,Φ

′
H, δ

′
H) if there is a surjection (sX , sY ) from (ZH,ΦH, δH) to

(Z′H,Φ
′
H, δ

′
H).

5.4.3 Hecke Actions on Cusp Labels

With the setting as at the beginning of Section 5.4.1, suppose we have an
element g ∈ G(A∞,2), and suppose we have two open compact subgroups H′
and H of G(Ẑ2) such that g−1H′g ⊂ H.

Construction 5.4.3.1. Suppose we have a degenerating family (G, λ, i, αH′)
of type MH′ over S. By definition, this means its restriction (Gη, λη, iη, αH′)
to the generic point η of S defines an object parameterized by MH′ . Let η̄
be a geometric point over η. By Proposition 1.4.3.4, the object defined by
(Gη, λη, iη, αH′) corresponds to an object defined by (Gη, λη, iη, [α̂]H′). We
may interpret [α̂]H′ as based at η̄ (see Definitions 1.3.8.2 and 1.3.8.7, and
Convention 1.3.8.8). For each representative α̂ of the H′-orbit [α̂]H′ , we may
consider the composition α̂◦g. If we take a different representative α̂′, which
is by definition α̂ ◦ u for some u ∈ H′, then α̂′ ◦ g = α̂ ◦ g ◦ (g−1ug). Since
g−1H′g ⊂ H, we obtain a well-definedH-orbit [α̂◦g]H. This defines an object
(Gη, λη, iη, [α̂ ◦ g]H) in Mrat

H . (This is consistent with the action of g on the
tower M2(η) = lim←−

H,H⊂G(Ẑ2)

Mrat
H (η) mentioned in Remark 1.4.3.11.)

Construction 5.4.3.2. For the purpose of studying degenerations, it
is desirable that we translate the object (Gη, λη, iη, [α̂ ◦ g]H) of Mrat

H
(up to Z×(2)-isogeny) back to some object (G′η, λ

′
η, i
′
η, α

′
H) of MH (up to

isomorphism). As in the proof of Proposition 1.4.3.4, this is achieved by a
Z×(2)-isogeny fη : Gη → G′η defined as follows:

Take any representative α̂ : L⊗
Z
A∞,2 ∼→ V2Gη̄ of [α̂]H, which by con-

struction sends L⊗
Z
Ẑ2 to T2Gη̄. Then α̂ ◦ g : L⊗

Z
A∞,2 ∼→ V2Gη̄ sends

L⊗
Z
Ẑ2 to the O-invariant open compact subgroup α̂(g(L⊗

Z
Ẑ2)) of V2Gη̄.
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Since the H′-orbit of α̂ is π1(η, η̄)-invariant, and since g−1H′g ⊂ H, the
H-orbit of α̂ ◦ g is also π1(η, η̄)-invariant. Since H ⊂ G(Ẑ2), this shows that
α̂(g(L⊗

Z
Ẑ2)) is π1(η, η̄)-invariant, which by Corollary 1.3.5.4 corresponds to

some Z×(2)-isogeny fη : Gη → G′η to an abelian scheme G′η.

The inclusion α̂(L⊗
Z
Ẑ2) ↪→ α̂(L#⊗

Z
Ẑ2) in V2Gη̄ corresponds by Corol-

lary 1.3.5.4 to the class of the polarization λη : Gη → G∨η . AmongO-invariant

open compact subgroups in V2Gη̄ isomorphic to α̂(L#⊗
Z
Ẑ2), it is the con-

dition that α̂(L#⊗
Z
Ẑ2) is dual to α̂(L⊗

Z
Ẑ2) under the λ-Weil pairing eλ, or

rather the condition that L#⊗
Z
Ẑ2 is dual to L⊗

Z
Ẑ2 under the pairing 〈 · , · 〉,

that characterizes this class of Z×(2)-isogeny. (The class of a Z×(2)-isogeny from

Gη to an abelian scheme is only defined up to isomorphism on the target.)
Since g ∈ G(A∞,2) satisfies 〈gx, gy〉 = ν(g)〈x, y〉 for all x, y ∈ L⊗

Z
A∞,2,

we see that the perfect duality 〈 · , · 〉 : (L⊗
Z
Ẑ2)×(L#⊗

Z
Ẑ2) → Ẑ2(1) is

carried to the perfect duality 〈 · , · 〉 : g(L⊗
Z
Ẑ2)× g(L#⊗

Z
Ẑ2) → ν(g)Ẑ2(1).

In particular, the dual of g(L⊗
Z
Ẑ2) under 〈 · , · 〉 is ν(g)−1g(L#⊗

Z
Ẑ2). Under

α̂, this translates to the statement that the dual of the Z×(2)-isogeny fη is the

Z×(2)-isogeny f∨η : (G′η)
∨ → G∨η with source and target defined respectively by

the open compact subgroups ν(g)−1g(L#⊗
Z
Ẑ2) and L#⊗

Z
Ẑ2.

The composition (f∨η )−1 ◦ λη ◦ f−1
η : G′η → (G′η)

∨ has source and target

defined by g(L⊗
Z
Ẑ2) and ν(g)−1g(L#⊗

Z
Ẑ2), respectively, and we know by

Corollary 1.3.2.21 that this Z×(2)-isogeny is a Z×(2)-polarization. Using the

approximation A∞,2,× = Z×(2),>0 · Ẑ2,×, there is a unique element r ∈ Z×(2),>0

such that ν(g) = ru for some u ∈ Ẑ2,×. Set λ′η := r−1(f∨η )−1 ◦λη ◦ f−1
η . Then

the source and target of the class of this Z×(2)-isogeny correspond to the

open compact subgroups g(L⊗
Z
Ẑ2) and g(L#⊗

Z
Ẑ2) = rν(g)−1g(L#⊗

Z
Ẑ2),

respectively. This defines a polarization λ′ : G′η → (G′η)
∨, which satisfies

f∨η ◦ λ′η ◦ fη = rλη.

Since g(L⊗
Z
Ẑ2) is invariant under O, we see that iη : O → Endη(Gη)

induces an O-endomorphism structure i′η : O → Endη(G
′
η) (with image in
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Endη(G
′
η) instead of Endη(G

′
η)⊗
Z
Z(2)).

Finally, the symplectic isomorphism α̂′ := V2(fη)◦α̂ : L⊗
Z
A∞,2 ∼→ V2G′η̄

sends L⊗
Z
Ẑ2 to T2G′η̄. Since g−1H′g ⊂ H, the H-orbit of α̂′ is independent

of the choice of α̂. Hence it is necessarily defined over η, and defines a rational
level-H structure [α̂′]H.

Thus we have constructed an explicit Z×(2)-isogeny fη : Gη → G′η that

defines the equivalence (Gη, λη, iη, [α̂ ◦ g]H) ∼Z×
(2)

-isog. (G′η, λ
′
η, i
′
η, [α̂

′]H). By

Lemma 1.3.8.5, (G′η, λ
′
η, i
′
η, [α̂

′]H) comes from a unique (G′η, λ
′
η, i
′
η, α

′
H) under

Construction 1.3.8.4. (This finishes Construction 5.4.3.2.)

For the rest of this subsection, let us assume for simplicity that the target
G′η of the Z×(2)-isogeny Gη → G′η extends (uniquely) to a semi-abelian scheme

G′ over S. This is true, for example, if we assume thatR is a complete discrete
valuation ring with maximal ideal I and with algebraically closed residue field
k, in which case the semistable reduction theorem (see Theorem 3.3.2.4)
applies. (Such an assumption is harmless for our purpose of determining
Hecke actions on cusp labels.)

Construction 5.4.3.3. Let us take any integer N ≥ 1 prime-to-2 such that
Nfη is a prime-to-2 isogeny. Then, by Proposition 3.3.1.5, the isogeny Nfη :
Gη � G′η extends uniquely to an isogeny Nf : G� G′ between semi-abelian
schemes. Let K := ker(Nf), which is (quasi-finite and) flat by Lemma
1.3.1.11. (By Lemma 3.4.3.1, we could have defined G′ as the quotient of G
by the schematic closure of Kη := ker(Nfη) if we know for a different reason
that the schematic closure ofKη inG is quasi-finite and flat.) By symbolically
taking f to be N−1 ◦ (Nf), we obtain a “Z×(2)-isogeny” f : G → G′. This

“Z×(2)-isogeny” is independent of the N we have chosen in the sense that, if we

have chosen any other N ′ with N |N ′, then necessarily (N ′/N)◦ (Nf) = N ′f .

Let us investigate the effect of the action of g on the degeneration
data. Suppose that (G, λ, i, αH′) (resp. (G′, λ′, i′, α′H)) is an object of
DEGPEL,MH′

(R, I) (resp. DEGPEL,MH(R, I)) over S = Spec(R), with associ-

ated degeneration data (A, λA, iA, X, Y , φ, c, c
∨, τ, [α\H′ ]) in DDPEL,MH′

(R, I)

(resp. (A′, λ′A, i
′
A, X

′, Y ′, φ′, c′, (c∨)′, τ ′, [(α′H)\]) in DDPEL,MH(R, I)). For our
purpose, we would like to assume that X, Y , X ′, and Y ′ are constant with
respective values X, Y , X ′, and Y ′. Suppose that

α\H′ = (ZH′ , ϕ−2,H′ , ϕ−1,H′ , ϕ0,H′ , δH′ , cH′ , c
∨
H′ , τH′)
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is a representative of [α\H′ ], and that

(α′H)
\

= (Z′H, ϕ
′
−2,H, ϕ

′
−1,H, ϕ

′
0,H, δ

′
H, c

′
H, (c

∨
H)′, τ ′H)

is a representative of [(α′H)\]. Suppose moreover that ZH′ and
ΦH′ = (X, Y, φ, ϕ−2,H′ , ϕ0,H′) (resp. Z′H and Φ′H = (X ′, Y ′, φ′, ϕ′−2,H, ϕ

′
0,H))

are split in the sense that the latter defines a torus argument at level
H′ (resp. H) (see Definition 5.4.2.1). Then we obtain two cusp labels
represented by triples (ZH′ ,ΦH′ , δH′) and (Z′H,Φ

′
H, δ

′
H), respectively. Our

goal is to find the relation between the two cusp labels.
Let n,m ≥ 1 be integers such that U2(m) ⊂ H′, U2(n) ⊂ H, and

g−1U2(m)g ⊂ U2(n). Let Hn := H/U2(n) and let H ′m := H′/U2(m). Let

α\H′m = (ZH′m , ϕ−2,H′m , ϕ−1,H′m , ϕ0,H′m , δH′m , cH′m , c
∨
H′m
, τH′m)

be the H ′m-orbit in α\H′ , and let

(α′Hn)
\

= (Z′Hn , ϕ
′
−2,Hn , ϕ

′
−1,Hn , ϕ

′
0,Hn , δ

′
Hn , c

′
Hn , (c

∨
Hn)′, τ ′Hn)

be the Hn-orbit in α\H.
First let us determine the relation between ZH′ and Z′H, or equivalently

the relation between ZH′m and ZHn . Since this question is related only to the
group schemes G[m] and G′[n] that are independent of the choice of N in
Nf , we may take any N and consider the isogeny Nf : G� G′ with kernel
K as in Construction 5.4.3.3 above. Let us extend the filtration W on T2Gη̄

to a filtration WA∞,2 on V2Gη̄, given explicitly by

0 ⊂ W−2,A∞,2 = V2 Tη̄ ⊂ W−1,A∞,2 = V2G\
η̄ ⊂ W0,A∞,2 = V2Gη̄.

Similarly, we have a filtration W′ on T2G′η̄, which extends to a filtration W′A∞,2
on V2G′η̄. As in Section 3.4.1, the finite group scheme Kη has a natural
filtration

0 ⊂ Kµ
η ⊂ K f

η ⊂ Kη.

Since Nfη : Gη → G′η is the quotient of Gη by Kη, and since the filtrations

are compatible with this quotient, the isomorphism V2(fη) : V2Gη̄
∼→ V2G′η̄

identifies the two filtrations W and W′.
Let us take any symplectic lifting α̂ of the level-H′ structure αH′ , namely,

any representative of the H′-orbit [α̂]H′ associated with αH′ which sends
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L⊗
Z
Ẑ2 to T2Gη̄, and consider the induced isomorphism α̂ : L⊗

Z
A∞,2 ∼→

V2Gη̄. Then the pullback of W by α̂ is a filtration Z on L⊗
Z
Ẑ2 whose reduction

modulo m is a filtration Zm in the H ′m-orbit ZH′m , and the pullback of WA∞,2 by
α̂ is the natural filtration ZA∞,2 extending Z. In other words, we can interpret
ZH′ as the H′-orbit of Z. By construction of fη, we have α̂(g(L⊗

Z
Ẑ2)) =

V2(fη)
−1(T2G′η̄), or equivalently α̂′ = V2(fη)◦α̂◦g. Therefore, the pullback

of the filtration W′A∞,2 = V2(fη)(WA∞,2) by α̂′ is Z′A∞,2 := (α̂′)−1(W′A∞,2) =

g−1(α̂−1(WA∞,2)) = g−1(ZA∞,2). Equivalently, this means Z′ = g−1(g(L⊗
Z
Ẑ2)∩

ZA∞,2) = (L⊗
Z
Ẑ2) ∩ g−1(ZA∞,2). By taking reduction modulo n, we obtain

a filtration Z′n on L/nL in the Hn-orbit ZHn . If we replace the lifting α̂ of
αH′ with α̂ ◦ u for some u ∈ H′, then the filtration ZA∞,2 = α̂−1(WA∞,2)
is replaced with u−1(ZA∞,2), and hence the filtration Z′A∞,2 = g−1(ZA∞,2) is
replaced with g−1(u−1(ZA∞,2)) = (g−1u−1g)g−1(ZA∞,2) = (g−1u−1g)(Z′A∞,2).

Accordingly, the filtration Z′ = (L⊗
Z
Ẑ2) ∩ g−1(ZA∞,2) of L⊗

Z
Ẑ2 is replaced

with (L⊗
Z
Ẑ2)∩(g−1u−1g)(g−1(ZA∞,2)). Since g−1H′g ⊂ H and g−1U2(m)g ⊂

U2(n) by assumption, we see that its H-orbit remains the same, and that the
reduction modulo n of Z′ remains in the same Hn-orbit. Hence the assignment
of Z′Hn to ZH′m as described above is well defined and does not depend on the
choice of α̂. (Reformulating what we have said, if we interpret alternatively
ZH′ (resp. ZH) as anH′-orbit (resp.H-orbit) of some fully symplectic filtration
Z (resp. Z′) on L⊗

Z
Ẑ2, and if we set ZA∞,2 (resp. ZA∞,2′) to be the fully

symplectic filtrations on L⊗
Z
A∞,2 induced by Z (resp. Z′), then the H′-orbit

of g−1(ZA∞,2) is contained in the H-orbit of Z′A∞,2 .)
Next let us investigate the relation between ΦH′ and Φ′H, or equiva-

lently the relation between ΦH′m and Φ′Hn . Consider the exact sequence
0 → T2Gη̄ → V2Gη̄ → (Gη̄)

2
tors → 0, which was first introduced in

Section 1.3.5. Then the above-chosen isomorphism α̂ : L⊗
Z
Ẑ2 ∼→ T2Gη̄

and its natural extension α̂ : L⊗
Z
A∞,2 ∼→ V2Gη̄ defines an iso-

morphism (L⊗
Z
A∞,2)/(L⊗

Z
Ẑ2)

∼→ (Gη̄)
2
tors. Let us still denote this

isomorphism by α̂. Then, by abusing the difference between a finite
étale group scheme over η̄ and its group of closed points, we may
identify Kη̄ = α̂((N−1g(L⊗

Z
Ẑ2))/(L⊗

Z
Ẑ2)), with filtration given by
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K f
η̄ = α̂((N−1g(Z′−1))/Z−1) and Kµ

η̄ = α̂((N−1g(Z′−2))/Z−2).
The group scheme Kµ

η extends uniquely to a finite flat subgroup scheme

Kµ of G over S, which is isomorphic to a finite flat subgroup scheme K[ of
T . The group scheme K[ is the kernel of the isogeny NfT : T � T ′ induced
by Nf , and therefore is dual to the cokernel of the inclusion NfX : X ′ ↪→ X
of character groups. In particular, we may identify X ′ as an O-lattice in
X⊗

Z
Z(2), and define an isomorphism fX : X ′⊗

Z
Z(2)

∼→ X⊗
Z
Z(2) by fX =

N−1 ◦NfX . This is dual to the “Z×(2)-isogeny” fT : T → T ′.

On the other hand, the group scheme K f
η extends uniquely to a finite flat

subgroup scheme K f of G over S, which is isomorphic to a finite flat subgroup
scheme K\ of G\. The group scheme K\ is the kernel of the isogeny Nf \ :
G\ � (G′)\ induced by Nf . The quotient K/K\ of K by K\ is an étale group
scheme (which is not finite in general) over S, and its restriction (K/K\)η to
η is isomorphic to the cokernel of the inclusion NfY : Y ↪→ Y ′ of character
groups. Then we can identify Y ′ as an O-lattice in Y⊗

Z
Z(2), and define an

isomorphism fY : Y⊗
Z
Z(2)

∼→ Y ′⊗
Z
Z(2) by fY = N−1 ◦ NfY . We can also

interpret this fY as the dual of some “Z×(2)-isogeny” (T∨)′ → T∨, as follows:

By Theorem 3.4.3.2, G∨η and (G′η)
∨ extend to semi-abelian schemes G∨ and

(G′)∨, respectively. By Proposition 3.3.1.5, the dual (Nfη)
∨ : (G′η)

∨ � G∨η
of the isogeny Nfη : Gη � G′η extends uniquely to an isogeny (G′)∨ � G∨,

which we denote by (Nf)∨. Then (as in Construction 5.4.3.3) we symbolically
take f∨ : (G′)∨ → G∨ to be N−1 ◦ (Nf)∨, which is the “dual Z×(2)-isogeny”

f∨ : (G′)∨ → G∨ that extends f∨η : (G′η)
∨ → G∨η . Then the restriction of f∨

to the torus part (T∨)′ of G′ gives the above (T∨)′ → T∨.
Under the isomorphism V2(fη) : V2Gη̄

∼→ V2G′η̄, and under the two

isomorphisms V2(fT,η) : V2 Tη̄
∼→ V2 T ′η̄ and fY⊗

Z
A∞,2 : Y⊗

Z
A∞,2 ∼→

Y ′⊗
Z
A∞,2, the canonical pairing eφ : V2 Tη̄×(Y⊗

Z
A∞,2) → V2 Gm,η̄

induced by the λη-Weil pairing eλη (as in Proposition 5.2.2.1) can
be rewritten as a pairing V2 T ′η̄×(Y ′⊗

Z
A∞,2) → V2 Gm,η̄, which we

may denote by ef
−1
X ◦φ◦f

−1
Y ( · , · ). The restriction of this pairing gives a

pairing T2 T ′η̄×(Y ′⊗
Z
Ẑ2) → rT2 Gm,η̄, where r ∈ Z×(2),>0 is the unique

number such that ν(g) = ru for some u ∈ Ẑ2,× in the approximation
A∞,2,× = Z×(2),>0 · Ẑ2,×. Comparing this with the canonical pairing
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eφ
′

: T2 T ′η̄×(Y⊗
Z
Ẑ2) → T2 Gm,η̄ induced by the λ′η-Weil pairing eλ

′
η , and

taking into account the relation λ′η = r−1(f∨η )−1 ◦ λη ◦ fη, we see that we

must have φ′ = r−1f−1
X ◦ φ ◦ f

−1
Y , or equivalently fX ◦ φ′ ◦ fY = rφ.

Let us give a more intrinsic interpretation of fX and fY via a comparison
between (ϕ−2,H′ , ϕ0,H′H′

) and (ϕ′−2,H, ϕ
′
0,HH

). First note that Gr(α̂) determines

a well-defined pair (ϕ−2, ϕ0), such that ϕ−2 : GrZ−2
∼→ HomẐ2(X⊗

Z
Ẑ2, Ẑ2(1))

differ from Gr−2(α̂) by the isomorphism ν(α̂) : Ẑ2(1)
∼→ T2 Gm,η̄, and such

that ϕ0 : GrZ0
∼→ Y⊗

Z
Ẑ2 is just Gr0(α̂). Similarly, Gr(α̂′) determines a

well-defined pair (ϕ′−2, ϕ
′
0). Then (ϕ−2,H′m , ϕ0,H′m) is the H ′m-orbit of the

reduction modulo m of (ϕ−2, ϕ0), and (ϕ′−2,Hn
, ϕ′0,Hn) is the Hn-orbit of

the reduction modulo n of (ϕ′−2, ϕ
′
0). Let us also denote by ϕ−2⊗

Z
A∞,2 :

Gr
ZA∞,2
−2

∼→ HomẐ2(X⊗
Z
A∞,2,A∞,2(1)) etc., the induced morphisms between

A∞,2-modules. The isomorphism g : L⊗
Z
A∞,2 ∼→ L⊗

Z
A∞,2 sends the filtra-

tion Z′A∞,2 = g−1(ZA∞,2) to ZA∞,2 , which induces an isomorphism Gr−i(g) :

Gr
Z′A∞,2
−i := Z′−i,A∞,2/Z

′
−i−1,A∞,2

∼→ Gr
ZA∞,2
−i := Z−i,A∞,2/Z−i−1,A∞,2 on each of

the graded pieces. Then the pairs (ϕ−2, ϕ0) and (ϕ′−2, ϕ
′
0) are related by

ϕ′−2⊗
Z
A∞,2 = ( tfX⊗

Z
A∞,2) ◦ (ϕ−2⊗

Z
A∞,2) ◦ (ν(g)−1 Gr−2(g)) (5.4.3.4)

and
ϕ′0⊗

Z
A∞,2 = (fY⊗

Z
A∞,2) ◦ (ϕ0⊗

Z
A∞,2) ◦ (Gr0(g)). (5.4.3.5)

Lemma 5.4.3.6. We have the approximations GLO(X⊗
Z
A∞,2) =

(GL(X⊗
Z
Z(2)) ∩ GLO(X⊗

Z
A∞,2)) · GLO(X⊗

Z
Ẑ2) and GLO(Y⊗

Z
A∞,2) =

(GL(Y⊗
Z
Z(2)) ∩GLO(Y⊗

Z
A∞,2)) ·GLO(Y⊗

Z
Ẑ2).

Proof. Let us first note that we have the approximation GL(X⊗
Z
A∞,2) =

GL(X⊗
Z
Z(2)) · GL(X⊗

Z
Ẑ2) (resp. GL(Y⊗

Z
A∞,2) = GL(Y⊗

Z
Z(2)) ·

GL(Y⊗
Z
Ẑ2)) by elementary lattice theory. Then the lemma follows by

specializing this approximation to the subgroup GLO(X⊗
Z
A∞,2) (resp.

GLO(Y⊗
Z
A∞,2)) of O-equivariant elements in GL(X⊗

Z
A∞,2) (resp.

GL(Y⊗
Z
A∞,2)).
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Lemma 5.4.3.7. We have the relations GLO(X) = (GL(X⊗
Z
Z(2)) ∩

GLO(X⊗
Z
A∞,2)) ∩ GLO(X⊗

Z
Ẑ2) and GLO(Y ) = (GL(Y⊗

Z
Z(2)) ∩

GLO(Y⊗
Z
A∞,2)) ∩GLO(Y⊗

Z
Ẑ2).

Proof. These follow respectively from the relations GL(X) = GL(X⊗
Z
Z(2))∩

GL(X⊗
Z
Ẑ2) and GL(Y ) = GL(Y⊗

Z
Z(2)) ∩GL(Y⊗

Z
Ẑ2).

Let us summarize the constructions above, together with an alternative
(and more direct) interpretation of fX and fY , in the following:

Proposition 5.4.3.8. Suppose we have an element g ∈ G(A∞,2) and suppose
we have two open compact subgroups H′ ⊂ H in G(Ẑ2) such that g−1H′g ⊂
H. Then g defines a map from the set of cusp labels at level H′ to the set of
cusp labels at level H, as follows: Suppose we have a cusp label at level H′
represented by some (ZH′ ,ΦH′ , δH′).

1. Let α̂ be any symplectic lifting of the level-H′ structure αH′. Then α̂
pulls back the filtration W on T2Gη̄ to a fully symplectic filtration Z on

L⊗
Z
Ẑ2, together with a torus argument (X, Y, φ, ϕ−2, ϕ0) for Z. Then

ZH′ is the H′-orbit of Z.

2. Let ZA∞,2 be any filtration on L⊗
Z
A∞,2 that extends Z. Then we obtain

an admissible filtration Z′ := (L⊗
Z
Ẑ2) ∩ g−1(ZA∞,2) on L⊗

Z
Ẑ2, whose

H-orbit is independent of the choice of Z and determines Z′H.

3. The submodule GrZ
′

−2 of Gr
Z′A∞,2
−2 is pulled back to the submod-

ule (ν(g)−1 Gr−2(g))(GrZ
′

−2) of Gr
ZA∞,2
−2 . Under the isomorphism

ϕ−2⊗
Z
A∞,2 : Gr

ZA∞,2
−2

∼→ HomA∞,2(X⊗
Z
A∞,2,A∞,2(1)), the difference

between this submodule and the submodule GrZ−2 of Gr
ZA∞,2
−2 can be given

by the transpose of an element in GLO(X⊗
Z
A∞,2), which determines

by Lemmas 5.4.3.6 and 5.4.3.7 the unique choices of an O-lattice X ′

(up to isomorphism) and an isomorphism fX : X ′⊗
Z
Z(2)

∼→ X⊗
Z
Z(2).

This choice of fX also determines an isomorphism ϕ′−2 satisfying
(5.4.3.4).
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4. Similarly, the submodule GrZ
′

0 of Gr
Z′A∞,2
0 is pulled back to the submod-

ule Gr0(g)(GrZ
′

0 ) of Gr
ZA∞,2
0 , and this submodule determines the unique

choice of an O-lattice Y ′ in Y⊗
Z
Z(2), which is equivalent to the unique

choices of an O-lattice Y ′ (up to isomorphism) and an isomorphism
fY : Y⊗

Z
Z(2)

∼→ Y ′⊗
Z
Z(2). This choice of fY also determines an iso-

morphism ϕ′0 satisfying (5.4.3.5).

5. Let r ∈ Z×(2),>0 be the unique number such that ν(g) = ru for some

u ∈ Ẑ2,× in the approximation A∞,2,× = Z×(2),>0 · Ẑ2,×. Then we set

φ′ = r−1f−1
X φf−1

Y .

6. Take any splitting δ′ of the admissible filtration Z′, and take δ′H to be
the H-orbit of δ′.

The above steps determine a torus argument Φ′ = (X ′, Y ′, φ′, ϕ′−2, ϕ
′
0)

up to equivalence, and hence a class of torus arguments Φ′H =
(X ′, Y ′, φ′, ϕ′−2,H, ϕ

′
0,H) at level H depending only on the class of the

torus argument ΦH′ = (X, Y, φ, ϕ−2,H′ , ϕ0,H′). Since the cusp labels do not
depend on the choice of the splittings δH′ and δ′H, we obtain a well-defined
map from the set of cusp labels at level H′ to the set of cusp labels at level
H.

Proof. Steps 1 and 2 have already been explained above. (The admissibility
of Z′ is automatic by Lemma 5.2.2.2.) Steps 3, 4, and 5 (involving Lemmas
5.4.3.6 and 5.4.3.7) are self-explanatory.

Definition 5.4.3.9. Suppose we have an element g ∈ G(A∞,2), and suppose
we have two open compact subgroups H′ ⊂ H such that g−1H′g ⊂ H.
We say that a triple (Z′H,Φ

′
H, δ

′
H) is g-assigned to (ZH′ ,ΦH′ , δH′),

written as (ZH′ ,ΦH′ , δH′) →g (Z′H,Φ
′
H, δ

′
H), if there are isomorphisms

fX : X ′⊗
Z
Z(2)

∼→ X⊗
Z
Z(2) and fY : Y⊗

Z
Z(2)

∼→ Y ′⊗
Z
Z(2) as in Proposition

5.4.3.8 assigning some lifting Φ′ = (X ′, Y ′, φ′, ϕ′−2, ϕ
′
0) of Φ′H to some

lifting Φ = (X, Y, φ, ϕ−2, ϕ0) of ΦH′. In this case we say that there is a
g-assignment (fX , fY ) : (ZH′ ,ΦH′ , δH′)→g (Z′H,Φ

′
H, δ

′
H).

Remark 5.4.3.10. The pair (fX , fY ) of the two possible isomorphisms fX
and fY in Definition 5.4.3.9 is only unique up to multiplication by elements
in GLφ′ (defined analogously to GLφ as in Definition 5.4.1.6) that leaves Φ′H
invariant. (Later on, such a subgroup will be called ΓΦ′H

in Definition 6.2.4.1.)
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The above result will be applied in Section 6.4.3 to the study of Hecke
actions on towers of toroidal compactifications, after we have the meaning
of cusp labels as part of the parameters of the stratifications on the toroidal
compactifications we construct.
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Chapter 6

Algebraic Constructions of
Toroidal Compactifications

We will generalize the techniques in [42] and construct the toroidal compact-
ifications of the moduli problems we considered in Chapter 1.

The main objective of this chapter is to state and prove Theorem 6.4.1,
with by-products concerning Hecke actions given in Sections 6.4.2 and 6.4.3.
Technical results worth noting are Propositions 6.2.2.4, 6.2.3.2, 6.2.3.18, and
6.2.5.18, Lemma 6.3.1.11, and Propositions 6.3.2.6, 6.3.2.10, 6.3.3.5, 6.3.3.13,
and 6.3.3.17.

6.1 Review of Toroidal Embeddings

6.1.1 Rational Polyhedral Cone Decompositions

Let H be a group of multiplicative type of finite type over S, so that its char-
acter group X(H) = HomS(H,Gm,S) is an étale sheaf of finitely generated
commutative groups.

Definition 6.1.1.1. The cocharacter group X(H)∨ of H (over S) is the
étale sheaf of finitely generated (free) commutative groups HomS(Gm,S, H) ∼=
HomS(X(H),Z).

For simplicity,

Assumption 6.1.1.2. From now on, we shall assume that H is split.
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This assumption is harmless for our application to the construction of
toroidal compactifications, because we will glue in the étale topology, in which
every group of multiplicative type of finite type is split after localization.

Let us consider the R-vector space X(H)∨R := X(H)∨⊗
Z
R.

Definition 6.1.1.3. A subset of X(H)∨R is called a cone if it is invariant
under the natural multiplication action of R×>0 on the R-vector space X(H)∨R.

Definition 6.1.1.4. A cone in X(H)∨R is nondegenerate if its closure does
not contain any nonzero R-vector subspace of X(H)∨R.

Definition 6.1.1.5. A rational polyhedral cone in X(H)∨R is a cone in
X(H)∨R of the form σ = R>0v1 + · · · + R>0vn with v1, . . . , vn ∈ X(H)∨Q =
X(H)∨⊗

Z
Q.

Note that σ is an open subset in its closure σ = R≥0v1 + · · ·+R≥0vn, and
also in the smallest R-vector subspace Rv1 + · · ·+ Rvn containing σ.

Definition 6.1.1.6. A supporting hyperplane P of σ is a hyperplane in
X(H)∨R (i.e., a translation of a codimension-one vector subspace of X(H)∨R)
such that σ does not overlap with both sides of P .

Definition 6.1.1.7. A face of σ is a rational polyhedral cone τ such that
τ = σ ∩ P for some supporting hyperplane P of σ.

The canonical pairing 〈 · , · 〉 : X(H)×X(H)∨ → Z defines by extension
of scalars a canonical pairing

〈 · , · 〉 : X(H)×X(H)∨R → R

whose restriction to X(H)×X(H)∨ gives the original pairing. (We do not
tensor X(H) with R, because the homomorphism X(H)→ X(H)⊗

Z
R is not

injective when there exist nonzero torsion elements in X(H).)

Definition 6.1.1.8. If σ is a rational polyhedral cone in X(H)∨R, then σ∨ is
the semisubgroup (with unit 0) of X(H) defined by

σ∨ := {x ∈ X(H) : 〈x, y〉 ≥ 0 ∀y ∈ σ},

and σ∨0 is the semisubgroup (without unit 0) of X(H) defined by

σ∨0 := {x ∈ X(H) : 〈x, y〉 > 0 ∀y ∈ σ}.
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Remark 6.1.1.9. The cone R×>0·σ∨0 is not the interior of the closed cone R×>0·σ∨
in general: Try any top-dimensional nondegenerate rational polyhedral cone
σ in R2.

Let Γ be any group acting on X(H), which induces an action on H and
hence also an action on X(H)∨. Let C be any cone in X(H)∨R.

Definition 6.1.1.10. A Γ-admissible rational polyhedral cone decom-
position of C is a collection Σ = {σj}j∈J with some indexing set J such that
we have the following:

1. Each σj is a nondegenerate rational polyhedral cone.

2. C is the disjoint union of all the σj’s in Σ. For each j ∈ J , the
closure of σj in C is a disjoint union of the σk’s with k ∈ J . In other
words, C =

∐
j∈J

σj is a stratification of C. (Here “
∐

” only means a set-

theoretic disjoint union. The geometric structure of
∐
j∈J

σj is still the

one inherited from the ambient space X(H)∨R of C.) Moreover, each σk
appearing in the closure of σj in C as above is a face of σj.

3. Σ is invariant under the action of Γ on X(H)∨R, in the sense that Γ
permutes the cones in Σ. Under this action, the set Σ/Γ of Γ-orbits is
finite.

Definition 6.1.1.11. A rational polyhedral cone σ in X(H)∨R is smooth
with respect to the integral structure given by X(H)∨ if we have σ = R>0v1 +
· · ·+ R>0vn with v1, . . . , vn forming part of a Z-basis of X(H)∨.

Definition 6.1.1.12. A Γ-admissible smooth rational polyhedral
cone decomposition of C is a Γ-admissible rational polyhedral cone
decomposition {σj}j∈J of C in which every σj is smooth.

6.1.2 Toroidal Embeddings of Torsors

LetM be an H-torsor over a scheme Z. ThenM is relatively affine over Z,
and the H-action on OM gives a decomposition OM = ⊕

χ∈X(H)
OM,χ, where

OM,χ is the weight-χ subsheaf of OM under the H-action, together with
isomorphisms

OM,χ ⊗
OZ

OM,χ′
∼→ OM,χ+χ′ (6.1.2.1)
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giving the OZ-algebra structure of OM (see [39, I, Prop. 4.7.3]).

Remark 6.1.2.2. The specification of the isomorphisms in (6.1.2.1) is neces-
sary because we are not assuming that Z satisfies Assumption 3.1.2.7 (which
is needed for application of Theorem 3.1.3.3). We can not necessarily rigidify
our H-torsor M or the invertible sheaves OM,χ in this general setting.

Definition 6.1.2.3. For each nondegenerate rational polyhedral cone σ in
X(H)∨R, the affine toroidal embedding M(σ) along σ is the relatively

affine scheme M(σ) := Spec
OZ

(
⊕

χ∈σ∨
OM,χ

)
over Z, where ⊕

χ∈σ∨
OM,χ has

the structure of an OZ-algebra given by the isomorphisms in (6.1.2.1).

By construction, the H-action on M extends naturally to M(σ).

Lemma 6.1.2.4. In Definition 6.1.2.3, if τ is a face of σ, then τ is also
nondegenerate, and there is an H-equivariant canonical embedding M(τ) ↪→
M(σ) defined by the natural inclusion of structural sheaves.

Definition 6.1.2.5. For each nondegenerate rational polyhedral cone σ in
X(H)∨R, let σ⊥ := {x ∈ X(H) : 〈x, y〉 = 0 ∀y ∈ σ}. This is a subgroup of
X(H) defining a (split) quotient (group scheme) Hσ of H (of multiplicative
type of finite type) over Z.

Lemma 6.1.2.6. With the setting as above, the closed subscheme Mσ :=(
M(σ)− ∪

τ is a face of σ
τ 6=σ

M(τ)
)

red
ofM(σ) can be defined by the sheaf of ideals

Iσ := ⊕
χ∈σ∨0

OM,χ, which can be identified with Mσ = Spec
OZ

(
⊕

χ∈σ⊥
OM,χ

)
.

This Mσ is an Hσ-torsor over Z (see Definition 6.1.2.5).

Definition 6.1.2.7. We call the closed subscheme Mσ of M(σ) defined
in Lemma 6.1.2.6 the σ-stratum of M(σ). For each face τ of σ, the
τ-stratum of M(σ) is the (locally closed) image of the τ -stratum Mτ of
M(τ) under the canonical embedding M(τ) ↪→M(σ) in Lemma 6.1.2.4.

Let C be a cone in X(H)∨R, let Γ be a group acting on X(H), and let
Σ = {σj}j∈J be a Γ-admissible rational polyhedral cone decomposition. Us-
ing Lemma 6.1.2.4, we can glue together affine toroidal embeddings M(σj)
defined by various cones σj in Σ = {σj}j∈J , which we denote by MΣ, or
simply by M if Σ is clear from the context. This is the toroidal embedding
of the H-torsor M defined by Σ.

Let us list the main properties of MΣ as follows:
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Theorem 6.1.2.8 (cf. [42, Ch. IV, Thm. 2.5 and Rem. 2.6]). The scheme
MΣ constructed as above satisfies the following properties:

1. MΣ is separated and locally of finite type over the base scheme Z, which
containsM as an open dense subscheme. The H-action onM extends
naturally to MΣ, and makes M ↪→MΣ an H-equivariant embedding.

2. For each σj ∈ Σ, the affine toroidal embedding M(σj) embeds as a rel-
atively affine H-invariant open dense subscheme of MΣ over Z, con-
taining M. We can view MΣ as the union of various M(σj)’s. Then
(by construction) we understand that if σl = σj ∩ σk, where σl is the
largest common face of σj and σk, then M(σl) =M(σj) ∩M(σk).

3. MΣ has a natural stratification by locally closed subschemes Mσj , for

j ∈ J , as defined in Lemma 6.1.2.6. Moreover, by construction,Mσj ⊃
Mσk if and only if σj ⊂ σk, where Mσj (resp. Mσk) denotes the clo-

sures of Mσj (resp. Mσk) in MΣ.

4. The group Γ acts on MΣ by sending M(σj) (resp. Mσj) to M(γσj)
(resp. Mγσj) if γ ∈ Γ sends σj to γσj in Σ.

5. If σj is smooth, thenM(σj) is smooth over Z. If the cone decomposition
Σ = {σj}j∈J is smooth, thenMΣ is smooth over Z, and the complement
of M in each open set M(σj), for σj ∈ Σ, is a relative Cartier divisor
with normal crossings.

6.2 Construction of Boundary Charts

6.2.1 The Setting for This Section

In this section, we will focus on the following type of general construction:
Let B be a finite-dimensional semisimple algebra over Q with a positive

involution ? and center F , and let O be an order in B mapped to itself under
?. Let Disc = DiscO/Z be the discriminant of O over Z, and let Ibad = 2 or
1 depending on whether or not B involves any simple factor of type D (see
Definitions 1.2.1.15 and 1.2.1.18).

Let (L, 〈 · , · 〉, h) be a PEL-type O-lattice (see Definition 1.2.1.3) that
satisfies Condition 1.4.3.10 (see Remark 1.4.3.9). Let n ≥ 1 be an integer
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that will be our level. Let 2 be a set of good primes, in the sense that 2 -
n Ibad Disc[L# : L], so that we can define a moduli problem Mn over the base
scheme S0 = Spec(OF0,(2)) as in Definition 1.4.1.2. More generally, we shall

consider an open compact subgroup H of G(Ẑ2) for some 2 - Ibad Disc[L# :
L], so that we can define a moduli problem MH over S0 == Spec(OF0,(2)) as
in Definition 1.4.1.4.

From now on, let us adopt the following convention:

Convention 6.2.1.1. All morphisms between schemes, algebraic stacks, or
their formal analogues over S0 = Spec(OF0,(2)) will be defined over S0, unless
otherwise specified.

The first goal of this section is to construct formal schemes for each cusp
label of MH (see Definition 5.4.2.4), over which we have the so-called Mum-
ford families playing the role of Tate curves for modular curves along the
cusps. Then we approximate these Mumford families by the so-called good
algebraic models over algebraic schemes (instead of formal schemes), and glue
them with our moduli problem MH in the étale topology (in Section 6.3) to
form the arithmetic toroidal compactification.

Let us explain the setting for Mn, which will be tacitly assumed in Sections
6.2.2 and 6.2.3 below. (The setting for MH will be postponed until the
beginning of Section 6.2.4.)

Let (Zn,Φn, δn) be a representative of a cusp label at level n, where
Φn = (X, Y, φ, ϕ−2,n, ϕ0,n) is a torus argument at level n. Here X and Y are
constant group schemes that will serve as the character groups of the torus
parts, as usual. We know X and Y are O-lattices of the same O-multirank,
and φ : Y ↪→ X is an O-equivariant embedding of O-lattices.

Recall that we have defined in Definition 5.4.1.7 the group Γφ = ΓX,Y,φ
of pairs of isomorphisms (γX : X

∼→ X, γY : Y
∼→ Y ) in GLO(X)×GLO(Y )

such that φ = γXφγY .

Definition 6.2.1.2. Let Φn = (X, Y, φ, ϕ−2,n, ϕ0,n) be any torus argument as
in Definition 5.4.1.4. The group ΓΦn is the subgroup of elements (γX , γY ) in
Γφ satisfying ϕ−2,n = tγXϕ−2,n and ϕ0,n = γY ϕ0,n. In particular, ΓΦ1 = Γφ.

As in Lemma 5.2.7.5, the information of Zn alone allows one to define (up
to isomorphism) a moduli problem MZn

n over S0 as in Definition 1.4.1.2. Let
(A, λA, iA, ϕ−1,n) be the tautological tuple over MZn

n . Then,

1. A is a (relative) abelian scheme over MZn
n ;
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2. λA : A
∼→ A∨ is a prime-to-2 polarization of A;

3. iA : O → EndMZn
n

(A) defines an O-structure of (A, λA);

4. LieA/MZn
n

with its O⊗
Z
Z(2)-module structure given naturally by iA

satisfies the determinantal condition in Definition 1.3.4.1 given by
(GrZ−1,R, 〈 · , · 〉11,R, h−1);

5. ϕ−1,n : (GrZ−1,n)MZn
n

∼→ A[n] is an integral principal level-n structure for
(A, λA, iA) of type (GrZ−1, 〈 · , · 〉11) as in Definition 1.3.6.2.

Based on the above data Zn, Φn = (X, Y, φ, ϕ−2,n, ϕ0,n), (A, λA, iA, ϕ−1,n),
and δn, together with some additional combinatorial data (to be specified
later), we would like to construct a formal algebraic stack XΦn,δn over which
there is a tautological tuple

(Zn, (X, Y, φ, ϕ−2,n, ϕ0,n), (A, λA, iA, ϕ−1,n), δn, (cn, c
∨
n , τn))

like an object in DDfil.-spl.
PEL,Mn

(R, I) for some R and I as in Section 5.2.1 (see
Definition 5.4.1.1). Note that we cannot really say that this is an object of
DDfil.-spl.

PEL,Mn
(R, I), because the base XΦn,δn is a formal algebraic stack which

does not readily fit into the setting of Section 5.2.1. Over each affine formal
scheme Spf(R, I) that is étale (i.e., formally étale and of finite type; see
[59, I, 10.13.3]) over XΦn,δn , it should induce an object in DDfil.-spl.

PEL,Mn
(R, I)

and hence an object in DDPEL,Mn(R, I). By Theorem 5.2.7.14, an object in
DDPEL,Mn(R, I) defines an object in DEGPEL,Mn(R, I), which is in particular,
a degenerating family of type Mn (see Definition 5.3.2.3). The degenerating
families over various different affine formal schemes should glue together (by
étale descent) and form a degenerating family called the Mumford family
over XΦn,δn . Therefore, stated more precisely, our goal in this section is to
construct XΦn,δn and the Mumford family over it.

Following Convention 5.4.2.5, we shall not make Zn explicit in notation
such as XΦn,δn .

6.2.2 Construction without the Positivity Condition
or Level Structures

For simplicity, let us begin by constructions without any consideration of lev-
el-n or level-H structures. Note that this does not mean the construction for
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even the level-1 structures (see Remark 1.3.6.3). In fact, this section does not
produce any space that we will need later. Nevertheless, understanding the
naive construction in this section (which seems to be the only one available
in special cases in the literature) might be helpful for understanding the role
played by the symplectic-liftability condition in the construction in Section
6.2.3.

Proposition 6.2.2.1. Let n = 1. Let us fix the choice of a representative
(Z1,Φ1, δ1) of a cusp label at level 1, which defines a moduli problem MZ1

1 as
in Lemma 5.2.7.5.

Let us consider the category fibered in groupoids over the category of
schemes over MZ1

1 , whose fiber over each scheme S (over MZ1
1 ) has objects

the tuples
(A, λA, iA, ϕ−1,1, c, c

∨, τ)

describing degeneration data without the positivity condition over S. Explic-
itly, each tuple as above satisfies the following conditions:

1. (A, λA, iA, ϕ−1,1) is the pullback of the tautological tuple over MZ1
1 .

2. c : X → A∨ and c∨ : Y → A are O-equivariant group homomorphisms
satisfying the compatibility relation λAc

∨ = cφ with the prescribed φ :
Y ↪→ X.

3. τ : 1Y×X
∼→ (c∨ × c)∗PA is a trivialization of biextensions

over S, which satisfies the symmetry τ(y, φ(y′)) = τ(y′, φ(y)) as
sections of (c∨(y), c(φ(y′)))∗P⊗−1

A
∼= (c∨(y′), c(φ(y)))∗P⊗−1

A , and
satisfies the O-compatibility τ(by, χ) = τ(y, b?χ) as sections of
(c∨(by), c(χ))∗P⊗−1

A
∼= (c∨(y), c(b?χ))∗P⊗−1

A . (Here it makes sense to
write equalities of sections because the isomorphisms are all canonical.)

In this category, an isomorphism

(A, λA, iA, ϕ−1,1, c, c
∨, τ)

∼→ (A′, λA′ , iA′ , ϕ
′
−1,1, c

′, (c∨)′, τ ′)

is a collection of isomorphisms

(fX : X
∼→ X, fY : Y

∼→ Y ) ∈ ΓΦ1

(see Definition 6.2.1.2) and

fA : (A, λA, iA, ϕ−1,1)
∼→ (A′, λA′ , iA′ , ϕ

′
−1,1)

over S, such that
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1. the homomorphisms c : X → A∨ and c′ : X → (A′)∨ are related by
cfX = fA

∨c′;

2. the homomorphisms c∨ : Y → A and (c∨)′ : Y → A′ are related by
fAc

∨ = (c∨)′fY ;

3. the trivializations τ : 1Y×X
∼→ (c∨ × c)∗PA and τ ′ : 1Y×X

∼→ ((c∨)′ ×
c′)∗PA′ are related by (IdY ×fX)∗τ = (fY × IdX)∗τ ′.

Then there is an algebraic stack
...
ΞΦ1 separated, smooth, and schematic over

MZ1
1 , together with a tautological tuple and a natural action of ΓΦ1 on

...
ΞΦ1,

such that the quotient
...
ΞΦ1/ΓΦ1 is isomorphic to the category described above

(as categories fibered in groupoids over MZ1
1 ). Equivalently, for each tuple

(A, λA, iA, ϕ−1,1, c, c
∨, τ) as above over a scheme S over MZ1

1 , there is a mor-
phism S →

...
ΞΦ1 (over MZ1

1 ), which is unique after we fix an isomorphism
(fX : X

∼→ X, fY : Y
∼→ Y ) in ΓΦ1, such that the tuple over S is the pullback

of the tautological tuple over
...
ΞΦ1 if we identify X by fX and Y by fY .

Remark 6.2.2.2. We use clumsy notation such as
...
ΞΦ1 (instead of the simpler

ΞΦ1) because we expect it to have unwanted additional components in gen-
eral. Later in Section 6.2.3 we will learn how to extract the exact components
we want; that is, to drop the unwanted dots.

The construction of the algebraic stack
...
ΞΦ1 over MZ1

1 with a tautological
tuple (A, λA, iA, ϕ−1,1, c, c

∨, τ) can be described as follows:
Over MZ1

1 , we have the tautological tuple (A, λA, iA, ϕ−1,1). Therefore it
only remains to construct the tautological triple (c, c∨, τ) that satisfies the
conditions we want.

Consider the group functors HomO(Y,A) and HomO(X,A∨) over MZ1
1 ,

over which we have the tautological homomorphisms c : X → A∨ and
c∨ : Y → A, respectively. By Proposition 5.2.3.9, the four group func-
tors HomO(X,A), HomO(X,A∨), HomO(Y,A), and HomO(Y,A∨) are all
relatively representable by (relative) proper smooth schemes whose fiber-
wise geometric identity components (see Definition 5.2.3.8) are (relative)
abelian schemes over MZ1

1 . By composition with φ : X → Y (resp. λA :
A→ A∨), we obtain a homomorphism HomO(X,A∨)→ HomO(Y,A∨) (resp.
HomO(Y,A) → HomO(Y,A∨)) with finite étale kernel. By definition, the
compatibility condition λAc

∨ = cφ can be tautologically achieved over the
fiber product HomO(X,A∨) ×

HomO(Y,A∨)
HomO(Y,A). As a result, we have the

following:
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Corollary 6.2.2.3. The fiber product

HomO(X,A∨) ×
HomO(Y,A∨)

HomO(Y,A)

above is also relatively representable by a (relative) proper smooth group
scheme

...
CΦ1 over MZ1

1 .

Here
...
CΦ1 may not be an abelian scheme because its geometric fibers may

not be connected.

Proposition 6.2.2.4. 1. Let HomO(X,A)◦ be the fiberwise geometric
identity component of HomO(X,A) (see Definition 5.2.3.8). Then the
canonical homomorphism

HomO(X,A)◦ → HomO(X,A∨) ×
HomO(Y,A∨)

HomO(Y,A)

over MZ1
1 has kernel the finite étale group scheme

HomO(X/φ(Y ), ker(λA)) ∩ HomO(X,A)◦

and image an abelian subscheme
...
C
◦
Φ1

of
...
CΦ1 (see Lemma 5.2.3.7 and

Definition 5.2.3.8).

2. There exists an integer m ≥ 1 such that multiplication by m maps
...
CΦ1

scheme-theoretically to a subscheme of
...
C
◦
Φ1

, so that the group scheme
π0(

...
CΦ1/M

Z1
1 ) of fiberwise geometric connected components of

...
CΦ1 is

defined (see Lemma 5.2.3.7 and Definition 5.2.3.8). Moreover, the rank
of π0(

...
CΦ1/M

Z1
1 ) (as a local constant) has no prime factors other than

those of Disc, [X : φ(Y )], and the rank of ker(λA). In particular,
π0(

...
CΦ1/M

Z1
1 ) is finite étale over MZ1

1 .

Proof. The first claim of the lemma is clear, because the finite flat group
scheme

HomO(X/φ(Y ), ker(λA)) = HomO(X, ker(λA)) ∩ HomO(X/φ(Y ), A)

is the kernel of

HomO(X,A)→ HomO(X,A∨) ×
HomO(Y,A∨)

HomO(Y,A).
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For the second claim, let HomO(X,A∨)◦, HomO(Y,A)◦, and
HomO(Y,A∨)◦ denote the fiberwise geometric identity components of
HomO(X,A∨), HomO(Y,A), and HomO(Y,A∨), respectively, and let

...
C
◦◦◦
Φ1

denote the proper smooth group scheme representing the fiber product
HomO(X,A∨)◦ ×

HomO(Y,A∨)◦
HomO(Y,A)◦. By 4 of Proposition 5.2.3.9, the

group schemes π0(
...
CΦ1/M

Z1
1 ) and π0(

...
C
◦◦◦
Φ1
/MZ1

1 ) are defined, and their ranks
differ up to multiplication by numbers with no prime factors other than
those of Disc. Therefore it suffices to show that the rank of π0(

...
C
◦◦◦
Φ1
/MZ1

1 )
has no prime factors other than those of [X : φ(Y )] and the rank of ker(λA).

The kernel K of the canonical homomorphism
...
C
◦◦◦
Φ1
→ HomO(Y,A∨)◦

is given by a fiber product K1 ×
M

Z1
1

K2, where K1 := HomO(X/φ(Y ), A∨) ∩

HomO(X,A∨)◦ and K2 := HomO(Y, ker(λA)) ∩ HomO(Y,A)◦. Since
HomO(Y,A∨)◦ is an abelian scheme, the group π0(

...
C
◦◦◦
Φ1
/MZ1

1 ) can be
identified with a quotient of K. Since the rank of K is the product of the
ranks of K1 and of K2, it has no prime factors other than those of X/φ(Y )
and the rank of ker(λA), as desired.

For each section (y, χ) of Y ×X over
...
CΦ1 , we can interpret (c∨(y), c(χ))

as a morphism from
...
CΦ1 to A ×

M
Z1
1

A∨, and consider the pullback invertible

sheaf (c∨(y), c(χ))∗PA over
...
CΦ1 .

Lemma 6.2.2.5. The assignment of (c∨(y), c(χ))∗PA to (y, χ) satisfies the
following properties:

1. Additivity in the first variable:

(c∨(y), c(χ))∗PA ⊗
O...
C Φ1

(c∨(y′), c(χ))∗PA
can.
∼→ (c∨(y + y′), c(χ))∗PA.

2. Additivity in the second variable:

(c∨(y), c(χ))∗PA ⊗
O...
C Φ1

(c∨(y), c(χ′))∗PA
can.
∼→ (c∨(y), c(χ+ χ′))∗PA.
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3. Symmetry with respect to φ:

(c∨(y), c(φ(y′)))∗PA = (c∨(y), λAc
∨(y′))∗PA

can.
∼→ (c∨(y), c∨(y′))∗(IdA×λA)∗PA

sym.
∼→ (c∨(y′), c∨(y))∗(IdA×λA)∗PA

can.
∼→ (c∨(y′), λAc

∨(y))∗PA = (c∨(y′), c(φ(y)))∗PA.

4. Hermitian with respect to ?:

(c∨(by), c(χ))∗PA
can.
∼→ (c∨(y), c(χ))∗(iA(b)× IdA∨)∗PA

can.
∼→ (c∨(y), c(χ))∗(IdA× iA(b)∨)∗PA

= (c∨(y), c(χ))∗(IdA× iA∨(b?))∗PA
can.
∼→ (c∨(y), c(b?χ))∗PA.

Proof. These follow formally from the biextension structure of PA.

Let us consider the finitely generated commutative group (i.e., the
Z-module)

...
SΦ1 := (Y ⊗

Z
X)/

(
y ⊗ φ(y′)− y′ ⊗ φ(y)
(by)⊗ χ− y ⊗ (b?χ)

)
y,y′∈Y,
χ∈X,b∈O

.

Remark 6.2.2.6. By Proposition 1.2.2.3, the cardinality of the torsion sub-
group of

...
SΦ1 only has prime factors dividing Ibad Disc[X : φ(Y )]. In partic-

ular, it is prime-to-2, because 2 - Ibad Disc[X : φ(Y )] by assumption.

By Lemma 6.2.2.5, if we assign to each

` =
∑

1≤i≤k

[yi⊗χi] ∈
...
SΦ1

the invertible sheaf

Ψ1(`) := ⊗
O...
C Φ1

,1≤i≤k
(c∨(yi), c(χi))

∗PA

over
...
CΦ1 , then this assignment is well defined (i.e., independent of the ex-

pression of ` we choose), and there exists a canonical isomorphism ∆∗`,`′ :

452



Ψ1(`) ⊗
O...
C Φ1

Ψ1(`′)
∼→ Ψ1(` + `′) for each `, `′ ∈

...
SΦ1 . As a result, we can

form an O...
C Φ1

-algebra ⊕
`∈

...
S Φ1

Ψ1(`) with algebra structure given by the iso-

morphisms ∆∗`,`′ above, and define

...
ΞΦ1 := Spec

O...
C Φ1

(
⊕

`∈
...
S Φ1

Ψ1(`)
)
.

If we denote by
...
EΦ1 := Hom(

...
SΦ1 ,Gm) the group of multiplicative type of

finite type with character group
...
SΦ1 over Spec(Z), then we see that there

exists an étale surjective morphism S ′ →
...
CΦ1 over which the pullbacks of

all the invertible sheaves Ψ1(`) are trivialized (which is possible because...
SΦ1 is finitely generated), so that there is an isomorphism

...
ΞΦ1 ×...

C Φ1

S ′ ∼=
...
EΦ1 ×

Spec(Z)
S ′. In particular, this shows that

...
ΞΦ1 is an

...
EΦ1-torsor.

Remark 6.2.2.7. This is essentially the same argument behind Theorem
3.1.3.3. The only issue is that the base scheme

...
CΦ1 does not necessarily

satisfy Assumption 3.1.2.7. Therefore we have to either weaken the
assumption and make the statement more clumsy in Theorem 3.1.3.3, or
include some ad hoc explanation here.

For the trivialization τ : 1Y×X
∼→ (c∨ × c)∗P⊗−1

A of biextensions over
a scheme S →

...
CΦ1 to define an O-equivariant period homomorphism

ι : Y → G\, we need to identify τ(y, φ(y′)) with τ(y′, φ(y)) under the

canonical isomorphism (c∨(y), c(φ(y′)))∗P⊗−1
A

can.
∼→ (c∨(y′), c(φ(y)))∗P⊗−1

A ,
and identify τ(by, χ) with τ(y, b?χ) under the canonical isomorphism

(c∨(by), c(χ))∗P⊗−1
A

can.
∼→ (c∨(y), c(b?χ))∗P⊗−1

A , for each y, y′ ∈ Y , χ ∈ X,
and b ∈ O. Therefore, we can interpret τ as depending only on the class
of y ⊗ χ in

...
SΦ1 . The sections τ(y ⊗ χ) of Ψ1(y ⊗ χ)⊗−1 correspond by

definition to isomorphisms Ψ1(y ⊗ χ)
∼→ OS, which extend by linearity to

isomorphisms Ψ1(`)
∼→ OS for all ` ∈

...
SΦ1 . Hence they define an OS-algebra

homomorphism O...
Ξ Φ1

∼= ⊕
`∈

...
S Φ1

Ψ1(`) → OS, corresponding to an S-valued

point S →
...
ΞΦ1 .

Conversely, since the Ψ1(`)’s all appear in the structural sheaf of
...
ΞΦ1

over
...
CΦ1 , we have natural trivializations O...

Ξ Φ1

∼→ O...
Ξ Φ1

⊗
O...
C Φ1

Ψ1(`)⊗−1 for

all ` ∈
...
SΦ1 . That is, we have a tautological trivialization τ : 1Y×X

∼→
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(c∨ × c)∗P⊗−1
A of biextensions over

...
ΞΦ1 . Hence each S-valued point of

...
ΞΦ1

admits by pullback a tautological trivialization τ : 1Y×X
∼→ (c∨× c)∗P⊗−1

A of
biextensions.

Note that there is an ambiguity in the identification of (X, Y, φ): In our
definition of isomorphism classes, we always allow homomorphisms involving
X and Y to be compatibly twisted by a pair of isomorphisms (γX , γY ) in ΓΦ1 .
Therefore we should consider the natural action of ΓΦ1 on

...
ΞΦ1 →

...
CΦ1 →

MZ1
1 , and consider the quotient

...
ΞΦ1/ΓΦ1 as the universal parameter space,

whose structural morphism can be factorized as
...
ΞΦ1/ΓΦ1 →

...
CΦ1/ΓΦ1 → MZ1

1 .
(Note that

...
ΞΦ1/ΓΦ1 is not necessarily an algebraic stack according to our

convention, as we only allow Deligne–Mumford stacks.)
As a result, if S is a scheme over MZ1

1 such that there is a tuple
(A, λA, iA, ϕ−1,1, c, c

∨, τ) over S with the prescribed φ : Y → X describing
a degeneration datum without the positivity condition, then after a choice
of an isomorphism in ΓΦ1 giving the identification of (X, Y, φ) on S and on...
ΞΦ1 , there is a unique morphism S →

...
ΞΦ1 over MZ1

1 such that the tuple is
the pullback of the tautological tuple on

...
ΞΦ1 .

This finishes the construction of
...
ΞΦ1 and proves Proposition 6.2.2.1.

6.2.3 Construction with Principal Level Structures

Let us take the level-n structures (see Definition 1.3.6.2) into consideration.
Let n ≥ 1 be any (positive) integer such that 2 - n, and let (Zn,Φn, δn)

be a representative of a (principal) cusp label at level n (see Definition
5.4.1.9). Then Zn alone defines a moduli problem MZn

n with tautological
tuple (A, λA, iA, ϕ−1,n), as described in Section 6.2.1. We would like to con-
struct an algebraic stack ΞΦn,δn separate, smooth, and schematic over MZn

n

over which there is a tautological tuple

(Zn, (X, Y, φ, ϕ−2,n, ϕ0,n), (A, λA, iA, ϕ−1,n), δn, (cn, c
∨
n , τn))

like a tuple in DDfil.-spl.
PEL,Mn

for some R and I (see Definition 5.4.1.1), but (with-
out any R and I, and) without the positivity condition. For this purpose, we
need to have a tautological triple (cn, c

∨
n , τn) lifting (c, c∨, τ), and this tauto-

logical triple has to be liftable to some (cm, c
∨
m, τm) for each n|m, 2 - m, as

described in Definition 5.2.3.4 and Corollary 5.2.3.5.
The prescribed liftable splitting δn : GrZn

∼→ L/nL defines two pairings

〈 · , · 〉10,n : GrZ−1,n×GrZ0,n → (Z/nZ)(1)
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and
〈 · , · 〉00,n : GrZ0,n×GrZ0,n → (Z/nZ)(1).

The prescribed level-n structure ϕ−1,n : GrZ−1,n
∼→ A[n]η defines a liftable

isomorphism f−1,n := ϕ−1,n by itself, and determines a necessarily unique

liftable isomorphism ν(f̂−1) := ν(ϕ−1,n) : (Z/nZ)(1)
∼→ µn,η. On the other

hand, the prescribed liftable isomorphism f0,n := ϕ0,n : GrZ0,n
∼→ Y/nY

defines (by abuse of notation) a liftable isomorphism ϕ0,n : GrZ0,n
∼→ 1

n
Y/Y

via the canonical isomorphism Y/nY
∼→ 1

n
Y/Y , which we again denote by

f0,n. Therefore we have two liftable pairings

(f−1
−1,n× f−1

0,n)∗(〈 · , · 〉10,n) : A[n]η× 1
n
Y/Y → (Z/nZ)(1)

and
(f−1

0,n × f−1
0,n)∗(〈 · , · 〉00,n) : 1

n
Y × 1

n
Y → (Z/nZ)(1).

Lemma 6.2.3.1. The choice of a representative (Φn, δn) of a cusp label de-
termines a liftable homomorphism bΦn,δn : 1

n
Y → A∨[n] and a liftable pairing

aΦn,δn : 1
n
Y × 1

n
Y → Gm, by requiring

(f−1
−1,n× f−1

0,n)∗(〈 · , · 〉10,n)(a, 1
n
y) = ν(f−1,n)−1 ◦ eA[n](a, bΦn,δn( 1

n
y))

and

(f−1
0,n × f−1

0,n)∗(〈 · , · 〉00,n)( 1
n
y, 1

n
y′) = ν(f−1,n)−1 ◦ aΦn,δn( 1

n
y, 1

n
y′)

for all a ∈ A[n]η and 1
n
y, 1

n
y′ ∈ 1

n
Y .

Following Definition 5.2.7.8 and Proposition 5.2.7.9, we shall require
λAc

∨
n − cnφn to agree with bΦn,δn : 1

n
Y → A∨[n], and require τn to define a

pairing that agrees with aΦn,δn : 1
n
Y × 1

n
Y → Gm in the sense that

τn( 1
n
y, φ(y′))τn( 1

n
y′, φ(y))−1 = aΦn,δn( 1

n
y, 1

n
y′)

for all 1
n
y, 1

n
y′ ∈ 1

n
Y , on the algebraic stack ΞΦn,δn we will construct.

Let us consider the homomorphism HomO( 1
n
X,A∨) → HomO(X,A∨)

(resp. HomO( 1
n
Y,A) → HomO(Y,A)) defined by restriction from 1

n
X to X

(resp. 1
n
Y to Y ). Let

...
CΦn be the (relative) proper smooth group scheme over

MZn
n representing the fiber product

HomO( 1
n
X,A∨) ×

HomO(Y,A∨)
HomO( 1

n
Y,A)

455



(see Proposition 5.2.3.9 and Corollary 6.2.2.3). Then there is a canonical ho-
momorphism

...
CΦn →

...
CΦ1 ×

M
Z1
1

MZn
n corresponding to the restriction homomor-

phisms HomO( 1
n
X,A∨) → HomO(X,A∨) and HomO( 1

n
Y,A) → HomO(Y,A)

above.
The structure of

...
CΦn can be analyzed as in Proposition 6.2.2.4:

Proposition 6.2.3.2. 1. Let HomO( 1
n
X,A)◦ be the fiberwise geometric

identity component of HomO( 1
n
X,A) (see 4 of Proposition 5.2.3.9).

Then the canonical homomorphism

HomO( 1
n
X,A)◦ → HomO( 1

n
X,A∨) ×

HomO(Y,A∨)
HomO( 1

n
Y,A)

over MZn
n has kernel the finite étale group scheme

HomO( 1
n
X/φn( 1

n
Y ), ker(λA)) ∩ HomO( 1

n
X,A)◦

and image an abelian subscheme
...
C
◦
Φn of

...
CΦn (see Lemma 5.2.3.7 and

Definition 5.2.3.8).

2. There exists an integer m ≥ 1 such that multiplication by m maps
...
CΦn

scheme-theoretically to a subscheme of
...
C
◦
Φn, so that the group scheme

π0(
...
CΦn/M

Zn
n ) of fiberwise connected components of

...
CΦn over MZn

n is
defined (see Lemma 5.2.3.7 and Definition 5.2.3.8). Moreover, the rank
of π0(

...
CΦn/M

Zn
n ) (as a local constant) has no prime factors other than

those of Disc, n, [X : φ(Y )], and the rank of ker(λA). (This implies
that the rank of π0(

...
CΦn/M

Zn
n ) has no prime factors other than those of

Disc, n and [L# : L].) In particular, π0(
...
CΦn/M

Zn
n ) is finite étale over

MZn
n .

Proof. The first claim of the lemma is clear, because the finite flat group
scheme

HomO( 1
n
X/φn( 1

n
Y ), ker(λA))

= HomO( 1
n
X, ker(λA)) ∩ HomO( 1

n
X/φn( 1

n
Y ), A)

is the kernel of

HomO( 1
n
X,A)→ HomO( 1

n
X,A∨) ×

HomO(Y,A∨)
HomO( 1

n
Y,A).
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For the second claim, let HomO( 1
n
X,A∨)◦, HomO( 1

n
Y,A)◦, and

HomO(Y,A∨)◦ denote the fiberwise geometric identity component of
HomO( 1

n
X,A∨), HomO( 1

n
Y,A), and HomO(Y,A∨), respectively, and let

...
C
◦◦◦
Φn

denote the proper smooth group scheme representing the fiber product
HomO( 1

n
X,A∨)◦ ×

HomO(Y,A∨)◦
HomO( 1

n
Y,A)◦. By 4 of Proposition 5.2.3.9, the

group schemes π0(
...
CΦn/M

Zn
n ) and π0(

...
C
◦◦◦
Φn /M

Zn
n ) are defined, and their ranks

differ up to multiplication by numbers having only prime factors of those of
Disc. Therefore it suffices to show that the rank of π0(

...
C
◦◦◦
Φn /M

Zn
n ) has no

prime factors other than those of n, [X : φ(Y )], and the rank of ker(λA).
The kernel Kn of the canonical homomorphism

...
C
◦◦◦
Φn → HomO(Y,A∨)◦ is

given by a fiber product Kn,1 ×
MZn
n

Kn,2, where Kn,1 := HomO( 1
n
X/φ(Y ), A∨)∩

HomO( 1
n
X,A∨)◦ and Kn,2 := HomO( 1

n
Y, ker(nλA)) ∩ HomO( 1

n
Y,A)◦. Since

HomO(Y,A∨)◦ is an abelian scheme, the group π0(
...
C
◦◦◦
Φn /M

Zn
n ) can be identified

with a quotient of Kn. Since the rank of Kn is the product of the ranks of
Kn,1 and of Kn,2, it has no prime factors other than those of n, X/φ(Y ), and
the rank of ker(λA), as desired.

Let us consider the natural homomorphism

∂(1)
n :

...
CΦn → HomO( 1

n
Y,A∨)

defined by sending a pair (cn, c
∨
n) to λAc

∨
n− cnφn ∈ HomO( 1

n
Y,A∨) as consid-

ered in Lemma 5.2.3.12. Note that for each pair (cn, c
∨
n) in

...
CΦn , the associ-

ated ∂
(1)
n (cn, c

∨
n) actually lies in the kernel of the canonical restriction homo-

morphism HomO( 1
n
Y,A∨) → HomO(Y,A∨), or rather HomO( 1

n
Y/Y,A∨[n]),

because cn and c∨n satisfy λA(c∨n |Y ) = λAc
∨ = cφ = (cn|X)(φn|Y ) when re-

stricted to Y , or in other words when multiplied by n, by the definition of...
CΦn as a fiber product. Therefore the natural homomorphism ∂

(1)
n can be

written as
∂(1)
n :

...
CΦn → HomO( 1

n
Y/Y,A∨[n]),

and it makes sense to talk about the fiber
...
CΦn,bn := (∂

(1)
n )−1(bn) of ∂

(1)
n over

a particular section bn ∈ HomO( 1
n
Y/Y,A∨[n]).

Over
...
CΦn , we have two tautological homomorphisms cn : 1

n
X → A∨ and

c∨n : 1
n
Y → A, where the restriction of cn to X (resp. c∨n to Y ) is the pullback

of c : X → A∨ (resp. c∨ : Y → A) via
...
CΦn →

...
CΦ1 . Then the upshot of

defining
...
CΦn,bn is that

λAc
∨
n − cnφn = bn (6.2.3.3)
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holds tautologically over
...
CΦn,bn .

Lemma 6.2.3.4. The homomorphism ∂
(1)
n induces a canonical homomor-

phism
...
CΦn � π0(

...
CΦn/M

Zn
n )→ HomO( 1

n
Y/Y,A∨[n]). In particular, the fibers

...
CΦn,bn of ∂

(1)
n are (possibly empty) proper smooth subschemes of

...
CΦn over

MZn
n .

Note that
...
CΦn,0, where 0 stands for the trivial homomorphism 1

n
Y →

A∨[n] sending everything to the identity, is the proper smooth group scheme
representing the fiber product

HomO( 1
n
X,A∨) ×

HomO(
1
n
Y,A∨)

HomO( 1
n
Y,A).

Moreover, as soon as
...
CΦn,bn has a section ˜∂(1)

n (whose image under ∂
(1)
n is

bn),
...
CΦn,bn is necessarily the translation of

...
CΦn,0 by this section ˜∂(1)

n of
...
CΦn .

Now we shall construct a scheme
...
ΞΦn as in the case of

...
ΞΦ1 in Proposition

6.2.2.1, which provides us with a tautological triple (c∨n , cn, τn) on top of the
tautological tuple (A, λA, iA, ϕ−1,n, X, Y, φ, c, c

∨, τ) over
...
ΞΦ1 ×

M
Z1
1

MZn
n . Here Z1

is the “reduction modulo 1” of Zn, in the sense that we still keep the liftability
and the ranks as conditions (see Remark 5.2.2.8).

Let us consider the finitely generated commutative group (i.e., the
Z-module)

...
SΦn := (( 1

n
Y )⊗

Z
X)/

(
y ⊗ φ(y′)− y′ ⊗ φ(y)

(b 1
n
y)⊗ χ− ( 1

n
y)⊗ (b?χ)

)
y,y′∈Y,
χ∈X,b∈O

. (6.2.3.5)

Remark 6.2.3.6. By Proposition 1.2.2.3, the cardinality of the torsion sub-
group of

...
SΦn only has prime factors dividing n Ibad Disc[X : φ(Y )] (cf. Re-

mark 6.2.2.6). In particular, it is prime-to-2, because 2 - n Ibad Disc[X :
φ(Y )] by assumption.

As in the construction of
...
ΞΦ1 , the formal properties of the pullbacks of

the Poincaré biextension (as in Lemma 6.2.2.5) allow us to assign to each

` =
∑

1≤i≤k

[( 1
n
yi)⊗χi] ∈

...
SΦn

a well-defined invertible sheaf

Ψn(`) := ⊗
O...
C Φn

,1≤i≤k
(c∨n( 1

n
yi), c(χi))

∗PA
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over
...
CΦn , such that there exists a canonical isomorphism ∆∗n,`,`′ :

Ψn(`) ⊗
O...
C Φn

Ψn(`′)
∼→ Ψn(` + `′) for each `, `′ ∈

...
SΦn . As a result, we can

form an O...
C Φn

-algebra ⊕
`∈

...
S Φn

Ψn(`) with algebra structure given by the

isomorphisms ∆∗n,`,`′ above, and define

...
ΞΦn := Spec

O...
C Φn

(
⊕

`∈
...
S Φn

Ψn(`)
)
.

If we denote by
...
EΦn = Hom(

...
SΦn ,Gm) the group of multiplicative type of fi-

nite type with character group
...
SΦn over Spec(Z), then

...
ΞΦn is an

...
EΦn-torsor,

by the same argument as in the case of the
...
EΦ1-torsor

...
ΞΦ1 . Moreover, we

have a tautological trivialization τn : 1( 1
n
Y )×X

∼→ (c∨n × c)∗P⊗−1
A of biex-

tensions over
...
ΞΦn , which corresponds to a tautological homomorphism ιn :

1
n
Y → G\. Let τ : 1Y×X

∼→ (c∨ × c)∗P⊗−1
A be the restriction of τn to 1Y×X ,

which corresponds to a tautological homomorphism ι : Y → G\.
Let

...
SΦn,tor denote the subgroup of all torsion elements in

...
SΦn , and

let
...
SΦn,free denote the quotient of

...
SΦn by

...
SΦn,tor, namely, the free com-

mutative quotient group of
...
SΦn . Let

...
EΦn,tor := Hom(

...
SΦn,tor,Gm) (resp....

EΦn,free := Hom(
...
SΦn,free,Gm)) be the group of multiplicative type of finite

type with character group
...
SΦn,tor (resp.

...
SΦn,free) over Spec(Z). Then the

exact sequence
0→

...
SΦn,tor →

...
SΦn →

...
SΦn,free → 0

induces an exact sequence

0→
...
EΦn,free →

...
EΦn →

...
EΦn,tor → 0

in the reversed direction. Note that
...
EΦn,free is a torus (see Definition 3.1.1.5),

because
...
SΦn,free is a finitely generated free commutative group.

Consider the subgroup
...
S

(n)
Φn

of
...
SΦn generated by [( 1

n
y)⊗φ(y′)] −

[( 1
n
y′)⊗φ(y)], where 1

n
y and 1

n
y′ run through arbitrary elements of 1

n
Y .

This subgroup is torsion, because the nth multiple of every element is part
of the defining relation in

...
SΦn .

By the very definition of
...
S

(n)
Φn

,

Lemma 6.2.3.7. The group
...
E

(n)
Φn

:= Hom(
...
S

(n)
Φn
,Gm) is canonically isomor-

phic to the group of (alternating) pairings an : 1
n
Y × 1

n
Y → Gm such that

there exists some (not necessarily alternating) pairing a′n : 1
n
Y ×Y → Gm
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satisfying an( 1
n
y, 1

n
y′) = a′n( 1

n
y, y′)a′n( 1

n
y′, y)−1, a′n( 1

n
y, y′) = a′n( 1

n
y′, y), and

a′n(b 1
n
y, y′) = a′n( 1

n
y, b?y′) for all y, y′ ∈ Y and b ∈ O.

We shall henceforth identify
...
E

(n)
Φn

= Hom(
...
S

(n)
Φn
,Gm) with the group of

such pairings, and write an ∈
...
E

(n)
Φn

in this case.

Lemma 6.2.3.8. The scheme
...
Ξ

(n)
Φn

:= Spec
O...
C Φn

(
⊕

`∈
...
S

(n)
Φn

Ψn(`)
)

is a canoni-

cally trivial
...
E

(n)
Φn

-torsor over
...
CΦn. Namely, there is a canonical isomorphism

...
Ξ

(n)
Φn

∼→
...
E

(n)
Φn

×
Spec(Z)

...
CΦn, which is

...
EΦn-equivariant and defines a canonical

...
EΦn-equivariant section

∂(0)
n :

...
ΞΦn →

...
E

(n)
Φn

by the composition
...
ΞΦn �

...
Ξ

(n)
Φn
�

...
E

(n)
Φn

. In particular, ∂
(0)
n is surjective.

Proof. By definition of
...
Ξ

(n)
Φn

, every ` ∈
...
Ξ

(n)
Φn

is of the form ` = [˜̀], where

˜̀=
∑

1≤i≤k

(( 1
n
yi)⊗φ(y′i)− ( 1

n
y′i)⊗φ(yi))

for some yi, y
′
i ∈ Y . Then we have a canonical isomorphism

Ψn(`)
can.
∼→ ⊗

1≤i≤k

(
(c∨n( 1

n
yi), c(φ(y′i)))

∗PA⊗(c∨n( 1
n
y′i), c(φ(yi)))

∗P⊗−1
A

)
.

Since there is a canonical symmetry isomorphism

(c∨n( 1
n
yi), c(φ(y′i)))

∗PA
can.
∼→ (c∨n( 1

n
y′i), c(φ(yi)))

∗PA

for each 1 ≤ i ≤ k, we obtain a canonical trivialization

Ψn(`)
∼→ O...

C Φn

for each ` ∈
...
Ξ

(n)
Φn

. Moreover, the trivializations for various differ-

ent `, `′ ∈
...
Ξ

(n)
Φn

are compatible under the canonical isomorphisms

∆∗n,`,`′ : Ψn(`) ⊗
O...
C com.

Φn

Ψn(`′)
∼→ Ψn(` + `′) because they all involve the

same canonical biextension properties of PA. Therefore we have an
isomorphism between O...

C Φn
-algebras, which defines an isomorphism

...
E

(n)
Φn

×
Spec(Z)

...
CΦn

∼→
...
Ξ

(n)
Φn

, as desired.
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On the other hand, for each 1
n
y and 1

n
y′, we can define a section...

ΞΦn → Gm by taking the difference τn( 1
n
y, φ(y′))τn( 1

n
y′, φ(y))−1 ∈ Gm(

...
ΞΦn)

between the two tautological sections τn( 1
n
y, φ(y′)) and τn( 1

n
y′, φ(y))

under the canonical symmetry isomorphism (c∨n( 1
n
y), c(φ(y′)))∗P⊗−1

A

can.
∼→

(c∨n( 1
n
y′), c(φ(y)))∗P⊗−1

A over
...
ΞΦn , which is a special case of the one we used

in the proof of Lemma 6.2.3.8. Hence we obtain the following corollary:

Corollary 6.2.3.9. For each 1
n
y and 1

n
y′, the tautological section

...
ΞΦn → Gm

defined by τn( 1
n
y, φ(y′))τn( 1

n
y′, φ(y))−1 ∈ Gm(

...
ΞΦn) agrees with the evaluation

of the canonical section ∂
(0)
n :

...
ΞΦn →

...
E

(n)
Φn

= Hom(
...
S

(n)
Φn
,Gm) in Lemma

6.2.3.8 at [( 1
n
y)⊗φ(y′)]− [( 1

n
y′)⊗φ(y)] ∈

...
S

(n)
Φn

.

Then it makes sense to talk about the fiber
...
ΞΦn,an := (∂

(0)
n )−1(an) of ∂

(0)
n

over a particular section an ∈
...
E

(n)
Φn

, as in the case of
...
CΦn,bn . The upshot of

defining
...
ΞΦn,an is that we have a tautological relation

τn( 1
n
y, φ(y′))τn( 1

n
y′, φ(y))−1 = an( 1

n
y, 1

n
y′) (6.2.3.10)

for all 1
n
y, 1

n
y′ ∈ 1

n
Y over

...
ΞΦn,an . If we define

...
ΞΦn,(bn,an) :=

...
ΞΦn,an|...C Φn,bn

:=
...
ΞΦn,an ×...

C Φn

...
CΦn,bn ,

then we have both the tautological relations (6.2.3.3) and (6.2.3.10) over...
ΞΦn,(bn,an).

As a result, we have obtained a tautological triple (cn, c
∨
n , τn) over...

ΞΦn,(bn,an), on top of the tautological tuple (A, λA, iA, ϕ−1,n, X, Y, φ, c, c
∨, τ)

over
...
Ξφ ×

M
Z1
1

MZn
n , satisfying the tautological relations (6.2.3.3) and

(6.2.3.10). It remains to find a subalgebraic stack of
...
ΞΦn,(bn,an) over

which the tautological triple (cn, c
∨
n , τn) is liftable to some system

(ĉ, ĉ∨, τ̂) := {(cm, c∨m, τm)}n|m,2-m (as in Definition 5.2.3.4) which is

compatible with some system (b̂, â) := {(bm, am)}n|m,2-m lifting (bn, an) in
the natural sense.

To achieve this, let us consider the common schematic image
...
Ξ

com.
Φn,(bn,an)

of the canonical morphisms
...
ΞΦm,(bm,am) →

...
ΞΦn,(bn,an) for m such that n|m

and 2 - m. This common image
...
Ξ

com.
Φn,(bn,an) will cover the common schematic

image
...
C

com.
Φn,bn of the canonical morphisms

...
CΦm,bm →

...
CΦn,bn .
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Lemma 6.2.3.11. Under the assumption that we have chosen a
system b̂ = {bm}n|m,2-m lifting bn, we have a recipe to produce

a uniquely determined system of elements {b̃m}n|m,2-m such that

b̃m ∈ HomO( 1
m
X/φ(Y ), A∨) ×

HomO(Y,A∨)
{e} ⊂

...
CΦm, such that ∂

(1)
m (b̃m) = bm,

and such that b̃l is mapped to b̃m under the canonical homomorphism...
CΦl →

...
CΦm for each m|l in the system. Moreover, the choice of each b̃m is

independent of those bl with l > m.
As a result, b̃m translates

...
CΦm,0 to

...
CΦm,bm for each m ≥ 1 such that n|m

and 2 - m, and the translations are compatible among different m’s and l’s.

Proof. Let m ≥ 1 be an integer such that n|m and 2 - m, and let l ≥ 1 be
another integer such that n|l, 2 - l, and 1

m
X ⊂ 1

l
φ(Y ). Certainly, what is

implicit in the choices of b̂ is that there is a choice of a filtration Z lifting
Zn, which in particular, induces two filtrations Zm and Zl by reductions.
By making an étale localization to MZl

l , we may restrict the homomorphism
bl : 1

l
Y → A∨[l] to 1

m
X, and obtain a homomorphism 1

m
X → A∨ over MZl

l ,
whose restriction to φ(Y ) is necessarily trivial. That is, we obtain an element
in HomO( 1

m
X/φ(Y ), A∨). Let us define b̃m := (−bl| 1

m
X , 0). (The reason for

the minus sign will be clear later.) Since the group HomO( 1
m
X/φ(Y ), A∨)

is already defined over MZm
m , this homomorphism b̃m is defined over MZm

m by
étale descent.

By definition, ∂
(1)
m (b̃m) = ∂

(1)
m (−bl| 1

m
X , 0) is given by the restriction of

bl| 1
m
X to 1

m
Y , which is necessarily bm. The same argument also shows that

b̃m is compatible among different m’s and l’s.
Finally, the fact that b̃m is defined without making a base change to MZl

l

with l > m shows that b̃m must be independent of those bl with l > m.

Remark 6.2.3.12. The statement that b̃n translates
...
CΦn,0 to

...
CΦn,bn shows

that the underlying geometric spaces of
...
CΦn,0 and

...
CΦn,bn are isomorphic.

The essential difference is that we see potentially different tautological ho-
momorphisms 0 and bn over them, which might lead to different tautological
tuples at the end of the construction (for suitable R and I; see Definition
5.4.1.1), and might produce different degenerating families that should not
be glued to the same part of the same Shimura variety. (It is possible that
they should be glued to some different Shimura varieties.)

Lemma 6.2.3.13. The common schematic image
...
C

com.
Φn,0 of the canonical ho-

momorphisms
...
CΦm,0 →

...
CΦn,0 is

...
C
◦
Φn.
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Proof. Note that we have a canonical isomorphism

...
CΦn,0 ×

MZn
n

MZm
m

∼→
...
CΦ1 ×

M
Z1
1

MZm
m

∼→
...
CΦm,0

given by the canonical isomorphisms 1
n
Y
∼→ Y

∼→ 1
m
Y and 1

n
X
∼→ X

∼→ 1
m
X

for each m we consider, because the
...
CΦm,0’s are of the form

HomO( 1
n
Y,A) ×

HomO(
1
n
Y,A∨)

HomO( 1
n
X,A∨). Therefore, the canonical

homomorphisms
...
CΦm,0 →

...
CΦn,0 defined by the inclusions 1

n
Y ↪→ 1

m
Y and

1
n
X ↪→ 1

n
X have the same image as the multiplication by m

n
on

...
CΦn,0

itself. Since we know from Proposition 6.2.2.4 that the rank of the finite
group scheme π0(

...
CΦn,0/M

Zn
n ) over MZn

n is prime-to-2, because it is the same
as the pullback of the finite group scheme π0(

...
CΦ1/M

Z1
1 ) over MZ1

1 , we see
that there is an integer m ≥ 1 such that n|m and 2 - m, and such that
the multiplication by m

n
annihilates the group scheme π0(

...
CΦm,0/M

Zm
m ). In

particular, the schematic image of
...
CΦm,0 →

...
CΦn,0 for this m is contained

in
...
C
◦
Φn . This forces the common schematic image

...
C

com.
Φn,{bm} to agree with

...
C
◦
Φn , because

...
C
◦
Φn is an abelian scheme by Proposition 6.2.3.2 and hence

multiplications by integers are surjective on it.

Combining Lemmas 6.2.3.11 and 6.2.3.13,

Corollary 6.2.3.14. The common schematic image
...
C

com.
Φn,bn is the translation

of the geometric identity component
...
C
◦
Φn of

...
CΦn by b̃n, as defined in Lemma

6.2.3.11. In particular, it is an abelian scheme. Moreover, it does not depend
on the choice of the liftings {bm}n|m,2-m of bn.

To find the common schematic image
...
Ξ

com.
Φn,(bn,an) of the canoni-

cal morphisms
...
ΞΦm,(bm,am) →

...
ΞΦn,(bn,an) for m such that n|m and

2 - m, it suffices to find the common schematic image of the canon-
ical morphisms

...
ΞΦm,(bm,am)|...C com.

Φm,bm
→

...
ΞΦn,(bn,an)|...C com.

Φn,bn
, or rather...

ΞΦm,am|...C com.
Φm,bm

→
...
ΞΦn,an|...C com.

Φn,bn
.

Lemma 6.2.3.15. Under the assumption that we have chosen a system â =
{am}n|m,2-m lifting an, we have a recipe (depending on whether 2 ∈ 2 or not)
to produce a system of elements {ãm}n|m,2-m such that ãm ∈

...
EΦm, such that

ãm is mapped to am under the canonical surjection
...
EΦm �

...
E

(m)
Φm

, and such
that ãm′ is mapped to ãm under the canonical homomorphism

...
EΦl →

...
EΦm

463



for each m|l in the system. (This time the ãm may depend on those al with
l > m.)

In particular, ãm translates
...
ΞΦm,0 to

...
ΞΦm,am for each m ≥ 1 such that

n|m and 2 - m, and the translations are compatible among different m’s and
l’s.

Proof. By Lemma 6.2.3.7, for each m ≥ 1 such that n|m and 2 - m, the
chosen lifting am is alternating and satisfies (in particular) am(b 1

m
y, y′) =

am( 1
m
y, b?y′) for all y, y′ ∈ Y and b ∈ O. On the other hand, each of the

elements ãm we would like to produce in
...
EΦm can be identified with a ho-

momorphism ãm : ( 1
m
Y )⊗

Z
X → Gm satisfying ãm(y, φ(y′)) = −ãm(y′, φ(y))

and ãm(b 1
m
y, χ) = ã( 1

m
y, b?χ) for all y, y′ ∈ Y , χ ∈ X and b ∈ O. To verify

that ãm is mapped to am under
...
EΦm �

...
E

(m)
Φm

, we need to verify the relation
ãm( 1

m
y, φ(y′))− ãm( 1

m
y′, φ(y)) = am( 1

m
y, 1

m
y′) for all y, y′ ∈ Y .

Let us take an integer l ≥ 1 such that lX ⊂ φ(Y ). Since 2 - [X : φ(Y )]
by the original choice of 2, we shall take this integer l to be prime-to-2.

If 2 6∈ 2, then a2lm is defined for each m ≥ 1 such that n|m and 2 - m.
Let us define ãm by

ãm( 1
m
y, χ) := a2lm( 1

2lm
y, φ−1(lχ)).

Then we have

ãm( 1
m
y, φ(y′))− ãm( 1

m
y′, φ(y))

= a2lm( 1
2lm

y, φ−1(lφ(y′)))− a2lm( 1
2lm

y′, φ−1(lφ(y)))

= a2lm( 1
2lm

y, ly′)− a2lm( 1
2lm

y′, ly) = a2m( 1
2m
y, y′)− a2m( 1

2m
y′, y)

= a2m( 1
2m
y, y′) + a2m( 1

2m
y, y′) = 2a2m( 1

2m
y, y′) = am( 1

m
y, y′).

The upshot of this argument is 1
2

+ 1
2

= 1.
If 2 ∈ 2, then every integer m ≥ 1 such that 2 - m has to be odd, and

we can pick a compatible system {em}2-m of elements em ∈ Z/mZ, defining

an element of Ẑ2, such that 2em = 1 in Z/mZ for all indices m. Then we
can define ãm by

ãm( 1
m
y, χ) := elmalm( 1

lm
y, φ−1(lχ)).
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Then we have

ãm( 1
m
y, φ(y′))− ãm( 1

m
y′, φ(y))

= elmalm( 1
lm
y, φ−1(lφ(y′)))− elmalm( 1

lm
y′, φ−1(lφ(y)))

= elmalm( 1
lm
y, ly′)− elmalm( 1

lm
y′, ly) = emam( 1

m
y, y′)− emam( 1

m
y′, y)

= emam( 1
m
y, y′) + emam( 1

m
y, e?y′) = 2emam( 1

m
y, y′) = am( 1

m
y, y′).

The upshot of this argument is 2em = 1.
This gives our recipes for producing a system {ãm}n|m,2-m explicitly for

each system â = {am}n|m,2-m lifting an.

Lemma 6.2.3.16. For each b̂ lifting bn, the common schematic image...
Ξ

com.
Φn,(bn,0) of the morphisms

...
ΞΦm,0|...C com.

Φm,bm
→

...
ΞΦn,0|...C com.

Φn,bn
is a torsor under

the torus
...
EΦn,free over

...
C

com.
Φn,bn.

Proof. For each m ≥ 1 such that n|m and 2 - m, the fiber
...
ΞΦm,0 =

(∂
(1)
m )−1(0) can be constructed explicitly as follows:

Let
...
SΦm,0 be the finitely generated commutative group defined by

...
SΦm,0 := (( 1

m
Y )⊗

Z
X)/

(
( 1
m
y)⊗ φ(y′)− ( 1

m
y′)⊗ φ(y)

(b 1
m
y)⊗ χ− ( 1

m
y)⊗ (b?χ)

)
y,y′∈Y,
χ∈X,b∈O

.

As in the construction of
...
ΞΦn , the formal properties of the pullbacks

of the Poincaré biextension (as in Lemma 6.2.2.5) allow us to assign
to each ` =

∑
1≤i≤k

[( 1
m
yi)⊗χi] ∈

...
SΦm,0 a well-defined invertible sheaf

Ψm,0(`) := ⊗...
C Φm ,1≤i≤k

(c∨m( 1
m
yi), c(χi))

∗PA, such that there exists a

canonical isomorphism ∆∗m,0,`,`′ : Ψm,0(`) ⊗
O...
C Φm

Ψm,0(`′)
∼→ Ψm(` + `′)

for each `, `′ ∈
...
SΦm,0. Here we are using a stronger relation than

those used for
...
SΦm , namely, we are using the canonical symmetry

isomorphisms (c∨m( 1
m
y), c(φ(y′)))∗PA

can.
∼→ (c∨m( 1

m
y′), c(φ(y)))∗PA for all

y, y′ ∈ Y , instead of only (c∨(y), c(φ(y′)))∗PA
can.
∼→ (c∨(y′), c(φ(y)))∗PA.

As a result, we can form an O...
C Φm

-algebra ⊕
`∈

...
S Φm,0

Ψm,0(`) with al-

gebra structure given by the isomorphisms ∆∗m,0,`,`′ above, and define
...
ΞΦm,0 := Spec

O...
C Φm

(
⊕

`∈
...
S Φm,0

Ψm,0(`)
)

. This definition produces the same
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...
ΞΦm,0 defined as the fiber (∂

(0)
m )−1(0). Moreover,

...
ΞΦm,0 is naturally an...

EΦm,0-torsor under the group
...
EΦm,0 := Hom(

...
SΦm,0,Gm) of multiplicative

type of finite type over Spec(Z) with character group
...
SΦm,0.

For each m ≥ 1 we consider, we have

...
SΦm,0

∼→
...
SΦ1 = (Y ⊗

Z
X)/

(
y ⊗ φ(y′)− y′ ⊗ φ(y)
(by)⊗ χ− y ⊗ (b?χ)

)
y,y′∈Y,
χ∈X,b∈O

.

Therefore, the canonical homomorphism

...
SΦn,0 →

...
SΦm,0

induced by ( 1
n
Y )⊗

Z
X ↪→ ( 1

m
Y )⊗

Z
X for each m can be viewed as the multi-

plication
...
SΦn,0

[m
n

]
→

...
SΦn,0.

Since the cardinality of
...
SΦ1,tor only has prime factors dividing Ibad Disc[X :

φ(Y )], which is prime-to-2 (see Remark 6.2.2.6), there exists an integer m ≥
1 such that n|m, 2 - m, and m

n
is divisible by the cardinality of

...
SΦ1,tor. Let

us fix the choice of such an integer m.
Since the group schemes

...
EΦm,0,tor and

...
EΦn,0,tor are both isomorphic to...

EΦ1,tor = Hom(
...
SΦ1,tor,Gm,MZn

n
), the canonical homomorphism

...
EΦm,0,tor →...

EΦn,0,tor can be identified with the homomorphism
...
EΦ1,tor →

...
EΦ1,tor defined

by multiplication by m
n

, which has trivial schematic image because m
n

is di-
visible by the cardinality of

...
SΦ1,tor. Consequently, the bottom morphism of

the
...
EΦm,0-equivariant commutative diagram

...
ΞΦm,0|...C com.

Φm,bm

��

//
...
ΞΦn,0|...C com.

Φn,bn

��...
ΞΦm,0,tor|...C com.

Φm,bm

//
...
ΞΦn,0,tor|...C com.

Φn,bn

induced by the canonical homomorphism
...
SΦn,0 →

...
SΦm,0, which is equiv-

ariant with respect to the canonical homomorphism
...
EΦm,0,tor →

...
EΦn,0,tor,

has schematic image isomorphic to the base
...
C

com.
Φn,bn . Since

...
ΞΦn,0|...C com.

Φn,bn
→...

ΞΦn,0,tor is a torsor under the torus
...
EΦn,free, the common schematic image of...

ΞΦm,0|...C com.
Φm,bm

→
...
ΞΦn,0|...C com.

Φn,bn
is also a torsor under

...
EΦn,free, as desired.

Combining Lemmas 6.2.3.15 and 6.2.3.16,
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Corollary 6.2.3.17. The common schematic image
...
Ξ

com.
Φn,(bn,an) is étale lo-

cally the translation of the subalgebraic stack
...
Ξ

com.
Φn,(bn,0) of

...
ΞΦn|...C com.

Φn,bn
by some

(noncanonical) element ãn ∈
...
EΦn in Lemma 6.2.3.15. (Because of the as-

sumption of chosen liftings in Lemma 6.2.3.15, the element ãn is only étale
locally defined.) In particular,

...
Ξ

com.
Φn,(bn,an) is a torsor under the torus

...
EΦn,free

over the abelian scheme
...
C

com.
Φn,bn.

Proposition 6.2.3.18. Let n ≥ 1 be an integer prime-to-2 (in the setting
of Section 6.2.1). Let us fix the choice of a representative (Zn,Φn, δn) of
a cusp label at level n, where Φn = (X, Y, φ, ϕ−2,n, ϕ0,n), which defines a
moduli problem MZn

n (as in Lemma 5.2.7.5). Then such a choice of cusp label
determines bΦn,δn and aΦn,δn as in Lemma 6.2.3.1.

Let us consider the category fibered in groupoids over the category of
schemes over MZn

n whose fiber over each scheme S (over MZn
n ) has objects

the tuples

(Zn, (X, Y, φ, ϕ−2,n, ϕ0,n), (A, λA, iA, ϕ−1,n), δn, (cn, c
∨
n , τn))

describing degeneration data without the positivity condition over S. Explic-
itly, each tuple as above satisfies the following conditions:

1. (A, λA, iA, ϕ−1,n) is the pullback of the tautological tuple over MZn
n .

2. cn : 1
n
X → A∨ and c∨n : 1

n
Y → A are O-equivariant group homomor-

phisms satisfying the compatibility relation λAc
∨
n − cnφn = bΦn,δn with

φn : 1
n
Y ↪→ 1

n
X induced by the prescribed φ : Y ↪→ X.

3. τn : 1( 1
n
Y )×X

∼→ (c∨n × c)∗PA is a trivialization of biextensions over S
which satisfies the relation

τn( 1
n
y, φ(y′))τn( 1

n
y′, φ(y))−1 = aΦn,δn( 1

n
y, 1

n
y′) ∈ µn(S)

for each 1
n
y, 1

n
y′ ∈ 1

n
Y under the canonical symmetry isomor-

phism (c∨n( 1
n
y), c(φ(y′)))∗PA ⊗

OS
(c∨n( 1

n
y′)c(φ(y)))∗P⊗−1

A
∼= OS,

and satisfies the O-compatibility τ(b 1
n
y, χ) = τ( 1

n
y, b?χ) for

each 1
n
y ∈ Y and χ ∈ X under the canonical isomorphism

(c∨n(b 1
n
y), c(χ))∗PA ∼= (c∨n( 1

n
y), c(b?χ))∗PA. (Here it makes sense to

write equalities of sections because the isomorphisms are all canonical.)
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4. The triple (cn, c
∨
n , τn) is liftable in the following sense: For each m ≥ 1

such that n|m and 2 - m, suppose we have lifted all the other data to
some liftable tuple

(Zm, (X, Y, φ, ϕ−2,m, ϕ0,m), (A, λA, iA, ϕ−1,m), δm)

at level m. Then the triple (cn, c
∨
n , τn) is also liftable to some

(cm, c
∨
m, τm) that has the same kind of compatibility as (cn, c

∨
n , τn) does

with other data.

In this category, an isomorphism

(Zn, (X, Y, φ, ϕ−2,n, ϕ0,n), (A, λA, iA, ϕ−1,n), δn, (cn, c
∨
n , τn))

∼→ (Zn, (X, Y, φ, ϕ−2,n, ϕ0,n), (A′, λA′ , iA′ , ϕ
′
−1,n), δn, (c

′
n, (c

∨
n)′, τ ′n))

is a collection of isomorphisms

(fX : X
∼→ X, fY : Y

∼→ Y ) ∈ ΓΦn

(see Definition 6.2.1.2) and

fA : (A, λA, iA, ϕ−1,n)
∼→ (A′, λA′ , iA′ , ϕ

′
−1,n)

over S such that

1. the homomorphisms cn : 1
n
X → A∨ and c′n : 1

n
X → (A′)∨ are related

by cfX = fA
∨c′ (here fX also stands for the isomorphism 1

n
X

∼→ 1
n
X

canonically induced by fX);

2. the homomorphisms c∨n : 1
n
Y → A and (c∨n)′ : 1

n
Y → A′ are related by

fAc
∨
n = (c∨n)′fY (here fY also stands for the isomorphism 1

n
Y

∼→ 1
n
Y

canonically induced by fX);

3. the trivializations τn : 1( 1
n
Y )×X

∼→ (c∨n × c)∗PA and τ ′n : 1( 1
n
Y )×X

∼→
((c∨n)′ × c′)∗PA′ are related by (Id 1

n
Y ×fX)∗τ = (fY × IdX)∗τ ′.

Then there is an algebraic stack ΞΦn,δn separated, smooth, and schematic over
MZn
n , together with a tautological tuple and a natural action of ΓΦn on ΞΦn,δn,

such that the quotient ΞΦn,δn/ΓΦn is isomorphic to the category described
above (as categories fibered in groupoids over MZn

n ). Equivalently, for each
tuple (Zn, (X, Y, φ, ϕ−2,n, ϕ0,n), (A, λA, iA, ϕ−1,n), δn, (cn, c

∨
n , τn)) as above over
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a scheme S over MZn
n , there is a morphism S → ΞΦn,δn (over MZn

n ), which is
unique after we fix an isomorphism (fY : Y

∼→ Y, fX : X
∼→ X) in ΓΦn, such

that the tuple over S is the pullback of the tautological tuple over ΞΦn,δn if we
identify X by fX and Y by fY .

Proof. Simply take ΞΦn,δn :=
...
Ξ

com.
Φn,δn,(bΦn,δn ,aΦn,δn ) as in Corollary 6.2.3.17.

Then the expected universal properties, including the tautological relations
(6.2.3.3) and (6.2.3.10), and the liftability, follow from the construction. As
in the case of

...
ΞΦ1 , the ambiguity of identification of (X, Y, φ, ϕ−2,n, ϕ0,n)

necessitates the quotient by ΓΦn .

Remark 6.2.3.19. The tautological τ over ΞΦn,δn in Proposition 6.2.3.18 (in-
duced by the tautological τn) does not satisfy the positivity condition (see
Definition 4.2.1.10) needed for applying Theorem 5.2.7.14. Therefore, we can-
not construct the desired degenerating family over ΞΦn,δn (or ΞΦn,δn/ΓΦn). We
will learn in Section 6.2.5 how to construct degenerating families over formal
completions along some nice (but noncanonical) partial compactifications of
ΞΦn,δn given by toroidal embeddings.

For simplicity, we shall set up the following convention:

Convention 6.2.3.20. We shall set up the following simplification of nota-
tion:

1. SΦn :=
...
SΦn,free.

2. EΦn :=
...
EΦn,free.

3. CΦn,δn :=
...
C

com.
Φn,bΦn,δn

.

4. ΞΦn,δn :=
...
Ξ

com.
Φn,δn,(bΦn,δn ,aΦn,δn ) (already set up in Proposition 6.2.3.18).

Moreover, as an EΦn-torsor, we shall describe ΞΦn,δn using a decomposition

OΞΦn,δn

∼= ⊕
`∈SΦn

ΨΦn,δn(`)

into weight subsheaves under the EΦn-action. Here the notation ΨΦn,δn

means that, when we set up the equivalences between, for example,
(c∨n( 1

n
y), cφ(y′))∗PA and (c∨n( 1

n
y′), cφ(y))∗PA, the isomorphisms

(c∨n( 1
n
y), cφ(y′))∗PA

∼→ (c∨n( 1
n
y′), cφ(y))∗PA
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differ from the canonical symmetry isomorphism

(c∨n( 1
n
y), cφ(y′))∗PA

can.
∼→ (c∨n( 1

n
y′), cφ(y))∗PA

by the aΦn,δn( 1
n
y, 1

n
y′) prescribed by Lemma 6.2.3.1.

Then the construction of ΞΦn,δn shows the following:

Proposition 6.2.3.21 (continuation of Proposition 6.2.3.18). The
structural morphism ΞΦn,δn → MZn

n factorizes as the composition
ΞΦn,δn → CΦn,δn → MZn

n , where ΞΦn,δn → CΦn,δn is a torsor under the
torus EΦn

∼= Hom(SΦn ,Gm), and where CΦn,δn → MZn
n is a (relative)

abelian scheme. The EΦn-torsor structure of ΞΦn,δn defines a canonical
homomorphism

SΦn → Pice(CΦn,δn/M
Zn
n ) : ` 7→ ΨΦn,δn(`), (6.2.3.22)

giving for each ` ∈ SΦn a rigidified invertible sheaf ΨΦn,δn(`) over CΦn,δn.

6.2.4 Construction with General Level Structures

Let us take general level-H structures (see Definition 1.3.7.6) into consider-
ation.

With the setting as in Section 6.2.1, let H ⊂ G(Ẑ2) be an open compact
subgroup, and let (ZH,ΦH, δH) be a representative of a cusp label at level H
(see Definition 5.4.2.4), where ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H) is a torus argument
at level H. Here X and Y are constant group schemes that will serve as the
character group of the torus parts, as usual. As explained in Definition
5.4.2.6, the information of ZH alone defines a moduli problem MHh over S0 as
in Definition 1.4.1.2, which admits finite étale covers MΦH

H → MZH
H → MHh .

Let (A, λA, iA, ϕ−1,H) be the tautological tuple over MHh . For simplicity, we
shall denote its pullbacks by the same notation.

As the counterpart for ΓΦn (see Definition 6.2.1.2),

Definition 6.2.4.1. For each torus argument ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H),
the group ΓΦH is the subgroup of elements (γX , γY ) in Γφ satisfying ϕ−2,H =
tγXϕ−2,H and ϕ0,H = γY ϕ0,H (as collections of orbits). (This is the subgroup
of Γφ appeared in Definition 5.4.2.6.)
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Essentially by definition (see Definition 5.4.2.6), ΓΦH acts on the finite
étale cover MΦH

H → MZH
H and induces an isomorphism MΦH

H /ΓΦH
∼→ MZH

H .
For each integer n ≥ 1 such that 2 - n and U2(n) ⊂ H, set

Hn := H/U2(n) as usual. Then we can interpret (ZH,ΦH, δH) as a collection
{(ZHn ,ΦHn , δHn)}n indexed by n’s as above, each (ZHn ,ΦHn , δHn) being an
Hn-orbit of some representative (Zn,Φn, δn) of cusp label at level n. For
each such representative (Zn,Φn, δn), we have constructed in Section 6.2.3
the algebraic stacks ΞΦn,δn � CΦn,δn � MZn

n , such that the first morphism
is a torsor under some torus EΦn with character group SΦn , such that the
second morphism is an abelian scheme, and such that the quotient functor
ΞΦn,δn/ΓΦn is universal for tuples of the form

(Zn, (X, Y, φ, ϕ−2,n, ϕ0,n), (A, λA, iA, ϕ−1,n), δn, (cn, c
∨
n , τn)).

Our goal in this section is to construct algebraic stacks

ΞΦH,δH � CΦH,δH � MΦH
H , (6.2.4.2)

carrying compatible actions of ΓΦH , such that the first morphism in (6.2.4.2)
is a torsor under some torus EΦH with some character group SΦH , such that
the second morphism in (6.2.4.2) is a abelian scheme torsor, and such that
the quotient functor ΞΦH,δH/ΓΦH is universal for tuples of the form

(ZH, (X, Y, φ, ϕ
∼
−2,H, ϕ

∼
0,H), (A, λA, iA, ϕ−1,H), δH, (cH, c

∨
H, τH)),

where (ϕ∼−2,H, ϕ
∼
0,H) induces (ϕ−2,H, ϕ0,H) as in Definition 5.4.2.8. (Following

Convention 5.4.2.5, we shall not make ZH explicit in notation such as ΞΦH,δH .)
If we take any (Zn,Φn, δn) in the Hn-orbit (ZHn ,ΦHn , δHn), then we have

the natural inclusions

Hn,Uess
2,Zn
⊂ Hn,Uess

Zn
⊂ Hn,Zess

Zn
⊂ Hn,Pess

Zn
⊂ Hn

as in Definition 5.3.1.11. Note that the quotient Hn/Hn,Pess
Zn

describes ele-
ments in the orbit ZHn , and the fibers of ΦHn → ZHn are torsors under the
image H ′n,Gess

l,Zn
of Hn,Pess

Zn
in Gess

l,Zn
. Once we have fixed a choice of (Zn,Φn, δn),

by viewing the semidirect product Gess
h,Zn

nUess
Zn

as a subgroup of Gess(Z/nZ)
using the splitting δn, and by viewing Gess

h,Zn
n Uess

1,Zn as its quotient by Uess
2,Zn ,

we can define as in 5.3.1.11 the groups Hn,Gess
h,Zn

nUess
Zn

and Hn,Gess
h,Zn

nUess
1,Zn

, fitting
into short exact sequences

1→ Hn,Gess
h,Zn

nUess
Zn
→ Hn,Pess

Zn
→ H ′n,Gess

l,Zn
→ 1
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and
1→ Hn,Uess

2,Zn
→ Hn,Gess

h,Zn
nUess

Zn
→ Hn,Gess

h,Zn
nUess

1,Zn
→ 1.

Let H ′n,Gess
h,Zn

denote the canonical image of Hn,Gess
h,Zn

nUess
1,Zn

in Gess
h,Zn

, so that we

have an exact sequence

1→ Hn,Uess
1,Zn
→ Hn,Gess

h,Zn
nUess

1,Zn
→ H ′n,Gess

h,Zn
→ 1.

Then we have the following commutative diagram

ΞΦn,δn
// //

%% %%

ΞΦn,δn/Hn,Uess
2,Zn

// //

����

ΞΦn,δn/Hn,Uess
Zn

// //

����

ΞΦn,δn/Hn,Gess
h,Zn

nUess
Zn

����
CΦn,δn

// //

'' ''

CΦn,δn/Hn,Uess
1,Zn

// //

����

CΦn,δn/Hn,Gess
h,Zn

nUess
1,Zn

����
MZn
n

// //

)) ))

MZn
n /H

′
n,Gess

h,Zn

����
S0

(6.2.4.3)
in which the squares are all Cartesian by definition. Moreover, we have used
the fact that Hn,Uess

Zn
(resp. Hn,Uess

2,Zn
) acts trivially on (objects parameterized

by) MZn
n (resp. CΦn,δn).

Lemma 6.2.4.4. The finite group Hn,Uess
2,Zn

can be canonically identified with
a finite étale subgroup of the n-torsion elements in the torus EΦn, and the ac-
tion of Hn,Uess

2,Zn
on the EΦn-torsor ΞΦn,δn over CΦn,δn can be canonically iden-

tified with the torsor-action of this subgroup of EΦn, so that ΞΦn,δn/Hn,Uess
2,Zn

is

a torsor under the quotient torus EΦHn
:= EΦn/Hn,Uess

2,Zn
. We shall denote the

character group of EΦHn
by SΦHn

. The torus EΦHn
and its character group

SΦHn
are independent of the choice of n, and hence define a torus EΦH with

character group SΦH.

Lemma 6.2.4.5. The finite group Hn,Uess
1,Zn

can be canonically identified with
a finite étale subgroup of CΦn,δn, and its action on CΦn,δn can be canoni-
cally identified with the translation action of this subgroup. As a result, the
quotient CΦHn ,δHn

:= CΦn,δn/Hn,Uess
1,Zn

is an abelian scheme over Mn.
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Lemma 6.2.4.6. The finite groups Hn,Gess
h,Zn

and H ′n,Gess
h,Zn

act on MZn
n by twist-

ing the level-n structures, which induce isomorphisms MZn
n /Hn,Gess

h,Zn

∼→ MHh
and MZn

n /H
′
n,Gess

h,Zn

∼→ MΦH
H by the moduli interpretations.

Since the quotients in (6.2.4.3) all exist as algebraic stacks, the above
lemmas show that the claim would follow if we identify (6.2.4.2) with the
equivariant quotient of∐

ΞΦn,δn/Hn,Gess
h,Zn

nUess
Zn
�
∐

CΦn,δn/Hn,Gess
h,Zn

nUess
1,Zn
�
∐

MZn
n /H

′
n,Gess

h,Zn

by H ′n,Gess
l,Zn

, where the morphisms

ΞΦn,δn/Hn,Gess
h,Zn

nUess
Zn
� CΦn,δn/Hn,Gess

h,Zn
nUess

1,Zn
� MZn

n /H
′
n,Gess

h,Zn

are the vertical arrows in (6.2.4.3), and where the disjoint unions are over
elements Φn in the fiber of ΦHn → ZHn above Zn. (Here we fix the choice of
Zn and δn, but allow Φn to vary in its H ′n,Gess

l,Zn
-orbit.) Equivalently, we shall

identify (6.2.4.2) with the equivariant quotient of∐
ΞΦn,δn →

∐
CΦn,δn →

∐
MZn
n

by Hn, where the disjoint unions are over representatives (Zn,Φn, δn) (with
the same (X, Y, φ)) in (ZH,ΦH, δH), which carries the desired compatible
actions of ΓΦH . (Here we allow the whole (Zn,Φn, δn) to vary.)

Note that the construction is independent of the n we choose, because
the construction using any m such that n|m and 2 - m will factor through
the above quotient diagram (6.2.4.3) and displayed equations. This enables
us to state the following analogue of Proposition 6.2.3.18 for ΞΦH,δH/ΓΦH :

Proposition 6.2.4.7. LetH be an open compact subgroup of G(Ẑ2) as above.
Let us fix the choice of a representative (ZH,ΦH, δH) of a cusp label at level H,
where ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H), which defines a finite étale cover MΦH

H →
MZH
H (as in Definition 5.4.2.6).

Let us consider the category fibered in groupoids over the category of
schemes over MZH

H whose fiber over each scheme S has objects the tuples

(ZH, (X, Y, φ, ϕ
∼
−2,H, ϕ

∼
0,H), (A, λA, iA, ϕ−1,H), δH, (cH, c

∨
H, τH))
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describing degeneration data without the positivity condition over S such that
(A, λA, iA, ϕ−1,H) is the pullback of the tautological tuple over MZH

H , which is
a collection of Hn-orbits of objects defined as in Proposition 6.2.3.18 for each
integer n ≥ 1 such that 2 - n and U2(n) ⊂ H, and such that (ϕ∼−2,H, ϕ

∼
0,H)

induces the (ϕ−2,H, ϕ0,H) in ΦH as in Definition 5.4.2.8.
Then there is an algebraic stack ΞΦH,δH separated, smooth, and schematic

over MZH
H , together with a tautological tuple and a natural action of ΓΦH on

ΞΦH,δH, such that the quotient ΞΦH,δH/ΓΦH is isomorphic to the category de-
scribed above (as categories fibered in groupoids over MZH

H ). Equivalently, for
each tuple (ZH, (X, Y, φ, ϕ

∼
−2,H, ϕ

∼
0,H), (A, λA, iA, ϕ−1,H), δH, (cH, c

∨
H, τH)) over

a scheme S over MZH
H , there is a morphism S → ΞΦH,δH (over MZH

H ), which
is unique up to an isomorphism (fY : Y

∼→ Y, fX : X
∼→ X) in ΓΦH, such

that the tuple over S is the pullback of the tautological tuple over ΞΦH,δH if
we identify X by fX and Y by fY .

The structural morphism ΞΦH,δH → MZH
H factorizes as the composition

ΞΦH,δH → CΦH,δH → MΦH
H → MZH

H of morphisms compatible with the natural
actions of ΓΦH (trivial on MZH

H ), where ΞΦH,δH → CΦH,δH is a torsor under
the torus EΦH

∼= Hom(SΦH ,Gm); where CΦH,δH → MΦH
H is an abelian scheme

torsor, which is an abelian scheme when, for some (and hence every) choice
of a representative (Zn,Φn, δn) in (ZH,ΦH, δH), the splitting of the canonical
homomorphism Gess

h,Zn
n Uess

1,Zn � Gess
h,Zn

defined by δn induces a splitting of
the canonical homomorphism Hn,Gess

h,Zn
nUess

1,Zn
� H ′n,Gess

h,Zn
, and hence an iso-

morphism Hn,Gess
h,Zn

nUess
1,Zn

∼= H ′n,Gess
h,Zn

nHn,Uess
1,Zn

; and where MΦH
H → MZH

H is as

above, inducing an isomorphism MΦH
H /ΓΦH

∼→ MZH
H . The EΦH-torsor struc-

ture of ΞΦH,δH defines a canonical homomorphism

SΦH → Pic(CΦH,δH) : ` 7→ ΨΦH,δH(`), (6.2.4.8)

giving for each ` ∈ SΦH an invertible sheaf ΨΦH,δH(`) over CΦH,δH

(up to isomorphism), together with isomorphisms ∆∗ΦH,δH,`,`′ :

ΨΦH,δH(`) ⊗
OCΦH,δH

ΨΦH,δH(`′)
∼→ ΨΦH,δH(` + `′) for all `, `′ ∈ SΦH, satisfying

the necessary compatibilities with each other making ⊕
`∈SΦH

ΨΦH,δH(`) an

OCΦH,δH
-algebra, such that

ΞΦH,δH
∼= Spec

OCΦH,δH

(
⊕

`∈SΦH

ΨΦH,δH(`)
)
.
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6.2.5 Construction with the Positivity Condition

We now construct toroidal embeddings ΞΦH,δH of ΞΦH,δH over which the action
of ΓΦH extends naturally, such that the period homomorphism vanishes along
a suitable subalgebraic stack of the boundary ΞΦH,δH−ΞΦH,δH . (In general, the
period homomorphism does not vanish along the whole boundary of ΞΦH,δH .)

Let S∨ΦH := HomZ(SΦH ,Z) be the Z-dual of SΦH , and let (SΦH)∨R :=
S∨ΦH⊗Z

R = HomZ(SΦH ,R). By definition of SΦH (in Lemma 6.2.4.4), the

R-vector space (SΦH)∨R is isomorphic to the space of Hermitian pairings
(| · , · |) : (Y⊗

Z
R) × (Y⊗

Z
R) → O⊗

Z
R = B⊗

Q
R, by sending a Hermitian pair-

ing (| · , · |) to the function y ⊗ φ(y′) 7→ TrB/Q(|y, y′|) in HomR((Y⊗
Z
R) ×

(Y⊗
Z
R),R) ∼= (SΦH)∨R (see Lemma 1.1.4.5).

Definition 6.2.5.1. An element b in B⊗
Q
R is symmetric if b? = b.

Definition 6.2.5.2. An element b in B⊗
Q
R is positive (resp. semiposi-

tive) if it is symmetric and if

(B⊗
Q
R)×(B⊗

Q
R)→ R : (x, y) 7→ TrB/Q(ybx?)

defines a positive definite (resp. positive semidefinite) symmetric
R-bilinear pairing. We denote this by b > 0 (resp. b ≥ 0).

Definition 6.2.5.3. A Hermitian pairing (| · , · |) : (Y⊗
Z
R) × (Y⊗

Z
R) →

B⊗
Q
R is positive definite (resp. positive semidefinite) if (|y, y|) > 0

(resp. (|y, y|) ≥ 0) for all nonzero y ∈ Y .

Definition 6.2.5.4. We say that the radical (namely, the annihilator of the
whole space) of a positive semidefinite Hermitian pairing (| · , · |) : (Y⊗

Z
R) ×

(Y⊗
Z
R) → B⊗

Q
R is admissible if it is the R-span of some admissible

submodule Y ′ of Y .

Remark 6.2.5.5. An admissible radical is automatically rational in the sense
that it is spanned by elements in Y⊗

Z
Q. When O is maximal, the two notions

are identical.
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Definition 6.2.5.6. We define PΦH (resp. P+
ΦH

) to be the subset of (SΦH)∨R
corresponding to positive semidefinite (resp. positive definite) Hermitian pair-
ings with admissible radicals.

Then both PΦH and P+
ΦH

are cones in (SΦH)∨R (see Definition 6.1.1.3).

Lemma 6.2.5.7. If H ∈ PΦH (resp. H ∈ P+
ΦH

) then H(y, φ(y)) ≥ 0 (resp.
H(y, φ(y)) > 0) for all nonzero y ∈ Y .

Proof. By definition, there exists some positive definite (resp. positive
semidefinite) Hermitian form (| · , · |) such that H(y, φ(y′)) = TrB/Q(|y, y′|)
for all y, y′ ∈ Y . Hence (|y, y|) > 0 (resp. (|y, y|) ≥ 0) for all nonzero y ∈ Y ,
which means we have H(y, φ(y)) > 0 (resp. H(y, φ(y)) ≥ 0) for all nonzero
y ∈ Y after applying TrB/Q.

According to [76, §2], there is no loss of generality in identifying (SΦH)∨R
with products of one of those standard examples Mr(R), Mr(C), and Mr(H),
with the cone PΦH identified with the positive semidefinite matrices with
admissible radicals, a condition no stronger than the condition with rational
radicals (see Remark 6.2.5.5). Hence, by [16, Ch. II], with a minor error
corrected by Looijenga as remarked in [42, Ch. IV, §2], it is known that there
exist ΓΦH-admissible smooth rational polyhedral cone decompositions of PΦH

with respect to the integral structure given by S∨ΦH in (SΦH)∨R, naturally
directed partially ordered by refinements.

Let ΣΦH = {σj}j∈J be any such cone decomposition of PΦH . Let ΞΦH,δH =
ΞΦH,δH,ΣΦH

be the toroidal embedding of ΞΦH,δH defined by ΣΦH as in Defini-
tion 6.1.2.3. Note that the choice of δH is unrelated to the choice of ΣΦH (see
also Definition 6.2.6.2 below; this is why we use the notation ΣΦH rather than
ΣΦH,δH). By construction, ΞΦH,δH has the properties described in Theorem
6.1.2.8, with the following additional ones:

Proposition 6.2.5.8 (cf. [42, Ch. IV, p. 102]). 1. There are con-
structible ΓΦH-equivariant étale constructible sheaves (of O-lattices)
X and Y on ΞΦH,δH, together with an (O-equivariant) embedding
φ : Y ↪→ X, which are defined as follows:

Each admissible surjection X � X ′ of O-lattices (see Definition
1.2.6.7) determines a surjection from (ZH,ΦH, δH) to some repre-
sentative (Z′H,Φ

′
H, δ

′
H) of a cusp label at level H by Lemma 5.4.2.11,

where Z′H and Φ′H = (X ′, Y ′, φ′, ϕ′−2,H, ϕ
′
0,H) are uniquely determined
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by the construction. Consequently, it makes sense to define PΦ′H
and

an embedding PΦ′H
↪→ PΦH for each admissible surjection X � X ′.

Over the locally closed stratum ΞΦH,δH,σj , the sheaf X is the constant
quotient sheaf Xσj of X, with the quotient X � Xσj an admissible sur-
jection defining a pair (ZH,σj ,ΦH,σj = (Xσj , Yσj , φσj , ϕ−2,H,σj , ϕ0,H,σj))
such that σj is contained in the image of the embedding P+

φσj
↪→ PΦH.

We shall interpret this as having a sheaf version of ΦH, written as
ΦH = (X, Y , φ, ϕ−2,H, ϕ0,H).

2. The formation of SΦH from ΦH applies to ΦH and defines a sheaf SΦH
.

3. There is a tautological homomorphism B : SΦH
→ Inv(ΞΦH,δH) of con-

structible sheaves of groups (see Definition 4.2.4.1) which sends the
class of ` ∈ SΦH,σj

to the sheaf of ideals OΞΦH,δH (σj) ⊗
OCΦH,δH

ΨΦH,δH(`)

on ΞΦH,δH(σj), such that

(a) this homomorphism B is ΓΦH-equivariant (because it is compatible
with twists of the identification of ΦH) and EΦH-invariant (because
ΨΦH,δH(`) corresponds to a weight subsheaf of the OCΦH,δH

-algebra
OΞΦH,δH

under the action of EΦH), and is trivial on the open sub-

scheme ΞΦH,δH of ΞΦH,δH;

(b) for each local section y of Y , the support of B(y⊗φ(y)) is effective,
and is the same as the support of y. This is because σ(y, φ(y)) ≥ 0
for all σ ⊂ PΦH and y ∈ Y , and σ(y, φ(y)) > 0 when σ ⊂ P+

ΦH,σ
and 0 6= y ∈ Yσ.

For each nondegenerate rational polyhedral cone σ in PΦH ⊂ (SΦH)∨R, we
can define the affine toroidal embedding ΞΦH,δH(σ), which can be interpreted
as the moduli space for certain degeneration data without the positivity con-
dition, as follows:

Let R be a noetherian normal domain with fraction field K, and suppose
we have a morphism tR : Spec(R) → CΦH,δH that is liftable over Spec(K)
to a morphism t̃K : Spec(K)→ ΞΦH,δH . By abuse of notation, let us denote
by ΨΦH,δH(`)R the R-invertible module defined by the pullback under tR of
the invertible sheaf ΨΦH,δH(`) over CΦH,δH , and denote ΨΦH,δH(`)R⊗

R
K by

ΨΦH,δH(`)K . Since ΞΦH,δH
∼= Spec

OCΦH,δH

(
⊕

`∈SΦH

ΨΦH,δH(`)
)

, the morphism
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t̃K defines isomorphisms ΨΦH,δH(`)K
∼→ K, which defines an embedding of

ΨΦH,δH(`)R as an R-invertible submodule I` of K. Therefore, the pullback of
the homomorphism (6.2.4.8) in Proposition 6.2.4.7 determines a homomor-
phism

B : SΦH → Inv(R) : ` 7→ I` (6.2.5.9)

(see Definition 4.2.4.1). If ` = [y⊗χ] for some y ∈ Y and χ ∈ X, then
ΨΦH,δH(`) ∼= (c∨(y), c(χ))∗PA by construction, and hence I` = Iy,χ as
R-invertible submodules of K (see Definition 4.2.4.6). For each discrete
valuation υ : K× → Z of K, since I` is locally principal for every `, it makes
sense to consider the composition

υ ◦B : SΦH → Z : ` 7→ υ(I`), (6.2.5.10)

which is an element in S∨ΦH .

Proposition 6.2.5.11. With assumptions and notation as above, the uni-
versal property of ΞΦH,δH(σ) is as follows: The morphism t̃K : Spec(K) →
ΞΦH,δH extends to a morphism t̃R : Spec(R) → ΞΦH,δH(σ) if and only if, for
every discrete valuation υ : K× → Z of K such that υ(R) ≥ 0, the corre-
sponding homomorphism υ ◦ B : SΦH → Z as in (6.2.5.10) (or rather its
composition with Z ↪→ R) lies in the closure σ of σ in (SΦH)∨R.

Proof. Since ΞΦH,δH(σ) ∼= Spec
OCΦH,δH

(
⊕
`∈σ∨

ΨΦH,δH(`)
)

is relatively affine

over CΦH,δH , the morphism t̃K extends to a morphism t̃R : Spec(R) →
ΞΦH,δH(σ) if I` ⊂ R for every ` ∈ σ∨. Since R is noetherian and normal,
this is true if (υ ◦ B)(`) ≥ 0 for every discrete valuation υ of K such that
υ(R) ≥ 0 and for every ` ∈ σ∨, or equivalently if υ ◦ B pairs nonnegatively
with σ∨ under the canonical pairing between S∨ΦH and (SΦH)∨R, or equivalently
if υ ◦B lies in σ, as desired.

Remark 6.2.5.12. If t̃K extends to t̃R, then the homomorphism
B : SΦH → Inv(R) agrees with the pullback of the homomorphism
B : SΦH

→ Inv(ΞΦH,δH) under t̃R. (Thus, the notation is consistent when B
and B can be compared over R.)

Remark 6.2.5.13. Recall that the σ-stratum ΞΦH,δH,σ of ΞΦH,δH(σ) is defined
(see Lemma 6.1.2.6 and Definition 6.1.2.7) by the sheaf of ideals IΦH,δH,σ

∼=
⊕
`∈σ∨0

ΨΦH,δH(`) in OΞΦH,δH (σ)
∼= ⊕

`∈σ∨
ΨΦH,δH(`) (see Convention 6.2.3.20). Since
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σ ⊂ PΦH is positive semidefinite, we have σ(`) ≥ 0 for every ` of the form
[y ⊗ φ(y)]. As a result, the trivialization

τ(y, φ(y)) : OΞΦH,δH
⊗

OCΦH,δH

ΨΦH,δH(y ⊗ φ(y))
∼→ OΞΦH,δH

over ΞΦH,δH extends to a section

τ(y, φ(y)) : OΞΦH,δH (σ) ⊗
OCΦH,δH

ΨΦH,δH(y ⊗ φ(y))→ OΞΦH,δH (σ) (6.2.5.14)

over ΞΦH,δH(σ). If σ ⊂ P+
ΦH

, then by Lemma 6.2.5.7, we have σ(y⊗φ(y)) > 0
for every y 6= 0. In this case, the section τ(y, φ(y)) over ΞΦH,δH(σ) as in
(6.2.5.14) has image contained in IΦH,δH,σ. This is almost the positivity
condition, except that the base scheme is not completed along IΦH,δH,σ.

Since we have the tautological presence of G\ and τ (defined by the tau-
tological tuple (A,X, Y , c, c∨, τ)) over the algebraic stack ΞΦH,δH separated,
smooth, and locally of finite type over S0, we can define as in Section 4.6.2
the Kodaira–Spencer morphism

KS(G\,ι)/ΞΦH,δH/S0
:

Lie∨
G\/ΞΦH,δH

⊗
OΞΦH,δH

Lie∨
G∨,\/ΞΦH,δH

→ Ω1
ΞΦH,δH/S0

[d log∞]. (6.2.5.15)

Let λ\ : G\ → G∨,\ be the homomorphism defined by the tautological data
λA : A → A∨ and φ : Y → X. Then λ\ induces an O-equivariant morphism
(λ\)∗ : Lie∨

G∨,\/ΞΦH,δH
→ Lie∨

G\/ΞΦH,δH
. Let i\ : O → EndΞΦH,δH

(G\) denote the

tautological O-action morphism on G\.

Definition 6.2.5.16. The OΞΦH,δH
-module KS = KS(G\,λ\,i\)/ΞΦH,δH

is the

quotient of Lie∨
G\/ΞΦH,δH

⊗
OΞΦH,δH

Lie∨
G∨,\/ΞΦH,δH

by the OΞΦH,δH
-submodule

spanned by (λ\)∗(y)⊗ z − (λ\)∗(z)⊗ y and (i\(b))∗(x)⊗ y − x⊗ (i\(b)
∨
)∗(y),

for x ∈ Lie∨
G\/ΞΦH,δH

, y, z ∈ Lie∨
G∨,\/ΞΦH,δH

, and b ∈ O (cf. Definition

2.3.5.1).

Remark 6.2.5.17. By Proposition 1.2.2.3 and the assumptions on the Lie
algebra conditions, the formation of KS does not produce torsion elements
because Ibad Disc is invertible in the structural rings of the base schemes.
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Proposition 6.2.5.18. The Kodaira–Spencer morphism (6.2.5.15) factors
through the sheaf KS defined in Definition 6.2.5.16, and induces an isomor-
phism

KS
∼→ Ω1

ΞΦH,δH/S0
[d log∞]. (6.2.5.19)

Proof. Let us analyze the structural morphism ΞΦH,δH → S0 as a composition
of smooth morphisms,

ΞΦH,δH
π0→ CΦH,δH

π1→ MΦH
H

π2→ S0.

For simplicity, let us denote the composition π1 ◦ π0 by π10. Then
Ω1

ΞΦH,δH/S0
[d log∞] has an increasing filtration

0 ⊂ π∗01 Ω1

M
ΦH
H /S0

⊂ π∗0 Ω1
CΦH,δH/S0

⊂ Ω1
ΞΦH,δH/S0

[d log∞],

with graded pieces given by π∗01 Ω1

M
ΦH
H /S0

, π∗0 Ω1

CΦH,δH/M
ΦH
H

, and

Ω1
ΞΦH,δH/CΦH,δH

[d log∞], all of which are locally free of finite rank.

On the other hand, the sheaf KS = KS(G\,λ\,i\)/ΞΦH,δH
has an increasing

filtration given by π∗01 KS
(A,λA,iA)/M

ΦH
H

, the pullback (under π0) of the quotient

KS(A,c,c∨,λ\,i\)/CΦH,δH
of

Lie∨G\/CΦH,δH
⊗

OCΦH,δH

Lie∨A∨/CΦH,δH
+ Lie∨A/CΦH,δH

⊗
OCΦH,δH

Lie∨G∨,\/CΦH,δH

(as an OCΦH,δH
-submodule of Lie∨G\/CΦH,δH

⊗
OCΦH,δH

Lie∨G∨,\/CΦH,δH
) by relations

as in Definition 6.2.5.16, and the whole sheaf KS. Hence it suffices to show
that the morphism (6.2.5.19) respects the filtrations and induces isomor-
phisms between the graded pieces.

By Proposition 2.3.5.2, since MΦH
H is étale over MHh , the Kodaira–

Spencer morphism KS
A/M

ΦH
H /S0

for A over MΦH
H induces an isomor-

phism KS
(A,λA,iA)/M

ΦH
H

∼→ Ω1

M
ΦH
H /S0

, and hence the same remains

true under pullback by π01. Since the Kodaira–Spencer morphism
KSA/ΞΦH,δH/S0

= π∗01 KS
A/M

ΦH
H /S0

for A over ΞΦH,δH is the restriction of the

Kodaira–Spencer morphism KS in (6.2.5.15) (cf. Remark 4.6.2.7), we see
that the first filtered pieces are respected.
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By the deformation-theoretic interpretation of the Kodaira–Spencer mor-
phisms KS(A,c)/CΦH,δH/S0 and KS(A∨,c∨)/CΦH,δH/S0 in Section 4.6.1 (see, in par-
ticular, Definition 4.6.1.2), we see that the restrictions of both of them to
Lie∨A/CΦH,δH

⊗
OCΦH,δH

Lie∨A∨/CΦH,δH
agree with KSA/CΦH,δH/S0 , which induces a

surjection onto π∗1 Ω1

M
ΦH
H /S0

. Hence they define a morphism from

Lie∨G\/CΦH,δH
⊗

OCΦH,δH

Lie∨A∨/CΦH,δH
+ Lie∨A/CΦH,δH

⊗
OCΦH,δH

Lie∨G∨,\/CΦH,δH

to Ω1
CΦH,δH/S0

, which induces (after replacing the source of this morphism

with its quotient by Lie∨A/CΦH,δH
⊗

OCΦH,δH

Lie∨A∨/CΦH,δH
) a morphism from

Lie∨T/CΦH,δH
⊗

OCΦH,δH

Lie∨A∨/CΦH,δH
+ Lie∨A/CΦH,δH

⊗
OCΦH,δH

Lie∨T∨/CΦH,δH

to Ω1

CΦH,δH/M
ΦH
H

. The realization of CΦH,δH as a finite étale quotient of

some CΦn,δn with the condition that λAc
∨
n − cnφn = bΦn,δn for a tautological

homomorphism bΦn,δn : 1
n
Y/Y → A∨[n] defined over MZn

n implies that
the above morphism factors through the (same) quotient image of either
Lie∨T/CΦH,δH

⊗
OCΦH,δH

Lie∨A∨/CΦH,δH
or Lie∨A/CΦH,δH

⊗
OCΦH,δH

Lie∨T∨/CΦH,δH
, which

can be identified with the quotient of the above KS(A,c,c∨,λ\,i\)/CΦH,δH
by

KS(A,λA,iA)/CΦH,δH
= π∗1 KS

(A,λA,iA)/M
ΦH
H

. By the fact that CΦH,δH is the

universal space for (cH, c
∨
H) over MΦH

H , this defines an isomorphism

KS(A,c,c∨,λ\,i\)/CΦH,δH
/KS(A,λA,iA)/CΦH,δH

∼→ Ω1

CΦH,δH/M
ΦH
H
,

and hence an isomorphism

KS(A,c,c∨,λ\,i\)/CΦH,δH

∼→ Ω1
CΦH,δH/S0

.

Since the pullback of this isomorphism (under π0) to ΞΦH,δH is induced by the
restriction of the Kodaira–Spencer morphism KS in (6.2.5.15) (cf. Remark
4.6.2.7), we see that the second filtered pieces are also respected, with an
induced isomorphism between the second graded pieces.

Finally, we arrive at the top filtered pieces, and the question is whether
the induced morphism

Lie∨
T/ΞΦH,δH

⊗
OΞΦH,δH

Lie∨
T∨/ΞΦH,δH

→ Ω1
ΞΦH,δH/CΦH,δH

[d log∞] (6.2.5.20)
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induces an isomorphism between the top graded pieces. For simplicity, let
us denote by KS(T,λT ,iT )/S0

the quotient of Lie∨T/S0
⊗
OS0

Lie∨T∨/S0
by relations as

in Definition 6.2.5.16, and by KS(T,λT ,iT )/ΞΦH,δH
and KS(T,λT ,iT )/ΞΦH,δH

their

pullbacks to ΞΦH,δH and ΞΦH,δH , respectively.
Let us first consider the restriction

Lie∨T/ΞΦH,δH
⊗

OΞΦH,δH

Lie∨T∨/ΞΦH,δH
→ Ω1

ΞΦH,δH/CΦH,δH
(6.2.5.21)

of (6.2.5.20) to ΞΦH,δH , which is induced by the Kodaira–Spencer morphism
KS(G\,ι)/ΞΦH,δH/S0

defined deformation-theoretically as in Definition 4.6.2.6.
The realization of ΞΦH,δH as a finite étale quotient of some ΞΦn,δn with the
condition that ιn( 1

n
y, φ(y′))ιn( 1

n
y′, φ(y))−1 = aΦn,δn( 1

n
y, 1

n
y′) for a tautological

homomorphism aΦn,δn : 1
n
Y × 1

n
Y → Gm over CΦn,δn implies that the mor-

phism (6.2.5.21) factors through the quotient KS(T,λT ,iT )/ΞΦH,δH
of its source.

By the fact that ΞΦH,δH is the universal space for ι over CΦH,δH , we see that the
induced morphism KS(T,λT ,iT )/ΞΦH,δH

→ Ω1
ΞΦH,δH/CΦH,δH

is an isomorphism.

If we work over ΞΦH,δH , then the morphism (6.2.5.20) is induced by the ex-
tended Kodaira–Spencer morphism KS(G\,ι)/ΞΦH,δH/S0

defined as in Definition

4.6.2.12. Since its image in Ω1
ΞΦH,δH/CΦH,δH

[d log∞] contains d log(ΨΦH,δH(`))

for all ` ∈ SΦH , which are exactly the generators, we see that (6.2.5.20) in-
duces an isomorphism KS(T,λT ,iT )/ΞΦH,δH

∼→ Ω1
ΞΦH,δH/CΦH,δH

[d log∞] between

the top graded pieces, as desired.

Let us return to the context that we have the toroidal embedding
ΞΦH,δH ↪→ ΞΦH,δH = ΞΦH,δH,ΣΦH

defined by a ΓΦH-admissible smooth rational
polyhedral cone decomposition ΣΦH = {σj}j∈J of PΦH ⊂ (SΦH)∨R. Let
XΦH,δH = XΦH,δH,ΣΦH

be the formal completion of ΞΦH,δH along the union of

the σj-strata ΞΦH,δH,σj for σj ⊂ P+
ΦH

. For each σ ⊂ P+
ΦH

, let XΦH,δH,σ be the
formal completion of ΞΦH,δH(σ) along the σ-stratum ΞΦH,δH,σ. Then, using
the language of relative schemes over formal algebraic stacks (see [61]),
there are tautological tuples of the form

(ZH, (X, Y, φ, ϕ
∼
−2,H, ϕ

∼
0,H), (A, λA, iA, ϕ−1,H), δH, (cH, c

∨
H, τH)) (6.2.5.22)

over the formal algebraic stacks XΦH,δH and XΦH,δH,σ (where (ϕ∼−2,H, ϕ
∼
0,H)

induces the (ϕ−2,H, ϕ0,H) in ΦH as in Definition 5.4.2.8), the one on the latter
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being the pullback of the one on the former under the canonical morphism
XΦH,δH,σ → XΦH,δH .

Moreover, this tautological tuple over XΦH,δH satisfies the positive con-
dition in the following sense: We have a functorial assignment that, to
each connected affine formal scheme U with an étale (i.e., formally étale
and of finite type; see [59, I, 10.13.3]) morphism U = Spf(R, I) → XΦH,δH ,
where R and I satisfy the setting in Section 5.2.1, assigns a tuple of the
form (6.2.5.22) (with the positivity condition) over the (smooth) scheme
Spec(R) = Spec(Γ(U,OU)) over S0. By Theorem 5.3.1.19 (see also Defini-
tion 5.4.2.8 and Remark 5.4.2.9), Mumford’s construction defines an object

( ♥G, ♥λ, ♥i, ♥αH)→ Spec(Γ(U,OU))

in DEGPEL,MH(R, I), which we call a degenerating family of type MH as in
Definition 5.3.2.1. Moreover, the torus part of each fiber of ♥G over the
support of U is split with character group X. If we have an étale (i.e., for-
mally étale and of finite type) morphism Spf(R1, I1) → Spf(R2, I2) (with
(R1, I1) and (R2, I2) as the (R, I) above), and if a degeneration datum over
Spec(R2) pulls back to a degeneration datum over Spec(R1), then the degen-
erating family constructed by Mumford’s construction using the degenera-
tion datum over Spec(R2) pulls back to a degenerating family over Spec(R1).
The functoriality in Theorem 4.4.16 over Spec(R1) then assures that this
pullback agrees with the degenerating family constructed using the degen-
eration datum over Spec(R1). In particular, we see that the assignment of
( ♥G, ♥λ, ♥i, ♥αH)→ Spec(R) = Spec(Γ(U,OU)) to U = Spf(R, I) is functo-
rial. Hence the assignment defines a (relative) degenerating family

( ♥G, ♥λ, ♥i, ♥αH)→ XΦH,δH .

Since the cone decomposition ΣΦH is ΓΦH-admissible, the group ΓΦH acts
naturally on all the objects involved in the degeneration data, and hence by
functoriality on the degenerating family ( ♥G, ♥λ, ♥i, ♥αH)→ XΦH,δH .

Definition 6.2.5.23. Let σ be any nondegenerate rational polyhedral cone
in PΦH. The group ΓΦH,σ is defined as the subgroup of ΓΦH consisting of
elements that map σ to itself under the natural action of ΓΦH on PΦH.

Then similarly we have the degenerating family

( ♥G, ♥λ, ♥i, ♥αH)→ XΦH,δH,σ,

together with an equivariant action of ΓΦH,σ.
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Definition 6.2.5.24. An admissible boundary component of PΦH is
the image of PΦ′H

under the embedding (SΦ′H
)∨R ↪→ (SΦH)∨R defined by some

surjection (ΦH, δH)� (Φ′H, δ
′
H) (see Definition 5.4.2.12).

Condition 6.2.5.25 (cf. [42, Ch. IV, Rem. 5.8(a)]). The cone decomposition
ΣΦH = {σj}j∈J of PΦH is chosen such that, for each j ∈ J , if γσj ∩σj 6= {0}
for some γ ∈ ΓΦH, then a power of γ acts as the identity on the smallest
admissible boundary component of PΦH containing γσj ∩ σj.

Remark 6.2.5.26. Suppose the image of PΦ′H
under the embedding (SΦ′H

)∨R ↪→
(SΦH)∨R defined by some surjection (ΦH, δH) � (Φ′H, δ

′
H) is the smallest ad-

missible boundary component of PΦH containing σj. Then the condition that
a power of γ acts as the identity on the image of PΦ′H

shows that the eigen-
values of the actions of γ on X ′ and on Y ′ are roots of unity. This forces the
actions to be trivial if H is neat (see Definition 1.4.1.8).

Lemma 6.2.5.27. Suppose that Condition 6.2.5.25 is satisfied. If H is
neat (see Definition 1.4.1.8) and if σ ⊂ P+

ΦH
, then ΓΦH,σ acts trivially on

ΞΦH,δH(σ) and XΦH,δH,σ. Hence XΦH,δH,σ/ΓΦH,σ = XΦH,δH,σ is a formal alge-
braic space when H is neat. As a consequence, XΦH,δH,σ/ΓΦH,σ is a formal
(Deligne–Mumford) algebraic stack for general open compact subgroups H in
G(Ẑ2).

Proof. Suppose Condition 6.2.5.25 is satisfied, and suppose H is neat, then
ΓΦH,σ is forced to be trivial as explained in Remark 6.2.5.26. The general
case then follows from the existence of a surjection from a similar parameter
space (with the same remaining data) defined by some neat open compact
subgroup H′ of H.

Let us assume from now on that the cone decomposition ΣΦH = {σj}j∈J
of PΦH satisfies Condition 6.2.5.25. This is possible by refining any given
cone decomposition ΣΦH . (It suffices to make sure that, for each j ∈ J , no
two one-dimensional faces of σj are in the same ΓΦH-orbit.) Then the quo-
tients XΦH,δH,σ/ΓΦH,σ are formal (Deligne–Mumford) algebraic stacks, and
the equivariant action of ΓΦH,σ on ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ implies
that we have a descended family ( ♥G, ♥λ, ♥i, ♥αH)→ XΦH,δH,σ/ΓΦH,σ.

Definition 6.2.5.28. All the degenerating families ( ♥G, ♥λ, ♥i, ♥αH) →
XΦH,δH, ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ, and ( ♥G, ♥λ, ♥i, ♥αH) →
XΦH,δH,σ/ΓΦH,σ constructed above are called Mumford families.
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Remark 6.2.5.29. By abuse of notation, we will use the same notation
( ♥G, ♥λ, ♥i, ♥αH) for the Mumford families over various bases.

Remark 6.2.5.30. If σ ⊂ P+
ΦH

is in the cone decomposition ΣΦH

defining ΞΦH,δH , then ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ is the pull-
back of ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH under the canonical morphism
XΦH,δH,σ → XΦH,δH .

Remark 6.2.5.31. If σ, σ′ ∈ P+
ΦH

are two smooth rational polyhedral cones

such that σ ⊂ σ′, then ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ is the pullback of
( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ′ under the canonical morphism XΦH,δH,σ →
XΦH,δH,σ′ . However, the morphism ΞΦH,δH(σ) → ΞΦH,δH(σ′) between affine
toroidal embeddings may map certain strata to smaller-dimensional ones, for
example, when a face τ of σ is not contained in any face τ ′ of σ′ of the same
dimension as τ . Hence we cannot expect the morphism to be flat in general.

6.2.6 Identifications between Parameter Spaces

Definition 6.2.6.1. Let (ΦH, δH) and (Φ′H, δ
′
H) be two representatives of cusp

labels at level H, let σ ⊂ (SΦH)∨R, and let σ′ ⊂ (SΦ′H
)∨R. We say that the two

triples (ΦH, δH, σ) and (Φ′H, δ
′
H, σ

′) are equivalent if there exists a pair of
isomorphisms (γX : X ′

∼→ X, γY : Y
∼→ Y ′) such that we have the following:

1. The two representatives (ΦH, δH) and (Φ′H, δ
′
H) are equivalent under

(γX : X ′
∼→ X, γY : Y

∼→ Y ′) as in Definition 5.4.2.4. In other words,
ZH and Z′H are identical, and ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H) and Φ′H =
(X ′, Y ′, φ′, ϕ′−2,H, ϕ

′
0,H) are equivalent under (γX : X ′

∼→ X, γY : Y
∼→

Y ′) as in Definition 5.4.2.2.

2. The isomorphism (SΦ′H
)∨R

∼→ (SΦH)∨R induced by (γX : X ′
∼→ X, γY :

Y
∼→ Y ′) sends σ′ to σ.

In this case, we say that the two triples (ΦH, δH, σ) and (Φ′H, δ
′
H, σ

′) are equiv-
alent under the pair of isomorphisms (γX : X ′

∼→ X, γY : Y
∼→ Y ′).

Definition 6.2.6.2. Let (ΦH, δH) and (Φ′H, δ
′
H) be two representatives of

cusp labels at level H, and let ΣΦH (resp. ΣΦ′H
) be a ΓΦH-admissible (resp.

ΓΦ′H
-admissible) smooth rational polyhedral cone decomposition of PΦH (resp.

PΦ′H
). We say that the two triples (ΦH, δH,ΣΦH) and (Φ′H, δ

′
H,ΣΦ′H

) are
equivalent if (ΦH, δH) and (Φ′H, δ

′
H) are equivalent under some pair of iso-

morphisms (γX : X ′
∼→ X, γY : Y

∼→ Y ′), and if under one (and hence
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every) such (γX , γY ) the cone decomposition ΣΦH of PΦH is identified with
the cone decomposition ΣΦ′H

of PΦ′H
. In this case, we say that the two triples

(ΦH, δH,ΣΦH) and (Φ′H, δ
′
H,ΣΦ′H

) are equivalent under the pair of isomor-

phisms (γX : X ′
∼→ X, γY : Y

∼→ Y ′).

Definition 6.2.6.3. Let (ΦH, δH) and (Φ′H, δ
′
H) be two representatives of

cusp labels at level H, and let ΣΦH (resp. ΣΦ′H
) be a ΓΦH-admissible (resp.

ΓΦ′H
-admissible) smooth rational polyhedral cone decomposition of PΦH (resp.

PΦ′H
). We say that the triple (ΦH, δH,ΣΦH) is a refinement of the triple

(Φ′H, δ
′
H,ΣΦ′H

) if (ΦH, δH) and (Φ′H, δ
′
H) are equivalent under some pair of

isomorphisms (γX : X ′
∼→ X, γY : Y

∼→ Y ′), and if under one (and hence
every) such (γX , γY ) the cone decomposition ΣΦH of PΦH is identified with a
refinement of the cone decomposition ΣΦ′H

of PΦ′H
. In this case, we say that

the triple (ΦH, δH,ΣΦH) is a refinement of the triple (Φ′H, δ
′
H,ΣΦ′H

) under the

pair of isomorphisms (γX : X ′
∼→ X, γY : Y

∼→ Y ′).

Definition 6.2.6.4. Let (ΦH, δH) and (Φ′H, δ
′
H) be two representatives of

cusp labels at level H, and let ΣΦH (resp. ΣΦ′H
) be a ΓΦH-admissible (resp.

ΓΦ′H
-admissible) smooth rational polyhedral cone decomposition of PΦH (resp.

PΦ′H
). A surjection (ΦH, δH,ΣΦH)� (Φ′H, δ

′
H,ΣΦ′H

) is given by a surjection
(sX : X � X ′, sY : Y � Y ′) : (ΦH, δH)� (Φ′H, δ

′
H) (see Definition 5.4.2.12)

that induces an embedding PΦ′H
↪→ PΦH such that the restriction ΣΦH |PΦ′H

of

the cone decomposition ΣΦH of PΦH to PΦ′H
is the cone decomposition ΣΦ′H

of PΦ′H
.

Then we have the following formal observations:

Proposition 6.2.6.5. Let (ΦH, δH) and (Φ′H, δ
′
H) be two representatives of

cusp labels at level H, let σ ⊂ P+
ΦH

, and let σ′ ⊂ P+
Φ′H

. Then the Mumford

families ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ/ΓΦH,σ and ( ♥G, ♥λ, ♥i, ♥αH) →
XΦ′H,δ

′
H,σ
′/ΓΦ′H,σ

′ are isomorphic over MZH
H if and only if the triples (ΦH, δH, σ)

and (Φ′H, δ
′
H, σ

′) are equivalent (see Definition 6.2.6.1).

Thus, up to isomorphism, the assignment of the Mumford family
( ♥G, ♥λ, ♥i, ♥αH)→ XΦH,δH,σ/ΓΦH,σ to the equivalence class of (ΦH, δH, σ)
is well defined.

Proposition 6.2.6.6. Let (ΦH, δH) and (Φ′H, δ
′
H) be two represen-

tatives of cusp labels, and let ΣΦH (resp. ΣΦ′H
) be a ΓΦH-admissible
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(resp. ΓΦ′H
-admissible) smooth rational polyhedral cone decomposi-

tion of PΦH (resp. PΦ′H
). Then the corresponding Mumford families

( ♥G, ♥λ, ♥i, ♥αH)→ XΦH,δH,ΣΦH
and ( ♥G, ♥λ, ♥i, ♥αH)→ XΦ′H,δ

′
H,ΣΦ′H

are

isomorphic over MZH
H (up to an isomorphism that is unique up to actions of

ΓΦH and ΓΦ′H
) if and only if the triples (ΦH, δH,ΣΦH) and (Φ′H, δ

′
H,ΣΦ′H

) are
equivalent (see Definition 6.2.6.2).

Proposition 6.2.6.7. Let (ΦH, δH) and (Φ′H, δ
′
H) be two representatives

of cusp labels, and let ΣΦH (resp. ΣΦ′H
) be a ΓΦH-admissible (resp.

ΓΦ′H
-admissible) smooth rational polyhedral cone decomposition of PΦH

(resp. PΦ′H
). Suppose the triple (ΦH, δH,ΣΦH) is a refinement of the

triple (Φ′H, δ
′
H,ΣΦ′H

) (see Definition 6.2.6.3). Then the corresponding

Mumford family ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,ΣΦH
is the pullback of

the Mumford family ( ♥G, ♥λ, ♥i, ♥αH) → XΦ′H,δ
′
H,ΣΦ′H

via a surjection

XΦH,δH,ΣΦH
� XΦ′H,δ

′
H,ΣΦ′H

(unique up to actions of ΓΦH and ΓΦ′H
).

6.3 Approximation and Gluing

Let us continue with the setting of Section 6.2.1 in this section (including
especially Convention 6.2.1.1). Assume moreover that Condition 6.2.5.25 is
satisfied for all the cone decompositions we choose.

For the ease of exposition we shall make the following definition:

Definition 6.3.1. Let (G, λ, i, αH) be a degenerating family of type MH over
S (as defined in Definition 5.3.2.1) over S0 = Spec(OF0,(2)). Let Lie∨G/S :=
e∗GΩ1

G/S be the dual of LieG/S, and let Lie∨G∨/S := e∗GΩ1
G∨/S be the dual of

LieG∨/S. The homomorphism λ : G → G∨ induces an O-equivariant mor-
phism λ∗ : Lie∨G∨/S → Lie∨G/S. Then we define the sheaf KS = KS(G,λ,i)/S =
KS(G,λ,i,αH)/S (cf. Definitions 2.3.5.1 and 6.2.5.16) to be

(Lie∨G/S ⊗
OS

Lie∨G∨/S)/

(
λ∗(y)⊗ z − λ∗(z)⊗ y

i(b)∗(x)⊗ y − x⊗ (i(b)∨)∗(y)

)
x∈Lie∨G/S ,

y,z∈Lie∨
G∨/S ,

b∈O

.

6.3.1 Good Formal Models

Construction 6.3.1.1. Suppose that we are given a torus argument ΦH =
(X, Y, φ, ϕ−2,H, ϕ0,H) at level H for some (split) ZH. Let (G, λ, i, αH) be any
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degenerating family of type MH over an excellent normal algebraic stack S.
(The excellence assumption might be removed by inductive limit arguments,
but we do not need this generality for our purpose.) We would like to define
a homomorphism B(G), following [42, Ch. III, §10], that encodes the degen-
eration pattern of G in a convenient way. By abuse of notation, let us set
X(G) := X(G) and Y (G) := X(G∨), which are étale sheaves defined using
Theorem 3.3.1.9.

Step 1. Let us begin with the case that S = Spec(R), where R is a noetherian
normal complete local domain over OF0,(2) satisfying the setting of Section
5.2.1 with I the maximal ideal of R.

Suppose that the character group of the torus part of the special fiber of
G (resp. G∨) is constant and identified with X (resp. Y ). Then the X(G)
(resp. Y (G)) is a quotient sheaf of the constant sheaf X (resp. Y ). For each
point s of S, let X(s) (resp. Y (s)) denote the pullback of X(G) (resp. Y (G))
to s. Then we have quotient homomorphisms X � X(s) and Y � Y (s),
which are compatible with the procedures in Lemma 5.4.2.11 and Proposition
6.2.5.8, and define sheaf objects

ΦH(G) = (X(G), Y (G), φ(G), ϕ−2,H(G), ϕ
0,H(G))

and SΦH(G) on S.
The degenerating family (G, λ, i, αH) defines an object in DEGPEL,MH(R),

and hence an object in DDPEL,MH(R) by Theorem 5.3.1.19. By Lemma
5.4.2.10, the choice of the representative (ZH,ΦH, δH) of the cusp label de-
termines a unique object

(ZH, (X, Y, φ, ϕ
∼
−2,H, ϕ

∼
0,H), (A, λA, iA, ϕ−1,H), δH, (cH, (c

∨
H), τH))

in DDfil.-spl.
PEL,MH

(R) (up to isomorphisms inducing automorphisms of ΦH =
(X, Y, φ, ϕ−2,H, ϕ0,H), where (ϕ∼−2,H, ϕ

∼
0,H) induces (ϕ−2,H, ϕ0,H) as in Def-

inition 5.4.2.8). The entries other than τH determine a morphism from
S = Spec(R) to CΦH,δH , while τH (with its positivity) lifts this morphism
to a morphism from the generic point of S to ΞΦH,δH . Hence we can define
as in (6.2.5.9) a homomorphism

B : SΦH → Inv(S) : ` 7→ I`. (6.3.1.2)

Let us denote by Xs (resp. Ys) the kernel of X � X(s) (resp. Y � Y (s)).
(The usage of Ys here is consistent with that in Proposition 4.5.3.11 and
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Corollary 4.5.3.12.) By Proposition 4.5.3.11, I[y⊗φ(y)] = Iy,φ(y) becomes triv-
ial after localizing at a point s of S if and only if y lies in Ys. By normality of
R and by evaluating at height-one primes, the same argument as in the proof
of Lemma 4.5.1.7 shows that Iy,χ is trivial after localizing at a point s if either
y ∈ Ys or χ ∈ Xs, and that I` and I`′ agree in Inv(Spec(OS,s)) whenever ` and
`′ have the same image in SΦH(G)(Spec(OS,s)). That is, (6.3.1.2) induces a
well-defined homomorphism Bs : SΦH(G)(Spec(OS,s)) → Inv(Spec(OS,s)) for
each point s. Hence (6.3.1.2) sheafifies and defines a homomorphism

B(G) : SΦH(G) → Inv(S). (6.3.1.3)

Suppose S† = Spec(R†), where R† is the completion of R along a point
s ∈ S. The pullback (G†, λ†, i†, α†H) of (G, λ, i, αH) to S† defines an object
in DEGPEL,MH(R†), and hence an object in DDPEL,MH(R†). The pullbacks of

ΦH(G) and SΦH(G) determine the objects Φ†H and SΦ†H
over S†, and hence by

Lemma 5.4.2.10 an object

(Z†H, (X
†, Y †, φ†, ϕ†,∼−2,H, ϕ

†,∼
0,H), (A†, λ†A, i

†
A, ϕ

†
−1,H), δ†H, (c

†
H, (c

∨
H)†, τ †H))

in DDfil.-spl.
PEL,MH

(R†) (up to isomorphisms inducing automorphisms of Φ†H =

(X†, Y †, φ†, ϕ†−2,H, ϕ
†
0,H), where (ϕ†,∼−2,H, ϕ

†,∼
0,H) induces (ϕ†−2,H, ϕ

†
0,H) as in Def-

inition 5.4.2.8). Then, similar to the B in (6.3.1.2) above, we have a homo-
morphism

B† : SΦ†H
→ Inv(S†). (6.3.1.4)

By Proposition 4.5.6.1, B† coincides with B(G)(S†) where B(G) is the homo-
morphism in (6.3.1.3). Hence B(G) can be used to describe the degeneration
of G along formal completions of the points of S.

Step 2. Now let us treat the case when S is the spectrum of a discrete
valuation ring V with discrete valuation υ : Inv(V ) → Z. Note that the
desired homomorphism B(G) is determined by B = B(G)(S), and B is
determined by the composition

υ ◦B : SΦH → Z

in Hom(SΦH ,Z) = S∨ΦH . The pullback (G, λ, i, αH) to the completion S† of S
along its closed point defines a homomorphism B† as in (6.3.1.4) (or rather
(6.3.1.2)), and the composition

υ ◦B† : SΦH → Z
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is the desired homomorphism.

Step 3. Finally, let us treat the general case. Let S be an excellent normal
algebraic stack. We have to define (compatibly) for each étale morphism
S ′ → S (from a scheme S ′) a homomorphism

B(G)(S ′) : SΦH(G)(S
′)→ Inv(S ′).

Since S is excellent and normal, so is S ′. By étale descent, it suffices to define
for those S ′ over whichX(G) and Y (G) become quotients of constant sheaves.
For each height-one point s′ of S ′, the construction in Step 2 for discrete
valuation rings (with suitable choices of representatives of cusp labels) defines
a homomorphism

B(G)(Spec(OS′,s′)) : SΦH(G)(Spec(OS′,s′))→ Inv(Spec(OS′,s′)).

Note that there are only finitely many s′ such that X(s′) and Y (s′) are non-
trivial. Over each open affine subscheme U = Spec(R) of S ′, these morphisms
define a coherent R-submodule of Frac(R) for each y ∈ Y (U) and χ ∈ X(U).
The only question is whether these coherent R-submodules define compatible
objects in Inv(S ′), and we know that the answer is affirmative by making base
changes to the complete local case in Step 1. This concludes the construction
of the homomorphism

B(G) : SΦH(G) → Inv(S) (6.3.1.5)

in general. (This finishes Construction 6.3.1.1.)

Let us summarize the properties of ( ♥G, ♥λ, ♥i, ♥αH)→ XΦH,δH,σ/ΓΦH,σ

as follows:

Proposition 6.3.1.6. Let Sfor = Spf(R, I) be an affine formal scheme, with
an étale (i.e., formally étale and of finite type; see [59, I, 10.13.3]) mor-
phism f̂ : Sfor → XΦH,δH,σ/ΓΦH,σ inducing a morphism f : S = Spec(R) →
ΞΦH,δH(σ)/ΓΦH,σ mapping the support Spec(R/I) of Sfor to the σ-stratum of
ΞΦH,δH(σ)/ΓΦH,σ. (In this case, the subscheme Spec(R/I) of S is the scheme-
theoretic preimage of its image under f .) Let ( ♦G, ♦λ, ♦i, ♦αH) → S =
Spec(R) be the pullback of ( ♥G, ♥λ, ♥i, ♥αH)→ XΦH,δH,σ/ΓΦH,σ to Sfor un-

der f̂ (by abuse of language). Then R is an I-adically complete excellent ring,
which is formally smooth over CΦH,δH, and hence also formally smooth over
S0 = Spec(OF0,(2)). Let K be the fraction field of R, and let η = Spec(K) be
the generic point of S.

490



1. The stratification of ΞΦH,δH(σ)/ΓΦH,σ determines a stratification of S =
Spec(R) parameterized by {faces τ of σ}/ΓΦH,σ such that each stratum
of S (with its reduced structure, namely, its structure as an open sub-
scheme in a closed subscheme with reduced structure) is the scheme-
theoretic preimage of the corresponding stratum of ΞΦH,δH(σ)/ΓΦH,σ un-
der f .

2. The formal completion of ♦G along the preimage of Spec(R/I) is
canonically isomorphic to the pullback of G\ under f̂ (as a formal
algebraic stack, rather than a relative scheme).

3. The étale sheaf X( ♦G) (see Theorem 3.3.1.9) is the quotient sheaf
of the constant sheaf X such that, over the (τ mod ΓΦH,σ)-stratum,
the sheaf X( ♦G) is a constant quotient X(τ mod ΓΦH,σ) of X, with an
admissible surjection X � X(τ mod ΓΦH,σ) inducing a torus argument
ΦH,(τ mod ΓΦH,σ) from ΦH as in Lemma 5.4.2.11, such that τ is
contained in the ΓΦH-orbit of the image of the induced embedding
P+

ΦH,(τ mod ΓΦH,σ)
↪→ PΦH. (We know the surjection is admissible

because of the existence of level-H structures; see Lemmas 5.2.2.2 and
5.2.2.4.) This produces a sheaf version ΦH( ♦G) of ΦH over S.

The formation of SΦH from ΦH applies to ΦH( ♦G) and defines a sheaf
SΦH(♦G) (cf. Proposition 6.2.5.8).

Then ΦH( ♦G) is equivalent (see Definition 5.4.2.2) to the pullback of
the tautological ΦH on ΞΦH,δH(σ)/ΓΦH,σ (see Proposition 6.2.5.8) under
f .

4. Under the equivalence between ΦH( ♦G) and the pullback of ΦH above,
the pullback f ∗(B) : SΦH(♦G) → Inv(S) of the tautological homomor-
phism B over ΞΦH,δH(σ)/ΓΦH,σ (see Proposition 6.2.5.8) under f agrees
with the homomorphism B( ♦G) defined by ( ♦G, ♦λ, ♦i, ♦αH)→ S as
in Construction 6.3.1.1.

5. Let KS(♦G,♦Pol,♦i)/S be the sheaf defined by ( ♦G, ♦λ, ♦i, ♦αH)→ S as

in Definition 6.3.1. As in Section 4.6.3, let Ω̂1
S/S0

denote the completion

of Ω1
S/S0

with respect to the topology of R defined by I, which is locally

free of finite rank over OS (cf. [59, 0IV, 20.4.9]), and let Ω̂1
S/S0

[d log∞]

be the subsheaf of (η ↪→ S)∗(η ↪→ S)∗Ω̂1
S/S0

generated locally by Ω̂1
S/S0
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and those d log q where q is a local generator of a component of the nor-
mal crossings divisor of Spec(R) induced by the corresponding normal
crossings divisor of ΞΦH,δH(σ) (cf. 5 of Theorem 6.1.2.8). Then the ex-
tended Kodaira–Spencer morphism (see Theorem 4.6.3.16) defines an
isomorphism

KS♦G/S/S0
: KS(♦G,♦λ,♦i)/S

∼→ Ω̂1
S/S0

[d log∞].

6. The morphism f̂ : Sfor = Spf(R, I) → XΦH,δH,σ/ΓΦH,σ, or rather the
morphism f : S = Spec(R) → ΞΦH,δH(σ)/ΓΦH,σ, is tautological with
respect to its universal property, in the following sense:

The setting is as follows: The base ring R and the ideal I satisfy
the setting of Section 5.2.1. Let (G, λ, i, αH) → S be any de-
generating family of type MH (see Definition 5.3.2.1) that defines
an object of DEGPEL,MH(R, I) (see Definition 5.3.1.17). Then
the family determines an object of DDPEL,MH(R, I) by Theorem
5.3.1.19, which determines, in particular, a cusp label. Suppose
(ZH,ΦH, δH) is a representative of this cusp label. By Lemma 5.4.2.10,
there exists a tuple (A, λA, iA, X, Y, φ, c, c

∨, τ, [α\H]) that defines
the above object of DDPEL,MH(R, I), together with a representative

α\H = (ZH, ϕ
∼
−2,H, ϕ

∼
−1,H, ϕ0,H, δH, cH, c

∨
H, τH) of [α\H] (up to isomor-

phisms inducing automorphisms of ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H), where
(ϕ∼−2,H, ϕ

∼
0,H) induces (ϕ−2,H, ϕ0,H) as in Definition 5.4.2.8). By

Proposition 6.2.4.7, this tuple without its positivity condition defines a
morphism Spec(K)→ ΞΦH,δH that is unique up to an action of ΓΦH on
the identification of ΦH, whose composition with ΞΦH,δH → CΦH,δH ex-
tends to a morphism Spec(R)→ CΦH,δH. Let B(G) : SΦH(G) → Inv(S)
be the homomorphism defined as in Construction 6.3.1.1.

Then the universal property is as follows: Suppose there exists an iden-
tification of ΦH such that, for each discrete valuation υ : Inv(S) →
Z defined by a height-one prime of R, the composition υ ◦ B(G) :
SΦH(G) → Z defines an element in the closure σ of σ in (SΦH)∨R.
Such an identification of ΦH is unique up to an element in ΓΦH,σ,
and all morphisms Spec(K) → ΞΦH,δH as above induce the same mor-
phism Spec(K) → ΞΦH,δH/ΓΦH,σ if they respect such identifications
of ΦH. Then this morphism extends to a (necessarily unique) mor-
phism f : S = Spec(R) → ΞΦH,δH(σ)/ΓΦH,σ, sending the subscheme
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Spec(R/I) to the σ-stratum of ΞΦH,δH(σ)/ΓΦH,σ and hence inducing a

morphism f̂ : Sfor = Spf(R, I) → XΦH,δH,σ/ΓΦH,σ between formal alge-
braic stacks, such that (G, λ, i, αH) → S is isomorphic to the pullback
( ♦G, ♦λ, ♦i, ♦αH) → S of ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ/ΓΦH,σ un-

der f̂ .

Proof. The only nontrivial part that we have not explained is the statement
on the extended Kodaira–Spencer morphism. By Theorem 4.6.3.16, the mor-
phism

KS♦G/S/S0
: Lie∨♦G/S ⊗

OS
Lie∨♦G∨/S → Ω̂1

S/S0
[d log∞] (6.3.1.7)

(between locally free sheaves) can be canonically identified with the mor-
phism

KS
(♦G\,♦ι)/S/S0

: Lie∨♦G\/S ⊗OS
Lie∨♦G∨,\/S → Ω̂1

S/S0
[d log∞]

defined by the pair ( ♦G
\
, ♦ι) in DD(R, I) underlying the degeneration datum

associated with ( ♦G, ♦λ, ♦i, ♦αH) → S. Since f̂ : Sfor → XΦH,δH,σ/ΓΦH,σ

is étale, and since ( ♦G
\
, ♦ι) is the pullback of the tautological (G\, ι) over

ΞΦH,δH(σ)/ΓΦH,σ under the underlying morphism f : S → ΞΦH,δH(σ)/ΓΦH,σ

of f̂ , we can conclude the proof by applying Proposition 6.2.5.18.

As a by-product of our usage of Proposition 6.2.5.18 in the proof,

Corollary 6.3.1.8. Suppose f̂ : Sfor = Spf(R, I) → XΦH,δH,σ/ΓΦH,σ is a
morphism between noetherian formal schemes formally smooth over S0, with
induced morphism f : S = Spec(R)→ ΞΦH,δH(σ)/ΓΦH,σ such that the support
Spec(R/I) of Sfor is the scheme-theoretic preimage under f of some subalge-
braic stack Z of the σ-stratum ΞΦH,δH,σ/ΓΦH,σ of ΞΦH,δH(σ)/ΓΦH,σ. Suppose
moreover that the pullback of the stratification of ΞΦH,δH(σ)/ΓΦH,σ induces a
stratification of S = Spec(R) such that each stratum of S = Spec(R) (with
its reduced structure, as in 1 of Proposition 6.3.1.6) is the scheme-theoretic
preimage of a stratum of ΞΦH,δH(σ)/ΓΦH,σ. Under these assumptions, we have
an induced morphism f0 : Spec(R/I) → Z, and we can define the extended
Kodaira–Spencer morphism

KS♦G/S/S0
: KS(♦G,♦λ,♦i)/S → Ω̂1

S/S0
[d log∞] (6.3.1.9)
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(as in Theorem 4.6.3.16 and 5 of Proposition 6.3.1.6), where
KS(♦G,♦λ,♦i)/S is the sheaf defined as in Definition 6.3.1 by the pull-

back ( ♦G, ♦λ, ♦i, ♦αH) → S of ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ/ΓΦH,σ in

the sense of relative schemes. Then the morphism f̂ is formally étale
if and only if it satisfies the conditions that f is flat, that f0 is formally
smooth, and that the morphism KS♦G/S/S0

in (6.3.1.9) is surjective.

Proof. By definition (see [59, IV-4, 17.1.1]), f̂ is formally étale if and only if
it is both formally smooth and formally unramified.

By [59, 0IV, 19.10.3(ii)], localizations are formally étale. By [59, 0IV,
19.7.1], a local homomorphism (R1,m1)→ (R2,m2) between noetherian local
rings is formally smooth if and only if R2 is flat over R1 and R2 ⊗

R1

(R1/m1) is

formally smooth over R1/m1. By [59, 0IV, 19.3.5(iii)], pullbacks of formally
smooth morphisms are formally smooth. Therefore, since f0 is the pullback
of f to Z (on the target), f̂ is formally smooth if and only if it satisfies the
conditions that f is flat and that f0 is formally smooth.

Hence it remains to show that f̂ is formally unramified if and only if the
induced morphism (6.3.1.9) is surjective. Since the formation of KS com-
mutes with base change and with Mumford’s construction (cf. Section 4.6.3),
we may pullback the isomorphism in Proposition 6.2.5.18 to an isomorphism
KS(♦G,♦λ,♦i)/S

∼→ f ∗Ω1
ΞΦH,δH (σ)/S0

[d log∞] over S. Then the surjectivity of

(6.3.1.9) is equivalent to the surjectivity of the canonical morphism

f ∗Ω1
ΞΦH,δH (σ)/S0

[d log∞]→ Ω̂1
S/S0

[d log∞]. (6.3.1.10)

Since each stratum of S = Spec(R) is the scheme-theoretic preimage of a

stratum of ΞΦH,δH(σ)/ΓΦH,σ, we can identify Ω̂1
S/ΞΦH,δH (σ) as a submodule of

the cokernel of (6.3.1.10), because the generators of the differentials with

(nontrivial) log poles in Ω̂1
S/S0

[d log∞] are all in the image of (6.3.1.10).

Hence (6.3.1.9) is surjective if and only if Ω̂1
S/ΞΦH,δH (σ) = 0, which holds if

and only if f̂ is formally unramified (by [59, 0IV, 20.7.4]), as desired.

Before moving on, let us review the following criterion for flatness, which
we learned from [66, pp. 507–508, in Notes Added in Proof]:

Lemma 6.3.1.11. Let f : Z1 → Z2 be a morphism between equidimensional
locally noetherian schemes of the same dimension. Suppose f is quasi-finite,
Z1 is Cohen–Macaulay, and Z2 is regular. Then f is automatically flat.
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Here we follow [66] and define a scheme to be equidimensional if all its
open subschemes have the same dimension. Note that this is stronger than
the definition in [59, IV-3, §13] because it has a different purpose.

Proof of Lemma 6.3.1.11. Since Z2 is regular and locally noetherian, it is
the disjoint union of its irreducible components. Then we may assume that
Z2 is irreducible. Let Z ′1 be any irreducible component of Z1. By [59, IV-
2, 5.4.1(i)], the assumption on dimensions implies that f |Z′1 : Z ′1 → Z2 is
dominant. By [59, IV-2, 5.6.4 and 5.6.5.3], the quasi-finiteness of f |Z′1 implies
that dim OZ′1,z

= dim OZ2,f(z) at each point z of Z ′1. Since Z1 is Cohen–
Macaulay, [59, 0IV, 16.5.4] implies that dim OZ′1,z

= dim OZ1,z at each point
z of Z ′1. Since Z ′1 is arbitrary, we have equivalently dim OZ1,z = dim OZ2,f(z)

at each point z of Z1. Then we can conclude the proof by applying [59, IV-3,
15.4.2 e′)⇒b)].

Remark 6.3.1.12. If Z1 and Z2 are local and regular, then a similar criterion
can be found in [3, Ch. V, Cor. 3.6].

Corollary 6.3.1.13. Let f : Z1 → Z2 be a morphism between equidimen-
sional locally noetherian schemes of the same dimension. Suppose f is un-
ramified, Z1 is Cohen–Macaulay, and Z2 is regular. Then f is automatically
étale.

Proof. By [59, IV-4, 17.4.1 a)⇒d′)], f is quasi-finite because it is unramified.
Then the corollary follows from Lemma 6.3.1.11.

Corollary 6.3.1.13 implies that an unramified morphism between regular
local rings is automatically étale. This partially justifies the consideration of
the following special case of Corollary 6.3.1.8:

Corollary 6.3.1.14. In the context of Corollary 6.3.1.8, suppose that R is
a strict local ring with (separably closed) residue field k, so that the mor-
phism f induces a morphism f̃ : Spec(R) → Spec(R̃) mapping Spec(k) to
Spec(k̃), where R̃ is a strict local ring of ΞΦH,δH(σ)/ΓΦH,σ with (separably
closed) residue field k̃, and suppose that k is of finite type over k̃. Then
f̃ is formally étale if and only if R and f satisfy the conditions that R is
equidimensional and has the same dimension as ΞΦH,δH(σ)/ΓΦH,σ, and that
the induced canonical morphism (6.3.1.9) is surjective. (This last condition
forces the induced homomorphism k̃ → k to be an isomorphism.)
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Proof. We may replace R (resp. R̃) with their completions with respect to
its maximal ideal m (resp. m̃), so that R (resp. R̃) becomes a regular com-
plete local ring with residue field k (resp. k̃). By [59, 0IV, 21.7.4], if R → R̃
is formally unramified, then the induced homomorphism k̃ → k of separa-
bly closed residue fields is an isomorphism. Hence the homomorphism f̃
is formally étale (which is now equivalent to being an isomorphism) if and
only if the corresponding local homomorphism R̃ → R induces a surjective
morphism m̃/m̃2 → m/m2 of k̃-vector spaces of the same dimension. This
last condition is equivalent to the conditions that R and R̃ have the same
dimension, and that R̃→ R is formally unramified (cf. [59, 0IV, 20.7.5]). By
the proof of Corollary 6.3.1.8, R → R̃ is formally unramified if and only if
the induced canonical morphism (6.3.1.9) is surjective. Hence the corollary
follows, as desired.

Now we are ready to define the so-called good formal models, as in [42,
Ch. IV, §3].

Definition 6.3.1.15. Let (ΦH, δH) be a representative of a cusp label at
level H, and let σ ⊂ P+

ΦH
be a nondegenerate smooth rational polyhedral

cone. A good formal (ΦH, δH, σ)-model is a degenerating family
( ♦G, ♦λ, ♦i, ♦αH) of type MH over Spec(R) (see Definition 5.3.2.1) where
we have the following:

1. R is a strict local ring that is complete with respect to an ideal I =
rad(I), together with a stratification of Spec(R) with strata parameter-
ized by ΓΦH,σ-orbits of faces of σ.

2. There exists a morphism f : Spec(R) → ΞΦH,δH(σ)/ΓΦH,σ such that
Spec(R/I) is the scheme-theoretic preimage of the σ-stratum under f ,
satisfying the following properties:

(a) The morphism f makes R isomorphic to the completion of a strict
local ring of ΞΦH,δH(σ)/ΓΦH,σ with respect to the ideal defining the
σ-stratum.

(b) The stratification of Spec(R) is strictly compatible with that
of ΞΦH,δH(σ)/ΓΦH,σ in the sense that each stratum of Spec(R)
(with its reduced structure, as in 1 of Proposition 6.3.1.6) is
the scheme-theoretic preimage of the corresponding stratum of
ΞΦH,δH(σ)/ΓΦH,σ.
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(c) The degenerating family ( ♦G, ♦λ, ♦i, ♦αH) defines an object of
DEGPEL,MH(R, I) (see Definition 5.3.1.17), and (by abuse of lan-
guage) ( ♦G, ♦λ, ♦i, ♦αH)→ Spec(R) is the pullback of the Mum-
ford family ( ♥G, ♥λ, ♥i, ♥αH)→ XΦH,δH,σ/ΓΦH,σ under the mor-

phism f̂ : Spf(R, I)→ XΦH,δH,σ/ΓΦH,σ induced by f .

Remark 6.3.1.16. As in Proposition 6.3.1.6, the morphism f̂ : Spf(R, I) →
XΦH,δH,σ/ΓΦH,σ in Definition 6.3.1.15 (making ( ♦G, ♦λ, ♦i, ♦αH)→ Spec(R)
the pullback of the Mumford family ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ/ΓΦH,σ)
is necessarily unique.

Remark 6.3.1.17. By the universal property of ΞΦH,δH(σ)/ΓΦH,σ (see Propo-
sition 6.2.5.11 and 6 of Proposition 6.3.1.6), the morphism f : Spec(R) →
ΞΦH,δH(σ)/ΓΦH,σ in Definition 6.3.1.15 (with the desired properties) is tau-
tological for the induced morphism Spec(R) → CΦH,δH(σ)/ΓΦH,σ and the
homomorphism B( ♦G) : SΦH(♦G) → Inv(Spec(R)).

Then Corollary 6.3.1.14 implies the following:

Corollary 6.3.1.18. Suppose R is a regular strict local ring complete with
respect to an ideal I = rad(I), together with a morphism f̂ : Spf(R, I) →
XΦH,δH,σ/ΓΦH,σ inducing a morphism f : Spec(R) → ΞΦH,δH(σ)/ΓΦH,σ such
that Spec(R/I) is the scheme-theoretic preimage of the σ-stratum under f ,
and inducing an isomorphism between separable closures of residue fields.
Then we can verify the statement that f makes R isomorphic to the comple-
tion of a strict local ring of ΞΦH,δH(σ)/ΓΦH,σ with respect to the ideal defining
the σ-stratum by verifying the following conditions:

1. The scheme Spec(R) has the same dimension as ΞΦH,δH(σ)/ΓΦH,σ.

2. The stratification of ΞΦH,δH(σ)/ΓΦH,σ induces a stratification of
Spec(R) that is strictly compatible with that of ΞΦH,δH(σ)/ΓΦH,σ in
the sense that each stratum of Spec(R) (with its reduced structure, as
in 1 of Proposition 6.3.1.6) is the scheme-theoretic preimage of the
corresponding stratum of ΞΦH,δH(σ)/ΓΦH,σ.

3. The extended Kodaira–Spencer morphism (see Theorem 4.6.3.16) in-
duces an isomorphism

KS♦G/Spec(R)/S0
: KS(♦G,♦λ,♦i)/ Spec(R)

∼→ Ω̂1
Spec(R)/S0

[d log∞],
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where the degenerating family ( ♦G, ♦λ, ♦i, ♦αH) → Spec(R) is the
pullback of the Mumford family ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ/ΓΦH,σ

under f̂ (by abuse of language).

Remark 6.3.1.19. The various morphisms from Spec(R/I) to the support
of the formal algebraic stack XΦH,δH,σ/ΓΦHσ, for the various good formal
(ΦH, δH, σ)-models, cover the whole σ-stratum.

Remark 6.3.1.20. A good formal (ΦH, δH, σ)-model ( ♦G, ♦λ, ♦i, ♦αH) over
Spec(R) is a good formal (Φ′H, δ

′
H, σ

′)-model if and only if (ΦH, δH, σ) is
equivalent to (Φ′H, δ

′
H, σ

′) (see Definition 6.2.6.1).

Remark 6.3.1.21. For two smooth rational polyhedral cones σ, σ′ ∈ P+
ΦH

such
that σ ⊂ σ′, a good formal (ΦH, δH, σ)-model is not necessarily a good formal
(ΦH, δH, σ

′)-model (see Remark 6.2.5.31).

6.3.2 Good Algebraic Models

Although good formal models have many nice properties, we cannot patch
them together naively, because their supports might not even overlap with
each other. We would like to construct so-called good algebraic models,
namely, families over schemes (instead of formal schemes), which are approx-
imate enough to good formal models that a gluing process for the purpose
of compactification can still be performed.

Proposition 6.3.2.1. Let (ΦH, δH) be a representative of a cusp label at
level H, and let σ ⊂ P+

ΦH
be a nondegenerate smooth rational polyhedral

cone. Let R be the strict local ring of a geometric point x̄ of the σ-stratum
of ΞΦH,δH(σ)/ΓΦH,σ for some σ ⊂ P+

ΦH
, let R∧ be the completion of R with

respect to the ideal I defining the σ-stratum, and let I∧ := I ·R∧ ⊂ R∧. Sup-
pose ( ♦G, ♦λ, ♦i, ♦αH)→ Spec(R∧) defines a good formal (ΦH, δH, σ)-model
over Spec(R∧). Then we can find (noncanonically) a degenerating fam-
ily (G, λ, i, αH) over Spec(R) as in Definition 5.3.2.1, which approximates
( ♦G, ♦λ, ♦i, ♦αH) in the following sense:

1. Over Spec(R/I), ( ♦G, ♦λ, ♦i)⊗
R

(R/I) ∼= (G, λ, i)⊗
R

(R/I). (We do

not compare ♦αH and αH here, because they are not defined over
Spec(R/I).)

2. Under the canonical homomorphism R ↪→ R∧, the pullbacks of the
objects ΦH(G), SΦ(G), and B(G) defined as in Construction 6.3.1.1 are
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isomorphic to the objects ΦH( ♦G), SΦ(♦G), and B( ♦G) defined as in
Proposition 6.3.1.6, respectively.

3. The pullback (G, λ, i, αH)⊗
R
R∧ → Spec(R∧) of (G, λ, i, αH)→ Spec(R)

under the canonical homomorphism R ↪→ R∧ defines a good formal
(ΦH, δH, σ)-model, and can be realized as the pullback of the Mumford
family ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ/ΓΦH,σ via a canonically defined
morphism Spf(R∧, I∧) → XΦH,δH,σ/ΓΦH,σ. Comparing this isomor-
phism with the original morphism Spf(R∧, I∧)→ XΦH,δH,σ/ΓΦH,σ mak-
ing the good formal (ΦH, δH, σ)-model ( ♦G, ♦λ, ♦i, ♦αH)→ Spec(R∧)
a pullback of the Mumford family, we see that they are approximate in
the sense that the induced morphisms from Spec(R/I) to the σ-stratum
of XΦH,δH,σ/ΓΦH,σ (between the supports of the formal schemes) coin-
cide.

4. The extended Kodaira–Spencer morphism for the above pullback
(G, λ, i, αH)⊗

R
R∧ → Spec(R∧) (see Theorem 4.6.3.16) induces (cf. the

proof of Theorem 4.6.3.43) an isomorphism

KSG/Spec(R)/S0 : KS(G,λ,i)/Spec(R)
∼→ Ω̃1

Spec(R)/S0
[d log∞],

where Ω̃1
Spec(R)/S0

[d log∞] is defined by Ω̃1
Spec(R)/S0

, the coherent sheaf

associated with the module of universal finite differentials Ω̃1
R/OF0,(2)

(see [77, §§11–12]), and by the normal crossings divisor of Spec(R)
induced by the one of ΞΦH,δH(σ)/ΓΦH,σ (as in 5 of Proposition 6.3.1.6,

with Ω̂1
S/S0

there replaced with Ω̃1
Spec(R)/S0

here).

The proof of this requires the approximation techniques of Artin:

Proposition 6.3.2.2 (cf. [5, Thm. 1.10]). Let R0 be a field or an excellent
discrete valuation ring, and let R be the Henselization (see [59, IV-4, 18.6])
of an R0-algebra of finite type at a prime ideal. Let I be a proper ideal of R,
and let R∧ be the I-adic completion of R. Suppose R1 is a subalgebra of R∧ of
finite type over R. Then the natural inclusion R ↪→ R1 has (homomorphic)
sections R1 → R such that the compositions R1 → R ↪→ R∧ can be arbitrarily
close to the natural inclusion R1 ↪→ R∧ in the I-adic topology.

Proof. By writing R1 as a quotient of a polynomial ring over R by finitely
many relations, the natural inclusion R1 ↪→ R∧ can be interpreted as giving
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a solution in R∧ to a system of polynomial equations with coefficients in R.
Then the approximation result of [5, Thm. 1.10] implies that we can find
approximate solutions in R arbitrarily close to the given solution in R∧ in
the I-adic topology. In other words, we have sections R1 → R to the natural
inclusion R ↪→ R1 with the desired properties.

We will also have to repeat [42, Ch. IV, Lem. 4.2]:

Lemma 6.3.2.3. Suppose R is a noetherian ring and I is an ideal of R,
such that GrI(R) is an integral domain, and such that the I-adic topology on
R is separated. Suppose moreover that f and g are nonzero elements of R
such that f/g lies in R. If {fi}i≥0 (resp. {gi}i≥0) is a sequence of nonzero
elements of R (indexed by positive integers i) converging I-adically to f (resp.
g) as i→∞, and if all the quotients fi/gi lie in R, then the quotients fi/gi
converge I-adically to f/g as i→∞.

Proof. The separateness assumption implies that there is an injection from
R to GrI(R). By the I-adic order ordI(x) of an element x in R, we mean the
degree of the first nonzero entry of its image in GrI(R). Then a sequence of
elements xi ∈ R satisfies xi → 0 (as i → ∞) in the I-adic topology if and
only if ordI(xi) → ∞. Since GrI(R) is an integral domain, the I-adic order
of a product is the sum of the orders of its terms.

By assumption, g · gi · (f/g − fi/gi) = f · gi − fi · g converges to 0. For
sufficiently large i, the I-adic order of g · gi is constant, which is twice the
I-adic order of g. Then ordI(f/g−fi/gi) = ordI(f ·gi−fi·g)−ordI(g·gi)→∞
as i→∞, as desired.

Proof of Proposition 6.3.2.1. Let R and R∧ be as in the statement of Propo-
sition 6.3.2.1, both of which are excellent and normal by assumption. Note
that R∧ is the filtering direct union of its normal subalgebras R1 of finite type
over R. By Proposition 6.3.2.2, for each such algebra R1, the natural inclu-
sion R ↪→ R1 has sections R1 → R such that the compositions R1 → R ↪→ R∧

can be made arbitrarily close to the natural inclusion R1 ↪→ R∧ in the I-adic
topology.

Since ♥G → Spec(R∧) is of finite presentation, by [59, IV-3, 8.8.2], we
may take some R1 as above such that ( ♦G, ♦λ, ♦i, ♦αH) → Spec(R∧) is
already defined over Spec(R1). By enlarging R1 if necessary, we may as-
sume that the equivalence between (ΦH( ♦G), B( ♦G)) and the pullback of
(ΦH, B) (described in Proposition 6.3.1.6) is already defined over R1. (Then
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the various character groups of torus parts are trivialized over R1.) By
pullback under a section R1 → R of R ↪→ R1 such that R1 → R ↪→
R∧ is close to the natural inclusion R1 ↪→ R∧, we obtain a degenerat-
ing family (G, λ, i, αH) → Spec(R), together with an equivalence between
(ΦH(G), B(G)) and the pullback of (ΦH, B). By further enlarging R1 if nec-
essary, we may assume that the extended Kodaira–Spencer morphism for the
pullback (G, λ, i, αH)⊗

R
R∧ → Spec(R∧) and the section R1 → R induce an

isomorphism KSG/Spec(R)/S0 as in 4 of Proposition 6.3.2.1.
Although the degenerating families (G, λ, i, αH)⊗

R
R∧ → Spec(R∧) and

( ♦G, ♦λ, ♦i, ♦αH) → Spec(R∧) are not isomorphic (in general), they can
be made close in the I-adic topology. This means, for each prescribed in-
teger a > 0, there exists R1 → R as above such that (G, λ, i)⊗

R
(R/Ia) ∼=

( ♦G, ♦λ, ♦i)⊗
R

(R/Ia) over Spec(R/Ia). We claim that the degeneration

datum

(ZH,Φ
∼
H = (X, Y, φ, ϕ∼−2,H, ϕ

∼
0,H), (A, λA, iA, ϕ−1,H), δH, (cH, c

∨
H, τH))

in DDfil.-spl.
PEL,MH

(R∧, I∧) associated with (G, λ, i, αH)⊗
R
R∧ → Spec(R∧) can be

made I-adically close to the degeneration datum

(ZH,
♦Φ∼H, (

♦A, ♦λA,
♦iA,

♦ϕ−1,H), δH, (
♦cH,

♦c
∨
H,
♦τH))

in DDfil.-spl.
PEL,MH

(R∧, I∧) associated with ( ♦G, ♦λ, ♦i, ♦αH)→ Spec(R∧). Since
(ZH,ΦH, δH) is prescribed, since the choices of iA, ϕ−1,H, and (ϕ∼−2,H, ϕ

∼
0,H)

(inducing the (ϕ−2,H, ϕ0,H) in ΦH as in Definition 5.4.2.8) are discrete in
nature, and since the determination of (cH, c

∨
H, τH) from (ZH,Φ

∼
H, δH) and αH

is discrete in nature (by Proposition 5.2.7.9 and Theorem 5.2.7.14), this is
essentially a statement on (A, λA, c, c

∨, τ).
The statement that (A, λA, c, c

∨) can be made I-adically close
to ( ♦A, ♦λA,

♦c, ♦c
∨
) means, for each prescribed integer a > 0,

there exists R1 → R as above such that (A, λA, c, c
∨)⊗

R
(R/Ia) ∼=

( ♦A, ♦λA,
♦c, ♦c

∨
)⊗
R

(R/Ia) over Spec(R/Ia). This is possible because

( ♦A, ♦λA,
♦c, ♦c

∨
) is determined by the I-adic completion ( ♦Gfor,

♦λfor).
The corresponding statement for τ is more tricky, because τ as a trivi-

alization of biextensions is (in general) not defined over Spec(R/Ia) for any
a. However, for each y ∈ Y and χ ∈ X, we can interpret τ(y, χ) as an
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R∧-module isomorphism from (c∨(y), c(χ))∗P⊗−1
A to an R∧-invertible sub-

module Iy,χ of K = Frac(R∧) (as in the proof of Lemma 4.2.1.12 in Section
4.2.4). Then the statement that τ can be made I-adically close to ♦τ means,
for each prescribed integer a > 0, the two R∧-module isomorphisms τ(y, χ) :
(c∨(y), c(χ))∗P⊗−1

A

∼→ Iy,χ and ♦τ(y, χ) : ( ♦c
∨
(y), ♦c(χ))∗P⊗−1

♦A

∼→ ♦Iy,χ can
be made identical modulo Ia (under the identification of (c∨(y), c(χ))∗P⊗−1

A

and ( ♦c
∨
(y), ♦c(χ))∗P⊗−1

♦A
over Spec(R/Ia) defined by the above isomor-

phism (A, λA, c, c
∨)⊗

R
(R/Ia) ∼= ( ♦A, ♦λA,

♦c, ♦c
∨
)⊗
R

(R/Ia)). Therefore,

the difference between their pullbacks to Spec(R/Ia) is measured a priori
by an invertible element in R/Ia, and we need to show that this invertible
element can be made the identity. To justify our claim above that the de-
generation data can be made close, it remains to show that we can make τ
close to ♦τ in this sense.

Let us take ♦Lη := (Id♦Gη ,
♦λη)

∗P♦Gη . Note that ♦Lη is symmetric.
Let ♦L be the unique cubical extension of ♦Lη (given by Theorem 3.3.2.3),

and let ♦M := (Id♦A,
♦λ♦A)∗P♦A. Then ♦L\ = ♦π∗ ♦M, where ♦π :

♦G
\ → ♦A is the structural morphism. We know that ♦L induces 2 ♦λ,

and so ♦τ is part of the degeneration datum associated with ( ♦G, ♦L) by
Fample(R

∧, I∧) (by Theorem 4.2.1.14 and the statement in Remark 4.2.1.16
that ♦λ and 2 ♦λ have the same associated ♦τ). More precisely, there is a
♦ψ such that, for each section ♦s in Γ( ♦G, ♦L) ⊗

R∧
Frac(R∧), we have

♦ψ(y) ♦τ(y, χ) T ∗♦c∨(y) ◦
♦σχ( ♦s) = ♦σχ+2φ(y)(

♦s) (6.3.2.4)

for all y ∈ Y and χ ∈ X, where ♦σ : Γ( ♦G, ♦L)→ Γ( ♦A, ♦Mχ) is defined
as in Section 4.3.1. As in the case for τ , for each y ∈ Y and χ ∈ X,
we can interpret ψ(y) as an R∧-module isomorphism from c∨(y)∗M⊗−1 to
an R∧-invertible submodule Iy of K = Frac(R∧) (see the proof of Lemma
4.2.1.12 in Section 4.2.4). Then the statement that ψ can be made I-adically
close to ♦ψ means, for each prescribed integer a > 0, the two R∧-module
isomorphisms ψ(y) : c∨(y)∗M⊗−1 ∼→ Iy and ♦ψ(y) : ♦c

∨
(y)∗M⊗−1 ∼→ ♦Iy

can be made identical modulo Ia (under the identification of the pullbacks
of c∨(y)∗M⊗−1 and ♦c

∨
(y)∗ ♦M⊗−1 to Spec(R/Ia)). (The situation for ψ is

easier than for τ because all the Iy are actually invertible submodules of R∧

by positivity of ψ; see Definition 4.2.1.11.)
Since ( ♦G, ♦λ) is defined over R1, we may take all the above objects

(including a basis of the sections ♦s) to be defined over R1. If we take
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L := (R1 → R)∗( ♦L), M := (R1 → R)∗( ♦M), and s := (R1 → R)∗( ♦s),
then we see that the same relations as above are true for the objects defined by
(G,L), and for each prescribed integer a > 0, we can take a section R1 → R
such that, for each χ ∈ X, the pullbacks to Spec(R/Ia) of the morphism σχ
for (G,L) and the morphism ♦σχ for ( ♦G, ♦L) coincide with each other.
Take basis elements of sections ♦s of Γ( ♦G, ♦L) ⊗

R∧
Frac(R∧) such that each

of the elements lies in some weight-χ̄ subspace for some χ̄ ∈ X/φ(Y ) as in
Section 4.3.2. Since ♦ψ is determined by comparisons between (translations
of) images of these basis elements (by taking, for example, χ = 0 in (6.3.2.4)),
we see that ψ can be made close to ♦ψ.

Now that we know ψ can be made close to ♦ψ, the relation

♦τ(y1, y2) = ♦ψ(y1 + y2) ♦ψ(y1)−1 ♦ψ(y2)−1

and Lemma 6.3.2.3 show that τ can be made close to ♦τ over the subgroup
Y ×φ(Y ) of Y ×X. By Lemma 4.3.1.18, and by using the same technique
as in the proof of Lemma 4.3.4.1, this shows that τ can be made close to ♦τ
over the whole group Y ×X. This concludes the proof of the claim that the
degeneration datum associated with (G, λ, i, αH)⊗

R
R∧ → Spec(R∧) can be

made close to the degeneration datum associated with ( ♦G, ♦λ, ♦i, ♦αH)→
Spec(R∧).

The proposition now follows from Remarks 6.3.1.16 and 6.3.1.17, and
Corollaries 6.3.1.8 and 6.3.1.18.

Definition 6.3.2.5. Let (ΦH, δH) be a representative of a cusp label at level
H, and let σ ⊂ P+

ΦH
be a nondegenerate smooth rational polyhedral cone. A

good algebraic (ΦH, δH, σ)-model consists of the following data:

1. An affine scheme Spec(Ralg), together with a stratification of Spec(Ralg)
with strata parameterized by ΓΦH,σ-orbits of faces of σ.

2. A strata-preserving morphism Spec(Ralg) → ΞΦH,δH(σ)/ΓΦH,σ making
Spec(Ralg) an étale neighborhood of some geometric point x̄ of
ΞΦH,δH(σ)/ΓΦH,σ at the σ-stratum.

Let R∧ be the completion of the strict local ring of ΞΦH,δH(σ)/ΓΦH,σ

at x̄ with respect to the ideal defining the σ-stratum. Then there is a
“natural inclusion” ınat : Ralg ↪→ R∧.
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3. A degenerating family (G, λ, i, αH) over Spec(Ralg) as in Definition
5.3.2.1, together with an embedding ıalg : Ralg ↪→ R∧, such that we
have the following:

(a) There are isomorphisms between the objects ΦH(G), SΦ(G), and
B(G) (see Construction 6.3.1.1), and the pullbacks of the tauto-
logical objects ΦH, S, and B over ΞΦH,δH(σ)/ΓΦH,σ (see in Propo-
sition 6.2.5.8) under Spec(Ralg)→ ΞΦH,δH(σ)/ΓΦH,σ.

(b) The embedding ıalg : Ralg ↪→ R∧ is close to the natural
inclusion ınat in the sense that the following two morphisms
Spf(R∧, I)→ XΦH,δH,σ/ΓΦH,σ coincide over the σ-stratum:

i. The pullback (G, λ, i, αH) ⊗
Ralg,ınat

R∧ → Spec(R∧) de-

fines a good formal (ΦH, δH)-model by the isomorphisms
in 3a above, and hence defines a canonical morphism
Spf(R∧, I)→ XΦH,δH,σ/ΓΦH,σ.

ii. The embedding ıalg : Ralg ↪→ R∧ defines a composition

Spec(R∧)
Spec(ıalg)→ Spec(Ralg)→ ΞΦH,δH(σ)/ΓΦH,σ,

inducing a morphism Spf(R∧, I)→ XΦH,δH,σ/ΓΦH,σ.

(c) The extended Kodaira–Spencer morphism (see Definition 4.6.3.44)
induces an isomorphism

KSG/Spec(Ralg)/S0 : KS(G,λ,i)/Spec(Ralg)
∼→ Ω1

Spec(Ralg)/S0
[d log∞].

Proposition 6.3.2.6. Good algebraic (ΦH, δH, σ)-models (G, λ, i, αH) →
Spec(Ralg) exist, and the morphisms from the various Spec(Ralg)’s to
ΞΦH,δH(σ)/ΓΦH,σ cover the σ-stratum of ΞΦH,δH(σ)/ΓΦH,σ.

Proof. In the statement of Proposition 6.3.2.1, the strict local ring R is the
inductive limit of the coordinate rings of all affine étale neighborhoods of x̄.
Then we can conclude the proof by taking Ralg to be such an affine étale
neighborhood over which all the objects, sheaves, and isomorphisms in the
statement and proof of Proposition 6.3.2.1 are defined.

Remark 6.3.2.7. What is implicit behind Proposition 6.3.2.6 is that, although
we need to approximate the (possibly infinitely many) good formal models
at all geometric points of the σ-stratum, we only need finitely many good
algebraic models to cover it, by quasi-compactness of ΞΦH,δH(σ).
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Remark 6.3.2.8. A good algebraic (ΦH, δH, σ)-model (G, λ, i, αH) over
Spec(R) is also a good algebraic (Φ′H, δ

′
H, σ

′)-model if and only if (ΦH, δH, σ)
is equivalent to (Φ′H, δ

′
H, σ

′) (see Remark 6.3.1.20).

Remark 6.3.2.9. For two smooth rational polyhedral cones σ, σ′ ∈ P+
ΦH

such
that σ ⊂ σ′, a good algebraic (ΦH, δH, σ)-model is not necessarily a good
algebraic (ΦH, δH, σ

′)-model (see Remarks 6.2.5.31 and 6.3.1.21).

Proposition 6.3.2.10 (openness of versality). Suppose x̄ is any geometric
point in the (τ mod ΓΦH,H,σ)-stratum of a good algebraic (ΦH, δH, σ)-model
(G, λ, i, αH) → Spec(Ralg) → ΞΦH,δH(σ)/ΓΦH,σ, where τ is a face of σ. By
pulling back to the completion R∧x̄ of the strict local ring of Ralg at x̄ with
respect to the ideal defining the (τ mod ΓΦH,H,σ)-stratum, we obtain a good
formal (Φ′H, δ

′
H, τ

′)-model, where

1. Φ′H = (X ′, Y ′, φ′, ϕ′−2,H, ϕ
′
0,H) is the pullback of ΦH to x̄, which comes

equipped with a surjection (sX : X � X ′, sY : Y � Y ′) (as in Defini-
tion 5.4.2.12) by definition of ΦH;

2. δ′H is any splitting that makes (Φ′H, δ
′
H) a representative of a cusp label.

Then there is a surjection (ΦH, δH) � (Φ′H, δ
′
H) (the actual choice of

δ′H does not matter);

3. τ ′ ⊂ P+
Φ′H

is any nondegenerate smooth rational polyhedral cone whose

image under the embedding PΦ′H
↪→ PΦH induced by the surjection

(sX , sY ) is the translation of τ by an element of ΓΦH.

Proof. With the choice of (Φ′H, δ
′
H), the pullback of G to Rx̄ determines

(by Lemma 5.4.2.10) an object in DDfil.-spl.
PEL,MH

(R∧x̄ , I) up to isomorphisms
inducing automorphisms of Φ′H, where I is the ideal defining the (τ
mod ΓΦH,H,σ)-stratum and satisfying rad(I) = I. As we already know the
pullback of the homomorphism B(G) (in Construction 6.3.1.1, with the
help of Proposition 4.5.6.1), we obtain (by Proposition 6.2.5.11; cf. Remark
6.3.1.17) a canonical morphism from Spf(R∧x̄ , I) to XΦ′H,δ

′
H,τ
′/ΓΦ′H,τ

′ , where
τ and the image of τ ′ under PΦ′H

↪→ PΦH have the same ΓΦH-orbit. Since
(G, λ, i, αH) ⊗

Ralg

R∧x̄ → Spec(R∧x̄ ) is the pullback of the Mumford family

over XΦ′H,δ
′
H,τ
′/ΓΦ′H,τ

′ , for each ` ∈ SΦ′H
the I` given by B(G), which is

the same as the I` defined as in (6.2.5.9) using the degeneration data of
(G, λ, i, αH) ⊗

Ralg

R∧x̄ , agrees with the pullback of ΨΦ′H,δ
′
H

(`) (as an element
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of Inv(R∧x̄ )). This verifies the strict compatibility of stratifications (and a
fortiori the condition for the pullback of the (τ mod ΓΦH,H,σ)-stratum) in
Definition 6.3.1.15.

Since (G, λ, i, αH) → Spec(Ralg) → ΞΦH,δH(σ)/ΓΦH,σ is a good algebraic
(ΦH, δH, σ)-model, we have a canonical isomorphism

KSGR∧x̄ / Spec(R∧x̄ )/S0
: KS((G,λ,i) ⊗

Ralg

R∧x̄ )/ Spec(R∧x̄ )
∼→ Ω̂1

Spec(R∧x̄ )/S0
[d log∞],

(6.3.2.11)

where Ω̂1
Spec(R∧x̄ )/S0

[d log∞] is defined (as in 5 of Proposition 6.3.1.6) by the

normal crossings divisor of Spec(R∧x̄ ) induced by the one of ΞΦH,δH(σ)/ΓΦH,σ.

Since (6.3.2.11) is an isomorphism, the R∧x̄ -module Ω̂1
Spec(R∧x̄ )/S0

[d log∞] is

spanned by Ω̂1
Spec(R∧x̄ )/S0

and d log(I`) for all ` ∈ SΦ′H
.

On the other hand, the pullback of the extended Kodaira–Spencer mor-
phism over XΦ′H,δ

′
H,τ
′/ΓΦ′H,τ

′ is necessarily the extended Kodaira–Spencer
morphism for (G, λ, i, αH) ⊗

Ralg

R∧x̄ → Spec(R∧x̄ ). Thus, we obtain a second

morphism

KS((G,λ,i) ⊗
Ralg

R∧x̄ )/ Spec(R∧x̄ ) → Ω̂1
Spec(R∧x̄ )/S0

[d log∞′], (6.3.2.12)

where Ω̂1
Spec(R∧x̄ )/S0

[d log∞′] is defined (again, as in 5 of Proposition

6.3.1.6) by the normal crossings divisor of Spec(R∧x̄ ) induced by the one

of ΞΦ′H,δ
′
H

(τ ′)/ΓΦ′H,τ
′ . That is, the R∧x̄ -module Ω̂1

Spec(Spec(R∧x̄ ))/S0
[d log∞′] is

spanned by Ω̂1
Spec(Spec(R∧x̄ ))/S0

and the pullbacks of d log(ΨΦ′H,δ
′
H

(`)) for all

` ∈ SΦ′H
. Since I` is canonically isomorphic to the pullback of ΨΦ′H,δ

′
H

(`) for
each ` ∈ SΦ′H

, this shows that (6.3.2.12) is an isomorphism as well.
Thus, Corollary 6.3.1.18 implies that the above canonical morphism iden-

tifies R∧x̄ with the completion of a strict local ring of ΞΦ′H,δ
′
H

(τ ′)/ΓΦ′H,τ
′ under

this morphism, as desired.

Inspired by Proposition 6.3.2.10,

Definition 6.3.2.13. Let (ΦH, δH) be a representative of a cusp label at level
H and let σ ⊂ P+

ΦH
be a nondegenerate smooth rational polyhedral cone. We

say that a triple (Φ′H, δ
′
H, σ

′) is a face of (ΦH, δH, σ) if

1. (Φ′H, δ
′
H) is the representative of some cusp label at level H, such that

there exists a surjection (sX : X � X ′, sY : Y � Y ′) : (ΦH, δH) �
(Φ′H, δ

′
H) as in Definition 5.4.2.12;
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2. σ′ ⊂ P+
Φ′H

is a nondegenerate smooth rational polyhedral cone such that,

for one (and hence every) surjection (sX : X � X ′, sY : Y � Y ′) as
above, the image of σ′ under the induced embedding PΦ′H

↪→ PΦH is
contained in the ΓΦH-orbit of a face of σ.

Note that this definition is not sensitive to the choices of representatives
in the classes [(ΦH, δH, σ)] and [(Φ′H, δ

′
H, σ

′)]. This justifies the following:

Definition 6.3.2.14. We say that the equivalence class [(Φ′H, δ
′
H, σ

′)] of
(Φ′H, δ

′
H, σ

′) is a face of the equivalence class [(ΦH, δH, σ)] of (ΦH, δH, σ)
if some triple equivalent to (Φ′H, δ

′
H, σ

′) is a face of some triple equivalent to
(ΦH, δH, σ).

Remark 6.3.2.15. Suppose (Φ′H, δ
′
H, σ

′) is a face of (ΦH, δH, σ), so that σ′ is
identified with some face τ of σ under some surjection (sX : X � X ′, sY :
Y � Y ′) : (ΦH, δH) � (Φ′H, δ

′
H). Then there always exists some good alge-

braic (ΦH, δH, σ)-model that has a nonempty (τ mod ΓΦH,σ)-stratum on the
base scheme.

For later reference, we shall also make the following definition:

Definition 6.3.2.16. Let (ΦH, δH) be a representative of a cusp label at
level H, and let σ ⊂ P+

ΦH
be a nondegenerate smooth rational polyhedral

cone. Suppose (Φ′H, δ
′
H, σ

′) is a face of (ΦH, δH, σ) such that the image of σ′

under the embedding PΦ′H
↪→ PΦH induced by some surjection (sX : X �

X ′, sY : Y � Y ′) : (ΦH, δH) � (Φ′H, δ
′
H) is a ΓΦH-translation of a face τ

of σ (which can be σ itself). Then we shall call the (τ mod ΓΦH,σ)-stratum
of ΞΦH,δH(σ)/ΓΦH,σ the [(Φ′H, δ

′
H, τ

′)]-stratum. (In this case, [(Φ′H, δ
′
H, τ

′)]
is a face of [(ΦH, δH, σ)]; see Definition 6.3.2.14.) We shall also call the
induced (τ mod ΓΦH,σ)-strata of good formal (ΦH, δH, σ)-models and good
algebraic good (ΦH, δH, σ)-models (see Definitions 6.3.1.15 and 6.3.2.5) their
[(Φ′H, δ

′
H, τ

′)]-strata.

6.3.3 Étale Presentation and Gluing

To construct the arithmetic toroidal compactification Mtor
H as an algebraic

stack, it suffices to give an étale presentation UH � Mtor
H such that RH :=

UH ×
Mtor
H

UH is étale over UH via the two projections (see Proposition A.7.1.1

and Definition A.7.1.3). Equivalently, it suffices to construct the UH and RH
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that satisfy the required groupoid relations, which then realizes Mtor
H as the

quotient of UH by RH. Let us first explain our choices of UH and RH, then
show that they have the desired properties.

Construction 6.3.3.1. Take a finite number of good algebraic models, which
cover our potential compactification, as follows:

1. Choose a complete set of (mutually inequivalent) representatives
(ΦH, δH) of cusp labels at level H as in Definition 5.4.2.4.

This is a finite set for the following reason: By the Jordan–Zassenhaus
theorem (see, for example, [107, Thm. 26.4]), there are only finitely
many isomorphism classes of O-lattices of each given O-multirank.
Given any two O-lattices X and Y , there can only be finitely many
mutually inequivalent representatives (ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H), δH)
of cusp labels at level H containing X and Y as part of the data, be-
cause the remaining data such as ZH, ϕ−2,H, ϕ0,H, and δH are defined
by morphisms between objects of finite cardinality, and φ : Y ↪→ X is
an embedding with finite cokernel. (We do not need to know anything
about the exact parameterization of these.)

2. Make compatible choices of a ΓΦH-admissible smooth rational poly-
hedral cone decomposition ΣΦH for each (ΦH, δH) chosen above. We
assume that each ΣΦH satisfies Condition 6.2.5.25.

The compatibility means the following:

Condition 6.3.3.2. For every surjection (ΦH, δH) � (Φ′H, δ
′
H) of repre-

sentatives of cusp labels, we require the cone decompositions ΣΦH and
ΣΦ′H

to define a surjection (ΦH, δH,ΣΦH) � (Φ′H, δ
′
H,ΣΦ′H

) as in Defi-
nition 6.2.6.4.

Let us proceed by assuming that such a compatible choice is possible
(see Proposition 6.3.3.5 below).

3. For each ΣΦH above, choose a complete set of (mutually inequivalent)
representatives σ in ΣΦH/ΓΦH . This gives a complete set of represen-
tatives (ΦH, δH, σ) of equivalence classes [(ΦH, δH, σ)] defined in Defi-
nition 6.2.6.1.

This is a finite set by the ΓΦH-admissibility (see Definition 6.1.1.10) of
each ΣΦH . (So the question is rather about the existence of ΣΦH in the
previous step.)
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4. For each representative (ΦH, δH, σ) above that satisfies moreover
σ ⊂ P+

ΦH
, choose finitely many good algebraic (ΦH, δH, σ)-models

Spec(Ralg) (see Definition 6.3.2.5) such that the corresponding étale
morphisms from the various Spec(Ralg/I)’s to the σ-stratum of
ΞΦH,δH(σ)/ΓΦH,σ, where I denotes the ideal of Ralg defining the
σ-stratum of Spec(Ralg), cover the whole σ-stratum (see Proposition
6.3.2.6 and Remark 6.3.2.7).

This is possible by the quasi-compactness of the σ-stratum of
ΞΦH,δH(σ)/ΓΦH,σ, which follows from the realization of ΞΦH,δH(σ) as
a toroidal embedding of a torus torsor over an abelian scheme torsor
over a finite étale cover of MZH

H (see Section 6.2 and Theorem 1.4.1.11).

Remark 6.3.3.3. The compatible choices of ΣΦH for the chosen representatives
(ΦH, δH) extend by the equivalence defined in Definition 6.2.6.2 to compatible
choices for all possible pairs (ΦH, δH) representing cusp labels. In particular,
there is only one choice of cone decomposition needed for each cusp label.

Definition 6.3.3.4. A compatible choice of admissible smooth ra-
tional polyhedral cone decomposition data for MH is a complete set
Σ = {ΣΦH}[(ΦH,δH)] of compatible choices of ΣΦH (satisfying Condition
6.2.5.25) in the sense of Condition 6.3.3.2, for (ΦH, δH) running through all
representatives of cusp labels [(ΦH, δH)].

Proposition 6.3.3.5. A compatible choice Σ of admissible smooth rational
polyhedral cone decomposition data for MH exists.

Remark 6.3.3.6. This is a combinatorial question completely unrelated to
the question of integral models. It is already needed in the existing works
on complex analytic constructions of toroidal compactifications (such as [16],
[102], or [62]). Since the argument is not complicated in our case, and since
the translation of different notation and settings will require too much effort,
we would like to give a direct treatment here.

For ease of exposition, let us introduce the following notions:

Definition 6.3.3.7. Let r = (r[τ ]) be the O-multirank of an O-lattice as in
Definition 1.2.1.21. The magnitude |r| of r is defined to be |r| :=

∑
[τ ]

r[τ ].

Definition 6.3.3.8. Let r = (r[τ ]) and r′ = (r′[τ ]) be the O-multirank of an
O-lattice as in Definition 1.2.1.21. We say r is greater than r′, denoted
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r > r′, if |r| > |r′| and r[τ ] ≥ r′[τ ] for every [τ ]. (We say r is smaller than
r′, denoted r < r′, if r′ > r. We say r is equal to r′ if r = r′ in the literal
sense that r[τ ] = r′[τ ] for every [τ ].) These relations define a partial order
on the set of all possible O-multiranks.

Proof of Proposition 6.3.3.5. It suffices to take a complete set
{(ΦH, δH)}[(ΦH,δH)] of (mutually inequivalent) representatives of cusp
labels [(ΦH, δH)] of MH at level H, and then to construct for each
representative (ΦH, δH) a ΓΦH-admissible smooth rational polyhedral cone
decomposition of PΦH (satisfying Condition 6.2.5.25), such that Condition
6.3.3.2 is satisfied for surjections between objects in {(ΦH, δH)}[(ΦH,δH)].
Then there is no compatibility to satisfy between cone decompositions of
representatives of cusp labels of the same O-multirank.

If we begin with the representatives of cusp labels (ΦH, δH) ofO-multirank
r of magnitude one (see Definition 6.3.3.7), then there is no compatibility
condition to satisfy, and hence we can take any ΓΦH-admissible smooth ra-
tional polyhedral cone decomposition of PΦH (satisfying Condition 6.2.5.25)
for each representative (ΦH, δH).

Let us consider any O-multirank r with magnitude strictly greater than
one. Suppose we have constructed a compatible collection of cone decom-
positions as above for each representative of cusp labels of O-multirank (see
Definition 6.3.3.8) strictly smaller than r. Let (ΦH, δH) be any representa-
tive of a cusp label of O-multirank r (if it exists). The admissible boundary
PΦH − P+

ΦH
of PΦH is the cone in (SΦH)∨R formed by the union of the ad-

missible boundary components of PΦH (see Definition 6.2.5.24), namely, the
images of PΦ′H

↪→ PΦH of surjections (ΦH, δH) � (Φ′H, δ
′
H) from (ΦH, δH)

to representatives (Φ′H, δ
′
H) of cusp labels of O-multiranks with magnitude

strictly smaller than r. The choices of cone decompositions we have made for
such PΦ′H

’s are compatible with each other, and determine a ΓΦH-admissible
smooth polyhedral cone decomposition (satisfying Condition 6.2.5.25) for the
cone PΦH −P+

ΦH
, which is independent of the choice of (ΦH, δH)� (Φ′H, δ

′
H)

by the definition of admissibility (see Definitions 6.1.1.10 and 6.1.1.12). Then
we can take any ΓΦH-admissible smooth polyhedral cone decomposition (sat-
isfying Condition 6.2.5.25) for the cone PΦH that extends the above cone de-
composition, which is possible by construction. This enables us to construct
a compatible collection of cone decompositions as above for each representa-
tive of cusp labels of O-multirank r.

Now we can conclude the proof by repeating the above process until we
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have exhausted all representatives of cusp labels.

When the O-multirank of a cusp label is zero, there is only one possible
(ΦH, δH) = (0, 0) representing this cusp label, and also only one possible
(ΦH, δH, σ) = (0, 0, {0}). In this case, the Mumford family is the tautolog-
ical tuple over the moduli problem MH we want to compactify. Then the
good algebraic models Spec(Ralg) are affine schemes with étale morphisms
Spec(Ralg)→ MH, which altogether cover MH.

Construction 6.3.3.9 (continuation of Construction 6.3.3.1). Let us form the
scheme

UH =

disjoint union of the (finitely many)
good algebraic (ΦH, δH, σ)-models

Spec(Ralg) chosen above

 ,

(smooth over S0 = Spec(OF0,(2))) which comes equipped with a natural strat-
ification labeled as follows:

On a good algebraic (ΦH, δH, σ)-model Spec(Ralg) used in the construc-
tion of UH above, its stratification inherited from ΞΦH,δH(σ)/ΓΦH,σ can be
relabeled using equivalence classes [(Φ′H, δ

′
H, τ

′)] (see Definition 6.2.6.1) fol-
lowing the recipe in Definition 6.3.2.16, which are faces of [(ΦH, δH, σ)] (see
Definition 6.3.2.14). Then we define the stratification on the disjoint union
UH to be induced by those on the good algebraic models.

By the compatibility of the choice of Σ (given by Condition 6.3.3.2) in
Definition 6.3.3.4, we know that in each representative (Φ′H, δ

′
H, τ

′) of each
face [(Φ′H, δ

′
H, τ

′)] of [(ΦH, δH, σ)], the cone τ ′ is in the cone decomposition
ΣΦ′H

we have in Σ. Hence we may label all the strata by the equivalence
classes of triples we have taken in the construction of UH. For simplicity, we
call the [(0, 0, {0})]-stratum the [0]-stratum of UH, which we denote by U

[0]
H .

The good algebraic models (G, λ, i, αH) over the various Spec(Ralg)’s de-
fine (by taking union) a degenerating family (G, λ, i, αH) over UH, whose

restriction to the [0]-stratum U
[0]
H is a tuple (G[0], λ[0], i[0], αH) parameter-

ized by the moduli problem MH. This determines a canonical morphism
U

[0]
H → MH. This morphism is étale because U

[0]
H is locally of finite presenta-

tion, and the morphism U
[0]
H → MH is formally étale at every geometric point

of U
[0]
H by the calculation of Kodaira–Spencer morphisms (using 3c of Defi-

nition 6.3.2.5, Theorem 4.6.3.16, and Proposition 2.3.5.2). As a result, the

morphism U
[0]
H → MH (surjective by definition) defines an étale presentation
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of MH. This identifies MH with the quotient of U
[0]
H by the étale groupoid R

[0]
H

over U
[0]
H defined by the representable functor

R
[0]
H := Isom

U
[0]
H ×

S0

U
[0]
H

(pr∗1(G[0], λ[0], i[0], αH), pr∗2(G[0], λ[0], i[0], αH)), (6.3.3.10)

where pr1, pr2 : U
[0]
H ×

S0

U
[0]
H → U

[0]
H denote, respectively, the two projections.

Proposition 6.3.3.11. Suppose R is a noetherian normal complete local
domain with fraction field K and algebraically closed residue field k. Assume
that we have a degenerating family (G‡, λ‡, i‡, α‡H) of type MH over Spec(R)
as in Definition 5.3.2.1. Then the following conditions are equivalent:

1. There exists a morphism Spec(R) → UH sending the generic point
Spec(K) to the [0]-stratum such that (G‡, λ‡, i‡, α‡H) → Spec(R) is the
pullback of (G, λ, i, αH)→ UH.

2. The degenerating family (G‡, λ‡, i‡, α‡H) → Spec(R) is the pullback
of the Mumford family ( ♥G, ♥λ, ♥i, ♥αH) → XΦH,δH,σ/ΓΦH,σ via a
morphism Spf(R) → XΦH,δH,σ/ΓΦH,σ, or equivalently a morphism
Spec(R) → ΞΦH,δH(σ)/ΓΦH,σ, for some (ΦH, δH, σ) (which can be
assumed to be a triple used in the construction of UH).

3. The degenerating family (G‡, λ‡, i‡, α‡H) over Spec(R) defines
an object of DEGPEL,MH(R), which corresponds to a tuple

(A‡, λA‡ , iA‡ , X
‡, Y ‡, φ‡, c‡, (c∨)‡, τ ‡, [(α\H)‡]) in DDPEL,MH(R) un-

der Theorem 5.3.1.19. Then we have a fully symplectic-liftable
admissible filtration Z

‡
H determined by [(α\H)‡]. Moreover, the étale

sheaves X‡ and Y ‡ are necessarily constant, because the base scheme
R is strict local. Hence it makes sense to say we also have a uniquely
determined torus argument Φ‡H at level H for Z

‡
H.

On the other hand, we have objects ΦH(G‡), SΦH(G‡), and B(G‡), which

define objects Φ‡H, SΦ‡H
, and in particular, B‡ : SΦ‡H

→ Inv(R) over the

special fiber.

If υ : K× → Z is any discrete valuation defined by a height-one prime
of R, then υ ◦ B‡ : SΦ‡H

→ Z makes sense and defines an element of

S∨
Φ‡H

. Then the condition is that, for some (and hence every) choice of

δ‡H making (Z‡H,Φ
‡
H, δ

‡
H) a representative of a cusp label, there is a cone
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σ‡ in the cone decomposition ΣΦ‡H
of PΦ‡H

(given by the choice of Σ; cf.

Definition 6.3.3.4) such that the closure σ‡ of σ‡ in (SΦ‡H
)∨R contains all

υ ◦B‡ obtained in this way.

Proof. The implication from 1 to 2 is clear, as the morphism from Spec(R)
to UH necessarily factors through the completion of some strict local ring of
UH.

The implication from 2 to 3 is analogous to Proposition 6.3.1.6.
For the implication from 3 to 1, suppose there exists a cone σ‡ in the

cone decomposition ΣΦ‡H
of PΦ‡H

such that σ‡ contains all the υ ◦ B‡’s. Up

to replacing σ‡ with another cone in ΣΦ‡H
, let us assume that σ‡ is a minimal

one. Then some linear combination with positive coefficients of the υ◦B‡’s lie
in σ‡, the interior of σ‡. On the other hand, by the positivity condition of τ ‡,
such a linear combination with positive coefficients must be positive definite
on Y ‡. Hence σ‡ ⊂ P+

Φ‡H
. Then there exists a unique triple (ΦH, δH, σ)

chosen in the construction UH (see Constructions 6.3.3.1 and 6.3.3.9) such
that (Φ‡H, δ

‡
H, σ

‡) and (ΦH, δH, σ) are equivalent (see Definition 6.2.6.1).
Since MZH

H is finite étale over MHh , and since A‡ is defined over R,
as pointed out in Remark 5.3.2.2, the tuple (A‡, λA‡ , iA‡ , ϕ

‡
−1,H) and the

ΓΦ‡H
-orbit of (ϕ∼,‡−2,H, ϕ

∼,‡
0,H) define a morphism Spec(R)→ MZH

H as soon as its

restriction to Spec(K) defines a morphism Spec(K)→ MZH
H . By Proposition

6.2.4.7, the degeneration datum (without the positivity condition) associ-
ated with (G‡, λ‡, i‡, α‡H)→ Spec(R) determines (by the universal properties
of ΞΦH,δH and CΦH,δH) a morphism Spec(K) → ΞΦH,δH , whose composition
with the (relatively affine) structural morphism ΞΦH,δH → CΦH,δH extends to
a morphism Spec(R)→ CΦH,δH . By Proposition 6.2.5.11 and the assumption
on the υ ◦ B‡’s, the morphism Spec(K) → ΞΦH,δH extends to a morphism
Spec(R) → ΞΦH,δH(σ), which identifies B(G‡) with the pullback of B un-
der an identification of ΦH(G‡) with the pullback of ΦH. The ambiguity of
the identifications can be removed (or rather intrinsically incorporated) if we
form the quotient ΞΦH,δH(σ)/ΓΦH,σ. Hence we have a uniquely determined
strata-preserving morphism Spec(R) → ΞΦH,δH(σ)/ΓΦH,σ, which is indepen-

dent of the identification of Φ‡H with ΦH we have chosen. This determines a
morphism Spf(R)→ XΦH,δH,σ/ΓΦH,σ as in 2.

Let us denote the image of the closed point of Spec(R) by x, which neces-
sarily lies in the σ-stratum (thanks to the minimality of the choice of σ‡). By
construction, there is some good algebraic (ΦH, δH, σ)-model (G, λ, i, αH)→
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Spec(Ralg) used in the construction of UH such that the image of the struc-
tural morphism Spec(Ralg) → ΞΦH,δH(σ)/ΓΦH,σ contains x. Let Ralg

∧ be
the completion of Ralg with respect to the ideal defining the σ-stratum
of Spec(Ralg), and let I∧ be the induced ideal of definition. Then the
étale morphism Spec(Ralg)→ ΞΦH,δH(σ)/ΓΦH,σ induces a formally étale mor-
phism Spf(Ralg

∧, I∧)→ XΦH,δH,σ/ΓΦH,σ. By formal étaleness, the morphism
Spf(R) → XΦH,δH,σ/ΓΦH,σ can be lifted uniquely to a morphism Spf(R) →
Spf(Ralg

∧, I∧). The underlying morphism Spec(R) → Spec(Ralg
∧) identifies

the degeneration datum associated with (G‡, λ‡, i‡, α‡H)→ Spec(R) with the
degeneration datum associated with the pullback of (G, λ, i, αH) ⊗

Ralg

Ralg
∧ →

Spec(Ralg
∧). Hence the morphism Spec(R) → Spec(Ralg

∧) → Spec(Ralg)

identifies (G‡, λ‡, i‡, α‡H) → Spec(R) with the pullback of (G, λ, i, αH) →
Spec(Ralg), as desired.

Remark 6.3.3.12. Condition 3 in Proposition 6.3.3.11 is always fulfilled if R
is a complete discrete valuation ring. This is because there is only one choice
of the discrete valuation υ, and hence only one homomorphism υ ◦ B‡ to
be considered. Since the union of the cones in ΣΦ‡H

cover PΦ‡H
by definition

of admissibility (in Definition 6.1.1.10), υ ◦ B‡ must lie in one of the cones.
We shall see in the proof of Proposition 6.3.3.17 how this observation will
be applied in justifying the properness of the toroidal compactification to be
constructed.

Now let RH be the normalization of R
[0]
H → UH×

S0

UH. By definition, RH is

noetherian and normal. By Proposition 3.3.1.5, the tautological isomorphism

h[0] : (pr∗1(G[0], λ[0], i[0], αH))
R

[0]
H

∼→ (pr∗2(G[0], λ[0], i[0], αH))
R

[0]
H

over R
[0]
H (see (6.3.3.10)) extends uniquely to an isomorphism

h : (pr∗1(G, λ, i, αH))RH
∼→ (pr∗2(G, λ, i, αH))RH

over RH. (Here pr1, pr2 : UH×
S0

UH → UH are the two projections.)

The key to the gluing process is the following:

Proposition 6.3.3.13. The two projections from RH to UH are étale.

Proof. The plan is as follows: Let z be an arbitrary geometric point of RH
and let x := pr1(z) and y := pr2(z). Let R12 (resp. R1, resp. R2) be the
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completion of the strict local ring of RH (resp. UH, resp. UH) at the geometric
point z (resp. x, resp. y). As both projections, pr1 and pr2, induce dominant
morphisms from irreducible components of RH to irreducible components of
UH (by restriction to U

[0]
H ), R1 (resp. R2) can be naturally embedded into R12

via the local homomorphism pr∗1 : R1 → R12 (resp. pr∗2 : R2 → R12). Our
goal is to show that R12 = pr∗1(R1) = pr∗2(R2).

Step 1. There are triples (ΦH,1, δH,1, σ1) and (ΦH,2, δH,2, σ2), with σ1 ⊂ P+
φ1

and σ2 ⊂ P+
φ2

, such that x (resp. y) lies on the [(ΦH,1, δH,1, σ1)]-stratum
(resp. [(ΦH,2, δH,2, σ2)]-stratum) of UH. By Proposition 6.3.2.10 (i.e., the
openness of versality), there exists a unique isomorphism from R1 (resp.
R2) to the completion of the strict local ring of XΦH,1,δH,1,σ1/ΓΦH,1,σ1 (resp.
XΦH,2,δH,2,σ2/ΓΦH,2,σ2) at a (unique) geometric point in the σ1-stratum
(resp. σ2-stratum), such that the pullback (G1, λ1, i1, αH,1) → Spec(R1)
(resp. (G2, λ2, i2, αH,2) → Spec(R2)) of (G, λ, i, αH) via Spec(R1) → UH
(resp. Spec(R2) → UH) defines the completion of a good formal
(ΦH,1, δH,1, σ1)-model (resp. good formal (ΦH,2, δH,2, σ2)-model) via this
isomorphism.

Step 2. By the theory of degeneration data, we have an object

(A1, λA,1, iA,1, X1, Y1, φ1, c1, c
∨
1 , τ1, [α

\
H,1])

in DDPEL,MH(R1), where [α\H,1] is represented by some

α\H,1 = (ZH,1, ϕ
∼
−2,H,1, ϕ−1,H,1, ϕ

∼
0,H,1, δH,1, cH,1, c

∨
H,1, τH,1)

which corresponds to the family (G1, λ1, i1, αH,1)→ Spec(R1) under the func-
tor MPEL,MH(R1) (see Theorem 5.3.1.19). Here we may and we do take the da-
tum (ZH,1, (X1, Y1, φ1, ϕ−2,H,1, ϕ0,H,1), δH,1) to be the one given by (ΦH,1, δH,1)
(where the (ϕ−2,H,1, ϕ0,H,1) in ΦH,1 is induced by (ϕ∼−2,H,1, ϕ

∼
0,H,1) as in Defi-

nition 5.4.2.8), because of the above-mentioned isomorphism from Spec(R1)
to XΦH,1,δH,1,σ1/ΓΦH,1,σ1 . Similarly, we have an object

(A2, λA,2, iA,2, X2, Y2, φ2, c2, c
∨
2 , τ2, [α

\
H,2])

in DDPEL,MH(R2), where [α\H,2] is represented by some

α\H,2 = (ZH,2, ϕ
∼
−2,H,2, ϕ−1,H,2, ϕ

∼
0,H,2, δH,2, cH,2, c

∨
H,2, τH,2)

515



which corresponds to the family (G2, λ2, i2, αH,2) → Spec(R2). Again,
we may and we do take (ZH,2, (X2, Y2, φ2, ϕ−2,H,2, ϕ0,H,2), δH,2) to be the
one given by (ΦH,2, δH,2) (where the (ϕ−2,H,2, ϕ0,H,2) in ΦH,2 is induced by
(ϕ∼−2,H,2, ϕ

∼
0,H,2) as in Definition 5.4.2.8).

As (G1, λ1, i1, αH,1) → Spec(R1) and (G2, λ2, i2, αH,2) → Spec(R2) be-
come isomorphic over Spec(R12) via a tautological isomorphism

h : (pr∗1(G1, λ1, i1, αH,1))R12

∼→ (pr∗2(G2, λ2, i2, αH,2))R12 ,

we have a corresponding isomorphism between the degeneration data
over Spec(R12). Therefore, h matches [α\H,1] with [α\H,2], and α\H,1 and

α\H,2 are equivalent to each other (see Definition 5.3.1.16). In particular,
(ΦH,1, δH,1) and (ΦH,2, δH,2) are equivalent to each other as representatives
of cusp labels (see Definition 5.4.2.4). Since we have taken only one
representative in each cusp label, they must be identical. We shall
henceforth assume that (ΦH,1, δH,1) = (ΦH,2, δH,2) = (ΦH, δH), where
(ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H), δH) is some representative that we have chosen.
In particular, the equivalence induced by h between (ΦH,1, δH,1) = (ΦH,2, δH,2)
is now given by an element (hX : X

∼→ Y, hY : Y
∼→ Y ) in ΓΦH .

Step 3. We claim that the pair of isomorphisms (hX : X
∼→ X, hY : Y

∼→ Y )
identifies the cone σ1 ⊂ P+

ΦH
with the cone σ2 ⊂ P+

ΦH
up to ΓΦH .

This is because of the following: Up to replacing (hX : X
∼→ X, hY :

Y
∼→ Y ) with a twist by some element of ΓΦH , we may assume that the

two homomorphisms B1 : SΦH → Inv(R1) and B2 : SΦH → Inv(R2) become
identified with each other under (hX , hY ) when extended to Inv(R12). If σ1

and σ2 were not identified with each other under (hX , hY ), then we could
find elements `1 and `2 of SΦH , identified with each other under (hX , hY ),
such that B1(`1) is contained in the maximal ideal of R1 but B2(−`2) =
B2(`2)−1 ⊂ R2. Then they could not become identified with each other
after making the base change to R12, because (by their very definitions) the
maximal ideal of R12 intersects R1 and R2 in their maximal ideals. In other
words, the homomorphisms B1 and B2 determine σ1 and σ2 respectively, and
(ΦH, δH, σ1) and (ΦH, δH, σ2) are equivalent under the element (hX : X

∼→
X, hY : Y

∼→ Y ) identifying B1 with B2.
Thus σ1 and σ2 are necessarily the same cone σ, because we have used only

one representative in each equivalence class of (ΦH, δH, σ) in our construction
of UH. By Proposition 6.3.2.10, we may compare R1 and R2 by viewing them

516



as completions of strict local rings (at geometric points of the σ-strata) of
the same algebraic stack ΞΦH,δH(σ)/ΓΦH,σ.

Step 4. Now we have two morphisms

Spec(R12)
pr1→ Spec(R1)→ ΞΦH,δH(σ)/ΓΦH,σ

and
Spec(R12)

pr2→ Spec(R2)→ ΞΦH,δH(σ)/ΓΦH,σ

defined by the two degeneration data, which actually coincide. As both
pr∗1(R1) and pr∗2(R2) are given by the image of the completion of the strict
local ring at the same image of the closed point of Spec(R12), they must
coincide as subrings of R12. Therefore, the identification pr∗1(R1) = pr∗2(R2)
identifies the two degeneration data as well. By the functoriality in the
theory of degeneration data, the isomorphism between (G1, λ1, i1, αH,1)R12

and (G2, λ2, i2, αH,2)R12 should be already defined over pr∗1(R1) = pr∗2(R2).

By definition of R
[0]
H , we get a morphism from the generic point of

Spec(R1) to R
[0]
H , which lies above the morphism to UH×

S0

UH with two

factors given respectively by Spec(R1) → UH and the composition of the
isomorphism Spec(R1)

∼→ Spec(R2) given by pr∗1(R1) = pr∗2(R2) in R12 with
Spec(R2) → UH. By definition of RH as a normalization, this extends to a
morphism Spec(R1) → RH (not just from the generic point), which sends
the closed point x of Spec(R1) to the closed point z of R12. This gives a
homomorphism R12 → R1, which is a left inverse of pr∗1 : R1 ↪→ R12. Hence
R12 = pr∗1(R1). Consequently, R12 = pr∗2(R2) as well.

Corollary 6.3.3.14. The scheme RH over UH defines an étale groupoid space
(see Definition A.5.1.2), which extends the étale groupoid space R

[0]
H over

U
[0]
H . The scheme RH is finite over UH×

S0

UH, and hence (by Lemma A.7.2.9)

UH/RH defines an algebraic stack separated over S0 = Spec(OF0,(2)).

Proof. Fiber products of RH over UH are étale over UH as well. Hence they
are normal and equal to the respective normalizations of fiber products of R

[0]
H .

The necessary morphisms between the fiber products defining the groupoid
relation of R

[0]
H over U

[0]
H extend to the normalizations. Hence RH over UH is

a groupoid as well.
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Since R
[0]
H is finite over U

[0]
H ×

S0

U
[0]
H by the property of the Isom functor

of abelian schemes (see the proof of condition 2 in Section 2.3.4), so is the
normalization RH over UH×

S0

UH.

Definition 6.3.3.15. The separated algebraic stack UH/RH (see Proposition
A.7.1.1 and Definition A.7.1.3) will be denoted by Mtor

H (or Mtor
H,Σ, to empha-

size the compatible choice Σ = {ΣΦH}[(ΦH,δH)] of cone decompositions).

Corollary 6.3.3.16. The degenerating family (G, λ, i, αH) and the stratifica-
tion over UH descend to Mtor

H , which we again denote by the same notation.
This realizes MH as the [0]-stratum in the stratification, and identifies the
restriction of (G, λ, i, αH) to MH with the tautological tuple over MH.

Proof. The degenerating family (G, λ, i, αH) over UH has a descent datum
over RH defined by h : (pr∗1(G, λ, i, αH))RH

∼→ (pr∗2(G, λ, i, αH))RH . Hence the
degenerating family (G, λ, i, αH) descends to a degenerating family over Mtor

H .
The proof of Proposition 6.3.3.13 shows that the two finite étale projections
from RH to UH respect the stratification on UH. Hence the stratification on
UH descends to Mtor

H as well. The remaining claims follow from the definitions.

Proposition 6.3.3.17. Mtor
H is proper over S0 = Spec(OF0,(2)).

Proof. The proof is based on the valuative criterion for algebraic stacks of
finite type (see Theorem A.7.2.12 and Remark A.7.2.13): Let V be a discrete
valuation ring with fraction field K and an algebraically closed residue field
k. Let Spec(K) → Mtor

H be a morphism. Since the separateness of Mtor
H

is known by Proposition 6.3.3.13 and Corollary 6.3.3.14, and since Mtor
H is

of finite type over S0 because UH is, it suffices to show the existence of an
extension Spec(V )→ Mtor

H up to replacing V with a finite extension.
Since MH is open and dense in Mtor

H , it suffices (see Remark A.7.2.13)
to treat the special case where the morphism Spec(K) → Mtor

H has im-
age in MH. The morphism Spec(K) → MH (the latter being an algebraic
stack) gives an object (GK , λK , iK , αH,K) of MH(K). By Theorem 3.3.2.4,
up to replacing V with a finite extension, we may assume that the abelian
scheme GK extends to a semi-abelian scheme GV → Spec(V ). By Proposi-
tion 3.3.1.5, the polarization λK (resp. the O-endomorphism structure iK of
(GK , λK)) extends to a homomorphism λV : GV → G∨V (resp. a homomor-
phism iV : O → EndV (GV )). Since the base scheme V is a discrete valu-
ation ring with algebraically closed residue field k, by Proposition 6.3.3.11
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and Remark 6.3.3.12, there always exists a morphism Spec(V ) → UH such
that (GV , λV , iV , αH,K) → Spec(V ) is the pullback of (G, λ, i, αH) → UH
under this morphism. This establishes (up to replacing V with a finite ex-
tension) the existence of a morphism Spec(V ) → Mtor

H extending the given
Spec(K)→ MH, as desired.

6.4 Arithmetic Toroidal Compactifications

With the same setting as in Definition 1.4.1.2, assume moreover that
(L, 〈 · , · 〉, h) satisfies Condition 1.4.3.10 (see Remark 1.4.3.9). Let us also
adopt Convention 6.2.1.1 for simplicity.

6.4.1 Main Results on Toroidal Compactifications

Theorem 6.4.1.1 (arithmetic toroidal compactifications). To each com-
patible choice Σ = {ΣΦH}[(ΦH,δH)] of admissible smooth rational polyhedral
cone decomposition data as in Definition 6.3.3.4, there is associated an alge-
braic stack Mtor

H = Mtor
H,Σ proper and smooth over S0 = Spec(OF0,(2)), which

is an algebraic space when H is neat (see Definition 1.4.1.8), containing
MH as an open dense subalgebraic stack, together with a degenerating family
(G, λ, i, αH) over Mtor

H (see Definition 5.3.2.1) such that we have the follow-
ing:

1. The restriction (GMH , λMH , iMH , αH) of the degenerating family
(G, λ, i, αH) to MH is the tautological tuple over MH.

2. Mtor
H has a stratification by locally closed subalgebraic stacks

Mtor
H =

∐
[(ΦH,δH,σ)]

Z[(ΦH,δH,σ)],

with [(ΦH, δH, σ)] running through a complete set of equivalence classes
of (ΦH, δH, σ) (as in Definition 6.2.6.1) with σ ⊂ P+

ΦH
and σ ∈ ΣΦH ∈

Σ. (Here ZH is suppressed in the notation by Convention 5.4.2.5. The
notation “

∐
” only means a set-theoretic disjoint union. The algebro-

geometric structure is still that of Mtor
H .)

In this stratification, the [(Φ′H, δ
′
H, σ

′)]-stratum Z[(Φ′H,δ
′
H,σ
′)] lies in

the closure of the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] if and only if
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[(ΦH, δH, σ)] is a face of [(Φ′H, δ
′
H, σ

′)] as in Definition 6.3.2.14 (see
also Remark 6.3.2.15).

The [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] is smooth over S0 and isomor-
phic to the support of the formal algebraic stack XΦH,δH,σ/ΓΦH,σ for
any representative (ΦH, δH, σ) of [(ΦH, δH, σ)]. The formal algebraic
stack XΦH,δH,σ (before quotient by ΓΦH,σ) admits a canonical structure
as the completion of an affine toroidal embedding ΞΦH,δH(σ) (along its
σ-stratum ΞΦH,δH,σ) of a torus torsor ΞΦH,δH over an abelian scheme
torsor CΦH,δH over a finite étale cover MΦH

H of the algebraic stack MZH
H

(separated, smooth, and of finite over S0) in Definition 5.4.2.6. (Note
that ZH and the isomorphism class of MZH

H depend only on the class
[(ΦH, δH, σ)], but not on the choice of the representative (ΦH, δH, σ).)

In particular, MH is an open dense stratum in this stratification.

3. The complement of MH in Mtor
H (with its reduced structure) is a relative

Cartier divisor D∞,H with normal crossings, such that each irreducible
component of a stratum of Mtor

H −MH is open dense in an intersection of
irreducible components of D∞,H (including possible self-intersections).
When H is neat, the irreducible components of D∞,H have no self-
intersections (cf. Condition 6.2.5.25, Remark 6.2.5.26, and [42, Ch.
IV, Rem. 5.8(a)]).

4. The extended Kodaira–Spencer morphism (see Definition 4.6.3.44) for
G→ Mtor

H induces an isomorphism

KS(G,λ,i)/Mtor
H

∼→ Ω1
Mtor
H /S0

[d logD∞,H]

(see Definition 6.3.1). Here the sheaf Ω1
Mtor
H /S0

[d logD∞,H] is the sheaf

of modules of log 1-differentials over Mtor
H , with respect to the relative

Cartier divisor D∞,H with normal crossings.

5. The formal completion (Mtor
H )∧Z[(ΦH,δH,σ)]

of the algebraic stack Mtor
H along

its [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] is canonically isomorphic to the for-
mal algebraic stack XΦH,δH,σ/ΓΦH,σ for any representative (ΦH, δH, σ)
of [(ΦH, δH, σ)]. (To form the formal completion along a given locally
closed stratum, we first remove the other strata appearing in the clo-
sure of this stratum from the total space, and then form the formal
completion of the remaining space along this stratum.)
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This isomorphism respects stratifications in the sense that, given
any étale (i.e., formally étale and of finite type; see [59, I, 10.13.3])
morphism Spf(R, I) → XΦH,δH,σ/ΓΦH,σ inducing a morphism
Spec(R) → ΞΦH,δH(σ)/ΓΦH,σ, the stratification of Spec(R) inherited
from ΞΦH,δH(σ)/ΓΦH,σ (see Proposition 6.3.1.6 and Definition 6.3.2.16)
makes the induced morphism Spec(R) → Mtor

H a strata-preserving
morphism.

The pullback of the degenerating family (G, λ, i, αH) over Mtor
H to

(Mtor
H )∧Z[(ΦH,δH,σ)]

is the Mumford family ( ♥G, ♥λ, ♥i, ♥αH) over

XΦH,δH,σ/ΓΦH,σ (see Definition 6.2.5.28) after we identify the bases
using the isomorphism.

6. Let S be an irreducible noetherian normal scheme over S0, and suppose
that we have a degenerating family (G†, λ†, i†, α†H) of type MH over S
as in Definition 5.3.2.1. Then (G†, λ†, i†, α†H) → S is the pullback of
(G, λ, i, αH) → Mtor

H via a (necessarily unique) morphism S → Mtor
H

(over S0) if and only if the following condition is satisfied:

Consider any dominant morphism Spec(V ) → S centered at a
geometric point s̄ of S, where V is a complete discrete valua-
tion ring with quotient field K, algebraically closed residue field
k, and discrete valuation υ. Let (G‡, λ‡, i‡, α‡H) → Spec(V ) be
the pullback of (G†, λ†, i†, α†H) → S. This pullback family de-
fines an object of DEGPEL,MH(V ), which corresponds to a tuple

(A‡, λA‡ , iA‡ , X
‡, Y ‡, φ‡, c‡, (c∨)‡, τ ‡, [(α\H)‡]) in DDPEL,MH(V ) under

Theorem 5.3.1.19. Then we have a fully symplectic-liftable admissible
filtration Z

‡
H determined by [(α\H)‡]. Moreover, the étale sheaves X‡

and Y ‡ are necessarily constant, because the base ring V is strict local.
Hence it makes sense to say we also have a uniquely determined torus
argument Φ‡H at level H for Z

‡
H.

On the other hand, we have objects ΦH(G‡), SΦH(G‡), and B(G‡) (see

Construction 6.3.1.1) that define objects Φ‡H, SΦ‡H
, and in particular,

B‡ : SΦ‡H
→ Inv(V ) over the special fiber. Then υ ◦ B‡ : SΦ‡H

→ Z
defines an element of S∨

Φ‡H
where υ : Inv(V )→ Z is the homomorphism

induced by the discrete valuation of V .

Then the condition is that, for each Spec(V ) → S as above, and for
some (and hence every) choice of δ‡H making (Z‡H,Φ

‡
H, δ

‡
H) a represen-
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tative of a cusp label, there is a cone σ‡ in the cone decomposition ΣΦ‡H

of PΦ‡H
(given by the choice of Σ; cf. Definition 6.3.3.4) such that σ‡

contains all υ ◦ B‡ obtained in this way (for the same given geometric
point s̄).

This is essentially a restatement of Proposition 6.3.3.11, which char-
acterizes Mtor

H uniquely for each choice of Σ.

Proof. Let UH and RH be constructed (noncanonically) as in Section 6.3.3,
and let us take the separated algebraic stack Mtor

H = Mtor
H,Σ to be the groupoid

quotient UH/RH (see Proposition A.7.1.1 and Definition A.7.1.3) as in Defi-
nition 6.3.3.15.

Statements 1 and 2 follow from Corollaries 6.3.3.14 and 6.3.3.16, and
Proposition 6.3.3.17. Statements 3 and 4 are étale local in nature, and hence
are inherited from the étale presentation UH of Mtor

H (with descent data over
RH) by construction.

Let us prove statement 6 by explaining why it is essentially a restate-
ment of Proposition 6.3.3.11. Suppose we have a degenerating family
(G†, λ†, i†, α†H) → S as in the statement. Then there is an open dense
subscheme S1 of S such that the restriction of the family defines an object of
MH. Hence we have a morphism S1 → MH by the universal property of MH.
The question is whether this morphism extends to a morphism S → Mtor

H .
If this is the case, then by Proposition 3.3.1.5, (G†, λ†, i†, α†H) → S is
isomorphic to the pullback of the tautological tuple (G, λ, i, αH) → Mtor

H
under this morphism, and the condition in the statement certainly holds.
Conversely, assume that the condition holds. Since all objects involved are
locally of finite presentation over S, we can apply Theorem 1.3.1.3 and
assume that S is excellent. Since extendability is a local question (because
Mtor
H is separated over S0), we can work with UH and apply Proposition

6.3.3.11 (to pullbacks of (G†, λ†, i†, α†H)→ S to completions of local rings of
S).

Next, let us prove statement 5. By statement 6 we have just proved, we
know that there is a unique morphism from XΦH,δH,σ/ΓΦH,σ to Mtor

H . (More
precisely, we apply statement 6 to an étale covering of XΦH,δH,σ/ΓΦH,σ by
affine formal schemes with descent data.) This induces a canonical mor-
phism XΦH,δH,σ/ΓΦH,σ → (Mtor

H )∧Z[(ΦH,δH,σ)]
. For an inverse morphism, note

that by construction there is a canonical morphism from the formal com-
pletion of UH along its [(ΦH, δH, σ)]-stratum to XΦH,δH,σ/ΓΦH,σ. Since this
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canonical morphism is determined by the degeneration data associated with
the pullback of the tautological tuple (G, λ, i, αH) to the completion, and
since the two pullbacks of the tautological tuple to RH are tautologically iso-
morphic by definition of RH, we see that the morphism from the completion
of UH along its [(ΦH, δH, σ)]-stratum to XΦH,δH,σ/ΓΦH,σ descends to a canon-
ical morphism (Mtor

H )∧Z[(ΦH,δH,σ)]
→ XΦH,δH,σ/ΓΦH,σ. Then it follows from the

constructions that these two canonical morphisms are inverses of each other.
Finally, suppose that H is neat. Then XΦH,δH,σ is a formal algebraic space

by Lemma 6.2.5.27 because we have assumed in Definition 6.3.3.4 that each
cone decomposition ΣΦH in Σ satisfies Condition 6.2.5.25. By statements 2
and 5, it follows that points of Mtor

H have no nontrivial automorphisms. Since
the diagonal 1-morphism ∆Mtor

H
: Mtor

H → Mtor
H ×

S0

Mtor
H is finite (by Corollary

6.3.3.14), it must be a closed immersion. Hence Mtor
H is an algebraic space

when H is neat, as desired.

Following [42, Ch. IV, 5.10], we may deduce from Theorem 6.4.1.1 the
following formal consequence:

Corollary 6.4.1.2. All geometric fibers of MH → S0 = Spec(OF0,(2)) have
the same number of connected components.

Proof. Since Mtor
H is proper and smooth over S0, all geometric fibers of Mtor

H →
S0 have the same number of connected components, by the analogue of
Zariski’s connectedness theorem in [36, Thm. 4.17]. (The precise assump-
tion we need is that Mtor

H → S0 is proper flat and has geometrically normal
fibers.) Then the corollary follows because MH is fiberwise dense in Mtor

H (by
2 of Theorem 6.4.1.1).

Remark 6.4.1.3. As an application of Corollary 6.4.1.2, the connected com-
ponents of the geometric fiber over a finite field can be matched with the
connected components of the complex fiber, the latter of which can be un-
derstood using the complex uniformization by unions of Hermitian symmetric
spaces (with the help of some Galois cohomology computations; see [76]).

6.4.2 Towers of Toroidal Compactifications

Definition 6.4.2.1. Let (ΦH, δH) and (Φ′H, δ
′
H) be two representatives of cusp

labels. Let σ (resp. σ′) be any nondegenerate rational polyhedral cone in PΦH

(resp. PΦ′H
). We say that the triple (ΦH, δH, σ) is a refinement of the triple
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(Φ′H, δ
′
H, σ

′) if (ΦH, δH) and (Φ′H, δ
′
H) are equivalent as in Definition 5.4.2.4,

and if for one (and hence every) pair of isomorphisms (γX : X ′
∼→ X, γY :

Y
∼→ Y ′) that identifies (ΦH, δH) with (Φ′H, δ

′
H), the cone σ is contained in

a ΓΦ′H
-translation of the cone σ′ under the identification between PΦH and

PΦ′H
defined by (γX , γY ). In this case, we say that the triple (ΦH, δH, σ) is

a refinement of the triple (Φ′H, δ
′
H, σ

′) under the pair of isomorphisms (γX :
X ′

∼→ X, γY : Y
∼→ Y ′).

Definition 6.4.2.2. Let Σ = {ΣΦH}[(ΦH,δH)] and Σ′ = {Σ′ΦH}[(ΦH,δH)] be two
compatible choices of admissible smooth rational polyhedral cone decompo-
sition data for MH. We say that Σ is a refinement of Σ′ if the triple
(ΦH, δH,ΣΦH) is a refinement of the triple (ΦH, δH,Σ

′
ΦH

), as in Definition
6.2.6.3, for (ΦH, δH) running through all representatives of cusp labels.

Proposition 6.4.2.3. Suppose Σ = {ΣΦH}[(ΦH,δH)] and Σ′ = {Σ′ΦH}[(ΦH,δH)]

are two compatible choices of admissible smooth rational polyhedral cone de-
composition data for MH such that Σ is a refinement of Σ′ as in Definition
6.4.2.2. Then the family (G, λ, i, αH) → Mtor

H,Σ is the pullback of the family
(G, λ, i, αH) → Mtor

H,Σ′ via a (unique) surjection Mtor
H,Σ � Mtor

H,Σ′. This surjec-
tion is proper, and is an isomorphism over MH. (This is a global algebraized
version of Proposition 6.2.6.7.)

Moreover, the surjection maps the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)]

of Mtor
H,Σ to the [(Φ′H, δ

′
H, σ

′)]-stratum Z[(Φ′H,δ
′
H,σ
′)] of Mtor

H,Σ′ if and only
if there are representatives (ΦH, δH, σ) and (Φ′H, δ

′
H, σ

′) of [(ΦH, δH, σ)]
and [(Φ′H, δ

′
H, σ

′)], respectively, such that (ΦH, δH, σ) is a refinement of
(ΦH, δH, σ

′) as in Definition 6.4.2.1.

Proof. The first statement follows from 6 of Theorem 6.4.1.1: The pull-
backs of (G, λ, i, αH) → Mtor

H,Σ to étale local charts of Mtor
H,Σ admit unique

morphisms to (G, λ, i, αH) → Mtor
H,Σ′ . These morphisms patch uniquely,

and hence descend to Mtor
H,Σ. Therefore there exists a unique morphism

from (G, λ, i, αH) → Mtor
H,Σ to (G, λ, i, αH) → Mtor

H,Σ′ , in the sense of rela-
tive schemes. The restriction of (G, λ, i, αH) → Mtor

H,Σ to MH is the tauto-
logical tuple over MH, which is mapped isomorphically to the restriction of
(G, λ, i, αH)→ Mtor

H,Σ′ to MH. Since Mtor
H,Σ is proper and MH is dense in Mtor

H,Σ′ ,
the morphism Mtor

H,Σ → Mtor
H,Σ′ is surjective and proper, as desired.

The second statement can be verified along the completions of strict local
rings, which then follows from Proposition 6.3.3.11.
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Remark 6.4.2.4. Proposition 6.4.2.3 shows that there is a tower of toroidal
compactifications labeled by the compatible choices Σ of admissible smooth
rational polyhedral cone decomposition data for MH. The (directed) partial
order of refinements on the set of all possible Σ is translated into the (di-
rected) partial order on the toroidal compactifications given by surjections
that are proper and are isomorphisms over MH. When properly interpreted,
this tower can be viewed as a canonical compactification of MH, without
emphasizing the choice of Σ.

Let us also vary the level H:

Definition 6.4.2.5. Suppose H and H′ are two open compact subgroups
of G(Ẑ2) such that H′ ⊂ H. Suppose (ZH′ ,ΦH′ , δH′) and (Z′H,Φ

′
H, δ

′
H)

are representatives of cusp labels at levels H′ and H, respectively, where
ΦH′ = (Y,X, φ, ϕ−2,H′ , ϕ0,H′) and Φ′H = (Y ′, X ′, φ′, ϕ′−2,H, ϕ

′
0,H). We say

that (ZH′ ,ΦH′ , δH′) is a lifting of (Z′H,Φ
′
H, δ

′
H) if the H-orbit determined by

(ZH′ ,ΦH′ , δH′) in its natural sense (by Convention 5.3.1.15) is equivalent
to (Z′H,Φ

′
H, δ

′
H) as in Definition 5.4.2.4. In other words, the H-orbit

determined by ZH′ is identical to Z′H, and there exists a pair of isomorphisms
(γX : X ′

∼→ X, γY : Y
∼→ Y ′) which satisfies φ = γXφ

′γY and identifies
(ϕ′−2,H, ϕ

′
0,H) with the H-orbit determined by (ϕ−2,H′ , ϕ0,H′). In this case we

say that the triple (ZH′ ,ΦH′ , δH′) is a lifting of the triple (Z′H,Φ
′
H, δ

′
H) under

the pair of isomorphisms (γX : X ′
∼→ X, γY : Y

∼→ Y ′). For simplicity, we
shall suppress ZH′ and Z′H from the notation as in Convention 5.4.2.5.

Definition 6.4.2.6. Suppose H and H′ are two open compact subgroups
of G(Ẑ2) such that H′ ⊂ H. Suppose (ΦH′ , δH′) and (Φ′H, δ

′
H) are rep-

resentatives of cusp labels at levels H′ and H, respectively, where ΦH′ =
(Y,X, φ, ϕ−2,H′ , ϕ0,H′) and Φ′H = (Y ′, X ′, φ′, ϕ′−2,H, ϕ

′
0,H). Let σ (resp. σ′)

be any nondegenerate rational polyhedral cone in PΦH′
(resp. PΦ′H

). We
say that the triple (ΦH′ , δH′ , σ) is a refinement of the triple (Φ′H, δ

′
H, σ

′) if
(ΦH′ , δH′) is a lifting of (Φ′H, δ

′
H) as in Definition 6.4.2.5, and if for one (and

hence every) pair of isomorphisms (γX : X ′
∼→ X, γY : Y

∼→ Y ′) that iden-
tifies (ϕ′−2,H, ϕ

′
0,H) with the H-orbit determined by (ϕ−2,H′ , ϕ0,H′), the cone

σ is contained in a ΓΦ′H
-translation of the cone σ′ under the identification

between PΦH′
and PΦ′H

defined by (γX , γY ). In this case, we say that the
triple (ΦH′ , δH′ , σ) is a refinement of the triple (Φ′H, δ

′
H, σ

′) under the pair of
isomorphisms (γX : X ′

∼→ X, γY : Y
∼→ Y ′).

525



Definition 6.4.2.7. Suppose H and H′ are two open compact subgroups
of G(Ẑ2) such that H′ ⊂ H. Suppose (ΦH′ , δH′) and (Φ′H, δ

′
H) are

representatives of cusp labels at levels H′ and H, respectively, where
ΦH′ = (Y,X, φ, ϕ−2,H′ , ϕ0,H′) and Φ′H = (Y ′, X ′, φ′, ϕ′−2,H, ϕ

′
0,H). Suppose

ΣΦH′
(resp. Σ′Φ′H

) is a ΓΦH′
-admissible (resp. ΓΦ′H

-admissible) smooth

rational polyhedral cone decomposition of PΦH′
(resp. PΦ′H

). We say that
the triple (ΦH′ , δH′ ,ΣΦH′

) is a refinement of the triple (Φ′H, δ
′
H,Σ

′
Φ′H

) if

(ΦH′ , δH′) is a lifting of (Φ′H, δ
′
H) as in Definition 6.4.2.5, and if for one

(and hence every) pair of isomorphisms (γX : X ′
∼→ X, γY : Y

∼→ Y ′) that
identifies (ϕ′−2,H, ϕ

′
0,H) with the H-orbit determined by (ϕ−2,H′ , ϕ0,H′), the

cone decomposition ΣΦH′
of PΦH′

is a refinement of the cone decomposition
Σ′Φ′H

of PΦ′H
. In this case, we say that the triple (ΦH′ , δH′ ,ΣΦH′

) is a

refinement of the triple (Φ′H, δ
′
H,Σ

′
Φ′H

) under the pair of isomorphisms

(γX : X ′
∼→ X, γY : Y

∼→ Y ′).

Definition 6.4.2.8. Suppose H and H′ are two open compact subgroups of
G(Ẑ2) such that H′ ⊂ H. Let Σ = {ΣΦH′

}[(ΦH′ ,δH′ )]
and Σ′ = {Σ′Φ′H}[(Φ′H,δ

′
H)]

be compatible choices of admissible smooth rational polyhedral cone decompo-
sition data for MH′ and MH, respectively. We say that Σ is a refinement
of Σ′ if, for each (ΦH′ , δH′) refining (Φ′H, δ

′
H), both running through all possi-

ble pairs representing cusp labels at levels H′ and H, respectively, the triple
(ΦH′ , δH′ ,ΣΦH′

) is a refinement of (Φ′H, δ
′
H,Σ

′
Φ′H

) as in Definition 6.4.2.7.

Proposition 6.4.2.9. Suppose H and H′ are two open compact subgroups
of G(Ẑ2) such that H′ ⊂ H. Suppose Σ = {ΣΦH′

}[(ΦH′ ,δH′ )]
and Σ′ =

{Σ′Φ′H}[(Φ′H,δ
′
H)] are two compatible choices of admissible smooth rational poly-

hedral cone decomposition data for MH′ and MH, respectively, such that Σ is
a refinement of Σ′ as in Definition 6.4.2.8. Then the family (G, λ, i, αH′)→
Mtor
H′,Σ is the pullback of the family (G, λ, i, αH)→ Mtor

H,Σ′ via a (unique) surjec-
tion Mtor

H′,Σ � Mtor
H,Σ′. This surjection is proper and is the canonical surjection

MH′ → MH over MH determined by the H-orbit of the level-H′ structure αH′.
Moreover, the surjection maps the [(ΦH′ , δH′ , σ)]-stratum Z[(ΦH′ ,δH′ ,σ)]

of Mtor
H′,Σ to the [(Φ′H, δ

′
H, σ

′)]-stratum Z[(Φ′H,δ
′
H,σ
′)] of Mtor

H,Σ′ if and only if
there are representatives (ΦH′ , δH′ , σ) and (Φ′H, δ

′
H, σ

′) of [(ΦH′ , δH′ , σ)]
and [(Φ′H, δ

′
H, σ

′)], respectively, such that (ΦH′ , δH′ , σ) is a refinement of
(Φ′H, δ

′
H, σ

′) as in Definition 6.4.2.6.

Proof. The first statement again follows from 6 of Theorem 6.4.1.1: Con-
sider the restriction of (G, λ, i, αH′) → Mtor

H′,Σ to MH′ . Then there is a
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canonical surjection from MH′ to MH identifying the H-orbit of αH′ with
the pullback of αH, as in the statement of the proposition. By abuse of no-
tation, let us denote the H-orbit of αH′ by αH. By 6 of Theorem 6.4.1.1,
the pullbacks of (G, λ, i, αH) → Mtor

H′,Σ to étale local charts of Mtor
H′,Σ ad-

mit unique morphisms to (G, λ, i, αH) → Mtor
H,Σ′ . These morphisms patch

uniquely, and hence descend to Mtor
H′,Σ. Therefore there exists a unique mor-

phism from (G, λ, i, αH) → Mtor
H′,Σ to (G, λ, i, αH) → Mtor

H,Σ′ in the sense of
relative schemes. By construction, the restriction of the morphism to MH′ is
the canonical morphism from MH′ to MH determined by the H-orbit of αH′ .
Since Mtor

H′,Σ is proper and MH is dense in Mtor
H,Σ′ , the morphism Mtor

H′,Σ → Mtor
H,Σ′

is surjective and proper, as desired.
The second statement can be verified along the completions of strict local

rings, which then follows from Proposition 6.3.3.11.

Remark 6.4.2.10. Proposition 6.4.2.3 is now a special case of Proposition
6.4.2.9.

6.4.3 Hecke Actions on Toroidal Compactifications

Suppose we have an element g ∈ G(A∞,2), and suppose we have two open
compact subgroups H and H′ of G(Ẑ2) such that H′ ⊂ gHg−1. Then the
Hecke action defined by g induces a canonical surjection from MH′ to MH.
More precisely, it is determined as follows: Let us consider the tautologi-
cal tuple (GMH′

, λMH′ , iMH′ , αH′) over MH′ , and consider the rational version
(GMH′

, λMH′ , iMH′ , [α̂]H′) over MH′ (see Construction 1.3.8.4 and Definition
1.3.8.7). Let us denote by (G′MH′ , λ

′
MH′

, i′MH′ , α
′
H) over MH′ the tuple asso-

ciated with (GMH′
, λMH′ , iMH′ , [α̂ ◦ g]H) under Proposition 1.4.3.4, and call

(G′MH′ , λ
′
MH′

, i′MH′ , α
′
H) the Hecke twist of (GMH′

, λMH′ , iMH′ , αH′) by g over
MH′ . This determines a canonical morphism [g] : MH′ → MH. This mor-
phism [g] is surjective, because it is surjective over all geometric points. We
say that this is the natural surjection defined by the Hecke action of g on
M2 (see Remark 1.4.3.11; cf. Construction 5.4.3.1).

The argument at the beginning of Section 5.4.3 shows that G′MH′ can be
realized as a quotient of GMH′

by a finite étale group scheme KMH′
over MH′ .

Since the rank of this finite étale group scheme KMH′
over MH′ is prime-

to-2, for the degenerating family (G, λ, i, αH′) over each smooth toroidal
compactification Mtor

H′,Σ of MH′ as in Theorem 6.4.1.1, the schematic closure
K of KMH′

in G is a quasi-finite étale group scheme over Mtor
H′,Σ. By Lemma
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3.4.3.1, we can form the quotient G′ := G/K, with additional structures
λ′ and i′ uniquely extending λ′MH′ and i′MH′ , respectively, by Proposition
3.3.1.5. We call the tuple (G′, λ′, i′, α′H) the Hecke twist of (G, λ, i, αH′) by g
over Mtor

H′,Σ. Therefore the tuple (G′MH′ , λ
′
MH′

, i′MH′ , α
′
H) over MH′ extends to

a degenerating family (G′, λ′, i′, α′H) over Mtor
H′,Σ, and the question is whether

the canonical surjection [g] : MH′ � MH extends to some canonical surjection
[g]tor : Mtor

H′,Σ � Mtor
H,Σ′ when Σ and Σ′ satisfy some suitable condition.

Definition 6.4.3.1. Suppose we have an element g ∈ G(A∞,2), and sup-
pose we have two open compact subgroups H and H′ of G(Ẑ2) such that
H′ ⊂ gHg−1. Suppose (ΦH′ , δH′) and (Φ′H, δ

′
H) are representatives of cusp

labels at levels H′ and H, respectively, where ΦH′ = (Y,X, φ, ϕ−2,H′ , ϕ0,H′)
and Φ′H = (Y ′, X ′, φ′, ϕ′−2,H, ϕ

′
0,H). Let σ (resp. σ′) be any nondegener-

ate rational polyhedral cone in PΦH′
(resp. PΦ′H

). We say that the triple
(ΦH′ , δH′ , σ) is a g-refinement of the triple (Φ′H, δ

′
H, σ

′) if there is a pair
of isomorphisms (fX : X ′⊗

Z
Z(2)

∼→ X⊗
Z
Z(2), fY : Y⊗

Z
Z(2)

∼→ Y ′⊗
Z
Z(2))

defining a g-assignment (ΦH′ , δH′)→g (Φ′H, δ
′
H) as in Definition 5.4.3.9, and

if for one such pair of isomorphisms (fX , fY ), the cone σ is contained in
a ΓΦ′H

-translation of the cone σ′ under the identification between PΦH′
and

PΦ′H
defined by (fX , fY ). In this case, we say that the triple (ΦH′ , δH′ , σ)

is a g-refinement of the triple (Φ′H, δ
′
H, σ

′) under the pair of isomorphisms
(fX , fY ).

Definition 6.4.3.2. Suppose we have an element g ∈ G(A∞,2) and suppose
we have two open compact subgroups H and H′ of G(Ẑ2) such that H′ ⊂
gHg−1. Suppose (ΦH′ , δH′) and (Φ′H, δ

′
H) are representatives of cusp labels

at levels H′ and H, respectively, where ΦH′ = (Y,X, φ, ϕ−2,H′ , ϕ0,H′) and
Φ′H = (Y ′, X ′, φ′, ϕ′−2,H, ϕ

′
0,H). Suppose ΣΦH′

(resp. Σ′Φ′H
) is a ΓΦH′

-admissible

(resp. ΓΦ′H
-admissible) smooth rational polyhedral cone decomposition of PΦH′

(resp. PΦ′H
). We say that the triple (ΦH′ , δH′ ,ΣΦH′

) is a g-refinement of

the triple (Φ′H, δ
′
H,Σ

′
Φ′H

) if there is a pair of isomorphisms (fX : X ′⊗
Z
Z(2)

∼→

X⊗
Z
Z(2), fY : Y⊗

Z
Z(2)

∼→ Y ′⊗
Z
Z(2)) defining a g-assignment (ΦH′ , δH′) →g

(Φ′H, δ
′
H) as in Definition 5.4.3.9, and if for one (and hence every) such

pair of isomorphisms (fX , fY ), the cone decomposition ΣΦH′
of PΦH′

is a
refinement of the cone decomposition Σ′Φ′H

of PΦ′H
under the identification

between PΦH′
and PΦ′H

defined by (fX , fY ). In this case, we say that the
triple (ΦH′ , δH′ ,ΣΦH′

) is a g-refinement of the triple (Φ′H, δ
′
H,Σ

′
Φ′H

) under the
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pair of isomorphisms (fX , fY ).

Definition 6.4.3.3. Suppose we have an element g ∈ G(A∞,2) and suppose
we have two open compact subgroups H and H′ of G(Ẑ2) such that H′ ⊂
gHg−1. Let Σ = {ΣΦH′

}[(ΦH′ ,δH′ )]
and Σ′ = {Σ′Φ′H}[(Φ′H,δ

′
H)] be compatible

choices of admissible smooth rational polyhedral cone decomposition data for
MH′ and MH, respectively. We say that Σ is a g-refinement of Σ′ if, for each
g-assignment (fX , fY ) : (ΦH′ , δH′) →g (Φ′H, δ

′
H) of a representative (Φ′H, δ

′
H)

of cusp label at level H to a representative (ΦH′ , δH′) of cusp label at level
H′ as in Definition 5.4.3.9, the triple (ΦH′ , δH′ ,ΣΦH′

) is a g-refinement of
(Φ′H, δ

′
H,Σ

′
Φ′H

) (under the pair of isomorphisms (fX , fY )) as in Definition
6.4.3.2.

Proposition 6.4.3.4. Suppose we have an element g ∈ G(A∞,2), and sup-
pose we have two open compact subgroups H and H′ of G(Ẑ2) such that H′ ⊂
gHg−1. Suppose Σ = {ΣΦH′

}[(ΦH′ ,δH′ )]
and Σ′ = {Σ′Φ′H}[(Φ′H,δ

′
H)] are two com-

patible choices of admissible smooth rational polyhedral cone decomposition
data for MH′ and MH, respectively, such that Σ is a g-refinement of Σ′ as in
Definition 6.4.3.3. Then the Hecke twist of the family (G, λ, i, αH′)→ Mtor

H′,Σ
by g is the pullback of the family (G, λ, i, αH) → Mtor

H,Σ′ via a (unique) sur-

jection [g]tor : Mtor
H′,Σ � Mtor

H,Σ′. This surjection is proper, and its restriction
to MH is the canonical surjection [g] : MH′ � MH over MH defined by the
Hecke action of g on M2 (see Remark 1.4.3.11; cf. Construction 5.4.3.1).

Moreover, the surjection maps the [(ΦH′ , δH′ , σ)]-stratum Z[(ΦH′ ,δH′ ,σ)]

of Mtor
H′,Σ to the [(Φ′H, δ

′
H, σ

′)]-stratum Z[(Φ′H,δ
′
H,σ
′)] of Mtor

H,Σ′ if and only if
there are representatives (ΦH′ , δH′ , σ) and (Φ′H, δ

′
H, σ

′) of [(ΦH′ , δH′ , σ)]
and [(Φ′H, δ

′
H, σ

′)], respectively, such that (ΦH′ , δH′ , σ) is a g-refinement of
(Φ′H, δ

′
H, σ

′) as in Definition 6.4.3.1.

Proof. The first statement follows from a combination of Proposition 5.4.3.8
and 6 of Theorem 6.4.1.1: Let (G′, λ′, i′, α′H) → Mtor

H′,Σ be the Hecke twist
of (G, λ, i, αH′) → Mtor

H′,Σ by g. Then the restriction of (G′, λ′, i′, α′H) →
Mtor
H′,Σ to MH′ determines the canonical surjection [g] : MH′ � MH as in

the statement of the proposition. By Proposition 5.4.3.8 and 6 of Theorem
6.4.1.1, the pullbacks of (G′, λ′, i′, α′H)→ Mtor

H′,Σ to étale local charts of Mtor
H′,Σ

admit unique morphisms to (G, λ, i, αH) → Mtor
H,Σ′ by our assumption that

Σ is a g-refinement of Σ′. (Concretely, the cones containing pairings of the
form υ ◦ B′ : Y ′×X ′ → Z are carried to cones containing pairings of the
form υ ◦ B : Y ×X → Z under the identification between PΦH′

and PΦ′H
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defined by (fX : X ′⊗
Z
Z(2)

∼→ X⊗
Z
Z(2), fY : Y⊗

Z
Z(2)

∼→ Y ′⊗
Z
Z(2)), when we

have the objects as in the context of Definition 6.4.3.3.) These morphisms
patch uniquely, and hence descend to Mtor

H′,Σ. Therefore there exists a unique

morphism [g]tor : Mtor
H′,Σ → Mtor

H,Σ′ extending [g], which pulls (G, λ, i, αH) →
Mtor
H,Σ′ back to (G′, λ′, i′, α′H)→ Mtor

H′,Σ. Since Mtor
H′,Σ is proper and MH is dense

in Mtor
H,Σ′ , the morphism [g]tor is surjective and proper, as desired.

The second statement can be verified along the completions of strict local
rings, which then follows from Proposition 6.3.3.11.

Remark 6.4.3.5. Propositions 6.4.2.3 and 6.4.2.9 are now special cases of
Proposition 6.4.3.4.
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Chapter 7

Algebraic Constructions of
Minimal Compactifications

In this chapter we explain the construction of arithmetic toroidal compacti-
fications and several other useful results as a by-product of the construction
of arithmetic toroidal compactifications.

Although all results to be stated have their analytic analogues over the
complex numbers, the analytic techniques in [17] and [16] do not carry over
naively. We need the arithmetic toroidal compactifications and the positivity
of Hodge invertible sheaves (to be reviewed in Section 7.2.1, based on the
theory of theta constants) to establish the finite generation of certain natural
sheaves of graded algebras. This should be considered as the main technical
input of this chapter.

The main objective is to state and prove Theorem 7.2.4.1, with Propo-
sition 7.1.2.14, Corollary 7.2.4.13, Proposition 7.2.5.1, and Theorem 7.3.3.4
as important by-products. Technical results worth noting are Propositions
7.2.1.1, 7.2.1.2, 7.2.2.3, 7.2.3.3, 7.2.3.7, 7.2.3.13, 7.2.4.3, and 7.3.1.4.

Throughout this chapter, we shall assume the same setting as in Section
6.4.
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7.1 Automorphic Forms and Fourier–Jacobi

Expansions

7.1.1 Automorphic Forms of Naive Parallel Weights

Let Σ = {ΣΦH}[(ΦH,δH)] be a compatible choice of admissible smooth rational
polyhedral cone decomposition data as in Definition 6.3.3.4, and let Mtor

H
over S0 = Spec(OF0,(2)) be the proper smooth algebraic stack associated
with Σ as in Theorem 6.4.1.1. Let (G, λ, i, αH) be the degenerating family
described in Theorem 6.4.1.1. For ease of later exposition, we shall change our
notation and denote them by (Gtor, λtor, itor, αtor

H ). Let ωtor := ωGtor/Mtor
H

:=

∧top Lie∨Gtor/Mtor
H
∼= ∧top e∗GtorΩ1

Gtor/Mtor
H

be the Hodge invertible sheaf .

Definition 7.1.1.1. Let M be a module over OF0,(2), and let k ≥ 0 be
an integer. An (arithmetic) automorphic form over MH of naive par-
allel weight k and with coefficients in M is an element of AF(k,M) :=
Γ(Mtor

H , (ω
tor)⊗k ⊗

OF0,(2)

M). For simplicity, when the context is clear, we shall

call such an element an automorphic form of naive weight k.

Remark 7.1.1.2. We say the weight is naive because, in general, this is not the
right weight to use (for scalar-valued automorphic forms) in number-theoretic
applications.

Remark 7.1.1.3. For most applications, it suffices to consider those M that
are algebras over OF0,(2). However, the theory becomes most systematic if
we allow M to be arbitrary modules: As a functor in M (as modules over
OF0,(2)), AF(k,−) is left exact and commutes with filtering direct limits for
each k ≥ 0.

To justify our definition,

Lemma 7.1.1.4. Let Σ′ be a compatible choice of admissible smooth ratio-
nal polyhedral cone decomposition data such that Σ′ is a refinement of Σ
(see Definition 6.4.2.2), and let p : Mtor

H,Σ′ � Mtor
H,Σ be the surjection given

by Proposition 6.4.2.3. Let E be a quasi-coherent sheaf over Mtor
H,Σ of the

form E = E0 ⊗
OF0,(2)

M , where E0 is a locally free sheaf over Mtor
H,Σ, and where

M is a module over OF0,(2). Then the canonical morphism H i(Mtor
H,Σ, E) →

H i(Mtor
H,Σ′ , p

∗E) is an isomorphism for each i ≥ 0.
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Proof. Let us assume that E = E0 ⊗
OF0,(2)

M as in the statement of the lemma.

Since M is a direct limit of finitely generated OF0,(2)-modules, and since
taking cohomology and tensor products commutes with direct limits, we may
assume that M is a finitely generated OF0,(2)-module. Since OF0,(2) is either
a field or a Dedekind domain, the (finitely generated) torsion submodule Mtor

of M can be written as a (possibly zero) direct sum of modules of the form
OF0,(2)/n, where n is a nonzero ideal of OF0,(2) (see [23, Ch. VII, §4, 10, Prop.
23]). On the other hand, the (finitely generated) torsion-free quotient Mfree of
M is automatically projective, and hence M is (noncanonically) isomorphic
to Mtor⊕Mfree. Since Mfree is automatically flat over OF0,(2), it is a limit of
its free submodules. By the same fact that taking cohomology and tensor
products commutes with direct limits, we may assume that it is free. In any
case, we are reduced (by additivity of taking cohomology) to the case that
M is of the form OF0,(2)/n for some (possibly zero) ideal n of OF0,(2), and
work over M after making the base change from OF0,(2).

According to the construction of arithmetic toroidal compactifications,
this morphism p can be étale locally identified with a proper morphism
between toric varieties, which is equivariant under the action of the same
torus. By the arguments in [69, Ch. I, §3, especially p. 44, Cor. 2], this
shows that Rip∗OMtor

H,Σ′
= 0 for all i > 0 and that the canonical morphism

OMtor
H,Σ
→ p∗OMtor

H,Σ′
is an isomorphism; both statements remain valid after

making the base change from OF0,(2) to OF0,(2)/n for some ideal n. Since E0

is locally free over Mtor
H,Σ, the lemma follows from the projection formula [59,

0I, 5.4.10.1], as desired.

Lemma 7.1.1.5. Definition 7.1.1.1 is independent of the choice of Σ in the
construction of Mtor

H .

Proof. Since every two compatible choices of admissible smooth rational
polyhedral cone decomposition data have a common refinement, it suffices
to consider the case that we have a Σ′ refining Σ as in Lemma 7.1.1.4. Let
ωtor
H,Σ′ := ωGtor/Mtor

H,Σ′
and ωtor

H,Σ := ωGtor/Mtor
H,Σ

denote, respectively, the Hodge

invertible sheaves over Mtor
H,Σ′ and Mtor

H,Σ. By construction, ωtor
H,Σ′
∼= p∗ωtor

H,Σ.

Applying Lemma 7.1.1.4 to E := (ωtor
H,Σ)⊗k ⊗

OF0,(2)

M , we see that Definition

7.1.1.1 is independent of the choice of Σ, as desired.
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7.1.2 Fourier–Jacobi Expansions

Let us take any nonempty stratum of Mtor
H labeled by some [(ΦH, δH, σ)], with

some choice of a representative (ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H), δH, σ). Accord-
ing to 5 of Theorem 6.4.1.1, the formal completion (Mtor

H )∧Z[(ΦH,δH,σ)]

of Mtor
H along the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] is isomorphic

to the formal algebraic stack XΦH,δH,σ/ΓΦH,σ, and the pullback of
(Gtor, λtor, itor, αtor

H ) over Mtor
H is the Mumford family ( ♥G, ♥λ, ♥i, ♥αH)

over XΦH,δH,σ/ΓΦH,σ. Moreover, the pullback of ωtor = ωGtor/Mtor
H

is
♥ω := ω♥G/(XΦH,δH,σ/ΓΦH,σ) := ∧top Lie∨♥G/(XΦH,δH,σ/ΓΦH,σ). Note that there is

a morphism from the formal algebraic stack XΦH,δH,σ/ΓΦH,σ to the abelian
scheme torsor CΦH,δH over the finite étale cover MΦH

H of MZH
H defined in

Definition 5.4.2.6. Let (A, λA, iA, ϕ−1,H) denote the tautological tuple over
MZH
H . Let ωA := ω

A/M
ZH
H

:= ∧top Lie∨
A/M

ZH
H

denote the Hodge invertible sheaf

over MZH
H . We shall often use the same notation for the pullbacks of ωA over

other bases. Let T denote the torus over S0 = Spec(OF0,(2)) with character
group X. Then we have T ∼= HomS0

(X,Gm,S0), LieT/S0
∼= HomS0

(X,OS0),

Lie∨T/S0
∼= X ⊗

Z
OS0 , and ωT := ωT/S0 := ∧top Lie∨T/S0

∼= (∧top
Z X)⊗

Z
OS0 .

Similarly to the case of ωA, we shall often use the same notation for the
pullbacks of ωT over other bases.

Lemma 7.1.2.1. There is a canonical isomorphism ♥ω ∼= (∧top
Z X)⊗

Z
ωA

over the formal algebraic stack XΦH,δH,σ/ΓΦH,σ.

Proof. By étale descent, it suffices to verify this statement over each
étale (i.e., formally étale and of finite type; see [59, I, 10.13.3]) morphism
Sfor = Spf(R, I) → XΦH,δH,σ/ΓΦH,σ, such that R and I satisfy the setting
as in Section 5.2.1. Let us also denote the pullback of various objects
by the same notation. Then it makes sense to talk about the Raynaud

extension ♥G
\

associated with ♥G over S = Spec(R), so that we have

a canonical isomorphism ♥G
\
for
∼= ♥Gfor along the I-adic completion Sfor

of S. Since Lie∨♥Gfor/Sfor

∼= Lie∨♥G\for/Sfor
over Sfor, there is a canonical

isomorphism Lie∨♥G/S
∼= Lie∨♥G\/S (see Theorem 2.3.1.2). As a result,

there are canonical isomorphisms ω♥G/S ∼= ω♥G\/S := ∧top Lie∨♥G\/S
∼=

∧top Lie∨T/S ⊗
OS
∧top Lie∨A/S

∼= ωT ⊗
OS
ωA ∼= (∧top

Z X)⊗
Z
ωA, as desired.

Recall that XΦH,δH,σ is by construction the formal completion of
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ΞΦH,δH(σ) along its σ-stratum, and that ΞΦH,δH(σ) is by definition

Spec
OCΦH,δH

(
⊕
`∈σ∨

ΨΦH,δH(`)
)

(cf. Proposition 6.2.4.7). As described in

Remark 6.2.5.13, the σ-stratum ΞΦH,δH,σ of ΞΦH,δH(σ) is defined by the sheaf
of ideals IΦH,δH,σ

∼= ⊕
`∈σ∨0

ΨΦH,δH(`) in OΞΦH,δH (σ)
∼= ⊕

`∈σ∨
ΨΦH,δH(`). Therefore

we may write symbolically

OXΦH,δH,σ
∼= ⊕̂

`∈σ∨
ΨΦH,δH(`)

and

OXΦH,δH,σ/ΓΦH,σ
∼=
(
⊕̂
`∈σ∨

ΨΦH,δH(`)
)ΓΦH,σ

.

Let us denote the structural morphism CΦH,δH → MZH
H by pΦH,δH

, which is
proper and smooth because it is an abelian scheme torsor over the finite étale
cover MΦH

H of MZH
H . For simplicity of notation,

Definition 7.1.2.2. FJ
(`)
ΦH,δH

:= (pΦH,δH
)∗(ΨΦH,δH(`)).

Now it makes sense to consider the following composition of canonical
morphisms:

AF(k,M) = Γ(Mtor
H , (ω

tor)⊗k ⊗
OF0,(2)

M)

→ Γ((Mtor
H )∧Z[(ΦH,δH,σ)]

, (ωtor)⊗k ⊗
OF0,(2)

M)

∼= Γ(XΦH,δH,σ/ΓΦH,σ,
♥ω⊗k ⊗

OF0,(2)

M)

→
[∏
`∈σ∨

Γ(CΦH,δH ,ΨΦH,δH(`) ⊗
OCΦH,δH

((∧top
Z X)⊗

Z
ωA)⊗k ⊗

OF0,(2)

M)
]ΓΦH,σ

∼=
[∏
`∈σ∨

Γ(MZH
H ,FJ

(`)
ΦH,δH

⊗
O
M
ZH
H

((∧top
Z X)⊗

Z
ωA)⊗k ⊗

OF0,(2)

M)
]ΓΦH,σ

.

(7.1.2.3)

Definition 7.1.2.4. The above composition (7.1.2.3) is called the Fourier–
Jacobi morphism along (ΦH, δH, σ), which we denote by FJΦH,δH,σ. The
image of an element f ∈ AF(k,M) has a natural expansion

FJΦH,δH,σ(f) =
∑
`∈σ∨

FJ
(`)
ΦH,δH,σ

(f)
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where the sum can be infinite and where each FJ
(`)
ΦH,δH,σ

(f) lies in

FJC
(`)
ΦH,δH

(k,M) := Γ(MZH
H ,FJ

(`)
ΦH,δH

⊗
O
M
ZH
H

((∧top
Z X)⊗

Z
ωA)⊗k ⊗

OF0,(2)

M).

The expansion FJΦH,δH,σ(f) is called the Fourier–Jacobi expansion of f

along (ΦH, δH, σ), with Fourier–Jacobi coefficients FJ
(`)
ΦH,δH,σ

(f) of each
degree ` ∈ σ∨.

Remark 7.1.2.5. These are generalizations of the q-expansions and Fourier–
Jacobi expansions for modular, Hilbert modular, or Siegel modular forms,
with which the readers might be familiar.

Suppose that we have two cones σ1 and σ2 in ΣΦH such that σ1 ⊂ σ2 and
such that they are both in P+

ΦH
. In this case we have σ∨2 ⊂ σ∨1 , and therefore

an open embedding ΞΦH,δH(σ1) ↪→ ΞΦH,δH(σ2), equivariant with respect to the
torus action of EΦH . This induces a canonical morphism XΦH,δH,σ1/ΓΦH,σ1 →
XΦH,δH,σ2/ΓΦH,σ2 under which the Mumford family ( ♥G, ♥λ, ♥i, ♥αH) over
XΦH,δH,σ1/ΓΦH,σ1 is the pullback of the Mumford family over XΦH,δH,σ2/ΓΦH,σ2 .
This shows that, for f ∈ AF(k,M), the expansion FJΦH,δH,σ2(f) is mapped
to the expansion FJΦH,δH,σ1(f) under the canonical morphism

Γ(XΦH,δH,σ2/ΓΦH,σ1 ,
♥ω⊗k ⊗

OF0,(2)

M)

→ Γ(XΦH,δH,σ1/ΓΦH,σ2 ,
♥ω⊗k ⊗

OF0,(2)

M),

which maps FJ
(`)
ΦH,δH,σ2

(f) to FJ
(`)
ΦH,δH,σ1

(f) as long as both of them are de-

fined. In particular, we must have FJ
(`)
ΦH,δH,σ2

(f) = 0 for those ` ∈ σ∨2 − σ∨1 .
That is, we only need the Fourier–Jacobi coefficients of degrees ` ∈ σ∨1 . As
every two cones in ΣΦH that are both in P+

ΦH
can be related by a sequence of

inclusions (in either direction) of (closures of) cones, we see that each of the
Fourier–Jacobi morphisms (defined by cones in ΣΦH) has degrees (of nonzero
coefficients) supported on

Σ∨ΦH := ∩
σ∈ΣΦH

σ∨.

Here it is harmless to also take those σ ∈ ΣΦH that are in PΦH but might not
be in P+

ΦH
, because they are necessarily faces of some cones in P+

ΦH
. Since
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ΣΦH is a ΓΦH-admissible smooth rational polyhedral cone decomposition of
PΦH , which means in particular, that the union of the cones in ΣΦH is PΦH ,
we see that Σ∨ΦH is simply P∨ΦH , which is independent of the choice of ΣΦH .
Thus we have a canonical morphism

FJΦH,δH : AF(k,M)→ FJEΦH,δH(k,M) :=
∏

`∈P∨ΦH

FJC
(`)
ΦH,δH

(k,M),

which is invariant under each of the groups ΓΦH,σ. It is also invariant un-
der the full group ΓΦH because the Mumford family over each XΦH,δH,σ is
the pullback of the Mumford family over XΦH,δH , and because the latter is
invariant under the action of ΓΦH . Since the pullback objects are naturally
invariant under ΓΦH , we may redefine FJΦH,δH as

FJΦH,δH : AF(k,M)→ FJEΦH,δH(k,M)ΓΦH

:=
[ ∏
`∈P∨ΦH

FJC
(`)
ΦH,δH

(k,M)
]ΓΦH

. (7.1.2.6)

Definition 7.1.2.7. The above morphism (7.1.2.6) is called the Fourier–
Jacobi morphism along (ΦH, δH), which we denote by FJΦH,δH. The image
of an element f ∈ AF(k,M) has a natural expansion

FJΦH,δH(f) =
∑
`∈P∨ΦH

FJ
(`)
ΦH,δH

(f),

where each FJ
(`)
ΦH,δH

(f) lies in FJC
(`)
ΦH,δH

(k,M). The expansion FJΦH,δH(f) is
called the Fourier–Jacobi expansion of f along (ΦH, δH), with Fourier–

Jacobi coefficients FJ
(`)
ΦH,δH

(f) of each degree ` ∈ P∨ΦH.

Let us record the above argument as follows:

Proposition 7.1.2.8. The Fourier–Jacobi morphism FJΦH,δH can be com-
puted by any FJΦH,δH,σ as in Definition 7.1.2.4. The definition is independent
of the σ we use.

Moreover,

Proposition 7.1.2.9. The Fourier–Jacobi morphism FJΦH,δH is independent
of the ΓΦH-admissible smooth rational polyhedral cone decomposition of PΦH

we use.
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Proof. This is a consequence of Lemma 7.1.1.5, Proposition 6.4.2.3, and the
construction of FJΦH,δH using Mumford families.

Definition 7.1.2.10. The constant term of a Fourier–Jacobi expansion
FJΦH,δH(f) of an element f ∈ AF(k,M) is the Fourier–Jacobi coefficient

FJ
(0)
ΦH,δH

(f) ∈ FJC
(0)
ΦH,δH

(k,M) in degree zero.

Lemma 7.1.2.11. For every element ` of the semisubgroup P∨ΦH of SΦH,
there exists an integer N ≥ 1 such that N` is a finite sum

∑
1≤i≤k

[yi⊗φ(yi)]

for some elements yi ∈ Y .

Proof. It suffices to check that (P∨ΦH)⊗
Z
Q is contained in the Q>0-span of

elements of the form [y⊗φ(y)] for some y ∈ Y . But this is equivalent to the
definition of PΦH as the cone of positive semidefinite Hermitian pairings in
(SΦH)∨R whose radicals are admissible (and hence rational) subspaces.

Corollary 7.1.2.12. The set P∨ΦH−{0} is the semisubgroup of SΦH consist-
ing of elements pairing positively with elements in P+

ΦH
.

Proposition 7.1.2.13. The value of each element f ∈ AF(k,M) along
the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] of Mtor

H is determined by its constant

term FJ
(0)
ΦH,δH

(f), which is a ΓΦH-invariant element in FJC
(0)
ΦH,δH

(k,M). In

particular, since FJ
(0)
ΦH,δH

∼= (MΦH
H → MZH

H )∗OM
ΦH
H

and MΦH
H /ΓΦH

∼= MZH
H ,

the value of f is constant along the fibers of the structural morphism
Z[(ΦH,δH,σ)] → MZH

H . We say in this case that it depends only on the abelian
part of (Gtor, λtor, itor, αtor

H ) over Z[(ΦH,δH,σ)].

Proof. As described in Remark 6.2.5.13, the σ-stratum ΞΦH,δH,σ of ΞΦH,δH(σ)
is defined by the sheaf of ideals IΦH,δH,σ

∼= ⊕
`∈σ∨0

ΨΦH,δH(`) in OΞΦH,δH (σ)
∼=

⊕
`∈σ∨

ΨΦH,δH(`). In particular, the Fourier–Jacobi coefficient FJ
(`)
ΦH,δH

(f) van-

ishes along Z[(ΦH,δH,σ)] if ` ∈ σ∨0 . By Corollary 7.1.2.12, every element ` of
P∨ΦH − {0} lies in σ∨0 (because σ ⊂ P+

ΦH
). This shows that FJΦH,δH(f) =

FJ
(0)
ΦH,δH

(f) along Z[(ΦH,δH,σ)]. Since the value of f along Z[(ΦH,δH,σ)] is deter-
mined, in particular, by its pullback to the formal completion (Mtor

H )∧Z[(ΦH,δH,σ)]
,

it is also determined by FJΦH,δH(f). In other words, it is determined by its

(ΓΦH-invariant) constant term FJ
(0)
ΦH,δH

(f), as desired.
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Proposition 7.1.2.14. Let {Z
[(Φ

(i)
H ,δ

(i)
H ,σ(i))]

}i∈I be a finite collection of strata

of Mtor
H such that the union of members in the collection intersects all ir-

reducible components of Mtor
H . For each i ∈ I, let (Φ

(i)
H , δ

(i)
H , σ

(i)) be some

representative of [(Φ
(i)
H , δ

(i)
H , σ

(i))]. Let M be an OF0,(2)-module and let k ≥ 0
be an integer. Let f be an automorphic form over MH, of naive parallel
weight k, with coefficients in M , and regular at infinity. Then the following
are true:

1. If FJ
Φ

(i)
H ,δ

(i)
H

(f) =
∑

`∈P∨ΦH

FJ
(`)

Φ
(i)
H ,δ

(i)
H

(f) = 0 for all i ∈ I, then f = 0.

2. (Fourier–Jacobi expansion principle) Suppose M1 is an
OF0,(2)-submodule of M , and suppose the Fourier–Jacobi ex-
pansions FJ

Φ
(i)
H ,δ

(i)
H

(f) ∈ FJE
Φ

(i)
H ,δ

(i)
H

(k,M) lie in the image of

FJE
Φ

(i)
H ,δ

(i)
H

(k,M1) ↪→ FJE
Φ

(i)
H ,δ

(i)
H

(k,M) for all i ∈ I. Then f lies in the

image of AF(k,M1) ↪→ AF(k,M).

Proof. Note that the association of AF(k,−), FJC
(`)
ΦH,δH

(k,−) and
FJEΦH,δH(k,−) are left exact because they are defined by taking global
sections of sheaves.

Let us prove the first statement. By the same reduction steps in the proof
of Lemma 7.1.1.4, we may assume that M is an OF0,(2)-algebra and work
after making the base change from OF0,(2) to M . Since {Z

[(Φ
(i)
H ,δ

(i)
H ,σ(i))]

}i∈I
intersects all irreducible components of Mtor

H , the (finite) direct product of
Fourier–Jacobi morphisms FJI :=

∏
i∈I

FJ
Φ

(i)
H ,δ

(i)
H

=
∏
i∈I

FJ
Φ

(i)
H ,δ

(i)
H ,σ(i) is injective

because each Fourier–Jacobi morphism FJ
Φ

(i)
H ,δ

(i)
H ,σ(i) is defined by pullback of

a global section of (ωtor)⊗ k to the completion along Z
[(Φ

(i)
H ,δ

(i)
H ,σ(i))]

, over which

ωtor is trivialized.
Let us prove the second statement. For simplicity of notation, let us define

FJEI(k,−) :=
∏
i∈I

FJE
Φ

(i)
H ,δ

(i)
H

(k,−). Consider the commutative diagram

0 // AF(k,M1) //
� _

FJI
��

AF(k,M) //
� _

FJI
��

AF(k,M/M1)� _

FJI
��

0 // FJEI(k,M1) // FJEI(k,M) // FJEI(k,M/M1)

with exact rows. If f ∈ AF(k,M) and FJ
Φ

(i)
H ,δ

(i)
H

(f) is in the im-

age of FJE
Φ

(i)
H ,δ

(i)
H

(k,M1) ↪→ FJE
Φ

(i)
H ,δ

(i)
H

(k,M) for all i ∈ I, then
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FJI(f) ∈ FJEI(k,M) is sent to zero in FJEI(k,M/M1). By injectivity of the
morphism FJI : AF(k,M/M1)→ FJEI(k,M/M1) and the commutativity of
the diagram, this means f is sent to zero in AF(k,M/M1). Then f lies in
the image of AF(k,M1) ↪→ AF(k,M), as desired.

7.2 Arithmetic Minimal Compactifications

7.2.1 Positivity of Hodge Invertible Sheaves

Proposition 7.2.1.1 ([42, Ch. V, Prop. 2.1]). Let Mtor
H be any (smooth)

arithmetic toroidal compactification of MH as in Theorem 6.4.1.1, with a
degenerating family (Gtor, λtor, itor, αtor

H ) over Mtor
H extending the tautological

tuple (G, λ, i, αH) over MH. Consider the invertible sheaf ωtor := ωGtor/Mtor
H

:=

∧top Lie∨Gtor/Mtor
H
∼= ∧top e∗GtorΩ1

Gtor/Mtor
H

over Mtor
H . Then there exists an integer

N0 ≥ 1 such that (ωtor)⊗N0 is generated by its global sections.

Proof. This is a special case of [93, Ch. IX, Thm. 2.1] if we replace Mtor
H with a

normal excellent scheme. Since Mtor
H is of finite type over S0 = Spec(OF0,(2)),

its étale charts are excellent and normal. Hence the proposition follows.

Proposition 7.2.1.2 ([42, Ch. V, Prop. 2.2]). Let C be a proper smooth
irreducible curve over an algebraically closed field k. Let f : G → C be a
semi-abelian scheme over C, and let ωG/C := ∧top Lie∨G/C

∼= ∧top e∗GΩ1
G/C.

Suppose that deg(ωG/C) ≤ 0. Then,

1. ωG/C is a torsion bundle, that is, some positive power of it is trivial;
hence deg(ωG/C) = 0;

2. G is an extension of an isotrivial abelian scheme by a torus over C.

Here an abelian scheme A→ C is isotrivial if it becomes constant over a
finite étale covering C̃ of C.

Proof. First let us note that if A×
C
C ′ is constant for some proper smooth

curve C ′ finite over C, then A is also isotrivial. To see this, take any n ≥ 3
that is prime to char(k), and take C̃ := A[n], which is finite étale over C.
Then A×

C
C̃ → C̃ is constant because A×

C
C̃ ×

C
C ′ → C̃ ×

C
C ′ is. Hence we

may assume that C is projective.
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By the theory of torus parts in Section 3.3.1, in particular Proposition
3.3.1.7 and Theorem 3.3.1.9, we may write G→ C as an extension of a semi-
abelian scheme G′ by a torus H over C, such that G′η is an abelian scheme
over the generic point η of C. By replacing G with G′, it suffices to treat the
case when Gη is an abelian scheme.

By assumption, deg(ω⊗nG/C) ≤ 0 for every n ≥ 0. In other words, all

global sections of ω⊗nG/C are constant, which means that they are either
zero or nowhere zero. Combining with Proposition 7.2.1.1, this shows that
deg(ω⊗nG/C) = 0 for every n ≥ 0.

By [93, Ch. XI, Thm. 4.5(b), (v bis)=⇒(iv)] and [93, Ch. X, Prop. 4.4,
(i)⇐⇒(iii)], which uses implicitly the fact that theta constants determine the
moduli , we see that Gη has potential good reduction everywhere, and that
G is isotrivial over S.

7.2.2 Stein Factorizations and Finite Generation

In this section, we include several standard results that we will need for our
main construction in Section 7.2.3 below. (For simplicity, we shall often omit
subscripts for tensor products.)

Fix a noetherian base ring R and let S = Spec(R). Suppose W is a proper
algebraic stack over S. Suppose L is an invertible sheaf over W such that
there is an integer N0 ≥ 1 such that L⊗N0 is generated by its global sections.
Then the global sections of L⊗N0 define a morphism

f : W → Pr0S

for some integer r0 ≥ 0. This is a proper morphism from an algebraic stack
to a scheme, both of which are noetherian. The push-forward f∗OW is a
finite OPr0S

-algebra, and it determines the Stein factorization (see [59, III-1,

4.3.3])
f st : W → W st := Spec

OPr0
S

(f∗OW )

of f , such that the canonical morphism OW st → (f st)∗OW is an isomorphism.
In this case, the pullback of O(1) over Pr0S to W st is an ample invertible sheaf,
which we also denote by O(1) if there is no confusion, and its further pullback
to W is the original L⊗N0 .
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Lemma 7.2.2.1. For each locally free sheaf E of finite rank over W st, we
have a canonical isomorphism f st

∗ (f st)∗E ∼= E. As a by-product, we have
Γ(W, (f st)∗E) ∼= Γ(W st, E).

Proof. By the projection formula (see [59, 0I, 5.4.10.1]), we have f st
∗ (f st)∗E ∼=

(f st
∗ OW ) ⊗

OW st

E ∼= E .

By [59, II, 4.6.3], we have an isomorphism

W st ∼= Proj
(
⊕
k≥0

Γ(W st,O(1)⊗k)
)
.

By Lemma 7.2.2.1, this implies that we have

W st ∼= Proj
(
⊕
k≥0

Γ(W,L⊗N0k)
)
.

It is desirable to explain the finite generation of algebras such as
⊕
k≥0

Γ(W,L⊗N0k) over R (as they appear in the above construction of Proj).

The fundamental tool is Serre’s vanishing theorem:

Theorem 7.2.2.2 (see [59, III-1, 2.2.1]). Let Z be a proper scheme over
S = Spec(R), where R is a noetherian ring. Then an invertible sheaf M is
ample over W if and only if, for each coherent sheaf E over W , there is an
integer k0 (depending on E) such that H i(Z, E ⊗M⊗k) = 0 for all i > 0 and
k ≥ k0.

Proposition 7.2.2.3 (cf. [84, Exer. 1.2.22]). Let Z be a scheme projective
and flat over S = Spec(R), where R is a noetherian ring, and let M be an
ample invertible sheaf over Z. For coherent sheaves E and F over Z such
that at least one of them is flat over S, there is an integer k0 (depending on
E and F) such that the cup product morphism

Γ(Z, E ⊗M⊗a)⊗Γ(Z,F ⊗M⊗b)→ Γ(Z, E ⊗F ⊗M⊗(a+b))

is surjective for all a, b ≥ k0.

Proof. Let S := Spec(R). Consider the diagonal embedding ∆ : Z → Z ×
S
Z

and denote its image by ∆(Z). Let I be the sheaf of ideals fitting into the
exact sequence

0→ I → pr∗1 E ⊗ pr∗2F → O∆(Z)⊗ pr∗1 E ⊗ pr∗2F → 0
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over Z ×
S
Z. If we tensor the whole sequence with pr∗1(M⊗a) ⊗ pr∗2(M⊗b),

and take cohomology over Z ×
S
Z, then we obtain (by the Künneth formula

and the flatness of at least one of E and F over S; see [59, III-2, 6.7.8]) the
exact sequence

Γ(Z, E ⊗M⊗a)⊗ Γ(Z,F ⊗M⊗b)→ Γ(Z, E ⊗F ⊗M⊗(a+b))

→ H1(Z ×
S
Z,I ⊗ pr∗1(M⊗a)⊗ pr∗2(M⊗b)).

The point is the vanishing of the last term. Let us denote the ample invertible
sheaf pr∗1M⊗ pr∗2M over Z ×

S
Z byO(1), and its mth tensor power byO(m).

Using [59, III-1, 2.2.2 (iv)], there is a resolution

· · · → O(−mi)
⊕ di → · · · → O(−m1)⊕ d1 → O(−m0)⊕ d0 → I → 0

over Z ×
S
Z. Therefore the question is whether there is an integer k0 such

that
H i(Z ×

S
Z, pr∗1(M⊗(a−mi−1))⊗ pr∗2(M⊗(b−mi−1))) = 0

for all i > 0 and a, b ≥ k0. It suffices to verify this for 0 < i ≤ dim(Z ×
S
Z),

which involves only finitely many terms. Using the Künneth formula again,
this reduces the question to the existence of some integer k0 such that

Hj(Z,M⊗a⊗M⊗−mi−1)⊗H i−j(Z,M⊗b⊗M⊗−mi−1) = 0

for a, b ≥ k0, which has a positive answer by Theorem 7.2.2.2.

Corollary 7.2.2.4 (cf. [84, Exer. 2.1.30]). Let Z be a scheme projective and
flat over S = Spec(R), where R is a noetherian ring, and let M be an ample
invertible sheaf over Z. Then the algebra ⊕

k≥0
Γ(Z,M⊗k) is finitely generated

over R.

Proof. Apply Proposition 7.2.2.3 with E = F = OZ .

Corollary 7.2.2.5. Let Z be a scheme projective and flat over S = Spec(R),
where R is a noetherian ring, and let E be a coherent sheaf over Z. Then
the module ⊕

k≥0
Γ(Z, E ⊗M⊗k) is finitely generated over the algebra

⊕
k≥0

Γ(Z,M⊗k).
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Proof. Apply Proposition 7.2.2.3 with F = OZ .

Corollary 7.2.2.6. Let us return to the context of W and L above. Suppose
moreover that W st is flat over S. Then the algebra ⊕

k≥0
Γ(W,L⊗N1k) is finitely

generated over R for every integer N1 ≥ 1.

Proof. For the purpose of proving this corollary, we may replace N0 with its
multiple (and replacing f : Z → Pr0S , f st, Zst, etc. accordingly) and assume

that it is a multiple of N1. Let E := f st
∗

((N0/N1)−1

⊕
k=0

L⊗N1k
)

, which is a coherent

sheaf over W st. Applying Corollary 7.2.2.5 to Z := W st, M := O(1), and E
just defined above, we see that ⊕

k≥0
Γ(W,L⊗N1k) ∼= ⊕

k≥0
Γ(W st, E ⊗O(1)⊗k) is

a finitely generated module over ⊕
k≥0

Γ(W,L⊗N0k) ∼= ⊕
k≥0

Γ(W st,O(1)⊗k), the

latter being finitely generated over R by Corollary 7.2.2.4.

7.2.3 Main Construction of Minimal Compactification

With the same setting as in Section 7.1, let Mtor
H be any (smooth) arith-

metic toroidal compactification of MH as in Theorem 6.4.1.1, with a de-
generating family (Gtor, λtor, itor, αtor

H ) over Mtor
H extending the tautological

tuple (G, λ, i, αH) over MH. Let ωtor := ωGtor/Mtor
H

:= ∧top Lie∨Gtor/Mtor
H
∼=

∧top e∗GtorΩ1
Gtor/Mtor

H
be the invertible sheaf over Mtor

H which extends the in-

vertible sheaf ω := ωG/MH := ∧top Lie∨G/MH
∼= ∧top e∗GΩ1

G/MH
over MH natu-

rally. According to Proposition 7.2.1.1, there is an integer N0 ≥ 1 such that
(ωtor)⊗N0 is generated by its global sections. Let us fix a choice of such an
integer N0.

As in Section 7.2.2, the global sections of (ωtor)⊗N0 define a morphism∫
H : Mtor

H → Pr0S0
to some projective r0-space Pr0S0

for some integer r0 ≥ 0,
together with a Stein factorization∮

H : Mtor
H → Mmin

H := Spec
OPr0

S0

(
∫
H,∗OMtor

H
)

of
∫
H, such that the canonical morphism OMmin

H
→
∮
H,∗OMtor

H
is an isomor-

phism. The induced morphism
∫̄
H : Mmin

H → Pr0S0
is finite, and Mmin

H is
projective and of finite type over S0 = Spec(OF0,(2)). In this case, we have
an isomorphism

Mmin
H
∼= Proj

(
⊕
k≥0

Γ(Mtor
H , (ω

tor)⊗N0k)
)
.

544



Note that this is independent of the choice of N0 ≥ 1 because we have a
canonical isomorphism (by [59, II, 2.4.7])

Proj
(
⊕
k≥0

Γ(Mtor
H , (ω

tor)⊗N0k)
)
∼= Proj

(
⊕
k≥0

Γ(Mtor
H , (ω

tor)⊗k)
)

for every N0 ≥ 1. Moreover, the right-hand side is independent of the choice
of the cone decomposition Σ by Lemma 7.1.1.5.

According to [59, III-1, 4.3.1, 4.3.3, 4.3.4], with its natural generalization
to the context of algebraic stacks, we see that the first factor

∮
H : Mtor

H →
Mmin
H has nonempty connected geometric fibers. Since (ωtor)⊗N0 is the pull-

back of O(1) (of Pr0S0
) to Mtor

H , the restriction of (ωtor)⊗N0 to each fiber of∮
H : Mtor

H → Mmin
H is trivial. Therefore we may apply Proposition 7.2.1.2

to morphisms of proper smooth irreducible curves to the geometric fibers of∮
H. Since these geometric fibers are all connected, the isomorphism class of

the abelian part of Gtor is constant on each of the fibers. In particular, if a
geometric fiber of

∮
H meets MH, then it has only one closed point.

Lemma 7.2.3.1. Let f : Z1 � Z2 be a quasi-compact surjection from a
locally noetherian algebraic stack to a locally noetherian scheme, such that f
induces dominant morphisms from irreducible components of Z1 to irreducible
components of Z2, and such that the canonical morphism OZ2 → f∗OZ1 is an
isomorphism. Suppose Z1 is normal. Then Z2 is also normal.

Proof. Since OZ2

∼→ f∗OZ1 , the local rings of Z2 are integral domains. Take
Z̃2 to be the normalization of Z2. By the universal property of Z̃2 and the
normality of Z1, the surjection f : Z1 � Z2 factors as a composition of

surjections Z1

f̃
� Z̃2

f̄
� Z2, corresponding to a composition of canonical

injections OZ2 ↪→ f̄∗OZ̃2
↪→ f̄∗f̃∗OZ1

∼= f∗OZ1 , the latter composition being

an isomorphism by assumption. This forces OZ2

∼→ f̄∗OZ̃2
, or rather Z̃2

∼→ Z2,
which implies that Z2 is normal.

Remark 7.2.3.2. In our context, one can also refer to [22, §6.7, Lem. 2].

Proposition 7.2.3.3. Mmin
H is normal.

Proof. Mtor
H is normal because it is smooth over the normal base scheme

S0 = Spec(OF0,(2)) (see [59, IV-4, 17.5.7]). Moreover, the canonical morphism
OMmin

H
→
∮
H,∗OMtor

H
is an isomorphism by construction. Hence the proposition

follows from Lemma 7.2.3.1.
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Since S0 = Spec(OF0,(2)) is a localization of the rings of integers of a
number field, Mmin

H → S0 is flat because Mmin
H is normal and all its maximal

points (see [60, 0, 2.1.2]) are of characteristic zero. By Corollary 7.2.2.6,
this shows (for reassurance) that the algebra ⊕

k≥0
Γ(Mtor

H , (ω
tor)⊗k) is finitely

generated over OF0,(2).
Recall (see Section A.7.5) that each algebraic stack Z has an associated

coarse moduli space [Z], which is an algebraic space together with a canonical
morphism Z → [Z] such that each morphism f : Z → Z ′ from Z to an

algebraic space Z ′ factors uniquely as a composition Z → [Z]
[f ]→ Z ′. The

formation of [Z] commutes with flat base change. In particular, taking étale
neighborhoods and forming completions commute with such a process. If Z
is representable by an algebraic space, then its coarse moduli space is just
itself. Thus, ifH is neat (see Definition 1.4.1.8), then the canonical morphism
Mtor
H → [Mtor

H ] is an isomorphism.
Let us quote the following version of Zariski’s main theorem:

Proposition 7.2.3.4 (Zariski’s main theorem). A proper morphism of locally
noetherian algebraic spaces is finite over the set of points over which the
morphism has discrete fibers. Moreover, such a set of points is open.

Proof. The statement for schemes can be found in [59, III-1, 4.4.3, 4.4.11].
A weaker statement for algebraic spaces can be found in [73, V, 4.2], whose
proof also explains how to translate stronger statements for schemes into
statements for algebraic spaces.

As mentioned above, the restriction of
∮
H to MH is a morphism

∮
H |MH :

MH → Mmin
H from an algebraic stack to a scheme, each of whose geometric

fibers has only one single closed point. Since MH is open in Mtor
H , and since

the formation of coarse moduli spaces commutes with flat base change, we see
that [MH] is an open subalgebraic space of [Mtor

H ]. The morphism
∮
H : Mtor

H →

Mmin
H factors as Mtor

H → [Mtor
H ]

[
∮
H]
→ Mmin

H , whose restriction to MH is the

factorization MH → [MH]
[
∮
H |MH ]
→ Mmin

H . Applying Zariski’s main theorem
(Proposition 7.2.3.4) to [

∮
H], and taking into account the fact (Proposition

7.2.3.3) that Mmin
H is normal, we see that [

∮
H] is an isomorphism over an

open subscheme of Mmin
H containing the image of [MH]. (We will see below

that the image of [MH] is actually open, with complements given by closed
subschemes, and hence [

∮
H |MH ] is an open immersion.)
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More generally, suppose that a fiber of
∮
H meets the [(ΦH, δH, σ)]-stratum

Z[(ΦH,δH,σ)]. Let (ΦH, δH, σ) be any representative of the class [(ΦH, δH, σ)].
By Proposition 7.1.2.13, the restriction of each element f ∈ Γ(Mtor

H , (ω
tor)⊗k)

to Z[(ΦH,δH,σ)] depends only on its constant term FJ
(0)
ΦH,δH

(f), which is constant

along each fiber of the structural morphism Z[(ΦH,δH,σ)] → MZH
H , where MZH

H
is the moduli problem defined by the cusp label represented by (ΦH, δH) (see
Definition 5.4.2.6). Applying this to those k ≥ 0 divisible by N0, we see that∮
H |Z[(ΦH,δH,σ)]

: Z[(ΦH,δH,σ)] → Mmin
H factors through Z[(ΦH,δH,σ)] → MZH

H . This
induces a morphism

MZH
H → Mmin

H (7.2.3.5)

from an algebraic stack to a scheme, each of whose geometric fibers has only
one single point.

The argument used in proving Proposition 7.1.2.8 shows the following:

Lemma 7.2.3.6. Two restrictions
∮
H |Z[(ΦH,δH,σ)]

: Z[(ΦH,δH,σ)] → Mmin
H and∮

H |Z[(Φ′H,δ
′
H,σ
′)]

: Z[(Φ′H,δ
′
H,σ
′)] → Mmin

H have the same image and induce the same

morphism as in (7.2.3.5) (up to canonical identification between the sources)
when there exist representatives (ΦH, δH, σ) and (Φ′H, δ

′
H, σ

′) of [(ΦH, δH, σ)]
and [(Φ′H, δ

′
H, σ

′)], respectively, such that (ΦH, δH) and (Φ′H, δ
′
H) are equiva-

lent as in Definition 5.4.2.4 and represent the same cusp label [(ΦH, δH)] =
[(Φ′H, δ

′
H)].

Let us denote this common image by Z[(ΦH,δH)] = Z[(Φ′H,δ
′
H)]. We claim

that the converse is also true:

Proposition 7.2.3.7. If Z[(ΦH,δH)] := image(
∮
H |Z[(ΦH,δH,σ)]

) and Z[(Φ′H,δ
′
H)] :=

image(
∮
H |Z[(Φ′H,δ

′
H,σ
′)]

) have a nonempty intersection, then the two cusp labels

[(ΦH, δH)] and [(Φ′H, δ
′
H)] are the same. (In this case, we saw above that

Z[(ΦH,δH)] = Z[(Φ′H,δ
′
H)].)

Proof. Suppose there exists a geometric point x̄ in the intersection of
Z[(ΦH,δH)] and Z[(Φ′H,δ

′
H)]. Let C be any proper irreducible curve in the fiber of∮

H : Mtor
H → Mmin

H over x̄. By the same argument (using Proposition 7.2.1.2)
as before, we see that the pullback of Gtor to C is globally an extension of
an isotrivial abelian scheme by a torus. If we take any geometric point z̄
of C, and take the pullback of (Gtor, λtor, itor, αtor

H ) to the strict local ring
of Mtor

H at z̄ completed along the curve C, then we obtain a degenerating
family of type MH over a base ring Rz̄ that fits into the setting of Section
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5.2.1. (The key point here is that the pullback of Gtor to C is globally an
extension of an abelian scheme by a split torus.) Therefore, it makes sense
to consider the degeneration datum associated with such a family, and in
particular, the equivalence class of the discrete data (ΦH, δH) associated
with it. In other words, there is a locally constant association of a cusp label
[(ΦH, δH)] over each such proper irreducible curve C. Since the fiber of

∮
H

over x̄ is connected, we see that the associated cusp label [(ΦH, δH)] must be
globally constant over the whole fiber. This forces [(ΦH, δH)] = [(Φ′H, δ

′
H)],

as desired.

Corollary 7.2.3.8. The subschemes Z[(ΦH,δH)] form a stratification

Mmin
H =

∐
[(ΦH,δH)]

Z[(ΦH,δH)] (7.2.3.9)

of Mmin
H by locally closed subscheme, with [(ΦH, δH)] running through a com-

plete set of cusp labels, such that the [(Φ′H, δ
′
H)]-stratum Z[(Φ′H,δ

′
H)] lies in the

closure of the [(ΦH, δH)]-stratum Z[(ΦH,δH)] if and only if there is a surjection
from the cusp label [(Φ′H, δ

′
H)] to the cusp label [(ΦH, δH)] as in Definition

5.4.2.13. (The notation “
∐

” only means a set-theoretic disjoint union. The
algebro-geometric structure is still that of Mmin

H .)

Proof. According to 2 of Theorem 6.4.1.1, the closure of the
[(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] in Mtor

H is the union of the [(Φ′H, δ
′
H, σ

′)]-strata
Z[(Φ′H,δ

′
H,σ
′)] such that [(Φ′H, δ

′
H, σ

′)] is a face of [(ΦH, δH, σ)] as in Definition
6.3.2.14. Since the morphism

∮
H : Mtor

H → Mmin
H is proper, we see that the

closure of Z[(ΦH,δH,σ)] in Mtor
H is mapped to the closure of Z[(ΦH,δH)] in Mmin

H ,
which is by definition the union of those Z[(Φ′H,δ

′
H)] such that there is a

surjection from [(ΦH, δH)] to [(Φ′H, δ
′
H)]. By Proposition 7.2.3.7, this union is

disjoint. Hence we may conclude (by induction on the incidence relations in
the stratification of Mtor

H ) that (7.2.3.9) is indeed a stratification of Mmin
H .

As a by-product, we have shown the following complement to Theorem
1.4.1.11, promised in Remark 1.4.1.13:

Corollary 7.2.3.10. The coarse moduli space [MH] of MH is a quasi-
projective scheme over S0 = Spec(OF0,(2)). In particular, MH is a
quasi-projective scheme over S0 when H is neat.
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Proof. The stratification (7.2.3.9) shows that [MH] ∼= Z[(0,0)] is an open sub-
algebraic space in Mmin

H . Then the corollary follows from the fact that a
subalgebraic space of a projective scheme (over S0) is a scheme (see [73, II,
3.8]).

As another by-product,

Corollary 7.2.3.11. If σ is top-dimensional in P+
ΦH
⊂ (SΦH)∨R, then the

restriction
∮
H |Z[(ΦH,δH,σ)]

: Z[(ΦH,δH,σ)] → Z[(ΦH,δH)] is proper.

Proof. Since σ is a top-dimensional cone, [(ΦH, δH, σ)] can be a
face of another [(Φ′H, δ

′
H, σ

′)] (see Definition 6.3.2.14) only when
[(ΦH, δH)] 6= [(Φ′H, δ

′
H)]. Then 2 of Theorem 6.4.1.1 and Proposition

7.2.3.7 imply that Z[(ΦH,δH,σ)] is a closed subalgebraic stack of the

preimage
∮ −1

H (Z[(ΦH,δH)]). Since Mtor
H is proper over S0, this shows that∮

H |Z[(ΦH,δH,σ)]
: Z[(ΦH,δH,σ)] → Z[(ΦH,δH)] is proper, as desired.

Combining this with Lemma 7.2.3.6 and with Zariski’s main theorem
(Proposition 7.2.3.4),

Corollary 7.2.3.12. The morphism [MZH
H ]→ Z[(ΦH,δH)] induced by (7.2.3.5)

is finite and induces a bijection on geometric points.

Proposition 7.2.3.13. Let M1
H be the open subscheme of Mmin

H formed by
the strata in (7.2.3.9) of codimension at most one. Then the pullback to
M1
H of the canonical surjection [

∮
H] : [Mtor

H ] � Mmin
H induced by

∮
H is an

isomorphism (regardless of the choice of Σ in the construction of Mmin
H ).

Proof. Let Z[(ΦH,δH)] be any codimension-one stratum of Mmin
H . By Corollary

7.2.3.12, the codimension of Z[(ΦH,δH)] in Mmin
H is the difference between the

dimensions of MH and of MZH
H . By the description of Z[(ΦH,δH,σ)] → MZH

H
in 2 of Theorem 6.4.1.1, if this difference is one, then the group SΦH has
Z-rank one, and the proper smooth morphism CΦH,δH → MZH

H is of relative
dimension zero, in which case the induced morphism [

∮
H] : [Mtor

H ]� Mmin
H is

quasi-finite over M1
H. Since Mmin

H is normal, and since the canonical morphism
OMmin

H
→
∮
H,∗OMtor

H
is an isomorphism, Zariski’s main theorem (Proposition

7.2.3.4) shows that the pullback of the proper morphism [
∮
H] to M1

H is an
isomorphism, as desired.
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Corollary 7.2.3.14 (of the proof of Proposition 7.2.3.13). Suppose B ∼=
O⊗
Z
Q is simple. Then the canonical surjection

∮
H : Mtor

H � Mmin
H induces

an isomorphism [
∮
H] : [Mtor

H ]
∼→ Mmin

H (for one and hence every choice of Σ
in the construction of Mtor

H ) if and only if MH is either proper or of relative
dimension at most one over S0.

Proof. Following the proof of Proposition 7.2.3.13, the induced morphism
[
∮
H] is an isomorphism if and only if

∮
H is quasi-finite, which is the case

if, over each stratum of Z[(ΦH,δH)] of Mmin
H of codimension at least one, the

structural morphism Z[(ΦH,δH,σ)] → CΦH,δH → MZH
H → Z[(ΦH,δH)] is of relative

dimension zero for every stratum Z[(ΦH,δH,σ)] in
∮ −1

H (Z[(ΦH,δH)]). Let us assume
that MH is not proper over S0, so that such a stratum Z[(ΦH,δH)] does exist.

Since B is simple, and since CΦH,δH → MZH
H is a torsor under an abelian

scheme Z×(2)-isogenous to HomO(Y,A) of a finite étale cover of MZH
H , the

condition that CΦH,δH → MZH
H is of relative dimension zero implies that MZH

H
is of relative dimension zero over S0. Since at least one stratum Z[(ΦH,δH,σ)]

above Z[(ΦH,δH)] is of codimension one in Mtor
H , this forces Mtor

H (and hence
MH) to be of relative dimension at most one over S0, as desired.

Remark 7.2.3.15. In general (without assuming the simpleness of B), by
decomposing the PEL-type O-lattice (L, 〈 · , · 〉, h) according to the decom-
position (1.2.1.10) of B, and by decomposing the corresponding geomet-
ric objects up to finite morphisms, we see that the canonical morphism
[
∮
H] : [Mtor

H ] → Mmin
H is an isomorphism exactly when the moduli problem

MH decomposes up to finite morphisms as a fiber product of moduli prob-
lems that are either proper or of relative dimensions at most one over S0.

Proposition 7.2.3.16. Let [(ΦH, δH)] be a cusp label, and let (ΦH, δH) be
a representative of [(ΦH, δH)]. Let x̄ be a geometric point of Mmin

H over the
[(ΦH, δH)]-stratum Z[(ΦH,δH)], which by abuse of notation we also identify as
a geometric point of [MZH

H ] by Corollary 7.2.3.12. Let Aut(x̄) be the group
of automorphisms of x̄ → MZH

H (cf. Section A.7.5). Let (Mmin
H )∧x̄ denote the

completion of the strict localization of Mmin
H at x̄. Let ([MZH

H ])∧x̄ denote the
completion of the strict localization of [MZH

H ] at x̄ (as a geometric point of

MZH
H ), and let (FJ

(`)
ΦH,δH

)∧x̄ denote the pullback of FJ
(`)
ΦH,δH

under the canonical

morphism (MZH
H )∧x̄ → MZH

H . For convenience, let us also use the notation
of the various sheaves supported on x̄ to denote their underlying rings or
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modules. Then we have a canonical isomorphism

O(Mmin
H )∧x̄

∼=
[ ∏
`∈P∨ΦH

(FJ
(`)
ΦH,δH

)∧x̄

]Aut(x̄)×ΓΦH
(7.2.3.17)

of rings, which is adic if we interpret the product on the right-hand side
as the completion of the elements that are finite sums with respect to the
ideal generated by the elements without constant terms (i.e., with trivial

projection to (FJ
(0)
ΦH,δH

)∧x̄ ). Let us denote by (Z[(ΦH,δH)])
∧
x̄ the completion of

the strict localization of Z[(ΦH,δH)] at x̄. Then (7.2.3.17) induces a struc-
tural morphism from (Mmin

H )∧x̄ to ([MZH
H ])∧x̄ , whose precomposition with the

canonical morphism (Z[(ΦH,δH)])
∧
x̄ → (Mmin

H )∧x̄ defines a canonical isomorphism

(Z[(ΦH,δH)])
∧
x̄
∼→ ([MZH

H ])∧x̄ .

Proof. By [59, III-1, 4.1.5 and 4.3.3], with natural generalizations to
the context of algebraic stacks, the ring O(Mmin

H )∧x̄
is isomorphic to the

Aut(x̄)-invariants in the ring of regular functions over the completion of
Mtor
H along the fiber of

∮
H : Mtor

H → Mmin
H at x̄. By Proposition 7.2.3.7, the

preimage Z̃[(ΦH,δH)] :=
∮ −1

H (Z[(ΦH,δH)]) of Z[(ΦH,δH)] under
∮
H is the union

Z̃[(ΦH,δH)] = ∪
[(ΦH,δH,σ)]

Z[(ΦH,δH,σ)]

of those strata Z[(ΦH,δH,σ)] over Z[(ΦH,δH)]. According to 5 of Theorem 6.4.1.1
and Lemma 6.2.5.27, there is a canonical isomorphism (Mtor

H )∧Z[(ΦH,δH,σ)]

∼=
XΦH,δH,σ/ΓΦH,σ for each representative (ΦH, δH, σ) of [(ΦH, δH, σ)]. Therefore,
the ring of regular functions over the completion of Mtor

H along the fiber of
∮
H

at x̄ is isomorphic to the common intersection of the rings of regular func-
tions over the various completions of XΦH,δH,σ/ΓΦH,σ along the fibers of the
structural morphisms XΦH,δH,σ/ΓΦH,σ → MZH

H . In other words, it is isomor-
phic to the common intersection of the ΓΦH,σ-invariants in the completions

of ⊕̂
`∈σ∨

FJ
(`)
ΦH,δH

along x̄. Note that the identifications XΦH,δH,σ
∼= XΦ′H,δ

′
H,σ
′ for

equivalent triples (ΦH, δH, σ) and (Φ′H, δ
′
H, σ

′) involve the canonical actions
of ΓΦH on the structural sheaves. Hence the process of taking a common
intersection also involves the process of taking ΓΦH-invariants. This shows
the existence of (7.2.3.17).

The claim that (7.2.3.17) is adic and that the composition (Z[(ΦH,δH)])
∧
x̄ →

(Mmin
H )∧x̄ → ([MZH

H ])∧x̄ is an isomorphism follows from the fact that the support

551



Z[(ΦH,δH,σ)] of each formal completion (Mtor
H )∧Z[(ΦH,δH,σ)]

∼= XΦH,δH,σ/ΓΦH,σ is

defined by the vanishing of the ideal ⊕̂
`∈σ∨0

ΨΦH,δH(`) of ⊕̂
`∈σ∨

ΨΦH,δH(`), and that

P∨ΦH − {0} = ∩
σ∈ΣΦH ,σ⊂P

+
ΦH

σ∨0 (because P∨ΦH − {0} ⊂ σ∨0 for every σ ⊂ P+
ΦH

and because P∨ΦH = Σ∨ΦH = ∩
σ∈ΣΦH

σ∨ as explained in Section 7.1.2). Then

we can conclude the proof by taking Aut(x̄)×ΓΦH-invariants and by noting

that ((FJ
(0)
ΦH,δH

)∧x̄ )Aut(x̄)×ΓΦH ∼= (O
(M

ZH
H )∧x̄

)Aut(x̄) ∼= O
[(M

ZH
H )∧x̄ ]

∼= O
([M

ZH
H ])∧x̄

.

Corollary 7.2.3.18. The canonical finite surjection [MZH
H ] � Z[(ΦH,δH)] de-

fined by
∮
H is an isomorphism.

Proof. The proof of Proposition 7.2.3.16 shows that the composition of the
completion ([MZH

H ])∧x̄ → (Z[(ΦH,δH)])
∧
x̄ of the finite surjection [MZH

H ]� Z[(ΦH,δH)]

defined by
∮
H (described in Corollary 7.2.3.12) with the canonical structural

isomorphism (Z[(ΦH,δH)])
∧
x̄
∼→ ([MZH

H ])∧x̄ is the identity isomorphism. This
forces [MZH

H ] � Z[(ΦH,δH)] to be an isomorphism as the property of being an
isomorphism can be verified over formal completions of the target.

7.2.4 Main Results on Minimal Compactifications

Theorem 7.2.4.1 (arithmetic minimal compactification). There exists a
normal scheme Mmin

H projective and flat over S0 = Spec(OF0,(2)), such that
we have the following:

1. Mmin
H contains the coarse moduli space [MH] of MH as an open dense

subscheme.

2. Let (G, λ, i, αH) be the tautological tuple over MH. Let us define the
invertible sheaf ω := ωG/MH := ∧top Lie∨G/MH = ∧top e∗GΩ1

G/MH
over

MH. Then there is a smallest integer N0 ≥ 1 such that ω⊗N0 is the
pullback of an ample invertible sheaf O(1) over Mmin

H .

If H is neat (see Definition 1.4.1.8), then MH → [MH] is an isomor-
phism, and embeds MH as an open dense subscheme of Mmin

H . Moreover,
we have N0 = 1 with a canonical choice of O(1), and the restriction of
O(1) to MH is isomorphic to ω. We shall denote O(1) by ωmin, and
interpret it as an extension of ω to Mmin

H .

By abuse of notation, for each integer k divisible by N0, we shall denote
O(1)⊗k/N0 by (ωmin)⊗k even when ωmin itself is not defined.
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3. For any (smooth) arithmetic toroidal compactification Mtor
H of MH as

in Theorem 6.4.1.1, with a degenerating family (Gtor, λtor, itor, αtor
H )

over Mtor
H extending the tautological tuple (G, λ, i, αH) over MH,

let ωtor := ωGtor/Mtor
H

:= ∧top Lie∨Gtor/Mtor
H

= ∧top e∗GtorΩ1
Gtor/Mtor

H
be

the invertible sheaf over Mtor
H extending ω naturally. Then the

graded algebra ⊕
k≥0

Γ(Mtor
H , (ω

tor)⊗k), with its natural algebra structure

induced by tensor products, is finitely generated over OF0,(2), and is
independent of the choice (of the Σ used in the definition) of Mtor

H .

The normal scheme Mmin
H (projective and flat over S0) is canonically iso-

morphic to Proj
(
⊕
k≥0

Γ(Mtor
H , (ω

tor)⊗k)
)

, and there is a canonical mor-

phism
∮
H : Mtor

H → Mmin
H determined by ωtor and the universal property

of Proj, such that
∮ ∗
HO(1) ∼= (ωtor)⊗N0 over Mtor

H and such that the
canonical morphism OMmin

H
→
∮
H,∗OMtor

H
is an isomorphism. Moreover,

when we vary the choices of Mtor
H ’s, the morphisms

∮
H’s are compati-

ble with the canonical morphisms among the Mtor
H ’s as in Proposition

6.4.2.3.

When H is neat, we have
∮ ∗
H ω

min ∼= ωtor and
∮
H,∗ ω

tor ∼= ωmin.

4. Mmin
H has a natural stratification by locally closed subschemes

Mmin
H =

∐
[(ΦH,δH)]

Z[(ΦH,δH)],

with [(ΦH, δH)] running through a complete set of cusp labels as in Def-
inition 5.4.2.4, such that the [(Φ′H, δ

′
H)]-stratum Z[(Φ′H,δ

′
H)] lies in the

closure of the [(ΦH, δH)]-stratum Z[(ΦH,δH)] if and only if there is a sur-
jection from the cusp label [(Φ′H, δ

′
H)] to the cusp label [(ΦH, δH)] as

in Definition 5.4.2.13. (The notation “
∐

” only means a set-theoretic
disjoint union. The algebro-geometric structure is still that of Mmin

H .)

Each [(ΦH, δH)]-stratum Z[(ΦH,δH)] is canonically isomorphic to the
coarse moduli space [MZH

H ] (which is a scheme) of the corresponding
algebraic stack MZH

H (separated, smooth, and of finite type over S0) as
in Definition 5.4.2.6.

Let us define the O-multirank of a stratum Z[(ΦH,δH)] to be the
O-multirank of the cusp label represented by (ΦH, δH) (see Definition
5.4.2.7). The only stratum with O-multirank zero is the open stratum
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Z[(0,0)]
∼= [MH], and those strata Z[(ΦH,δH)] with nonzero O-multiranks

are called cusps. (This explains the name of the cusp labels.)

5. The restriction of
∮
H to the stratum Z[(ΦH,δH,σ)] of Mtor

H is a surjection
to the stratum Z[(ΦH,δH)] of Mmin

H . This surjection is smooth when H is
neat, and is proper if σ is top-dimensional in P+

ΦH
⊂ (SΦH)∨R.

Under the above-mentioned identification [MZH
H ]

∼→ Z[(ΦH,δH)] on the tar-
get, this surjection can be viewed as the quotient by ΓΦH,σ (see Defini-
tion 6.2.5.23) of a torsor under a torus EΦH,σ over an abelian scheme
torsor CΦH,δH (as in the construction) over the finite étale cover MΦH

H
over the algebraic stack MZH

H over the coarse moduli space [MZH
H ] (which

is a scheme). More precisely, this torus EΦH,σ is the quotient of the
torus EΦH := Hom(SΦH ,Gm) corresponding to the subgroup SΦH,σ :=
{x ∈ SΦH : 〈x, y〉 = 0 ∀y ∈ σ} of SΦH (see the definition of EΦH in
Lemma 6.2.4.4, and definition of σ-stratum in Definition 6.1.2.7).

Proof. Let us take Mmin
H to be the normal scheme (projective and flat over

S0) constructed in Section 7.2.3. The first concern is whether its properties
as described by the theorem depend on the toroidal compactifications we
choose. It is clear from the construction that statements 1, 4, and 5 are
satisfied regardless of the choices. Let us verify that this is also the case for
statements 2 and 3.

Suppose Σ′ is a refinement of Σ as in Definition 6.4.2.2, and suppose the
morphism p : Mtor

H,Σ′ � Mtor
H,Σ and the invertible sheaves ωtor

H,Σ and ωtor
H,Σ′ are

defined as in the proof of Lemma 7.1.1.5. Let
∮
H,Σ : Mtor

H,Σ → Mmin
H and∮

H,Σ′ : Mtor
H,Σ′ → Mmin

H be the two canonical morphisms. Then
∮
H,Σ′ =

∮
H,Σ ◦p

and p∗OMtor
H,Σ′
∼= OMtor

H,Σ
implies that

∮ ∗
H,ΣO(1) ∼= (ωtor

H,Σ)⊗N0 if and only if∮ ∗
H,Σ′ O(1) ∼= (ωtor

H,Σ′)
⊗N0 (for the same O(1) and N0). In other words, we

can move freely between different choices of Σ by taking pullbacks or push-
forwards; there is a choice of O(1) with the smallest value of N0 ≥ 1 that
works for all Σ.

From now on, let us fix a choice of Σ and suppress it from the notation.
We would like to show that ω extends to an ample invertible sheaf over Mmin

H
when H is neat.

By Proposition 7.2.3.13, the pullback of
∮
H : Mtor

H → Mmin
H to M1

H is an
isomorphism because the canonical morphism Mtor

H → [Mtor
H ] is an isomor-

phism when H is neat. Therefore, we can view M1
H as an open subspace of
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Mtor
H and consider the restriction ωtor|M1

H
, where ωtor is defined as in state-

ment 3. Since the complement of M1
H in Mmin

H has codimension at least two
(by definition of M1

H) and since Mmin
H is noetherian and normal, it suffices to

show that the coherent sheaf (see [53, VIII, Prop. 3.2])

ωmin := (M1
H ↪→ Mmin

H )∗(ω
tor|M1

H
)

is an invertible sheaf. By fpqc descent (see [56, VIII, 1.11]), it suffices to
verify this statement over the completions of strict localizations of Mmin

H .
Let x̄ be a geometric point over some [(ΦH, δH)]-stratum Z[(ΦH,δH)]

in Mmin
H , and consider any [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] in Mtor

H that
maps surjectively to Z[(ΦH,δH)]. Let (ΦH, δH, σ) be any representative of
[(ΦH, δH, σ)]. Since H is neat, our choice of Σ (see Definition 6.3.3.4)
forces ΓΦH,σ to act trivially on XΦH,δH,σ (by Lemma 6.2.5.27). There-
fore we have (Mtor

H )∧Z[(ΦH,δH,σ)]

∼= XΦH,δH,σ (by 5 of Theorem 6.4.1.1).

Let (Mmin
H )∧Z[(ΦH,δH)]

denote the formal completion of Mmin
H along the

[(ΦH, δH)]-stratum Z[(ΦH,δH)]. Then we have a composition of canonical
morphisms XΦH,δH,σ

∼= (Mtor
H )∧Z[(ΦH,δH,σ)]

→ (Mmin
H )∧Z[(ΦH,δH)]

. By abuse of

notation, let us denote the pullback of this composition from (Mmin
H )∧Z[(ΦH,δH)]

to the completion (Mmin
H )∧x̄ of the strict localization of Mmin

H at x̄ by
(XΦH,δH,σ)∧x̄

∼= (Mtor
H )∧x̄ → (Mmin

H )∧x̄ . According to Proposition 7.2.3.16,
there is a structural morphism (Mmin

H )∧x̄ → (MZH
H )∧x̄ such that the further

composition (XΦH,δH,σ)∧x̄
∼= (Mtor

H )∧x̄ → (Mmin
H )∧x̄ → (MZH

H )∧x̄ agrees with the
morphism (XΦH,δH,σ)∧x̄ → (MZH

H )∧x̄ induced by the structural morphism
XΦH,δH,σ → MZH

H of XΦH,δH,σ. Over (XΦH,δH,σ)∧x̄ , the pullback ♥ω of ωtor from
Mtor
H is isomorphic to (∧top

Z X)⊗
Z
ωA by Lemma 7.1.2.1, which does descend

to (Mmin
H )∧x̄ , because the pullback of ωA from MZH

H also makes sense there.
Since the complement of M1

H in the normal scheme Mmin
H has codimension

at least two, the pullback of ωmin (from Mmin
H to (Mmin

H )∧x̄ ) has to agree with
the pullback of (∧top

Z X)⊗
Z
ωA to (Mmin

H )∧x̄ . In particular, it is invertible, as

desired.
Since

∮
H : Mtor

H → Mmin
H satisfies OMmin

H

∼→
∮
H,∗OMtor

H
by construction as

a Stein factorization, we see that two locally free sheaves E and F of finite
rank over Mmin

H are isomorphic if and only if
∮ ∗
H E ∼=

∮ ∗
HF . Indeed, for the

nontrivial implication we just need E ∼=
∮
H,∗

∮ ∗
H E ∼=

∮
H,∗

∮ ∗
HF ∼= F (by

Lemma 7.2.2.1). Since
∮ ∗
H ω

min ∼= ωtor, we have
∮
H,∗ ω

tor ∼= ωmin, and the

O(1) above such that
∮ ∗
HO(1) ∼= (ωtor)⊗N0 has to satisfy O(1) ∼= (ωmin)⊗N0 .

555



This shows that ωmin is ample and finishes the verification of statements 2
and 3.

Remark 7.2.4.2. In general, Mmin
H is not smooth over S0.

Proposition 7.2.4.3 (base change properties). We can repeat the construc-
tion of Mmin

H with S0 = Spec(OF0,(2)) replaced with each (quasi-separated)
locally noetherian normal scheme S over S0, and obtain a normal scheme
Mmin
H,S projective and flat over S, with analogous characterizing properties de-

scribed as in Theorem 7.2.4.1 (with Proj( · ) replaced with Proj
S
( · ), and with

Γ( · ) replaced with direct images over S), together with a canonical finite
morphism

Mmin
H,S → Mmin

H ×
S0

S. (7.2.4.4)

If S ′ → S is a morphism between locally noetherian normal schemes, then
we also have a canonical finite morphism

Mmin
H,S′ → Mmin

H,S ×
S
S ′. (7.2.4.5)

Moreover, these finite morphisms satisfy the following properties:

1. If S → S0 (resp. S ′ → S) is flat, then (7.2.4.4) (resp. (7.2.4.5)) is an
isomorphism.

2. If Mmin
H ×

S0

S (resp. Mmin
H ×

S0

S ′) is noetherian and normal, then (7.2.4.4)

(resp. (7.2.4.5)) is an isomorphism (by Zariski’s main theorem; cf.
Proposition 7.2.3.4).

3. Suppose s̄ is a geometric point of S. Then (7.2.4.5) (with S ′ replaced
with s̄) is an isomorphism if the following condition is satisfied:

∀ geometric points x̄ of Mmin
H ×

S0

s̄, char(s̄) - # Aut(x̄). (7.2.4.6)

(As in Proposition 7.2.3.16, Aut(x̄) is the group of automorphisms of
x̄ → MZH

H ×
S0

s̄, or equivalently that of x̄ → MZH
H ×

S0

S or x̄ → MZH
H , if

x̄ is over the [(ΦH, δH)]-stratum Z[(ΦH,δH)] of Mmin
H .) In this case, the

geometric fiber Mmin
H,S ×

S
s̄ is normal because Mmin

H,s̄ is.
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4. Suppose (7.2.4.6) is satisfied by all geometric points s̄ of S. (This
is the case, for example, if H is neat. In general, there is a nonzero
constant c depending only on the linear algebraic data defining MH such
that # Aut(x̄)|c for all geometric points x̄ of Mmin

H ). Then the scheme
Mmin
H ×

S0

S is normal, (7.2.4.4) is an isomorphism (by property 2 above),

and the morphism Mmin
H,S → S is normal (i.e., flat with geometrically

normal fibers; see [59, IV-2, 6.8.1 and 6.7.8]). Moreover, for every
locally noetherian normal scheme S ′ over S, the scheme Mmin

H,S ×
S
S ′ is

normal, (7.2.4.5) is an isomorphism (again, by property 2 above), and
the morphism Mmin

H,S′ → S ′ is normal.

Proof. We may assume that S and S ′ are affine, noetherian normal, and
connected, because property 1 (and the convention that all schemes are quasi-
separated) allows us to patch the construction of Mmin

H,S along intersections of
affine open subschemes of S.

Let us take any Mtor
H as in the construction of Mmin

H , so that we have the
canonical surjection∮

H : Mtor
H � Mmin

H
∼= Proj

(
⊕
k≥0

Γ(Mtor
H , (ω

tor)⊗k)
)
.

If we repeat the construction of Mmin
H over S, then we obtain a normal scheme

Mmin
H,S projective over S, together with a canonical surjection∮

H,S : Mtor
H ×

S0

S � Mmin
H,S
∼= Proj

(
⊕
k≥0

Γ(Mtor
H ×

S0

S, (ωtor ⊗
OS0

OS)⊗k)
)
.

By the descriptions of the projective spectra, we obtain a canonical proper
morphism as in (7.2.4.4), and we know it is an isomorphism when S → S0 is
flat.

The morphism S → S0 either is flat or factors through a closed point s of
S0. In the former case, the morphism Mmin

H,S → S is the pullback of Mmin
H → S0,

which is flat by Theorem 7.2.4.1. In the latter case, the morphism Mmin
H,S → S

is the pullback of Mmin
H,s → s, which is automatically flat. Thus Mmin

H,S → S is
always flat.

For each stratum Z[(ΦH,δH)] of Mmin
H , any surjection Z[(ΦH,δH,σ)] � Z[(ΦH,δH)]

that defines it factors through a canonical isomorphism [MZH
H ] → Z[(ΦH,δH)].

Consider the analogous construction over S: we may decompose the above
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morphism as a composition

[MZH
H ×

S0

S]→ Z[(ΦH,δH)],S → Z[(ΦH,δH)]×
S0

S, (7.2.4.7)

which forces the second morphism in (7.2.4.7) to be quasi-finite. Since the
second morphism is necessarily the restriction of (7.2.4.4) to Z[ΦH,δH],S, it
forces (7.2.4.4) to be a finite morphism by Zariski’s main theorem (Proposi-
tion 7.2.3.4).

The case of (7.2.4.5) is similar, with S0 (resp. S) replaced with S (resp.
S ′).

Now, property 1 has already been explained. Property 2 is
self-explanatory, because Mmin

H,S and Mmin
H,S′ are noetherian normal by

construction.
Let us prove property 3. Suppose that the condition (7.2.4.6) is satis-

fied. Since (7.2.4.4) is an isomorphism if it is so over the completions of
strict local rings at geometric points of the target, and since the formation
of Aut(x̄)-invariants commutes with the base change from S to s̄ because
char(s̄) - # Aut(x̄), by Proposition 7.2.3.16 (see, in particular, (7.2.3.17)), it
suffices to show that, for each `0 ∈ P∨ΦH with stabilizer ΓΦH,`0 in ΓΦH , the

formation of ΓΦH,`0-invariants in (FJ
(`0)
ΦH,δH

)∧x̄
∼= Γ((CΦH,δH)∧x̄ , (ΨΦH,δH(`0))∧x̄ )

also commutes with the base change from S to s̄. By the construction of
MΦH
H (see Definition 5.4.2.6 and Proposition 6.2.4.7), there exists a finite

index normal subgroup Γ′ΦH of ΓΦH such that Γ′ΦH acts trivially on MΦH
H ,

and such that the induced action of ΓΦH/Γ
′
ΦH

on MΦH
H makes MΦH

H → MZH
H

an étale (ΓΦH/Γ
′
ΦH

)-torsor. Hence, it suffices to show that, for each ge-

ometric point ȳ → MΦH
H lifting x̄ → MZH

H , the formation of invariants of
Γ′ΦH,`0 = ΓΦH,`0 ∩Γ′ΦH in Γ((CΦH,δH)∧ȳ , (ΨΦH,δH(`0))∧ȳ ), where ( · )∧ȳ denote the

pullback to the completion of the strict localization of MΦH
H at ȳ, commutes

with the base change from S to s̄, for each `0 ∈ P∨ΦH .
Let X ′ and Y ′ be admissible sub-O-lattices of X and Y , respectively, such

that φ(Y ′) ⊂ X ′, such that `′ lies in the subgroup S′ΦH of SΦH defined by
the same construction of SΦH using the embedding φ′ : Y ′ → X ′ induced
by φ, and such that `0 is positive in Φ′H in the sense that, up to choosing a
Z-basis y1, . . . , yr of Y ′, and by completion of squares for quadratic forms,
there exists some integer N ≥ 1 such that N · `0 can be represented as
a positive definite matrix of the form ue tu, where e and u are matrices
with integer coefficients, and where e = diag(e1, . . . , er) is diagonal with
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positive entries. In this case, Γ′ΦH,`0 acts on Φ′H via a discrete subgroup

Γ
′
ΦH,`0

of the compact orthogonal subgroup of GLR(Y ′⊗
Z
R) preserving the

above-mentioned positive definite matrix by conjugation, which is necessarily
finite. Consider the abelian scheme torsor C ′ΦH,δH → MΦH

H defined by the
same construction of CΦH,δH , using the embedding φ′ : Y ′ → X ′ instead of
φ : Y → X, with a canonical morphism CΦH,δH → C ′ΦH,δH over MΦH

H which
is also an abelian scheme torsor, under which the ΨΦH,δH(`0) descends to
an invertible sheaf Ψ′ΦH,δH(`0), which is relatively ample over MΦH

H because
some positive tensor power of Ψ′ΦH,δH(`0) is isomorphic to the pullback of
the line bundle ⊗

1≤i≤r
(pr∗i (IdA, λA)∗PA)⊗ ei over A under the finite morphism

given by the composition C ′ΦH,δH
can.→ HomZ(Y,A)

u∗→ HomZ(Y,A) over MΦH
H ,

because λA is a polarization (cf. Definition 1.3.2.16), and because all the ei’s

are positive. Then Γ′ΦH,`0 acts via the finite quotient Γ
′
ΦH,`0

introduced above
on Γ((CΦH,δH)∧ȳ , (ΨΦH,δH(`0))∧ȳ ) ∼= Γ((C ′ΦH,δH)∧ȳ , (Ψ

′
ΦH,δH

(`0))∧ȳ ).

If H is neat, then Γ
′
ΦH,`0

is also neat and must be trivial. More gen-

erally, since Ψ′ΦH,δH(`0) is relatively ample over MΦH
H , the action of Γ

′
ΦH,`0

on ⊕
N≥0

Γ((C ′ΦH,δH)∧ȳ , (Ψ
′
ΦH,δH

(N · `0))∧ȳ ) induces a faithful action of Γ
′
ΦH,`0

on

(C ′ΦH,δH)∧ȳ (cf. [94, §21, Thm. 5]). By construction, (C ′ΦH,δH)∧ȳ appears (up to

some identification) in the toroidal boundary construction of M
Z′′H
H , where M

Z′′H
H

is isomorphic to the stratum of Mmin
H labeled by the cusp label [(Z′′H,Φ

′′
H, δ

′′
H)]

induced by [(ZH,ΦH, δH)] by the admissible surjections X → X ′′ := X/X ′

and Y → Y ′′ := Y/Y ′ (see Lemmas 5.4.1.13 and 5.4.2.11). Therefore, there
exists a degeneration (over a complete discrete valuation ring with fraction

field k(z)) of an object parameterized by some functorial point z → M
Z′′H
H

such that Γ
′
ΦH,`0

is a subquotient of Aut(z̄) for any geometric point z̄ → M
Z′′H
H

above z. Since char(s̄) - # Aut(z̄) by the assumption that the condition

(7.2.4.6) is satisfied, it follows that char(s̄) - #Γ
′
ΦH,`0

. Therefore, the forma-

tion of Γ
′
ΦH,`0

-invariants in Γ((C ′ΦH,δH)∧ȳ , (Ψ
′
ΦH,δH

(`0))∧ȳ ) commutes with the
base change from S to s̄, for each `0 ∈ P∨ΦH , and property 3 follows.

It remains to prove property 4. Note that the assertions involving S ′ (in
the last sentence) follow from the assertions involving only S, by [59, IV-2,
6.8.2 and 6.14.1] and property 2. To prove the assertions involving only S,
we may replace S with its localizations, and assume that it is local. Let S1

be the localization of S0 at the image under S → S0 of the closed point of
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S. Since S1 is a localization of S0, we know by property 1 that the canonical
morphism Mmin

H,S1
→ Mmin

H ×
S0

S1 is an isomorphism, so that the morphism

Mmin
H,S1

→ S1 is the pullback of Mmin
H → S0. Since the geometric points of

S1 are either of characteristic zero or dominated by those of S, by [59, IV-2,
6.7.7], the normality of fibers of Mmin

H,S1
→ S1 follows from the normality of the

geometric fibers of Mmin
H,S1
×
S1

S ∼= Mmin
H ×

S0

S → S, the latter of which follows

from property 3 (and from the assumption that (7.2.4.6) is satisfied by all
geometric points s̄ of S). Thus, the morphism Mmin

H,S1
→ S1 is normal. By [59,

IV-2, 6.8.2], the pullback Mmin
H,S1
×
S1

S → S is also a normal morphism. By [59,

IV-2, 6.14.1], the scheme Mmin
H,S1
×
S1

S ∼= Mmin
H ×

S0

S is normal. By property 2,

this implies that (7.2.4.4) is an isomorphism, and hence that the morphism
Mmin
H,S → S is normal, as desired.

Corollary 7.2.4.8. Let M be a module over OF0,(2). Suppose there
is a noetherian normal OF0,(2)-algebra M0 over which M is flat. Let
S := Spec(M0). Let k ≥ 0 be an integer divisible by the smallest values of
N0 ≥ 1 as in 2 of Theorem 7.2.4.1 for Mmin

H,S (rather than Mmin
H ). (When H is

neat, N0 = 1 and there is no restriction on k other than being nonnegative.)
Let us denote by (ωmin

S )⊗k the invertible sheaf O(1)⊗k/N0 over Mmin
H,S. Then

the canonical morphism

Γ(Mmin
H,S, (ω

min
S )⊗k ⊗

M0

M)→ Γ(Mtor
H ×

S0

S, (ωtor ⊗
OS0

OS)⊗k ⊗
M0

M)

∼= Γ(Mtor
H , (ω

tor)⊗k ⊗
OF0,(2)

M) = AF(k,M)

induced by the relation
∮ ∗
H,S(ωmin

S )⊗k ∼= (ωtor ⊗
OS0

OS)⊗k in 3 of Theorem 7.2.4.1

(cf. the proof of Proposition 7.2.4.3) is an isomorphism.
Moreover, if condition (7.2.4.6) in Proposition 7.2.4.3 is satisfied by all

geometric points s̄ of S (which is the case, for example, if H is neat), and
if k is also divisible by the smallest values of N0 ≥ 1 as in 2 of The-
orem 7.2.4.1 for Mmin

H , then we may replace Γ(Mmin
H,S, (ω

min
S )⊗k ⊗

M0

M) with

Γ(Mmin
H , (ωmin)⊗k ⊗

OF0,(2)

M) in the above canonical morphism.

Proof. The first paragraph follows immediately from another canonical iso-
morphism

∮
H,S,∗OMtor

H ×
S0

S
∼= OMmin

H,S
in 3 of Theorem 7.2.4.1. (The flatness of
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M over M0 implies that we also have
∮
H,S,∗(OMtor

H ×
S0

S ⊗
M0

M) ∼= OMmin
H,S
⊗
M0

M.)

The second paragraph follows from the construction of Mmin
H,S (cf. Proposi-

tion 7.2.4.3), from which one deduces that (ωmin
S )⊗k is canonically isomorphic

to the pullback of (ωmin ⊗
OS0

OS)⊗k under (7.2.4.4), the last of which is an iso-

morphism by 4 of Proposition 7.2.4.3.

Now we may redefine automorphic forms intrinsically:

Definition 7.2.4.9 (fake reformulation of Definition 7.1.1.1). With the as-
sumptions as in the first paragraph of Corollary 7.2.4.8, an (arithmetic)
automorphic form over MH, of naive parallel weight k, with coefficients
in M , and regular at infinity, is an element of Γ(Mmin

H,S, (ω
min
S )⊗k ⊗

M0

M). For

simplicity, when the context is clear, we shall call such an element an auto-
morphic form of naive weight k.

If the assumptions in the second paragraph of Corollary 7.2.4.8
are also satisfied, then we may replace Γ(Mmin

H,S, (ω
min
S )⊗k ⊗

M0

M) with

Γ(Mmin
H , (ωmin)⊗k ⊗

OF0,(2)

M) in Definition 7.2.4.9.

For example, we have the following:

Corollary 7.2.4.10 (liftability of sections). Let R be a normal ring over
OF0,(2) such that condition (7.2.4.6) in Proposition 7.2.4.3 is satisfied by all
geometric points s̄ of S := Spec(R). Let I be an ideal of R such that R/I
is also normal. (These hypotheses apply, for example, when H is neat, R
is a discrete valuation ring flat over OF0,(2), and I is the maximal ideal of
R.) Then the canonical morphism AF(k,R) → AF(k,R/I) induced by the
canonical surjection R� R/I is surjective for all sufficiently large k.

Proof. By Corollary 7.2.4.8, or rather by Definition 7.2.4.9, the canonical
morphism AF(k,R) → AF(k,R/I) can be canonically identified with the
canonical morphism

Γ(Mmin
H , (ωmin)⊗k ⊗

OF0,(2)

R)→ Γ(Mmin
H , (ωmin)⊗k ⊗

OF0,(2)

(R/I)). (7.2.4.11)

Since Mmin
H → S0 = Spec(OF0,(2)) is flat, the invertible sheaf ωmin is flat over

S0, and hence we have a short exact sequence

0→ (ωmin)⊗k ⊗
OF0,(2)

I → (ωmin)⊗k ⊗
OF0,(2)

R→ (ωmin)⊗k ⊗
OF0,(2)

(R/I)→ 0
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of coherent sheaves over Mmin
H . By considering the attached coho-

mology long exact sequence, we see that (7.2.4.11) is surjective if
H1(Mmin

H , (ωmin)⊗k ⊗
OF0,(2)

I) = 0. Since ωmin is ample over Mmin
H , by Serre’s

vanishing theorem (see Theorem 7.2.2.2), this last condition is true for all
sufficiently large k, as desired.

Remark 7.2.4.12 (for readers familiar with the geometric construction of
p-adic modular forms, as in the works of Hida and many others). The
most well-known application of Corollary 7.2.4.10, at least in the Siegel
modular case treated in [42], is the construction of liftings of sufficiently
large powers of the Hasse invariant. In the context, R is some p-adic
discrete valuation ring with maximal ideal I, and R/I is a finite field of
some characteristic p. A delicate point in the construction of such liftings
is that the powers of the Hasse invariant, a priori, are defined as sections
of AF(k,R/I) = Γ(Mtor

H , (ω
tor)⊗k ⊗

OF0,(2)

(R/I)) for some multiple k of

p − 1 (which agrees with Γ(Mmin
H,Spec(R/I), (ω

min)⊗k ⊗
OF0,(2)

(R/I)) by Corollary

7.2.4.8, and with Γ(MH, ω
⊗k ⊗
OF0,(2)

(R/I)) when Koecher’s principle applies;

see Corollary 7.2.4.13 below). But it is difficult to locate an explanation
in the literature as to why they can also be identified with sections of
Γ(Mmin

H , (ωmin)⊗k ⊗
OF0,(2)

(R/I)) (under suitable hypotheses, such as those in

Corollary 7.2.4.10). (The constructions of liftings of Hasse invariants in the
literature seldom emphasize their logical dependence on [42, especially Ch.
V, Thm. 2.7(i)].) Without this last identification, Serre’s vanishing theorem
does not apply as in the proof of Corollary 7.2.4.10.

Corollary 7.2.4.13 (Koecher’s principle). With the assumptions as in the
first paragraph of Corollary 7.2.4.8, suppose that M1

H = [MH] as open sub-
schemes of Mmin

H (cf. Proposition 7.2.3.13), but no longer suppose that there
exists some noetherian normal OF0,(2)-algebra M0 over which M is flat. Then
the canonical restriction morphism

Γ(Mtor
H , (ω

tor)⊗k ⊗
OF0,(2)

M)→ Γ(MH, ω
⊗k ⊗
OF0,(2)

M) (7.2.4.14)

is a bijection. In other words, automorphic forms of naive parallel weight k
with coefficients in M are automatically regular at infinity.
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Proof. By the same reduction step as in the proof of Lemma 7.1.1.4, we may
assume that M is an OF0,(2)-algebra and work after making the base change
from S0 = Spec(OF0,(2)) to S = Spec(M). By Corollary 7.2.4.8, (7.2.4.14)
can be identified with

Γ(Mmin
H,S, (ω

min
S )⊗k)→ Γ([MH×

S0

S], ((ωmin
S )⊗k|[MH]×

S0

S)). (7.2.4.15)

By 1 of Theorem 7.2.4.1, [MH×
S0

S] is embedded as a subscheme of Mmin
H,S, while

the (rather linear-algebraic) assumption that M1
H = [MH] shows that the

complement of [MH×
S0

S] in Mmin
H,S has codimension at least two. Therefore, the

noetherian normality of Mmin
H,S (see Proposition 7.2.4.3) forces the bijectivity

of (7.2.4.15).

Remark 7.2.4.16. It is not necessary to know whether (7.2.4.4) is an isomor-
phism for S = Spec(M) in this proof.

Remark 7.2.4.17. When M1
H 6= [MH], it is still possible to state a variant of

Corollary 7.2.4.13 by introducing the open subscheme M1
H,S of Mmin

H,S formed
by strata of codimension at most one.

7.2.5 Hecke Actions on Minimal Compactifications

Let us state the following analogue of Proposition 6.4.3.4 for arithmetic min-
imal compactifications.

Proposition 7.2.5.1. Suppose we have an element g ∈ G(A∞,2), and sup-
pose we have two open compact subgroups H and H′ of G(Ẑ2) such that
H′ ⊂ gHg−1. Then there is a canonical morphism [g]min : Mmin

H′ → Mmin
H

extending the canonical morphism [[g]] : [MH′ ]→ [MH] induced by the canon-
ical morphism [g] : MH′ → MH defined by the Hecke action of g, such that
(ωmin)⊗k over Mmin

H is pulled back to (ωmin)⊗k over Mmin
H′ whenever both are

defined.
Moreover, the surjection [g]min maps the [(ΦH′ , δH′)]-stratum Z[(ΦH′ ,δH′ )]

of
Mmin
H′ to the [(Φ′H, δ

′
H)]-stratum Z[(Φ′H,δ

′
H)] of Mmin

H if and only if there are repre-
sentatives (ΦH′ , δH′) and (Φ′H, δ

′
H) of [(ΦH′ , δH′)] and [(Φ′H, δ

′
H)], respectively,

such that (ΦH, δH) is g-assigned to (ΦH′ , δH′) as in Definition 5.4.3.9.
If Σ = {ΣΦH′

}[(ΦH′ ,δH′ )]
and Σ′ = {Σ′Φ′H}[(Φ′H,δ

′
H)] are two compatible

choices of admissible smooth rational polyhedral cone decomposition data
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for MH′ and MH, respectively, such that Σ is a g-refinement of Σ′ as in
Definition 6.4.3.3, then the canonical surjection [g]min : Mmin

H′ � Mmin
H is

compatible with the surjection [g]tor : Mtor
H′,Σ � Mtor

H,Σ′ given by Proposition
6.4.3.4.

Proof. Let Σ = {ΣΦH′
}[(ΦH′ ,δH′ )]

and Σ′ = {Σ′Φ′H}[(Φ′H,δ
′
H)] be any two com-

patible choices of admissible smooth rational polyhedral cone decomposition
data for MH′ and MH, respectively, such that Σ is a g-refinement of Σ′ as
in Definition 6.4.3.3. Let

∮
H′ : Mtor

H′,Σ � Mmin
H′ and

∮
H : Mtor

H,Σ′ � Mmin
H be

the surjections given by 3 of Theorem 7.2.4.1. Let [g]tor : Mtor
H′,Σ � Mtor

H,Σ′ be
the canonical surjection given by Proposition 6.4.3.4 extending the canonical
morphism [g] : MH′ → MH defined by the Hecke action of g. The composi-
tion of [g]tor with

∮
H gives a morphism

∮
H ◦[g]tor : Mtor

H′,Σ → Mmin
H , which pulls

(ωmin)⊗k over Mmin
H (whenever it is defined) back to (ωtor)⊗k over Mtor

H′,Σ. By
the universal property stated in 3 of Theorem 7.2.4.1, this composition mor-
phism factors through

∮
H′ , and induces a morphism [g]min : Mmin

H′ → Mmin
H

pulling (ωmin)⊗k over Mmin
H back to (ωmin)⊗k over Mmin

H′ whenever both are
defined. By the fact that the restriction of

∮
H′ to MH′ is the canonical mor-

phism MH′ → [MH′ ], we see that the restriction of [g]min to [MH′ ] is the
canonical surjection [[g]] : [MH′ ]→ [MH] induced by the canonical surjection
[g] : MH′ � MH defined by the Hecke action of g. Since Mmin

H′ is proper over
S0, and since [MH] is dense in Mmin

H , we see that [g]min is a surjection.
Since the stratification of Mmin

H (resp. Mmin
H′ ) is induced by that of Mtor

H,Σ′
(resp. Mtor

H′,Σ), the statements about the images of the strata of Mmin
H′ under

[g]min follow from the corresponding statements in Proposition 6.4.3.4 about
the images of the strata of Mtor

H′,Σ under [g]tor.

Corollary 7.2.5.2. Suppose we have two open compact subgroups H and
H′ of G(Ẑ2) such that H′ is a normal subgroup of H. Then the canonical
morphisms defined in Proposition 7.2.5.1 induce an action of the finite group
H/H′ on Mmin

H′ . The canonical surjection [1]min : Mmin
H′ � Mmin

H defined by
Proposition 7.2.5.1 can be identified with the quotient of Mmin

H′ by this action.

Proof. The existence of such an action is clear. Since Mmin
H′ is projective over

S0 and normal, the quotient Mmin
H′ /(H/H′) exists as a scheme (cf. [39, V, 4.1]).

Then it follows from Zariski’s main theorem (Proposition 7.2.3.4) that the
induced morphism Mmin

H′ /(H/H′)→ Mmin
H (with noetherian normal target) is

an isomorphism, because it is generically so (over [MH] on the target, by the
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moduli interpretations of MH′ and MH, and by the characterization of coarse
moduli spaces as geometric and uniform categorical quotients in the category
of algebraic spaces; see Section A.7.5).

7.3 Projectivity of Toroidal Compactifica-

tions

Assume that H is neat (see Definition 1.4.1.8). By Corollary 7.2.3.10 (and
the fact that Mmin

H is projective over S0), the algebraic space MH is a quasi-
projective scheme over S0. However, the arithmetic toroidal compactifica-
tions Mtor

H,Σ, which depend on the choices of the admissible smooth rational
polyhedral cone decomposition data Σ = {ΣΦH}[(ΦH,δH)] we take in Theorem
6.4.1.1, are not schemes in general. It is a natural question whether there
exists a nice condition for Σ that guarantees the projectivity of Mtor

H,Σ over
S0.

In the complex analytic case, this question is solved by Tai in [16, Ch.
IV, §2]. With suitable reinterpretations, the same technique has an algebraic
analogue: Assuming that Σ satisfies certain convexity conditions (to be de-
fined in Section 7.3.1), the toroidal compactification Mtor

H,Σ can be realized as
the normalization of a blowup of the minimal compactification Mmin

H along a
certain sheaf of ideals that vanishes to some sufficiently high power along the
boundary of Mmin

H . Such an algebraic analogue is first provided in [25, Ch.
IV] for Siegel moduli schemes over Spec(Z[1

2
]), and then in [42, Ch. V, §5] for

Siegel moduli schemes over Spec(Z). (In fact, the toroidal compactifications
in [25, Ch. IV] are constructed only using this approach, while those in [42,
Ch. IV] are constructed by gluing good algebraic models as in Chapter 6.
Thus, it is fair to say that the theory in [42, Ch. V, §5] is not only more
complete, but also closer in spirit, to Tai’s original work.)

The goal of this section is to show that the theory in [42, Ch. V, §5] can
be fully generalized to our setting.

7.3.1 Convexity Conditions on Cone Decompositions

The following definition follows Tai’s original one [16, Ch. IV, §2] very closely:

Definition 7.3.1.1. Let (ΦH, δH) be a representative of a cusp label at level
H, and let ΣΦH = {σj}j∈J be any ΓΦH-admissible rational polyhedral cone

565



decomposition of PΦH (with respect to the integral structure given by S∨ΦH
in (SΦH)∨R). An (invariant) polarization function on PΦH for the cone
decomposition ΣΦH is a ΓΦH-invariant continuous piecewise linear function
polΦH : PΦH → R≥0 such that we have the following:

1. polΦH is linear (i.e., coincides with a linear function) on each cone σj
in ΣΦH. (In particular, polΦH(tx) = tpolΦH(x) for all x ∈ PΦH and
t ∈ R≥0.)

2. polΦH((PΦH ∩ S∨ΦH)− {0}) ⊂ Z>0. (In particular, polΦH(x) > 0 for all
nonzero x in PΦH.)

3. polΦH is linear (in the above sense) on a rational polyhedral cone σ in
PΦH if and only if σ is contained in some cone σj in ΣΦH.

4. For all x, y ∈ PΦH, we have polΦH(x+ y) ≥ polΦH(x) + polΦH(y). This
is called the convexity of polΦH. (These functions are called concave
in the usual context of mathematics.)

If such a polarization function exists, then we say that the ΓΦH-admissible
rational polyhedral cone decomposition ΣΦH is projective.

Following [16, Ch. II], with a minor error corrected by Looijenga, as men-
tioned in [42, Ch. V, §5] (cf. a similar remark in Section 6.2.5), we summarize
the information we need as follows:

Proposition 7.3.1.2 (cf. [42, p. 173]). 1. Given any ΓΦH-admissible ra-
tional polyhedral cone decomposition ΣΦH of PΦH, there exist refine-
ments Σ′ΦH of ΣΦH that are either projective, smooth, or both projective
and smooth.

2. Let polΦH : PΦH → R≥0 be a polarization function of a ΓΦH-admissible
rational polyhedral cone decomposition ΣΦH of PΦH. Let

KpolΦH
:= {x ∈ PΦH : polΦH(x) ≥ 1}.

This is a convex subset of PΦH not containing {0} such that R≥1 ·
KpolΦH

= KpolΦH
and R≥0 · KpolΦH

⊃ PΦH, whose closure KpolΦH
in

(SΦH)∨R is a cocore in the context of [16, Ch. II, §5]. For simplicity,
we shall also call KpolΦH

a cocore in what follows.
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3. The dual of KpolΦH
is defined as

K∨polΦH
:= {x ∈ SΦH⊗

Z
R : 〈x, y〉 ≥ 1 ∀y ∈ KpolΦH

}

= {x ∈ SΦH⊗
Z
R : 〈x, y〉 ≥ 1 ∀y ∈ KpolΦH

}.

This is a convex subset in (R≥0 ·PΦH)◦, the interior of R≥0 ·PΦH, such
that R≥1 ·K∨polΦH = K∨polΦH

and R>0 ·KpolΦH
= (R≥0 · PΦH)◦, which is

a core in the context of [16, Ch. II, §5].

4. The top-dimensional cones σ in the cone decomposition ΣΦH in 2 cor-
respond bijectively to the vertices ` of the core K∨polΦH

, which are linear

forms whose restrictions to each σ coincide with the restriction of polΦH
to σ.

5. Suppose we have a surjection (ΦH, δH,ΣΦH) � (Φ′H, δ
′
H,ΣΦ′H

) as in
Definition 6.2.6.4, and suppose polΦH : PΦH → R≥0 is a polarization
function for ΣΦH. By definition of a surjection, there is a surjection
(sX : X � X ′, sY : Y � Y ′) : (ΦH, δH) � (Φ′H, δ

′
H) (see Definition

5.4.2.12) that induces an embedding PΦ′H
↪→ PΦH such that the restric-

tion ΣΦH|PΦ′H
of the cone decomposition ΣΦH of PΦH to PΦ′H

is the

cone decomposition ΣΦ′H
of PΦ′H

. Then the restriction of polΦH to ΣΦ′H
(via any choice of (sX , sY )) is an (invariant) polarization function for
ΣΦ′H

.

Definition 7.3.1.3. We say that a compatible choice Σ = {ΣΦH}[(ΦH,δH)] of
admissible smooth rational polyhedral cone decomposition data for MH (see
Definition 6.3.3.4) is projective if it satisfies the following condition: There
is a collection pol = {polΦH : PΦH → R≥0}[(ΦH,δH)] of polarization func-
tions labeled by representatives (ΦH, δH) of cusp labels, each polΦH being a
polarization function of the cone decomposition ΣΦH in Σ (see Definition
7.3.1.1), which are compatible in the following sense: For each surjection
(ΦH, δH)� (Φ′H, δ

′
H) of representatives of cusp labels (see Definition 5.4.2.12)

inducing an embedding PΦ′H
↪→ PΦH, we have polΦH |PΦ′H

= polΦ′H.

Proposition 7.3.1.4. There exists a compatible choice Σ = {ΣΦH}[(ΦH,δH)]

of admissible smooth rational polyhedral cone decomposition data for MH (see
Definition 6.3.3.4) that is projective in the sense of Definition 7.3.1.3.
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Remark 7.3.1.5. As in Remark 6.3.3.6, this is a combinatorial question unre-
lated to the question of compactifying integral models. It is already needed
in existing works on complex analytic or rational models of toroidal com-
pactifications.

Proof of Proposition 7.3.1.4. Following exactly the same induction steps as
in the proof of Proposition 6.3.3.5, we simply have to impose projectivity on
all the cone decompositions that we construct.

Let us fix a choice of a projective smooth Σ = {ΣΦH}[(ΦH,δH)] as in Propo-
sition 7.3.1.4, with a polarization function polΦH : PΦH → R≥0 for each
projective cone decomposition ΣΦH in Σ.

Construction 7.3.1.6. Given any open compact subgroup H′ of H, we can de-
fine an induced cone decomposition Σ(H′) = {ΣΦH′

}[(ΦH′ ,δH′ )]
, with an induced

compatible collection pol(H
′) = {polΦH′}[(ΦH′ ,δH′ )]

of polarization functions for
MH′ , as follows: For each representative (ΦH′ , δH′) of cusp labels at level H′
whose H-orbit determines a representative (ΦH, δH) of cusp labels at level
H in its natural sense (by Convention 5.3.1.15), we have a canonical isomor-
phism PΦH′

∼= PΦH induced by the canonical isogeny EΦH′
� EΦH (defined

naturally by the construction of EΦH′
and EΦH in Lemma 6.2.4.4). Then

we define Σ(H′) (resp. pol(H
′)) by taking the cone decomposition ΣΦH′

(resp.
polarization function polΦH′ ) labeled by (ΦH′ , δH′) to be the cone decomposi-
tion ΣΦH (resp. polarization function polΦH) labeled by (ΦH, δH). (Since the
definition of smoothness depends on the integral structure S∨ΦH′ , which can

a priori be different from S∨ΦH , we do not claim that Σ(H′) is smooth.)

Let us quote the following useful combinatorial results from [42, Ch. V,
§5]:

Lemma 7.3.1.7 (cf. [42, Ch. V, Lem. 5.3]). For each open compact subgroup
H of U2(n), there is an open compact subgroup H′ ⊂ H (which can be taken
to be normal) such that the compatible choice Σ(H′) of admissible rational
polyhedral cone decomposition data for MH′ defined in Construction 7.3.1.6
remains smooth and satisfies the following condition: For each lifting ΦH′ =
(X, Y, φ, ϕ−2,H′ , ϕ0,H′) of ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H) to level H′, and for each
vertex `0 of K∨polΦH′

corresponding to a top-dimensional cone σ0, we have

〈`0, x〉 < 〈γ · `0, x〉 (7.3.1.8)

for all x ∈ σ0 ∩P+
ΦH′

and all γ ∈ ΓΦH′
such that γ 6= 1.
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Lemma 7.3.1.9 (cf. [42, Ch. V, Lem. 5.5]). Suppose σ ∈ ΣΦH, and sup-
pose σ1, . . . , σr are the one-dimensional faces of σ. For each 1 ≤ j ≤
r, consider the unique yj ∈ σj such that S∨ΦH ∩σj = Z≥1 · yj, so that
KpolΦH

∩σj = R≥1 · (polΦH(yj)
−1yj), and let Lj := {x ∈ SΦH ⊗

Z
R : 〈x, yj〉 =

polΦH(yj)}. Then each Lj ∩K∨polΦH is a top-dimensional face of K∨polΦH
, whose

vertices are in SΦH ∩K∨polΦH because yj ∈ S∨ΦH and polΦH takes integral val-

ues on S∨ΦH, and the intersection ∩
1≤j≤r

(Lj ∩K∨polΦH ) defines a face of K∨polΦH
(which we consider dual to σ). Suppose d ≥ 1 is any integer, and sup-
pose `0 ∈ SΦH ∩ d ·

(
∩

1≤j≤r
(Lj ∩K∨polΦH )

)
does not lie on any proper face of

d ·
(
∩

1≤j≤r
(Lj ∩K∨polΦH )

)
. Then there exist `1, . . . , `n ∈ SΦH ∩K∨polΦH (which

are not necessarily vertices of K∨polΦH
) such that

R≥0 · σ∨ =
∑

`∈SΦH ∩(d·K∨polΦH
)

R≥0 · (`− `0) =
∑

1≤i≤n

R≥0 · (d · `i − `0).

Remark 7.3.1.10. The integral version of Lemma 7.3.1.9 is not true in gen-
eral. We cannot replace R≥0 with Z≥0 in its statements. This difference is
immaterial because we are taking normalizations later in the proof of projec-
tivity of Mtor

H,Σ over S0. (Indeed, it is the main reason that we have to take
normalizations.)

Remark 7.3.1.11. The literal statements of [42, Ch. V, Lem. 5.5], which are
stronger than those of Lemma 7.3.1.9, are unfortunately incorrect. For ex-
ample, if P+

ΦH
= R>0 = σ, then there are no other top-dimensional cones

at all, and hence [42, Ch. V, Lem. 5.4] asserts that σ∨ = {0}—but σ∨ is
certainly nonzero. This error was inherited from a similar error in [16, Ch.
IV, Sec. 2, p. 330], and was in turn inherited by [42, Ch. V, Lem. 5.5] and
the first official version of this work.

7.3.2 Generalities on Normalizations of Blowups

Definition 7.3.2.1. Let W be any noetherian scheme, and let I be any
coherent sheaf of ideals over W . Then we denote by BlI(W ) the blowup of
W along I, and we denote by NBlI(W ) the normalization of BlI(W ). (To
take the normalization of a noetherian scheme, we first replace it with its
reduced subscheme with the same underlying topological space, next replace
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it with the disjoint union of its irreducible components, and then take the
componentwise normalization.)

Definition 7.3.2.2. Let W be any noetherian scheme, let I be any coherent
OW -ideal, and let f : W̃ → W be any morphism from a noetherian scheme W̃
such that the image f−1I ·OW̃ of the canonical morphism f ∗I → OW̃ (which
we will call the coherent ideal pullback of I) is an invertible OW̃ -ideal.
Then we denote by

BlI(f) : W̃ → BlI(W )

the canonical morphism induced by the universal property of BlI(W ) such that
f is the composition of BlI(f) with the structural morphism BlI(W )→ W .

If moreover W̃ is a normal scheme, and if f induces dominant mor-
phisms from irreducible components of W̃ to irreducible components of W ,
then we denote by

NBlI(f) : W̃ → NBlI(W )

the canonical morphism induced by the universal property of NBlI(W )
such that f is the composition of NBlI(f) with the structural morphism
NBlI(W )→ W .

Let us quote the following useful result concerning blowups from [42, Ch.
V, §5]:

Proposition 7.3.2.3 ([42, Ch. V, Prop. 5.13]; cf. [16, Ch. IV, §2, p. 327,
Lem.]). Suppose we have a commutative diagram

W̃ ′ g̃ //

f ′

��

W̃

f

��
W ′

g
//W

of noetherian normal integral schemes such that f and f ′ are proper, and
such that the canonical morphisms OW → f∗OW̃ and OW ′ → f ′∗OW̃ ′ are
isomorphisms. Suppose that there is a finite group H acting on W̃ ′ and W ′,
which is compatible with f ′, and suppose that g̃ and g can be identified with
the quotients by H. Suppose that ı and ı′ are invertible sheaves of ideals over
W̃ and W̃ ′, respectively, such that ı′ ∼= g̃∗ı. For each integer d ≥ 1, set
I(d) := f∗ı

⊗ d and I ′ := f ′∗ı
′. Then I(d) and I ′ are coherent sheaves of ideals

over W and W ′, respectively.
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Suppose the canonical morphism ı⊗ d → (g̃∗g̃
∗ı⊗ d)H is an isomor-

phism for every integer d ≥ 1 (which is automatic when g̃ is flat).
Suppose that the canonical morphism (f ′)−1I ′ · OW̃ ′ → ı′ of coherent
OW̃ ′-ideals is an isomorphism, and that the induced canonical morphism
NBlI′(f

′) : W̃ ′ → NBlI′(W
′) (see Definition 7.3.2.2) is an isomorphism.

Then, for some integer d0 ≥ 1, the canonical morphism f−1I(d0) ·OW̃ → ı⊗ d0

of coherent OW̃ -ideals is also an isomorphism, and the induced canonical
morphism NBlI(d0)(f) : W̃ → NBlI(d0)(W ) is an isomorphism.

7.3.3 Main Result on Projectivity of Toroidal Com-
pactifications

Let Σ = {ΣΦH}[(ΦH,δH)] be any projective compatible choice of smooth ra-
tional polyhedral cone decomposition data, with a compatible collection
pol = {polΦH}[(ΦH,δH)] of polarization functions as in Definition 7.3.1.3.

Definition 7.3.3.1. Let us retain the setting of Σ, pol, and Mtor
H = Mtor

H,Σ
as above. According to 3 of Theorem 6.4.1.1, the complement D∞,H of MH
in Mtor

H = Mtor
H,Σ (with its reduced structure) is a relative Cartier divisor with

normal crossings, each of whose irreducible components is an irreducible com-
ponent of some Z[(ΦH,δH,σ)] that is the closure of some strata Z[(ΦH,δH,σ)] labeled
by the equivalence class [(ΦH, δH, σ)] of some triple (ΦH, δH, σ) with σ a one-
dimensional cone in the cone decomposition ΣΦH of PΦH. Let H,pol be the
invertible sheaf of ideals over Mtor

H supported on D∞,H such that the order of
H,pol along each irreducible component of Z[(ΦH,δH,σ)] is the value of polΦH at
the Z>0-generator of σ ∩S∨ΦH for some (and hence every) choice of represen-
tative (ΦH, δH, σ). This is well defined because of the compatibility condition
for pol = {polΦH}[(ΦH,δH)] as in Definition 7.3.1.3.

Definition 7.3.3.2. For each integer d ≥ 1, let J (d)
H,pol :=

∮
H,∗(

⊗ d
H,pol), where∮

H : Mtor
H → Mmin

H is the canonical morphism (as described in 3 of Theorem

7.2.4.1). (Then J (d)
H,pol is a coherent OMmin

H
-ideal because

∮
H is proper and

because the canonical morphism OMmin
H
→
∮
H,∗OMtor

H
is an isomorphism.)

Let us introduce the following condition for Σ = {ΣΦH}[(ΦH,δH)] and pol =
{polΦH}[(ΦH,δH)] (cf. Lemma 7.3.1.7):
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Condition 7.3.3.3 (cf. [16, Ch. IV, §2, p. 329] and [42, Ch. V, §5, p. 178]).
For each representative (ΦH, δH) of a cusp label, and for each vertex `0 of
K∨polΦH

corresponding to a top-dimensional cone σ0, we have

〈`0, x〉 < 〈γ · `0, x〉

for all x ∈ σ0 ∩P+
ΦH

and all γ ∈ ΓΦH such that γ 6= 1.

Let us state the main result of this section. Note that the running neatness
assumption on H (in this section) is indispensable, because we need MH to
be a scheme before we investigate whether its compactification Mtor

H,Σ is a
scheme for some choice of Σ.

Theorem 7.3.3.4 (cf. [16, Ch. IV, §2.1, Thm.] and [42, Ch. V, Thm. 5.8]).
Suppose Σ is projective with a compatible collection pol of polarization func-
tions as in Definition 7.3.1.3, suppose H,pol is defined over Mtor

H = Mtor
H,Σ as

in Definition 7.3.3.1, and suppose J (d)
H,pol is defined over Mmin

H as in Definition
7.3.3.2 for each integer d ≥ 1. Then there exists an integer d0 ≥ 1 such that
the following are true:

1. The canonical morphism
∮ −1

H J
(d0)
H,pol · OMtor

H
→ ⊗ d0

H,pol of coherent
OMtor

H
-ideals is an isomorphism, which induces a canonical morphism

NBlJ (d0)
H,pol

(
∮
H) : Mtor

H → NBlJ (d0)
H,pol

(Mmin
H )

by the universal property of the normalization of blowup as in Definition
7.3.2.2.

2. The canonical morphism NBlJ (d0)
H,pol

(
∮
H) above is an isomorphism.

In particular, Mtor
H is a scheme projective (and smooth) over S0. If Condition

7.3.3.3 is satisfied, then the above two statements are true for every d0 ≥ 3.

The proof can be divided into three rather independent parts. The first
is the following reduction step:

Reduction to the case Condition 7.3.3.3 is satisfied. By Lemma 7.3.1.7,
there exists a normal open compact subgroup H′ of H such that
Condition 7.3.3.3 is satisfied by the Σ(H′) = {ΣΦH′

}[(ΦH′ ,δH′ )]
and
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pol(H
′) = {polΦH′}[(ΦH′ ,δH′ )]

in Construction 7.3.1.6, and such that Σ(H′) is
smooth.

Suppose that Theorem 7.3.3.4 is true for Mtor
H′ = Mtor

H′,Σ(H′) , 
⊗ d′0
H′,pol(H′)

, and

J (d′0)

H′,pol(H′)
for some integer d′0 ≥ 1. In particular, Mtor

H′ is projective and

smooth over S0.
By construction, the surjections ΞΦH′ ,δH′

(σ) � ΞΦH,δH(σ) are finite flat
(with possible ramification along the boundary strata) whenever (ΦH, δH) is
induced by (ΦH′ , δH′) and σ is a cone in the cone decomposition ΣΦH′

= ΣΦH

of PΦH′
∼= PΦH . Therefore, the canonical surjection Mtor

H′,Σ(H′) � Mtor
H,Σ (given

by Proposition 6.4.2.9) is finite flat. It is the unique finite flat extension of the
canonical (finite étale) surjection MH′ � MH. Since Mtor

H′,Σ(H′) is projective

and smooth over S0, the quotient by H/H′ is also projective and isomorphic
to Mtor

H,Σ over S0 (by [39, V, 4.1] and by Zariski’s main theorem (Proposi-
tion 7.2.3.4) as in the proof of Corollary 7.2.5.2). Moreover, we know that
H′,pol(H′)

∼= (Mtor
H′,Σ(H′) � Mtor

H,Σ)∗H,pol by construction. Hence we have veri-

fied all the assumptions of Proposition 7.3.2.3, whose application completes
the reduction step.

Now let us prove 1 and 2 of Theorem 7.3.3.4 separately under the as-
sumption that Condition 7.3.3.3 is satisfied.

Proof of 1 of Theorem 7.3.3.4. Assume that Condition 7.3.3.3 holds. To ver-
ify that

∮ −1

H JH,pol ·OMtor
H
→ H,pol is an isomorphism of coherent OMtor

H
-ideals,

it suffices to verify the same statement along the completions of strict lo-
calizations of Mmin

H at its geometric points. Let x̄ be a geometric point
along the [(ΦH, δH)]-stratum Z[(ΦH,δH)]. According to Corollary 7.2.3.18, we
may identify Z[(ΦH,δH)] with MZH

H . According to Proposition 7.2.3.16, for
each representative (ΦH, δH) of [(ΦH, δH)], we have a canonical isomorphism

O(Mmin
H )∧x̄

∼=
[ ∏
`∈P∨ΦH

(FJ
(`)
ΦH,δH

)∧x̄

]ΓΦH
given by (7.2.3.17). As in the proof of

Proposition 7.2.3.16, the isomorphism (7.2.3.17) is obtained by taking the
common intersection of the rings of regular functions over the various comple-
tions of XΦH,δH,σ along the fibers of the structural morphisms XΦH,δH,σ → MZH

H
over x̄. The structural sheaf of XΦH,δH,σ (as an OCΦH,δH

-algebra) can be de-

scribed symbolically as OXΦH,δH,σ
∼= ⊕̂

`∈σ∨
ΨΦH,δH(`), and the global sections of

its completion along (the fiber over) x̄ is isomorphic to ⊕̂
`∈σ∨

(FJ
(`)
ΦH,δH

)∧x̄ (as an
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O
(M

ZH
H )∧x̄

-algebra).

Let d ≥ 1 be any integer. Let us first identify the pullback (J (d)
H,pol)

∧
x̄ of

J (d)
H,pol to (Mmin

H )∧x̄ . For each one-dimensional cone σ ⊂ P+
ΦH
⊂ (SΦH)∨R in

ΣΦH , let sσ be a Z>0-generator of σ ∩ S∨ΦH . By definition, the order of H,pol
along the σ-stratum of XΦH,δH,σ is given by the value of polΦH at sσ, and

σ∨0 = {` ∈ SΦH : 〈`, y〉 > 0 ∀y ∈ σ}
= {` ∈ SΦH : 〈`, y〉 ≥ 1 ∀y ∈ σ ∩ S∨ΦH}
= {` ∈ SΦH : 〈`, sσ〉 ≥ 1}.

Therefore, in ⊕̂
`∈σ∨

ΨΦH,δH(`), the sheaf of ideals defining the σ-stratum consists

of sections whose nonzero terms are supported on those ` such that 〈`, sσ〉 ≥
1, and hence the pullback of ⊗ dH,pol consists of sections whose nonzero terms
are supported on those ` such that 〈`, sσ〉 ≥ d · polΦH(sσ), or equivalently
such that 〈`, tσ〉 ≥ d for tσ := (polΦH(sσ))−1sσ. Note that tσ is the unique
boundary of the half line σ ∩KpolΦH

by definition of KpolΦH
, and we have

K∨polΦH
= {x ∈ (SΦH)⊗

Z
R : 〈x, y〉 ≥ 1 ∀y ∈ KpolΦH

}

= {x ∈ (SΦH)⊗
Z
R : 〈x, tσ〉 ≥ 1 ∀tσ},

the first equality being the definition, and the second equality being true be-
cause the faces of the boundary of KpolΦH

are spanned by the tσ’s. Therefore,

for each particular ` ∈ SΦH , the condition 〈`, tσ〉 ≥ d for all tσ is equivalent
to the condition that ` ∈ d · K∨polΦH . By taking common intersections of

global sections over the completion along fibers over x̄, we see that the sheaf

of ideals (J (d)
H,pol)

∧
x̄ ⊂ O(Mmin

H )∧x̄
∼=
[ ∏
`∈P∨ΦH

(FJ
(`)
ΦH,δH

)∧x̄

]ΓΦH
consists of sections

whose nonzero terms are supported on those ` ∈ d ·K∨polΦH .

Now let us investigate the pullback of the canonical morphism
∮ −1

H J
(d)
H,pol ·

OMtor
H
→ ⊗ dH,pol under (Mmin

H )∧x̄ → Mmin
H . The goal is to show that the pullback

is an isomorphism if d ≥ 3.
Since the strata corresponding to top-dimensional cones meet all the ir-

reducible components of the fiber of
∮
H over x̄, it suffices to show that the

morphism is an isomorphism after pullback to the completion of each stra-
tum labeled by a top-dimensional cone. Let τ be any top-dimensional cone
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in ΣΦH , which corresponds to a vertex `0 of K∨polΦH
(by 4 of Proposition

7.3.1.2). Then τ⊥ = {0}, τ∨0 = τ∨ − {0}, and hence the ideal of definition
of ⊕̂

`∈τ∨
ΨΦH,δH(`), name the sheaf of ideals defining the τ -stratum, consists

of sections whose nonzero terms are supported on those nonzero ` in τ∨.
By construction, the (coherent ideal) pullback of ⊗ dH,pol to XΦH,δH,σ consists

of sections in ⊕̂
`∈τ∨

ΨΦH,δH(`) whose nonzero terms are supported on those `

lying in d · `0 + τ∨, the translation of τ∨ by d · `0. In other words, it is the
sheaf of invertible ideals generated by ΨΦH,δH(d · `0).

Since `0 is dual to the top-dimensional cone τ in P+
ΦH

, we claim that the

invertible sheaf ΨΦH,δH(`0) over CΦH,δH is relatively ample over MZH
H . To show

this, let us reinstate in this paragraph the notation of Sections 6.2.2, 6.2.3,
and 6.2.4. Up to choosing a Z-basis y1, . . . , yr of Y , and by completion of
squares for quadratic forms, there exists some integer N ≥ 1 such that N · `0

can be represented as a positive definite matrix of the form ue tu, where e
and u are matrices with integer coefficients, and where e = diag(e1, . . . , er) is
diagonal with positive entries. Consider the finite morphism defined by the

composition CΦH,δH
can.→

...
CΦ1

pr1→ HomO(Y,A)
can.→ HomZ(Y,A)

u∗→ HomZ(Y,A),
under which a positive tensor power of ΨΦH,δH(`0) is isomorphic to a positive
tensor power of the pullback of the line bundle ⊗

1≤i≤r
(pr∗i (IdA, λA)∗PA)⊗ ei over

A. Since λA is a polarization (cf. Definition 1.3.2.16), and since all the ei’s
are positive, we see that ΨΦH,δH(`0) is relatively ample over MZH

H , as desired.
Since d ≥ 3, by Lefschetz’s theorem (see, for example, [94, §17, Thm., p.

163]), the invertible sheaf (ΨΦH,δH(d · `0))∧x̄
∼= (ΨΦH,δH(`0)⊗ d)∧x̄ is generated

by its global sections over (CΦH,δH)∧x̄ , namely, the sections of (FJ
(d·`0)
ΦH,δH

)∧x̄
∼=

(pΦH,δH
)∗(ΨΦH,δH(d · `0))∧x̄ .

Let us write each section f of (J (d)
H,pol)

∧
x̄ as an infinite sum

f =
∑

`∈d·`0+τ∨

f (`),

where each f (`) is a section of (FJ
(`)
ΦH,δH

)∧x̄ . Since f is ΓΦH-invariant, we may
decompose it into an infinite sum

f =
∑

[`]∈(ΓΦH ·(d·`0+τ∨))/ΓΦH

f [`]
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of subseries f [`] =
∑
`∈[`]

f (`), where each [`] is by definition the ΓΦH-orbit of

some ` ∈ d · `0 + τ∨.
Since the ideal of definition of OXΦH,δH,τ

∼= ⊕̂
`∈τ∨

(ΨΦH,δH(`))∧x̄ consists of

sections whose nonzero terms are supported on those `’s in τ∨0 = τ∨ − {0},
we see that f [d·`0] =

∑
γ∈ΓΦH

f (γ·(d·`0)) is a leading subseries of f in the sense

that f − f [d·`0] has a higher degree than f [d·`0] in the natural grading defined
by the ideal of definition of ⊕̂

`∈τ∨
(ΨΦH,δH(`))∧x̄ . If Condition 7.3.3.3 is satisfied,

then we have the stronger statement that f (d·`0) is a leading term of f [d·`0]

in the sense that f [d·`0] − f (d·`0) (or equivalently f − f (d·`0)) has a higher
degree than f (d·`0) in the natural grading defined by the ideal of definition
of ⊕̂

`∈τ∨
(ΨΦH,δH(`))∧x̄ . (These are abused terminologies because the leading

subseries or terms might be zero.) As a result, if f1, . . . , fk are sections

of (J (d)
H,pol)

∧
x̄ generating (J (d)

H,pol)
∧
x̄ , then the leading terms f

(d·`0)
1 , . . . , f

(d·`0)
k of

f1, . . . , fk, respectively, generate the (coherent ideal) pullback of (J (d)
H,pol)

∧
x̄ to

(XΦH,δH,τ )
∧
x̄ , and also generate the pullback of (ΨΦH,δH(d · `0))∧x̄ .

Comparing with the above description of the pullback of ⊗ dH,pol to XΦH,δH,σ,

we see that the pullback of
∮ −1

H J
(d)
H,pol ·OMtor

H
→ ⊗ dH,pol under (Mmin

H )∧x̄ → Mmin
H

is an isomorphism when d ≥ 3. Since x̄ is arbitrary, this proves 1 of Theorem
7.3.3.4 by taking any integer d0 ≥ 3.

Proof of 2 of Theorem 7.3.3.4. Let d0 ≥ 3 be any integer such that 1 of
Theorem 7.3.3.4 is satisfied. In this case, there is a canonical morphism
NBlJ (d0)

H,pol
(
∮
H) : Mtor

H → NBlJ (d0)
H,pol

(Mmin
H ), and our goal is to show that this mor-

phism NBlJ (d0)
H,pol

(
∮
H) is an isomorphism. By Zariski’s main theorem (Proposi-

tion 7.2.3.4), it suffices to show that NBlJ (d0)
H,pol

(
∮
H) is quasi-finite (and hence

finite).
As in the proof of 1 of Theorem 7.3.3.4, we may verify this by pulling back

to the completions of the strict localizations of Mmin
H at its geometric points.

Let us assume the same setting as in the proof of 1 of Theorem 7.3.3.4,
with (ΦH, δH) a representative of a cusp label and x̄ a geometric point on
the [(ΦH, δH)]-stratum of Mmin

H . Consider a cone σ ⊂ P+
ΦH

in ΣΦH . Let V
be any complete discrete valuation ring with the valuation υ : Inv(V ) → Z
and with an algebraically closed residue field k, and let y : Spf(V ) → Mtor

H
be any morphism centered at a geometric point over x̄ that factors through
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Spf(V )
ỹ→ XΦH,δH,σ

can.→ Mtor
H , such that the induced morphisms Spec(V ) →

ΞΦH,δH(σ) and Spec(V )→ Mtor
H map the generic point of Spec(V ) to ΞΦH,δH

and MH, respectively. Let

ȳ : Spec(k)→ Mtor
H

and
z̄ := NBlJ (d0)

H,pol
(
∮
H) ◦ ȳ : Spec(k)→ NBlJ (d0)

H,pol
(Mmin
H )

be the induced morphisms. To show that NBlJ (d0)
H,pol

(
∮
H) is quasi-finite, it

suffices to show that there are only finitely many ȳ inducing the same z̄ (for
each σ), because there are only finitely many strata Z[(ΦH,δH,σ)] of Mtor

H lying
above the strata Z[(ΦH,δH)] of Mmin

H .
Consider the composition of canonical morphisms

Spf(V )
ỹ→ (XΦH,δH,σ)∧x̄

can.→ (Mtor
H )∧x̄

NBl
J (d0)
H,pol

(
∮
H)

→ (NBlJ (d0)
H,pol

(Mmin
H ))∧x̄

can.→ NBl
(J (d0)
H,pol)

∧
x̄
((Mmin

H )∧x̄ )

(7.3.3.5)

of proper formal algebraic spaces over (Mmin
H )∧x̄ , where each of the ( · )∧x̄ stands

for the pullback under (Mmin
H )∧x̄ → Mmin

H , and where the last term is defined
in the categories of algebraizable formal schemes in the obvious sense. As
we saw in the proof of 1 of Theorem 7.3.3.4, the sheaf of ideals (J (d0)

H,pol)
∧
x̄ ⊂

O(Mmin
H )∧x̄

∼=
[ ∏
`∈P∨ΦH

(FJ
(`)
ΦH,δH

)∧x̄

]ΓΦH
consists of sections whose nonzero terms

are supported on those ` ∈ d0 ·K∨polΦH .

By definition of Bl
(J (d0)
H,pol)

∧
x̄
((Mmin

H )∧x̄ ), it has an open covering by affine open

formal subschemes {Uf}f labeled by nonzero sections f of (J (d0)
H,pol)

∧
x̄ . Over

each Uf , the section f of (J (d0)
H,pol)

∧
x̄ becomes a local generator of the (coherent

ideal) pullback of (J (d0)
H,pol)

∧
x̄ . (We allow Uf to be empty if f is nowhere a

generator.) For each such Uf , let Ũf denote the open formal subscheme of
NBl

(J (d0)
H,pol)

∧
x̄
((Mmin

H )∧x̄ ) supported on the preimage of Uf .

Let us fix the choice of a nonzero section f of (J (d0)
H,pol)

∧
x̄ such that (7.3.3.5)

factors through Uf . Then we can evaluate υ on sections of Γ(Uf ,OUf ) by pull-
back under (7.3.3.5). (We adopt the convention that υ(0) = +∞.) By writing
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f =
∑

`∈SΦH ∩(d0·K∨polΦH
)

f (`), where each f (`) is a section of (FJ
(`)
ΦH,δH

)∧x̄ , we may

assume that there is a leading term f (`0) 6= 0, for some `0 ∈ SΦH ∩(d0·K∨polΦH ),

such that υ(f (`0)) ≤ υ(f (`)) for all ` ∈ SΦH ∩(d0 ·K∨polΦH ). In this case, f (`0)

is a generator of the pullback of (J (d0)
H,pol)

∧
x̄ , and necessarily also a generator

of the pullback of ΨΦH,δH(`0). This forces υ(f (`0)) > 0 because y is centered

on the support of the pullback of (J (d0)
H,pol)

∧
x̄ . Without loss of generality, we

may and we shall assume that f (`) 6= 0 exactly when ` ∈ ΓΦH · `0. Let Vf (`0)

denote the maximal open formal subscheme of (CΦH,δH)∧x̄ over which f (`0) is
a generator of the pullback of ΨΦH,δH(`0), and let Wf (`0) denote the preimage
of Vf (`0) under the canonical morphism (XΦH,δH,σ)∧x̄ → (CΦH,δH)∧x̄ . Then the
proof of 1 of Theorem 7.3.3.4 shows that Wf (`0) is the preimage of Uf under
the canonical morphism (XΦH,δH,σ)∧x̄ → Bl

(J (d0)
H,pol)

∧
x̄
((Mmin

H )∧x̄ ).

Suppose `gen ∈ K∨polΦH
. Then `gen can be identified with some positive

definite pairing over Y ⊗
Z
R (as in Section 6.2.5), and hence its stabilizer in

ΓΦH can be identified with a discrete subgroup of a compact orthogonal sub-
group of GLR(Y ⊗

Z
R), which must be finite and hence trivial, by the neatness

of H. Let g(d0·`gen) be a section of (FJ
(d0·`gen)
ΦH,δH

)∧x̄ , namely, a global section of
(ΨΦH,δH(d0 · `gen))∧x̄ . Since the stabilizer of `gen in ΓΦH is trivial, we obtain a

section g[d0·`gen] =
∑

γ∈ΓΦH

g(γ·(d0·`gen)) of (J (d0)
H,pol)

∧
x̄ with g(γ·(d0·`gen)) := γ(g(d0·`gen))

for each γ ∈ ΓΦH , and the fact that f (`0) is a generator of the (coherent ideal)

pullback of (J (d0)
H,pol)

∧
x̄ shows, in particular, that υ(f (`0)) ≤ υ(g(d0·`gen)). Since

ΨΦH,δH(`gen) is relatively ample over MZH
H , and since d0 ≥ 3 by assumption,

the sheaf (ΨΦH,δH(d0 · `gen))∧x̄
∼= (ΨΦH,δH(`gen)⊗ d0)∧x̄ is generated by its global

sections by Lefschetz’s theorem (see, for example, [94, §17, Thm., p. 163]).
Hence we have arrived at the conclusion that

0 < υ(ΨΦH,δH(`0)) ≤ υ(ΨΦH,δH(d0 · `gen)) (7.3.3.6)

for every `gen ∈ K∨polΦH .

Suppose `0 is a point in the interior of d0 · K∨polΦH . By convexity of

the polarization function, `0 is a linear combination `0 =
∑

1≤i≤k
ri(d0 · `i), of

elements `i of K∨polΦH
such that ri ∈ Q≥0 for every 1 ≤ i ≤ k and

∑
1≤i≤k

ri > 1.
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Let N ≥ 1 be an integer such that Nri ∈ Z≥0 for every 1 ≤ i ≤ k. By
(7.3.3.6), we have the relation

0 < υ(ΨΦH,δH(N · `0)) <
∑

1≤i≤k

υ(ΨΦH,δH(Nri · `0))

≤
∑

1≤i≤k

υ(ΨΦH,δH(Nri(d0 · `i))) = υ(ΨΦH,δH(N · `0)),

which is impossible. Hence we see that `0 must be on the boundary of
d0 ·K∨polΦH .

Suppose `0 lies on the face of d0 · K∨polΦH dual to some τ ∈ ΣΦH as in

Lemma 7.3.1.9, so that there exist `1, . . . , `n ∈ SΦH ∩K∨polΦH (which are not

necessarily vertices of K∨polΦH
) such that R≥0 · τ∨ =

∑
1≤i≤n

R≥0 · (d0 · `i − `0).

By (7.3.3.6) (with `gen = `i there, for each i), we see that υ(ΨΦH,δH(`)) ≥ 0
for all ` ∈ τ∨. Since V and y : Spf(V ) → Mtor

H are arbitrary (as long as y
factors through XΦH,δH,σ, so that υ(ΨΦH,δH(`)) ≥ 0 for all ` ∈ σ∨; and as
long as the composition (7.3.3.5) factors through Uf ), we see that τ∨ ⊂ σ∨,
which happens only when σ is a face of τ , because σ and τ are both in ΣΦH .
Consequently, σ⊥ ∩ τ∨ generates the group σ⊥.

Since Uf is tautological for the condition that f generates the (coherent

ideal) pullback of (J (d0)
H,pol)

∧
x̄ to Uf , the above argument shows that pullback

of sections of OUf to the open formal subscheme Wf (`0) of (XΦH,δH,σ)∧x̄ form

a subset of the sections of ⊕̂
`∈σ∨

(ΨΦH,δH(`))∧x̄ over Vf (`0) whose nonzero terms

are supported on those ` lying in τ∨. Moreover, it shows that the pullback
to Wf (`0) of sections of the (coherent ideal) pullback of (J (d0)

H,pol)
∧
x̄ to Uf form

a subset of the sections of ⊕̂
`∈σ∨

(ΨΦH,δH(`))∧x̄ over Vf (`0) whose nonzero terms

are supported on those ` lying in `0 + τ∨, the translation of τ∨ by `0. Then
the (coherent ideal) pullback of (J (d0)

H,pol)
∧
x̄ to Wf (`0) consists of sections of

⊕̂
`∈σ∨

(ΨΦH,δH(`))∧x̄ over Vf (`0) whose nonzero terms are supported on those `

lying in `0 + σ∨, the translation of σ∨ by `0.
Since R>0 · (σ⊥ ∩ τ∨) is disjoint from R>0 · (`0 + σ∨), the morphism

Γ(Ũf ,OŨf
) → k induced by z̄ : Spec(k) → NBlJ (d0)

H,pol
(Mmin
H ) determines a

compatible collection of morphisms {Γ(Vf (`0) , (ΨΦH,δH(`))∧x̄ ) → k} indexed
by `’s in a finite index semisubgroup of σ⊥ ∩ τ∨. Since σ⊥ ∩ τ∨ generates
the group σ⊥, this determines a compatible collection of morphisms
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{Γ(Vf (`0) , (ΨΦH,δH)∧x̄ ) → k} indexed by `’s in a finite index subgroup of σ⊥.
Since the whole collection {Γ(Vf (`0) , (ΨΦH,δH)∧x̄ ) → k}`∈σ⊥ determines the

morphism ȳ : Spf(k) → XΦH,δH,σ
can.→ Mtor

H , this shows that NBlJ (d0)
H,pol

(
∮
H)

is quasi-finite, and hence is an isomorphism by Zariski’s main theorem
(Proposition 7.2.3.4), as desired.
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Appendix A

Algebraic Spaces and Algebraic
Stacks

The main purpose of this appendix is to review the general concepts of al-
gebraic spaces and algebraic stacks, which are useful for studying moduli
problems. A secondary purpose is to fix our definitions and conventions,
because there exist discrepancies among the existing works. (This appendix
and the next one are reproduced from the first two chapters and the first
two appendices of the author’s master’s thesis presented to National Taiwan
University [78] in the spring of 2001.)

Our main references for algebraic spaces are [7], [8], and [73]. Our main
references for algebraic stacks are [36], [11], and [83]. We would like to
mention that de Jong has an ongoing online book project on foundation for
the theory of stacks and related topics, which can be found on his website.

A.1 Some Category Theory

A.1.1 A Set-Theoretical Remark

In the standard axiomatic set theory (say, Zermelo–Fraenkel), some naive
operations of sets are forbidden so that certain logical problems will not
arise from these operations. For example, a collection formed by all sets
should be called a class , but not a set .

However, mathematicians seldom need the full generality of axiomatic
set theory. To avoid clumsy language, a common solution is to introduce a
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universe, namely, a large set of sets (using a naive terminology here) that is
closed under all necessary operations, and to consider only those sets in this
universe. Then, when we say that we are forming a set of certain sets, we
are only forming a set of those corresponding sets in the universe. Hence no
logical issue arises in such operations.

More precisely,

Definition A.1.1.1. A universe is a nonempty set U with the following
axioms:

1. If x ∈ U and if y ∈ x, then y ∈ U.

2. If x, y ∈ U, then {x, y} ∈ U.

3. If x ∈ U, then the power set 2x, namely, the set formed by all subsets
of x, is in U.

4. If (xi)i∈I∈U is a family of elements of U, then ∪
i∈I
xi ∈ U.

For a more detailed exposition of the theory of universes, one may consult
[12, I, 0] or [12, I, Appendice: Univers (par N. Bourbaki)].

Remark A.1.1.2. In what follows, we shall fix a choice of a universe that is
sufficient for our need, and we shall not mention our choice of the universe
again.

A.1.2 2-Categories and 2-Functors

Let us summarize some properties of 2-categories and 2-functors from [61]
and [49].

Definition A.1.2.1. A 2-category C consists of the following data:

1. A set of objects ObC

2. For each two objects X, Y ∈ ObC, a category HomC(X, Y ), written
also as Hom(X, Y )

3. For each three objects X, Y, Z ∈ ObC, a functor

µX,Y,Z : Hom(X, Y )× Hom(Y, Z)→ Hom(X,Z)
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such that

(i) the categories such as Hom(X, Y ) are pairwise disjoint;

(ii) for each X ∈ ObC there exists the identity morphism IdX in
Hom(X,X), which is determined uniquely by the condition that, for
each two objects X, Y ∈ ObC,

µX,X,Y (IdX , · ) = µX,Y,Y ( · , IdY ) = IdHom(X,Y );

(iii) for each four objects X, Y, Z, T ∈ ObC, we have the associative law

µX,Z,T ◦ (µX,Y,Z × IdHom(Z,T )) = µX,Y,T ◦ (IdHom(X,Y )×µY,Z,T ).

For each two objects X and Y in C, we call an object f in Hom(X, Y )
a 1-morphism and write it as f : X → Y . Let f and g be two objects of
Hom(X, Y ). A morphism α : f → g is called a 2-morphism, represented in

the form X

f

&&

g

88 Yα
��

.

Let X, Y , and Z be three objects in C. For f ∈ Ob Hom(X, Y ) and
g ∈ Ob Hom(Y, Z) (resp. α ∈ Mor Hom(X, Y ) and β ∈ Mor Hom(Y, Z)),
we write g ◦ f (resp. β ◦ α) in place of µX,Y,Z(f, g) ∈ Ob Hom(X,Z) (resp.
µX,Y,Z(α, β) ∈ Mor Hom(X,Z)).

Definition A.1.2.2. Two objects X and Y of C are equivalent if there exist
two 1-morphisms u : X → Y and v : Y → X and two invertible 2-morphisms
(or 2-isomorphisms) α : v ◦ u→ IdX and β : u ◦ v → IdY .

Definition A.1.2.3. Consider the diagram

X

f   

h // Z

Y

g

??

α

KS

of 1-morphisms. If α is a 2-morphism from g ◦ f to h, which is a 2-
isomorphism, then we say that the diagram is commutative. Diagrams
in other forms are defined to be commutative in the same way.

On the other hand, a diagram of 2-morphisms will be called commutative
only if the compositions are equal.
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Now we define the concept of a covariant 2-functor. (A contravariant
2-functor is defined in a similar way.)

Definition A.1.2.4. Let C and C′ be two 2-categories. A 2-functor F :
C→ C′ consists of a map

F : ObC→ ObC′

and a functor
F : Hom(X, Y )→ Hom(F (X), F (Y ))

between each two objects X, Y ∈ ObC such that

1. for each X ∈ ObC, F (IdX) = IdF (X);

2. for each X, Y ∈ ObC and f ∈ Hom(X, Y ), F (Idf ) = IdF (f);

3. for each diagram

X
f // Y

g // Z

in C, there exists a 2-isomorphism εg,f : F (g) ◦ F (f) → F (g ◦ f) such
that

(a) εf,IdX = εIdY ,f = IdF (f);

(b) ε is associative—the diagram

F (h) ◦ F (g) ◦ F (f)
εh,g×IdF (f) //

IdF (h)×εg,f
��

F (h ◦ g) ◦ F (f)

εh◦g,f
��

F (h) ◦ F (g ◦ f)
εh,g◦f // F (h ◦ g ◦ f)

is commutative;

4. for each pair of 2-morphisms α : f → f ′ and β : g → g′ in C, we have
F (β ◦ α) = F (β) ◦ F (α);

5. for each pair of 2-morphisms α : f → f ′ and β : g → g′ in C, the
diagram

F (g) ◦ F (f)
F (β)◦F (α) //

εg,f

��

F (g′) ◦ F (f ′)

εg′,f ′

��
F (g ◦ f)

F (β◦α) // F (g′ ◦ f ′)
is commutative.
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By abuse of language, the last condition is usually written as F (β) ◦
F (α) = F (β ◦α). This equality does not make sense literally; but if we fix a
choice for all the 2-isomorphisms εg,f , then there’s a unique way to interpret
this equality.

Definition A.1.2.5. Let F and G be two 2-functors from C to C′. A 1-
morphism (or a natural transformation) ϕ from F to G assigns to
each object A in C a 1-morphism ϕ(A) : F (A) → G(A) in C′, and to each
1-morphism f : A → B in C a 2-morphism ϕ(f) : F (f) → G(f), such that
for each 1-morphism g : A→ B, the diagram of 1-morphisms

F (A)

F (g)

��

ϕ(A) // G(A)

G(g)

��
F (B)

ϕ(B) // G(B)

is commutative (up to 2-isomorphism), and such that for each 2-morphism
α : f → g of 1-morphisms, the diagram of 2-morphisms

F (f)

F (α)

��

ϕ(f) // G(f)

G(α)

��
F (g)

ϕ(g) // G(g)

is also commutative.

Definition A.1.2.6. Let ϕ and ψ be two 1-morphisms of functors from the
2-functor F to the 2-functor G. A 2-morphism θ from ϕ to ψ assigns to
each object A in C a 2-morphism θ(A) : ϕ(A)→ ψ(A) between 1-morphisms,
and to each 1-morphism f in C an identity θ(f) : ϕ(f)

=→ ψ(f) between
2-morphisms.

The last statement asserts that a 2-morphism between two 1-morphisms
ϕ and ψ exists only when ϕ(f) = ψ(f) for each 1-morphism f in C.

For each two 2-functors F and G, the 1-morphisms and 2-morphisms
from F to G defined above form a category Hom(F,G) whose objects are
1-morphisms of 2-functors and whose morphisms are 2-morphisms between
1-morphisms.
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Remark A.1.2.7. It is not practical to naively define a (1-)isomorphism be-
tween 2-functors to be a 1-morphism with an inverse. It is more convenient
to define it to be a 1-morphism with a quasi-inverse (defined in an obvious
way analogously to the quasi-inverse of an equivalence of categories) such
that their compositions are 2-isomorphic to the identity.

Given any (1-)category C, we may define a 2-category by making the set
Hom(X, Y ) into a category whose objects are elements of Hom(X, Y ) and
whose only morphisms are identities.

Given a 2-category C, there are two ways of attaching a 1-category. We
have to make Hom(X, Y ) into a set. A naive way is just to take the set
of objects of Hom(X, Y ), and we obtain the so-called underlying category
of C. This has the problem that a 2-functor F : C → C′ is not in general a
functor of the underlying categories (because we only require the composition
of 1-morphisms to be respected up to 2-isomorphism).

A better way of attaching a 1-category to a 2-category is to define the
set of morphisms between the objects X and Y as the set of isomorphism
classes of objects of Hom(X, Y ): two objects f and g of Hom(X, Y ) are
isomorphic if there exists a 2-isomorphism α : f

∼→ g between them. We call
the category obtained in this way the 1-category associated with C. Note
that a 2-functor between 2-categories then induces a functor between the
associated 1-categories.

A.2 Grothendieck Topologies

The main references for this section are [4] and [114]. Related topics can be
found in [39, IV], [12] and [86, III].

Let us begin with an example:

Example A.2.1 (topology in the usual sense). Let X be a topological space,
and let T denote the collection of all open subsets of X. The collection T
becomes a category if we define

Hom(U, V ) =

{
∅ if U 6⊂ V ,

inclusion U → V if U ⊂ V ,

for U, V ∈ T . The object X is a final object in the category T . If {Ui}ni=1 is

a finite subset of T , then the intersection
n
∩
i=1

Ui is equal to the product
n∏
i=1

Ui
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in the category T . If {Ui}i∈I is a (possibly infinite) subset of T , then the
union ∪

i∈I
Ui is equal to the direct sum ⊕

i∈I
Ui in the category T .

Grothendieck’s generalization of the notion of topology consists of replac-
ing the category T of open sets of a topological space X with an arbitrary
category, in which (for example) Hom(U, V ) may have more than one ele-

ment, and of prescribing, in addition for this category, a system {Ui
φi→ U}i∈I

of coverings of its objects.

Definition A.2.2. A topology (or site) T consists of a category cat(T )

and a set cov(T ) of coverings, namely, families {Ui
φi→ U}i∈I of morphisms

in cat(T ), such that the following properties hold:

1. For {Ui → U}i∈I in cov(T ) and a morphism V → U in cat(T ), all
fiber products Ui×

U
V exist, and the induced family {Ui×

U
V → V }i∈I is

again in cov(T ).

2. Given {Ui → U}i∈I ∈ cov(T ) and a family {Vi,j → Ui}i∈Ji ∈ cov(T )
for each i ∈ I, the family {Vi,j → U}i∈I,j∈Ji obtained by composition of
morphisms also belongs to cov(T ).

3. If φ : U ′ → U is an isomorphism in cat(T ), then {U ′ φ→ U} ∈ cov(T ).

Definition A.2.3. A morphism f : T → T ′ of topologies is a functor
f : cat(T ) → cat(T ′) of the underlying categories with the following two
properties:

1. {Ui
φi→ U}i∈I ∈ cov(T ) implies {f(Ui)

f(φi)→ f(U)}i∈I ∈ cov(T ′).

2. For {Ui → U}i∈I ∈ cov(T ) and a morphism V → U in cat(T ), the
canonical morphisms f(Ui×

U
V ) → f(Ui) ×

f(U)
f(V ) are isomorphisms

for all i ∈ I.

Definition A.2.4. Let T be a topology, and let C denote a category with
products (such as the category of commutative groups or the category of sets).

A presheaf over T with values in C is a contravariant functor F : T → C
(or, more precisely, a contravariant functor F : cat(T ) → C). Morphisms
of presheaves (with values in C) are defined as morphisms of contravariant
functors.
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A presheaf F is a sheaf over T if for every covering {Ui → U}i∈I in
cov(T ) the diagram

F (U)→
∏
i∈I

F (Ui)⇒
∏
i,j∈I

F (Ui×
U
Uj)

is exact in C, where the double arrow in the diagram means two morphisms
from

∏
i∈I
F (Ui) to

∏
i,j∈I

F (Ui×
U
Uj), which are induced by the projections

Ui×
U
Uj → Ui and Ui×

U
Uj → Uj, respectively. The exactness here means that

an object (xi)i∈I ∈
∏
i∈I
F (Ui) is in the image of F (U)→

∏
i∈I
F (Ui) if and only

if it is mapped by the two morphisms to the same image in
∏
i,j∈I

F (Ui×
U
Uj).

Morphisms of sheaves are defined as morphisms of presheaves.

Let S be a scheme. Let (Sch /S) be the category of schemes over S.

Remark A.2.5. For compatibility with our references for algebraic spaces
and algebraic stacks later, we shall adopt the convention that schemes are
always quasi-separated preschemes (see [73, II, 1.9], [36, Def. 4.5 and 4.6],
[83, 1.4(3)]).

The following lemma quoted from [73, I, 2.26] suggests that we do not
lose too much by assuming that schemes are quasi-separated:

Lemma A.2.6. Let S be a separated noetherian scheme, and let U be a
scheme locally of finite type over S. Then U is quasi-separated.

Consider three topologies on the category (Sch /S): If the coverings are
collections of families of morphisms that are surjective and étale (resp. faith-
fully flat and of finite presentation, resp. faithfully flat and quasi-compact),
then we say that the corresponding topology is the étale (resp. fppf , resp.
fpqc) topology.

A.3 Properties Stable in the Étale Topology

of Schemes

Fix a scheme S. All schemes and morphisms in this section are in (Sch /S).
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Definition A.3.1. We say that a property “P” of schemes is stable in the
étale topology if, for each étale covering X ′ → X of schemes, the scheme
X has property “P” if and only if X ′ has property “P”.

Proposition A.3.2 (cf. [73, I, 4.9]). The following properties of schemes
are stable in the étale topology: locally noetherian, reduced, normal,
nonsingular, and of dimension n over a ground field k.

Definition A.3.3. We say that a property “P” of morphisms of schemes is
stable in the étale topology if, for each morphism f : X → Y and each
étale covering U → Y , the morphism f has property “P” if and only if the
induced morphism f ′ : X ×

Y
U → U has property “P”.

Proposition A.3.4 (cf. [73, I, 4.10]). The following properties of mor-
phisms of schemes are stable in the étale topology: quasi-compact, sep-
arated, universally injective, universally closed, of finite type, of
finite presentation, finite, universally bijective, quasi-finite, being
an isomorphism, and quasi-separated.

Definition A.3.5. We say that a property “P” of morphisms of schemes
is stable and local on the source in the étale topology if, for each
morphism f : X → Y , each étale covering U → Y , and each étale covering
V → U ×

Y
X, the morphism f has property “P” if and only if the induced

morphism f ′ : V → U has property “P”.

Proposition A.3.6 (cf. [73, I, 4.11]). The following properties of schemes
are stable and local on the source in the étale topology: surjective, flat,
faithfully flat, universally open, étale, locally of finite presenta-
tion, and locally of finite type.

Definition A.3.7. We say that a property “P” of morphisms of schemes
satisfies effective descent in the étale topology (cf. [56, VIII] and
[59, IV-2, 2.6 and 2.7]) if a morphism f : X → Y has property “P” if,
for every morphism Y ′ → Y from a scheme Y ′, the induced morphism f ′ :
X ×

Y
Y ′ → Y ′ has property “P”.

Proposition A.3.8. The following properties of schemes satisfy effective
descent in the étale topology: open immersions, affine, closed immer-
sions, immersions, quasi-affine, and immersions of reduced closed
subschemes.
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A.4 Algebraic Spaces

Fix a scheme S. Consider the category (Sch /S) of schemes over S with the
étale topology.

Definition A.4.1. A space over S is a sheaf of sets over the étale site
of (Sch /S). We denote by (Spc /S) the category of spaces over S, with
morphisms the morphisms of sheaves over the étale site of (Sch /S).

The category (Sch /S) of schemes over S can be identified with a full
subcategory of (Spc /S): We associate with each scheme X over S the functor
of points U 7→ X(U) := Hom(Sch /S)(U,X) over (Sch /S). By [56, VIII, 5.1
and 5.3], this functor is a sheaf over the étale site of (Sch /S), defining a
space over S. By Yoneda’s lemma, (Sch /S) is a full subcategory of (Spc /S).

By abuse of language, we say that a space over S is a scheme if it comes
from a scheme (over S) in this way. In particular, the scheme S over S
corresponds to the final object of (Spc /S).

Definition A.4.2. A morphism f : X → Y in (Spc /S) is called schematic
if for all U ∈ Ob(Sch /S) and all y ∈ Y (U) (viewed as a morphism y : U → Y
in (Spc /S)), the fiber product U ×

y,Y,f
X is a scheme.

Properties of morphisms of schemes that are stable in the étale topology
(see Definition A.3.3), stable and local on the source in the étale topology (see
Definition A.3.5), or satisfy effective descent in the étale topology (see Def-
inition A.3.7) extend naturally to schematic morphisms of algebraic spaces.
In particular, we can speak of schematic morphisms that are quasi-compact,
surjective, étale, and closed immersions (see Propositions A.3.4, A.3.6, and
A.3.8).

Proposition A.4.3. Let X be a space over S. The following are equivalent:

1. The morphism ∆X : X → X ×
S
X is schematic.

2. For each scheme U over S, every morphism U → X is schematic.

3. For all schemes U and V over S, and for all morphisms φ : U → X
and ψ : V → X, the fiber product U ×

X
V is a scheme.
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Proof. The implication 2⇔3 follows immediately from the definition. The
implication 1⇒3 is valid because the fiber product U ×

X
V is the fiber product

of the morphisms ∆X : X → X ×
S
X and φ×ψ : U ×

S
V → X ×

S
X. For

the implication 3⇒1, each morphism U → X ×
S
X induces the following

commutative diagram.

U ×
X ×

S
X
X

��

// U ×
X
U

��

// X

∆X

��
U

∆U

// U ×
S
U // X ×

S
X

Both squares are Cartesian, and U ×
X
U is a scheme by hypothesis. Hence

U ×
X ×

S
X
X is also a scheme.

Definition A.4.4. An algebraic space over S is a space X over S satisfying:

1. (Quasi-separateness; cf. Remark A.2.5) The diagonal morphism
∆X : X → X ×

S
X is schematic and quasi-compact.

2. There exist a scheme X ′ over S, and a morphism of spaces X ′
π→ X

over S (automatically schematic; cf. Proposition A.4.3) that is étale
and surjective.

Let (Alg-Spc /S) be the full subcategory of (Spc /S) whose objects are
algebraic spaces over S. The subcategory (Sch /S) of schemes over S is
naturally contained in (Alg-Spc /S).

Definition A.4.5. A morphism f : X → Y in (Spc /S) is called repre-
sentable if for all U ∈ Ob(Sch /S) and all y ∈ Y (U), the fiber product
U ×

y,Y,f
X is an algebraic space.

Remark A.4.6. For morphisms in (Spc /S), the property of being schematic
is different from the property of being representable.

Unless otherwise specified, let us assume from now on that all schemes,
spaces, and morphisms are over S (namely, in (Spc /S)) in the following
subsections of Section A.4.

591



A.4.1 Quotients of Equivalence Relations

Definition A.4.1.1. An equivalence relation X• in (Spc /S) is given by

the data of two spaces X0 and X1, and a monomorphism X1
δ // X0×

S
X0

of spaces (namely, a monomorphism of sheaves of sets over the étale site of
(Sch /S)) such that for each object U in (Sch /S), the graph of the function

X1(U)
δ(U) // X0(U)×

S
X0(U) is the graph of an equivalence relation in the

category of sets.

For each fiber product Z1×
Z
Z2 in a category, we define by pri the pro-

jection from Z1×
Z
Z2 to Zi. There might be conflicts of notation, but the

meaning of pri should be clear from the context.
A quotient of the equivalence relation X• is defined by the cokernel of the

diagram X1

pr1 ◦δ //

pr2 ◦δ
// X0 .

Such a quotient Q exists in the category of spaces over S, and X1 can
be canonically identified with the fiber product X0×

Q
X0. Conversely, for all

epimorphisms X0 � Q in (Spc /S), Q is identified with the quotient of the
equivalence relation given by the canonical morphism X0×

Q
X0 → X0×

S
X0

over S.

Proposition A.4.1.2 ([73, II, 1.3]). A space over S is an algebraic space
if and only if it is a quotient of an equivalence relation X• in (Spc /S) such
that X0 and X1 are schemes, such that δ : X1 → X0×

S
X0 is a quasi-compact

monomorphism, and such that pr1 ◦ δ and pr2 ◦ δ are étale morphisms from
X1 to X0. (Note that the morphisms δ, pr1 ◦ δ and pr2 ◦ δ are automatically
schematic because their sources and targets are schemes.)

More precisely,

1. if X is an algebraic space, and if π : X0 → X is a morphism from
a scheme X0 to X that is surjective and étale, then the projections
pri : X1 := X0×

X
X0 → X0 are étale for i = 1, 2, the morphism

(pr1, pr2) : X1 → X0×
S
X0 is quasi-compact, and X is the quotient

of the equivalence relation defined by this morphism;
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2. if X• is an equivalence relation in (Spc /S) with X0 and X1 schemes,
with δ : X1 → X0×

S
X0 quasi-compact, and with pr1 ◦ δ and pr2 ◦ δ

étale, then the quotient of X• is an algebraic space over S, and the
canonical morphism from X0 to the quotient is schematic, étale, and
surjective.

Remark A.4.1.3. Given a morphism π : X0 → X from a scheme X0 to a
space X, let X1 := X0×

X
X0. This defines a morphism δ : X1 → X0×

S
X0

by δ := (pr1, pr2) : X1 → X0×
S
X0. Then the morphism δ is related to

∆X : X → X ×
S
X by the following Cartesian diagram.

X1 = X0×
X
X0

//

δ
��

X

∆X

��
X0×

S
X0

// X ×
S
X

In particular, if π is étale and surjective, then δ is schematic and quasi-
compact if and only if ∆X is.

Thanks to Proposition A.4.1.2, we can alternatively define the following:

Definition A.4.1.4. A space X over S is called an algebraic space over
S if it is the quotient of an étale equivalence relation X•, namely, an
equivalence relation such that X0 and X1 are schemes, such that δ is quasi-
compact, and such that pr1 ◦δ and pr2 ◦δ are étale.

Hence an algebraic space can be viewed (noncanonically) as the quotient
of a scheme by an étale equivalence relation.

A.4.2 Properties of Algebraic Spaces

A substantial part of the theory of schemes is generalized to the theory of
algebraic spaces by Artin [8] and Knutson [73]. Since the theory of algebraic
stacks will be based on the theory of algebraic spaces, we summarize here
many of the important definitions and results from [73].

Proposition A.4.2.1 ([73, II, 1.4]). Let X1 and X2 be algebraic spaces. Let
π1 : X ′1 → X1 and π2 : X ′2 → X2 be étale coverings, where X ′1 and X ′2 are
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schemes. Then π1 and π2 are automatically schematic, and X ′1 ×
X1

X ′1 and

X ′2 ×
X2

X ′2 are representable by schemes. Let g and h be morphisms in the

following diagram

X ′1 ×
X1

X ′1
pr1 //
pr2

//

g

��

X ′1
π1 //

h

��

X1

f

��
X ′2 ×

X2

X ′2
pr1 //
pr2

// X ′2
π2 // X2

of solid arrows. Then there is a unique morphism f : X1 → X2 with π2 ◦h =
f ◦ π1. Conversely, every morphism f : X1 → X2 is induced in this way for
some choices of π1, π2, g, h.

Hence, in order to study a morphism f : X1 → X2 of algebraic spaces,
we may choose π1 and π2 as in Proposition A.4.2.1 and study instead the
corresponding morphisms g and h of schemes.

Proposition A.4.2.2 ([73, II, 1.5]). Disjoint unions and fiber products exist
in the category of algebraic spaces.

For an algebraic space X, the diagonal morphism X → X ×
S
X is

schematic. Hence, if a property of schemes is defined by imposing conditions
on the diagonal morphisms, and if those conditions make sense for schematic
morphisms of algebraic spaces, then we can define the property for algebraic
spaces as well.

Definition A.4.2.3. We define X to be locally separated (resp. sepa-
rated) if the schematic morphism ∆X : X → X ×

S
X is a quasi-compact

(resp. closed) immersion (see Propositions A.3.4 and A.3.8).

Lemma A.4.2.4 (cf. [73, II, 1.8]). To verify that X is locally separated
(resp. separated), it suffices to verify that for some étale surjection X ′ → X
from a scheme, the morphism X ′×

X
X ′ → X ′×

S
X ′, defined by the pullback of

∆X : X → X ×
S
X to X ′×

S
X ′ → X ×

S
X (see Remark A.4.1.3), is a quasi-

compact (resp. closed) immersion.

Definition A.4.2.5. A morphism f : X1 → X2 between algebraic spaces is
étale if there are étale coverings π1 : X ′1 → X1 and π2 : X ′2 → X2 from
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schemes and an étale morphism f ′ : X ′1 → X ′2 (cf. Proposition A.4.2.1) such
that f ◦ π1 = π2 ◦ f ′.

Definition A.4.2.6. An algebraic space X is quasi-compact if X admits a
covering X ′ → X with X ′ a quasi-compact scheme. A morphism f : X → Y
of algebraic spaces is quasi-compact if for every étale morphism U → Y ,
with U a quasi-compact scheme, U ×

Y
X is quasi-compact.

These definitions enable us to extend the descent theory of schemes [56,
VIII] to algebraic spaces [73, II, 3].

Definition A.4.2.7. Let “P” be a property of schemes that is stable in
the étale topology (see Definition A.3.1 and Proposition A.3.2). We say
that an algebraic space X has property “P” if and only if there is an étale
covering X ′ → X from a scheme X such that X ′ has property “P”.

Definition A.4.2.8. Let “P” be a property of morphisms of schemes that is
stable and local on the source in the étale topology (see Definition
A.3.5 and Proposition A.3.6). We say that a morphism f : X → Y of
algebraic spaces has property “P” if and only if there is an étale covering
U → Y and an étale covering V → U ×

Y
X, where U and V are schemes,

such that the induced morphism f ′ : V → U has property “P”.

Definition A.4.2.9. Let f : X → Y be a morphism of algebraic spaces. We
say f is of finite type if it is locally of finite type and quasi-compact. We
say f is of finite presentation if it is locally of finite presentation, quasi-
compact, and the induced morphism X → X ×

Y
X is quasi-compact. We say

f is quasi-finite if it is locally quasi-finite and quasi-compact.

It is immediate from the local nature of the definition that these properties
of morphisms are stable in the étale topology.

Definition A.4.2.10. Let “P” be a property of morphisms of schemes satis-
fying effective descent in the étale topology (see Definition A.3.7 and
Proposition A.3.8). We say that a morphism f : X → Y of algebraic spaces
has property “P” if and only if for every morphism Y ′ → Y from a scheme
Y ′ to Y , the fiber product X ×

Y
Y ′ is a scheme and the induced morphism

f ′ : X ×
Y
Y ′ → Y ′ has property “P”. Therefore, if f is an open immersion,

a closed immersion, an immersion, an affine morphism, or a quasi-affine
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morphism, and if Y is a scheme, then so is X. In particular, a subspace of
a scheme is a scheme.

Definition A.4.2.11. A morphism f : X → Y of algebraic spaces is quasi-
separated (resp. locally separated, resp. separated) if the induced mor-
phism X → X ×

Y
X is quasi-compact (resp. a quasi-compact immersion, resp.

a closed immersion).

Proposition A.4.2.12 ([73, II, 3.10]). The class of quasi-separated (resp.
locally separated, resp. separated) morphisms of algebraic spaces is stable in
the étale topology. Moreover, for each morphism f : X → Y such that X
and Y are algebraic spaces and such that Y is separated, X is quasi-separated
(resp. locally separated, resp. separated) if and only if the morphism f is
quasi-separated (resp. locally separated, resp. separated).

A.4.3 Quasi-Coherent Sheaves on Algebraic Spaces

As mentioned above, the extension of the definition of étaleness to morphisms
between algebraic spaces and the corresponding properties enable us to speak
of the étale site of (Alg-Spc /S) in an obvious way. For each sheaf F over the
étale site of (Sch /S), we may extend it in a unique way to the étale site of
(Alg-Spc /S). Concretely, for each algebraic space X with an étale covering
X ′ → X from a scheme X ′, we define

F (X) = ker(F (X ′)⇒ F (X ′×
X
X ′)).

In particular, we may extend the structural sheaf of rings O over (Sch /S)
(which assigns to each Spec(R) the ring R) to the étale site of algebraic
spaces. The sheaf of units O× and sheaf N of nilpotent elements of O are
extended in a similar way.

For a particular algebraic space X, the restriction of O to the étale site
of (Alg-Spc /X) (defined in the obvious way) is the structural sheaf of X,
denoted by OX . For example, for each scheme U with a morphism U → X,
the structural sheaf OX assigns to U the global sections of the structural
sheaf OU of U .

Definition A.4.3.1. Let X be an algebraic space, and let OX be its structural
sheaf of rings. An OX-module F is quasi-coherent (resp. coherent, resp.
locally free of rank r) if for each morphism i : U → X from a scheme U ,
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the induced sheaf i∗F (which is defined in a natural way to be the sheaf over U
assigning i∗F (V ) = F (V ) to each V → U) is quasi-coherent (resp. coherent,
resp. locally free of rank r) in the usual sense (of sheaves over schemes).

A.4.4 Points and the Zariski Topology of Algebraic
Spaces

Let X be an algebraic space. Consider morphisms of algebraic spaces of the
form i : p = Spec(k) → X (with k a field) that are monomorphisms in the
category (Spc /S). Two such morphisms i1 : p1 → X and i2 : p2 → X are
considered equivalent if there is an isomorphism e : p1 → p2 with i2 ◦ e = i1.

Definition A.4.4.1. A point of X is defined to be an equivalence class of
such morphisms of algebraic spaces. By abuse of language, we say that p is
in X and write p ∈ X. The residue field k(p) of X at p is defined to be
the field k above. A geometric point j : q → X is a morphism of algebraic
spaces with q = Spec(k̄) for some algebraically closed field k̄. (Note that
j need not be a monomorphism. Hence a geometric point is usually not a
point.)

Proposition A.4.4.2 ([73, II, 6.2]). Let f : q → X be a morphism of
algebraic spaces with q = Spec(k) for some field k. Then there is a point p
of X such that f factors through q → p→ X.

Theorem A.4.4.3 ([73, II, 6.4]). Let X be an algebraic space and p→ X a
point of X. Then there is an affine scheme U and an étale morphism U → X
such that p→ X factors through p→ U → X.

Definition A.4.4.4. Let X be an algebraic space. The associated under-
lying topological space |X| of X is defined to be the collection of points of
X (modulo equivalence relations of points). The set |X| is given a topological
structure by taking a subset U ⊂ |X| to be open if U = |Y | for some open
subspace Y of X. This topology on |X| is called the Zariski topology.

Proposition A.4.4.5 ([73, II, 6.10]). |X| is a topological space and there
is a one–one correspondence between open subspaces of X and open subsets
of |X|, and a one–one correspondence between reduced closed subspaces of X
and closed subsets of |X|. Also, X 7→ |X| is a functor.
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Definition A.4.4.6. X is irreducible if and only if |X| is, and the definitions
of topologically dense subspace, surjective morphism, universally
open morphism, open morphism, immersion, closed morphism,
and universally closed can be made in terms of the underlying topological
spaces. For example, a morphism is defined to be universally closed if
for each algebraic space X ′ with X ′ → X, the induced map |Y ×

X
X ′| → |X ′|

is closed. (These are compatible with the previous definitions. See [73, II,
6.11].)

Finally,

Definition A.4.4.7. A morphism f : X → Y of algebraic spaces is proper
if it is separated, of finite type, and universally closed.

A.5 Categories Fibered in Groupoids

Recall that a groupoid is a category whose morphisms are all isomorphisms.

Definition A.5.1. Let Y be any category. A category fibered in
groupoids over Y is a category X with a morphism p : X → Y (called the
structural morphism) such that

1. for each morphism V
φ→ U in Y and each object x of X such that

p(x) = U , there exists a morphism y
f→ x in X such that p(f) = φ;

2. for each diagram y
f→ x

g← z in X whose image in Y is V
φ→ U

ψ← W
and for each morphism V

χ→ W in Y such that φ = ψ ◦ χ, there exists

a unique morphism y
h→ z in X such that f = g ◦ h and p(h) = χ.

For each U ∈ ObY, we denote by XU or X(U) the fiber (category) of X
over U , whose objects are those x ∈ ObX such that p(x) = U , and whose
morphisms are those f ∈ MorX such that p(f) = IdU . By definition, the
category XU is a groupoid.

For each morphism V
φ→ U in Y and each object x ∈ XU , the set of

morphisms y
f→ x such that p(y) = V and p(f) = φ is a torsor under the

group HomV (y, y) of automorphisms of y in XV . Let us specify once for

each V
φ→ U and x ∈ XU a choice of y

f→ x, and write it as φ∗x → x or

598



xV → x. Moreover, for each f ∈ MorXU , we denote by φ∗f or f |V the unique
morphism g making the diagram

φ∗x′ //

g

��

x′

f

��
φ∗x // x

commutative. Then we have defined a functor φ∗ : XU → XV for each

morphism V
φ→ U in Y. We call this functor the functor of base change by

φ and denote it by · |V . For each two morphisms W
ψ→ V and V

φ→ U in
Y, we have a canonical isomorphism (up to 2-isomorphism) between the two
functors ψ∗ ◦ φ∗ and (φ ◦ ψ)∗.

The category of groupoids form a 2-category (see Section A.1.2) (Gr)
whose objects are groupoids, whose 1-morphisms are functors between
groupoids, and whose 2-morphisms are the natural transformations between
them. The functors of base change as above allow us to associate with
the category X fibered in groupoids a (contravariant) 2-functor F from Y
(viewed as a 2-category in the canonical way) to (Gr), by assigning to each
U in Y the groupoid F(U) = XU in (Gr), and by assigning to each morphism
φ : U → V in Y the functor (1-morphism) φ∗ : XV → XU between groupoids.
Two different choices made above in the construction of the functors of
base change may result in two different 2-functors, but the 2-functors thus
defined are canonically isomorphic.

Definition A.5.2. A morphism f : X → X′ of categories fibered
in groupoids over Y is a functor of categories from X to X′ such that
pX′ ◦ f = pX, where pX (resp. pX′) is the structural morphism of X (resp.
Y). We denote by HomY(X,X′) the category whose objects are morphisms
of categories fibered in groupoids over Y, and whose morphisms are natural
transformations.

The categories fibered in groupoids over a category Y form a 2-category
(see Section A.1.2) (Ct-F-Gr /Y) whose objects are categories fibered in
groupoids over Y, whose 1-morphisms are morphisms between categories
fibered in groupoids over Y, and whose 2-morphisms are the natural trans-
formations between them.

Definition A.5.3. A morphism f : X→ X′ in (Ct-F-Gr /Y) is a monomor-
phism (resp. an isomorphism) if, for all U ∈ ObY, the functor fU : XU →
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X′U is fully faithful (resp. an equivalence of categories) (see Remark A.1.2.7).
If f is an isomorphism of categories fibered in groupoids, then we say that X
and X′ are isomorphic (under f).

Construction A.5.4 (fiber product of categories fibered in groupoids). Sup-
pose we have two 1-morphisms F : X→ X′′ and F ′ : X′ → X′′ in (Ct-F-Gr /Y).
We would like to construct the fiber product X ×

F,X′′,F ′
X′: For each U ∈ ObY,

the fiber (X ×
F,X′′,F ′

X′)U consists of objects in the form (x, x′, g), where x ∈

ObXU , where x′ ∈ ObX′U , and where g is a morphism F (x) → F ′(x′)
in X′′U . A morphism from (x1, x

′
1, g1) to (x2, x

′
2, g2) in this fiber is a pair

(f : x1 → x2, f
′ : x′1 → x′2), where f ∈ MorXU and f ′ ∈ MorX′U , such that

g2 ◦ F (f) = F ′(f ′) ◦ g1. Finally, for each morphism V
φ→ U in Y, we have

φ∗(x, x′, g) = (φ∗x, φ∗x′, φ∗g) and φ∗(f, f ′) = (φ∗f, φ∗f ′).

Definition A.5.5. We call the fiber product X ×
F,X′′,F ′

X′ the pullback of F :

X→ X′′ to X′ (under F ′ : X′ → X′′). When X′ is a full subcategory of X′′, we
define the pullback of F to X′ using the canonical 1-morphism F ′ : Y′ → X′′.

Definition A.5.6. Let S be any scheme. A category fibered in groupoids
over S is a category X fibered in groupoids over (Sch /S). Morphisms of
categories fibered in groupoids over S are morphisms of categories fibered in
groupoids over (Sch /S).

Then the categories fibered in groupoids over S form a 2-category
(Ct-F-Gr /S), namely, the category (Ct-F-Gr /(Sch /S)).

Each sheaf F over (Sch /S) is naturally identified with a category fibered
in groupoids over (Sch /S), by considering for each scheme U the set F (U) to
be a category whose morphisms are all identities. Then F (U) is a groupoid
for each U , and the conditions of being a category fibered in groupoids are
naturally satisfied. It is immediate that the categories of spaces, algebraic
spaces, and schemes are all natural full sub-2-categories of (Ct-F-Gr /S).

Recall the following definition due to Grothendieck [59, IV-3, 8.14.2] and
Artin [7, 4.4]:

Definition A.5.7. A contravariant functor F : (Sch /S)→ (Sets) is locally
of finite presentation over S if, for each filtering projective system of
affine schemes Spec(Ai) over S, the canonical map

lim−→
i∈I

F (Spec(Ai))→ F (lim←−
i∈I

Spec(Ai)) (A.5.8)
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is a bijection.

We make the following analogous definition for categories fibered in
groupoids:

Definition A.5.9. A category X fibered in groupoids over S is locally of
finite presentation if, for each filtering projective system of affine schemes
Spec(Ai) over S, the canonical functor

lim−→
i∈I

X(Spec(Ai))→ X(lim←−
i∈I

Spec(Ai)) (A.5.10)

defines an equivalence of categories.

A.5.1 Quotients of Groupoid Spaces

Let C be a groupoid, namely, a category whose morphisms are all isomor-
phisms. Then we obtain two sets MorC and ObC, and three maps of sets,

(source) s : MorC→ ObC,

(target) t : MorC→ ObC,

(multiplication) m : MorC ×
s,ObC,t

MorC→ MorC,

satisfying the following axioms:

1. (Associativity) m ◦ (Id,m) = m ◦ (m, 1).

2. (Existence of identity) There exists a map e : ObC→ MorC such that
s ◦ e = t ◦ e = Id and m ◦ (Id, e ◦ s) = m ◦ (e ◦ t, Id) = Id.

3. (Existence of inverse) There exists a map [−1] : MorC → MorC such
that s◦ [−1] = t, t◦ [−1] = s, m◦ (Id, [−1]) = e◦s, and m◦ ([−1], Id) =
e ◦ t.

Explicitly, if f : X → Y and g : Y → Z are elements in MorC, then the
maps are defined by s(f) = X, t(f) = Y , m(g, f) = g ◦ f , e(X) = IdX , and
[−1](f) = f−1. (The inverse f−1 of f is defined because f is an isomorphism
by assumption.) Conversely, suppose we have two sets C0 and C1, together
with maps s : C1 → C0, t : C1 → C0, and m : C1 ×

s,C0,t
C1 → C1 satisfying all

the axioms, then we can define a groupoid C with ObC = C0 and MorC = C1.
In other words, the datum of a groupoid C is equivalent to the data of the
tuple (C0, C1, s, t,m).
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Remark A.5.1.1. Suppose we have a tuple (C0, C1, s, t,m) defining a groupoid
C as above. Then s and t define a map of sets (s, t) : C1 → C0×C0, and the
image of (s, t) is the graph of an equivalence relation in the category of sets.
The fiber of (s, t) over an element (X, Y ) of C0 is the category Hom(X, Y )
in C. Suppose all automorphisms in C are identity morphisms. That is, for
every X ∈ ObC, the set Hom(X,X) has only one element IdX . Then (s, t)
is a monomorphism, and its graph defines an equivalence relation on C0.
Therefore, the study of equivalence relations can be viewed as a special case
of the study of groupoids.

Let S be a scheme and let (Spc /S) be the category of spaces over S.

Definition A.5.1.2. A groupoid space X• in (Spc /S) is given by data
consisting of two spaces X0 and X1, and five morphisms

s : X1 → X0, t : X1 → X0, m : X1 ×
s,X0,t

X1 → X1,

e : X0 → X1, and [−1] : X1 → X1

of spaces such that, for each object U in (Sch /S), the tuple

(X0(U), X1(U), s(U), t(U),m(U))

defines a groupoid, with e(U) and [−1](U) giving the maps required by the
axioms.

By abuse of notation, we shall often say that a groupoid space X• in
(Spc /S) is given by data consisting of two spaces X0 and X1, and a morphism

X1
δ→ X0×

S
X0

of spaces. The morphisms s and t are given by s = pr1 ◦ δ and t = pr2 ◦ δ.
The morphisms m, e, and [−1] are suppressed in the notation, just as they
are seldom mentioned when denoting group schemes.

Construction A.5.1.3. The quotient of the groupoid space X• is defined (up
to isomorphism) in (Ct-F-Gr /S) as follows. Let X• be given by the data of
two spaces X0 and X1, and three morphisms s : X1 → X0, t : X1 → X0,
and m : X1 ×

s,X0,t
X1 → X1 of spaces. We shall denote by X the quo-

tient of X• in (Ct-F-Gr). First let us describe the fibers of X. For ev-
ery object U in (Sch /S), the fiber category XU is the groupoid defined by
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the tuple (X0(U), X1(U), s(U), t(U),m(U)). In particular, ObXU = X0(U)
and MorXU = X1(U). Then ObX =

∐
U∈Ob(Sch /S)

ObXU , and we define

p : ObX→ Ob(Sch /S) by setting p(x) = U for x ∈ ObXU .
Suppose x, y ∈ ObX. Let U = p(x) and V = p(y). For

each φ ∈ Hom(U, V ), we define Homφ(x, y) to be the subset
HomU(x, x) := (s(U), t(U))−1(x, x) of MorXU = X1(U). Then we
define the set Hom(x, y) to be

∐
φ∈Hom(U,V )

Homφ(x, y), and define

p : MorX→ Mor Ob(Sch /S) by setting p(f) = φ for f ∈ Homφ(x, y).
Suppose x, y, z ∈ ObX, f ∈ Hom(x, y), and g ∈ Hom(y, z). Let U = p(x),

V = p(y), W = p(z), φ = p(f), and ψ = p(g). Then f is an element of
Homφ(x, y) = HomU(x, x) ⊂ X1(U), and g is an element of Homψ(y, z) =
HomV (y, y) ⊂ X1(V ). The morphism φ : U → V defines a pullback φ∗(g)
in X1(U). This element has both source and target equal to φ∗(y) = x
because s and t are morphisms of spaces. Then we define the element g ◦ f
in Homψ◦φ(x, z) = HomU(x, x) ⊂ X1(U) to be m(φ∗(g), f). This defines a
composition law for MorX because of the axioms satisfied by m.

By construction, p : X → (Sch /S) is a morphism of categories. To show
that it defines an object in (Ct-F-Gr /S), we need to verify that it satisfies
both of the conditions in Definition A.5.1. Condition 1 is satisfied if we take
y to be φ∗(x), and take f to be Idy ∈ HomV (y, y) = Homφ(y, x). Condition 2
is satisfied if we take h := m−1([−1](χ∗(g)), f) ∈ HomV (y, y) = Homχ(y, z),
where f ∈ HomV (y, y) = Homφ(y, x) and g ∈ HomW (z, z) = Homψ(z, x).

There is a canonical morphism π : X0 → X defined by setting π : ObX0 →
ObX to be the identity IdX0 : X0 → X0, and by setting π : MorX0 → MorX
to be the morphism e : X0 → X1. The two morphisms π ◦ s : X1 → X and
π ◦ t : X1 → X define a morphism (π ◦ s, π ◦ t) : X1 → X0×

X
X0, which is an

isomorphism by the explicit description of X0×
X
X0 in Construction A.5.4.

(This finishes Construction A.5.1.3.)

Remark A.5.1.4. In Construction A.5.1.3, the quotient X of X• is constructed
by adding morphisms (defined by X1) to the space X0 (viewed as an object
in (Ct-F-Gr)). When the groupoid space defines an equivalence relation of
spaces in (Spc /S) (as in Remark A.5.1.1), the quotient X agrees up to isomor-
phism in (Ct-F-Gr /S) with the quotient of equivalence relations in Section
A.4.1 defined by cokernel. This is because isomorphisms in (Ct-F-Gr /S) are
defined by equivalences of categories.
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A.6 Stacks

From now on (until the end of Appendix A), let us fix a choice of a scheme
S. Unless otherwise specified, all objects and morphisms will be defined over
S.

Definition A.6.1. A stack F over S is a sheaf of groupoids over the
étale site of (Sch /S); that is, a 2-functor (presheaf) F : (Sch /S) → (Gr),
satisfying the following axioms: Let (Vi → U)i∈I be a covering of U in the
étale site of (Sch /S).

1. If x and y are two objects of F(U), and if {fi : x|Vi → y|Vi}i∈I is a
collection of morphisms such that fi|Vij = fj|Vij for all i, j ∈ I, then
there is a morphism f : x→ y of F(U) such that f |Vi = fi for all i ∈ I.

2. If x and y are two objects of F(U), and if f : x→ y and g : x→ y are
two morphisms such that f |Vi = g|Vi for all i ∈ I, then f = g.

3. If, for each i ∈ I, xi is an object of F(Vi), and if {fij : xi|Vij
∼→

xj|Vij}i,j∈I is a collection of isomorphisms satisfying the cocycle con-
dition (fik|Vijk) = (fjk|Vijk) ◦ (fij|Vijk) for all i, j, k ∈ I, then there is

an object x ∈ F(U) and a collection {fi : x|Vi
∼→ xi}i∈I of isomorphisms

such that (fj|Vij) = fij ◦ (fi|Vij) for all i, j ∈ I.

A stack over S naturally defines a category fibered in groupoids over
(Sch /S). We denote by (St /S) the full sub-2-category of (Ct-F-Gr /S) whose
objects are stacks over S. Then a morphism of stacks is a monomorphism
(resp. an isomorphism) if it is a monomorphism (resp. an isomorphism) of
categories fibered in groupoids (see Definition A.5.3).

Lemma A.6.2. Let X be a stack over S, and let U be a scheme over S.
The functor u : HomS(U,X) → X(U) sending a morphism of stacks f :
(Sch /U)→ X to f(IdU) is an equivalence of categories.

Proof. This follows from Yoneda’s lemma.

The sub-2-category (St /S) of (Ct-F-Gr /S) is stable under taking arbi-
trary projective limits, and in particular, stable under taking fiber products.
However, it is not stable under taking inductive limits; yet we may consider
the associated stacks of the prestacks defined in a natural way by taking
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the inductive limits. (The process of taking inductive limits is stable in
(Ct-F-Gr /S).)

The category (Spc /S) is a full subcategory of (St /S) by viewing 1-
functors as 2-functors in the canonical way. Then both (Alg-Spc /S) and
(Sch /S) are subcategories of (St /S).

Definition A.6.3. A stack Y is a substack of X if it is a full subcategory
of X, and if the following are satisfied:

1. If an object x of X is in Y, then all objects isomorphic to x are also in
Y.

2. For all morphisms of schemes f : V → U , if x is in Y(U), then f ∗x is
in Y(V ).

3. Let {Vi → U}i∈I be a covering of U in the étale site of (Sch /S). Then
x is in Y(U) if and only if x|Vi is in Y(Vi) for all i.

Definition A.6.4. Let f : Z → X be a (1-)morphism of stacks over S. We
say that f is an epimorphism if, for each U ∈ Ob(Sch /S) and x ∈ ObXU ,
there is a covering U ′ → U in the étale site of (Sch /S) and z′ ∈ ObZU ′ such
that fU ′(z

′) is isomorphic to x|U ′ in XU ′.

Definition A.6.5. A stack X is said to be representable by an algebraic
space (resp. a scheme) if there is an algebraic space (resp. a scheme) X
such that the stack associated with X is isomorphic to X.

Remark A.6.6. Elsewhere in our text, if not particularly stated, an algebraic
stack will be called representable if it is representable by an algebraic space.

Definition A.6.7. A morphism of stacks f : X→ Y is called representable
if for every morphism U → Y from a scheme U , the fiber product stack U ×

Y
X

is representable by an algebraic space.
Suppose “P” is a property of morphisms of algebraic spaces that is local

in nature on the target for the étale topology on (Sch /S) and stable under
arbitrary base change. Then we say that f has property “P” if for every
U → Y from a scheme U , the pullback morphism U ×

Y
X → U (of algebraic

spaces) has property “P”.

Remark A.6.8. Here is a list of such properties summarized from [83, 3.10]
(cf. Definitions A.4.2.5, A.4.2.6, A.4.2.8, A.4.2.9, A.4.2.10, A.4.2.11, A.4.4.6,
and A.4.4.7):
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1. surjective, radicial, and universally bijective [59, I, 3.6.1, 3.6.4, and
3.7.6]

2. universally open, universally closed, separated, quasi-compact, locally
of finite type, locally of finite presentation, of finite type, of finite pre-
sentation, being an immersion, being an open immersion, being a closed
immersion, being an open immersion with dense image, affine, quasi-
affine, entire, finite, quasi-finite, and proper [59, IV-2, 2.5.1 and IV-4,
17.7.5]

3. fibers are geometrically connected, geometrically reduced, and geomet-
rically irreducible [59, IV-2, 4.5.6 and 4.6.10]

4. locally of finite type and of relative dimension ≤ d, and locally of finite
type and of pure relative dimension d [59, IV-2, 5.5.1 and 4.1.4]

5. flat, unramified, smooth, and étale [59, IV-2, 2.2.13 and IV-4, 17.7.4]

Lemma A.6.9. Let f : X → Y be a representable morphism of stacks over
S, and let Y′ → Y be an arbitrary morphism of stacks over S. Then the
morphism f ′ : X′ = X×

Y
Y′ → Y′ induced by base change is representable.

Moreover, let “P” be any property that is local in nature on the target for
the topology chosen on the étale site of (Sch /S) and stable under arbitrary
base change. If f has property “P” then f ′ has property “P” too.

Proof. This is immediate from the definitions.

Lemma A.6.10 ([83, 3.12(a)]). Let f : X→ Y be a representable morphism
of stacks over S. If Y is representable by an algebraic space, then so is X.

Let ∆X : X → X×
S
X be the diagonal morphism. By Lemma A.6.2, two

morphisms from a scheme U to X×
S
X are equivalent to two objects x and

y of XU , respectively. By taking the fiber product, we obtain the following
Cartesian diagram.

IsomU(x, y)

��

// X

∆X

��
U

(x,y) // X×
S
X
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Proposition A.6.11 (cf. Proposition A.4.3). Let X be a stack over S. The
following are equivalent:

1. The morphism ∆X : X→ X×
S
X is representable.

2. The stack IsomU(x, y) over S is representable for every scheme U over
S and for every x, y ∈ ObXU .

3. For every algebraic space X over S, every morphism X → X is repre-
sentable.

4. For every scheme U over S, every morphism U → X is representable.

5. For all schemes U and V over S, and for all morphisms U → X and
V → X, the fiber product U ×

X
V is representable.

Proof. The implications 1⇔2 and 3⇒4⇔5 follow immediately from the def-
initions.

1⇒5: Since the diagram

U ×
X
V

��

// X

∆X

��
U ×

S
V // X×

S
X

is Cartesian, U ×
X
V is representable if ∆X is.

5⇒1: Consider the following diagram.

U ×
X×
S
X
X

��

// U ×
X
U

��

// X

∆X

��
U

∆U // U ×
S
U // X×

S
X

Both squares are Cartesian and U ×
X
U is representable by hypothesis. Hence

U ×
X×
S
X
X is representable.
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5⇒3: For each scheme U over S, and for each morphism U → X, the
induced morphism X ×

X
U → X is representable by the following diagram.

V ×
X
U //

��

X ×
X
U //

��

U

��
V // X // X

Hence X ×
X
U is representable by Lemma A.6.10.

A.7 Algebraic Stacks

There are definitions of algebraic stacks in the literature that are not equiv-
alent to each other (see [36], [11], and [83]; see also de Jong’s Stacks Project
on his website). The following is the definition taken from [83].

Definition A.7.1. An Artin stack is a stack X such that we have the
following:

1. (Quasi-separateness, cf. Remark A.2.5) The diagonal morphism
∆X is representable, quasi-compact, and separated. (More precisely,
for each U ∈ Ob(Sch /S) and x, y ∈ ObXU , we require the presheaf
IsomU(x, y) of isomorphisms from x to y to be representable by an
algebraic space quasi-compact and separated over U . The separateness
here is automatic if X is representable by a scheme or an algebraic
space, because the diagonal morphism ∆X is a monomorphism for a
scheme or an algebraic space by definition (see Definition A.4.4), and
a monomorphism is automatically separated (see [59, I, 55.1]).)

2. There exist an algebraic space X over S, and a morphism p : X → X
of stacks over S (automatically representable by Proposition A.6.11),
called an atlas or a presentation of X, that is surjective (see Defini-
tion A.6.4) and smooth.

However, for the purpose of studying moduli spaces of abelian schemes
with additional structures, it is usually desirable to consider the following
narrower definition:
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Definition A.7.2. A Deligne–Mumford stack over S is an algebraic
stack over S that admits an étale presentation. (That is, in Definition A.7.1,
p is an étale morphism.)

Convention A.7.3. From now on, unless otherwise specified, our alge-
braic stacks will be Deligne–Mumford stacks. (We will still explicitly spec-
ify Deligne–Mumford stacks when necessary.) A presentation of a Deligne–
Mumford stack X will be understood to be an étale and surjective morphism
p : X → X from an algebraic space X to the stack X. (In [36], the presen-
tation is assumed to be from a scheme; yet there is no essential difference,
because algebraic spaces admit étale surjections from schemes.)

We denote by (Alg-St /S) the full subcategory of (Deligne–Mumford)
algebraic stacks in (St /S). A stack over S associated with an algebraic space
(over S) is clearly an algebraic stack. Hence (Alg-Spc /S) is a sub-2-category
of (Alg-St /S).

Proposition A.7.4 ([83, 4.4]). An algebraic stack X over S is representable
(by an algebraic space; see Definition A.6.5 and Remark A.6.6) if and only
if the diagonal 1-morphism

∆X : X→ X×
S
X (A.7.5)

is a monomorphism.

In the remainder of this section, the reader is encouraged to compare the
definitions and properties (for algebraic stacks) with the corresponding ones
(for algebraic spaces) in Section A.4.

A.7.1 Quotients of Étale Groupoid Spaces

Proposition A.7.1.1 (cf. [83, 4.3.1 and 4.3.2]). A category X fibered in
groupoids over S is an algebraic stack if and only if it is a quotient for a
groupoid space X• = (X0, X1, s, t,m, e, [−1]) in (Spc /S) such that X0 and
X1 are algebraic spaces, such that δ = (s, t) : X1 → X0×

S
X0 is quasi-

compact and separated, and such that s and t are étale morphisms from X1

to X0. (The morphisms δ, s, and t are automatically representable because
their sources and targets are algebraic spaces.) (See Definition A.5.1.2 and
Construction A.5.1.3.) More precisely, we have the following:
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1. If X is an algebraic stack, and if π : X0 → X is a morphism from
an algebraic space X0 to X that is surjective and étale, then the pro-
jections pri : X1 := X0×

X
X0 → X0 are étale for i = 1, 2, and the

morphism (pr1, pr2) : X1 → X0×
S
X0 is quasi-compact and separated.

Let s := pr1 : X1 → X0 and t := pr2 : X1 → X0. Let m : X1 ×
t,X0,s

X1
∼=

X0×
X
X0×

X
X0 → X1 be induced by the projection X0×

S
X0×

S
X0 →

X0×
S
X0 to the first and third factors. Let e : X0 → X1 = X0×

X
X0 be

the morphism induced by the diagonal ∆X0 : X0 → X0×
S
X0. Let [−1] :

X1 → X1 be induced by the morphism X0×
S
X0 → X0×

S
X0 switching

the two factors. Then (X0, X1, s, t,m, e, [−1]) defines a groupoid space
X•, and X is isomorphic to the quotient of the groupoid space X•.

2. Conversely, if X• = (X0, X1, s, t,m, e, [−1]) is a groupoid space in
(Spc /S) with X0 and X1 algebraic spaces, with δ = (s, t) : X1 →
X0×

S
X0 quasi-compact and separated, and with s and t étale, then the

quotient X of X• is an algebraic stack over S, and the canonical mor-
phism from X0 to X is representable, étale, and surjective.

Hence an algebraic stack can be viewed as the quotient of an algebraic
space by an étale groupoid space.

Remark A.7.1.2. Given a morphism π : X0 → X from an algebraic space X0

to a stack X, let X1 := X0×
X
X0. This defines a morphism δ : X1 → X0×

S
X0

by δ := (pr1, pr2) : X0×
X
X0 → X0×

S
X0. Then the morphism δ is related to

∆X : X→ X×
S
X by the following Cartesian diagram.

X0×
X
X0

//

δ
��

X

∆X

��
X0×

S
X0

// X×
S
X

In particular, if π is étale and surjective, then δ is representable, quasi-
compact, and separated if and only if ∆X is.

Thanks to Proposition A.7.1.1, we can alternatively define the following:
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Definition A.7.1.3. A category X fibered in groupoids over S is called an
algebraic stack over S if it is the quotient of an étale groupoid space X•,
namely, a groupoid space X• = (X0, X1, s, t,m, e, [−1]) such that X0 and X1

are algebraic spaces, such that δ = (s, t) is quasi-compact and separated, and
such that s and t are étale.

A.7.2 Properties of Algebraic Stacks

The properties of an algebraic stack are characterized by its (étale) presen-
tations:

Definition A.7.2.1. Let “P” be a property of algebraic spaces that is stable
in the étale topology (cf. Definitions A.3.1 and A.4.2.7). Then we say that an
algebraic stack X over S has property “P” if and only if for one (and hence
for every) presentation p : X → X, the algebraic space X has property “P”.

Definition A.7.2.2. Let “P” be a property of morphisms of algebraic spaces
that is stable and local on the source in the étale topology (cf. Definitions
A.3.5 and A.4.2.8). Suppose f : X → Y is a morphism of algebraic stacks.
Then we say that f has property “P” if and only if for one (and hence for
every) commutative diagram of stacks

X ′
p′ //

f ′
""

Y ×
Y
X //

��

X

f

��
Y p

// Y

where p (resp. p′) is a presentation for Y (resp. Y ×
Y
X), the induced f ′ has

property “P”.

Proposition A.7.2.3. A scheme (resp. an algebraic space) satisfies a prop-
erty “P” as a scheme (resp. an algebraic stack) if and only if it satisfies the
property “P” as an algebraic stack. A morphism of schemes (resp. algebraic
spaces) satisfies a property “P” as a morphism of schemes (resp. algebraic
stacks) if and only if it satisfies the property “P” as a morphism of algebraic
stacks.

Proposition A.7.2.4 (cf. [59, IV-3, 8.14.2], [7, 4.4], and [83, 4.15]). A
scheme (resp. an algebraic space, resp. an algebraic stack) over S is locally of
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finite presentation as a scheme (resp. an algebraic space, resp. an algebraic
stack) if and only if it is locally of finite presentation as a category fibered in
groupoids (see Definition A.5.9).

Definition A.7.2.5. An algebraic stack is called quasi-compact if there
exists a presentation p : X → X with X quasi-compact. A morphism f : X→
Y of algebraic stacks is called quasi-compact if for every morphism from a
scheme Y into Y, the fiber product Y ×

Y
X is a quasi-compact algebraic stack

over Y .

Lemma A.7.2.6. In Definition A.7.2.5 it suffices to require that there exists
a surjection f : Y → X from a quasi-compact algebraic space Y .

Proof. Suppose p : X → X is any presentation of X, with an étale covering
{Xα}α∈J of X by affine schemes. Then {Y ×

X
Xα}α∈J is an étale covering

of Y ×
X
X. For each α, the image Wα of Y ×

X
Xα in Y is open because the

étale (or smooth) morphism p is open. By assumption, Y is quasi-compact,
so there is a finite subset J ′ of J such that {Wα}α∈J ′ cover Y . Hence, by
surjectivity of f , the images of {Wα}α∈J ′ cover X. Therefore, we may replace
X with the finite disjoint union of {Xα}α∈J ′ and obtain a quasi-compact
presentation of X, as desired.

Definition A.7.2.7. We define a morphism f : X → Y to be of finite
type if it is quasi-compact and locally of finite type, and to be of finite
presentation if it is quasi-compact and locally of finite presentation. An
algebraic stack is noetherian if it is quasi-compact, quasi-separated, and
locally noetherian.

Definition A.7.2.8. An algebraic stack X is separated if the (representable)
diagonal morphism ∆X is universally closed (hence proper, since it is sepa-
rated and of finite type).

A morphism f : X → Y of algebraic stacks is separated (resp. quasi-
separated) if for every morphism U → Y from a separated scheme U , the
fiber product U ×

Y
X is separated (resp. quasi-separated).

Lemma A.7.2.9. An algebraic stack X is separated if it is a quotient of
an étale groupoid space X• = (X0, X1, s, t,m, e, [−1]) such that δ = (s, t) is
quasi-compact, separated, and finite.
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Proof. This follows from Proposition A.7.1.1 and Remark A.7.1.2.

Definition A.7.2.10. A morphism f : X → Y is said to be proper if it is
separated, of finite type, and universally closed.

Let f : X → S be a morphism of finite type from an algebraic stack X
to a noetherian scheme S. Assume the diagonal morphism X → X×

S
X is

separated and quasi-compact.

Theorem A.7.2.11 (valuative criterion for separateness; see [83, 7.8]). A
morphism f as above is separated if and only if, for each commutative dia-
gram

X

f

��
Spec(R)

g1

;;

g2

;;

// S

in which R is a complete discrete valuation ring R with algebraically closed
residue field, each isomorphism between the restrictions of g1 and g2 to the
generic point of Spec(R) extends to an isomorphism between the morphisms
g1 and g2.

Theorem A.7.2.12 (valuative criterion for properness; see [83, 7.12]). Sup-
pose f is separated as in Theorem A.7.2.11. Then f is proper if and only if,
for each commutative diagram

X

f

��
Spec(K)

g

44

// Spec(R) // S

in which R is a discrete valuation ring with fraction field K, there exists a
finite extension K ′ of K such that the restriction of g to Spec(K ′) extends to
a morphism from Spec(R′) to X, where R′ is the integral closure of R in K ′.

Remark A.7.2.13. To prove that a given f is proper, it suffices to verify the
above criterion under the additional hypothesis that R is complete and has
an algebraically closed residue field. Furthermore, if there is an open dense
subset U of X (see Definition A.7.4.3), then it is enough to test only those
g’s that factor through U (see [83, 7.12.4]).
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Definition A.7.2.14. The disjoint union X =
∐
i∈I

Xi of a family (Xi)i∈I of

stacks is the stack a section of which over a scheme U consists of a decom-
position U =

∐
i∈I
Ui of U and a section of xi over Ui for each i.

The empty stack ∅ is the algebraic stack represented by the empty scheme.
A stack is connected if it is nonempty and is not the disjoint union of two
nonempty stacks.

Proposition A.7.2.15 ([36, Prop. 4.14]; see [83, 4.9]). A locally noetherian
algebraic stack is in one and only one way the disjoint union of a family of
connected algebraic stacks (called its connected components).

We denote by π0(X) the set of connected components of a locally noethe-
rian algebraic stack X. If p : X → X is étale and surjective, then π0(X) is
the cokernel of π0(X ×

X
X)⇒ π0(X), namely, the quotient of the equivalence

relation of sets defined by the two projections.

Definition A.7.2.16. A substack Y of X is called open (resp. closed, resp.
locally closed) if the inclusion morphism Y → X is representable and is an
open immersion (resp. closed immersion, resp. locally closed immersion).

Definition A.7.2.17. An algebraic stack X is irreducible if it is nonempty
and if, for every two nonempty open substacks Y1 and Y2 in X, their inter-
section Y1 ∩ Y2 is nonempty.

A.7.3 Quasi-Coherent Sheaves on Algebraic Stacks

Definition A.7.3.1. Let X be an algebraic stack. The étale site Xét of X
is the category with objects that are the étale morphisms u : U → X from
schemes, where a morphism from (U, u) to (V, v) is a morphism of schemes
φ : U → V together with a 2-morphism between the 1-morphisms u : U →
X and v ◦ φ : U → X. A collection of morphisms φi : (Ui, ui) → (U, u)
is a covering family if the underlying family of morphisms of schemes is
surjective.

The site Xét is in a natural way ringed (the meaning of this is made clear
by the following definitions). When we speak of sheaves over X we mean
sheaves over Xét.
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Definition A.7.3.2. A quasi-coherent sheaf F over the algebraic stack
X consists of the following data:

1. For each morphism U → X where U is a scheme, a quasi-coherent sheaf
FU over U .

2. For each morphism f : U → V over X, an isomorphism φf : FU
∼→

f ∗FV satisfying the cocycle condition; namely, for all morphisms
f : U → V and g : V → W over X, we have φg◦f = φf ◦ f ∗φg.

We say that F is coherent (resp. of finite type, resp. of finite presen-
tation, resp. locally free) if FU is coherent (resp. of finite type, resp. of
finite presentation, resp. locally free) for every U .

A morphism of quasi-coherent sheaves h : F → F ′ is a collection of
morphisms of sheaves hU : FU → F ′

U compatible with all the isomorphisms
φf as above.

This definition is compatible with that in Section A.4.3.

Definition A.7.3.3. Let X be an algebraic stack. The structural sheaf OX

is defined by taking (OX)U = OU for each morphism U → X from a scheme
U .

Proposition A.7.3.4 ([36]; see [83, 14.2.4]). Let X be an algebraic stack.
Then the functor that assigns to each algebraic stack f : T → X the
OX-algebra f∗OT induces an antiequivalence between the following two
categories:

1. The category of algebraic stacks schematic and affine over X. (This
is analogous to schematic morphisms of algebraic spaces: A morphism
f : X→ Y is schematic if, for each morphism U → Y from a scheme
U , the fiber product U ×

Y
X is representable by a scheme.)

2. The category of quasi-coherent OX-algebras.

Definition A.7.3.5. Let X be an algebraic stack, and let F be a quasi-
coherent OX-algebra. For all étale morphisms u : U → X with U an affine
scheme, let AU be the integral closure of Γ(U, (OX)U) = Γ(U,OU) in FU .
By [59, II, 6.3.4], the AU for variable U are the sections over U of a quasi-
coherent sheaf A over X, which we will call the integral closure of OX in
F .
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Definition A.7.3.6. Let f : T → X be schematic and affine. The algebraic
stack associated by Proposition A.7.3.4 with the integral closure of OX in
f ∗OT will be called the normalization of X with respect to T. Its formation
is compatible with arbitrary étale base change.

A.7.4 Points and the Zariski Topology of Algebraic
Stacks

Let X be an algebraic stack. Consider the set of pairs (x, k), where k is
a field over S and where x : Spec(k) → X is an object in XSpec(k). (This is
slightly different from the definition of a point of algebraic spaces in Definition
A.4.4.1. Here we do not assume that the morphism is a monomorphism.) We
define two elements (x, k) and (x′, k′) of this set to be equivalent if there is a
third field k′′ with coverings Spec(k′′)→ Spec(k) and Spec(k′′)→ Spec(k′) in
the étale site of (Sch /S) such that the induced objects x|Spec(k) and x′|Spec(k′)

are isomorphic in X(Spec(k′′)). It is clear that this is an equivalence relation.

Definition A.7.4.1. A point of the algebraic stack X is an equivalence
class in the set defined above. The set of points of X, called the associated
underlying topological space, is denoted by |X|.

Suppose x : Spec(k)→ X is a representative of a point of X, and f : X→ Y
is a morphism. Then we have by composition a point of Y, the equivalence
class of f ◦ x : Spec(k)→ Y. Hence we have a map |f | : |X| → |Y|, which we
often denote by f if there’s no confusion.

Definition A.7.4.2. Let X be an algebraic stack. The Zariski topology on
|X| is defined by taking open sets to be subsets of the form U = |Y| for some
open substack Y.

Definition A.7.4.3. As in the case of algebraic spaces, we may define a
morphism f : X→ Y between algebraic stacks to be open, closed, with dense
image, universally closed, etc., using the induced map |f | : |X| → |Y| between
underlying topological spaces.

A.7.5 Coarse Moduli Spaces

The results in this section are quoted from [38, I, §8]. The justifications for
some of the claims can be found in [68], with explanations supplied by [32].

Let X be an algebraic stack over S.
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Definition A.7.5.1. A coarse moduli space of X is an algebraic space [X]
over S, with a morphism π : X→ [X] over S such that we have the following:

1. Each morphism from X to an algebraic space Z over S factors through
π and induces a morphism from [X] to Z.

2. If s̄ : Spec(k) → S is a geometric point of S (where k is algebraically
closed), then π induces a bijection between the set of isomorphism
classes of objects in X over s̄ (namely, isomorphism classes of mor-
phisms from s̄ to X over S) and [X](s̄).

Remark A.7.5.2. The term coarse here is meant to be in contrast to the term
fine in a fine moduli space for X, namely, an algebraic space that represents
the algebraic stack. The idea is that we can always interpret algebraic stacks
as moduli problems.

If S is locally noetherian and X is separated of finite type over S, then
we can show that X admits a coarse moduli space [X]. Here are some of its
properties:

1. Let x : Spec(k) → X be a geometric point of X, let Oh
X,x be the strict

local ring of X at x, let Oh
[X],π(x) be the strict local ring of [X] at π(x),

and let Aut(x) be the group of automorphisms of the object x in X over
Spec(k). Then the morphism π induces an isomorphism

Spec(Oh
X,x)/Aut(x)

∼→ Spec(Oh
[X],π(x)).

Suppose that H ⊂ Aut(x) is the subgroup of automorphisms of the
object x : Spec(k) → X that extends to automorphisms of the object
Spec(Oh

X,x)→ X. Then the group Aut(x)/H acts faithfully on Oh
X,x.

2. The formation of a coarse moduli space does not commute with arbi-
trary base change. However, it commutes with flat base change, and
with arbitrary base change when π is étale. Moreover, if [X′] is a coarse
moduli scheme of X′ := X×

S
S ′, the morphism

[X′]→ [X]×
S
S ′

is radicial (or universally injective); namely, for each field K, the in-
duced morphism on K-valued points is injective; see [59, I, 3.5.4].
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3. If u : U → X is étale surjective, then [X] is a geometric and uniform
categorical quotient of U by the groupoid space U ×

X
U in the category

of algebraic spaces (see [68] for more details).
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Appendix B

Deformations and Artin’s
Criterion

In this appendix we review the basic notions of infinitesimal deformations,
which can be generalized to the context of 2-categories, and give a proof of
Artin’s criterion for algebraic stacks using his theory of algebraization.

Throughout this appendix, the index i is an integer ≥ 0, and all projective
limits, unless otherwise specified, run through all integers i ≥ 0.

B.1 Infinitesimal Deformations

Let Λ be a noetherian complete local ring with residue field k.

Notation B.1.1. We denote by CΛ the category of Artinian local Λ-algebras
with residue field k and by ĈΛ the category of noetherian complete local
Λ-algebras with residue field k.

A covariant functor F from CΛ to (Sets), the category of sets, extends to
ĈΛ by the formula

F̂ (R) = lim←− F (R/mi+1)

for R ∈ ĈΛ with maximal ideal m. Conversely, a covariant functor F from
ĈΛ into (Sets) induces by restriction a functor F |CΛ

: CΛ → (Sets).

For each covariant functor F from ĈΛ into (Sets), there is a canonical
map

F (R)→ F̂ (R) = lim←− F (R/mi+1). (B.1.2)
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In general, we do not know whether it is a bijection or not.
For each R in ĈΛ with maximal ideal m, we define a functor hR on CΛ by

setting hR(A) = Hom(R,A) for each A ∈ CΛ.

Lemma B.1.3. If F is any functor on CΛ, and if R is in ĈΛ, then we have
a canonical isomorphism

F̂ (R)
∼→ Hom(hR, F ). (B.1.4)

Proof. Let ξ̂ = lim←− ξi be in F̂ (R), where {ξi ∈ F (R/mi+1)}i≥0 is a compatible

system of elements (i.e., ξi+1 induces ξi in F (R/mi+1) for i ≥ 0). Each
u : R → A factors through ui0 : R/mi0+1 → A for some i0 ≥ 0, and we
assign to each u ∈ hR(A) the element F (ui0)(ξi0) of F (A). Conversely, for
each natural transformation hR → F , and for each integer i ≥ 0, let ξi be
the image of the canonical homomorphism (R → R/mi+1) ∈ hR(R/mi+1)
in F (R/mi+1). Then {ξi ∈ F (R/mi+1)}i≥0 form a compatible system of
elements by the functorial property of the natural transformation hR → F .
Thus we get an element ξ̂ = lim←− ξi in F̂ (R). It is clear that this association is

an inverse of the previous assignment F̂ (R)→ Hom(hR, F ). Hence we have
indeed an isomorphism (B.1.4).

After the above identification, we are ready to make the following defini-
tions.

Definition B.1.5. A covariant functor F from CΛ to (Sets) is called prorep-
resentable if there exist R ∈ Ob ĈΛ and ξ̂ ∈ F̂ (R) that induce an isomor-
phism

ξ̂ : hR(A) = Hom(R,A)
∼→ F (A) (B.1.6)

of functors over CΛ. The algebra R is then uniquely determined.

Definition B.1.7. Let F be a covariant functor from ĈΛ to (Sets). Suppose
F |CΛ

is prorepresentable. Then we say that it is effectively prorepre-
sentable if there exists some ξ ∈ F (R) (with R as above) that induces an
isomorphism as the ξ̂ in (B.1.6) via the canonical map (B.1.2). (Note that
F (R) and F̂ (R) are not the same in general.)

Let F be a covariant functor from ĈΛ into (Sets), and consider an element

ξ0 ∈ F (k). (B.1.8)
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Definition B.1.9. By an infinitesimal deformation of ξ0, we mean an
element η ∈ F (A) where A ∈ ObCΛ is an Artinian local Λ-algebra with
residue field k, and η induces ξ0 ∈ F (k) by functoriality.

Definition B.1.10. A formal deformation of ξ0 is an element

ξ̂ = lim←− ξi ∈ F̂ (R) = lim←− F (R/mi+1)

where R ∈ Ob ĈΛ is a noetherian complete local Λ-algebra with maximal ideal
m and residue field k, and where {ξi ∈ F (R/mi+1)}i≥0 is a compatible system
of elements (i.e., ξi+1 induces ξi in F (R/mi+1) for each i ≥ 0) with the
element ξ0 given above.

Definition B.1.11. A formal deformation ξ̂ = lim←− ξi ∈ F̂ (R) of ξ0 is said
to be effective if there is an element ξ ∈ F (R) that induces ξi for each i.

Definition B.1.12. A formal deformation ξ̂ ∈ F̂ (R) is said to be versal
(resp. universal) if it has the following property: Let A′ → A be any sur-
jection of Artinian local Λ-algebras in CΛ, let η′ ∈ F (A′) be any infinitesimal
deformation of ξ0, and let η ∈ F (A) be the infinitesimal deformation of ξ0

induced by η′. Then each homomorphism R → A that induces η ∈ F (A) by
ξ̂ ∈ F̂ (R) and (B.1.4) can be lifted (resp. uniquely lifted) to a morphism
R → A′ (whose composition with A′ → A is the given morphism R → A)
such that η′ is induced by the homomorphism R→ A′.

If F (k) has only one element ξ0, then the existence of a formal univer-
sal deformation of ξ0 is equivalent to the prorepresentability of F . (This is
slightly weaker than the prorepresentability defined in [51], which consid-
ers also Artinian local rings whose residue fields are finite extensions of k.
Nevertheless, we will deal with finite extensions directly in our context. See
Section B.1.1 for more information.)

B.1.1 Structures of Complete Local Rings

In our study of deformation, we may need to consider the case where the field
k is a finite field extension of a residue field k(s) of an excellent scheme S,
and a functor F will be defined on the category of complete local noetherian
OS-algebras with residue field k. (The excellence of S implies, in particular,
that the formal completions of S are noetherian.) Under these assumptions,
we would like to find a noetherian complete local OS-algebra Λ with residue
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field k such that a complete local noetherian ring with residue field k is a
local OS,s-algebra (with compatible structural morphisms to k) if and only
if it is a local Λ-algebra. If this is possible, then F defines naturally (by
restriction) a functor from ĈΛ to (Sets), which we again denote by F , and
we are justified to study the restricted functor only.

This problem is solved by Cohen’s structural theorems on complete local
rings. We first consider the case where the characteristic of the complete
local ring is equal to its residue field.

Definition B.1.1.1. A local ring (R,m, k) is called equicharacteristic if
char(R) = char(k).

For such an equicharacteristic local ring, a subfield k′ ⊂ R is called a
coefficient field if k′ is mapped isomorphically to k under the canonical
homomorphism R→ R/m = k, or equivalently, if R = k′ + m.

Theorem B.1.1.2. Let (R,m, k) be a complete equicharacteristic local ring.
Then there is a coefficient field k′ ⊂ R. If the maximal ideal m can be
generated by n elements, then R is a homomorphic image of the formal power
series ring k[[X1, . . . , Xn]].

Proof. The original proof can be found in [27, Thm. 9]. For references that
are more accessible, see [88, Thm. 28.3], [41, Thm. 7.7], or [97, Thm. 31.1].

On the other hand, if char(R) 6= char(k), then necessarily char(k) = p for
some prime number p. In this case, it is not possible to have such a coefficient
field, because p times the units of k must be zero in R.

Nevertheless, it is still possible to have a so-called coefficient ring R0 ⊂ R,
where R0 is a complete local ring with maximal ideal pR0 and R = R0 +
m. Namely, k = R/m ∼= R0/pR0. More precisely, the coefficient ring is a
homomorphic image of a p-ring.

Definition B.1.1.3. A p-ring is a discrete valuation ring of characteristic
zero whose maximal ideal is generated by the prime number p.

The simplest examples of a p-ring are the rings Z(p) and Zp.

Theorem B.1.1.4 (see [88, Thm. 29.1]). Let (A, tA, k) be a discrete valu-
ation ring and k′ an extension field of k, where t is the uniformizer of A.
Then there exists a discrete valuation ring (A′, tA′, k′) containing (A, tA, k)
with the same uniformizer t.
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Corollary B.1.1.5. For each given field K of characteristic p, there is a
p-ring AK having K as its residue field.

Proof. This is immediate by applying Theorem B.1.1.4 to the rings Z(p) or
Zp.

Theorem B.1.1.6 (see [88, Thm. 29.2] or [27, Thm. 11]). Let (R,m, K) be
a complete local ring, let (A, tA, k) be a p-ring, and let φ0 : k → K be a
homomorphism. Then there exists a local homomorphism φ : A → R that
induces φ0 on the residue fields.

Then the following corollary is immediate:

Corollary B.1.1.7. A complete p-ring is uniquely determined (up to iso-
morphism) by its residue field.

Theorem B.1.1.8 (see [27, Thm. 12] or [97, Thm. 31.1]). Let (R,m, k)
be a complete local ring with char(k) = p. Then there is a coefficient ring
R0 ⊂ R, which is a homomorphic image of a complete p-ring with residue
field k. If the maximal ideal m has a minimal generator of n elements, then
R is a homomorphic image of the formal power series ring R0[[X1, . . . , Xn]].
If p 6∈ m2, then it is a homomorphic image of R0[[X1, . . . , Xn−1]] with only
n− 1 variables.

The proof of Theorem B.1.1.4 requires Zorn’s lemma. Hence it does not
provide us with an explicit construction of the extension. Alternatively, we
shall consider the Witt vectors , which give an explicit construction of the
unique complete p-ring with residue field k when k is perfect of characteristic
p.

Over each commutative ring A, the construction of the Witt vectorsW (A)
as a projective limit lim←−i≥1

Wi(A) can be found in, for example, [110, II, 6].

The upshot is the following:

Theorem B.1.1.9 (see [110, II, 6, Thm. 8]). If k is a perfect field of char-
acteristic p, then W (k) is a complete p-ring with residue field k.

Then it follows from Corollary B.1.1.7 that every complete p-ring with
perfect residue field k is isomorphic to W (k).

Example B.1.1.10. W (Fp) = Zp and Wi(Fp) = Z/piZ.

Now let us return to our problem:
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Lemma B.1.1.11. Let S be an excellent scheme, s a point of S, and k a
finite field extension of the residue field k(s) of S. Then there is a noetherian
complete local OS,s-algebra Λ with residue field k such that a noetherian com-
plete local ring R with residue field k is a local OS,s-algebra (with compatible
structural morphisms to k) if and only if it is a local Λ-algebra. Concretely, Λ

is the completion of ÔS,s ⊗
Ak(s)

Ak at the maximal ideal given by the kernel of the

homomorphism ÔS,s ⊗
Ak(s)

Ak → k induced by Spec(k) → S. If char(k) = 0,

then Ak(s) (resp. Ak) is simply k(s) (resp. k). If char(k) = p > 0, then
Ak(s) (resp. Ak) is the complete p-ring with residue field k(s) (resp. k) (see
Corollary B.1.1.5).

Alternatively, but less explicitly, one can consider the completion of the
Henselization of OS,s → k (see [44, p. 16], where k does not have to be k(s)).

Proof of Lemma B.1.1.11. By Theorems B.1.1.2 and B.1.1.6, given any com-
plete local ring R with residue field k, there is a local homomorphism Ak → R
making R a local Ak-algebra. Similarly, there is a local homomorphism
Ak(s) → ÔS,s making the ring ÔS,s a local Ak(s)-algebra. Since the homomor-

phism OS,s → R factors through ÔS,s → R, we have an induced homomor-

phism ÔS,s ⊗
Ak(s)

Ak → R. Hence it suffices to take Λ to be the completion of

ÔS,s ⊗
Ak(s)

Ak at the maximal ideal given by the kernel of the induced homo-

morphism ÔS,s ⊗
Ak(s)

Ak → k.

The following corollary of Lemma B.1.1.11 is a restatement of the remarks
made at the beginning of this section.

Corollary B.1.1.12. With assumptions as in Lemma B.1.1.11, let F be a
contravariant functor F : (Sch /S)→ (Sets), and let k be a finite field exten-
sion of a residue field k(s) of S. Then there is a noetherian complete local
OS,s-algebra Λ with residue field k such that a noetherian complete local ring
with residue field k is an OS,s-algebra (with compatible structural morphisms
to k) if and only if it is a local Λ-algebra. Hence F defines a (covariant)
functor ĈΛ → (Sets) by restriction (and by taking spectra of objects and mor-
phisms in ĈΛ), again denoted by F by abuse of notation.
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This will be used implicitly in Theorem B.2.1, Theorem B.2.2, Theorem
B.2.1.6 (Artin’s algebraization theorems) and explicitly in Theorem B.3.9.
Here we say that it will be used implicitly because the notions of deformation
were defined by Artin in a more general way in [6]. Hence Lemma B.1.1.11
and Corollary B.1.1.12 will be used to justify their (natural) compatibility
with our more restrictive definitions. Lemma B.1.1.11 and Corollary B.1.1.12
will be used explicitly in Theorem B.3.9, where we need to associate defor-
mation functors defined in the sense of Section B.1 with categories fibered in
groupoids.

B.2 Existence of Algebraization

The following useful theorems are given by Artin in [6]:

Theorem B.2.1 (existence of algebraization; see [6, Thm. 1.6]). Let S be a
scheme or an algebraic space locally of finite type over a field or an excellent
Dedekind domain. Consider a contravariant functor F : (Sch /S) → (Sets)
locally of finite presentation over S (see Definition A.5.7 and Proposition
A.7.2.4). Let s ∈ S be a point whose residue field k(s) is of finite type over
OS, let k′ be a finite field extension of k(s), and let ξ0 ∈ F (k′). Suppose
that an effective formal versal deformation (R, ξ) of ξ0 exists, where R is
a noetherian complete local OS-algebra with residue field k′ and ξ ∈ F (R).
(Our language of deformation theory is applicable in this case, by taking Λ as
in Lemma B.1.1.11 and Corollary B.1.1.12.) Then there is a scheme X of
finite type over S, a closed point x ∈ X with residue field k(x) = k′, and an

element ξ̃ ∈ F (X), such that the triple (X, x, ξ̃) is a versal deformation of ξ0.

More precisely, there is an isomorphism ÔX,x
∼= R such that ξ̃ induces ξ via

the composition Spec(R)
∼→ Spec(ÔX,x) → X. The isomorphism ÔX,x

∼= R
is unique if (R, ξ) is universal.

Theorem B.2.2 (uniqueness of algebraization; see [6, Thm. 1.7]). With
notation as in Theorem B.2.1, suppose that the element ξ ∈ F (R) is uniquely
determined by the set {ξi}i≥0 of its truncations (namely, images of ξ induced

by homomorphisms R → R/mi+1). Then the triple (X, x, ξ̃) is unique up to

local isomorphism for the étale topology, in the following sense: If (X ′, x′, ξ̃′)

is another algebraization, then there is a third one (X ′′, x′′, ξ̃′′) and a diagram

X
f← X ′′

f ′→ X ′, where f and f ′ are étale morphisms, which sends x
f← x′′

f ′→
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x′ and ξ̃
f← ξ̃′′

f ′→ ξ̃′.

B.2.1 Generalization from Sets to Groupoids

The above theorems of algebraization consider the case where F is a con-
travariant functor from (Sch /S) to (Sets). However, in our later appli-
cation, we will need to consider contravariant 2-functors from (Sch /S) to
the 2-category (Gr) of groupoids. With such a contravariant 2-functor F :
(Sch /S) → (Gr), we can canonically associate a contravariant functor F :
(Sch /S) → (Sets) such that, for each scheme U , F(U) is the set of isomor-
phism classes of F(U). The functorial properties of F are implied by the
2-functorial properties of F. Furthermore, we have a canonical morphism (of
2-functors) F→ F defined by sending each object of F(U) to the isomorphism
class containing it in F(U). When U = Spec(A) is an affine scheme, we shall
also denote F(U) by F(A), by abuse of notation. We extend such an abuse
of notation to morphisms between affine schemes.

To generalize the notions of deformations studied in Section B.1, we would
like to consider a functor of the form F : ĈΛ → (Gr). Let ξ0 ∈ ObF(k) be an
object in the groupoid F(k). Let R ∈ ĈΛ be any noetherian complete ring
with residue field k.

Definition B.2.1.1. A formal deformation of ξ0 is an object ξ̂ = lim←− ξi

with ξ0 given above in the projective limit F̂(R) = lim←− F(R/mi+1), where {ξi ∈
ObF(R/mi+1)}i≥0 is a projective system compatible up to 2-isomorphism.

Definition B.2.1.2. A formal deformation ξ̂ = lim←− ξi is called effective if

there is an object ξ ∈ F (R) inducing objects isomorphic to ξi in F(R/mi+1)
for all i.

Let hR be the functor assigning to each Artinian local Λ-algebra A the
set hR(A) of homomorphisms R → A. Ideally, in (B.1.4), we would hope to
have a canonical isomorphism from F̂(R) to Hom(hR,F). However, this is not
always possible. In general we can only show the existence of an equivalence
of categories between the two categories.

Lemma B.2.1.3. There is an equivalence of categories

F̂(R)→ Hom(hR,F) (B.2.1.4)

between the categories F̂(R) and Hom(hR,F).
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Proof. Let ξ̂ = lim←− ξi be an object in F̂(R). Each morphism u : R→ A, where

A is an Artinian local ring in ObCΛ, must factor through ui : R/mi+1 → A
for some i, and we assign to u the object F(ui)(ξi) induced by ξi in F(A).

The above assignment depends on the way we factor the homomorphism.
In general, the object we assign in F(A) is not canonically determined. There-
fore, to define a morphism from hR to F, we must choose once for all possible
homomorphisms of the form R → A the corresponding ways we factor the
homomorphisms.

Let us adopt the following rule: For each Artinian local ring A in ObCΛ,
consider the least i0 such that mi0+1 = 0 holds for the maximal ideal m of
A, and such that R → A factors through R/mi0+1 → A. (Each morphism
hR → F defined by another choice of factorization is isomorphic to this
morphism.) Hence the object-level assignment of the functor (B.2.1.4) is
complete.

The morphism-level assignment then follows naturally. Each morphism
f : ξ̂ → η̂ in F̂(R) is given by a series of morphisms fi : ξi → ηi in F(R/mi+1).
For each A in ObCΛ with the i0 chosen as above, and for each morphism u :
R→ A, the morphism from F(ui0)(ξi0) to F(ui0)(ηi0) is defined by F(ui0)(fi0).

Conversely, for each natural transformation hR → F, define for each i
the object ξi ∈ ObF(R/mi+1) to be the image induced by the canonical
homomorphism (R → R/mi+1) ∈ hR(R/mi+1). Then we obtain a projective
system {ξi ∈ ObF(R/mi+1)}i≥0 compatible up to 2-isomorphism.

One can check that this association gives a quasi-inverse of the previous
association. For each morphism from hR to F induced by an element ξ̂ ∈
F̂(R) through (B.2.1.4), it is always true that the above converse induces an
element in F̂(R) isomorphic to ξ̂. Hence the two categories in (B.2.1.4) are
equivalent.

The notions of versal and universal formal deformations can be general-
ized naturally in the following way.

Definition B.2.1.5. A formal deformation ξ̂ is versal (resp. universal)
if it has the following property: Let A′ → A be any surjection of Artinian
local Λ-algebras in CΛ, let η′ ∈ ObF(A′) be any infinitesimal deformation of
ξ0, and let η ∈ ObF(A) be the infinitesimal deformation of ξ0 induced by η′.
Then each homomorphism R → A that induces η ∈ F (A) by ξ̂ ∈ F̂(R) and
(B.2.1.4) can be lifted (resp. uniquely lifted) to a homomorphism R → A′

that induces (by ξ̂ and (B.2.1.4)) an object isomorphic to η′.
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Let us turn to the case of a 2-functor associated with a category fibered in
groupoids F over (Sch /S), that is, a contravariant 2-functor F : (Sch /S) →
(Gr) assigning to each U in (Sch /S) the fiber groupoid FU . For an object
ξ0 ∈ ObF(k) with k an OS-field of finite type, the existence of an effective
formal deformation of ξ0 is to say that there is an object ξ ∈ ObF(R),
where R is a noetherian complete local OS-algebra with maximal ideal m and
residue field k, such that ξ induces an object isomorphic to ξ0 in ObF(k).
By viewing ξ0 (resp. ξ) as a morphism Spec(k) → F (resp. Spec(R) → F),
the above statement amounts to the assertion that the diagram

Spec(k) //

ξ0 &&

Spec(R)

ξ
��
F

is commutative. (Note that such a diagram of groupoids is defined to be
commutative only up to 2-isomorphism.) To say that the effective formal
deformation is versal (resp. universal), it amounts to saying that, for each
diagram of solid arrows

Spec(R)

ξ

��

Spec(A)oo
� _

��
F Spec(A′)oo

ff

where A′ → A is a surjection of Artinian local OS-algebras with residue field
k, there is a dotted arrow (resp. a unique dotted arrow) Spec(A′)→ Spec(R)
making the diagram commute.

Theorem B.2.1 can be reformulated in the following form, to be used in
the proof of Theorem B.3.7 in the next section.

Theorem B.2.1.6 (modified version of Theorem B.2.1). Let S be a scheme
or an algebraic space locally of finite type over a field or an excellent Dedekind
domain. Consider a category F fibered in groupoids over (Sch /S) which is
locally of finite presentation (see Definition A.5.9 and Proposition A.7.2.4).
Let s ∈ S be a point whose residue field k(s) is of finite type over OS, let k′

be a finite field extension of k(s), and let ξ0 ∈ ObF(k′). Suppose that an ef-
fective formal versal deformation (R, ξ) of ξ0 exists, where R is a noetherian
complete local OS-algebra with residue field k′ and ξ ∈ ObF(R). (Our lan-
guage of deformation is applicable in this case for the same reason mentioned
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in Theorem B.2.1.) Then there is a scheme X of finite type over S, a closed

point x ∈ X with residue field k(x) = k′, and an element ξ̃ ∈ ObF(X), such

that the triple (X, x, ξ̃) is a versal deformation of ξ0. More precisely, there is

an isomorphism ÔX,x
∼= R such that ξ̃ induces an object in ObF(R) isomor-

phic to ξ via the composition Spec(R)
∼→ Spec(ÔX,x)→ X. The isomorphism

ÔX,x
∼= R is unique if (R, ξ) is universal.

Proof. To prove the theorem, we consider the contravariant functor F :
(Sch /S)→ (Sets) associated with the category F fibered in groupoids, with
the canonical surjection π : F → F as before. Consider the effective versal
deformation η ∈ F(R) of π(ξ0) ∈ F(k′) given by the image π(ξ) of ξ in F(R).
It is immediate that F satisfies all the requirements of Theorem B.2.1, and
hence there is a triple (X, x, η̃) with η̃ ∈ F(X), and an isomorphism ÔX,x

∼= R
(which is unique if the formal versal deformation is universal), such that η̃

induces η via the composition Spec(R)
∼→ Spec(ÔX,x) → X. Now the ele-

ment η̃ ∈ F(X) is an equivalence class of objects in F(X). Let us take any

object ξ̃ in ObF(X) in the class of η̃. Since η̃ induces η in F(R), the object

induced by ξ̃ in ObF(R) must be isomorphic to ξ. Hence the triple (X, x, ξ̃)
satisfies our requirement, as desired.

B.3 Artin’s Criterion for Algebraic Stacks

Artin proved a criterion which is useful for proving that a functor is rep-
resentable by an algebraic space. The same proof provides the following
criterion in [38] for proving that a stack is algebraic. The theorem we will
generalize is [6, Thm. 3.4]. The reader might be interested in consulting the
other parts of [6], the article [9], and the book [10].

Before starting the proof, we need some preparation. Throughout this
section, we assume that S is a scheme or an algebraic space locally of finite
type over a field or an excellent Dedekind domain.

Definition B.3.1. Let X be a category fibered in groupoids over (Sch /S), let
X be a scheme over S, and let ξ : X → X be a morphism in (Ct-F-Gr /S)
(i.e., ξ ∈ ObX(X)). Let x be a point of X. We say that ξ is formally étale
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at x if, for every commutative diagram of solid arrows

X

ξ

��

Z0
f0oo

� _

��
X Zoo

f
`` (B.3.2)

where Z is the spectrum of an Artinian local OS-algebra, where Z0 is a closed
subscheme of Z defined by a nilpotent ideal, and where f0 is a morphism
sending the unique closed point of Z0 to x, there exists a unique dotted arrow
f making the diagram commutative.

Remark B.3.3. By [59, IV-4, 17.14.1 and 17.14.2], the property of being
étale and being formally étale are equivalent for morphisms locally of finite
presentation. A special case of this fact can also been found in [10, I, Prop.
1.1], and a discussion of one of the two directions of the proof can be found
in [91, Rem. 3.22]. This fact is generalized to the case of a morphism locally
of finite presentation from a scheme to an algebraic space by [6, Lem. 3.3].

The properties of being étale and being formally étale are equivalent in
the following case:

Proposition B.3.4. Let X be a scheme over S, let X be a category fibered in
groupoids over (Sch /S), and let ξ : X → X be a morphism in (Ct-F-Gr /S).
Assume that ξ is a representable morphism that is locally of finite represen-
tation. Namely, for each scheme U over S, and each morphism U → X,
the fiber product X ×

X
U is representable by an algebraic space locally of finite

presentation over U . Let x ∈ X. Then ξ is formally étale at x if and only if
the following condition holds:

Let U → X be any morphism from a scheme U to X, and let C be the
preimage of x in X ×

X
U . Then the projection X ×

X
U → U is étale at every

point of C.

Before the proof of Proposition B.3.4, we need some technical preparation.
For the convenience of readers, we quote the following proposition:

Proposition B.3.5 ([60, I, 6.2.6(v)]). If the composition of two morphisms
of schemes f : X → Y and g : Y → Z is locally of finite presentation, and if
g is locally of finite type, then f is locally of finite presentation.

Then we have the following lemma:
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Lemma B.3.6. Let X be an algebraic space, and let U and V be two schemes.
Suppose that we have morphisms V → X → U of algebraic spaces such
that V → X is étale surjective and such that X → U is locally of finite
presentation. Then V → X is locally of finite presentation.

Proof. Consider any étale covering W → X from a scheme W . Since X → U
is locally of finite presentation, W → U and V ×

X
W → U are locally of

finite presentation over W (because the property of being locally of finite
presentation is stable in the étale topology). Applying Proposition B.3.5 to
the composition V ×

X
W → W → U , we see that V ×

X
W → W is locally of

finite presentation. As a result, the morphism V → X is locally of finite
presentation by definition.

Proof of Proposition B.3.4. Suppose the condition in the proposition is sat-
isfied (for every scheme U). We would like to show that ξ : X → X is
formally étale. Let Z be the spectrum of an Artinian local OS-algebra, with
Z0 a closed subscheme of Z defined by a nilpotent ideal (cf. Definition B.3.1).
Each morphism f0 : Z0 → X with set-theoretic image a closed point x0 ∈ X
induces a morphism Z0 → X ×

X
Z with set-theoretic image y for some closed

point y of X ×
X
Z whose image in X is x0. Consider an affine scheme V and

an étale morphism V → X ×
X
Z as in Theorem A.4.4.3 such that y → X ×

X
Z

factors through y → V → X ×
X
Z. Since V → X ×

X
Z is étale and locally of

finite presentation (by Lemma B.3.6), and since being étale is equivalent to
being formally étale in this case (as explained in Remark B.3.3), the mor-
phism from the closed point of Z0 to y extends to a morphism from Z0 to V .
Therefore we have a commutative diagram

X

ξ

��

X ×
X
Z

��

oo V

��

oo Z0� _

��

oo

X Zoo Z Z
IdZ
oo

^^

of solid arrows. By hypothesis (with U = Z in the condition of the propo-
sition), V → Z is étale at the preimage of y and is locally of finite pre-
sentation. Hence, by Remark B.3.3 again, we have an induced morphism
Z → V (dotted in the diagram) making the diagram commute. The compo-
sition Z → V → X ×

X
Z → X then gives the desired morphism f . If f ′ is
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another such morphism, then by the universal property of the fiber product
X ×

X
Z and by the formal étaleness of V → X ×

X
Z, the morphism f ′ extends

uniquely to a morphism Z → V making the diagram commutative. Then f ′

and f must be the same, by the formal étaleness of V → Z. This shows that
ξ is formally étale.

Conversely, suppose U → X is any morphism as in the condition of the
proposition. Let y ∈ C be any point whose image in X is x. By Theorem
A.4.4.3, there is an affine scheme V and an étale morphism V → X ×

X
U

such that y → X ×
X
U factors through y → V → X ×

X
U . Consider the

commutative diagram

X

ξ

��

X ×
X
U

��

oo V

��

oo Z0� _

��

f0oo

X Uoo U Zoo

hh hh
f

^^

of solid arrows, where f0 is a morphism sending Z0 set-theoretically to y.
The composition Z0 → V → X ×

X
U → X defines a morphism from Z0

to x set-theoretically. Hence by formal étaleness of ξ, there is a morphism
from Z → X extending the composition. By the universal property of the
fiber product X ×

X
U , this morphism induces a morphism Z → X ×

X
U . The

morphism V → X ×
X
U is étale, is locally of finite presentation by Lemma

B.3.6, and hence is formally étale by Remark B.3.3. Therefore we have an
induced morphism f : Z → V making the above diagram commute. Since
the choices of Z and Z0 are arbitrary (independent of U and V ), we see that
V → U is étale at y by Remark B.3.3. Hence X ×

X
U → U is étale at y by

definition.

Theorem B.3.7 (Artin’s criterion). Let S be a scheme of finite type over a
field or an excellent Dedekind domain. Let X be a category fibered in groupoids
over (Sch /S). Then X is an algebraic stack locally of finite type over S if
and only if the following conditions hold:

1. X is a stack for the étale topology (see Definition A.6.1).

2. X is locally of finite presentation (see Definition A.5.9).
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3. Suppose ξ and η are two objects in X(U), where U is a scheme of finite
type over S. Then IsomU(ξ, η) is an algebraic space locally of finite type
over S.

4. For each field k0 of finite type over S with a 1-morphism i : Spec(k0)→
X, there exist a noetherian complete local ring R, a morphism j from
the spectrum of a finite separable extension k′0 of k0 to the closed point
s of Spec(R), and a commutative diagram

Spec(k′0) //

j

��

Spec(k0)

i
��

Spec(R)
ξ

// X

(B.3.8)

with ξ formally étale at s.

5. If ξ is a 1-morphism in (Ct-F-Gr /S) from a scheme U of finite type
over S to X, and if ξ is formally étale at a point u (of U) of finite type
over S, then ξ is formally étale in a neighborhood of u (in U).

Proof. We first prove the necessity. Let X be an algebraic stack locally of
finite type over S.

Condition 1 is trivially satisfied by definition, and condition 3 follows from
Proposition A.6.11. Condition 2 is also automatic, because X is locally of
finite type over S, where S is locally of finite type over a field or an excellent
Dedekind domain. Therefore X is locally of finite presentation as an algebraic
stack over S, and hence at the same time locally of finite presentation as a
category fibered in groupoids over S by Proposition A.7.2.4.

To verify condition 4, let k0 be any field of finite type over S with a
1-morphism i : U = Spec(k0) → S. Let X → X be the presentation of X.
Consider the algebraic space U ′ representing the fiber product X ×

X
U , and

take any point Spec(k′0) → U ′. Since U ′ is étale and of finite presentation
over U = Spec(k0), we see that k′0 is a finite separable extension of k0. By
Theorem A.4.4.3, the morphism Spec(k′0)→ X must factor through an affine
scheme V with V → X an étale morphism, making the diagram

Spec(k′0) //

��

U ′ = X ×
X
U //

��

U = Spec(k0)

��
V // X // X
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commutative. Since X is locally of finite type over S, V is also locally of finite
type over S (cf. Lemma B.3.6, with identical proof), and we may replace V
with an affine neighborhood of Spec(k′0) that is of finite type over S. By the
hypothesis on S, V is excellent. By taking the formal completion of OV with
respect to the image s of Spec(k′0), we get the desired noetherian complete

local ring R = ÔV,s inducing the diagram (B.3.8).
To verify condition 5, let ξ be a 1-morphism (in (Ct-F-Gr /S)) from a

scheme U of finite type over S to X, which is formally étale at a point u of
finite type over S. By Proposition B.3.4, the morphism U ′ = X ×

X
U → X

is étale at every point whose image through U ′ → U is u. Since being étale
is an open condition, we see that U ′ → X is étale at a neighborhood of a
point in U ′ whose image under U ′ → U is u. Now since X → X is étale, the
induced projection U ′ → U is étale, and hence open. Then U → X is étale
at an open neighborhood of u, as desired.

Conversely, suppose that all the conditions are satisfied. We would like
to construct a representable morphism X → X that is étale and surjective.

Let p be any point of X of finite type over S. This means that there is a
field kp0 of finite type over S with a 1-morphism ip : U = Spec(kp0)→ S. Con-
dition 4 can be interpreted as the existence of an effective universal formal
deformation (Rp, ξp) of ξp0 ∈ ObX(kp), where Rp is a noetherian complete
local ring with residue field kp (see Section B.2.1). Here we have the com-
mutative diagram

Spec(k′p0 )

��

// Spec(kp0)

��
s = Spec(kp) // S

in which Spec(k′p0 ) → Spec(kp0) and Spec(kp0) → S are of finite type. Hence
s = Spec(kp)→ S must be of finite type. Since X is locally of finite presenta-
tion by condition 2, we may apply Theorem B.2.1.6 to deduce that the pair
(Rp, ξp) is algebraizable, say by (Xp, xp, ξ̃p), with properties such as being a
scheme of finite type over S etc., described in Theorem B.2.1. Moreover, by
condition 4, ξ̃p : Xp → X is formally étale.

By condition 5, by replacing Xp with an open neighborhood of xp, we may
assume that ξ̃p : Xp → X is formally étale at every point. By condition 3,
ξ̃p : Xp → X is representable and étale. Namely, the pullback ξ̃pU : Xp×

X
U →

U of ξ̃p is étale for every scheme U → X.
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Now we claim that, if we take X to be the disjoint union
∐
p

Xp for rep-

resentatives p in each equivalence class of points of finite type of X, then
X → X is a presentation of X.

Let U be any scheme of finite type over S with a morphism U → X. Then
the projection X ×

X
U → U is étale. To show that the projection X → X is

surjective, it suffices to show that every point u of U of finite type over S is
in the image, since such points are dense. Write u = Spec(k) for some k. Let
p = Spec(kp0) be the representative of the equivalence class of points of finite
type equivalent to u that is used in forming the disjoint union X =

∐
p

Xp.

By construction, this point p is equivalent to the point xp = Spec(kp) of Xp.
Take a common separable field extension k′ of kp and k. The two morphisms
Spec(k′)→ Spec(kp)→ Xp and Spec(k′)→ u→ U induce a morphism from
Spec(k′) to the algebraic space Xp×

X
U . By Proposition A.4.4.2, this factors

through a point of Xp×
X
U whose image in the scheme U is some point u′.

Then the morphism Spec(k′) → U factors through both points u and u′,
which means that u′ = u. Hence Xp×

X
U → U covers u as desired. This

completes the proof.

Theorem B.3.9. If the residue fields of finite type of S are perfect, then, to
establish the result of Theorem B.3.7, we may replace condition 4 of Theorem
B.3.7 with the following one:

Let s ∈ S, and let k0 be a finite field extension of k(s). Suppose that
u : Spec(k0) → S is of finite type. Then by hypothesis, k(s) is perfect and
k0/k(s) is a separable extension. By Lemma B.1.1.11, there exists a complete
local ring Λk0 with residue field k0, together with a morphism ū : Spec(Λk0)→
S that is formally étale and extends to u by composition with Spec(k0) →
Spec(Λk0). (This follows from the construction of Λk0 in Lemma B.1.1.11,
the universal property of complete p-rings, and the separability of the residue
field extension.) For ξ0 ∈ ObX(k0), we denote by D(ξ0) the following category
over the opposite category of ĈΛk0

: For A ∈ Ob ĈΛk0
, an object of D(ξ0)(A)

is an object ξ of X(Spec(A)), equipped with an isomorphism

(image of ξ in X(Spec(k0)))
∼→ ξ0. (B.3.10)

Then the condition to replace with is the following one:
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4′. For k0 and ξ0 as above, the covariant functor D := D from ĈΛk0
to

(Sets) defined by

A 7→ {isomorphism classes in D(ξ0)(A)}

is effectively prorepresentable (by some noetherian complete local ring
R, and some ξ ∈ ObX(R) satisfying the restriction (B.3.10)).

This condition may be verified after replacing the field k0 with a finite
extension.

Proof. Recall that, in our proof of Theorem B.3.7, condition 4 is equivalent
to the existence of a certain effective universal deformation of the 2-functor
associated with the category X fibered in groupoids, which is needed for
applying Theorem B.2.1.6. However, the proof of Theorem B.2.1.6 merely
requires the existence of an effective universal deformation of the functor
canonically associated with the 2-functor associated with X, which is equiv-
alent to the effective prorepresentability of the deformation functor defined
above. Hence the theorem follows.

Theorem B.3.11. If S is of finite type over a field or over an excellent
Dedekind domain having infinitely many points, and if all possible complete
local rings R in Theorem B.3.9 are normal and of the same Krull dimension,
then we may suppress condition 5 in Theorem B.3.7.

Proof. We first remark that, under these hypotheses, for each scheme U of
finite type over S, the points of finite type of U are all closed points. More-
over, for each integral scheme U of finite type over S, the Krull dimensions
of its local rings at closed points are constant. (This is closely related to the
discussion of Jacobson schemes in [59, IV-3, §10].)

Proceeding as in the proof of Theorem B.3.7, suppose we have (X, x, ξ̃)
coming from the algebraization of some (R, ξ). (We have dropped the super-
scripts here.) The condition 5 was used to replace X with an open neighbor-

hood of x such that ξ̃ : X → X is formally étale at every point. Our aim is
to show that this is possible without the condition 5.

Since R is normal by assumption, by replacing X with an open neighbor-
hood of x, we may assume that X is normal [59, IV-2, 7.8.3] and integral,

and that ξ̃ : X → X is unramified. We claim that ξ̃ is then étale. It suffices
to show that ξ̃ is formally étale at every closed point of X. Let y be any
closed point with y → X induced by ξ̃ : X → X, and let (X ′, x′, ξ̃′) be as
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in condition 4 of Theorem B.3.7 and in Theorem B.2.1.6, so that x′ → X is
equivalent to y → X. Note that ξ̃′ is formally étale at x′. We may replace
X ′ with a neighborhood of x′ and assume that it is also normal and integral,
and that ξ̃′ : X ′ → X is unramified. The Krull dimensions of X and X ′ are
both equal to some d, by assumption.

Now let z be the (unique) point of X ′×
X
X lying over (x′, y). Since ξ̃′ is

formally étale at x′, the morphism X ′×
X
X → X is étale at z (by Proposition

B.3.4). Hence the dimension of (X ′×
X
X) at z is also d. Since X ′×

X
X → X ′ is

unramified, and since X ′ is normal and integral, the morphism X ′×
X
X → X ′

is automatically étale (by [59, IV-4, 18.10.1 and 18.10.4]). Therefore ξ̃ is
formally étale at y.

Remark B.3.12. The assumption on Krull dimensions of R in Theorem B.3.11
is not reasonable if S does not satisfy the property that, for each integral
scheme U of finite type over S, the Krull dimensions of its local rings at points
of finite type over S are constant. This fails, for example, if S = Spec(Z(p)).
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et cohomologie étale des schémas (SGA 4), Tome 1, Lecture Notes in
Mathematics, vol. 269, Springer-Verlag, Berlin, Heidelberg, New York,
1972.

[13] M. Artin, A. Grothendieck, and J.-L. Verdier (eds.), Théorie des topos
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scientifiques et industrielles, vol. 1252, Hermann, Paris, 1964.

[49] T. L. Gómez, Algebraic stacks, arXiv:math.AG/9911199, November
1999.

[50] A. Grothendieck, Fondements de la géometrie algébrique, Séminaire
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de Mathématiques Supérieures, vol. 45, Les Presses de l’Université de
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[80] R. P. Langlands and M. Rapoport, Shimuravarietäten und Gerben, J.
Reine Angew. Math. 378 (1987), 113–220.

[81] M. J. Larsen, Unitary groups and L-adic representations, Ph.D. thesis,
Princeton University, Princeton, 1988.

[82] , Arithmetic compactification of some Shimura surfaces, in
Langlands and Ramakrishnan [79], pp. 31–45.

[83] G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der
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representative, 427
surjection, 425, 426, 430, 431

d00, 370
d00,n, 370
d10, 370
d10,n, 369
D2, 75, 186

symmetry isomorphism, 186
D3, 186
d∨n , 384
D∞,H, 520
d log, 125
d log(Iy,χ), 318
dn, 382
∂

(0)
n , 460
∂

(1)
n , 457

D(ξ0), 635
DD, 250, 252
DDample, 210, 213

DDsplit
ample, 256

DDsplit,∗
ample , 287

DD∗ample, 287
DDIS, 250, 252

tensor product, 253
DDPELie,(L⊗

Z
R,〈 · , · 〉,h), 345

DDPE,O, 339
DDPEL,MH , 416

DDfil.-spl.
PEL,MH

, 428
DDPEL,Mn , 408
DDPEL,Mn,η̃, 407

DDfil.-spl.
PEL,Mn

, 420
DDpol, 250, 251
de Rham

cohomology, 129
homology, 135

DefA0 , 141

Def(A0,λ0), 141
Def(A0,λ0,i0), 141
Def(A0,λ0,i0,αH,0), 141
Defξ0 , 140, 141
deformation

formal, 621, 626
effective, 621, 626, 628
universal, 621, 627, 628
versal, 621, 627, 628

infinitesimal, 621
DEG, 250
DEGample, 208
DEGIS, 250, 251

tensor product, 253
DEGPELie,(L⊗

Z
R,〈 · , · 〉,h), 345

DEGPE,O, 339
DEGPEL,MH , 416
DEGPEL,Mn , 407
DEGPEL,Mn,η̃, 407
DEGpol, 250
degenerating family, 417, 418

Hecke twist, 528
of type MH, 417
of type MH (or Mn)

without level structures, 418
of type Mn, 418

degeneration data, 233
δH, 416
δ̂, 352
∆∗`,`′ , 453
δn, 354, 404
∆∗n,`,`′ , 459
∆∗ΦH,δH,`,`′ , 474
Der, 111
descent

of biextension, 190
of cubical torsor, 190, 196
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DetC|M , 13
DetO|LieA/S

, 82
DetO|M , 15
DetO|V0 , 62
determinantal condition, 12, 14

on LieA/S, 82
Diff, 5
Diff−1, 3
differentially smooth, 276
Disc, 3, 31
discriminant, 3
divisible, 82
divisorial correspondence for abelian

schemes, 292, 294
dual abelian scheme, 74
dual isogeny, 75
dual lattice, 23
dual Raynaud extension, 205
dual semi-abelian scheme, 203
dual tuple (for objects in DD), 291

eA[n], 372...
EΦ1 , 453...
EΦn , 459...
EΦn,free, 459
...
E

(n)
Φn

, 459...
EΦn,tor, 459
EGal, 10
eij, 356
eij,n, 371
eK , 372, 374
eλ, 85
eλA , 348, 356, 375
eλη , 348
eLη , 202
e
Lη
S , 202

eM, 377
eM

⊗n
, 378

en, 384
eφ, 348, 356
EΦH , 472, 554
EΦH,σ, 554
EΦn , 469
E[τ ], 8
endomorphism structure

abelian scheme, 78, 337–339
Rosati condition, 79, 338

epimorphism
of stacks, 605

equicharacteristic, 622
equidimensional, 494, 495
equivalence relation, 592

étale, 593
quotient, 592

equivariant extension, 313
equivariant extension class, 313
étale equivalence relation, 593
étale groupoid spaces, 611
étaleness criterion, 495
excellent, 277, 347

assumption
in Artin’s algebraization, 621,

624, 625, 628, 629
in Artin’s approximation, 499
in Artin’s criterion, 163, 632,

633, 636
in Mumford’s construction, 277

normality assumption, 310, 334,
490, 500, 540

EXT, 190
Ext1,Y , 313
Ext1,Y

OZ
, 313

F , 31
F0, 60
Fample, 214, 233, 251, 255, 298
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detects isomorphisms, 298
f̂ , 402
f̂−1, 401
f̂−2, 401
f̂0, 402
F \, 252
F+, 35
Fpol, 250, 251, 255, 300
face

of cone, 442
of cusp label with cone, 506, 507

failure of Hasse’s principle, 104
fiber, xxvi
fiberwise geometric identity compo-

nent, 366
field of definition, 9, 60
filtration

admissible, 66, 352
fully symplectic, 398
fully symplectic-liftable, 399
integrable, 66, 350
multirank, 352
projective, 66
split, 66, 351
splitting, 352, 355

change of basis, 353
liftable, 355, 357

symplectic, 66, 350
symplectic-liftable, 355

fine moduli space, 617
first exact sequence, 137
FJΦH,δH , 537

FJ
(0)
ΦH,δH

(f), 538
FJΦH,δH(f), 537

FJ
(`)
ΦH,δH

, 535

FJ
(`)
ΦH,δH

(f), 537

(FJ
(`)
ΦH,δH

)∧x̄ , 550

FJΦH,δH,σ, 535
FJΦH,δH,σ(f), 536

FJ
(`)
ΦH,δH,σ

(f), 536

FJC
(`)
ΦH,δH

(k,M), 536
FJEΦH,δH(k,M), 537
flatness criterion, 494
formal scheme

algebraizable, 161
formally étale, 629
Fourier expansion

of regular function, 227
of theta function, 227

Fourier–Jacobi
coefficient, 536, 537
expansion, 536, 537

constant term, 538
morphism, 535, 537

Fourier–Jacobi expansion principle,
539

fully symplectic filtration, 398
fully symplectic-liftable

filtration, 399
functor

of base change, 599
locally of finite presentation, 600
of points, 590

functorial point, see point, functorial

G, 33
G(A), 34
Ga, xxvi
Ga,S, xxvi
G(A2), 34
G(A∞), 34
G(A∞,2), 34
[g], 527
[g]min, 563
[g]tor, 529
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( ♦G, ♦λ, ♦i, ♦αH), 490
G∨,\, 205, 210
Gess, 89
Gess
h,Zn

, 412

( ♥G, ♥λ, ♥i, ♥αH), 483, 485
G(L), 189
G(L)f

χ̄, 236
Gess
l,Zn

, 412
GΛ′/P0,Λ′ , 63
Gm, xxvi
Gm,S, xxvi
G\, 197, 210
G\

1, 278
G\,∗, 275
G(Q), 34
G(R), 34
G(Z), 34
G(Ẑ), 34
G(Ẑ2), 34
G(Z/nZ), 34
Galois closure, 10
Γ(G,L)χ̄, 235
Γ(n), 34
Γφ, 422, 446
ΓΦH , 470
ΓΦH,σ, 483
ΓΦn , 446
γX , 421
ΓX,Y,φ, 422, 446
γY , 421
Gauss–Manin connection, 139
geometric identity component, 366
geometric point, see point, geometric
GLφ, 422
GLX,Y,φ, 422
good algebraic model, 446, 503, 507
good formal model, 496, 507

good prime, 94
Gr−i(α̂), 357
Gr−i,n(αn), 358
Gr(α̂), 357
Grn(αn), 358
GrW−i, 355
GrW−i,n, 357
GrWn, 357
GrZ, 352
GrZ−1,R, 342
GrZ−i, 349, 352
GrZ−i,n, 354
GrZn, 354
Grothendieck–Messing theory

weak form, 136, 156–158
Grothendieck’s formal existence the-

ory, 161
group scheme

extension, 182
fiberwise geometric identity com-

ponent, 366
group of fiberwise geometric con-

nected components, 366
of multiplicative type, 169
quasi-finite, 199

group scheme of multiplicative type,
169

of finite type, 170
character group, 170
cocharacter group, 441
isotrivial, 170
split, 170

rigid, 169
groupoid, 598, 601
groupoid space, 602

étale, 611
quotient, 602, 609
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H, 35, 36
H, 91
h, 59
H0, 111
hχ̄, 235
H f, 199
Hh, 428
Hh, 428
H′′h, 428
H i, 111
H i

dR, 129
HdR
i , 135

Hn, 90
Hn,Gess

h,Zn
, 412

H ′n,Gess
h,Zn

, 472

Hn,Gess
h,Zn

nUess
1,Zn

, 471
Hn,Gess

h,Zn
nUess

Zn
, 471

Hn,Gess
l,Zn

, 412

H ′n,Gess
l,Zn

, 471

Hn,Pess
Zn

, 412
(Hn, 〈 · , · 〉std,n), 47
Hn,Uess

1,Zn
, 412

Hn,Uess
2,Zn

, 412
Hn,Uess

Zn
, 412

Hn,Zess
Zn

, 412
(H, 〈 · , · 〉std), 47
H′, 416
Hecke action

on cusp labels, 431–440
on M2, 527
on minimal compactifications,

563
on toroidal compactifications,

529
Hecke twist

of degenerating family, 528
of tautological tuple over MH′ ,

527
hereditary, 7, 66
Hermitian pairing, 20
Hilbert schemes, 74, 77, 80, 110, 164,

165
Hilbert’s Theorem 90, 172
Hodge invertible sheaf, 532

positivity, 540
Hom(1), 219
Hom(2), 188

I, 207
I, 212, 225
i, 78, 338, 339
iA, 338, 339
iA∨ , 338
iop
A∨ , 338
ıalg, 504
Ibad, 37
iη, 337
I`, 478
ınat, 504
i\, 339
Iσ, 444
iT , 338
iop
T∨ , 338
iX , 339
iop
X , 338
Iy, 224
iY , 338, 339
Iy,χ, 225, 318
Iy,χ, 225
Iy, 225
infinitesimal automorphism, 143
integrable

filtration, 66
module, 38
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sub-semi-abelian scheme for
Mumford’s construction, 278

Inv, 477
Inv(R), 224
invariant polarization function, 566
inverse different, 3
involution, 19

of ε-symmetric type, 27
of orthogonal type, 27
positivity, 31
of symplectic type, 27
of unitary type, 29

ι, 210
O-equivariance, 339, 340

ιn, 364
ιn,Hn , 414
isogeny

of abelian schemes, see abelian
scheme, isogeny

of smooth group schemes, 71
isomorphism

of categories fibered in groupoids,
599

of stacks, 604
symplectic, 23, 87, 91

isotrivial
group scheme of multiplicative

type of finite type, 170
torus, 170

Jordan–Zassenhaus theorem, 80, 508

K[C∨], 13
K(G\), 257
K(L), 189, 233

main theorem, 201
K(L)f, 233
K(L)µ, 234

K(L)\, 234
K(L)[, 234
KpolΦH

, 566

KpolΦH
, 566

K∨polΦH
, 567

Ksep, 7
Kτ , 7
K[τ ], 7
Kodaira–Spencer class

of extension of abelian scheme by
torus, 312

of period homomorphism, 317
of smooth scheme, 137, 138, 310

Kodaira–Spencer morphism
of abelian scheme, 139
extended

of degenerating abelian variety,
327, 335, 492, 493, 497, 504,
520

of period homomorphism, 319,
493

of extension of abelian scheme by
torus, 312

of period homomorphism, 317
Koecher’s principle, 562
KS

for abelian scheme, 165
for degenerating family, 487
for period homomorphism, 479
for Raynaud extension, 479

KS(A,c)/S/U, 311, 312
KS(A,c)/S/U, 312
KS(A∨,c∨)/S/U, 317
KSA/S/U, 317
KS(G\,ι)/S/U, 319
KSG\/S/U, 310
KS(G\S1

,ι)/S1/U
, 316, 317
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KS(G\S1
,ι)/S1/U

, 316, 317

KSG/S/U, 327, 334, 335
KSGS1

/S1/U, 320, 334
KSX/S/U, 137, 138
Künneth formula, 146, 153, 543

`, 452
L0, 61
L\, 210
L\χ̄, 237
(L, 〈 · , · 〉), 33
(L, 〈 · , · 〉, h), 33
(LZ, 〈 · , · 〉Z), 350
(LZH , 〈 · , · 〉ZH , hZH), 428
(LZ, 〈 · , · 〉Z, hZ), 399
(LZn , 〈 · , · 〉Zn , hZn), 399
L#, 94
λL, 75, 189
λ\, 206, 211
lattice, 2, 7

over (commutative) integral do-
main, 2

dual, 23
full, 2
PEL-type, 33
symplectic, 23

polarized, 32
Lefschetz’s theorem, 575
Leray spectral sequence, 312
level structure

integral, 86, 90
orbit of étale-locally-defined, 89
rational, 93

based, 91
level structure data, 415

orbit of étale-locally-defined, 415
level-n structure

equivalent, 407

level-n structure datum, 404
Lie, 127
Lie algebra condition, 82
Lie∨, 135
Lift(f ; X̃, Ỹ , S ↪→ S̃), 119
Lift(L; X̃, S ↪→ S̃), 124
Lift(X;S ↪→ S̃), 114
liftable, 360

change of basis, 360
splitting, 355
triple (cn, c

∨
n , τn), 365

(LNSch/S0), 98
local ring

strict, 617
local-to-global spectral sequence, 328
log 1-differentials, 318
Looijenga, 476, 566

M, 255, 290
Mample, 255, 290, 298

Msplit,∗
ample , 287

M∗ample, 288

MΣ, 444
Mχ, 218
MH, 95
M1
H, 549, 554

[MH], 546, 552
schemehood, 548, 552

MHh , 428, 470, 473
MH′h , 428
MH′′h , 428

Mmin
H , 544, 552

normal, 545
stratification, 548

(Mmin
H )∧x̄ , 550

MΦH
H , 428, 470, 471, 473

Mrat
H , 98

Mmin
H,S, 556
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Mtor
H , 518, 519

proper, 518
schemehood, 565
separated, 517
stratification, 518

[Mtor
H ], 546

Mtor
H,Σ, 519

(Mtor
H )∧Z[(ΦH,δH,σ)]

, 520

MZH
H , 428, 470, 471

[MZH
H ], 549, 553

([MZH
H ])∧x̄ , 550

MIS, 255, 290
M2, 104, 431
Mn, 94
MZn
n , 399, 446

(M, 〈 · , · 〉), 22
(M, 〈 · , · 〉, N), 22, 23
MPELie,(L⊗

Z
R,〈 · , · 〉,h), 346

MPE,O, 340
MPEL,MH , 416
MPEL,Mn,η̃, 408
MPEL,Mn , 408
Mpol, 255, 291, 300
M#, 23
M(σ), 444
Mσ, 444
m[τ ], 9
Mz,β, 264
matrix form

of 〈 · , · 〉, 353
of Weil pairing, 356

maximal order, 2
mX̃ , 119
mỸ , 119
module

integrable, 38
symplectic, 22

sufficiently, 56
monomorphism

of categories fibered in groupoids,
599

of stacks, 604
MorS̃(X̃, Ỹ , f), 111
morphism

of algebraic spaces
étale, 594
of finite presentation, 595
of finite type, 595
locally separated, 596
properties satisfying effective

descent in the étale topology,
595

properties stable and local on
the source in the étale topol-
ogy, 595

quasi-compact, 595
quasi-finite, 595
quasi-separated, 596
separated, 596

of algebraic stacks
of finite presentation, 612
of finite type, 612
proper, 613
properties stable and local on

the source in the étale topol-
ogy, 611

quasi-compact, 612
quasi-separated, 612
schematic, 615
separated, 612

of categories fibered in groupoids,
599

of cubical torsors, 187
differentially smooth, 276
of presheaves, 587
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radicial, 617
of schemes

properties satisfying effective
descent in the étale topology,
589

properties stable and local on
the source in the étale topol-
ogy, 589

properties stable in the étale
topology, 589

of sheaves, 588
of spaces, 590

representable, 591
schematic, 590

of stacks
representable, 605

symplectic, 23
of topologies, 587
universally injective, 617

µn, xxvi
µn,S, xxvi
multiplicative group, xxvi
multirank

of cusp label, 423, 428
of integrable module, 38
of lattice, 37
magnitude, 509
partial order, 510
of projective module, 18

Mumford family, 447, 484
Mumford quotient, 276

N , 257
Nz,α, 266
Nagata, 347
Nakai’s criterion for ampleness, 274
Nakayama’s lemma, 15

natural transformation of 2-functors,
585

neat, 97
open compact subgroup, 97

Noether–Skolem theorem
analogue for orders, 80
weaker form, 8

nondegenerate
cone, 442
symplectic module, 22

ν, 33
ν(α̂), 87, 91
ν(f), 23
ν(f̂), 358
ν(g), 33
νn, 85
ν(ϕ−1), 401
ν(ϕ−1,n), 403

O, 2
Oχ, 216
Oχ(c∨(y)), 216
O∨, 15
OF0 [O∨], 62, 81
OR-pairing, 22
(OR, ?)-pairing, 22
OS[L ∨], 12
OS[O∨], 15, 82
O-structure, 78
OX, 615
o(f ; X̃, Ỹ , S ↪→ S̃), 119
o(L; X̃, S ↪→ S̃), 124
o(X;S ↪→ S̃), 114
obstruction

base change, 122, 123
to lifting invertible sheaves, 124
to lifting morphisms, 119
to lifting smooth schemes, 114
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ω, 544, 552
Ω1

Mtor
H /S0

[d logD∞,H], 520

Ω1
S/U[d logD∞], 334

Ω1
S/U[d log∞], 319

Ω̂1
S/S0

, 167, 491

Ω̂1
S/U, 319

Ω̂1
S/S0

[d log∞], 491

Ω̂1
S/U[d log∞], 320

Ω̃1
Spec(R)/S0

, 499

Ω̃1
Spec(R)/S0

[d log∞], 499
ωA, 534
♥ω, 534
ωmin, 552
(ωmin)⊗k, 552
(ωmin

S )⊗k, 560
ωT , 534
ωtor, 532
openness of versality, 505, 515
order, 2

maximal, 2
orthogonal direct sum, 23

P, 276
P , 274
P0,Λ′ , 63
P \, 256
PΦH , 476
P∨ΦH , 537, 538
P+

ΦH
, 476

pτ , 60, 340
Pess
Zn

, 412
p-ring, 622
pairing

alternating, 20
sufficiently, 56

Hermitian, 20

positive definite, 475
positive semidefinite, 475

nondegenerate, 22
OR-, 22
(OR, ?)-, 22
skew-Hermitian, 20, 22
skew-symmetric, 20
symmetric, 20
universal domain, 43
weakly isomorphic, 26
weakly symplectic isomorphic, 26

PEL-type O-lattice, 33
φ, 206, 211
O-equivariance, 338, 339

φ, 476
Φ (addition formula), 241
Φ (torus argument), 420
ϕ−1, 401
ϕ−1,H, 416
ϕ−1,Hn , 413
ϕ−1,n, 401, 403
ϕ−2, 401, 421
ϕ−2,H, 477

ϕ−2,H, 416
ϕ−2,Hn , 413
ϕ∼−2,H, 428
ϕ−2,n, 403, 421
ϕ0, 401, 421
ϕ

0,H, 477

ϕ0,H, 416
ϕ0,Hn , 413
ϕ∼0,H, 428
ϕ0,n, 403, 421
ΦH, 477
ΦH, 426
ΦH(G), 488
Φ∼H, 429
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Φn, 421
π0(X), 614
π0(

...
CΦ1/M

Z1
1 ), 450

π0(
...
CΦn/M

Zn
n ), 456

π0(W/U), 366
Pic, 73
Pic0, 73
Pic0

e, 74
Pice, 73, 188
Poincaré

Gm-torsor, 186
as biextension, 186

invertible sheaf, 74
point, xxvi

functorial, xxvi
geometric, xxvi

pointed morphisms
of degree two, 188

polΦH , 566
polarization, 32

of abelian schemes, 77
of symplectic lattices, 32

polarization function, 566
convexity, 566

positive definite
Hermitian pairing, 475

positive element, 475
positive semidefinite

Hermitian pairing, 475
positivity condition

for ψ, 212
for τ , 212

positivity for involutions, 31
pre-level-n structure datum, 403

symplectic-liftable, 404
prescheme

quasi-separated, xxvi
presentation, 608

presheaf, 587
prime

bad, 94
good, 94

prime-to-2, xxv
prime-to-2 polarization, 77
principal polarization, 77
projective

admissible rational polyhedral
cone decomposition, 566

filtration, 66
prorepresentable, 620

effectively, 620
ψ, 211

definition, 229
invariant formulation, 232
positivity condition, 212

Ψ1, 452
Ψn, 458
ψn, 390
ΨΦH,δH , 474
ΨΦn,δn , 469

Q, xxv
Q×-isogeny, 72
qτ , 60, 340
quasi-finite group scheme, 199

abelian part, 200
finite part, 199
torus part, 199

quasi-isogeny of abelian schemes, see
abelian scheme, quasi-isogeny

quotient
of equivalent relations, 592
of groupoid spaces, 602
of semi-abelian scheme by closed

quasi-finite flat subgroup
scheme, 203
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R, xxv
R0[L∨0 ], 12
R1,F, 259
R2,F, 259
r(a, cn( 1

n
χ)), 382

Ralg, 504
RH, 514
R

[0]
H , 512
R[O∨], 15
radicial, 617
rank, 18, 37

of torus, 170
rational polyhedral cone, 442
Raynaud extension, 197

dual, 205
real Hamilton quaternion algebra, 35,

36
reduced norm, 3
reduced trace, 3
reflex field, 60
relative Hopf algebras, 179
relative Picard functor, 73
relative scheme, xxvi
relatively complete model, 256

completeness condition, 257
ResS,S′ , 194
Riemann form, 376, 377

comparison with Weil pairing,
378

rigidification, 73
rigidity lemma, 68
Rosati condition, 79
Rosati involution, 78, 81
Rosenlicht’s lemma, 188, 219

S0, 94, 140, 519, 552
S1, 258
S2, 258

...
SΦ1 , 452...
SΦn , 458...
SΦn,free, 459
...
S

(n)
Φn

, 459...
SΦn,tor, 459∫̄
H, 544∮
H, 544∫
H, 544

SΦH , 472, 554
SΦH

, 477
S∨ΦH , 475
(SΦH)∨R, 475
SΦH(G), 488
SΦH,σ, 554
SΦn , 469
sX , 423, 430
Sy, 257
sY , 423, 430
S̃y, 257
(Sch /S), 588, 590
(Sch /S0), 94
scheme, xxvi, 588, 590

abelian, see abelian scheme
properties stable in the étale

topology, 589
relative, see relative scheme

Schlessinger’s criterion, 142
self-dual, 22
semi-abelian scheme, 191

abelian part, 200
dual, 203
quotient by closed quasi-finite flat

subgroup scheme, 203
Raynaud extension, 197
semistable reduction theorem,

194
semipositive element, 475
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Serre’s construction, 367
Serre’s vanishing theorem, 542, 562
set, 581
sheaf, 588

of groupoids, 604
sheaf of log 1-differentials, 319, 334,

520
Σ (compatible choice of cone decom-

positions), 509
Σ (single cone decomposition), 443
σχ, 227, 228
σMχ , 228
σ∨, 442
σ∨0 , 442
ς̂, 355
ςn, 357, 365
σ⊥, 444
ΣΦH , 476
Σ∨ΦH , 536
σ-stratum, 444
σy, 283
signatures, 60, 340
similitude character, 33
site, 587
skew-Hermitian pairing, 20
skew-symmetric pairing, 20
small surjection, 142
space, 590

algebraic, 591
quasi-separateness, 591

(Spc /S), 590
spectral sequence

Leray, 312, 330
local-to-global, 328

split
filtration, 66
group scheme of multiplicative

type of finite type, 170

torus, 170
(St /S), 604
stack

algebraic, 609
Artin, 608
connected, 614
Deligne–Mumford, xxvi, 609
disjoint union, 614
quasi-separateness, 608
representable, 605
as sheaf of groupoids, 604

star, 259
F, 259
Stein factorization, 541, 544
stratification

of Mmin
H , 548, 553

of Mtor
H , 518, 519

of toroidal embedding, 445
of UH, 511

strictly commutative Picard category,
187, 253

submodule
admissible, 66

substack, 605
closed, 614
locally closed, 614
open, 614

sufficiently alternating, 56
sufficiently symplectic, 56
supporting hyperplane, 442
surjection

admissible, 66
cusp label, 425, 426, 430, 431

with cone decomposition, 486
Symε, 43
Sym%, 160
Symε

%, 42
symmetric element, 475
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symmetric homomorphism
of abelian schemes, 76

symmetric pairing, 20
symmetry isomorphism

for D2, 186
symplectic

filtration, 66
graded isomorphism, 358
isomorphism, 23
lattice, 23

dual, 23
polarized, 32

module, 22
nondegenerate, 22
self-dual, 22
of standard type, 48

morphism, 23
sufficiently, 56
triple, 358

symplectic-liftable
filtration, 355
graded isomorphism, 359
isomorphism, 86

at geometric point, 87
pre-level-n structure datum, 404
triple, 359

equivalent, 360

T∨, 205, 211
Tg, 256
T̃g, 257
T2, 83
table of contents, x
Tai, 565
Tate modules, 82–83
[τ ], 7
τ , 210

definition, 229

dependence on L, 247–250, 300–
302

O-compatibility, 339, 340
positivity condition, 212, 252
symmetry condition, 212, 252

τH, 416
τ̂ , 365
τn, 365, 404
τn,Hn , 414
theorem

of the cube, 188
of orthogonality, 202, 347
of the square, 186

θ, 258
theta constant, 541
theta function

addition formula, 242
Fourier expansion, 227

theta group, 189
topology, 587

étale, 588
fppf, 588
fpqc, 588
in the usual sense, 586

toroidal embedding, 444
affine, 444
main properties, 445
σ-stratum, 444
stratification, 445

torsor, 171
group structure, 179
trivial, 171

torus, 170
isotrivial, 170
rank, 170
split, 170

torus argument, 420
equivalent, 421, 427
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at level H, 426
at level n, 421

torus part
of quasi-finite group scheme, 199

trace condition, 10
trivial torsor, 171
trivialization

of cubical torsor, 187
type A, 36, 37
type C, 36, 37
type D, 36, 37

U, 137, 310
Uess
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Uess

2,Zn , 412
UH, 511

stratification, 511
U

[0]
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U(n), 34
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Uess

Zn
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unipotent radical, 286
universal domain, 43
universe, 1, 582
unramified prime, 6
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Υ1, 224
Υ(G\), 257
ΥI , 224
υ(J), 224

V , 98
V0, 59, 340
V c

0 , 59, 340
VL0 , 12
VL , 12
V2, 83

W , 279
W−i, 355
W−i,n, 357
wij, 356
Wτ , 60
W[τ ], 8
Weil pairing, 85, 202, 348

alternating, 379
comparison with Riemann form,

378
theorem of orthogonality, 202,

347
Witt vectors, 623
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X, 210, 476
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X f, 199
X(G), 193
X(H), 170
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Ξ

com.
Φn,(bn,an), 461

...
Ξ

(n)
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Y , 212
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Z, 348, 349
Z, xxv
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Z−i,A2 , 398
Z−i,n, 354
Z−i,R, 342, 398
Z(1), 32
ZA2 , 398
Z×(2)-isogeny, 72
ZH, 416
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Zn, 403
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